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ABSTRACT 

In forestry applications, tree heights through their inclusion in specific allometric equations can be 

used to infer above-ground biomass and volume at both individual tree and plantation scales. 

However, the traditional field-based methods used, while accurate, are often cost-prohibitive due to 

extensive and time-consuming fieldwork. Remote sensing technologies, like airborne LIDAR, offer 

non-destructive alternatives by swiftly surveying large areas through the generation of Digital 

Surface Models (DSM) and Digital Ground Models (DGM), leading to the creation of a Canopy 

Height Model (CHM). Despite their efficacy, these surveys remain costly and often infrequent. 

This study investigates the effectiveness of Synthetic Aperture Radar (SAR) to determine tree 

height using LIDAR data as the ground truth, focusing on Mount Panorama and Knot Hill Nature 

Forest Reserves in South Australia. These areas contain commercially planted Pinus radiata 

subjected to thinning cycles over their lifetimes (ranging from no thinning - T0, to one thinning - T1, 

two thinnings - T2, and three thinnings - T3). Initially, SAR VV data from the on-going C-band 

Sentinel-1 mission is used in interferometry (INSAR) to generate a corrected DSM from which a 

CHM is generated using the airborne LIDAR DGM. The second approach integrates Sentinel-1 

SAR VV, VH, and their derived texture data with the multispectral bands from the Sentinel-2 

mission and a DGM from the SRTM mission. These datasets feed into a random forest (RF) 

machine learning model (MLM), interpolating gaps in spaceborne LIDAR data collected by the 

GEDI instrument, resulting in another CHM. 

Comparing the generated CHMs with the LIDAR ground truth CHM at the 90th height percentile 

revealed that only under T1 conditions, the INSAR method generated usable results with a 5.6% 

height underestimate and an RMSE of 4.2m. However, the RF MLM was appropriate under both 

T1 and T2 conditions, with an overestimated height of 9.3% and an RMSE of 2.3m, and a 4.4% 

height underestimate and an RMSE of 1.9m, respectively. Given the prevalence of T1 and T2 

conditions in the study area, the RF MLM emerges as a potentially more suitable option due to its 

lower overall RMSE. Under T0 and T3 conditions, both the INSAR and RF MLM methods exhibit 

significant discrepancies from the ground truth, which can be attributed to the limited area in the 

study site under these conditions. 

However, Sentinel-1 C-band data may not be optimal for INSAR over forests due to its upper 

canopy penetration and the current 12-day temporal resolution; these factors further limit its 

accuracy over forested areas which generally already exhibit low SAR coherence. Furthermore, 

the lack of GEDI input data over certain forested areas may have resulted in interpolation over 

larger data gaps than expected. Nevertheless, it was found that currently Sentinel-1 SAR data 

when used in combination with other optical and topographic data in MLMs results in more 

accurate canopy height predictions than when it is used directly through INSAR. 
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Further research using X-band SAR data that is better suited for INSAR, with its lower canopy 

penetration and higher temporal resolution, as well as the combination of SAR data with higher 

canopy penetration from the upcoming NISAR and BIOMASS missions in the RF MLM, could 

improve the accuracy of both methods for tree height estimations. 
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CHAPTER 1 INTRODUCTION 

Forest inventories are an effective tool for the management and monitoring of forest resources, 

and their outputs usually provide information about the health and disturbances in the studied 

forest area. Information derived from forest inventories can be as input data in a range of models 

or allometric equations to estimate ecological and economic indicators such biomass estimations; 

total woody biomass for example can be used to estimate the total timber that might be obtained 

after a future harvest  (De Petris, Sarvia, et al., 2022a; Fankhauser et al., 2018) 

 

Canopy and tree height  can be directly measured in the field (Frolking et al., 2009).The most 

accurate way to measure tree height is by measuring the length of a felled tree, but this approach 

is usually not employed due to its destructive nature (Jurjević et al., 2020). In the field, tree height 

can be measured directly using telescopic poles or by climbing the tree (Jurjević et al., 2020). 

Indirect methods also exist, such as using rangefinders or clinometers (Jurjević et al., 2020). 

According to Liang et al. (2022), inventories using conventional measurement techniques are the 

most reliable source of reference data. 

 

However, it is known that both direct and indirect field methods of estimating tree height are costly 

and require extensive field work that is risky, time-consuming, and labour-intensive (Brown, 2002; 

Coops et al., 2021; Du et al., 2014; Jurjević et al., 2020; Liang et al., 2022). Additionally, these field 

surveys are often limited to a small spatial extent, a limited number of observations, and low 

frequency due to financial constraints faced by organizations without sufficient funding 

(Fankhauser et al., 2018; Liang et al., 2022). Direct methods of measuring tree height such as 

telescopic poles are limited to trees within a certain height, and indirect methods require a clear 

line of sight from the base of the tree to the treetop. This condition may not be possible in a natural 

environment due to terrain restrictions and complex overlapping tree crowns causing occlusion 

effects (Brown, 2002; Fankhauser et al., 2018; Liang et al., 2022; Wang et al., 2019). 

 

Liang et al. (2022) further highlights the possibility that the data collected from field inventories may 

not be reliable. Moreover, tree height measurements from the field may have lower accuracy, 

depending on the type of the tree being measured. This can introduce bias, uncertainty, or 

inaccuracy in allometric relationships used to estimate biomass and carbon stock (Liang et al., 

2022; Wang et al., 2019). 

This is where remote sensing methods can come into play to measure tree canopy metrics, such 

as tree heights, and replace the need for traditional forest inventories. 

Remote sensing 



 

2 

Remote sensing technologies have allowed for the monitoring of forests on a much larger scale 

than field inventories would allow, ranging from local scales when utilising airborne sensors to a 

global view when using satellite platforms (Torres de Almeida et al., 2022). Moreover, remote 

sensing has been found to be effective in the forestry context for extracting structural information, 

such as tree height mail et al., 2023; Wu, 2020). This technology can be categorised into passive 

and active remote sensing. 

Passive optical remote sensing  

Passive optical remote sensing, such as multispectral imaging, is a system that relies on 

measuring the reflectance of solar radiation. It has been observed to indirectly provide information 

about vegetation structure (Wu, 2020).Studies have shown that short-wave infrared-based indices, 

computed using 30m resolution Landsat data, are significant predictors of canopy height in 

Spanish pine forests. The additional bands and higher resolution offered by Sentinel-2 data are 

expected to contribute to more accurate predictions (Coops et al., 2021). 

However, at resolutions of 10m (Sentinel-2) and higher, it has been observed that the spectral 

signature of pixels is no longer sufficient on its own to predict canopy height. Instead, texture-

based indices that characterise pixel properties, such as roughness and shadowing, become 

stronger predictors (Lang et al., 2019). 

Active optical remote sensing  

The emergence of light detection and ranging (LIDAR) as an alternative to field measurements for 

obtaining information about forest structural attributes has been observed (Ismail et al., 2023). 

LIDAR has overshadowed traditional methods as the optical laser beam actively emitted by the 

LIDAR sensor can penetrate the tree canopy to provide insights about the tree top, tree base, and 

terrain that were previously inaccessible. It is capable of accurately capturing the 3D positions of 

objects with centimetre-scale precision (Coops et al., 2021; Wang et al., 2019). Additionally, the 

LIDAR data processing workflow can be automated, enabling analysis of larger survey areas, 

which has made this technology popular for forest surveys (Wang et al., 2019) 

Issues with Passive and Active Optical Remote Sensing 

 

Remote sensing technologies, when passive, are unable to penetrate the inner sections of forest 

canopies, such as the mid and understory. As a result, the availability of spectral signatures and 

texture information for these regions remains poor (Li et al., 2022; Tienaho et al., 2022). Moreover, 

the accuracy of tree attributes extracted from LIDAR data varies greatly depending on the platform 

used. Unpiloted aerial or low-altitude airborne LIDAR systems provide high-detail and high-

resolution data about forest attributes but generally cover a small area, while plane-based systems 

offer a broader overview of forest structure. Spaceborne systems like the Global Ecosystem 
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Dynamics Investigation (GEDI) provide a global understanding of Earth's forests but compromise 

on the resolution of the resulting products, which are often at a much larger extent (Coops et al., 

2021). 

 

Finally, spaceborne optical remote sensing, regardless of being passive or active, is affected by 

atmospheric dynamics, most commonly the presence of clouds or other aerosols, and tends to 

overestimate areas with denser vegetation coverage (Chang et al., 2023; Roc Roc, 2019). 

Microwave Remote Sensing 

 

Microwave-based remote sensing techniques such as Synthetic Aperture Radar (SAR) have also 

been associated with the ability to measure vegetation structure (Wu, 2020). More specifically, 

SAR metrics such as the vegetation optical depth (VOD), which measures the attenuation of the 

incoming microwave signal by the vegetation, have been found to be more effective than optical-

based indices for both the leafy and woody components of a forest. SAR, due to its longer 

wavelength of energy actively emitted by the sensor compared to the optical region, is also less 

affected by cloud presence and other atmospheric effects. Thus, its data can be acquired 

independent of daylight and cloud cover (Chang et al., 2023; Rüetschi et al., 2019). 

Combination of Remote Sensing Techniques 

 

Combining SAR with other remote sensing techniques such as LIDAR or optical methods, taking 

into account their individual advantages and limitations in a range of machine learning methods 

(MLM), could enhance the potential of remote sensing techniques to provide more accurate and 

spatially continuous mapping of forest canopy height  (Chang et al., 2023; Frolking et al., 2009; Y. 

Zhang et al., 2022).Furthermore these MLM are based on the principles that these combined 

datasets can be used to interpolate between data points area collected by spaceborne LIDAR 

based on assumptions of homogeneity or gradual change(Torres de Almeida et al., 2022) 
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Study area 

 

 

Figure 1.1:Location and extent of the study area investigated overlaid on ESRI Basemap. 

 

The study area selected for this research, as shown in Figure 1.1, has an extent of 22.9 km2. 

Within that area, 1.4 km2 forms part of the native forest reserves (NFRs): Mount Panorama and 

Knott Hill, and 4.4 km2 is part of an ongoing Pinus radiata plantation managed by ForestrySA. 

These reserves and plantations are part of the larger Kuitpo Forest Reserve, located in the 

southern section of the Mount Lofty Ranges, south of Adelaide, South Australia, Australia 

(ForestrySA, 2016) 

 

A factor in the selection of the study site was the availability of freely accessible airborne LIDAR 

data in this section of the Kuitpo forest reserve. This data will be processed and used as ground 

truth in this study. Moreover, the site is relatively close to Flinders University, enabling timely 

access. 
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Since 1921, the land in these areas has been cleared to make room for pine plantations (Pinus 

radiata). Approximately only 15% of the native vegetation, consisting mainly of Eucalyptus species, 

has been preserved in dedicated sections of the reserve. 

 

The study site experiences typical wet and cool winters, with average daily temperatures around 

14°C. This transitions into dry and warm summers, with temperatures ranging from 30°C to 35°C, 

and an annual rainfall of 854mm (ForestrySA, 2016). 

 

ForestrySA manages the pine plantations on a 40-year cycle. If the selected site is undergoing its 

first rotation of pine, the area is prepared to ensure proper water movement and prevent erosion. 

For second rotations, the residues from the previous cycle are minimised, and the site is cultivated 

to improve the underlying soil health (ForestrySA, 2018). Seedlings, approximately 25cm tall, are 

then planted at a density of around 1600 per hectare. Throughout their life span, the pine trees are 

thinned at a rate of 30% to 50% every 10 years and ultimately harvested when they reach 37 to 40 

years of age. These trees are then used to provide sawlogs and industrial logs, serving as raw 

materials for various industries (ForestrySA, 2018, 2021). The study area was then broken down 

into different sections of Pinus radiata based on the number of thinning processes they have 

experienced so far, resulting on a further breakdown into areas such as T0, where no thinning was 

carried out, to T1, T2, and T3 where one, two and thinning cycles were carried out respectively.  

Research aims 

 

This study investigated the ability of SAR data from Sentinel-1 to be used on its own through 

INSAR and in combination with optical data from Sentinel-2 in a MLM. In both scenarios a canopy 

height model was generated and compared against LIDAR ground truth data. The objective was to 

determine which method of utilising SAR data was overall the more appropriate for large Pinus 

radiata plantations in South Australia which may contain trees that have different ages / maturities 

and thus have undergone a different number of thinning cycles. 
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CHAPTER 2 INTRODUCTION TO SAR 

 

Synthetic Aperture Radar (SAR) is an active microwave remote sensing technique that can capture 

high-resolution 2D images of large study areas regardless of weather conditions, daylight intensity, 

and cloud coverage (Jagdhuber, 2012; Moreira et al., 2013). The synthetic nature of the SAR 

system arises from the coherent combination of received signals, which creates a virtual antenna 

that is much longer than a physical one (Moreira et al., 2013). 

 

A space-borne SAR system consists of an active transmitter mounted on a satellite that 

periodically emits pulses to interact with the Earth's surface. The amplitude and phase of the 

reflected echoes are modified based on distance to the object as well as the physical or electrical 

properties of the objects present (Moreira et al., 2013; Santoro, 2003). The SAR system can be 

described as monostatic or bistatic, depending on whether the same antenna is used for both 

transmission and reception of the echoes or if different antennas are employed (Jagdhuber, 2012; 

Moreira et al., 2013). The SAR system is mounted in a side-looking configuration on the moving 

platform instead of the NADIR configuration to avoid signal saturation and positional ambiguities. In 

the nadir configuration, the SAR antenna would point straight down, resulting in a loss of image 

information due to saturation. Therefore, the side-looking configuration enables SAR to provide 

high-resolution images over a large area (Moreira et al., 2013; Santoro, 2003). 

 

A typical SAR configuration is depicted in Figure 2.1 

 

Figure 2.1: Typical configuration of a SAR sensor adapted from NISAR (2018) 

 

It is observed that the SAR system moves in an azimuth direction also described as the along track 

direction, with the signal pulses being transmitted in the direction of the slant range R, under an 

 

 

 

Figure 2.1 has been removed due to Copyright restrictions 
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incidence angle θ which, under the condition of flat terrain being observed, will be equal to θr, the 

RADAR look angle. Moreover, the radar swath is generated as the SAR platform moves in the 

azimuthal direction, and the SAR footprint, a function of the antenna design, is visible in the 

illuminated area.  

SAR resolution 

Azimuth resolution 

In a SAR system, the beam with in the azimuth direction will define its capacity to separate 

between two objects A and B as shown in Figure 2.1 which are present on the same range, and is 

called the Azimuth resolution (Woodhouse, 2006). 

Range resolution 

The slant range resolution refers to the SAR system's ability to distinguish between two objects, in 

this case, A and C, that are found within the same position in the azimuth direction but along 

different sections in the range direction. On the other hand, the ground range resolution (GRR), 

often called the range resolution, is crucial for Earth observation. The slant range, based on the 

distance from the line of sight from the sensor to a particular point, is a geometric measurement 

that does not convey true resolution or ground position on its own. It is generally converted to 

ground range resolution through a projection onto a reference surface. It is observed that the 

ground range resolution is poorer in the near range and improves towards the far range. 

Generally, the spatial resolution of a SAR system is defined in the Azimuth and Range direction 

(Az-R)  

SAR band Wavelength 

 

The backscatter received by the SAR sensor depends on three main parameters: surface 

roughness, dielectric constant, and viewing / object geometry (Jones & Vaughan, 2010). The 

wavelength of the microwave signal used by the SAR sensor is also known to affect the signal's 

penetration ability. Different microwave bands, consisting of a range of wavelengths, have been 

assigned specific names, as shown in Figure 2.2 (Sartoretto, 2021). 

 

Figure 2.2: Depiction of the different wavelength of the microwave signals used in SAR systems, and 
the corresponding naming of the section of the wavelengths into bands  (Sartoretto, 2021) 

 

Figure 2.2 has been removed due to Copyright restrictions 

 

 

Figure 2.1 has been removed due to Copyright restrictions 
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SAR band penetration 

A SAR system's ability to penetrate the canopy increases as the wavelength increases (Figure 

2.3). Higher wavelengths, such as L and P bands, are suitable for assessing biomass dynamics, 

while lower wavelengths X and C bands are more appropriate for estimating canopy height (Chang 

et al., 2023; Coops et al., 2021). This distinction arises from the scattering phase centres (SPC), 

which are mathematical constructs used to describe the origin of the echo of an incoming SAR 

signal within a scattering area. X and C-band based SAR systems will exhibit SPC on close to the 

top of the canopy and within the upper tree crown, respectively (Chang et al., 2023; Coops et al., 

2021). In contrast, L- and P-band systems will have significantly lower SPC within the canopy, as 

they penetrate it. Consequently, the backscatter recorded by these systems would primarily 

originate from either the tree trunks or the ground itself (Palm, 2022). 

 

Figure 2.3: Canopy penetration of the different SAR bands (Wallington, 2006). 

SAR data characteristics 

 

Object Dielectric Constant and Roughness 

 

The penetration capability of the SAR system also depends on the reflection object dielectric 

constant, which determines the ratio of the transmitted microwave signal that will penetrate or be 

absorbed by the targeted medium and how much of the incoming signal will scatter at the surface 

(Meyer, 2019; Sartoretto, 2021). This constant depends on two characteristics: the density of the 

canopy and the object moisture content. The higher they are, the lower the penetration depth of the 

signal  (Meyer, 2019). The roughness of the observed surface is a function of the incoming 

wavelength of the SAR signal and determines the amount of backscatter signal received by the 

SAR sensor. The longer the wavelength, the smoother the surface appears to the SAR sensor, 

resulting in specular reflection and limited backscatter return. In contrast, the shorter the 

wavelength, the rougher the surfaces appear, resulting in diffuse and stronger returns (Meyer, 

2019). 

 

SAR scattering mechanisms  

 

 

Figure 2.3 has been removed due to Copyright restrictions 
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The interaction and scattering of the incoming SAR data vary depending on the surface 

characteristics, as seen in Figure 2.4. Rough surface scattering occurs in areas composed of bare 

ground and low vegetation, double-bounce scattering occurs between the ground and tree trunks 

as well as in building corners, and finally, volume scattering occurs when the signal is reflected 

several times as it penetrates vegetation canopies (Meyer, 2019) 

 

Figure 2.4: Types of scattering in SAR data, where the blue arrows correspond to rough surface 
scattering, the green arrows correspond to volume scattering, and the red arrows correspond to 
double bounce scattering (Meyer, 2019). 

SAR polarisation 

The polarisation of the transmitted SAR signal measures its plane of oscillations, and different 

polarisations respond differently to the different types of scatterers present in a scene. The 

polarisations used in SAR systems range from single polarisations, such as horizontal (H) 

polarised wave transmitted and horizontal polarised wave received (HH), or vertical (V) polarised 

wave transmitted and vertical polarised wave received (VV), to dual polarisations where an H or V 

wave is transmitted and both H and V polarised waves can be received, HH and HV as well as VV 

and VH (Sartoretto, 2021). Finally, the final polarisation type is quad polarisations where both 

transmitted and received signals are orthogonal pairs(Sartoretto, 2021). The received or changed 

polarisation of the SAR signal can be used to infer the properties of objects observed in the scene 

(Sartoretto, 2021). 

