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A B S T R A C T

The aim of this thesis is to develop mathematical tools for the analysis and
solution of infinite horizon optimal control problems with a time discounting
criteria based on the fact that the latter are equivalent to certain infinite dimen-
sional linear programming problems. We establish that near-optimal solutions
of these infinite dimensional linear programming problems and their duals can
be obtained via approximation with semi-infinite linear programming problems
and subsequently with finite-dimensional (“standard”) linear programming
problems and their respective duals. We show that near-optimal controls of
the underlying optimal control problems can be constructed on the basis of
solutions of these standard linear programming problems. The thesis consists
of two parts. In Part I, theoretical results are presented. These include results
about semi-infinite and finite dimensional approximations of the infinite di-
mensional linear programming problems, results about the construction of
near-optimal controls and results establishing the possibility of using solutions
of optimal control problems with time discounting criteria for the construction
of stabilising controls. In Part II, results of numerical experiments are presented.
These results include finding near-optimal controls for the optimisation of a
damped mass-spring system, the optimisation of a Neck and Dockner model
and the problem of finding stabilising controls for a Lotka-Volterra system.
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N O TAT I O N

|·| Absolute value

‖·‖ Norm in Rn

B Closed unit ball

c̄oQ Closed convex hull of the set Q

C Discount rate
def
= Lit. is defined to be equal to

Cn The set of n-times continuously differentiable functions

δ(y,u) Dirac measure concentrated at the point (y,u)

G∗(y0) Optimal value of primal problem

GN(y0) Optimal value of primal semi-inf. dim. problem

GN,∆(y0) Optimal value of primal finite dim. problem

µ∗(y0) Optimal value of dual problem

µN(y0) Optimal value of dual semi-inf. dim. problem

µN,∆(y0) Optimal value of dual finite dim. problem

MPC Model Predictive Control

P(Y ×U) A set of probability measures defined on Y ×U

Rn The Euclidean n-dimensional space

W(y0) Set of γ satisfying an inf. dim. system of lin. constraints

WN(y0) Set of γ satisfying an semi-inf. dim. system of lin. constraints

WN,∆(y0) Set of γ satisfying an finite dim. system of lin. constraints

γ Occupation measure

(y(·),u(·)) An admissible pair of functions

ρ(a,b) A metric defined by weak? convergence

ρH(A,B) Hausdorff metric between sets

HJB Hamilton-Jacobi-Bellman (equation)
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I N T R O D U C T I O N

The purpose of this research is to further develop linear programming (LP)
based techniques for solving optimal control problems with time discounting
criteria over the infinite time horizon. We also present results on the use of
time discounted optimal control problems for the construction of stabilising
controls.

The linear programming approach to control systems is based on the fact that
the occupational measures generated by admissible controls and the correspond-
ing solutions of a nonlinear system satisfy certain linear equations representing
the system’s dynamics in an integral form. Using this fact, one can reformulate
the optimal control problem as an infinite dimensional linear programming
(IDLP) problem. The linear programming approach to optimal control problems
in both deterministic and stochastic settings have been studied by many (see,
e.g., [3, 5, 6, 7, 11, 14, 15, 16, 17, 19, 21, 22, 24, 30, 37, 38, 42, 43, 51, 56, 57, 59]
and references therein).

In this thesis we continue the line of research started in [23], [25], [26] and [27].
In [23], [26] and [27] the linear programming approach to deterministic long
run average problems of optimal control was considered. It was established
that these problems are “asymptotically equivalent” to IDLP problems and that
these linear programming problems can be approximated by finite dimensional
linear programming (FDLP) problems, the solution of which can be used for
construction of optimal controls. In [25], the theoretical aspects of the linear
programming formulation to infinite horizon optimal control problems with
time discounting criteria were dealt with. In this thesis, we use results of
[25] and some ideas of [23], [26] and [27] to investigate ways of constructing
near-optimal solutions of optimal control problems with time discounting. In
particular, we focus on finding smooth approximate solutions of the Hamilton-
Jacobi-Bellman (HJB) inequality that corresponds to the latter. We establish
that such approximate solutions of the HJB inequality exist (under a simple
controllability type condition) and that they can be used for the construction of
near-optimal controls. We also show that these approximate solutions of the HJB
inequality can be found by solving certain semi-infinite linear programming
(SILP) problems [28] and we approximate the latter with “standard” FDLP
problems.

xvii



xviii introduction

It is well known that infinite horizon undiscounted optimal control methods
can be used for the design of asymptotically stabilising controls by choosing
the objective which penalises states away from the desired equilibrium. These
problems are numerically very difficult to solve [9]. In this thesis, we will
discuss the construction of a stabilising control based on a linear programming
solution of an infinite horizon optimal control problem with time discounting.
To this end we utilize a condition involving a bound on the optimal value
function which is similar to what can be found in the Model Predictive Control
(MPC) literature (see, related results [9, 12, 13, 20, 29, 33, 49, 54] and references
therein).

The thesis is in two parts.

In Part I, the theoretical results are presented. In Chapter 1, we introduce the
IDLP problem and its dual (which is a maxmin type problem) that are related
to the infinite time horizon optimal control problem with time discounting
criterion and we review some of the results obtained in [25] that are used later
in the text. We then establish that the maxmin dual problem is in a certain
sense equivalent to a HJB type inequality. We finish the chapter by stating
necessary and sufficient optimality conditions based on the HJB inequality. In
Chapter 2, we show that the IDLP problem is approximated by a sequence
of semi-infinite linear programming problems. We then introduce a maxmin
problem considered on an N-dimensional linear space of smooth functions and
we establish that, under certain controllability conditions, an optimal solution of
this problem exists and that this solution can serve as an approximate solution
of the HJB inequality. We also state and prove a result establishing that, under
certain assumptions, the approximate solution of the HJB inequality allows
one to construct an admissible pair that can serve as an approximation to the
optimal one. In Chapter 3, we further approximate the SILP problem and the
corresponding dual problem with an FDLP problem defined on a grid of points
and show that by solving the FDLP problem, one can construct a continuously
differentiable function which solves the dual IDLP problem approximately and
that this function can be used for construction of a near-optimal control. In
Chapter 4, we show that stabilising controls can be constructed on the basis of
solutions of certain optimal control problems with time discounting criteria.

In Part II, we present numerical experiments illustrating results of Part I. In
Chapter 5, a problem of optimal control of a damped mass-spring system is
introduced and a general framework for numerical solutions of time discounted
optimal control problems is outlined. This problem is then solved numerically.
In Chapter 6, an economic model of Neck and Dockner [46, 47] is introduced
and the results for various values of the discount rate are presented. In Chapter 7
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a series of experiments is presented, which demonstrate the stabilisation of
a Lotka-Volterra system using time discounted optimal controls solved using
the linear programming method. The Lotka-Volterra system is then used in
Chapter 8, where we demonstrate how a series of FDLP problems solved on
a grid of initial conditions may be used to derive a control map which is
near-optimal for arbitrary initial conditions.

This thesis is submitted to Flinders University in partial fulfilment of the
requirements for the Doctor of Philosophy degree in the field of Mathematics.





Part I

T H E O R E T I C A L R E S U LT S





1
T H E L I N E A R P R O G R A M M I N G A P P R O A C H

In this chapter, we introduce notations and present results which are used
throughout this text. Specifically, in Section 1.1 we introduce the dynamical
system and define the time discounted optimal control problem. Then in Sec-
tion 1.2 we introduce the concept of a discounted occupational measure γ. In
Section 1.3 we show how the time discounted optimal control problem can be
reformulated in terms of these measures and establish that the reformulated
problem is in fact, equivalent to an infinite dimensional linear program (IDLP).
In Section 1.4 the dual maxmin problem is introduced and we describe the dual-
ity relationships with the original IDLP problem. In Section 1.5 we demonstrate
the equivalence of the dual maxmin problem and the HJB inequality by show-
ing that the set of solutions of the latter is related to the set of solutions of the
former. Finally, in Section 1.6 we state the necessary and sufficient conditions
for optimality based on the HJB inequality.

1.1 preliminaries

We will be considering the control system

y′(t) = f(y(t),u(t)), t > 0, (1.1)

where the function f(y,u) : Rm ×U 7→ Rm is continuous in (y,u) and satisfies
the Lipschitz condition in y uniformly with respect to u. The controls are
Lebesgue measurable functions u(·) : [0,∞) 7→ U where U is a compact metric
space. The set of these controls is denoted as U.

Definition 1.1. A pair (y(·),u(·)) will be called admissible if equation (1.1) is satisfied
for almost all t and if the following inclusions are valid:

y(t) ∈ Y, t ∈ [0,∞)

3



4 the linear programming approach

and

u(t) ∈ U, for almost all t,

where Y is a given compact subset of Rm.

The cost function of our discounted optimal control problem is defined as:

J(y0,u(·)) def
=

∫∞
0

e−Ctg(y(t),u(t))dt,

where the function g(y,u) : Y ×U 7→ R is a given continuous function we call
the running cost and the parameter C > 0 shall be referred to as the discount
rate.

Definition 1.2. The optimal value function of the discounted optimal control problem
is defined as

V(y0)
def
= inf

(y(·),u(·))
J(y0,u(·)), (1.2)

where the minimisation is over all admissible pairs that satisfy the initial conditions

y(0) = y0. (1.3)

For a given initial value, an admissible control u∗(·) ∈ U is called an optimal
control if J(y0,u∗(·)) = V(y0) holds.

1.2 occupational measure formulation

Now we introduce the concept of discounted occupational measure. Let P(Y ×
U) be the space of probability measures defined on Borel subsets of Y ×U and
let (y(·),u(·)) be an arbitrary admissible pair. A probability measure γ(y(·),u(·))

is called the discounted occupational measure generated by the pair (y(·),u(·)) if,
for any Borel set Q ⊂ Y ×U,

γ(y(·),u(·))(Q) = C

∫∞
0

e−Ct1Q(y(t),u(t))dt, (1.4)

where 1Q(·) is the indicator function of the setQ. That is, 1Q(y,u) = 1, ∀(y,u) ∈
Q and 1Q(y,u) = 0, ∀(y,u) /∈ Q. The validity of (1.4) for any indicator function
leads to the validity of a similar equality for the simple functions (that is, linear
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combinations of the indicator functions) and, thus, with the help of a standard
approximation argument, leads to the validity of the equality∫

Y×U
q(y,u)γ(y(·),u(·))(dy,du) = C

∫∞
0

e−Ctq(y(t),u(t))dt (1.5)

for any q(·) ∈ C(Y ×U) (the space of continuous functions defined on Y ×U).

Thus the integral with respect to the induced occupational measure is propor-
tional to the integral with respect to time over a state-control trajectory. The
constant of proportionality being equal to the discount rate C.

Note that the discounted occupational measure generated by a steady state
admissible pair (y(t),u(t)) = (y,u) ∈ Y ×U is just the Dirac measure at the
point (y,u).

Let Γ(y0) stand for the set of all discounted occupational measures defined as
follows

Γ(y0)
def
=

⋃
(y(·),u(·))

{
γ(y(·),u(·))},

where the union is over all admissible controls and the corresponding solutions
of (1.1) satisfying the initial condition (1.3).

Note that, due to (1.5), the problem (1.2) can be rewritten as

CV∗(y0) = inf
γ∈Γ(y0)

∫
Y×U

g(y,u)γ(dy,du). (1.6)

Let us endow the space P(Y ×U) with a metric ρ,

ρ(γ′,γ′′) def
=

∞∑
j=1

1

2j

∣∣ ∫
Y×U

qj(y,u)γ′(dy,du)

−

∫
Y×U

qj(y,u)γ′′(dy,du)
∣∣, ∀γ′,γ′′ ∈ P(Y ×U), (1.7)

where qj(y,u), j = 1, 2, . . . is a sequence of Lipschitz continuous functions
which is dense in the unit ball of C(Y ×U). Note that this metric is consistent
with the weak? topology of P(Y × U). Namely, a sequence γk ∈ P(Y × U)
converges to γ ∈ P(Y ×U) in this metric if and only if

lim
k→∞

∫
Y×U

q(y,u)γk(dy,du) =
∫
Y×U

q(y,u)γ(dy,du)

for any continuous q(·) ∈ C(Y ×U).
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Using the metric ρ, one can define the “distance” ρ(γ, Γ) between γ ∈ P(Y ×U)
and Γ ⊂ P(Y ×U) and the Hausdorff metric ρH(Γ1, Γ2) between Γ1 ⊂ P(Y ×U)
and Γ2 ⊂ P(Y ×U) as follows:

ρ(γ, Γ) def
= inf
γ′∈Γ

ρ(γ,γ′),

ρH(Γ1, Γ2)
def
= max

{
sup
γ∈Γ1

ρ(γ, Γ2), sup
γ∈Γ2

ρ(γ, Γ1)
}

.

