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SUMMARY
The work outlined in this thesis covers the many aspects of carbon nanotubes
and polymers by combining the two into nanocomposite materials of macro and
nano size. The issues of producing and combining the two are explored and results
are provided.
There are four major aspects to this work;

1. Polymer Brushed Carbon Nanotubes: multi-walled carbon nanotubes
(MWCNT) are surface functionalized with polymer brushes produced by
activators regenerated by electron transfer (ARGET) atom transfer radical
polymerization (ATRP). A “grafting from” approach was used as a higher
grafting density would result and therefore it was necessary to functionalize the
carbon nanotubes surface with hydroxyethyl-2-bromoisobutyrate (HEBI). This
acted as the haloalkane (i.e. tertiary bromide) initiator sites in ARGET ATRP
of styrene and methyl methacrylate. The successful growth of the polymer
brushes were characterized for their chemical, kinetic and physical properties.
In addition, polymer brushes of 2-hydroxyethyl methacrylate (HEMA) was
grown by non-living means by attaching the HEMA monomer via the hydroxyl
group to a carboxylic acid surface functionalized MWCNT and subsequently
polymerized.

2. Macro-sized Composites: a composite of carbon nanotubes with
homopolymers as the matrix, requires surface modification of the MWCNT to
prevent nanotube aggregation. A homogeneous dispersion is necessary in order
to produce improved properties for the composite. The ‘macro’ composite
research involved the incorporation of polymer brush carbon nanotubes in
concentrations of 0.1w/w% to 1w/w% (e.g. poly(methyl methacrylate) polymer

brush carbon nanotubes in a poly(methyl methacrylate) matrix). The most

Vi



improved composites obtained used polystyrene brushes in a polystyrene
matrix, which was due to m-m stacking interactions. The composite material
possessed improved mechanical strength, increased glass transition temperature
and increased processability. Furthermore, the dispersion was maintained after
processing with shear forces.

3. Pyrene as a Model System: 1-pyrenecarboxylic acid has a very similar
architecture to MWCNT and for this reason was used to model the chemical
synthesis of aspects ‘1’ and ‘2’ with polystyrene. The work showed similar
enhancements in terms of mechanical strength, increased glass transition
temperature and increased processability. Compared to polystyrene polymer
brush carbon nanotubes the improvement was not as great, however the pyrene
material did not exhibit limits of dispersion like the carbon nanotubes filler.

4. Nano-sized Composites: This research utilized a hexagonal-packed cylindrical
phase of a di-block copolymer melt, in an attempt to align the carbon
nanotubes to the cylindrical phase. To ensure their affinity for the cylinder
phase, polymer brushes of polystyrene were used for a 30/70 poly(styrene-b-
methyl methacrylate) melt. However, the nanotubes were found to disrupt the
segregation process, and the phases did not form appropriately. This ultimately
did not provide strong enough forces to align the carbon nanotubes, but
indicates that because of their relative massive size, greater forces are required.
Future work has been recommended with alternative polymer brush carbon

nanotubes as fillers and using electric fields, as they have shown to better orientate

a hexagonal-packed cylindrical phase from a parallel orientation to a perpendicular

orientation. This is a suggested technique that might be able to align the carbon

nanotubes.
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CHAPTER SUMMARY

Chapter 1: Carbon Nanotubes and Polymers — an Introduction

What is a carbon nanotubes, what is a polymer, how are they made, and what
are they used for? This first chapter is a detailed review of carbon nanotubes,
polymers and combining the two.

Chapter 2: Synthesis of Homopolymers and Diblock Copolymers

Reports the findings and procedures used in this PhD research project to
synthesize homopolymers of polystyrene and poly(methyl methacrylate) by
activators regenerated by electron transfer (ARGET) atom transfer radical
polymerization (ATRP). The chapter then extends to the synthesis of di-block
copolymers of poly(styrene-b-methyl methacrylate) using polystyrene as the macro-

initiator.

Chapter 3: Polymer Brushes: Surface Initiated Polymerization (SIP)

In this chapter the purification of carbon nanotubes and subsequent surface
functionalization with a tertiary bromide initiator is discussed. A model system is
also discussed, which uses 1-pyrenecarboxylic acid, as the chemical structure is
very similar to a carbon nanotube. This model system was necessary to help verify
the general functionalization procedure.

The work then extends to the use of the tertiary bromide functionalized carbon
nanotubes in the synthesis of ARGET ATRP polymer brushes of polystyrene and
poly(methyl methacrylate). In addition, poly(2-hydroxyethyl methacrylate) brushes
were produced by a different synthetic route to the above. Further work was also
performed on the pyrene model system, polymerizing one polystyrene polymer
brush per pyrene molecule.

Chapter 4: Polymer Brushes as Nanofillers (Macro-Sized)

The brushes produced in Chapter 3 were used as a filler in the corresponding
polymer (i.e. polystyrene brushes in polystyrene). Composite concentrations as high
as 1w/w% of the polymer brush carbon nanotubes were introduced and the physical

characteristics were analyzed.
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Chapter 5: Formation of Block Copolymer Microdomains and Hybrid Materials

(Nano-Sized)

Chapter 4 discusses the formation of macro-sized composite material, whereas

this chapter takes it to the nano-sized composite material. Using block copolymer
melts of a 30/70 ratio, the cylindrical phase is formed and during formation the
carbon nanotube polymer brushes were added. These brushes have a stronger
affinity for one of the two domains and hence it was expected to align within that

phase.

Chapter 6: General Conclusions, Recommendations and Future Work

This chapter summarizes the entire work of the thesis and in particular how to
optimize the composite material properties. In addition, the chapter discusses future

directions the research can head towards.
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