Interferometric SAR (INSAR) 

 

INSAR is a powerful tool capable of measuring changes in various geophysical parameters, such 

as topography and surface alterations (Rosen et al., 2000; Yu et al., 2019). Regular SAR, which 

projects detected 3D objects onto resulting 2D SAR images based on their along-track position and 

slant range measured by only one antenna, cannot be used to determine topographic heights (Li & 

 

 

 

Figure 2.4 has been removed due to Copyright restrictions 
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Goldstein, 1990). However, INSAR adds another antenna to the system. Each antenna individually 

measures the phase of a specific pixel of interest. Due to their inherent differences in imaging 

geometry, the measured phase difference between both antennas, designed to be close together 

with a small baseline (Figure 2.5), will be influenced by the height of any object present in that pixel 

of interest (Li & Goldstein, 1990). This phase difference is related to the wavelength used in the 

SAR system, which makes INSAR measurements sensitive and precise for topographic 

information (Li & Goldstein, 1990). 

 

Figure 2.5 Showing a simplified depiction of INSAR in across-track systems, where two SAR scenes, 
SAR, and SAR', are used to determine the topographic height (h) at a scattering phase centre based 
on a reference height (H) and a look angle (θ)  

 

 

Types of INSAR systems 

 

Along track INSAR 

 

One way to acquire INSAR pairs is through observations that are simultaneously acquired over the 

same target site, either through an along-track or cross-track mode, which relies on a system using 

a pair of antennae or, one antenna can be artificially split into two halves that can be combined for 

transmission but separated for reception  (Bamler et al., 2006; S. Liu et al., 2021).  

 

 

 

 

Figure 2.5 has been removed due to Copyright restrictions 
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Repeat pass INSAR 

 

Repeat pass or repeat track INSAR is another method that can be used with observations of the 

same site but from two different tracks acquired at different dates, through a process called repeat 

pass or repeat track INSAR (Bellec et al., 2005; S. Liu et al., 2021). 

Additionally, SAR systems like TanDEM-X can operate in both acquisition modes since the system 

comprises two radar satellites flying in a configuration that can be modified depending on the need 

(Krieger et al., 2007). 

INSAR principles 

 

INSAR is mostly based on the concept of coherence which quantifies the similarity between the 

signals obtained from the INSAR antennae and thus is a measure of the correlation between two 

SAR images (Li & Bethel, 2008; Roc Roc, 2019; T. Wang et al., 2009). In areas with water bodies, 

low coherence is observed, while urban areas with buildings exhibit high coherence. It is worth 

noting that coherence can change over time, with agricultural fields experiencing a decrease in 

coherence from moderate to low due to plant growth. Coherence is a  quantity with values between 

0 and 1 where the lower the value the lower is the similarity between the SAR images (Roc Roc, 

2019; T. Wang et al., 2009). 

The correlation γ between two SAR scenes can be affected by several factors shown in equation 1 

shown in Roc Roc (2019) 

𝛄 =  𝛄 𝒈𝒆𝒐𝒎 ∙ 𝛄 𝑺𝑵𝑹 ∙ 𝛄 𝒗𝒐𝒍 ∙ 𝛄 𝒕𝒆𝒎𝒑 

Equation 1 

                                         

                            

Where γ geom refers to the geometric correlation occurring due to the incidence angle, γ SNR 

corresponds to the noise observed in the receive antennas of the SAR system, γ vol is a measure 

of the volume scattering occurring and γ temp is the temporal decorrelation occurring due to the 

difference in the SAR acquisition time (Roc Roc, 2019; Woodhouse, 2006) 

The phase difference (Δ𝜙) for a SAR image is made up of three components as shown in equation 

2, which was simplified from Roc Roc (2019). When equation 2 is expanded, the first component is 

the change in phase in the slant range direction from the SAR sensor and the scattering phase 

centre generated when the signal meets the ground (ΔR). The second component is the difference 

in elevation between the scattering phase centre and the reference height, which may be a 

reference ellipsoid, geoid, digital terrain model (DTM), or a flat earth. In the context of INSAR over 
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a tree canopy, this corresponds to the tree height (Δh). Finally, the third component is a 2π phase 

ambiguity, which is present as the phase value is initially bounded between -π and π (Chen et al., 

2000; Roc Roc, 2019; Soja, 2014) 

𝚫𝝓 ≈  𝑲𝒛(𝚫𝐑𝐜𝐨𝐬𝛉 + 𝚫𝐡) + 𝟐𝛑𝐧 

Equation 2 

 

Where 𝑘𝑧 is the vertical wave number, which is a measure of the sensitivity of the phase of the 

SAR signal to variations in height. It represents the number of 2π cycles in the SAR signal that 

correspond to a vertical change in height of 1 metre, and n is a measure of the complete 

wavelengths in the phase difference (Asopa & Kumar, 2020; Soja, 2014). 

Looking at equation 2,the first component on the RHS is first completely removed though a 

flattening process (Roc Roc, 2019). The third component (2πn) is then removed through a second 

process called the phase unwrapping which is a process that allows the number of 2π to now be 

unbounded from the initial -π and π range as shown in figure 2.6 

 

Figure 2.6: Overview of the unwrapping  process where the wrapped phase 𝜙w is unwrapped to 

phase 𝜙, adapted from Chen et al. (2000) 

Finally the only term left in equation 2 Δh corresponding to the tree height can be determined as 

shown in equation 3 adapted from Roc Roc (2019) where Δ𝜙′ is the phase difference after the 

unwrapping process 

𝚫𝐡 =
𝟏

𝒌𝒛
𝚫𝝓′           

Equation 3 

                                               

 

  

 

 

 

Figure 2.6 has been removed due to Copyright 

restrictions 
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CHAPTER 3 LITERATURE REVIEW: 

To thoroughly investigate the application of SAR data in estimating tree canopy height, a 

comprehensive assessment of presently operational SAR systems was conducted. This 

assessment involved identifying the specific SAR bands currently in use and operational. 

Subsequently, the literature review has been selectively narrowed to include only relevant and 

current studies aligned with the identified operational SAR bands. This targeted approach ensures 

a focused exploration of literature directly pertinent to the subject matter. 

Operational SAR systems 

A wide range of SAR systems are currently operational with some of their characteristics described 

in Table 3.1  

Table 3.1 Representative sample of the SAR systems currently operational adapted from Jacobsen 
(2005); Paek et al. (2020); Zhang et al. (2020) 

Satellite Launch Year 
Spatial resolution 

(m, Az-R) 

Temporal 

Resolution 

(days) 

Band Type Pricing 

TerraSAR-X 2007 1-1 11 X Paid 

TanDEM-X 2010 1-1 11 X Paid 

COSMO-SkyMed 2019 0.35-0.55 1-3 X Paid 

RADARSAT-2 2007 0.8-1.6 24 C Free 

ALOS-2 (Daichi-2) 2014 1-3 14 L Paid 

PAZ 2018 1-1 1 X Paid 

Sentinel-1A/B 2014,2016 4-2 6–12 C Free 

 

As shown in Table 3.1, it is seen that a wide range of SAR systems are currently operational. 

However, Only RADARSAT-2 and Sentinel-1 have their data currently freely available. 

Furthermore, as RADARSAT-2 data is only freely available as a yearly mosaic and not individual 

images, outputs from Sentinel-1 was chosen for this study as the data available is separated for 

each observation and not a mosaic, and thus can be used both for INSAR as well as MLMs 

Operational optical passive remote sensing systems 

Moreover, an investigation was carried out to identify the current passive and active optical remote 

sensing systems that are deployed to assess their potential to be included in MLM. (Table 3.2) 
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Table 3.2: Representative samples of the currently operational passive optical systems adapted from 
(Ouhami et al., 2021) 

Satellite Launch Year 
Spatial 

Resolution (m) 

Temporal 
Resolution 

(days) 
Pricing 

WorldView-2 2009 0.46 m 1.1 Paid 

WorldView-4 2019 1.24 m (VNIR) 4.5 Paid 

WorldView-3 2014 
1.24 m (VNIR) 
3.7 m (SWIR) 

<1 
<1 

Paid 

Pleiades-1A 2011 2.0 m (VNIR) 1 Paid 

Jilin-1 2015 2.88 m 3.3 Paid 

SPOT-6,7 2012,2014 6 m (VNIR) 1 Paid 

TH-01 2010 10 m (VNIR) 5 Paid 

Sentinel-2 2015 10 m, 20 m, 30 m 5 Free 

Landsat 8/9 2021 
30 m (VNIR + 

SWIR) 
8 Free 

ENMAP 2022 30 m 4 Paid 

PRISMA 2019 30m 7 Paid 

 

As shown in Table 3.2, it was observed that a wide variety of high spatial resolution optical 

spaceborne systems with high revisit times are currently deployed. However, it was noted that only 

Sentinel-2 and Landsat data were available for free. When comparing Sentinel-2 data to Landsat 

8-9, it was found that Sentinel-2 had a higher temporal resolution, resulting in more images being 

available over the study period and increasing the likelihood of cloud-free observations. 

Additionally, four of Sentinel-2’s spectral bands had a resolution of 10m, whereas Landsat 

consistently had a 30m resolution across all bands, except panchromatic. Therefore, if optical data 

were to be used in an MLM, the data source chosen was Sentinel-2. 

Operational active optical remote sensing systems 

Table 3.3 Current active spaceborne LIDAR sensors adapted from Coops et al. (2021) 

LIDAR 
Sensor 

Recording 
mode 

Acquisition strategy Wavelength 
Approximate 
footprint size 

Spatial 
extent 

ATLAS 
(ICESat-2 

satellite) 

discrete 
returns 

Profiling (1 footprint 

every 70 cm along 

laser ground track) 

532 nm ~14 m 

Global (± 
88◦ 

N/S latitude) 

GEDI (ISS) 
Full 

waveform 

Sampling (1 

footprint every 60 m 

along ground track) 

1064 nm ~25 m 

Near-Global 

(± 51.6◦ N/S 

latitude) 
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It is observed from Table 3.3 that there are currently two active spaceborne LIDAR systems. Upon 

examining the approximate footprint size, it may be tempting to utilise ICESat-2 data. However, as 

demonstrated by A. Liu et al. (2021), it can be seen that ICESat-2 and GEDI employ different data 

sampling strategies. ICESat-2 employs a sampling strategy that prioritises higher boreal regions, 

resulting in reduced sampling density over temperate and tropical forests. Conversely, GEDI has a 

higher sampling rate in mid to low latitude regions, which aligns more closely with the location of 

the study site. Thus GEDI was utilised as the dependent variable in an MLM for this study due to 

its superior ability to retrieve canopy height compared to ICESat-2, as the latter tends to 

underestimate canopy heights under all forest types and conditions(A. Liu et al., 2021). 

Literature review scope 

The scope of this review has been narrowed down to primarily investigate the use of Sentinel-1 C-

band data, initially through the INSAR process only, and then through a combination with other 

data sources, including Sentinel-2 in MLM. This review also aims to find the most appropriate MLM 

to be used in this context, as well as how the different data sources should be combined and 

processed before being used as input. Therefore, studies utilising the less accurate ICESAT-2 are 

not excluded, as they could still provide valuable insights into the optimal way of utilising input data 

such as Sentinel-1 and Sentinel-2 data. 

Moreover, due to wide extent of X and L band SAR systems being deployed, an overview of their 

methodology in studies which aimed to estimate tree canopy height was also carried out to see 

potentially how this study may evolve in the future if these datasets were to be available.  

Sentinel-1 INSAR for tree canopy height estimations 

The use of sentinel-1 C-band data directly through INSAR was in the to be often dismissed 

category due to its intermediary canopy penetration ability which may not accurately describe the 

tree canopy height, and the low temporal resolution(Rüetschi et al., 2017). However, Kumar and 

Krishna (2019) conducted a study using a pair of VV Sentinel-1 datasets to generate a CHM. They 

achieved this by creating an interferogram and unwrapping the phase to obtain elevation 

information. The authors then applied radiometric corrections to generate a DSM. However, for the 

DTM from which the DSM needs to be subtracted to obtain a CHM, instead of using a DTM 

specific to the forest location, the authors searched for nearby areas that had been cleared of 

forest. They obtained the ground elevation from those areas and assumed that the elevation in 

those areas was the same as in the forest, and thus generated their CHM 

 

Liu et al. (2022) used an alternative method to generate the CHM using INSAR. Instead of using 

an external digital elevation model (DEM) to obtain the ground elevations, they utilised the 
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assumption that the DSM generated from the VH polarised S1 INSAR pair corresponds to the 

scattering phase centre which is closer to the top of the tree canopy, and the DSM from the VV 

polarisation corresponds to the scattering phase centre which is closer to the ground, under the 

assumption that the VV scattering is due to the ground scattering, thus the phase equivalent of the 

DTM. Thus, the height of the vegetation was calculated by the canopy phase due to the vegetation 

(VH) minus the canopy phase due to the ground (VV) 

 

Xie et al. (2023), on the other hand, used the INSAR process to generate a DSM using Sentinel-1. 

However, instead of using an external DTM or generating the phase information equivalent to the 

ground as in Liu et al. (2022), for the DTM generation, they used the INSAR PALSAR L band data, 

relying on the assumption that the L band has a greater penetration ability than the C band, and 

thus the DSM generated from the process will resemble a DTM more closely. Moreover, before 

creating a CHM using the DSM minus DTM formula, they assumed that there might be a 

systematic difference between the C band DSM and L band DTM. Thus, both DEMs were 

analysed over the same flat area in the study site, and adjusted by finding the average elevation 

over the flat polygon and removing it from both DEMs before generating the final CHM.  

Kumar and Krishna (2019), Xie et al. (2023) and Liu et al. (2022) utilised the principle of phase 

unwrapping to generate their respective DEMs at some point. However, De Petris, Cuozzo, et al. 

(2022) maintained that phase unwrapping tends to fail in vegetated areas due to low coherence 

caused by vegetation. Instead, they employed an alternative approach that does not involve phase 

unwrapping. In De Petris, Cuozzo, et al. (2022), the INSAR process was halted at the 

interferogram generation stage and, as a result, only the phase component caused by topographic 

changes was eliminated. 

 

To establish reference points, they selected the centroids of polygons within the study areas. 

These regions were both flat and highly coherent (coherence greater than 0.8). From these 

reference points, the phase information from the interferogram and the elevation from an external 

DTM were extracted. The absolute change in height was then calculated as the difference between 

the phase at any forest point and the phase at the reference point, multiplied by the sensitivity ratio 

of the phase to topographic changes. The canopy height was obtained by adding the absolute 

change in height to the height extracted from the DTM's nearest reference point. 

 

Overall, it was observed that even within the traditional INSAR process using C-band data, where 

the Digital Surface Model (DSM) is generated after phase unwrapping, there are variations in how 

ground elevation is derived to generate a CHM. These variations include using an external DTM, 

utilising different INSAR data with greater capability to penetrate canopies, or employing different 

polarisations of the same data, all of which can better represent ground elevation. However, it was 
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shown that there exist a modified INSAR methodology using sentinel-1 data that circumvents the 

phase unwrapping process that often fails in vegetated areas, but is still able to generate a  

Sentinel-1 as a data source in MLM for tree canopy height estimations 

It has been observed that a wider range of studies have preferred utilising sentinel-1 data  with 

other data sources into MLM to retrieve canopy heights directly through the INSAR process 

(Ghosh et al., 2020; Liu et al., 2019; Silveira et al., 2023; Sothe et al., 2022; Xi et al., 2022).This 

trend may be following the fact that recent research have outlined that the combination of SAR and 

optical data can accurately be used to derive forest canopy metrics such as tree canopy height. 

Moreover the use of MLM such as Random forest (RF), Classification and Regression Trees 

(CART), and Logistic regression (LR) has allowed the development of predictive models that can 

be built upon an existing reference database such as spaceborne LIDAR, and has been proven to 

be a viable alternative to field-collected data (Torres de Almeida et al., 2022).  

Nandy et al. (2021) have used Sentinel-1 co and cross polarised data as well as a range of texture 

information (GLCM) derived from it as the independent variable and ICESAT-2 height canopy 

values as independent variable using an RF model to estimate the forest canopy height outside of 

the range covered by the ICESAT-2 data used. They found that when the output canopy heights 

were in line with the field data in the deciduous forest with an R2 of 0.84. 

Silveira et al. (2023) used a range of texture metrics derived from Sentinel-1 SAR data and 

vegetation indices from Sentinel-2 as inputs in a random forest algorithm to predict canopy height 

based on field data collected over a large scale. They found that their model predictions 

outperformed tree canopy height obtained by GEDI .Torres de Almeida et al. (2022) derived a 

range of Sentinel-1 features, such as the VV and VH polarizations and a series of derived SAR 

indices, as well as Sentinel-2 data in the form of raw reflectance bands and derived vegetation 

indices. These datasets were inputted separately, then combined in a series of machine learning 

algorithms such as LR, CART, and RF to estimate tree canopy height based on LIDAR data. They 

found that the RF algorithm with only Sentinel-2 outperformed the other combinations, even though 

the one based on both Sentinel-1 and Sentinel-2 performed well, the difference was not statistically 

significant.  

However, Sothe et al. (2022) tested the use of spaceborne LIDAR data from ICESAT-2 and GEDI 

as an alternative to airborne LIDAR as used in Torres de Almeida et al. (2022) in the training and 

validation data in an RF model using both Sentinel-1 and Sentinel-2 data as predictors. The 

authors found that GEDI was closer to ALS measurements when compared to ICESAT2, but they 

both overestimated the canopy height. Furthermore, their most performant RF model in predicting 

forest canopy height was the one including both SAR and optical data. Overall, Sothe et al. (2022) 
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found that using spaceborne LIDAR data allowed the model to be used for more large-scale 

mapping applications. 

Ghosh et al. (2020) used a range of Sentinel-1 and 2 data, as well as the SRTM DEM, to 

investigate the symbolic regression (SR) approach in the context of a mangrove forest and 

compare it to the RF algorithm. The SR approach can identify all the different regression models 

and come up with one that is interpretable and based on a selection of variables that are the most 

effective predictors, using ICESAT2 data for training and validation. However, it must be noted that 

using validation data as carried out by (Xi et al., 2022) and (Ghosh et al., 2020) that are of the 

same order of accuracy as the results data might thus not be adequate mechanism. The authors 

found the SR model to be more performant, reliable, and accurate as compared to the RF one 

when used to create a canopy height map. If the objective is to estimate the forest stand meaning 

height. 

Several of the studies that were investigated have shown that for Sentinel-1 data, cross-polarized 

data produces more accurate predictions for forest structure attributes (Liu et al., 2019; Silveira et 

al., 2023; Sothe et al., 2022).Sothe et al. (2022) suggested that co-polarized backscatter, such as 

HH, may be affected by double-bounce scattering whereas cross-polarized data indicated volume 

scattering from tree leaves and branches in the vegetation, which contributed more to the canopy 

height predictions. However, Ghosh et al. (2020) was the only study to reject the use of the VH 

polarization from Sentinel-1 due to the lower coherence caused by cross-polarized noise. 