Note that, although, by some abuse of terminology, we refer to ρH(·, ·) as a
metric on the set of subsets of P(Y ×U), it is, in fact, a semi-metric on this set
(since ρH(Γ1, Γ2) = 0 implies Γ1 = Γ2 only if Γ1 and Γ2 are closed).

Note, that, being endowed with such a metric, P(Y ×U) becomes a compact
metric space (see, e.g., [8] or [48]).

1.3 the linear programming problem

Define the set W(y0) ⊂ P(Y ×U) by the equation

W(y0)
def
=
{
γ ∈ P(Y ×U) :∫

Y×U
(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ(dy,du) = 0, ∀φ(·) ∈ C1

}
,

where C1 is the space of continuously differentiable functions φ(y) : Rn 7→ R

and φ′(y) is a vector column of partial derivatives of φ(y).

Assuming that W(y0) is not empty, let us consider the problem

G∗(y0)
def
= inf
γ∈W(y0)

∫
Y×U

g(y,u)γ(dy,du). (1.8)

Note that problem (1.8) is an infinite dimensional linear program since its
objective function and its constraints are linear in γ (see, e.g., [2]). Note also
that an optimal solution of this problem exists if the set W(y0) is not empty
(this follows from the fact that W(y0) is compact; see Lemma 1.4 below).

We will be interested in studying and exploiting the connections between
problem (1.2) and the problem (1.8). Note that the set W(y0) can be empty and
no solution to (1.8) exists. It is easy to see, for example, that W(y0) is empty if
there exists a continuously differentiable function φ(·) ∈ C1 such that

max
(y,u)∈Y×U

{
φ′(y)T f(y,u) +C(φ(y0) −φ(y))

}
< 0.
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Example 1.3. For an example of a problem for which the setW(y0) is empty, consider
y′(t) = y(t), t > 0 on Y def

= [12 , 1]. In fact, take φ(y) = −y. Then

φ′(y)T f(y,u) +C(φ(y0) −φ(y)) = −y−Cy0 +Cy

= −y(1−C) −Cy0

< −Cy0

< 0,

this being valid for C < 1 and y0 ∈ Y. Hence W(y0) = ∅.

The set W(y0) is not empty if there exists at least one admissible pair (e.g., a
steady state pair), since the discounted occupational measure generated by this
pair is completely contained in W(y0) (see Proposition 1.5 below).

The following simple properties will be useful later on:

Lemma 1.4. The setW(y0) is convex and compact in the weak? topology of P(Y×U).

Proof of Lemma 1.4. The space P(Y ×U) is convex if µ1,µ2 ∈ P(Y ×U) and
0 6 α 6 1, then αµ1 + (1− α)µ2 ∈ P(Y ×U). So, for any γ′, γ′′ ∈ W(y0) and
for any α ∈ [0, 1],

∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))(αγ′ + (1−α)γ′′)(dy,du)

= (α)

∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ′(dy,du)

+ (1−α)

∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ′′(dy,du) = 0.

Hence the set W(y0) is convex.

To show that W(y0) is closed and compact, consider a sequence of points
γi ∈W(y0) such that

lim
i→∞γi = γ̄,

where γ̄ is a boundary point. For all γi ∈W(y0),∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γi(dy,du) = 0.
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Therefore

lim
i→∞

∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γi(dy,du)

=

∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ̄(dy,du) = 0.

Hence γ̄ ∈W(y0) and the set W(y0) is closed, hence, compact since P(Y ×U)
is compact.

Proposition 1.5. The following relationships are valid

CV∗(y0) > G
∗(y0) (1.9)

and

c̄oΓ(y0) ⊂W(y0), ∀y0 ∈ Y, (1.10)

where c̄o stands for the closed convex hull of the corresponding set.

Proof of Proposition 1.5. Take arbitrary γ ∈ Γ(y0). Then, by definition, there
exists u(·) ∈ U and y(t) = y(t,y0,u(·)) such that γ = γ(y(·),u(·)). Using the
fact that the equality (1.5) is valid for any continuous function q(y,u), one can
obtain through integration by part:∫

Y×U
φ′(y)T f(y,u)γ(y(·),u(·))(dy,du)

= C

∫∞
0

e−Ctφ′(y(t))T f(y(t),u(t))dt

= −Cφ(y0) +C
2

∫∞
0

e−Ctφ(y(t))dt

= −C

∫
Y×U

(φ(y0) −φ(y))γ
(y(·),u(·))(dy,du), ∀φ ∈ C1.

This result implies γ = γ(y(·),u(·)) ∈ W(y0) and hence Γ(y0) ⊂ W(y0). The
last inclusion implies (1.9) and also implies (1.10) since W(y0) is convex and
compact.

The statement of Proposition 1.5 can be strengthened. Namely, under certain
assumptions (see Theorem 4.4 in [25]), the following relationships are valid:

CV∗(y0) = G
∗(y0) (1.11)
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and

c̄oΓ(y0) =W(y0), ∀y0 ∈ Y. (1.12)

In what follows it is always assumed that (1.11) and (1.12) are true.

1.4 the dual of the linear programming problem

Next we consider the problem dual with respect to the IDLP problem (1.8).
This is the problem defined a follows:

µ∗(y0)
def
= sup
ψ(·)∈C1

{
µ : µ 6 g(y,u) +ψ′(y)T f(y,u)

+C(ψ(y0) −ψ(y)), ∀(y,u) ∈ Y ×U
}

. (1.13)

It can be readily seen that, if W(y0) 6= ∅ and γ ∈W(y0), then for any ψ(·) ∈ C1,

min
(y,u)∈Y×U

{
g(y,u) +ψ′(y)T f(y,u) +C(ψ(y0) −ψ(y))

}
6
∫
Y×U

(g(y,u) +ψ′(y)T f(y,u) +C(ψ(y0) −ψ(y)))γ(dy,du)

=

∫
Y×U

g(y,u)γ(dy,du),

which implies

µ∗(y0) 6 G
∗(y0). (1.14)

The following statements establish more elaborate connections between the
IDLP problem (1.8) and dual problem (1.13) which we shall refer to as the
D–IDLP problem.

Proposition 1.6.

(i) The optimal value of the D–IDLP problem (1.13) is bounded (that is, µ∗(y0) <∞) if and only if the set W(y0) is not empty.

(ii) If the optimal value of the D–IDLP problem (1.13) is bounded, the optimal value
of the problem (1.13) and the optimal value of the problem (1.2) are related by
the equality

µ∗(y0) = G
∗(y0). (1.15)
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(iii) The optimal value of the D–IDLP problem (1.13) is unbounded (that is, µ∗(y0) =∞) if and only if there exists a function ψ(·) ∈ C1 such that

max
(y,u)∈Y×U

{
ψ′(y)T f(y,u) +C(ψ(y0) −ψ(y))

}
< 0. (1.16)

Proof of Proposition 1.6. The statements of the proposition were proved in
[25] (see Theorem 3.1 in [25]). For completeness this proof is reproduced in
appendix A.

Definition 1.7. A functionψ(·) ∈ C1 will be called a solution of the D–IDLP problem
(1.13) if

min
y∈Y

{
H(ψ′(y),y) +C(ψ(y0) −ψ(y))

}
= µ∗(y0),

where H(p,y) is the Hamiltonian

H(p,y) def
= min
u∈U

{
pT f(y,u) + g(y,u)

}
. (1.17)

Definition 1.7 is equivalent, of course, to the statement that the function ψ(·) is
a solution to problem dual to the IDLP (1.8).

1.5 the hamilton-jacobi-bellman inequality

It is well known that, if the optimal value function V(·) is continuously differ-
entiable, then V(·) satisfies the Hamilton-Jacobi-Bellman equation

H(V ′(y),y) −CV(y) = 0, (1.18)

where the Hamiltonian H(p,y) is defined in (1.17).

In this paper we deal with the inequality form of (1.18), and we call a function
ψ(·) ∈ C1 a solution of the HJB inequality on Y if

H(ψ′(y),y) −Cψ(y) > 0, ∀y ∈ Y. (1.19)

Note that the concept of a solution of the HJB inequality on Y is essentially
the same as that of a smooth viscosity subsolution of the HJB equation (1.18)
considered on the interior of Y (see, e.g., [6]), the former being introduced just
for convenience of references.
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A solution of the HJB inequality on Y that satisfies the additional condition

ψ(y0) = V(y0) (1.20)

(if it exists) can be used for a characterisation of the optimal solution of the
problem (1.2) in a similar way as the solution of the HJB equation (1.18) does
(see Proposition 1.9 below).

Note that, if ψ(·) ∈ C1 is a solution of the problem (1.13), then ψ̃(·) = ψ(·) +
const is a solution of this problem as well.

Proposition 1.8. If ψ(·) ∈ C1 is a solution of the HJB inequality (1.19) that satisfies
(1.20), then this ψ(·) is also a solution of the problem (1.13). Conversely, if ψ(·) ∈ C1

is a solution of the problem (1.13), then

ψ̃(·) def
= ψ(·) −ψ(y0) + V(y0) (1.21)

is a solution of the HJB inequality (1.19) that satisfies (1.20).

Proof of Proposition 1.8. Let ψ(·) ∈ C1 be a solution of the HJB inequality
(1.19) that satisfies (1.20). Obviously, this ψ(·) will also satisfy the inequality

H(ψ′(y),y) +C(ψ(y0) −ψ(y)) > CV(y0), ∀y ∈ Y. (1.22)

Hence, by (1.15), ψ(·) is a solution of the problem (1.13). Let now ψ(·) ∈ C1

be a solution of the problem (1.13). By (1.15), it means that ψ(·) satisfies the
inequality (1.22). Since ψ̃(·) −ψ(·) = const, from (1.22) it follows that

H(ψ̃′(y),y) +C(ψ̃(y0) − ψ̃(y)) > CV(y0), ∀y ∈ Y. (1.23)

By (1.21), ψ̃(y0) = V(y0). The substitution of the latter into (1.23) gives

H(ψ̃′(y),y) −Cψ̃(y) > 0, ∀y ∈ Y.

Thus, both (1.19) and (1.20) are satisfied.

1.6 necessary and sufficient optimality conditions

The following is a proposition which specifies the necessary and sufficient
conditions of optimality based on the HJB inequality.
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Proposition 1.9. Assume that a solution ψ(·) ∈ C1 of the HJB inequality (1.19) that
satisfies (1.20) exists. Then an admissible pair (y(t),u(t)) is optimal in (1.2) if and
only if the following relationships are valid:

H(ψ′(y(t)),y(t)) −Cψ(y(t)) = 0, ∀t ∈ [0,∞) (1.24)

and

u(t) = argmin
u∈U

{
ψ′(y(t))T f(y(t),u) + g(y(t),u)

}
a.e., ∀t ∈ [0,∞), (1.25)

y(t) = argmin
y∈Y

{
H(ψ′(y),y) −Cψ(y)

}
, ∀t ∈ [0,∞). (1.26)

In addition, if (y(t),u(t)) is optimal in (1.2), then

ψ(y(t)) = V(y(t)), ∀t ∈ [0,∞). (1.27)

Proof of Proposition 1.9. Note first of all that, from (1.17) and (1.19) it follows
that

ψ′(y)T f(y,u) + g(y,u) −Cψ(y) > 0, ∀(y,u) ∈ Y ×U. (1.28)

Let us prove the “only if statement”. Assume that (y(t),u(t)) is optimal in (1.2).
That is,∫∞

0

e−Ctg(y(t),u(t))dt = V(y0). (1.29)

We need to show that (1.24), (1.25) and (1.26) are satisfied. By integrating the
inequality

d

dt
(e−Ctψ(y(t))) = e−Ct(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t))), (1.30)

We get

e−Ctψ(y(t))
∣∣∞
0

=

∫∞
0

e−Ct(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt.

∫∞
0

d

dt
(e−Ctψ(y(t)))dt =

∫∞
0

e−Ct
′
(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt.

e−Ctψ(y(t)) −ψ(y0) =

∫∞
0

e−Ct(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt.

And so,

−ψ(y0) =

∫∞
0

e−Ct(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt.
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Recall that
∫∞
0 e

−Ctdt = 1/C and so ψ(0) = C
∫∞
0 e

−Ctψ(0)dt. Hence

−C

∫∞
0

e−Ctψ(y0)dt =

∫∞
0

e−Ct(ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt.

One can verify that∫∞
0

e−Ct(ψ′(y(t))T f(y(t),u(t)) +C(ψ(y0) −ψ(y(t))))dt = 0. (1.31)

Hence, (1.29) can be rewritten as∫∞
0

e−Ct(g(y(t),u(t)) +ψ′(y(t))T f(y(t),u(t))

+C(ψ(y0) −ψ(y(t))))dt = V(y0), (1.32)

which implies

∫∞
0

e−Ct(g(y(t),u(t)) +ψ′(y(t))T f(y(t),u(t))

+C(−V(y0) +ψ(y0) −ψ(y(t))))dt = 0

and further implies∫∞
0

e−Ct(g(y(t),u(t)) +ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)))dt = 0, (1.33)

where the last equality (1.33) is implied by the previous one due to (1.20). From
(1.28) and (1.33) it follows that, for almost all t ∈ [0,∞),

g(y(t),u(t)) +ψ′(y(t))T f(y(t),u(t)) −Cψ(y(t)) = 0, (1.34)

which implies

(y(t),u(t)) = argmin
(y,u)∈Y×U

{
ψ′(y)T f(y,u) + g(y,u) −Cψ(y)

}
. (1.35)

The inclusion (1.35) is equivalent to the inclusions (1.25) and (1.26). Also, the
equality (1.34) is equivalent to (1.24).

Let us now prove the “if statement”. That is, assume that (1.24), (1.25) and (1.26)
are satisfied and show that (y(t),u(t)) is optimal in (1.2). From (1.24), (1.25)
and (1.26) it follows that (1.34) is valid, which, in turn, implies that (1.33) is
valid. Due to (1.20), this leads to the validity of (1.32). The latter along with
(1.31) imply (1.29). Hence, (y(t),u(t)) is optimal. To complete the proof of the
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proposition, let us show that (1.27) is true if (y(t),u(t)) is optimal in (1.2). From
(1.30) and (1.34) it follows that

d

dt
(e−Ctψ(y(t))) = −e−Ctg(y(t),u(t))

=⇒ e−Ctψ(y(t)) −ψ(y0) = −

∫t
0

e−Ct
′
g(y(t′),u(t′))dt′.

Using (1.20) and (1.29), one obtains that

e−Ctψ(y(t)) = V(y0) −

∫t
0

e−Ct
′
g(y(t′),u(t′))dt′

=

∫∞
0

e−Ct
′
g(y(t′,u(t′)))dt′ −

∫t
0

e−Ct
′
g(y(t′),u(t′))dt′

=

∫∞
t

e−Ct
′
g(u(t′),y(t′))dt′. (1.36)

Since (by the dynamic programming principle),∫∞
t

e−Ct
′
g(y(t′),u(t′))dt′ =

∫∞
0

e−C(t+τ)g(y(t+ τ),u(t+ τ))dτ

= e−Ct
∫∞
0

e−Cτg(y(t+ τ),u(t+ τ))dτ

= e−CtV(y(t)),

from (1.36) it follows that e−Ctψ(y(t)) = e−CtV(y(t)). This proves (1.27).



2
S E M I - I N F I N I T E D I M E N S I O N A L A P P R O X I M AT I O N S

The dual maxmin problem (1.13) is defined upon the space of continuously
differentiable functions C1 for which solutions may not exist. So, we focus
on approximating this problem by problems considered on N dimensional
subspaces of C1 (these will be called N-approximating duals).

This chapter is organised as follows; In Section 2.1, we introduce the semi-
infinite linear programming (SILP) problem and its dual. In Section 2.2, we
proceed with a description of the duality relationships. In Section 2.3, we
establish that, under a suitable controllability condition, an optimal solution
of the N-approximating dual problem exists. In Section 2.4, we state a result
establishing that, under certain assumptions, a solution of the N-approximating
dual problem allows one to construct an admissible pair that converges to the
optimal admissible pair as N→∞.

2.1 the semi-infinite lp problem

Let {φi(·) ∈ C1, i = 1, 2, . . . } be a sequence of functions having continuous
partial derivatives of the second order such that any function φ(·) ∈ C1 and its
gradient φ′(·) can be simultaneously approximated on Y by linear combinations
of functions from φi(·), i = 1, 2, . . . and their corresponding gradients. That is,
for any φ(·) ∈ C1 and any δ > 0, there exist real numbers β1, . . . ,βk such that

max
y∈Y

{
|φ(y) −

k∑
i=1

βiφi(y)|+ ‖φ′(y) −
k∑
i=1

βiφi
′(y)‖

}
6 δ, (2.1)

with ‖·‖ being a norm in Rm. An example of such an approximating sequence is
the sequence of monomials yi11 · · ·y

im
m , i1 . . . im = 0, . . . , where yj, j = 1, . . . ,m

stands for the jth component of y [see 44, p.23].

15
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Note that it always will be assumed that the gradients φi′(y), i = 1, 2, . . .
are linearly independent on any open set Q. More specifically, the following
assumption is assumed to be valid:

Assumption 2.1. For any open set Q and any N, the equality

N∑
i=1

viφi
′(y) = 0, ∀y ∈ Q,

is valid if and only if vi = 0.

Note that this is satisfied automatically if φi(y) are chosen to be monomials.
Using these φi(·) functions, one can define a set Ŵ(y0) with a countable system
of constraints

Ŵ(y0)
def
=
{
γ ∈ P(Y ×U) :∫

Y×U
(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du) = 0,

i = 1, 2, . . .
}

. (2.2)

Lemma 2.2. The set W(y0) is equal to the set Ŵ(y0).

Proof of Lemma 2.2. Obviously W(y0) ⊆ Ŵ(y0), so we need to show the
validity of the converse inclusion. That is, we need to show that, for any
γ̂ ∈ Ŵ(y0),∫

Y×U
(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ̂(dy,du) = 0, ∀φ(·) ∈ C1. (2.3)

Let M def
= max(y,u)∈Y×U‖f(y,u)‖. For an arbitrary φ(·) ∈ C1 and arbitrarily

small ε > 0 one can choose φ̂(y) def
=
∑k
i=1 βiφi(y) such that

max
y∈Y

{
‖φ′(y)T − φ̂′(y)T‖+ C

M
|(φ(y0) − φ̂(y0)|+

C

M
|φ̂(y) −φ(y)|} 6

ε

M
.
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Then for any γ̂ ∈ Ŵ(y0) consider

‖
∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ̂(dy,du)

−

∫
Y×U

(φ̂′(y)T f(y,u) +C(φ̂(y0) − φ̂(y)))γ̂(dy,du)‖

6
∫
Y×U

(‖φ′(y)T f(y,u) − φ̂′(y)T f(y,u)‖

+C‖φ(y0) − φ̂(y0)‖+C‖φ̂(y) −φ(y)‖)γ̂(dy,du)

6
∫
Y×U

(‖φ′(y)T − φ̂′(y)T‖M

+C‖φ(y0) − φ̂(y0)‖+C‖φ̂(y) −φ(y)‖)γ̂(dy,du)

6
∫
Y×U

M(
ε

M
)γ̂(dy,du) = ε.

Hence

‖
∫
Y×U

(φ′(y)T f(y,u) +C(φ(y0) −φ(y)))γ̂(dy,du)‖

6‖
∫
Y×U

(φ̂′(y)T f(y,u) +C(φ̂(y0) − φ̂(y)))γ̂(dy,du)‖+ ε

6ε.

Since ε is arbitrarily small, the equality (2.3) is true. This completes the proof.

Now let us define the set WN(y0) by truncating the system of equations in
(2.2):

WN(y0)
def
=
{
γ ∈ P(Y ×U) :∫

Y×U
(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du) = 0,

i = 1, . . . ,N
}

, (2.4)

where φi(·) are as in (2.1). Then, consider the semi-infinite linear programming
problem

GN(y0)
def
= min
γ∈WN(y0)

∫
Y×U

g(y,u)γ(dy,du), (2.5)
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This problem will be referred to as the N-approximating LP problem (or
just SILP problem). Note that WN(y0) is convex and compact and W(y0) ⊂
WN(y0), which implies

G∗(y0) > G
N(y0).

A consequence of the fact that W(y0) is assumed to be non-empty, it follows
that the sets WN(y0), N = 1, 2, . . . are not empty. Hence, the set of optimal
solutions of (2.5) is not empty for any N = 1, 2, . . . . The connection between LP
problem (1.8) and SILP problem (2.5) is established by the following proposition
[see 26].

Proposition 2.3. The set W(y0) is not empty if and only if the set WN(y0) is not
empty for all N > 1. If W(y0) is not empty, then the following relationships are valid:

lim
N→∞ ρH(WN(y0),W(y0)) = 0 (2.6)

and

lim
N→∞GN(y0) = G∗(y0). (2.7)

Proof of Proposition 2.3. Let WN(y0), N = 1, 2, . . . be not empty and let
γN ∈ WN(y0). Then, as can be readily seen, any partial limit (cluster point)
of {γN,N = 1, 2, . . .} is contained in W(y0). Hence, W(y0) is not empty. As
W(y0) ⊂WN(y0), to prove (2.6) it is sufficient to show that

lim
N→∞ sup

γ∈WN(y0)

ρ(γ,W(y0)) = 0,

where ρ is defined in (1.7). Let us assume this is not the case. Then there exists a
positive number δ, a subsequence of positive numbers, N′ →∞, and a sequence
of probability measures γN

′ ∈ WN′(y0) such that ρ(γN
′
,W(y0)) > δ. Due to

the compactness of P(Y ×U), one may assume without loss of generality that
there exists γ ∈ P(Y ×U) such that

lim
N′→∞ ρ(γN

′
,γ) = 0 =⇒ ρ(γ,W(y0)) > δ.

Due to the fact that γN
′ ∈WN′(y0) it follows that, for any integer i and N′ > i∫

Y×U
(φ′i(y)

T f(y,u) +C(φi(y0) −φi(y)))γN
′
(dy,du) = 0
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=⇒∫
Y×U

(φ′i(y)
T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du) = 0.

Since the latter is valid for all i = 1, 2, . . . one can conclude that γ ∈ W(y0).
This contradicts (2.2), which therefore, means the initial assumption is false and
thus proves (2.6). The validity of (2.7) is implied by (2.6).

Corollary 2.4. If the optimal solution γ∗ of the problem (1.6) is unique, then for any
optimal solution γN of the problem (2.5) there exists the limit

lim
N→∞γN = γ∗. (2.8)

Proof of corollary 2.4. The proof follows from (2.7).

Note that every extreme point of the optimal solutions set of (2.5) is an extreme
point of WN(y0) and that the latter is presented as a convex combination of
(no more than N+ 1) Dirac measures. That is [see 51, Theorem A.5], if γN is
an extreme point of the optimal solutions set of (2.5) (or, equivalently, it is an
extreme point of WN(y0), which is an optimal solution of (2.5)), then there
exist

(yNl ,uNl ) ∈ Y ×U, γNl > 0, l = 1, 2, . . . , KN 6 N+ 1,
KN∑
l=1

γNl = 1

such that

γN =

KN∑
l=1

γNl δ(yNl ,uNl ), (2.9)

where δ(yNl ,uNl ) is the Dirac measure concentrated at (yNl ,uNl ).