X band SAR data for canopy height estimation  

It was seen that one of the most common ways of utilising X band SAR data for canopy height 

predictions was its inclusions in models such as the Random Volume Over Ground (RVoG) model, 

which has become a standard application in the forestry context (Gómez et al., 2021). The RVoG 

model allows for the relation of complex interferometric coherence through a function of only a few 

parameters such as the ground-to-volume backscatter ratio, vegetation height, extinction, and 

topography of the study area(Gómez et al., 2021; Guliaev et al., 2021). 

Guliaev et al. (2021) and (Qi et al., 2019) have suggested a technique to estimate forest height in a 

tropical context with single-polarization TANDEM-X INSAR data using a constant value for the 

extinction coefficient that is relates the forest density and dielectric constant for the forest in the 

study site. They assume a ground-to-volume ratio of zero in a simplified RVoG model, resulting in 

a scenario where the tree height is related only to the interferometric coherence. DTM can be used 

to calculate the ground topographic phase, which can then be used to derive the forest height and 

extinction coefficient using an area of high coherence as reference, assuming a ground-to-volume 

amplitude ratio of 0, through the use of an RVoG model (Guliaev et al., 2021; Qi et al., 2019). 

Furthermore, to augment the coverage of the TANDEM-derived height estimate, the DTM can be 
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derived from GEDI data instead of Airborne Laser Scanning (ALS), as hypothesized by Qi et al. 

(2019). 

Gómez et al. (2021) have modified the RVoG model to include two empirical parameters that can 

be empirically calibrated to match the data and provide more reliable forest height estimations 

within a condition that the estimated height is within a third of the height of ambiguity 

(HOA).Schlund et al. (2022) adapted the model and principle of parameterization mentioned by 

Gómez et al. (2021) by combining GEDI RH100 data following the model described in Qi et al. 

(2019) to retrieve one of the empirical parameters needed in their version of the RVoG model. This 

adaptation is aimed at tropical landscapes rather than the higher-latitude forest where the model 

has previously been applied (Gómez et al., 2021). 

L band SAR data for canopy height estimation 

Moreover similarly to X-band SAR data, L-band data use was favoured to be used in models 

instead of INSAR and MLM, potentially due to data not being suitable for INSAR and overall the 

amount of data needed in MLMs potentially die to their elevated cost (Meyer, 2019) 

It is seen that there were attempts to modify the RVoG model has been proven as an effective 

model in predicting forest height or vertical vegetation structures through the use of Polisar data 

(Sa et al., 2023). However, it is seen in a repeat pass context, that and unmodified RVoG model 

may suffer from temporal decorrelation which is associated with change in the general 

environmental condition such as  the moisture present, tree regrowth or even freezing, movement 

of scatterers; all of which might occur in between the next pass (Lei & Siqueira, 2014; Sa et al., 

2023). Moreover, the presence of temporal decorrelation results will affect the RVoG model as it 

reduces the coherence in the interferometric data as well as causing phase shifts (Sa et al., 

2023).When considering spaceborne systems like ALOS, it is seen that the changes in coherences 

due to the temporal correlation often surpasses that caused by the change in the objects to be 

investigated even when the vertical wave number is low as it is often below the inversion range 

threshold (Sa et al., 2023) 

Lei and Siqueira (2014) have established specific values for the extinction coefficient in relation to 

L-band characteristics, including the presence of either dense or sparse forests, and the vertical 

wavenumber for a temporal baseline in an ALOS system. Additionally, coefficients related to 

temporal changes, such as dielectric fluctuation and motion standard deviation, were assigned 

constant values for various height values. These coefficients and constants were utilised in an 

RVoG model to estimate curve fitting parameters, which were then used to fit a modified version of 

the RVoG model to estimate forest height. To verify these parameters in areas where the forest 

height is known, LIDAR data was used, as well as the assumption of a low ground to volume ratio. 
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When compared to the reference LIDAR data, the output of the modified RVoG model had an 

RMSE of less than 4m (Lei & Siqueira, 2014). 

Chen et al. (2021) developed a modified RVoG model to estimate tree canopy height using L band 

POLINSAR data from spaceborne systems like ALOS PALSAR. In their study, they accounted for 

the temporal decorrelation by adapting the original RVoG model. They assumed a constant ground 

vertical reflectivity (GVR) and derived an extinction coefficient from a lookup table based on L band 

data. The authors calculated and combined three decorrelation factors, including the signal-to-

noise ratio (SNR) ratio, pre-processing decoherence due to the registration error, and baseline 

distance decoherence. To consider the time difference between the acquisition date, Chen et al. 

(2021) used the Normalized Difference Vegetation Index (NDVI) data from the same date as the 

SAR data acquisition to estimate a final time variation factor. They combined these four factors to 

divide the coefficient data from the original SAR data. Additionally, they included range slope 

information calculated from the SRTM DEM since it significantly affects canopy height estimation 

(Chen et al., 2021). Overall, the model that incorporated both the range slope data and the time 

decoherence factors outperformed the model that considered only the time decoherence factors 

Chen et al. (2021). 

Managhebi et al. (2018) developed a new algorithm to address temporal decorrelation in 

estimating tree canopy height using L band polarimetric interferometric synthetic aperture radar 

(PolInSAR) data. They adapted the RVoG model and combined it with a volume over ground 

algorithm (RVoG + VTD) to improve the accuracy of the estimation. Two decorrelation coefficients, 

based on ground and volume coherences, were integrated into the original RVoG model and were 

in a range between zero and one, with the ground coherence coefficient being given a constant 

value of one as it was assumed that GVR was constant. 

Instead of using a fixed extinction coefficient, Managhebi et al. (2018) estimated it based on a 

linear function that relied on the distance ratio index. This index is the ratio between the average 

distance of the scatterers with the canopy and the distance between the scatterers and the ground. 

They used L band data and estimated the parameters using a least squares method. Before the 

inversion step, the estimated extinction coefficient was applied to calculate the forest height. The 

output model had an RMSE of 2.47m, which was 5.47m lower than the traditional RVoG model that 

used L band data. 

Sa et al. (2023) have made improvements to the original RVoG model, enabling it to be utilised for 

Repeat pass L-band spaceborne systems, such as ALOS PALSAR. In contrast to previous studies 

that assumed constant extinction coefficients and ground volume scattering ratios (GVRs) (Chen et 

al., 2021; Lei & Siqueira, 2014) or Just a constant GVR (Managhebi et al., 2018), Sa et al. (2023) 

included three terms in the model to correct for the effects of temporal decorrelation and to 

estimate the extinction coefficient that varies with height. The authors used phase centre histogram 
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data created through INSAR to develop this function. Furthermore, a customized GVR parameter 

was created that considered both the volume scattering caused by the ground layer and the 

volume later scattering. The use of a customized GVR prevented underestimation of the output 

forest height by accounting for the double bounce effect. Although LIDAR data was not available 

for the investigated site, the output structure was found to comply with the general scatterer 

distribution law (Sa et al., 2023). 

Literature review outcomes and gaps 

Summary of X and L band usage for tree height estimation 

It was observed that the utilisation of X and L band data differed significantly from C-band Sentinel-

1 data. In these bands, models such as the RVoG were preferred. Furthermore, it was noted that 

these input models were more intricate, with modifications and assumptions needed depending on 

the SAR band used. For instance, in the case of X-band, which has low canopy penetration but not 

zero canopy penetration, the ground to volume ratio, which indicates the depth of SAR signal 

penetration, was assumed to be 0. Additionally, it was observed that the models using L band data 

were greatly affected by decorrelation over vegetation. 

Summary of Sentinel-1 INSAR usage for tree height estimation 

It has been found that the use of Sentinel-1 C-band data has traditionally not been employed in the 

INSAR process for vegetated areas due to its low temporal resolution and limited canopy 

penetration capability. However, it has been observed that among the studies investigated, only 

the general methodology of the INSAR process was applied even in those low-coherence forest 

sites with variations in how the elevation of the ground under the forests were determined. Only 

recently did De Petris, Cuozzo, et al. (2022) suggested modifying the process to accommodate the 

study site in low-coherence forests. 

Gaps identified in literature for Sentinel-1 INSAR usage for tree height estimation 

It was observed that the INSAR studies assumed a study site where no previous remotely sensed 

forest inventories, such as LIDAR surveys, had been conducted. As a result, these studies derived 

their ground truth from either lower resolution global datasets or assumptions where the ground in 

unforested regions resembles forested areas. However, it has not been explored how the INSAR 

process could be advantageous in areas where pre-existing LIDAR-derived DTM data is available. 

Assuming no substantial changes in ground conditions in the forested areas, it is worth 

investigating how the traditional INSAR CHM generation workflow can be modified to make use of 

high-resolution LIDAR in both the correction of the INSAR DSM over flat areas carried out in Xie et 

al. (2023), and also the final CHM generation using the LIDAR DTM. 
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Summary of MLMs using Sentinel-1 for tree height estimation 

it was observed that the most effective MLM for estimating tree canopy height in areas similar to 

the study site, using a combination of Sentinel-1 and other data sources, was the Random Forest 

(RF) model. In general, it was confirmed that MLM models performed best when GEDI was used 

as the dependent variable and when both Sentinel-1 and Sentinel-2 data were included.  

Gaps identified in the MLMs using Sentinel-1 for tree height estimation 

However, it was observed that even though there was agreement regarding the use of the RF 

model as the MLM and the combination of Sentinel-1 with other data sources available for this 

study, the way the data was processed before the MLM model varied significantly. Firstly, there 

was no consensus on the SAR polarisation to be used as input. Additionally, there was 

disagreement on how the input SAR and optical data should be incorporated; whether as the raw 

spectral bands or utilised to derive texture metrics and vegetation indices in the case of Sentinel-2 

optical data. 

Research questions 

The initial research questions that were used in this study were: 

1) Can the INSAR process be used using Sentinel-1 SAR data to generate a DSM from which 

Canopy Height Model (CHM) over a Pinus radiata plantation in Mount Panorama and Knott Hill can 

be generated by subtracting a DTM generated from the LIDAR data from it. This CHM would be a 

representation of a fusion approach of using both space based and terrestrial remote sensing ? 

 

2) Can Sentinel-1 SAR data be used in combination with other data sources, such as Sentinel-2 

optical data, in a Machine Learning Model (MLM) to generate a CHM based on entirely space 

based remote sensing data over a Pinus radiata plantation in Mount Panorama and Knott Hill? 

 

3) Which one of the CHMs generated through the fusion INSAR approach and the entirely space 

based MLM is the most accurate when compared to a ground truth CHM generated using only 

terrestrial remote sensing over the Pinus radiata plantation in Mount Panorama and Knott Hill? 
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CHAPTER 4 METHODS: 

Processing of LIDAR ground truth data 

The ground truth data for this study was selected to be LIDAR data provided through the Elvis 

Elevation and Depth platform (https://elevation.fsdf.org.au/) where data was available from a 

LIDAR survey conducted in 2022 over the area of interest, captured by RPS Australia East Pty Ltd 

on behalf of the Department for Environment and Water. The characteristics of the dataset are 

shown below in Table 4.1. 

Table 4.1: Characteristics of the LIDAR data used as ground truth 

Acquisition Date 21/01/2022 to 31/01/2022 

Dataset number 2667 

Average point spacing(pts/m2) 15 

Vertical Positional Accuracy(cm) +/-4.2 

Vertical datum AHD (Ausgeoid2020) 

Projection/ coordinate system UTM MGA Zone 54 

 

This dataset comprises full waveform LIDAR data collected in the LAS 1.4 format by a Riegl VQ-

1560 II-S sensor over South Australia, specifically the Adelaide metropolitan area. The 23 1km by 

1km tiles of data obtained were combined in CloudCompare to create one LAS Dataset. 

Investigation of data 

 

The LIDAR data over the area of interest had already been classified by RPS Australia East Pty 

Ltd, as shown in Table 4.2. The minimum elevation recorded in the ground classification code was 

238.9m, and the maximum elevation of any point was classified as noise at 477.5m. The average 

point spacing in the dataset over the AOI was observed to be 0.21m. 

Table 4.2: Classification classes used by RPS Australia to classify the LIDAR points 

Classification Class Point per class Percent (%) 

Unclassified 6515 0.0 

Ground 20021381 11.0 

Low Vegetation 39676384 21.9 

Medium Vegetation 6047142 3.3 

High Vegetation 52084805 28.7 

Building 120800 0.1 

Low Point(noise) 16890 0.0 

Model_Key_Point 140281 0.0 

Water 111764 0.0 

Overlap Points 63322152 34.9 

Total 181548114 100 

 

https://elevation.fsdf.org.au/


 

24 

Selection of DSM and DTM Interpolation Technique 

 

Given that the LIDAR data from TPS Australia was utilised to produce the ground truth DSM, DTM, 

and ultimately a CHM, it is essential to consider potential sources of errors that may arise during 

the creation of these DEMs. One source of these errors can be attributed to incorrect interpolation 

selection, as emphasised in Gong et al. (2000). In this scenario, errors in the ground truth DEMs 

could lead to error propagation when applied to INSAR fusion CHM generation or the 

mischaracterisation of the INSAR and RF MLM for CHM generation. 

Overview of the interpolation concept 

 

Interpolation involves mathematical and statistical approximation and estimation, where sampled 

data values of a variable within a specific area are used to estimate values at unsampled locations 

(Burrough et al., 1998; Li et al., 2004). In the context of digital terrain modelling, interpolation is 

employed to estimate the height at a given point based on the known points in its vicinity (Li et al., 

2004). It can be broadly classified into two main methods: deterministic and geostatistical. 

Deterministic methods create surfaces based on either the available sample points or the degree 

of similarity obtained from the existing smoothed surface (Liu, 2008; Salekin et al., 2018). 

However, these methods do not take into account any potential spatial processes in the input data 

(Ismail et al., 2016; Liu, 2008). On the other hand, geostatistical methods create surfaces based on 

statistical relationships among input points and the presence of spatial correlation (Ismail et al., 

2016; Liu, 2008; Salekin et al., 2018). 

Overview of the interpolation techniques available 

 

In this study, ArcGIS Pro was used to interpolate the different DEMs from the classified LIDAR 

point cloud. where two deterministic interpolation methods, Binning and Triangulation (Delauney 

TIN) are available. 

 

Triangulated Interpolation Network (TIN) 

 

TIN interpolation constructs a mesh of triangles, with each triangle consisting of three data points, 

to connect the available data points. Within each triangle, the value at unsampled locations can be 

estimated using linear interpolation, with equal weight assigned to each vertex of the triangle(ESRI, 

2023; Khan et al., 2021). Another interpolation method is natural neighbour, where values are 

interpolated based on the weights within the triangles, determined by the proximity to the point 

being interpolated and their influence within the triangle itself (Szypuła, 2016). 
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In the LAS to raster tool, a special TIN interpolation technique known as Delaunay triangulation is 

applied. This method creates triangles without data points within them and ensures no 

intersections occur between the triangles. The value of the point to be interpolated is determined 

by utilising the linear gradient of the triangle it resides in (Fan et al., 2014; Gonçalves, 2006). 

 

Binning Interpolation 

Binning is an interpolation method that assigns pixel values based on points falling within defined 

pixel boundaries. For LIDAR data, pixel values are determined by the LAS points present within the 

pixel (ESRI, 2023; Prior et al., 2022; Stack & Narine, 2022). Pixel values can be interpolated based 

on the average, minimum, or maximum of all data points within it, or using other methods such as 

Inverse Distance Weighting (IDW) and Nearest Neighbour. IDW assigns weights to data points that 

decrease as they move further from the calculated point, emphasising closer reference points 

(Gomroki et al., 2017; Li & Heap, 2008). In contrast, Nearest Neighbour assigns the value of the 

nearest reference point (Gomroki et al., 2017). 

Interpolation techniques for DSM generation 

 

After reviewing studies that use LIDAR data to generate DSMs over forested areas, the binning 

interpolation type was chosen (Bonneau et al., 2020; DiGiacomo et al., 2020; Stack & Narine, 

2022).Bonneau et al. (2020) examined the average, maximum, IDW, and nearest neighbour 

binning methods. They found that the maximum binning method performed the best in estimating 

tree height, despite introducing more false positives. Therefore, the maximum binning method was 

selected, following the approach of Stack and Narine (2022). Additionally, there was a consensus 

on using the linear void fill method (Bonneau et al., 2020; Stack & Narine, 2022). 

 

Interpolation techniques for DTM Generation 

 

Binning interpolation was chosen for DTM generation (Bindzarova Gergelova et al., 2021; Bonneau 

et al., 2020). Moreover, the average binning type was commonly employed (Bindzarova Gergelova 

et al., 2021; Bonneau et al., 2020). However, Bindzarova Gergelova et al. (2021) suggested the 

use of IDW, while Razas et al. (2023) demonstrated that IDW might lead to biased results due to 

its sensitivity to clustered data and outliers (Bindzarova Gergelova et al., 2021; Muir et al., 2017). 

The adoption of a natural neighbour void filling method was also recommended, which aligns with 

the findings of Cățeanu and Ciubotaru (2021), indicating its suitability for forested regions with 

varying canopy densities. 

 

The interpolation techniques selected for generating the DSM and DTM from the raw LIDAR 
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ground truth data, along with the parameters used during the process using the LAS dataset to 

raster in ArcGIS Pro, are outlined in Table 4.3. 

Table 4.3: Selected processing parameters to be used for this study when a DSM and DTM must be 
generated 

DEM type Interpolation type Cell assignment Void fill 

DSM Binning maximum linear 

DTM Binning Average Nearest neighbour 
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Generation of LIDAR ground truth data 

An overview of the process of creating the different DEMS from the raw LIDAR data supplied by 

RPS Australia is highlighted in Figure 4.1 

 

Figure 4.1: Flowchart showing the processing steps in processing the LIDAR ground truth data into 
DSM, DTM and CHM which were used in 1) The INSAR CHM generation 2) The accuracy assessment 
between the INSAR fusion CHM and the RF MLM CHM 

 

Each of the 23 1km by 1km LIDAR LAS files were already classified by from RPS Australia, 

including specific classification for ground and noise points. 

 

Typically, from LIDAR data, the points that are not classified as ground and correspond to the first 

returns when over a tree canopy can be used to generate a DSM that corresponds to the top of the 

vegetation (Vepakomma et al., 2008). Moreover, the remaining points that are classified as ground 

only, irrespective of their return number, can be used to generate a DTM. Finally, a CHM can be 
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generated by subtracting the DSM from the DTM (Vepakomma et al., 2008).To process the LIDAR 

data used as ground truth for the DSM, DTM, and CHM in this survey, the suite of tools in the 

ArcGIS Pro software from ESRI was used as shown in Figure 4.1. The coordinate system and 

projection used was GDA2020 MGA Zone 54 with its corresponding GDA 2020 AHD. 

Merging of LIDAR tiles 

 

To merge the 23 1km by 1km tiles that encompass the study area, the "Create LAS dataset" tool 

was used to generate a virtual layer that accurately combines the different LAS tiles into one. 

 

DSM generation 

 

Using the merged LIDAR virtual layer, the "Make LAS dataset to layer" tool was used. All class 

codes were selected except for the one corresponding to the classified noise, and only the return 

values corresponding to the first and first of many categories were selected. When executed, a 

virtual DSM is generated. 

 

The "LAS dataset to Raster" tool was then used on the virtual layer to generate a DSM raster 

following the appropriate parameters outlined in Table 4.3 for a DSM over vegetated areas. 

Moreover, the DSM is generated with a cell size of 1m. 

 

DTM generation 

 

The merged LIDAR virtual layer created previously was then used in the "Make LAS dataset to 

layer" tool. Only class codes corresponding to ground points were selected, but this time, all the 

different returns are selected, creating a virtual DTM. 

 

This virtual DTM was then used as input in the "LAS dataset to Raster" tool, using the parameters 

found to be more appropriate for a DTM over forested areas shown in Table 4.3, to generate a 

DTM raster with a resolution of 1m. 

 

CHM generation 

 

In the raster calculator, both the DSM and DTM rasters generated were used as input, and the 

CHM was created by subtracting the DSM raster from the DTM raster. 
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Setting up extraction areas based on completed thinning cycles 

ForestrySA (2016) provides the year at which the different sections of the Pinus radiata plantation 

in the study area were planted, which include Knot Hill and Mount Panorama. The planting years 

range between 1993 and 2015. From these plantation years, the approximate age of the trees can 

be inferred, and thus the number of thinning cycles they have undergone. According to ForestrySA 

(2018), thinning cycles take place approximately every 10 years (Figure 4.2) where 30 to 50% of 

trees are felled until they are fully removed once they reach around 40 years.  

 

Figure 4.2: Graphical overview adapted from ForestrySA (2018) of the timeline for the thinning 
process in ForestrySA Pinus Radiata plantations, highlighting the approximate years at which the 
thinning process takes place 

 
Therefore, the breakdown of the study area based on the plantation date (Appendix A) was 

categorised based on how many thinning processes the trees have undergone, as highlighted in 

Table 4.4. Moreover, these thinning categories were used throughout this study to compare the 

different accuracies and overall potential of INSAR and RF MLM in generating a usable CHM over 

Pinus radiata plantations. 

 

Table 4.4: Breakdown of the study area based on the number of thinning processes carried out 

Thinning Category Thinning process Plantation date assigned 

T0 No thinning 2015 
T1 First commercial thinning 2006,2007,2008 
T2 Second commercial thinning 2000,2001,2004,2005 
T3 Third commercial thinning 1993,1995 

 

 

 

 

 

 

 

Figure 4.2 has been removed due to Copyright restrictions 
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INSAR DSM Generation  

Sentinel-1 description and data selection 

 

The data utilised in this study were obtained from the Sentinel-1 mission, currently operated by the 

European Space Agency (ESA), and funded by the European Union. The mission comprises two 

identical satellites, Sentinel-1A and 1B, both orbiting at an altitude of 693 km in the same sun-

synchronous and near-polar orbit, albeit phased (Fletcher, 2012; Torres et al., 2017). Under normal 

operation, the revisit time is expected to be 6 days. However, due to the unavailability of Sentinel-

1B, the revisit period has been extended to 12 days (Carstairs et al., 2022). 

 

The instrument onboard can operate in a dual-polarisation mode, acquiring both HH + HV 

polarisations or VV + VH when using the interferometric wide-swath mode (IW). This mode 

generates products with a 250 km swath width and range and azimuth resolutions of 3 m and 20 

m, respectively, with incident angles ranging between 31° and 46° (Fletcher, 2012), making it 

suitable for this study. The chosen acquisition mode's resulting Level-1 product was the Slant-

Range Single Look Complex (SLC), as it contains amplitude and phase information essential for 

INSAR operations which is absent in the Ground Range Detected (GRD) product (Fletcher, 2012). 

 

In repeat-pass INSAR configurations like the Sentinel-1 constellation, the longer the time between 

image pair acquisition, the greater the potential degradation in the accuracy of obtaining forest 

height measurements. This is due, in large part, to the effects of wind and, to a lesser extent, the 

sensitivity of electromagnetic waves to tree components such as leaves (Seppi et al., 2022). 

Therefore, it was ensured that the selected image pair had the minimum temporal baseline 

possible—12 days. 

 

Additionally, the Sentinel-1 image pairs were constrained to have perpendicular baselines between 

-200 m and 200 m to mitigate potential volume decorrelation, which may occur and is below the 

critical baseline of 5 km, beyond which there is a complete loss of correlation between images 

(Seppi et al., 2022). For this study, an additional constraint was added: the perpendicular baseline 

should be lower than 120 m to ensure accurate forest height estimation through the INSAR 

process (De Petris, Sarvia, et al., 2022b). 

 

Furthermore, it was ensured that the selected INSAR image pairs were from days with no rainfall 

during or a few days prior to minimise disturbance to the phase signal caused by delays on the 

surface or within the atmosphere due to the presence of water vapour, which leads to a loss of 

coherence (Braun, 2021; Palm, 2022). It was also ensured that the INSAR image pairs were in a 
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timeframe similar to the ground truth LiDAR data acquisition date over the study area, as 

highlighted in Table 4.1 by RPS Australia. 

 

The resulting INSAR image pair consists of an image from the 31st of January 22 and another from 

the 12th of February as a pair, with a perpendicular baseline of 118 m, a temporal baseline of 12 

days, and a height of ambiguity of 150.3 m, each with individual characteristics as shown in Table 

4.5 

Table 4.5: Individual characteristics of the SAR images selected as input for the INSAR process 

No 
Acquisition 

date 
Acquisition 

mode 
Acquisition 
time(local) 

Polarisation Pass 
Relative 

orbit 

1 31 Jan 22 IW 06:27:38 VV +VH Descending 162 
2 12 Feb 22 IW 06:27:38 VV +VH Descending 162 
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INSAR processing workflow 

 

Figure 4.3: Flowchart showing the INSAR processing steps carried out in ESA SNAP for the DSM 
generation and the subsequent DSM adjustment and INSAR fusion CHM generation in ESRI ArcGIS 
Pro. 
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The initial processing involves individual treatment of the two Sentinel images. The Sentinel-1 

image from 31st January was chosen as the master image, with the image from 12th February 

designated as the slave image (Ma et al., 2019; Zhou et al., 2009). 

Utilising the Sentinel-1 toolbox, an open-source software developed for the Sentinel Application 

Platform (SNAP), the INSAR processing workflow was adapted from Braun (2021) to achieve 

accurate processing with the individual steps and chosen settings shown below 

Individual SAR image preprocessing 

 

The preliminary steps include selecting the available sub-swaths in the SLC data of both the 

master and slave images. The TOPSAR Split tool was used to isolate the VV polarisation, which is 

considered most suitable for canopy height retrieval (Braun, 2021; Palm, 2022). 

Apply Orbit File 
 

To ensure accurate positioning and velocity during acquisition, the precise orbit file, automatically 

updated and generated with a 3rd polynomial degree, was applied using the Apply Orbit File tool 

(Filipponi, 2019; Foumelis et al., 2018). 

Combination of the SAR Scene 

 

The S-1 Back Geocoding tool was employed to co-register sub-pixels from the master image to the 

slave image using the SRTM 1 arcsec DEM. A small window size of 5 range looks and one 

azimuth look was used to minimise resolution reduction during resampling (S1TBX, 2023). 

Interferogram Generation 

 

An interferogram was generated using the Interferogram Formation tool. The flat-earth phase was 

estimated and subtracted from the total phase information. Coherence between the two SAR 

scenes was estimated using specified parameters(Braun & Veci, 2021). 

 
Topsar Deburst 

 

Although the study area was covered within one burst, a debursting process was applied to 

maintain the integrity of the INSAR procedure. This process combines all bursts within the same 

sub-swath into a single image (Ab Rahman et al., 2023; Braun, 2021). 
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Multilooking 

 

The multilooking (ML) procedure serves two purposes, the first of which involves transforming the 

interferogram from its initial spacing of 14.1m azimuth and 2.3m slant range (as depicted in Figure 

2.1) to a coarser average ground range (GR) pixel size of 12.9m by 12.9m. In this study, a window 

size of 5 range looks and a single azimuth look were chosen for this process. By adopting this 

configuration, the multilooking operation contributes to improving coherence estimation and overall 

phase fidelity, albeit at the cost of spatial resolution. This is achieved by performing a spatial 

averaging, wherein the average value of the data within the moving pixel window is assigned to the 

resulting pixel with dimensions 12.9m by 12.9m (Ab Rahman et al., 2023; Bouaraba et al., 2018). 

However as seen in Arslan et al. (2022), selecting all the input bands present in the interferogram, 

that describe phase, intensity and coherence way lead to errors in the multilooking process, and 

thus only the coherence information was selected to be multilooked 

Goldstein filtering 

 

The Goldstein filter was applied to the multilooked interferogram, enhancing its accuracy and 

minimizing residuals prior to the unwrapping phase. This enhancement results in improved 

interferogram fringe visibility through a reduction in phase noise (Baran et al., 2003; Mohammadi et 

al., 2020; Zylshal et al., 2021).The filter employs nonlinear algorithms, dynamically adjusting its 

strength based on the density of fringes in the selected window size. In areas with high fringe 

density and heterogeneity, the filter is more robust, while the opposite is true for low-density 

homogeneous areas. This adaptability is achieved through the application of Fast Fourier 

Transformations (FFT) (Y. Wu et al., 2023). 

  

Figure 4.4: Visualisation of the variation in strength of the Goldstein phase filtering over an area A 
from where it is not applied (B) and where it is applied (C). the closer the fringes are to one another in 
the interferogram, the stronger the filtering, adapted from (Ghulam et al., 2010) 

For this study, a default FFT size of 64 was utilised along with a window size of 3. 

B C 
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Furthermore, the Goldstein phase filtering mask (GFM) avoids applying the filter over areas with a 

coherence lower than 0.3 (threshold used in this study). This is done to prevent the filter from 

producing erroneous results in those areas (Y. Wu et al., 2023). 

 
Band Maths 

 

As the presence of low coherence areas in the input interferogram can lead to errors in the phase 

unwrapping process or even cause it to fail completely, a filter was generated for this study using 

the Band Maths (BM) functions in ESA SNAP. It was used to create IF statements based on 

coherence, where pixels with coherence lower than 0.3 – a threshold that is based on the average 

coherence for a dry forest as observed in Nurtyawan and Yulanda (2020) were completely 

removed from the interferogram and thus preventing error propagation (Bamler & Hartl, 1998; Bi & 

Wei, 2016; Li et al., 2020; Weike & Goulin, 2012). 

 
Subset to the Study Area 

 

The resulting SAR data was subset to the study area using the Subset from View tool, with a 

polygon projected in WGS84, leaving some data outside the polygon for trend analysis during the 

phase unwrapping process. 

 
Unwrapping Process 

 

Using the Snaphu export tool, the data was prepared for the unwrapping process, employing the 

Snaphu algorithm. The Minimum Cost Flow algorithm was chosen for its efficacy in similar studies 

(Palm, 2022; Persson & Fransson, 2017; Wang et al., 2022). 

Phase to Elevation and Radiometric Correction 

 

Unwrapped phase information was converted to elevation using a DEM as a reference. The output 

DSM underwent radiometric correction to address geometric distortions and was converted from 

WGS84, a global datum to a datum designed for the Australian region, GDA94 zone 54, and had a 

final pixel size of 14m (Filipponi, 2019; Mohammadi et al., 2020). The resulting DSM is ready for 

subsequent analysis in ArcGIS Pro. 
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Filtering methodologies 

It was observed that ESA SNAP offers a range of filtering processes that can be applied to 

Sentinel-1 data. These processes aim to either enhance coherence and phase fidelity in the 

interferogram or eliminate areas of low coherence prior to the phase unwrapping process. The goal 

is to improve accuracy and success rate. Therefore, in this study, various combinations of these 

filters and masks were tested to identify the most accurate combination for generating an INSAR 

DSM over forested areas (Figure 4.3). 

Due to the importance of the Goldstein phase filtering method highlighted in a range of different 

studies, regardless of the permutation, the main question was whether to use the Goldstein 

coherence mask or not. Furthermore, considering the similarities between the latter and the band 

math filter in targeting low coherence areas, it was decided to apply both simultaneously. 

The different permutations for the filtering process are shown in Table 5.6. Moreover, a coherence 

threshold of 0.3 was used for BM and GFM. 

Table 4.6:Permutations of the filtering process carried out in the INSAR DSM generation process in 
ESA SNAP 

Filtering permutation Filters used 

Filtering 1 No Filters 
Filtering 2 ML 
Filtering 3 GFM, BM 
Filtering 4 ML, GFM, BM 

 
Pre-processing of INSAR DSM before adjustment 

 
DSM Filtering, Study Area Extraction, and Reprojection 

 

The INSAR DSM underwent filtering before any additional processing to eliminate outliers that 

might be present due to the incoherent sections in the INSAR pairs, which can be associated with 

noise (Sefercik et al., 2020). A focal statistics using a 3 by 3 median filter was deemed appropriate 

for outlier removal and was applied using the focal statistics tool in ArcGIS Pro (Bucher & Bayer, 

2013; Sefercik et al., 2020). Furthermore, the DSM was extracted to the study area and 

reprojected to GDA2020 Zone 54. 

Adjustment of DSM 

 

The DSM was compared to the LiDAR DSM in areas where the latter showed as ground, with no 

visible tree canopy cover. It was observed that there was a discrepancy between the elevation 

values. Consequently, it was decided that the INSAR DSM should be adjusted to the LiDAR DSM 

to ensure that it accurately reflects the elevation of ground areas within the same elevation range 
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in both LiDAR and INSAR DSMs similar to the concept outlined in Yun et al. (2012). Two methods 

were investigated, involving the use of either existing Permanent Survey Marks (PSMs) or Ground 

Control Points (GCPs) which were manually generated. 

PSM Adjustment 

 

The locations of survey marks across South Australia were obtained from Location SA (2023), 

which is updated daily with survey marks of different types and purposes, currently comprising 

190,000 entries across South Australia. Survey marks were extracted to the study area, and the 

points selected for the analysis were those classified as permanent survey marks, with both their 

horizontal and vertical values adjusted through a least square or any adjustment, respectively. The 

resulting 14 PSMs, measured in the MGA2020 and AHD vertical datum in MGA Zone 54 between 

October and November 2022, each with a vertical order of 5, were used in the analysis. 

 

The elevation from the filtered INSAR DSM at those PSM locations was extracted with the "extract 

value to points" tool, and the difference in elevation was calculated by subtracting the PSM 

elevation from the INSAR DSM elevation. The resulting difference in elevation was used as input in 

the exploratory interpolation tool, which utilise the 20 interpolation techniques available in ArcGIS 

Pro to create and rank the interpolated layer. This interpolated layer aims to be the vertical INSAR 

correction layer based on the highest prediction accuracy. The interpolated correction layer that 

ranked first was then subtracted from the filtered DSM to create a corrected INSAR DSM. 

GCP adjustment 

 

A set of ground control points (GCPs) were manually established using planet imagery and the 

LiDAR CHM as a reference. The GCPs were in areas where within a 15m buffer no-forested areas 

were present to ensure that the GCP pixel in the INSAR DSM did not represent a forested pixel or 

a pixel with vertical objects such, as buildings, present. Additionally, efforts were made to distribute 

the GCPs evenly across the study area. A total of 56 GCPs were generated, and the elevations of 

the INSAR DSM and LiDAR DSM at these locations were extracted. The elevation difference was 

calculated by subtracting the LiDAR DSM elevation from the INSAR DSM elevation. Subsequently, 

the elevation difference for these 56 GCPs was interpolated using a similar method as the PSM 

adjustment to correct the INSAR DSM. 
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Generation of INSAR fusion CHM 

 

Both the PSM and GCP-corrected INSAR DSMs were utilised to create a Canopy Height Model 

(CHM) by subtracting the LiDAR DTM from the corrected INSAR DSMs with the aid of the raster 

calculator tool. In both cases, a 3 by 3 median focal statistics filter was applied to the CHM to 

further eliminate any potential noise. 

 

RF MLM CHM generation  

In this method of estimating the CHM, Sentinel-1, Sentinel-2 data, as well as the SRTM DEM and 

the Land classification mask from ESA, were used and processed as predictor variables using a 

machine learning algorithm that GEDI products as training data. The data were acquired, where 

possible, over a similar time frame as that of the LIDAR ground truth survey, from the 1st of 

January 2022 to the 28th of February 2022, and were clipped to the study area. Figure 4.5 

illustrates the methodology which was entirely carried out in the in the Google Earth Engine 

Platform (GEE). 

 

Figure 4.5: Flowchart showing the generation of a CHM based on an RF MLM carried out in Google 
earth engine (GEE) 
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RF MLM input parameters 

 

The RF machine learning algorithm available in GEE was chosen for this analysis due to its proven 

accuracy in similar forest models. It establishes models by fitting functional relationships between 

forest attributes, specifically canopy height extracted from GEDI, and the predictor variables 

outlined in Table 4.7 (Tsao et al., 2023; Xi et al., 2022). Among the input parameters available for 

RF in GEE, the number of classification trees was set to 50, and the rest, as described in 

Teluguntla et al. (2018), were left with their default values based on the script from Courage 

(2021), which was adapted for this study. Ten thousand points were randomly selected across the 

study area, with 70% used for training data and the remaining 30% for validation purposes. The 

overall model accuracy was subsequently assessed using the R2 and RMSE of observed and 

predicted tree canopy height values with the validation data. 

Training Dataset 

 

Data from the GEDI LIDAR mission on board the ISS was selected as the training dataset, 

specifically the Level 2A product. This product comprises percentiles representing the relative 

height to the ground (RH), describing the total energy returned to the sensor from the top of the 

tree canopy (Schwartz et al., 2022). In GEE, a raster version of Level 2A data was used, updated 

monthly, with an average spatial resolution of 25m. The RH98 data were extracted, as it is shown 

to be still representative of the top of a tree canopy while being less sensitive to noise and outliers 

than RH100 (Ghosh et al., 2022; Simard & Denbina, 2017). 

Predictor Variables 

Sentinel-1 

 

The Sentinel-1 Ground Range Detected (GRD) products, already calibrated and ortho-corrected, 

were used to obtain the median values of backscatter of VV and VH data. Additionally, the median 

Gray-level Co-occurrence matrix (GLCM) information involving texture statistics such as contrast, 

variance, entropy, and dissimilarity was calculated from both VV and VH data, providing texture 

information about water content and overall tree structure (Numbisi et al., 2019). A total of 12 

Sentinel-1 based texture features were generated and used as input. 

Sentinel-2 

 

Sentinel-2 LEVEL-2A from the Multispectral instrument was used as the optical data input. 
Using the QA60 band, the 10th and 11th bits assigned to clouds and cirrus were removed. 
Moreover, using the mask2cloud function, another cloud mask was generated, rejecting 
images with a cloudy pixel percentage higher than 10%. Finally, specific bands from the 



 

40 

L2A products were selected as input. 
 