2.2 the semi-infinite dual problem

Define the finite dimensional space DN(y0) ⊂ C1 by the equation

DN(y0)
def
=
{
ψ(·) ∈ C1 : ψ(y) =

N∑
i=1

λiφi(y), λ = (λi) ∈ RN
}
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and consider the following problem dual to (2.5) (which, for convenience, will
be referred to as the N-approximating dual problem or D–SILP problem):

µN(y0)
def
= sup
ψ(·)∈DN(y0)

{
µ : g(y,u) +ψ′(y)T f(y,u)

+C(ψ(y0) −ψ(y)) > µ, ∀(y,u) ∈ Y ×U
}

. (2.10)

For a fixed N, the relationships between SILP problem (2.5) and D–SILP prob-
lem (2.10) are similar to those between (1.8) and (1.13). For example, one can
establish that if WN(y0) 6= ∅ and γ ∈WN(y0), then for any ψ ∈ DN(y0)

µN(y0) 6
∫
Y×U

(g(y,u)

+

N∑
i=1

λi(ψi
′(y)f(y,u) +C(ψi(y0) −ψi(y)))γ(dy,du)

=

∫
Y×U

g(y,u)γ(dy,du),

which implies

µN(y0) 6 G
N(y0). (2.11)

The SILP problem (2.5) is related to the N-approximating dual problem (2.10)
through the following duality type relationships.

Proposition 2.5.

(i) The optimal value of the D–SILP problem (2.15) is bounded (that is, µN(y0) <∞) if and only if the set WN(y0) is not empty.

(ii) If WN(y0) is not empty, then optimal values of (2.5) and (2.15) are equal

GN(y0) = µ
N(y0). (2.12)

(iii) The optimal value of D–SILP problem (2.15) is unbounded (that is, µN(y0) =∞) if and only if there exists v = (v1, . . . , vN) such that

max
(y,u)∈Y×U

{
ψv
′(y)T f(y,u) +C(ψv(y0) −ψv(y))

}
< 0,

ψv(y)
def
=

N∑
i=1

viφi(y). (2.13)

The proof of Proposition 2.5 is similar to the proof of Proposition 1.6 and it is
presented below.
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Proof of Proposition 2.5(iii). If the function ψv(·) satisfying (2.13) exists, then
the inequality

min
(y,u)∈Y×U

−
{
ψν
′(y)T f(y,u) +C(ψν(y0) −ψν(y))

}
> 0

holds, and hence,

lim
α→∞ min

(y,u)∈Y×U

{
g(y,u) −α(ψν′(y)T f(y,u)

+C(ψν(y0) −ψν(y)))
}
= ∞.

This implies that the optimal value of the N-approximating dual problem is
unbounded (µN(y0) = ∞). Assume now that the optimal value of the semi-
infinite dimensional dual problem is unbounded. That is, there exists a sequence
(µk,ψk(·)) such that

µk 6 g(y,u) + (ψk
′(y)T f(y,u) +C(ψk(y0) −ψk(y))),

∀(y,u) ∈ Y ×U, lim
k→∞µk = ∞,

which implies

1 6
1

µk
g(y,u) +

1

µk
(ψk

′(y)T f(y,u)

+C(ψk(y0) −ψk(y))), ∀(y,u) ∈ Y ×U.

For k large enough, 1
µk

|g(y,u)| 6 1
2 , ∀(y,u) ∈ Y ×U. Hence

1

2
6
1

µk
(ψk

′(y)T f(y,u) +C(ψ(y0) −ψ(y))), ∀(y,u) ∈ Y ×U.

That is, the function ψ(y) def
= − 1

µk
ψk(y) satisfies (2.13).

Proof of Proposition 2.5(i). From (2.11) it follows that, if WN(y0) is not empty,
then the optimal value of problem (2.10) is bounded. Conversely, let us assume
that the optimal value µN(y0) of problem (2.10) is bounded and let us establish
that WN(y0) is not empty. Assume that it is not true and WN(y0) is empty.
Define the set Q′(y0) by the equation

Q′(y0)
def
=
{
x = (x1, . . . , xN) :

xi =

∫
Y×U

(φ′i(y)
T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du),

γ ∈ P(Y ×U), i = 1, . . . ,N
}

.
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It is easy to see that the set Q′(y0) is a convex and compact subset of RN

(the fact that it is closed follows from that P(Y × U) is compact in weak?

convergence topology). By (2.4), the assumption that WN(y0) is empty is
equivalent to the assumption that the set Q′(y0) does not contain the “zero
element” (0 6∈ Q′(y0)). Hence, by a separation theorem [see 52, p.59], there
exists λ̄ = (λ̄1, . . . , λ̄N) ∈ RN such that

0 = λ̄(0) > max
x∈Q′(y0)

N∑
i=1

λ̄ixi

= max
γ∈P(Y×U)

∫
Y×U

(ψ′
λ̄
(y)T f(y,u) +C(ψλ̄(y0) −ψλ̄(y)))γ̄(dy,du)

= max
(y,u)∈Y×U

(ψ′
λ̄
(y)T f(y,u) +C(ψλ̄(y0) −ψλ̄(y))),

where ψλ̄(y) =
∑N
i=1 λ̄iφi(y) (see (A.4)). This implies that the function ψ(y) def

=

ψλ̄(y) satisfies (2.13), and, by Proposition 2.5(iii), µN(y0) is unbounded. Thus,
we have obtained a contradiction that proves that WN(y0) is not empty.

Proof of Proposition 2.5(ii). By Proposition 2.5(i), if the optimal value of the
dual problem (2.10) is bounded, then WN(y0) is not empty and, hence, a
solution of the problem (2.5) exists. That is,

∃γ ∈WN(y0) :

∫
Y×U

g(y,u)γ(dy,du) = GN(y0).

Define the set Q̂′(y0) ⊂ R1 ×RN by the equation

Q̂′(y0)
def
=
{
(θ, x) : θ >

∫
Y×U

g(y,u)γ(dy,du), x = (x1, . . . , xN),

xi =

∫
Y×U

(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du),

γ ∈ P(Y ×U), i = 1, . . . ,N
}

.

The set Q̂′(y0) is convex and closed. Also, for any j = 1, 2, . . . , the point
(θj, 0) 6∈ Q̂′(y0), where θj

def
= GN(y0) −

1
j and 0 is the zero element of RN. On

the basis of a separation theorem [see 52, p.59], one may conclude that there
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exists a sequence (κj, λj) ∈ R1 ×RN (with λj def
= (λj1, . . . , λjN)), where j is an

arbitrary natural number j = 1, 2, . . .

κj(GN(y0) −
1

j
) + δj 6 inf

(θ,x)∈Q̂(y0)

{
κjθ+

N∑
i=1

λ
j
ixi
}

= inf
γ∈P(Y×U)

{
κjθ+

∫
Y×U

(ψ′λj(y)
T f(y,u) +C(ψλj(y0) −ψλj(y)))γ(dy,du)

s.t. θ >
∫
Y×U

g(y,u)γ(dy,du)
}

, (2.14)

where δj > 0 for all j and ψλj(y) =
∑N
i=1 λ

j
iφi(y). From (2.14) it immediately

follows that κj > 0. Let us show that κj > 0. In fact, if it was not the case, one
would obtain that

0 < δj 6 min
γ∈P(Y×U)

∫
Y×U

(ψ′λj(y)
T f(y,u) +C(ψλj(y0) −ψλj(y)))γ(dy,du)

= min
(y,u)∈Y×U

{
ψ′λj(y)

T f(y,u) +C(ψλj(y0) −ψλj(y))
}

,

which implies

max
(y,u)∈Y×U

−
{
ψ′λj(y)

T f(y,u) +C(ψλj(y0) −ψλj(y))
}
6 −δj < 0.

The latter would lead to the validity of the inequality (2.13) with ψ(y) =

−ψλj(y), which, by Proposition 2.5(iii), would imply that the optimal value of
the dual problem is unbounded. Thus, κj > 0. Dividing (2.14) by κj one can
obtain that

GN(y0) −
1

j
< (GN(y0) −

1

j
) +

δj

κj

6 min
γ∈P(Y×U)

∫
Y×U

(g(y,u) +
1

κj
(ψ′λj(y)

T f(y,u))

+C(ψλj(y0) −ψλj(y))))γ(dy,du)

= min
(y,u)∈Y×U

{
g(y,u) +

1

κj
(ψ′λj(y)

T f(y,u) +C(ψλj(y0) −ψλj(y)))
}

6 µN(y0),

which implies

GN(y0) 6 µ
N(y0).

The latter and (2.11) prove (2.12).
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Let us now establish that the optimal values of the D–SILP problem (2.15)
converge to the optimal value of D–IDLP problem (1.13) as N→∞.

Corollary 2.6. µN(y0) converges to G∗(y0), that is,

lim
N→∞µN(y0) = G∗(y0).

Proof of corollary 2.6. It is obvious that, for any N > 1,

µ1(y0) 6 µ
2(y0) 6 · · · 6 µN(y0) 6 µ∗(y0).

Hence, limN→∞ µN(y0) exists, and it is less or equal than µ∗(y0). The fact that
it is actually equal to µ∗(y0) (and, hence, due to (1.15), equal to G∗(y0)) follows
from that, for any function ψ(·) ∈ C1 and for any δ > 0, there exist N large
enough and ψδ(·) ∈ DN(y0) such that

max
y∈Y

{
|ψ(y) −ψδ(y)|+ ‖ψ′(y) −ψδ′(y)‖

}
6 δ.

2.3 solutions to the semi-infinite dual problem

Note that, due to the definition of the Hamiltonian (1.17), problem (2.10) is
equivalent to

sup
ψ(·)∈DN(y0)

{
µ : H(ψ′(y),y) +C(ψ(y0) −ψ(y)) > µ,

∀y ∈ Y
}
= µN(y0). (2.15)

Definition 2.7. A functionψN(·) ∈ C1 will be called a solution of theN-approximating
dual problem (2.10) if

min
y∈Y

{
H(ψN′(y),y) +C(ψN(y0) −ψN(y))

}
= µN(y0).

Let Ry0 ⊂ Y stand for the set of points that are reachable (in finite time) along
admissible trajectories of (1.1) satisfying the initial condition (1.3). That is,

Ry0
def
=
{
y : y = y(t), (y(·),u(·))-admissible, satisfying (1.3),

t ∈ [0,∞)
}

(2.16)
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Assumption 2.8. The closure of Ry0 has a nonempty interior. That is,

int(clRy0) 6= ∅. (2.17)

Proposition 2.9. Let Assumption 2.8 be satisfied. Then, for every N = 1, 2, . . . , there
exists λN = (λNi ) such that

ψN(y)
def
=

N∑
i=1

λNi φi(y) (2.18)

is a solution of the N-approximating dual problem (2.15). That is

min
y∈Y

{
H(ψN′(y),y) +C(ψN(y0) −ψN(y))

}
= µN(y0). (2.19)

Proof of Proposition 2.9. The proof follows from Lemmas 2.11 and 2.12 which
are presented and proved at the end of this section.

Corollary 2.10. Let (2.17) be satisfied. Then, for any δ > 0, there exists Nδ such
that, ∀N > Nδ,

H(ψN′(y),y) +C(ψN(y0) −ψN(y)) > CV(y0) − δ, ∀y ∈ Y,

where ψN(·) is a solution of the N-approximating dual problem (2.15) (the existence
of which is established by Proposition 2.9).

Proof of corollary 2.10. The proof follows from Proposition 2.5(ii) and corol-
lary 2.6.

Lemma 2.11. Assume that, for

ψ(y) =

N∑
i=1

viφi(y). (2.20)

the inequality

ψ′(y)T f(y,u) +C(ψ(y0) −ψ(y)) > 0, ∀(y,u) ∈ Y ×U (2.21)

is valid only if

vi = 0, ∀i = 1, . . . ,N. (2.22)

Then a solution (2.18) of the N-approximating ψ-problem (2.15) exists.
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Proof of Lemma 2.11. For any k = 1, 2, . . . let vk = (vki ) ∈ RN be such that the
function

ψk(y)
def
=

N∑
i=1

vkiφi(y)

satisfies the inequality

H(ψk′(y),y) +C(ψk(y0) −ψk(y)) > µN(y0) −
1

k
, ∀y ∈ Y.

Hence

ψk′(y)T f(y,u) + g(y,u) +C(ψk(y0) −ψk(y))

> µN(y0) −
1

k
, ∀(y,u) ∈ Y ×U. (2.23)

Show that the sequence vk, k = 1, 2, . . . is bounded. That is, there exists α > 0
such that

‖vk‖ 6 α, k = 1, 2, . . . (2.24)

Assume that the sequence vk, k = 1, 2, . . . is not bounded. Then there exists a
subsequence vk

′
such that

lim
k′→∞‖vk

′‖ =∞, lim
k′→∞

vk
′

‖vk′‖
def
= ṽ, ‖ṽ‖ = 1. (2.25)

Dividing (2.23) by ‖vk‖ and passing to the limit along the subsequence {k′}, one
can obtain that

ψ̃′(y)T f(y,u) +C(ψ̃(y0) − ψ̃(y)) > 0, ∀(y,u) ∈ Y ×U,

where

ψ̃(y)
def
=

N∑
i=1

ṽiφi(y).

Hence, by the assumption of the lemma, ṽ = (ṽi) = 0, which is in contradiction
with (2.25). Thus, the validity of (2.24) is established. Due to (2.24), there exists
a subsequence {k′} such that there exists a limit

lim
k′→∞ vk

′ def
= v∗.
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Passing to the limit in (2.23) along this subsequence, one obtains

ψ∗′(y)T f(y,u) + g(y,u) +C(ψ∗(y0) −ψ∗(y)) > µN(y0),

∀(y,u) ∈ Y ×U, (2.26)

where

ψ∗(y)
def
=

N∑
i=1

vi
∗φi(y).

From (2.26) it follows that

H(ψ∗′(y),y) +C(ψ∗(y0) −ψ∗(y)) > µN(y0), ∀y ∈ Y.

That is, ψ∗(y) is a solution of the N-approximating dual problem (2.15).

Lemma 2.12. Let Assumption 2.8 be satisfied. Then, for ψ(·) of the form (2.20), the
inequality (2.21) is valid only if (2.22) is valid.

Proof of Lemma 2.12. Let ψ(·) be presented in the form (2.20) and let it sat-
isfy (2.21). For an arbitrary admissible pair (y(·),u(·)) that satisfies the initial
condition (1.3), one can obtain that∫∞

0

e−Ct(ψ′(y(t))T f(y(t),u(t)) +C(ψ(y0) −ψ(y(t))))dt = 0.

This along with (2.21) imply that

ψ′(y(t))T f(y(t),u(t)) +C(ψ(y0) −ψ(y(t)) = 0, a.e. t ∈ [0,∞). (2.27)

From (2.27) it follows that

d

dt
(ψ(y(t)) −ψ(y0)) = C(ψ(y(t)) −ψ(y0))

=⇒ ψ(y(t)) = ψ(y0), ∀t ∈ [0,∞).

Consequently, by definition of Ry0 (see (2.16)),

ψ(y) = ψ(y0), ∀y ∈ Ry0 =⇒ ψ(y) = ψ(y0), ∀y ∈ clRy0 .

The latter implies that

ψ′(y) = 0, ∀y ∈ int(clRy0),
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which, in turn, implies that all vi in (2.20) are equal to zero (due to linear
independence of φi′(·), i = 1, . . . ,N).

2.4 the construction of near-optimal controls

Let (2.17) be satisfied and let ψN(·) be a solution of the N-approximating dual
problem (2.15). Define a control uN(y) by the equation

uN(y) = argmin
u∈U

{
ψN′(y)T f(y,u) + g(y,u)

}
(2.28)

and assume that the system

y′(t) = f(y(t),uN(y(t))), y(0) = y0,

has a unique solution yN(t) ∈ Y. Under assumptions that are introduced below,
we establish that uN(yN(t)) converges (almost everywhere) to the optimal
control u∗(t), and yN(t) converges (uniformly on any bounded interval) to the
corresponding optimal trajectory y∗(t) as N→∞.

Assumption 2.13. Let the optimal solution γ∗ of the IDLP problem (1.6) be unique
and the optimal pair (y∗(·),u∗(·)) (that is, the pair that delivers minimum in (1.2))
exist.

Remark 2.14. Note that, due to (1.10), the discounted occupational measure generated
by (y∗(·),u∗(·)) is an optimal solution of the IDLP problem (1.6). Hence, if γ∗ is the
unique optimal solution of the latter, it will coincide with the discounted occupational
measure generated by (y∗(·),u∗(·)).

Assumption 2.15. The optimal control u∗(·) : [0,∞) 7→ U is piecewise continuous
and, at every discontinuity point, u∗(·) is either continuous from the left or it is
continuous from the right.

Assumption 2.16.

(i) For almost all t ∈ [0,∞), there exists an open ball Qt ⊂ Rm centred at y∗(t)
such that uN(·) is uniquely defined for y ∈ Qt (that is, the problem in the right
hand side of (2.28) has a unique optimal solution for y ∈ Qt), and uN(·) satis-
fies Lipschitz conditions on Qt (with a Lipschitz constant being independent of
N and t);

(ii) The Lebesgue measure of the set At(N)
def
= {t′ ∈ [0, t], yN(t′) /∈ Qt′} tends to

zero as N→∞. That is,

lim
N→∞meas

{
At(N)

}
= 0. (2.29)
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Proposition 2.17. Let f(y,u) and g(y,u) be Lipschitz continuous in a neighbour-
hood of Y ×U, let (2.17) be valid and let Assumptions 2.13, 2.15 and 2.16 be satisfied.
Then

lim
N→∞uN(yN(t)) = u∗(t) (2.30)

for almost all t ∈ [0,∞) and

lim
N→∞ max

t′∈[0,t]
‖yN(t′) − y∗(t′)‖ = 0, ∀t ∈ [0,∞). (2.31)

Also,

lim
N→∞VN(y0) = V(y0), (2.32)

where

VN(y0)
def
=

∫∞
0

e−Ctg(yN(t),uN(yN(t)))dt.

Proof of Proposition 2.17. The proof of the proposition is given on Page 30.

Lemma 2.18. Let Assumptions 2.13 and 2.15 be satisfied and let γN be an opti-
mal solution of (2.5) that is presented in the form (2.9). Then, for any t ∈ [0,∞),
(y∗(t),u∗(t)) is presented as the limit

(y∗(t),u∗(t)) = lim
N→∞(yNlN ,uNlN), (2.33)

where (yNlN ,uNlN) ∈ {(yNl ,uNl ), l = 1, . . . ,KN} (that is, (yNlN ,uNlN) is an element of
the set of the concentration points of the Dirac measures in the expansion (2.9)).

Proof of Lemma 2.18. The proof of the lemma is given at the end of the section.

Proposition 2.19. If γN is an optimal solution of (2.5) that allows a representation
(2.9) and if ψN(y) =

∑N
i=1 λ

N
i φi(y) is an optimal solution of (2.15), then the con-

centration points (yNl ,uNl ) of the Dirac measures in the expansion (2.9) satisfy the
following relationships:

yNl = argmin
y∈Y

{
H(ψN

′
(y),y) +C(ψN(y0) −ψN(y))

}
, (2.34)

uNl = argmin
u∈U

{
ψN
′
(yNl )

T f(yNl ,u) + g(yNl ,u)
}

, l = 1, . . . ,KN. (2.35)

Proof of Proposition 2.19. The proof of the proposition is given on Page 33.
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Proof of Proposition 2.17. Let t ∈ [0,∞) be such that uN(·) is Lipschitz contin-
uous on Qt and let (yNlN ,uNlN) be as in (2.33). By (2.35),

uNlN = uN(yNlN).

Hence,

‖u∗(t)−uN(y∗(t))‖

6 ‖u∗(t) − uNlN‖+ ‖u
N(yNlN) − u

N(y∗(t))‖

6 ‖u∗(t) − uNlN‖+ L‖y
∗(t) − yNlNs‖, (2.36)

where L is a Lipschitz constant of uN(·). From (2.33) and (2.36) it follows that

lim
N→∞uN(y∗(t)) = u∗(t). (2.37)

By Assumption 2.16, the same argument is applicable for almost all t ∈ [0,∞).
Consequently, the convergence (2.37) is valid for almost all t ∈ [0,∞). Taking
an arbitrary t ∈ [0,∞) and subtracting the equation

y∗(t) = y0 +

∫t
0

f(y∗(t′),u∗(t′))dt′

from the equation

yN(t) = y0 +

∫t
0

f(yN(t′),uN(yN(t′)))dt′,

one obtains

‖yN(t) − y∗(t)‖

6
∫t
0

‖f(yN(t′),uN(yN(t′))) − f(y∗(t′),u∗(t′))‖dt′

6
∫t
0

‖f(yN(t′),uN(yN(t′))) − f(y∗(t′),uN(y∗(t′)))‖dt′

+

∫t
0

‖f(y∗(t′),uN(y∗(t′))) − f(y∗(t′),u∗(t′))‖dt′. (2.38)
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It is easy to see that∫t
0

‖f(yN(t′),uN(yN(t′))) − f(y∗(t′),uN(y∗(t′)))‖dt′

6
∫
t′/∈At(N)

‖f(yN(t′),uN(yN(t′))) − f(y∗(t′),uN(y∗(t′)))‖dt′

+

∫
t′∈At(N)

(‖f(yN(t′),uN(yN(t′)))‖

+ ‖f(y∗(t′),uN(y∗(t′)))‖)dt′

6 L1

∫t
0

‖yN(t′) − y∗(t′)‖dt′ + L2meas
{
At(N)

}
,

where L1 is a constant defined (in an obvious way) by Lipschitz constants of
f(·, ·) and uN(·), and L2

def
= 2max(y,u)∈Y×U{‖f(y,u)‖}. Also, due to (2.37) and

the dominated convergence theorem [see 4, p.49]

lim
N→∞

∫t
0

‖f(y∗(t′),uN(y∗(t′))) − f(y∗(t′),u∗(t′))‖dt′ = 0. (2.39)

Let us introduce the notation

κt(N)
def
= L2meas

{
At(N)

}
+

∫t
0

‖f(y∗(t′),uN(y∗(t′))) − f(y∗(t′),u∗(t′))‖dt′

and rewrite the inequality (2.38) in the form

‖yN(t) − y∗(t)‖ 6 L1
∫t
0

‖yN(t′) − y∗(t′)‖dt′ + κt(N),

which, by Gronwall-Bellman Lemma [see 6, p.218], implies that

max
t′∈[0,t]

‖yN(t′) − y∗(t′)‖ 6 κt(N)eL1t
′
. (2.40)

Since, by (2.29) and (2.39),

lim
N→∞ κt(N) = 0, (2.41)

(2.40) implies (2.31).

For any t ∈ [0,∞) such that uN(·) is Lipschitz continuous on Qt, one has

‖uN(yN(t)) − u∗(t)‖

6 ‖uN(yN(t)) − uN(y∗(t))‖+ ‖uN(y∗(t)) − u∗(t)‖

6 L‖yN(t) − y∗(t)‖+ ‖uN(y∗(t)) − u∗(t)‖,
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the latter implying (2.30) (due to (2.40), (2.41) and due to (2.37)). To prove (2.32),
let us recall that

V(y0) =

∫∞
0

e−Ctg(y∗(t),u∗(t))dt.

For an arbitrary ν > 0, choose Tν > 0 in such a way that

M

∫∞
Tν

e−Ctdt 6
ν

4
, M def

= max
(y,u)∈Y×U

{
|g(y,u)|

}
.