Auxiliary data 

SRTM 

 

The SRTM used for this analysis was SRTMGL2_003, a DEM with a resolution of 30m at the 

equator, used to generate elevation data. Moreover, it was used to derive slope information. 

 
ESA Forest Mask 

 

To ensure that only forested areas were selected for the CHM calculation, the ESA World Cover 

data V200 derived from Sentinel-1 and 2 data provided a 10m land cover classification dataset. 

The forest class category was used to mask the processing to only forested areas (Zanaga et al., 

2022). 

The predictors used in the RF MLM in the GEE platform for this study are showed in Table 4.7 
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Table 4.7 Predictors used and their sources to be used as input in the RF MLM, adapted from Luo et 
al. (2023) 

Data source Predictors Description References 

Sentinel-1 

VV VV band (Torres et 

al., 2012) VH VH band 

VV_ent Entropy calculated by GLCM based on VV 

(Haralick et 

al., 1973) 

 

VH_ent Entropy calculated by GLCM based on VH 

VV_contrast Contrast calculated by GLCM based on VV 

VH_contrast Contrast calculated by GLCM based on VH 

VV_var Variance calculated by GLCM based on VV 

VH_var Variance calculated by GLCM based on VH 

VV_corr Correlation calculated by GLCM based on VV 

VH_corr Correlation calculated by GLCM based on VH 

VV_diss Dissimilarity calculated by GLCM based on VV 

VH_diss Dissimilarity calculated by GLCM based on VH 

Sentinel-2 

B2 Blue band (490 nm) 

(Drusch et 

al., 2012) 

B3 Green band (560 nm) 

B4 Red band (665 nm) 

B5 Vegetation Red Edge band (705 nm) 

B6 Vegetation Red Edge band (740 nm) 

B7 Vegetation Red Edge band (783 nm) 

B8 Near infrared (NIR) band (842 nm) 

B11 Short Wave infrared (SWIR) band (1610nm) 

B12 Short Wave infrared (SWIR) band (2190nm) 

SRTM 
Elevation 30M DEM (Farr et al., 

2007) Slope Slope derived from 30m DEM 

ESA world 

cover V200 
Forest mask 10m Land classification 

(Zanaga et 

al., 2022) 

 

The predictors derived from Sentinel-1 and Sentinel-2 were extracted to their median value and 

resampled to 30m to account for the different range of resolutions present in the data. 
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Comparing INSAR fusion CHM with RF MLM CHM using LIDAR ground 
truth CHM 

The overview of the methods for this process is shown in Figure 4.6 

 

Figure 4.6: Flowchart showing the process used for the comparison of the INSAR fusion CHM with 
the RF MLM CHM and their overall accuracy assessment using the LIDAR CHM ground truth data. 

Resampling  

The input CHMs from the RF MLM and INSAR, as well as the LIDAR CHM, were all resampled to 

14 m to match the lower resolution INSAR CHM using the resample tool in ArcGIS Pro. Moreover, 

it was ensured that all three CHMs were reprojected to GDA 2020 and its associated AHD if 

needed, to allow the comparison. The interpolation technique used for the resampling and 

reprojection was the bilinear interpolation technique. 

Extraction of Canopy Height from Polygons 

 

Canopy height information derived from INSAR and LIDAR ground truth was extracted from 

individual polygons, specifically the 90th percentile height. This extraction was performed using the 

Zonal Statistics as Table tool. The results were visualised in R Studio, where the average of 
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individual polygons was calculated to provide an overall value for the tree canopy height within the 

main polygon.   
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CHAPTER 5 RESULTS 

Breakdown of the study area based on thinning cycles.  

The breakdown of the study area, based on thinning cycles, resulted in 19 polygons that spanned 

4.4 km2 out of the original 22.9 km2 of the study area. A simplified breakdown of the effective area 

used in this study is shown in Table 5.1, where the missing area can be allocated to bare ground, 

and the native vegetation is reserved in Mount Panorama and Knott Hill. 

Table 5.1: Characteristics of the Pinus radiata plantation in the study area falling under the different 
thinning category  

Thinning category Number of distinct sections  Total  area (km2) 

T0 2 0.28 
T1 8 2.17 
T2 7 1.75 
T3 2 0.21 

 

Visualisation of the INSAR process data transformation 

 

It can be observed from the INSAR process outlined in Figure 4.3 that several steps are 

undertaken to transform, filter, and correct the input Sentinel-1 SAR data. The visualizations of the 

outputs of the primary processes were generated, as depicted in Figure 5.1, using the limited ESA 

SNAP software, which lacks customization options for various mapping features, including the 

scale bar and the north arrow. as these outputs cannot be exported to more suitable tools like 

ArcGIS. 

A

 

B
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Figure 5.1: Visual representations of the intermediary outputs generated in ESA SNAP during the 
following steps carried out for the INSAR process: A) Back geocoding, B) interferogram generation, 
C) Tops Deburst, D) Multilooking, E) Goldstein phase filtering, F) Subset, G) Phase unwrapping, H) 
Phase to elevation, I) Radiometric terrain correction. 

 

It has been observed that during the INSAR process, prior to multilooking and Goldstein filtering, 

the coregistered SAR scenes are compressed in the azimuth direction (Figure 5.1 (A),(B),(C) - 

SAR sensor flight path), but not in the range direction. Moreover, it was observed that the study 

site is in the near range of the SAR data and close to the beginning of a burst. Additionally, it was 

noted that the study area only covered one burst. The addition of the Goldstein phase filter 

significantly reduced the remaining noise after the multilooking step (Figure 5.1 (D),(E)). 

Furthermore, after the phase unwrapping step, the phase values in the area surrounding the study, 

after the subset process, jump from -π to π, and then from 0 to 2.5π (Figure 5.1 (F),(G)). 

Moreover, after the phase-to-elevation process, the elevation range was initially between 154m 

and 385m, but changed to 178m and 377m after the radiometric terrain correction (Figure 5.1 

(H),(I)). Lastly it was seen through all the steps until the radiometric correction that the East and 

West directions were flipped around. 
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Best filtering method for INSAR DSM generation 

 

Table 5.2: Determination of the most accurate INSAR filtering methodology for each of the thinning 
areas 

Thinning 
category 

Filtering used in INSAR 
DSM generation 

Mean 
elevation 

 (m) 

Standard 
deviation 

 (m) 

RMSE 
(m) 

Percentage 
difference 

(%) 

 
T0 

     

 Filtering 1 334.4 6.7 5.7 1.5 
 Filtering 2 331.9 6.0 3.5 0.7 
 Filtering 3 357.2 4.2 27.9 8.4 
 Filtering 4 357.5 5.5 28.4 8.5 
 Ground truth value 329.6 2.2 - - 

 
T1 

     

 Filtering 1 346.6 19.7 13.3 1.5 
 Filtering 2 343.1 20.1 12.2 0.5 
 Filtering 3 368.3 3.2 28.4 7.9 
 Filtering 4 365.2 4.0 25.5 7.0 
 Ground truth value 341.3 8.8 - - 

      
 

T2 
     

 Filtering 1 361.7 21.1 9.1 1.5 
 Filtering 2 364.7 29.5 14.6 2.3 
 Filtering 3 358.6 26.2 12.9 0.6 
 Filtering 4 356.2 30.7 16.5 0.1 
 Ground truth value 356.4 20.2 - - 

 
T3 

     

 Filtering 1 367.2 13.8 20.0 4.1 
 Filtering 2 383.3 49.1 32.4 8.6 
 Filtering 3 363.5 8.3 20.7 3.0 
 Filtering 4 354.7 15.6 12.7 0.5 
 Ground truth value 352.8 33.4 - - 

 

For both T0 and T1, it was observed that the most effective DSM generation method involved 

using only multilooking, without the Goldstein filtering coherence mask and band maths to 

eliminate areas of coherence below 0.3 from the interferogram before the unwrapping process. 

This method exhibited a percentage difference from the ground truth LIDAR DSM of 0.7% and 

0.5% respectively, with an RMSE of 3.5m for T0 and 12.5m for T1.  

 

Regarding the T2 and T3 areas, the most successful INSAR DSM generation method was the one 

that employed multilooking, Goldstein filtering mask, and band maths. This method resulted in a 

percentage difference from the LIDAR DSM of 0.1% for T2 and 0.5% for T3, with an associated 

RMSE of 16.5m for T2 and 12.7m for T3.  
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Moreover, it was observed that only under T0 conditions did the RMSE and percentage difference 

for the most effective INSAR DSM generation methods exhibit the lowest values overall, with a 

percentage difference of 0.7% and an RMSE of 3.5. 

 

However, the INSAR DSM generation methodology using multilooking alone, without the Goldstein 

filtering mask and band maths, was found to be relatively effective across all management areas. 

Therefore, it was selected as the primary method for the required DSM adjustment and subsequent 

CHM generation.  

INSAR DSM coherence analysis 

 

 

Figure 5.2: Boxplot showing the mean pixel coherence over the combined thinning areas 

 

The coherence information from the two input Sentinel-1 images, obtained from the coregistered 

data on 31st January and 12th February, was extracted to the same investigation management 

areas using the chosen INSAR method. It was observed that the highest coherence value of 0.422, 

with a standard deviation of 0.015, was found in the T0 areas. Subsequently, the mean coherence 

values decreased from T1, T2, to T3, with values of 0.347, 0.338, and 0.327, respectively. The 

associated standard deviations for these values were 0.013, 0.017, and 0.007, respectively. 
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INSAR DSM intensity analysis 

 

 

Figure 5.3: Boxplot showing the mean intensity of the Sentinel-1 C band signal over the combined 
thinning areas 

 

The intensity (dB) of the returns from the coregistered images was extracted over the management 

areas. It was observed that the highest mean intensity was recorded over T0 areas, with a value of 

257.8 dB and a standard deviation of 1.1 dB. The mean intensity of the returns over T1, T2, and T3 

areas were approximately the same, measuring 255.0, 255.1, and 254.2, respectively. However, 

as shown in the Figure 5.3, the presence of an outlier in the T2 areas caused its corresponding 

mean value to be overestimated, as evident from its higher standard deviation of 2.08, compared 

to 1.86 for T1 and 0.43 for T3. 
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PSM and GCP locations 

 

 

Figure 5.4: Location of the GCP and PSM used for the INSAR adjustment overlaid on ESRI Basemap, 
with a buffer of 14m representing the INSAR DSM resolution applied to an example of a PSM and 
GCP 

From Figure 5.4, it is observed that the 52 GCPs are spread out across the study area, with most 

of them located in visually tree-free areas. However, it was found that the PSMs were concentrated 

mainly along roads, and none of the points were found within the thinned areas. Finally, when 
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examining the selected PSMs and GCPs with a 14m buffer that mimics the resolution of the INSAR 

DSM, it is evident that the PSMs along the roads within this buffer, there is the presence of 

vegetation, whereas within the GCP buffer only bare ground can be seen 

PSM ADJUSTMENT 

Table 5.3: Characteristics of the PSM adjusted INSAR DSM with its accuracy when compared to the 
LIDAR ground truth DSM 

Thinning 
category 

Filtering used in INSAR 
DSM generation 

Mean 
elevation 

 (m) 

Standard 
deviation 

 (m) 

RMSE 
(m) 

Percentage 
difference 

(%) 

 
T0 

     

 Filtering 2 4.7 0.7 4.0 45.5 
 Ground truth value 8.7 0.1 - - 

 
T1 

     

 Filtering 2 13.8 7.7 7.8 21.6 
 Ground truth value 17.7 1.0 - - 

 
T2 

     

 Filtering 2 25.9 7.6 7.2 19.2 
 Ground truth value 21.7 2.3 - - 

 
T3 

     

 Filtering 2 59.1 11.2 33.9 130.3 
 Ground truth value 25.7 3.4 - - 

 

For each of the different thinning areas, the results of the INSAR DSM adjustment utilising PSM 

were found to have extremely high percentage difference values when compared with the lidar 

ground truth. Moreover, it was observed that the T3 regions had the highest combination of RMSE 

at 33.9m, as well as the highest percentage difference from the ground truth value at 130.3%. 

Similar values for RMSE and percentage difference were observed in T1 and T2 areas, with 

RMSEs of 7.8m and 7.2m, respectively, and associated percentage differences of 21.6% and 

19.2%, respectively. However, in the T0 areas, it was observed to have the lowest RMSE at 4.0m, 

but with a large percentage difference from the ground truth at 45.5%. 
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GCP ADJUSTMENT 

Table 5.4: Characteristics of the GCP adjusted INSAR DSM with its accuracy when compared to the 
LIDAR ground truth DSM 

Thinning 
category 

Filtering used in INSAR 
DSM generation 

Mean 
elevation 

 (m) 

Standard 
deviation 

 (m) 

RMSE 
(m) 

Percentage 
difference 

(%) 

 
T0 

     

 Filtering 2 6.3 0.1 2.4 27.6 
 Ground truth value 8.7 0.1 - - 

 
T1 

     

 Filtering 2 16.8 4.9 4.2 5.1 
 Ground truth value 17.7 1.0 - - 

 
T2 

     

 Filtering 2 18.1 6.6 7.0 16.3 
 Ground truth value 21.7 2.3 - - 

 
T3 

     

 Filtering 2 41.2 1.7 15.5 60.3 
 Ground truth value 25.7 3.4 - - 

 

For each of the different thinning areas, the results of the INSAR DSM adjustment utilising PSM 

were found to have extremely high percentage difference values when compared with the LiDAR 

ground truth. Moreover, it was observed that the T3 regions had the highest combination of RMSE 

at 33.9 m, as well as the highest percentage difference from the ground truth value at 130.3%. 

Similar values for RMSE and percentage difference were observed in T1 and T2 areas, with 

RMSEs of 7.8 m and 7.2 m, respectively, and associated percentage differences of 21.6% and 

19.2%, respectively. However, in the T0 areas, it was observed to have the lowest RMSE at 4.0 m, 

but with a large percentage difference from the ground truth at 45.5%. 

Overall, from Table 5.3 and Table 5.4, it was seen that the GCP adjustment consistently had a 

lower RMSE and percentage difference value when compared to the PSM adjustment over the 

same area, and thus it was used to adjust the INSR DSM before it being used for a CHM 

generation. 
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Figure 5.5: Distribution of the GEDI L2A datapoints overlaid on ESRI Basemap used as the 
dependent variable over the study area in an RF MLM 

Most of the data points from GEDI are concentrated in the western section of the study area, but 

the majority are outside of the extraction polygons. Moreover, it was observed that the east and 

southeast directions suffer from an overall lack of data points (Figure 5.5). 

RF MLM random forest variable importance 

 

 

Figure 5.6: Importance of predictor variables used in the RF MLM interpolating across GEDI data 
points for the creation of a CHM 
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It was observed that the predictor with the highest overall importance in the RF algorithm was the 

B11 band from Sentinel-2, which corresponds to the shortwave infrared band with a wavelength of 

1610nm. Most of the bands from Sentinel-2 tended to be ranked as more important. The predictor 

from Sentinel-1 that had the highest importance corresponded to the variance calculated based on 

the GLCM from the VH polarised data. Overall, the predictors derived from SRTM were among 

those with the lowest importance 

RF MLM accuracy assessment 

 

 

Figure 5.7: Comparison between the height predicted by the RF MLM (y-axis) with the GEDI rh98 
height extracted at 70% of the 10000 points randomly distributed across the study area used as the 
training data(x-axis) 

 

When comparing the GEDI CHM with the 70% of the 10,000 points assigned as training data over 

the entire study area, it was observed that it had an R2 value of 0.803m and an associated RMSE 

of 3.99m. There was a constant overestimate of 0.595m in the predicted height.  
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Figure 5.8: Comparison between the height predicted by the RF MLM(x-axis) compared with the rh98 
height from GEDI extracted from the 30% of the 10000 points randomly distributed across the study 
area used as validation data (y-axis) 

 

However, when comparing the observed height to the predicted height using the validation data, it 

was observed that the R2 value dropped to 0.428m, while the overestimate in height increased to 

0.794m compared to the training data. Moreover, the validation RMSE also exhibited a higher 

value of 4.94m overall. 

INSAR fusion and RF MLM CHMs comparison with LIDAR CHM 
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Figure 5.9: Comparison of the full height ranges (100th percentiles) of the INSAR fusion CHM (A), RF 
MLM CHM (B), and the LIDAR ground truth CHM (C) overlaid on ESRI Basemap. 

 

It is evident that when comparing the INSAR CHM (Figure 5.9 (A)) with the ground truth and RF 

MLM CHM over the study area, no discernible pattern can be observed. Conversely, in the RF 

MLM CHM, a concentration of taller trees can be seen in the upper section of the study site, like 

the LIDAR CHM. However, it should be noted that the height values in the INSAR CHM vary 

greatly, ranging from -177m to 142m. As a result, no useful information can be extracted from it 

visually. On the contrary, the RF MLM CHM exhibits a more realistic height range across the entire 

study area, although it is approximately twice as low compared to the LIDAR CHM. Lastly, the RF 

MLM had certain areas within the study site that were masked, making it impossible to estimate the 

height. Visually, these areas mostly corresponded to the ground, but the roads shown in Figure 5.4 

exhibited tree height estimates. 
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Figure 5.10: Comparison of the full height ranges (100th height percentiles) of INSAR fusion CHM (A), 
RF MLM CHM (B), and LIDAR ground truth CHM (C) that have been extracted in different thinning 
areas within the study area overlaid on ESRI Basemap. 
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A visual comparison between the RF MLM and the LIDAR ground truth CHM (Figure 5.10) 

suggests that the RF MLM has higher heights in the overall thinning areas, whereas the LIDAR 

CHM records the highest elevations in the southeast sections, specifically in the T3 areas. It is 

important to note that the peak height estimate of the RF MLM (23 m) is still lower than that of the 

LIDAR CHM (32 m). However, it is evident that the INSAR CHM provides widely inaccurate height 

estimates, ranging from a peak of 83 m to a lowest height of -130 m, which is not plausible. 

Furthermore, even when comparing the extracted thinning areas, no visual comparisons can be 

made with the LIDAR ground truth CHM. 