Then

|VN(y0) − V(y0)|

6
∫Tν
0

e−Ct|g(yN(t),uN(yN(t))) − g(y∗(t),u∗(t))|dt

+

∫∞
Tν

e−Ct|g(yN(t),uN(yN(t))) − g(y∗(t),u∗(t))|dt

6
∫Tν
0

e−Ct|g(yN(t),uN(yN(t))) − g(y∗(t),u∗(t))|dt

+

∫∞
Tν

e−Ct|g(yN(t),uN(yN(t)))|dt

+

∫∞
Tν

e−Ct|g(y∗(t),u∗(t))|dt.

|VN(y0) − V(y0)|

6
∫Tν
0

e−Ct|g(yN(t),uN(yN(t))) − g(y∗(t),u∗(t))|dt

+M

∫+∞
Tν

e−Ctdt+M

∫+∞
Tν

e−Ctdt.

|VN(y0) − V(y0)|

6
∫Tν
0

e−Ct|g(yN(t),uN(yN(t))) − g(y∗(t),u∗(t))|dt+
ν

2

6 L3

∫Tν
0

e−Ct(‖yN(t) − y∗(t)‖+ ‖uN(yN(t)) − u∗(t)‖)dt+ ν
2

,

where L3 is a Lipschitz constant of g(·, ·). Based on the fact that the convergence
of uN(yN(t)) to u∗(t) (for almost all t) and the uniform (on any bounded
interval) convergence of yN(·) to y∗(·) have been already established, one may
conclude that there exists Nν such that, for any N > Nν,

L3

∫Tν
0

e−Ct(‖yN(t) − y∗(t)‖+ ‖uN(yN(t)) − u∗(t)‖)dt 6 ν

2
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=⇒ |VN(y0) − V(y0)| 6 ν.

Since ν can be arbitrarily small, the latter proves (2.32).

Proof of Proposition 2.19. Let us prove (2.34) and (2.35). Note that, due to
(2.12) and due to the fact that ψN(y) is an optimal solution of (2.15) (see (2.19)),

GN(y0) = min
y∈Y

{
H(ψN

′
(y),y) +C(ψN(y0) −ψN(y))

}
= min

(y,u)∈Y×U

{
ψN
′
(y)T f(y,u) + g(y,u)

+C(ψN(y0) −ψ
N(y))

}
. (2.42)

Also, for any γ ∈WN(y0),∫
Y×U

g(y,u)γ(dy,du) =
∫
Y×U

(g(y,u) +ψN
′
(y)T f(y,u)

+C(ψN(y0) −ψ
N(y)))γ(dy,du).

Consequently, for γ = γN,

GN(y0) =

∫
Y×U

g(y,u)γN(dy,du)

=

∫
Y×U

(g(y,u) +ψN
′
(y)T f(y,u)

+C(ψN(y0) −ψ
N(y)))γN(dy,du).

Hence, by (2.9),

GN(y0) =

KN∑
l=1

γNl (g(y
N
l ,uNl )

+ψN
′
(yNl )

T f(yNl ,uNl ) +C(ψ
N(y0) −ψ

N(yNl ))). (2.43)

Since (yNl ,uNl ) ∈ Y ×U, from (2.42) and (2.43) it follows that, if γNl > 0, then

g(yNl ,uNl ) +ψ
N′(yNl )

T f(yNl ,uNl ) +C(ψ
N(y0) −ψ

N(yNl ))

= min
(y,u)∈Y×U

{
ψN
′
(y)T f(y,u) + g(y,u) +C(ψN(y0) −ψN(y))

}
.

That is,

(yNl ,uNl ) = argmin
(y,u)∈Y×U

{
ψN
′
(y)T f(y,u) + g(y,u) +C(ψN(y0) −ψN(y))

}
.

The latter is equivalent to (2.34) and (2.35).
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Proof of Lemma 2.18. Let

Θ∗
def
=
{
(y,u) : (y,u) = (y∗(t),u∗(t)) for some t ∈ [0,∞)

}
,

and let B be the open unit ball in Rn+m : B
def
= {(y,u) : ‖(y,u)‖ < 1}. It is easy

to see that Assumption 2.15 implies that, for any (ȳ, ū) ∈ clΘ∗ (the closure
of Θ∗) and any r > 0, the set Br(ȳ, ū) def

= ((ȳ, ū) + rB) ∩ (Y ×U) has a nonzero
γ∗-measure. That is,

γ∗(Br(ȳ, ū)) > 0. (2.44)

In fact, if (ȳ, ū) ∈ clΘ∗, then there exists a sequence ti, i = 1, 2, . . . such
that (ȳ, ū) = limi→∞(y∗(ti),u∗(ti)), with (y∗(ti),u∗(ti)) ∈ Br(ȳ, ū) for some
i large enough. Hence, there exists α > 0 such that (y∗(t′),u∗(t′)) ∈ Br(ȳ, ū),
∀t′ ∈ (ti −α, ti] if u∗(·) is continuous from the left at ti, and (y∗(t′),u∗(t′)) ∈
Br(ȳ, ū), ∀t′ ∈ [ti, ti + α) if u∗(·) is continuous from the right at ti. By the
definition of the discounted occupational measure (see (1.4)), this implies (2.44).
Assume now the statement of the lemma is not valid. Then there exist a number
r > 0 and sequences: (yi,ui) ∈ Θ∗, Ni, i = 1, 2, . . . with

lim
i→∞(yi,ui) = (ȳ, ū) ∈ clΘ∗, lim

i→∞Ni =∞
such that

d((yi,ui),ΘNi) > 2r =⇒ d((ȳ, ū),ΘNi) > r, i > i0, (2.45)

where

ΘN
def
=
{
(yNl ,uNl ), l = 1, . . . ,KN

}
and d((y,u),Q) stands for the distance between a point (y,u) ∈ Y×U and a set
Q ⊂ Y×U: d((y,u),Q)

def
= inf(y′,u′)∈Q{‖(y,u)− (y′,u′)‖}. The second inequality

in (2.45) implies that

(yNil ,uNil ) /∈ Br(ȳ, ū), l = 1, . . . ,KNi , i > i0.

By (2.9), the latter implies that

γNi(Br(ȳ, ū)) = 0.

From (2.8) it follows that,

lim
i→∞ ρ(γNi ,γ∗) = 0.
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Consequently [see 10, thm 2.1],

0 = lim
i→∞γNi(Br(ȳ, ū)) > γ∗(Br(ȳ, ū)).

The latter contradicts (2.44) and, thus, proves the lemma.





3
F I N I T E D I M E N S I O N A L A P P R O X I M AT I O N S

In this chapter, we further approximate the N-dimensional problem (2.5) and
the corresponding dual problem (2.10), with a finite dimensional linear pro-
gramming (FDLP) problem defined on a grid of points in Y ×U and show
that, by solving the FDLP problem, one can construct a function ψN,∆(·) ∈ C1

(where ∆ is a parameter of the grid) which solves the dual IDLP problem
approximately and that this function can be used for the construction of an
approximate control for the problem 1.2.

This chapter is organised as follows; In Section 3.1 we introduce the FDLP prob-
lem and show that it approximates the SILP problem studied in Chapter 2. In
Section 3.2, we establish relationships between solutions of the problems dual to
the finite and semi-finite problems. In Section 3.3, we state a result (Proposition
3.5) about the construction of a near-optimal control for the problem 1.2. In
Section 3.4 we outline an algorithm for construction of a near optimal control
on the basis of a solution of the FDLP problem.

3.1 the finite dimensional lp problem

Assume first that N is fixed and that, for any ∆ > 0, Borel sets Q∆l,k ⊂ Y ×U
where l = 1, . . . ,L∆ and k = 1, . . . ,K∆ are defined in such a way that they are
mutually disjoint. The union of all cells is equal to Y ×U and

sup
(y,u)∈Q∆l,k

‖(y,u) − (yl,uk)‖ 6 a∆, a = const, (3.1)

for some point (yl,uk) ∈ Q∆l,k. For simplicity of notation, it is assumed (from
now on) that U is a compact subset of Rn and ‖·‖ stands for a norm in Rn+m.

37
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Let us fix the points (yl,uk). Then define a polyhedral setWN,∆(y0) ⊂ RL
∆+K∆

by the equation

WN,∆(y0)
def
=
{
γ = {γl,k} > 0 :

∑
l,k

γl,k = 1,

∑
l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))γl,k = 0, ∀i = 1, . . . ,N
}

,

where
∑
l,k

def
=
∑L∆
l=1

∑K∆
k=1. Then consider the problem

GN,∆(y0)
def
= min
γ∈WN,∆(y0)

∑
l,k

g(yl,uk)γl,k. (3.2)

This is a finite dimensional linear programming problem, which will be referred
to as the N∆-approximating LP problem (or N∆–LP problem). Note that the
polyhedral set WN,∆(y0) is the set of probability measures on Y ×U which
assign non-zero probabilities only to the points (yl,uk), and as such,

WN,∆(y0) ⊂WN(y0) =⇒ GN,∆(y0) > G
N(y0). (3.3)

Note that, by Proposition 3.1, WN,∆(y0) is not empty and, hence, (3.2) and (3.3)
are true if Assumption 2.8 is satisfied.

Proposition 3.1. Let Assumption 2.8 be satisfied and let the set WN(y0) be not
empty. Then there exists ∆0 > 0 such that WN,∆(y0) is not empty for ∆ 6 ∆0. Also

lim
∆→0

ρH(W
N,∆(y0),WN(y0)) = 0. (3.4)

and

lim
∆→0

GN,∆(y0) = G
N(y0). (3.5)

If γN,∆ is a solution of the problem (3.2) and lim∆′→0 ρ(γN,∆′ ,γN) = 0 for some
sequence of ∆′ tending to zero, then γN is a solution of (2.5). If the optimal solution
γN of the problem (2.5) is unique, then for any optimal solution γN,∆ of the problem
(3.2) there exists the limit

lim
∆→0

ρ(γN,∆,γN) = 0. (3.6)

Proof of Proposition 3.1. The first thing that should be noted that by (3.3),
the set WN(y0) will not be empty if the set WN,∆(y0) is not empty. Let us
assume the set WN(y0) is not empty and show that the set WN,∆(y0) is also
not empty and that (3.4) is valid. The validity of (3.5) will follow from (3.4).
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Due to (3.1) and the fact that the functions φi′(y)T f(y,u) +C(φi(y0) −φi(y))
are continuous it follows that

sup
(y,u)∈Q∆l,k

|(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))

− (φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))| 6 κ(∆), i = 1, . . . ,N (3.7)

for some κ(∆) such that lim∆→0 κ(∆) = 0.

Now let us define the set ZN,∆(y0) ⊂ RL
∆+K∆ by the equation

ZN,∆(y0)
def
=
{
γ = {γl,k} > 0 :

∑
l,k

γl,k = 1,

|
∑
l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))γl,k| 6 κ(∆),

i = 1, . . . ,N
}

. (3.8)

For any ∆, let γ∆ ∈WN(y0) such that

ρ(γ∆,ZN,∆(y0)) = max
γ∈WN(y0)

ρ(γ,ZN,∆(y0))

(where we know that γ∆ exists due to the fact that WN(y0) is compact) and
show that

lim
∆→0

max
γ∈WN(y0)

ρ(γ,ZN,∆(y0)) = lim
∆→0

ρ(γ∆,ZN,∆(y0)) = 0. (3.9)

Let γ∆l,k
def
=
∫
Q∆l,k

γ∆(dy,du). By (3.7)

|
∑
l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))γ∆l,k|

= |
∑
l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))γ∆l,k

−

∫
Y×U

(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))γ∆(dy,du)|

= |
∑
l,k

∫
Q∆l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))γ∆(dy,du)

−
∑
l,k

∫
Q∆l,k

(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))γ∆(dy,du)|
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= |
∑
l,k

∫
Q∆l,k

((φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))

− (φi
′(y)T f(y,u) +C(φi(y0) −φi(y))))γ∆(dy,du)|

6
∑
l,k

∫
Q∆l,k

|((φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))

− (φi
′(y)T f(y,u) +C(φi(y0) −φi(y))))|γ∆(dy,du)

6
∑
l,k

∫
Q∆l,k

κ(∆)γ∆(dy,du) by (3.7)

=
∑
l,k

κ(∆)γ∆l,k = κ(∆).

Hence, by denoting γ̃∆ def
= (γ∆l,k), one can obtain that γ̃∆ ∈ ZN,∆(y0) and

consequently

ρ(γ̃∆,ZN,∆(y0)) = 0. (3.10)

Let q(y,u) : Y ×U→ R1 be some arbitrary continuous function and let κq(∆)
be such that

sup
(y,u)∈Q∆l,k

|q(y,u) − q(yl,uk)| 6 κq(∆), lim
∆→0

κ(∆) = 0.

Then

|

∫
Y×U

q(y,u)γ∆(dy,du) −
∑
l,k

q(yl,uk)γ∆l,k|

= |
∑
l,k

∫
Q∆l,k

q(y,u)γ∆(dy,du) −
∑
l,k

∫
Q∆l,k

q(yl,uk)γ∆(dy,du)| 6 κq(∆).

The fact that the latter inequality is valid for an arbitrary continuous function
q(y,u) implies that lim∆→0 ρ(γ∆, γ̃∆) = 0 which along with (3.10) implies the
validity of (3.9). By (3.3)

max
γ∈WN,∆(y0)

ρ(γ,WN(y0)) = 0.

Hence, to prove (3.4) it is enough to establish that

lim
∆→0

max
γ∈WN(y0)

ρ(γ,WN,∆(y0)) = 0. (3.11)
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Since (as it can be verified using the triangle inequality),

max
γ∈WN(y0)

ρ(γ,WN,∆(y0))

6 max
γ∈WN(y0)

ρ(γ,ZN,∆(y0)) + max
γ∈ZN,∆(y0)

ρ(γ,WN(y0))

and since (3.9) has been already verified, equality (3.11) will be established if
one shows that

lim
∆→0

max
γ∈ZN,∆(y0)

ρ(γ,WN,∆(y0)) = lim
∆→0

ρ(γ∆,WN,∆(y0)) = 0, (3.12)

where γ∆ = {γl,k} ∈ ZN,∆(y0) is such that

ρ(γ∆,WN(y0)) = max
γ∈ZN,∆(y0)

ρ(γ,WN,∆(y0))

for any ∆ > 0. Let qj(·) be a sequence of Lipschitz continuous functions which is
dense in the unit ball of C(Y ×U) and consider the following finite dimensional
linear program

FJ(∆)
def
= min
γ={γl,k}∈WN,∆(y0)

J∑
j=1

1

2j
|
∑
l,k

qj(yl,uk)γl,k

−
∑
l,k

qj(yl,uk)γ̄∆l,k|. (3.13)

To prove that (3.12) is valid it is sufficient to show that

lim
∆→0

FJ(∆) = 0, J = 1, 2, . . . (3.14)

Below it is shown that the optimal value of the problem dual to (3.13) tends
to zero as ∆ tends to zero. Since the latter coincides with FJ(∆), this will prove
(3.14). Also from (3.14) it follows that FJ(∆) is bounded and, hence, WN,∆(y0)

is not empty for ∆ small enough. Lets rewrite problem (3.13) in equivalent form

FJ(∆) = min
γ={γl,k}∈WN,∆(y0)

J∑
j=1

1

2j
θj, (3.15)

where

|
∑
l,k

qj(yl,uk)γl,k −
∑
l,k

qj(yl,uk)γ∆l,k| 6 θj
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which is equivalent to

−θj 6
∑
l,k

qj(yl,uk)γl,k −
∑
l,k

qj(yl,uk)γ∆l,k 6 θj,

or

−
∑
l,k

qj(yl,uk)γ∆l,k 6 −
∑
l,k

qj(yl,uk)γl,k + θj,

or ∑
l,k

qj(yl,uk)γ∆l,k 6
∑
l,k

qj(yl,uk)γl,k + θj. (3.16)

The dual problem to (3.15) to (3.16) is

FJ(∆) = max
λi,µj,ηj,ζ

J∑
j=1

(−µj + ηj)(
∑
l,k

qj(yl,uk)γ∆l,k) + ζ,

where λi = 1, . . . ,N; µj, ηj, j = 1, . . . , J and ζ satisfy the following relationships

N∑
i=1

λi(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))

+

J∑
j=1

(−µj + ηj)qj(yl,uk) + ζ 6 0, (3.17)

where l = 1, . . . ,L∆, k = 1, . . . ,K∆ and

µj + ηj =
1

2j
, µj > 0, ηj > 0, j = 1, . . . , J. (3.18)

Before proving (3.14), lets show that FJ(∆) is bounded for ∆ small enough
(which by (3.13) is equivalent to that WN,∆(y0) is not empty). Assume it is
not. Then there exists a sequence ∆r, r = 1, 2, . . . where limr→∞∆r = 0, and
sequences λri , µ

r
j , η

r
j , ζ

r, satisfying (3.17)–(3.18) with ∆ = ∆r, r = 1, 2, . . . such
that limr→∞(|ζr|+∑Ni=1|λri |) =∞ and

lim
r→∞ ζr

|ζr|+
∑N
i=1|λ

r
i |

def
= a > 0, lim

r→∞ λri

|ζr|+
∑N
i=1|λ

r
i |

def
= νi,

where

a+

N∑
i=1

|νi| = 1. (3.19)
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Dividing (3.17) by ζr +
∑N
i=1 |λ

r
i | and passing to the limit as r → ∞ one can

obtain

N∑
i=1

νi(φi
′(y)T f(y,u) +C(φi(y0) −φi(y))) + a 6 0,

∀(y,u) ∈ Y ×U, (3.20)

where it is taken account that every point (y,u) ∈ Y ×U can be represented as
the limit of (yl,uk) belonging to the sequence of cells Q∆rl,k such that (y,u) ∈
Q∆rl,k. Two cases are possible, a > 0 and a = 0. If a > 0, then the validity of
(3.20) implies that the function φ(y) =

∑N
i=1 νiφi(y) satisfies

max
(y,u)∈Y×U

{
φ′(y)T f(y,u) +C(φ(y0) −φ(y))

}
< 0

which would lead to WN(y0) being empty. The set WN(y0) is not empty (by
our assumption) and hence the only case to consider is a = 0. In this case, (3.20)
becomes

N∑
i=1

νi(φi
′(y)T f(y,u) +C(φi(y0) −φi(y))) 6 0, ∀(y,u) ∈ Y ×U. (3.21)

By Lemma 2.11, (3.21) can be valid only with all νi being equal to zero. This
contradicts (3.19) and thus, proves that FJ(∆) is bounded for ∆ small enough
(and that WN,∆(y0) is not empty).

From that fact FJ(∆) is bounded it follows that a solution, λ∆i , i = 1, . . . ,N;
µ∆j , η∆j , j = 1, . . . ,N; and ζ∆ of problem (3.17)–(3.18) exists. Using the above
solution one can obtain the following estimates

0 6FJ(∆)

=

J∑
j=1

(−µ∆j + η∆J )(
∑
l,k

qj(yl,ul)γ∆l,k) + ζ
∆

=
∑
l,k

γ∆l,k(

J∑
j=1

(−µ∆j + η∆j )qj(yl,uk)) + ζ
∆

6
∑
l,k

γ∆l,k(−

N∑
i=1

λ∆i (φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl)))) − ζ∆ + ζ∆

=−

N∑
i=1

λ∆i (
∑
l,k

(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(y)))γ∆l,k)

6
N∑
i=1

|λ∆i |κ(∆),
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where the last two relationships are implied by the fact that γ∆ = {γ∆l,k} ∈
ZN,∆(y0) (See (3.8)).

It is sufficient to show that
∑N
i=1 |λ

∆
i | remains bounded as ∆→ 0. Let assume

this is not the case. Then there will exist a sequence ∆r, r = 1, 2, . . . such that
limr→∞∆r = 0, and will exist sequences λri ,µ

r
j ,η

r
j , ζ

r, that satisfy (3.17) and
(3.18) with ∆ = ∆r,r = 1, 2, . . . such that

lim
r→∞

N∑
i=1

|λri | =∞, lim
r→∞ ζr∑N

i=1|λ
r
i |

= 0,

lim
r→∞ λri∑N

i=1|λ
r
i |

def
= νi,

N∑
i=1

|νi| = 1.

Now if (3.17) is divided by
∑N
i=1|λ

r
i | and then passed to the limit as r → ∞,

one can obtain that the inequality (3.21) is valid. This by Lemma 2.11 implies
that νi = 0, i = 1, . . . ,N. Which then contradicts the last equality of (3.21) and,
hence proves (3.14).

3.2 the finite dimensional dual problem

Consider the finite dimensional linear program

µN,∆(y0)
def
= max

(µ,λ)∈R1×RN

{
µ : µ 6 g(yl,uk)

+

N∑
i=1

λi(φ
′(yl)

T f(yl,uk) +C(φ(y0) −φ(yl)), ∀(yl,uk) ∈ Q∆l,k
}

, (3.22)

which is dual to N∆–LP and which will be referred to as D–N∆–LP. From
the duality theory of finite dimensional linear programs [see 18] it follows, in
particular, that if WN,∆(y0) is not empty, then the optimal value of the N∆–LP
problem (3.2) is equal to the optimal value of the D–N∆–LP problem (3.22).

GN,∆(y0) = µ
N,∆(y0), (3.23)

and the solution set of the D–N∆–LP is not empty:

∅ 6= ΛN,∆(y0)
def
=
{
λ = (λi) : µ

N,∆(y0) = min
(yl,uk)∈Q∆l,k

{
g(yl,uk)

+

N∑
i=1

λi(φi
′(yl)

T f(yl,uk) +C(φi(y0) −φi(yl))
}}

. (3.24)
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Note that, by Proposition 3.1, WN,∆(y0) is not empty and, hence, (3.23) and
(3.24) are true if Assumption 2.8 is satisfied.

Proposition 3.2. Let Assumption 2.8 be satisfied. Then

lim
∆→0

max
λ∈ΛN,∆(y0)

dist(λ,VN) = 0, dist(λ,VN) def
= min
v∈VN

‖λ− v‖, (3.25)

where VN is the solution set of the D–SILP problem (2.15).

Proof of Proposition 3.2. First, let us show that the set ΛN,∆ is bounded for ∆
small enough. That is, show that

sup
λ∈ΛN,∆

|λ| 6 cN = const (3.26)

for ∆ 6 ∆N (∆N > 0). Assume that it is not true and, hence, there exist
sequences ∆s and λN,∆s ∈ ΛN,∆s , s = 1, 2, . . . such that

lim
s→∞∆s = 0, lim

s→∞|λN,∆s | =∞.

Without loss of generality one may assume that there exists a limit

lim
s→∞ λN,∆s

‖λN,∆s‖
def
= v, |v| = 1. (3.27)

From the definition of ΛN,∆ (see (3.24)) it follows that the inequality

µN,∆(y0) 6 g(yl,uk)

+

N∑
i=1

λN,∆
i (φi

′(yl)
T f(yl,uk) +C(φi(y0) −φi(yl))) (3.28)

is valid for any grid point (yl,uk) ∈ Y ×U. Substituting ∆s for ∆ in (3.28) and
then dividing the latter by |λN,∆s | and passing to the limit as s→∞, one can
prove that

0 6
N∑
i=1

vi(φi
′(y)T f(y,u) +C(φi(y0) −φi(y))), ∀(y,u) ∈ Y ×U.

Note that the fact that the above inequality is valid follows from (2.12), (3.5)
and (3.23). Also,

lim
∆→0

µN,∆(y0) = µ
N(y0), (3.29)

which, in particular, implies that µN,∆s remains bounded as s→∞, and also on
the fact that any point (y,u) in Y ×U can be presented as a limit of a sequence
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of grid points. From Lemma 2.11 it now follows that v = (vi) = 0, which
contradicts to (3.27). This proves (3.26).

Let us now prove (3.25). Assuming that it is not true, one can come to a
conclusion that there exist a positive number α and sequences ∆s and λN,∆s ∈
ΛN,∆s , s = 1, 2, . . . such that

lim
s→∞∆s = 0, dist(λN,∆s ,VN) > α, s = 1, 2, . . .