Table 5.5: Assessing the accuracy of the 90th percentile height derived from INSAR fusion CHM and 
RF MLM CHM against the 90th percentile height of ground truth LIDAR CHM across different thinning 
classes. All CHMs are resampled to a 14m resolution 

Thinning 
category 

CHM source 
Mean 

elevation 
 (m) 

Standard 
deviation 

 (m) 

RMSE 
(m) 

Percentage 
difference 

(%) 

 
T0 

     

 INSAR fusion 6.3 0.1 2.4 27.5 

 RF MLM 16.3 0.16 7.7 88.9 

 Ground truth LIDAR 8.7 0.09 - - 
 

T1 
     

 INSAR fusion 16.8 4.9 4.2 5.1 

 RF MLM 19.2 1.1 2.3 8.8 

 Ground truth LIDAR 17.7 1.0 - - 

 
T2 

     

 INSAR fusion 18.1 6.6 7.0 16.4 

 RF MLM 20.6 1.1 1.9 5.1 

 Ground truth LIDAR 21.7 2.3 - 0 

 
T3 

     

 INSAR fusion 41.2 1.7 15.5 60.3 
 RF MLM 21.0 0.7 5.0 18.1 
 Ground truth LIDAR 25.7 3.4 - - 

 

Overall, the CHM obtained from the chosen INSAR methodology and the one derived from the RF 

MLM were compared to the LIDAR ground truth CHM, with all three resampled to 14m. It was 

observed that the highest percentage difference and associated RMSE from the INSAR 

methodology were observed in T3 conditions, with values of 60.3% and 15.4m, respectively. On 

the other hand, the lowest percentage difference was observed in T1 conditions, with a value of 

5.1%. However, the lowest RMSE observed was not in T1, which had a value of 4.25m, but in T0 

conditions, with 2.39m. It was observed, however, that under any other conditions, the percentage 

difference was at least 16.4% higher under T2 conditions, up to 60.3% in T3 conditions, with 

RMSE going up to 12.5m under those conditions. 
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Figure 5.11: Visual comparison of the INSAR fusion CHM (Chosen INSAR CHM), RF MLM CHM (GEDI 
ML CHM) and the LIDAR ground truth CHM, with all CHMs resampled to 14m over T0 areas 

Under T0 conditions, although neither INSAR nor RF MLM were capable of accurately estimating 

tree height due to the large percentage difference, it was observed that RF MLM was noticeably 

worse than INSAR. 

 

Figure 5.12: Visual comparison of the INSAR fusion CHM (Chosen INSAR CHM), RF MLM CHM (GEDI 
ML CHM) and the LIDAR ground truth CHM, with all CHMs resampled to 14m over T1 areas 

Under T1 conditions, it was observed that INSAR underestimated the height by 5.6%, compared to 

RF MLM which overestimated the height by 9.3m. However, RF MLM had a lower RMSE of 2.3m. 
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Figure 5.13: Visual comparison of the INSAR fusion CHM (Chosen INSAR CHM), RF MLM CHM (GEDI 
ML CHM) and the LIDAR ground truth CHM, with all CHMs resampled to 14m over T2 areas 

 

Under T2 conditions, both INSAR and RF MLM underestimated the tree height, but RF MLM 

performed better due to the height underestimation and had an RMSE of only 4.4% and 1.9m, 

respectively. 

 

Figure 5.14: Visual comparison of the INSAR fusion CHM (Chosen INSAR CHM), RF MLM CHM (GEDI 
ML CHM) and the LIDAR ground truth CHM, with all CHMs resampled to 14m over T3 areas 
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Both INSAR and RF MLM were unable to accurately predict tree heights under T3 conditions. 

However, it was observed that INSAR was noticeably worse with the highest percentage difference 

and an RMSE of 61.4% and 15.5, respectively  



 

64 

CHAPTER 6 DISCUSSION 

 

Overview of the INSAR DSM generation process 

It was observed that two methods of generating the INSAR DSM proved to be effective over the 

management areas (Table 5.2). Filtering 2 was found to be the most suitable for T0 and T1 areas, 

while filtering 4 was deemed appropriate for T2 and T3 areas (Table 5.2). However, when 

comparing the overall accuracy of the INSAR DSM in relation to the ground truth LIDAR-based 

DSM, it became evident that the most appropriate INSAR DSM generation method varied 

depending on the investigated thinning area. This comparison was made against the LIDAR DSM 

resampled to 14m to match the resolution of the output INSAR DSM. However, when emphasising 

the significance of RMSE over the percentage difference, which is commonly used as a measure 

of vertical height accuracy and is easily interpretable in similar studies Braun (2021), it was 

determined that the overall most accurate INSAR generation method for most thinning areas was 

the one that employed filtering 2 in the process 

Understanding the impact of the different filtering processes on the INSAR accuracy 

It is well-known that the multilooking process helps reduce speckle noise in the interferogram by 

averaging SAR data within square pixels measuring 12.9m by 12.9m, but also decompresses the 

data in the azimuth direction as shown in Figure 5.1. This technique has also been observed to 

improve coherence estimation and, consequently, the overall phase fidelity of the interferogram, 

thereby minimising errors during unwrapping (Ab Rahman et al., 2023; Bouaraba et al., 2018). 

However, it was observed that the incorporation of both the Goldstein filtering coherence mask and 

the band maths mask did not effectively improve the accuracy of the generated INSAR DSM in 

most of the management areas, except for T3 (Table 5.2). This could be attributed to the fact that 

these two processes both aim to eliminate pixels with a coherence lower than 0.3 from the 

interferogram. The threshold value of coherence, suggested by Woodhouse (2017) and supported 

by Braun (2021) within the range of 0.1 to 0.4, was based on the assumption that areas with low 

coherence are affected by data noise and severe compromises in the phase information of these 

pixels, rendering them irrelevant. Consequently, it is necessary to remove these pixels before the 

phase unwrapping process to avoid errors that could result in an increase in the INSAR-derived 

height, especially when the coherence is below 0.2 (Braun, 2021; Woodhouse, 2017). 

 

Nevertheless, it was observed that excluding pixels with low coherence prior to the phase 

unwrapping process in vegetated areas would lead to the formation of disconnected areas 

consisting only of pixels with higher coherence in the interferogram with no other pixels 

surrounding them. As a consequence, the MCF algorithm employed in this process would either 
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fail entirely or incur higher error rates (Braun, 2021). Moreover, this low coherence value 

thresholding is often valid over bare soil or urban areas, but not over mostly vegetated areas such 

as the ones in this study. This is the case as vegetated areas are themselves often associated with 

low to moderate coherence values owing to the instability of the top of the tree canopy structure 

between the two SAR image acquisitions (Singh et al., 2020). This lack of structural stability has 

been associated with an increase in volume scattering near the tree crown due to the movement of 

leaves and branches caused by wind effects (Askne et al., 1997). Additionally, the scattering phase 

centre of C band also occurs in the same wind-affected regions, resulting in much lower coherence 

over these vegetated areas (Singh et al., 2020). 

 

The effect on coherence values has often been used to distinguish between agricultural and non-

agricultural areas. A coherence value of 0.45 was used in Pandit et al. (2022), and it was found to 

be correlated with NDVI in the case of VV polarisations. Lower coherence values were associated 

with higher vegetation cover and were used to develop SAR-specific indices (Villarroya-Carpio et 

al., 2022). Cartus et al. (2021) found coherence values between 0.2 and 0.5 over forested areas 

containing a combination of pine and oaks, using similar VV C band data. However, a temporal 

baseline of 6 days was used, which is lower than the 12 days in this study. A longer temporal 

baseline would have resulted in even lower coherence values over the vegetated areas (Cartus et 

al., 2021; Monteith & Ulander, 2021).  

 

Therefore, it can be concluded that masking pixels with a coherence of 0.3 over the study area 

would have removed data corresponding to the trees from the input interferogram. This explains 

why the most performant INSAR DSM methodology did not include any of the two coherence 

masking methods used, namely the Goldstein coherence mask and the band maths (Table 5.2). 

Effect of coherence of INSAR DSM accuracy 

It was observed that the highest coherence was observed over T0 areas and was drastically lower 

over other thinning areas, decreasing from T1, T2, and T3 (Figure 5.2).Moreover it was also seen 

that the higher the coherence in those areas the greater was the INSAR DSM generation accuracy 

as shown in Table 5.2 where the highest INSAR DSM accuracy was achieved using the INSAR 

DSM generation method that only involved multilooking and Goldstein phase filtering, without 

Goldstein phase filtering mask and band math, and was found in T0 areas. This accuracy 

decreased when moving from T1 to T2 and T3. The significantly higher initial coherence over T0 

areas can be explained by several factors. 

Effect of Pruning and Thinning on coherence 

Two management practices are carried out throughout the life cycle of Pinus radiata plantations in 

our study site: a yearly pruning process between autumn and winter to mitigate fire risk and tree 

stress (ForestrySA, 2021; PIRSA, 2023), and the commercial thinning process carried out 
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approximately every 10 years. These processes, especially thinning, have been clearly identified in 

the study site, and the patches of trees associated with their level of thinning from T0, T1, T2, and 

T3, due to their differences in tree structure and biomass, will respond differently to the incoming 

C-band microwaves. 

 

It is known that thinning of Pinus radiata contributes to an increase in the availability of space, 

airflow, temperature, and light penetration inside the existing canopy, which leads to an overall 

increase in tree diameter, as well as an increase in overall crown size (Fernández et al., 2017). 

Moreover, thinning also contributes to larger branches and an increase in tree taper, where the 

overall stem diameter will be substantially smaller than the higher the tree height (Burkhart et al., 

2012; Fernández et al., 2017). Pruning under Chilean weather conditions for Pinus radiata, when 

carried out on young branches, was seen to decrease the overall tree growth rate and the 

photosynthetic ability of the tree, but the latter was compensated by additional growth of branch 

clusters (Pinkard & Beadle, 2000). When thinning and pruning were carried out together, it was 

observed that their individual effects described above occurred, leading to an overall higher tree 

diameter and increased foliage biomass when they were carried out on the 6th and 11th year of 

the Pinus radiata plantation (Fernández et al., 2017). However, when compared to the unmanaged 

sites that had not undergone either process by the 14th year, it was observed that the annual 

overall tree growth of the managed and unmanaged sites were similar, showing a level of canopy 

closure due to the crown repairing the foliage loss, but the managed trees retained their higher 

branch density (Fernández et al., 2017). If these effects are applied in the context of the Knott Hill 

and Mount Panorama study site, it can be assumed that between thinning and pruning cycles, the 

tree stem becomes wider, and more branch clusters develop. Then, the canopy recovers from the 

effects in preparation for the next thinning cycle, meaning that the more mature, taller trees that 

have undergone more thinning cycles will have more overall branches. Santoro et al. (2007) have 

shown that coherence is inversely proportional to the stem volume; it will decrease as the stem 

volume increases. Additionally, due to the limited penetration of C-band through the tree canopy, 

most of its scattering occurs at the crown and tree branches. Therefore, it can be assumed that 

more mature trees with a higher branch density will cause a higher scattering effect and potentially 

result in lower temporal coherence between the two SAR images over these patches. This 

assumption was supported by the findings of a box plot analysis (Figure 5.2) showing an overall 

decrease in coherence from 0.347 under T1, to 0.338 under T2, and finally, the lowest coherence 

observed at T3, at 0.327. 

Effect of tree flexibility on coherence 

Under open conditions, young Pinus radiata trees, within the first 10 years, produce wood that 

enables flexibility and avoids damage during the critical growth stage, particularly in windy 

conditions (Brennan et al., 2012). However, after this initial period, the increasing weight of the 
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trees results in corewood composition changes, leading to a stiffer structure that prevents self-

buckling (Brennan et al., 2012). The reduction in flexibility over time increases the likelihood of 

branch movement with the wind in older trees, which may result in higher potential signal 

decorrelation between the pair of SAR images (Pinto et al., 2012). This phenomenon was 

observed by Castel et al. (2000), where even a 2-day difference in the acquisition of two C-band 

SAR images from the ERS-1 and ERS-2 missions, lower than the 12-day difference used in this 

study, resulted in lower coherence over mature pine trees compared to younger patches. The 

same phenomenon was observed in this study, with significantly higher coherence observed 

between the younger Pinus radiata trees in T0 areas that had not undergone any thinning process, 

compared to other patches that had undergone one to three thinning process (Figure 5.2) 

Overall, the expectation that the higher the coherence of the area, the higher the confidence in the 

INSAR process, especially the phase unwrapping process, to be completed successfully, which 

may lead to a higher overall accuracy of the INSAR process, as highlighted in Li and Bethel (2008); 

Roc Roc (2019); T. Wang et al. (2009), was confirmed in this study. 

 
Investigating the effect of SAR signal intensity on the INSAR accuracy. 

The backscatter of SAR signal depends on the intrinsic characteristics of the data collection 

process, such as the wavelength band used, its associated polarisation, the incidence angle from 

the SAR sensor, and the characteristics of the surface being analysed, including the presence of 

vegetation, surface roughness, and dielectric constant(Alijani et al., 2021). In the C-band region, 

most of the backscatter over forested areas results from scattering mechanisms concentrated in 

the upper section of the canopy due to the smaller C-band wavelength compared to the size of the 

canopy (Hu et al., 2023). As described in Hu et al. (2023), volumetric scattering occurs on the 

canopy surface, double bound scattering mostly occurs on the upper canopy section and 

sometimes on larger and wider branches in the region, and finally, volumetric scattering also 

occurs in the upper canopy, mostly around small tree needles and secondary branches. It is known 

that the backscatter from VV polarised C-band data used in this study is correlated to forest 

structure, with its value decreasing as stem volume increases (Santoro et al., 2019). However, it is 

shown from Figure 5.3 that the mean intensity over the backscatter return over T1, T2, AND T3 

hovers around the 255 dB mark, even considering their different management conditions and the 

increasing stem volume with more thinning processes and older tree patches. This lack of clear 

difference is explained by the overall weak sensitivity to the aforementioned relationship. In C VV-

band data from Sentinel, the dynamic range of backscatter intensity observed over forested areas 

is only around 1 dB, as shown in Santoro et al. (2019). This explains the apparent lack of change 

in mean backscatter intensity over T1, T2, and T3. However, the mean intensity over T0 is higher 

than in the management areas, with a value of 257.8 dB, above the defined sensitivity threshold. 

This can be explained by the surface characteristics in T0 areas. It can be observed (Figure 5.5) 
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that in T0 areas, the overall area is not fully covered by Pinus radiata, and there is evidence of 

terrain manipulation, such as ridges in the soil present from ripping in past plantings. The 

increased backscatter observed might be due to a larger overall contribution of ground scattering 

caused by surface roughness, rather than scattering due to forest structure, due to the lower ratio 

of canopy coverage (Rüetschi et al., 2019). Moreover, it is observed that there is a greater 

sensitivity of VV polarised C-band data to surface roughness at incidence angles around 45°, 

which is the case in the far range of the Sentinel-1 data extracted over this study area, which 

reaches up to 45.3° in the far range (Alijani et al., 2021). Therefore, the higher sensitivity of VV 

polarised C-band data to rough surfaces, which cover a larger area in T0 regions, can explain the 

higher backscatter intensity observed, well above the expected sensitivity. 

Comparison between the GCP and PSM INSAR DSM adjustment methods 

 

It was observed that regardless of the source of the elevation data used for PSM and GCP 

adjustment, the interpolation done with the Empirical Bayesian kriging method (EBK) resulted in 

the lowest overall RMSE. This finding aligns with the principle behind EBK, which modifies the 

input data distribution to closely resemble a Gaussian distribution by eliminating local trends in the 

data. This allows for predictions of elevations to be made using semi-variogram models created 

with input data points near the prediction location (Krivoruchko, 2012). Furthermore, EBK is known 

to be more accurate than other kriging methods, even with smaller datasets, as observed in the 

case of GCP and PSM in this study (Krivoruchko, 2012). 

 

Although both adjusted methods employed the same empirical Bayesian Kriging (EBK) 

interpolation method to generate the adjustment layer based on the reference height derived from 

the ground truth LIDAR for GCP and the measured elevation at the PSM, it was observed that the 

GCP points were more evenly distributed throughout the study area and were more abundant, with 

52 GCPs compared to 14 PSMs (Figure 5.4). This may have contributed to the overall better 

performance of EBK interpolation (Krivoruchko & Gribov, 2019; Sunila & Kollo, 2007). 

 

Moreover, the methodology used to create the GCPs may have also contributed to the higher 

effectiveness of the GCP DSM adjustment. When creating a GCP, visual examination of the 3m 

planet imagery ensured that there was no tall vegetation within a 14m buffer of the GCP. 

Therefore, the elevation extracted from the LIDAR DSM at that pixel would represent the ground 

elevation in the INSAR DSM, as the latter had a lower spatial resolution of 15m than the buffer 

size. On the other hand, it was observed that the 14 PSMs used in the PSM adjustment method 

were mostly located on roads passing through Knott Hill and Mount Panorama, where trees were 

present on both sides of the road within less than 14m (Figure 5.4). Consequently, the 

corresponding location of the PSM in the INSAR DSM pixel would represent a mixture of ground 
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and forest height information, resulting in an overestimated elevation for this pixel (D. Wang et al., 

2009). As a result, the adjustment layer generated by subtracting the INSAR DSM height from the 

PSM height would be underestimated, leading to an overestimated overall Canopy Height Model 

(CHM) derived by subtracting the adjusted INSAR DSM from the ground truth 14m LIDAR DTM. 

This phenomenon is consistently reflected in the higher RMSE when comparing the CHM to the 

ground truth CHM, particularly in the investigated polygon using the GCP adjustment. 

 
Limitations of INSAR based on climatic conditions and possible improvements  

Rainfall 
 

As rainfall would increase the overall soil moisture present in the ground, and that wet materials 

has a dielectric constant approximately 10 times higher than that of dry natural materials, the 

overall dielectric constant would be expected to decrease, reducing the SAR signal penetration 

ability(Cagnina et al., 2023; Periasamy & Ravi, 2020). Furthermore, the higher dielectric constant 

may cause an increase in overall backscatter, particularly in coniferous forests similar to the study 

site, due to the high rainwater storage potential of needle leaves (Cagnina et al., 2023). Overall, 

this higher backscatter may result in increased volume scattering effects, which can further cause 

decorrelation over vegetation, especially if one of the SAR images was taken in significantly drier 

conditions than the other (Beale et al., 2019; Gururaj et al., 2021; Periasamy & Ravi, 2020) 

This was the reason why originally a better selection of INSAR pairs collected on the 19th and 31st 

of January was rejected due to rainfall prior to the SAR image capture, and when analysed 

resulted in large errors in the DSM generated. 

High temperatures 

 

High temperatures can also affect the overall water vapour content in the soil and the leaves, 

resulting in further degradation in the phase quality information derived from the INSAR data 

(Braun, 2021). 

 

It was observed that at the time of collection of the first and second image used in the INSAR 

process, the temperature at the closest weather station in Kuipo was 27 degrees Celsius and 21 

degrees Celsius, respectively, when the average minimum temperature for the two months was 

around 14 degrees Celsius (WillyWeather, 2023). Moreover, the time of the coldest temperatures 

differed on those days, between 3 to 4 am on the 31st of January image and between 6 am to 7 

am on the 12th of February image. Finding a SAR acquisition time where both images are taken at 

the lowest temperatures will be difficult. Moreover, obtaining the times where the temperatures are 

the lowest over the forest is difficult due to the canopy, which absorbs and emits solar radiation, 

acting as a buffer against the daily temperature swings (Aussenac, 2000). Therefore, upon the 
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selection of the pair of SAR images, it must be ensured that they are night-time captures, and the 

temperatures recorded at the closest weather station or ideally a temperature probes that might be 

present in the forests are at their lowest, or at least, the temperature difference when the different 

SAR image acquisitions are taken is at their minimum. Moreover, as shown by Askne et al. (1997) 

Windy conditions 
 

Windy conditions might cause an increased loss in coherence between the two SAR images. 

Therefore, using SAR image acquisitions with the lowest wind speeds would be encouraged, 

especially considering the high temporal decorrelation that occurs as currently SAR images 

suitable for INSAR are acquired at least 12 days apart.  

Effect of low resolution DEMs on the INSAR process and possible improvements 

Throughout the INSAR process, the 30m SRTM DEM was used, which was derived from INSAR 

based on the C and X band antennas on board the space shuttle Endeavour in 2000 (Rabus et al., 

2003). However, this generated DEM often exhibited poor accuracies over forested areas due to 

the SAR band data's limited ability to penetrate canopy cover. Consequently, the underlying 

subcanopy terrain information may not accurately reflect the actual conditions (Li et al., 2022; 

Rabus et al., 2003). Correcting the SRTM DEM over the forested areas in this study could greatly 

enhance the accuracy of the INSAR-generated DSM following the methodology outlined in Li et al. 

(2022) 

Limitations in the INSAR process due to SNAP 

 

It was observed that the phase-to-elevation tool used in SNAP during the INSAR process only 

used the SRTM elevation as a reference. Tampubolon et al. (2022) have shown that incorporating 

GCPs generated from GNSS measurements along with the automatically generated reference 

points from SRTM significantly improves the accuracy of the generated DSM. Additionally, the 

radiometric terrain correction tool does not support the use of the most up to date GDA 2020 and 

associated AHD2020 coordinate system, limiting it to GDA 1994. As a result, it may be necessary 

to explore and use alternative software for these critical processes instead of ESA SNAP. 

INSAR limitations over vegetated areas  

 

Due to the nature of the INSAR process, the generated DSM could not be directly evaluated 

against the ground truth LIDAR DSM using dispersed reference points throughout the areas. 

Instead, its accuracy was assessed using extraction polygons, specifically those based on the 

thinning process. Since the INSAR process was conducted over vegetation areas with inherently 

low coherence, elevation values had to be averaged over large areas to reduce the noise 
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associated with low coherence. 

 

The presence of this noise led to the extraction of the 90th percentile height, which, upon 

investigation in this study, was found to be the most appropriate percentile for removing most error 

points while retaining important height metrics. Zandbergen (2011) highlights in their guidelines 

that elevation data may not always be normally distributed, and the use of percentiles is 

recommended in such cases. Furthermore, the authors emphasised that the use of RMSE 

statistics may not be accurate in this scenario. Therefore, based on these circumstances, the 

accuracy of the DSM could not be independently evaluated without utilising these extraction 

polygons, and an RMSE value could not be generated or easily compared with results from 

previous studies 
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RF MLM Overview  
 

Selection of input variables 

 

The initial objective was to compare the importance of these variables with other recent 

publications that used the same input data sources: Sentinel-1, Sentinel-2, and SRTM in a GEDI-

based RF ML. However, it should be noted that there was no consensus on the types of variables 

to be used. For the Sentinel-1 variables, studies such as Guo et al. (2023) only used the VV and 

VH backscatter, while Kacic et al. (2023) and Tsutsumida et al. (2023) also incorporated percentile 

metrics based on the input VV and VH backscatter values, although with different percentile 

breakdowns. This was done to minimise the influence of temporal effects caused by atmospheric 

conditions and gaps in the time series when the Sentinel-1 data was collected. Chere et al. (2023) 

took a different approach and instead of the percentiles, included a combination of radar-based 

indices that utilise the input VV and VH backscatter as source data, with the latter also being 

included. Overall, none of the mentioned papers used texture variables such as contrast and 

entropy derived from the input VV and VH Sentinel-1 data used in this study. 

 

Upon reviewing the same four publications which were selected as they represented the current 

methodology used to estimate canopy height using SAR data in MLMs, it was observed that none 

of them used only the raw reflectance bands of Sentinel-2 as input variables in the RF MLM, as 

was done in this study. Kacic et al. (2023) and Tsutsumida et al. (2023) agreed once again on 

including percentile metrics, though with different breakdowns based on the raw reflectance bands 

of Sentinel-2. Chere et al. (2023) chose to include a wide range of vegetation indices in addition to 

the raw Sentinel-2 spectral bands in their MLM. However, Guo et al. (2023) decided against adding 

the raw spectral data and instead included only derived vegetation indices and some biophysical 

variables. As for the DEM-based variables, Guo et al. (2023) and Chere et al. (2023) included 

aspect in their MLM, in addition to the derived slope and elevation used in this study. However, 

Kacic et al. (2023) and Tsutsumida et al. (2023) used only the DEM elevation. 

Comparison of Variable Importance 

It was observed that based on the variable importance (Figure 5.6), that a pattern can be 

observed, with variables based on Sentinel-2 ranked among the highest, followed by the Sentinel-1 

based ones, and finally the SRTM based ones seen with the lowest overall importance. Overall, 

the trend of several Sentinel-2 based variables being ranked among the variables with the highest 

importance, as observed in this study, was also seen in the studies by Guo et al. (2023),Kacic et 

al. (2023) and Chere et al. (2023). The high importance of the B3 (visible green) and red-edge (B5) 

bands is not surprising, as they have been identified as having significant relevance to vegetation 

height compared to the other Sentinel-2 bands (Perez et al., 2022). Moreover, the inclusion of the 
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SWIR bands B11 and B12 among the ones with the highest importance aligns with results from 

previous models used to predict tree height, as highlighted in Perez et al. (2022).  

 

In this study, the lowest importance of the topographic variables derived from the SRTM DEM does 

not follow the trend in past studies, where they were often among the strongest predictor variables 

for estimating forest height (Ghosh et al., 2022; Liu et al., 2019). Furthermore, RF MLM used by 

Chere et al. (2023), slope and elevation variables were ranked with the highest overall importance, 

and in the study by Kacic et al. (2023), elevation was the fifth most important variable. Moreover, a 

similar position in the importance of topographic variables as seen in this study was observed in 

Guo et al. (2023), where elevation and slope had an importance of only 0.5% and 0.18% 

respectively. It has been noted that this study and Guo et al. (2023) were conducted in relatively 

small study areas of 23 km2 and 1400 km2 respectively, compared to the ones in Chere et al. 

(2023) and Kacic et al. (2023), where the analysed zone covered approximately 6000 km2 and 

100000 km2 respectively. Thus, it is possible that the variations in topographic variables were not 

significant enough over the smaller areas, leading to their weaker predictive value. Finally, overall, 

it was observed that in most cases, the Sentinel-1 variables were ranked lower than the ones 

based on Sentinel-2. This can be explained by the limited ability of the C band from Sentinel-1 to 

fully penetrate the tree canopy, resulting in lower signal strength and a higher chance of complex 

structures on the forest floor causing interference (Chere et al., 2023; Ghosh et al., 2022; Torres 

de Almeida et al., 2022). Additionally, when Sentinel-2 and Sentinel-1 data are used together, the 

latter often introduces noise in the MLM. This noise could be due to pre-processing of the initial 

Sentinel-1 data to generate backscatter values for both VV and VH polarizations or due to a 

mismatch in data acquisition days between the two sources. In the case of Sentinel-1 data 

collection being carried out under weather conditions such as rain, which greatly affects C band 

signal scattering and resulting correlation which was not filtered out before being used as input in 

the RF MLM therefore potentially inducing noise in the data (Braun, 2021; N. Zhang et al., 2022; 

Zhou et al., 2009). 

 

However, in this study, VV backscatter was found to be more important in the RF model than VH 

(Figure 5.6) which was contrary to similar studies (Chere et al., 2023; Guo et al., 2023; Kacic et al., 

2023). This discrepancy might be explained by the fact that the mentioned studies were conducted 

in environments containing both deciduous and coniferous trees, whereas the area analysed in this 

study only contained the coniferous Pinus radiata. VH polarisation is greatly influenced by foliage 

type, with broad leaves from deciduous trees resulting in higher backscattering and therefore 

higher predictor strength under those conditions compared to the needle leaves of coniferous 

trees, which have lower influence on VH backscatter and thus lower predictor strength as observed 

in this study (Ling et al., 2022). However, it was observed that VH variance was ranked as the 

most important Sentinel-1-based variable, and overall VH-derived variables performed better as 
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predictors compared to VV-based ones. This can be explained, as shown in Ling et al. (2022), by 

the fact that for coniferous forests, like the one in our study site, VH backscatter is negatively 

proportional to the length of needle-like leaves. This may explain why VH-derived texture variables 

may be stronger predictors than VV-based ones. Moreover, after the thinning process is carried 

out, debris is often left on the ground surface, increasing its interaction with the VH-polarised 

signal, which can now interact with the ground surface. As VH-based variables are more sensitive 

than VV-based texture variables to volume scattering on the surface, they will be better predictors 

in the RF ML. 

 
RF MLM Performance 

It was observed that the RF MLM used in this study had an R2 value of 0.43 and an RMSE of 

4.94m. This R2 value was higher than that of Guo et al. (2023), who also used RF along with other 

MLM but reported an R2 value of only 0.21. However, their RMSE was lower at 3.07m. 

Nonetheless, compared to similar studies utilising an RF MLM approach, it was found that this 

study performed relatively worse in terms of R2 values. Kacic et al. (2023) and Tsutsumida et al. 

(2023) reported R2 values of 0.64 and 0.63, respectively, although their RMSE values were higher 

at 6.6m and 5.8m. This suggests that the inclusion of percentiles of Sentinel-2 bands contributed to 

an increase in prediction accuracy, while the inclusion of percentiles of S1 data potentially 

introduced a large cumulative input noise due to the pre-processing required for Sentinel-1 data N. 

Zhang et al. (2022). Lastly, this study was significantly outperformed by Chere et al. (2023) whose 

RF MLM achieved an R2 value of 0.86 and an associated RMSE of 3.63m. 

 
Possible Improvements  

These results indicate that instead of adding percentiles generated from the input data, the 

inclusion of a range of vegetation indices based on the raw Sentinel-2 bands, which were shown to 

have high importance in the MLM, would greatly improve the model's ability to predict tree canopy 

height. Moreover, the radar-based indices used in Chere et al. (2023) are derived from ratios or 

simple addition and averages of the VV and VH backscatter is a plausible way to increase the S1-

based data in the model due to their essence having lower cumulative noise that would arise when 

using raw backscatter data and percentiles instead. One major difference between Chere et al. 

(2023) and this study was the incorporation of variable selection methods. In this case, the 

Pearson's correlation coefficient was evaluated, and variables with a coefficient higher than 0.95, 

indicating strong dependence, were removed as they were considered highly correlated and thus  

redundant. Additionally, variable selection methods can prevent the inclusion of data in the MLM 

that may not be reliable or have high associated input noise, thus potentially improving the overall 

predictive power and accuracy of the model (Chere et al., 2023; Geremew et al., 2023; Torres de 

Almeida et al., 2022). Moreover, as shown in Z. Wu et al. (2023), the addition of climate 
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information, such as temperature and precipitation, as input variables to the RF model 

demonstrated can result in an increase in the RF MLM predictive strength. These variables were 

used after a feature selection process as inputs in the MLM. The study also suggested 

incorporating PALSAR-2 data, based on L band SAR data, which has a higher tree canopy 

penetration ability and associated radar-based indices in addition to Sentinel-1, Sentinel-2, and 

SRTM-based variables. This addition was proposed to enhance the MLM capability to predict 

canopy height based on input GEDI data, despite the PALSAR dataset existing in a yearly mosaic 

format in the GEE platform, which was used in this study (Ghosh et al., 2022). One major limitation 

that may explain the lower performance of the GEDI-based RF model compared to other similar 

studies is the overall lack of GEDI data (over the forested part of the study area (Figure 5.4). This, 

coupled with the coarse resolution of the input Sentinel-1, Sentinel-2, and SRTM DEM, which was 

resampled to or originally at 30m to ensure input data homogeneity over a small study area of only 

20 km2, could contribute to the lower performance. One solution to overcome the scarcity of GEDI 

data was suggested by Z. Wu et al. (2023). They proposed using existing ICESAT-2 data, which 

was not initially favoured in the MLM due to its unfavourable sampling strategy and overall bigger 

ground distance between points when compared to GEDI as its different collection method may 

have allowed it to provide data points over the study area where GEDI did not. The researchers 

recommended using the ICESAT-2 data as predictor variables and the GEDI data as response 

variables in a genetic programming (GP) algorithm (Z. Wu et al., 2023). This produced a fused 

dataset of both ICESAT-2 and GEDI data, which was then used instead of solely GEDI data as the 

response variable in the MLM. The use of the fused GEDI and ICESAT-2 data resulted in an 

increased R2 of 0.58 and a lowered RMSE of 3.63m for the RF model compared to using only 

GEDI data with an R2 of 0.48 and an RMSE of 4.04m, both models having the same set of 

predictor variables. Additionally, alternative MLMs, such as the forest canopy height extrapolation 

(FCHE) model used in Z. Wu et al. (2023) and the multiple linear regression (MLR) model in Guo 

et al. (2023), outperformed the RF MLM under similar input conditions. These alternative models 

showed better performance than the RF MLM, which has traditionally been used in tree canopy 

height extraction studies (Chere et al., 2023; Kacic et al., 2023; Tsao et al., 2023; Tsutsumida et 

al., 2023; Xi et al., 2022)  

Comparison between INSAR fusion CHM and RF MLM CHM with ground 
truth  

The third objective of this study was to compare the performance of SAR data alone, using the 

INSAR process with Sentinel-1, and the incorporation of other data sources in a MLM to estimate 

tree canopy heights in a Pinus radiata plantation located in Mount Panorama and Knott Hill.  

Overall, the INSAR-based CHM performed best in the T1 areas, exhibiting a low root mean square 

error (RMSE) of 4.24m and a percentage difference of 5.07% compared to the ground truth. The 
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RF MLM CHM, on the other hand, demonstrated superior performance in the T2 areas, with the 

lowest recorded RMSE of 1.92m and a percentage difference of 5.01%. Furthermore, the RF MLM 

method also performed well in the T1 areas, although the associated RMSE and percentage 

difference were higher compared to the T2 areas, measuring 2.34m and 8.77% respectively. 

However, it was deemed more reliable than the INSAR method due to its lower RMSE and thus the 

derived tree height may be more reliable. Both methods, however, proved to be inaccurate in the 

T0 and T3 areas. The higher performance of INSAR over T1 areas can be explained by the fact 

that there has been only one thinning process carried out, and thus the trees are still relatively free 

of the effect of visible ground between the trees. This exposed ground might be filled with pruned 

and thinned branches, which would increase the proportion of signal scattering and result in lower 

coherence. This is something expected in patches that have undergone more thinning processes. 

However, it would have been expected that T0 conditions might have the highest INSAR CHM 

accuracy due to its higher measured coherence and signal intensity. However, it was observed that 

the T0 areas had the smallest area in the study site, and thus the errors in the INSAR derived CHM 

over these sites could not be averaged out. The same could explain the poor performance in the 

T3 areas, which covered only around 1 km2 more of the study area compared to T0 areas. The 

relatively small area of T0 and T3 areas, when compared to T1 and T2, can also explain the lack of 

accuracy over those areas. The relatively sparse number of inputs GEDI points over the study site 

might have been even more non-existent over those small patches, causing the MLM to be carried 

out on only a few input points. Moreover, it was observed that most of the T0 areas were classified 

as ground by the ESA forest mask, and data from the input predictor variables were masked out 

over these areas, further reducing the ML predicting power over these areas. 

 

The higher performance of the RF MLM can be explained by the fact that in similar ML studies, it 

has been observed that Sentinel-1 SAR data is often not as significant in tree canopy estimation 

and often adds more noise to the ML than predictive power. This noise has also been observed in 

the INSAR process. As shown in N. Zhang et al. (2022), when combined with optical data as was 

done in this study with the RF MLM, the optical variables often have a higher ability to predict tree 

height. Thus, supplementing the SAR data with optical data generates an overall higher predictive 

model for tree canopy height. 

 

Moreover, due to its relative ease of use once coded and its ability to be easily implemented over 

other study sites due to the global datasets used as input variables, the RF MLM model was found 

to make the best use of Sentinel-1 SAR data and overall would be the preferred methodology to 

estimate canopy heights over forest plantations. 
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Overall limitations of this study 

This study primarily focuses on categorising different age groups of Pinus Radiata trees based on 

their planting years and the number of times they were thinned before being felled by Forestry SA. 

However, Figure 4.2 shows that the thinning process occurs over a wide range of ages. For 

instance, the second thinning may occur between 18 and 22 years. Unfortunately, the exact dates 

of thinning for each Pinus radiata patch investigated were not available. Therefore, the breakdown 

of the tree plantations is based on the approximate timeline provided by Forestry SA ForestrySA 

(2016)However, if the thinning process happened earlier or later than expected due to logistical 

reasons, there is a possibility of certain patches being allocated incorrectly, which may impact the 

confidence in the results obtained by the fusion INSAR CHM and the RF MLM. 

Possible improvement by merging INSAR data and deep learning 
methodologies 

The use of INSAR and MLM has been observed throughout this study as robust ways to estimate 

characteristics of forests, such as tree canopy height. However, there are novel methodologies that 

aim to combine these two principles and generate new, more accurate ways to predict tree canopy 

height. It is noted that MLM has been widely used for estimating these physical parameters, but 

there has recently been a new focus on the usage of deep learning methods to replace traditional 

regression models with great success. For example,Carcereri et al. (2023) demonstrated the ability 

to combine INSAR X band data and their derived geometry features with deep learning to 

successfully generate CHMs that rival the accuracy of RVoG models. 

 

Given the nature of deep learning models and their inherent ability to iterate and have higher 

descriptive power over time, these methodologies can be expected to increase in accuracy as they 

become more refined and receive more data. This may result in an outcome where instead of 

being used separately as in Carcereri et al. (2023); Lang et al. (2019), different bands of SAR data, 

along with different optical data variables and spaceborne LIDAR, can be used as input in deep 

learning models to all together predict various biophysical parameters over forests 
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CHAPTER 7 CONCLUSION 

 

The primary objective of this research was to investigate the use of Sentinel-1 data in estimating 

tree canopy heights, both independently through the INSAR process and in combination with other 

data sets in a MLM. The findings showed that the INSAR process yielded the most accurate results 

in Pinus radiata plantations that had undergone only one thinning process (T1). However, for this 

method to be effective, the areas needed to be large enough to average out the noise resulting 

from the INSAR process. Alternatively, it was observed that combining Sentinel-1 data with optical 

and topographic datasets to generate variables for an MLM was a better approach. This method 

proved suitable when compared with LIDAR ground truth, demonstrating its potential for 

application in a wider range of Pinus radiata plantations, including both T1 and T2 areas. Based on 

these findings, it can be concluded that the current freely available Sentinel-1 data can serve as an 

initial proxy for estimating tree canopy heights in plantations at regular intervals and for now would 

be better used in MLM instead as being used for INSAR. As the order of accuracy for the MLM was 

in the orders of metres, for now instead of replacing LIDAR surveys, foresters can initially use the 

MLM approach to initially investigate the Pinus radiata plantations and overtime identify areas that 

may suffer from abnormalities such as areas with a lower canopy height than expected based on 

the growth rates, and then target the more accurate LIDAR and field surveys only in those areas 

thus resulting in cost and time savings 

Further Research 

It is important to note that the Sentinel-1 data, due to its intermediate canopy penetration ability, is 

inherently not appropriate to be used over forested areas for tree height estimations. However, 

several missions are planned soon that aim to collect SAR data with enhanced canopy penetration 

ability, thanks to longer wavelengths. 

 

One such mission is the NASA-ISRO Synthetic Aperture Radar (NISAR) mission, which is a 

collaboration between the US and Indian space agencies. The NISAR spacecraft planned to be 

launched in 2024, will be equipped with both L-band and S-band SAR instruments, providing global 

coverage with a 12-day repeat cycle (Fatoyinbo et al., 2021). The stability and capabilities of the 

spacecraft's orbit will allow for the use of longer wavelength L-band data in a repeat-pass INSAR 

process, similar to the one carried out in this study with Sentinel-1's C-band SAR scenes. This will 

enable more accurate estimation of tree canopy heights, particularly in the range of 10m to 30m, 

which is perfect for Pinus radiata plantations, as observed in the study site investigated in this 

research (Fatoyinbo et al., 2021). 
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However, the BIOMASS mission, planned to be launched in 2024, will be equipped with the P-

band SAR instrument, which has higher penetration ability into the tree canopy compared to the 

wavelengths of the L, S, and C band data from NISAR and Sentinel-1 (Fatoyinbo et al., 2021). With 

a repeat coverage of only 3 days, the SAR data can also be used for multiple repeat pass 

interferometry over forests to produce forest tomography. However, it will have a much lower 

temporal decorrelation compared to the Sentinel-1 and NISAR data, with SAR scenes separated 

by 12 days instead of only 3 days in the case of BIOMASS (Fatoyinbo et al., 2021). Moreover, due 

to the range of different polarisations it can collect SAR data in, the BIOMASS mission will support 

the Polarimetric INSAR, which is expected to have higher tree height prediction abilities due to the 

usage of multiple SAR polarisations simultaneously instead of a single one as used in this study for 

INSAR CHM generation (Fatoyinbo et al., 2021). 

 

Furthermore, as both datasets from NISAR and BIOMASS are expected to be freely available, their 

integration in online cloud platforms such as GEE will enable their fusion with other existing 

datasets, such as the one used in this study. The RF MLM model has already been found to be 

more accurate than the Sentinel-1 INSAR based method for predicting tree canopy heights. 

Therefore, these additional datasets will further enhance the accuracy of the RF MLM model 

(Fatoyinbo et al., 2021). 
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CHAPTER 9 APPENDICES 

Appendix A: Plantation years of Pinus Radiata present in the study area, 
adapted from ForestrySA (2016) 
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Appendix B: Code for the RF MLM adapted from Courage (2021) and 
used in the GEE platform 

var boundary = ee.FeatureCollection("projects/ee-kunalkcg1997/assets/new_forest"); 

// Load Sentinel-1 for the post-rainy season. 

var S1_PRS = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filterDate('2022-01-01', '2022-02-28') 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

    .filterBounds(boundary); 

 

print(S1_PRS) 

// Prepare Median  

var S1_PRS_pc = S1_PRS.median(); 

// Convert to natural units (linear units, which can be averaged) 

var S1_PRS_pc = ee.Image(10).pow(S1_PRS_pc.divide(10)); 

var S1_PRS_pc_Feats = S1_PRS_pc.select(['VH','VV']).clip(boundary); 

// Reproject to WGS 84 UTM zone 54                 

var S1_PRS_pc_Feats = S1_PRS_pc_Feats.reproject({crs: 'EPSG:32754',scale: 30});  

var S1_PRS_pc_Feats_VH = S1_PRS_pc_Feats 

                      .addBands((S1_PRS_pc_Feats.select('VH'))); 

 

var S1_PRS_pc_Feats_VV = S1_PRS_pc_Feats 
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                        .addBands((S1_PRS_pc_Feats.select('VV'))); 

 

// Display S1 inter-quartile range imagery 

Map.addLayer(S1_PRS_pc_Feats.clip(boundary), {'bands': 'VV', min: 0,max:0.1}, 'Sentinel-1 IW 

VV'); 

Map.addLayer( S1_PRS_pc_Feats.clip(boundary), {'bands': 'VH', min: 0,max:0.1}, 'Sentinel-1 IW 

VH'); 

///////////////////////////////////////////////////////////////////////////////////////////////////////// 

//computing glcm metrcis 

// Prepare Median 

var S1_median = S1_PRS.median(); 

// Convert the image to a 32-bit integer type. 

var S1_median_32 = S1_median.toInt(); 

// Add another band to S1_median_32. 

var VH_median = S1_median_32.select('VH'); 

var VV_median = S1_median_32.select('VV'); 

var ratio = VH_median.divide(VV_median).rename('ratio'); 

S1_median_32 = S1_median_32.addBands(ratio); 

// Define the GLCM texture parameters. 

var textureParams = { 

  size: 3, 

 kernel: ee.Kernel.square(3, 'pixels'), 

  average: true, 

}; 
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var S1_median_32 = S1_median.toInt8(); 

// Compute GLCM texture. 

var glcm = S1_median_32.glcmTexture(textureParams).clip(boundary); 

var glcm = glcm.reproject({crs: 'EPSG:32754',scale: 64,});  

//var glcmBands = glcm.select(glcm.bandNames()).toBands(); 

var VV_contrast = glcm.select("VV_contrast"); 

var VH_contrast = glcm.select("VH_contrast"); 

var VV_ent = glcm.select("VV_ent"); 

var VH_ent = glcm.select("VH_ent"); 

var VV_var = glcm.select("VV_var"); 

var VH_var = glcm.select("VH_var"); 

var VV_corr = glcm.select("VV_corr"); 

var VH_corr = glcm.select("VH_corr"); 

var VV_diss = glcm.select("VV_diss"); 

var VH_diss = glcm.select("VH_diss"); 

/////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Load Sentinel-2 spectral reflectance data. 

var s2 = ee.ImageCollection('COPERNICUS/S2_SR'); 

// Create a function to mask clouds using the Sentinel-2 QA band. 

function maskS2clouds(image) { 

  var qa = image.select('QA60'); 

 

  // Bits 10 and 11 are clouds and cirrus, respectively. 

  var cloudBitMask = ee.Number(2).pow(10).int(); 
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  var cirrusBitMask = ee.Number(2).pow(11).int(); 

  // Both flags should be set to zero, indicating clear conditions. 

  var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and( 

             qa.bitwiseAnd(cirrusBitMask).eq(0)); 

  // Return the masked and scaled data. 

  return image.updateMask(mask).divide(10000); 

} 

// Filter clouds from Sentinel-2 for a given period. 

var composite = s2.filterDate('2022-01-01', '2022-02-28') 

                  // Pre-filter to get less cloudy granules. 

                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10)) 

                  .map(maskS2clouds) 

                  .filterBounds(boundary) 

                  .select('B2', 'B3', 'B4','B5','B6','B7','B8','B11', 'B12');          

print(composite)                  

// Reproject to WGS 84 UTM zone 54s                   

var S2_composite = composite.median().reproject({crs: 'EPSG:32754', scale: 30}); 

// Check projection information                  

print('Projection, crs, and crs_transform:', S2_composite.projection()); 

// Display a composite S2 imagery 

Map.addLayer(S2_composite.clip(boundary), {bands: ['B11', 'B8', 'B3'], min: 0, max: 0.3}); 

 

///////////////////////////////////////////////////////////////////////////////////////////////////// 

// Load SRTM 



 

98 

var SRTM = ee.Image("USGS/SRTMGL1_003"); 

// Clip Elevation 

var elevation = SRTM.clip(boundary); 

// Reproject 'elevation' to WGS 84 UTM zone 54s                 

var elevation = elevation.reproject({crs: 'EPSG:32754',scale: 30});    

// Check projection information 

print('Projection, crs, and crs_transform:', elevation.projection());  

// Derive slope from the SRTM 

va slope = ee.Terrain.slope(SRTM).clip(boundary); 

 

// Reproject 'slope' to WGS 84 UTM zone 54                 

var slope = slope.reproject({crs: 'EPSG:32754',scale: 30});  

// Check projection information 

print('Projection, crs, and crs_transform:', slope.projection());  

/////////////////////////////////////////////////////////////////////////////////////////////////// 

// Load ESA World Cover data 

var dataset = ee.ImageCollection("ESA/WorldCover/v200").first(); 

// Clip the land cover to the boundary 

var ESA_LC_2020 = dataset.clip(boundary); 

// Extract forest areas from the land cover 

var forest_mask = ESA_LC_2020.updateMask( 

  ESA_LC_2020.eq(10) // Only keep pixels where class equals 2 

); 

// Display forests only 
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var visualization = {bands: ['Map'],}; 

Map.addLayer(forest_mask, visualization, "Trees"); 

///////////////////////////////////////////////////////////////////////////////////////////// 

// Merge the predictor variables 

var mergedCollection = S2_composite 

  .addBands(S1_PRS_pc_Feats_VV 

  .addBands(S1_PRS_pc_Feats_VH 

  .addBands(VV_contrast 

  .addBands(VH_contrast 

  .addBands(VV_ent 

  .addBands(VH_ent 

  .addBands(VV_var 

  .addBands(VH_var 

  .addBands(VV_corr 

  .addBands(VH_corr 

  .addBands(VV_diss 

  .addBands(VH_diss 

  .addBands(elevation 

  .addBands(slope 

  .addBands(forest_mask))))))))))))))); 

 

// Clip to the output image to Harare study area boundary. 

var clippedmergedCollection = mergedCollection.clipToCollection(boundary); 

print('clippedmergedCollection: ', clippedmergedCollection); 
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// Bands to include in the classification 

var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11', 'B12', 'VV', 'VH', 'elevation', 'slope', 

'Map','VV_contrast', 'VH_contrast', 'VV_ent', 'VH_ent', 'VV_var','VH_var','VV_corr', 'VH_corr', 

'VV_diss', 'VH_diss']; 

//////////////////////////////////////////////////////////////////////////// 

// Prepare training dataset 

//The Global Ecosystem Dynamics Investigation (GEDI)  

// GEDI's Level 2A Geolocated Elevation and Height Metrics Product (GEDI02_A) is primarily 

composed of  

// 100 Relative Height (RH) metrics, which collectively describe the waveform collected by GEDI. 

// The original GEDI02_A product is a table of point with a spatial resolution (average footprint) of 

25 meters.  

// More information at https://lpdaac.usgs.gov/documents/986/GEDI02_UserGuide_V2.pdf 

// Define a mask 

var qualityMask = function(im) { 

  return im.updateMask(im.select('quality_flag').eq(1)) 

      .updateMask(im.select('degrade_flag').eq(0)); 

}; 

// Import the "EDI02_A_002_MONTHLY: dataset 

var dataset = ee.ImageCollection('LARSE/GEDI/GEDI02_A_002_MONTHLY') 

                  .map(qualityMask) 

                  .select('rh98').filterBounds(boundary); 

 

// Create a pallete to visualize the dataset 

var gediVis = { 
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  min: 1, 

  max: 60, 

  palette: 'darkred,red,orange,green,darkgreen', 

}; 

// Set the map center and visulaize the dataset 

Map.setCenter(138.6816,-35.2256, 10); 

Map.addLayer(dataset, gediVis, 'rh98'); 

// Define projection and scale parameters 

var projection = dataset.first().projection().aside(print); 

var scale = projection.nominalScale().aside(print); 

var mosaic = dataset.mosaic().setDefaultProjection({crs:projection, scale:scale}); 

// Sample 10,000 points from the dataset 

var points = mosaic.sample({ 

   region: boundary, 

   scale: scale, 

   numPixels: 10000,  

   projection: projection, 

   geometries: true}); 

// Check the number of the training points 

print(points.size()); 

print(points.limit(10)); 

 

// Display the training points 

Map.addLayer(points); 
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// Add a random column (named random) and specify seed value for repeatability. 

var datawithColumn = points.randomColumn('random', 27); 

// Separate 70% for training, 30% for validation 

var split = 0.7;  

var trainingData = datawithColumn.filter(ee.Filter.lt('random', split)); 

// Print the training data 

print('training data', trainingData); 

var validationData = datawithColumn.filter(ee.Filter.gte('random', split)); 

// Print the testing (validation) data 

print('validation data', validationData); 

////////////////////////////////////////////////////////////////////// 

// Perform regression modeling using RF classifier 

// Collect training data 

var training = clippedmergedCollection.select(bands).sampleRegions({ 

  collection: trainingData, 

  properties: ['rh98'], 

  scale: 30 // Need to change the scale of training data to avoid the 'out of memory' problem 

  }); 

// Train a random forest classifier for regression  

var classifier = ee.Classifier.smileRandomForest(50) 

  .setOutputMode('REGRESSION') 

  .train({ 

    features: training,  

    classProperty: "rh98", 



 

103 

    inputProperties: bands 

    }); 

//Run the classification and clip it to the boundary 

var regression = clippedmergedCollection.select(bands).classify(classifier, 

'predicted').clip(boundary); 

// Load and define a continuous palette 

var palettes = require('users/gena/packages:palettes'); 

// Choose and define a palette 

var palette = palettes.colorbrewer.YlGn[5]; 

// Display the input imagery and the regression classification. 

  // get dictionaries of min & max predicted value 

  var regressionMin = (regression.reduceRegion({ 

    reducer: ee.Reducer.min(), 

    scale: 30,  

    crs: 'EPSG:32754', 

    geometry: boundary, 

    bestEffort: true, 

    tileScale: 5 

  })); 

  var regressionMax = (regression.reduceRegion({ 

    reducer: ee.Reducer.max(), 

    scale: 30,  

    crs: 'EPSG:32754', 

    geometry: boundary, 
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    bestEffort: true, 

    tileScale: 5 

  })); 

// Add to map 

var viz = {palette: palette, min: regressionMin.getNumber('predicted').getInfo(), max: 

regressionMax.getNumber('predicted').getInfo()}; 

Map.addLayer(regression, viz, 'Regression'); 

// Create the panel for the legend items. 

var legend = ui.Panel({ 

  style: { 

    position: 'bottom-left', 

    padding: '8px 15px' 

  } 

}); 

 

// Create and add the legend title. 

var legendTitle = ui.Label({ 

  value: 'TC Height', 

  style: { 

    fontWeight: 'bold', 

    fontSize: '18px', 

    margin: '0 0 4px 0', 

    padding: '0' 

  } 
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}); 

legend.add(legendTitle); 

// create the legend image 

var lon = ee.Image.pixelLonLat().select('latitude'); 

var gradient = lon.multiply((viz.max-viz.min)/100.0).add(viz.min); 

var legendImage = gradient.visualize(viz); 

// create text on top of legend 

var panel = ui.Panel({ 

widgets: [ 

ui.Label(viz['max']) 

], 

}); 

legend.add(panel); 

// create thumbnail from the image 

var thumbnail = ui.Thumbnail({ 

image: legendImage, 

params: {bbox:'0,0,10,100', dimensions:'10x200'}, 

style: {padding: '1px', position: 'bottom-center'} 

}); 

// add the thumbnail to the legend 

legend.add(thumbnail); 

  

// create text on top of legend 

var panel = ui.Panel({ 
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widgets: [ 

ui.Label(viz['min']) 

], 

}); 

legend.add(panel); 

Map.add(legend); 

// Zoom to the regression on the map 

Map.centerObject(boundary, 11); 

// Check model performance 

// Get details of classifier 

var classifier_details = classifier.explain(); 

// Explain the classifier with importance values 

var variable_importance = ee.Feature(null, ee.Dictionary(classifier_details).get('importance')); 

var chart = 

  ui.Chart.feature.byProperty(variable_importance) 

  .setChartType('ColumnChart') 

  .setOptions({ 

  title: 'Random Forest Variable Importance', 

  legend: {position: 'none'}, 

  hAxis: {title: 'Bands'}, 

  vAxis: {title: 'Importance'} 

}); 

 

// Plot a chart 
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print("Variable importance:", chart); 

// Create model assessment statistics 

// Get predicted regression points in same location as training data 

var predictedTraining = regression.sampleRegions({collection:trainingData, geometries: true}); 

// Separate the observed (agb_GEDI) and predicted (regression) properties 

var sampleTraining = predictedTraining.select(['rh98', 'predicted']); 

// Create chart, print it 

var chartTraining = ui.Chart.feature.byFeature(sampleTraining, 'rh98', 'predicted') 

.setChartType('ScatterChart').setOptions({ 

title: 'Predicted vs Observed - Training data ', 

hAxis: {'title': 'observed'}, 

vAxis: {'title': 'predicted'}, 

pointSize: 3, 

trendlines: { 0: {showR2: true, visibleInLegend: true} , 

1: {showR2: true, visibleInLegend: true}}}); 

print(chartTraining); 

// Compute Root Mean Squared Error (RMSE) 

// Get array of observation and prediction values  

var observationTraining = ee.Array(sampleTraining.aggregate_array('rh98')); 

var predictionTraining = ee.Array(sampleTraining.aggregate_array('predicted')); 

 

// Compute residuals 

var residualsTraining = observationTraining.subtract(predictionTraining); 
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// Compute RMSE with equation and print the result 

var rmseTraining = residualsTraining.pow(2).reduce('mean', [0]).sqrt(); 

print('Training RMSE', rmseTraining); 

///////////////////////////////////////////////////////////////////////////// 

//Perform validation 

// Get predicted regression points in same location as validation data 

var predictedValidation = regression.sampleRegions({collection:validationData, geometries: true}); 

 

// Separate the observed (rh98) and predicted (regression) properties 

var sampleValidation = predictedValidation.select(['rh98', 'predicted']); 

 

// Create chart and print it 

var chartValidation = ui.Chart.feature.byFeature(sampleValidation, 'predicted', 'rh98') 

.setChartType('ScatterChart').setOptions({ 

title: 'Predicted vs Observed - Validation data', 

hAxis: {'title': 'predicted'}, 

vAxis: {'title': 'observed'}, 

pointSize: 3, 

trendlines: { 0: {showR2: true, visibleInLegend: true} , 

1: {showR2: true, visibleInLegend: true}}}); 

print(chartValidation); 

 

// Compute RMSE 

// Get array of observation and prediction values  
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var observationValidation = ee.Array(sampleValidation.aggregate_array('rh98')); 

var predictionValidation = ee.Array(sampleValidation.aggregate_array('predicted')); 

// Compute residuals 

var residualsValidation = observationValidation.subtract(predictionValidation); 

// Compute RMSE with equation and print it 

var rmseValidation = residualsValidation.pow(2).reduce('mean', [0]).sqrt(); 

print('Validation RMSE', rmseValidation); 

/////////////////////////////////////////////////////////////////////////// 

// Export the image, specifying scale and region. 

Export.image.toDrive({ 

  image: regression, 

  description: 'GEDI_new_forest_14m_optimised_2022', 

  scale: 14, 

  crs: 'EPSG:32754', // EPSG:32735 (WGS 84 UTM Zone 54S) 

  maxPixels: 6756353855, 

  region: boundary 

 

 
 
 