Due to (3.26), one may assume without loss of generality that there exists a
limit

lim
s→∞ λN,∆s def

= vN =⇒ dist(vN,VN) > α. (3.30)

Substituting ∆s for ∆ in (3.28), taking into account (3.29) and passing to the
limit as s→∞, one can obtain that

µN(y0) 6 g(y,u) +
N∑
i=1

vNi (φi
′(y)T f(y,u) +C(φi(y0) −φi(y))),

∀(y,u) ∈ Y ×U =⇒ vN = (vNi ) ∈ VN.

The latter contradicts (3.30) and, thus, proves (3.25).

Let us only note here that, by Proposition 3.1, the set WN,∆(y0) is not empty
by Lemma 2.11, and hence, (3.23) and (3.24) are valid for ∆ small enough.

3.3 convergence to the optimal solution

Everywhere in this section it is assumed that Assumption 2.8 is satisfied and,
hence, the solution set ΛN,∆ of the D–N∆–LP problem (3.22) is not empty.

Let λN,∆ = (λN,∆
i ) ∈ ΛN,∆ and let

ψN,∆(y)
def
=

N∑
i=1

λN,∆
i φi(y). (3.31)
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Proposition 3.3. For any δ > 0, there exist Nδ > 0 and ∆N > 0 such that, for
N > Nδ and ∆ 6 ∆N, the function ψN,∆(·) solves the IDLP problem approximately
in the sense that

µ∗(y0) − δ 6 g(y,u) +ψN,∆′(y)T f(y,u)

+C(ψN,∆(y0) −ψ
N,∆(y), ∀(y,u) ∈ Y ×U. (3.32)

Proof of Proposition 3.3. Let us choose Nδ in such a way that

µ∗(y0) −
δ

2
6 µN(y0)

for any N > Nδ (this is possible due to Proposition 2.3). By Proposition 2.3, the
set VN is not empty and, hence,

µ∗(y0) −
δ

2
6 min

(y,u)∈Y×U

{
g(y,u)

+

N∑
i=1

vi(φi
′(y)T f(y,u) +C(φi(y0) −φi(y)))

}
, ∀v = (vi) ∈ VN.

From (3.25) it follows that, for any ∆ 6 ∆N (∆N being positive small enough)
and any λ ∈ ΛN,∆, there exists vN,∆ = (vN,∆

i ) ∈ VN such that

min
(y,u)∈Y×U

{
g(y,u) +

N∑
i=1

vN,∆
i (φi

′(y)T f(y,u) +C(φi(y0) −φi(y)))
}
−
δ

2

6 min
(y,u)∈Y×U

{
g(y,u) +

N∑
i=1

λN,∆
i (φi

′(y)T f(y,u) +C(φi(y0) −φi(y)))
}

=⇒ µN(y0) − δ 6 min
(y,u)∈Y×U

{
g(y,u)

+

N∑
i=1

λN,∆
i (φi

′(y)T f(y,u) +C(φi(y0) −φi(y)))
}

.

The latter proves (3.32).

Let uN,∆(y) be a solution of the problem

min
u∈U

{
g(y,u) +ψN,∆(y)T f(y,u)

}
. (3.33)

That is,

uN,∆(y)
def
= argmin

u∈U

{
g(y,u) +ψN,∆(y)T f(y,u)

}
. (3.34)
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Assume that the system

y ′(t) = f(y(t),uN,∆(y(t)), y(0) = y0,

has a unique solution yN,∆(t) ∈ Y. Let, also, Assumptions 2.13 and 2.15 be
satisfied. It can be shown that, under an additional assumption similar to
Assumption 2.16, the control uN,∆(y) converges to the optimal one as ∆→ 0

and N → ∞ and the the results similar to Proposition 2.17 are true. Let
us introduce this assumption and give the statement of the theorem that is
analogous to Proposition 2.17.

Assumption 3.4.

(i) For almost all t ∈ [0,∞) there exists an open ball Qt ∈ Rm centred at y∗(t)
such that uN,∆(y) is uniquely defined for y ∈ Qt (that is the problem in the
right hand side of (3.33) has a unique solution) and uN,∆(y) satisfies Lipschitz
conditions on Qt with a Lipschitz constant being independent of N, ∆ and t.

(ii) The Lebesgue measure of the set At(N,∆) def
= {t′ ∈ [0, t], yN,∆(t′) /∈ Qt′} tends

to zero as ∆→ 0 and N→∞. That is,

lim
N→

lim
∆→0

meas
{
At(N,∆)

}
= 0.

Proposition 3.5. Let f(y,u) and g(y,u) be Lipschitz continuous in a neighbourhood
of Y ×U, let Assumptions 2.13, 2.15 and 3.4 be satisfied. Then

lim
N→∞ lim

∆→0
‖uN,∆(yN,∆(t)) − u∗(t)‖ = 0

for almost all t ∈ [0,∞) and

lim
N→∞ lim

∆→0
max
t′∈[0,t]

‖yN,∆(t′) − y∗(t′)‖ = 0, ∀t ∈ [0,∞).

Also,

lim
N→∞ lim

∆→0
|VN,∆(y0) − V(y0)| = 0,

where

VN,∆(y0)
def
=

∫∞
0

e−Ctg(yN,∆(t),uN,∆(yN,∆(t)))dt.

Proof of Proposition 3.5. The proof the proposition follows exactly the same
steps as the proof of Proposition 2.17.
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Remark 3.6. The assumptions of Proposition 3.5 as well as those of Proposition 2.17
are not easy to verify. However, the control (3.34) can be constructed without the
verification of these assumptions, and once it is constructed one can evaluate how
close it is to the optimal by comparing the value of the objective function obtained with
this control and the optimal value of the corresponding LP problem.

3.4 algorithmic solutions to the optimal control problem

Note that from corollary 2.4 and (3.6) it follows that γN,∆ def
= {γN,∆

l,k } can be
considered as an “approximation” of γ∗ for N large and ∆ small enough. Due
to the fact that γ∗ is the discounted occupational measure generated by the
optimal pair (y∗(·),u∗(·)), an element γN,∆

l,k of γN,∆ can be interpreted as an
estimate of the discounted “proportion” of time spent by the optimal pair in a
“small” vicinity of the point (yl,uk) while the fact that γN,∆

l,k is positive or zero
can be interpreted as an indication of whether or not the optimal pair attends
this vicinity.

Based on the consideration above, we outline the steps which can be used
to construct an approximate solution to the discounted optimisation problem
using commercially available linear programming solvers such as IBM CPLEX
[39].

(i) Define a L × K dimensional grid of sufficient span to encompass the
dynamics of the problem under study and then choose ∆l,k small enough
that a further reduction of ∆l,k leads to an insignificant change in the
optimal value GN,∆(y0).

(ii) Choose a value for N which is large enough that a further increase of N
leads to an insignificant change in the optimal value GN,∆(y0).

In practice the size ofN and ∆l,k will be constrained by the amount of computer
memory required for the LP problem generated. Other factors which influence
the choice of N and ∆ may be the requirement for a quick numerical result or,
if for technical reasons, a specific set of points (yl,uk) are required to lie on the
grid.

(iii) Find a basic solution γN,∆ = {γl,k} which can be considered an approxi-
mation to γ∗ for N large enough and ∆l,k small enough. Then define the
set

YN,∆ def
=
{
yl :
∑
k

γN,∆
l,k 6= 0

}
,
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which is a projection onto the y-plane, of all the grid points associ-
ated with significant concentrations of occupational measure. Since γ∗

is the discounted occupational measure generated by the optimal pair
(y(·),u(·)) we can expect the points YN,∆ will attend the vicinity of the
curve Y∗ which is the optimal trajectory.

(iv) Then, find a dual solution λN,∆ and construct the function ψN,∆(y)

according to (3.31) and find the control uN,∆(y) by solving problem (3.34)
for every y in the vicinity of YN,∆. We can expect to obtain a solution of the
system (1.1) by integrating from the initial condition y0 for a integration
period T which is defined by a suitable stopping criterion. An example of
such a stopping criteria is T = 10/C, by which time the ongoing dynamics
of the system contribute little to the objective value.

(v) Compute the integral

GNUM(T)
def
= C

∫T
0

e−Ctg(yN,∆(t),uN,∆(t))dt

and compare it with GN,∆(y0). If the computed value of the integral
proves to be close to GN,∆(y0), then the constructed admissible pair is
a “good” approximation to the solution of the discounted optimisation
problem.

In chapter 5 we consider a numerical example which is to illustrate the above
steps.



4
C O N S T R U C T I O N O F S TA B I L I S I N G C O N T R O L S

It is well known that optimal control methods can be used for the design of
asymptotically stabilising controls by choosing the objective in such a way that
it penalises states away from the desired equilibrium. For linear systems, the
classical (infinite horizon) linear quadratic regulator [41] is one example of this
approach (see also, e.g., the textbooks [1, Chapter 3] or [55, Section 8.2]).

Theoretically, the infinite horizon undiscounted optimal control problem can
be used to characterise stabilising controls but in practice these problems are
numerically very difficult to solve. Direct methods are efficient for solving finite
horizon nonlinear optimal control problems [9] fail here since infinite horizon
problems are still infinite dimensional after a discretisation in time. Dynamic
programming methods apply to infinite horizon problems, however, for non-
discounted problems the resulting dynamic programming operator is typically
degenerate near the stable equilibrium such that a suitable regularisation is
needed before the problem can be discretised numerically [12].

In this chapter, we will discuss the construction of a stabilising control based on
a linear programming solution of an infinite horizon optimal control problem
with time discounting.

A part of this chapter was earlier published in [29] where it is shown that a
condition similar to that found in the model predictive control (MPC) litera-
ture can be used to establish that the discounted optimal value function is a
Lyapunov function, from which asymptotic stability can be concluded.

The chapter is organised as follows. After defining the problem and the nec-
essary background in Section 4.1, the main stability result is formulated and
proved in Section 4.2. To this end we utilize a condition involving a bound on
the optimal value function. In Section 4.3 it is shown how different controllabil-
ity properties can be used in order to establish this bound.

51
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4.1 problem formulation

For the convenience of the reader, we shall reintroduce some notations and
definitions from Chapter 1. In the discussion to follow, we will be considering
the control system

y′(t) = f(y(t),u(t)), t > 0, (4.1)

where the function f(y,u) : Rm ×U 7→ Rm is continuous in (y,u) and satisfies
the Lipschitz condition in y uniformly with respect to u. The controls are
Lebesgue measurable functions u(·) : [0,∞) 7→ U where U is a compact metric
space. The set of these controls is denoted as U.

Definition 4.1. A pair (y(·),u(·)) will be called admissible if equation (4.1) is satis-
fied for almost all t and if the following inclusions are valid:

y(t) ∈ Y, t ∈ [0,∞)

and

u(t) ∈ U, for almost all t,

where Y is a given compact subset of Rm.

The cost function of our discounted optimal control problem is defined as

J(y0,u(·)) def
=

∫∞
0

e−Ctg(y(t),u(t))dt, (4.2)

where the function g(y,u) : Y ×U 7→ R is a continuous function we call the
running cost and the parameter C > 0 is referred to as the discount rate.

The optimal value function of the discounted optimal control problem is defined
as

V(y0)
def
= inf

(y(·),u(·))
J(y0,u(·)),

where the minimisation is over all admissible pairs that satisfy the initial
conditions

y(0) = y0.

For a given initial value, an admissible control u∗(·) ∈ U is called an optimal
control if J(y0,u∗(·)) = V(y0) holds.
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Definition 4.2. A point ȳ ∈ Y is called an equilibrium point of the control sys-
tem (4.1) if there exists a control ū ∈ U such that f(ȳ, ū) = 0. We shall call ū an
equilibrium control.

Definition 4.3. An equilibrium point ȳ is said to be stable if any solution y(t) of
(4.1) with the initial condition y(t0) = y0, with y0 “close” to ȳ, remains in the
neighbourhood of ȳ for all t > t0. That is, for each ε > 0 there is δ > 0 such that

‖y0 − ȳ‖ 6 δ ⇒ ‖y(t) − ȳ‖ 6 ε for all t > 0

holds. We further remark that, an equilibrium point ȳ of (4.1) is said to be unstable if
it is not stable.

Definition 4.4. An equilibrium point ȳ of (4.1) is said to be asymptotically stable if
it is stable and if any solution y(t) which begins in this neighbourhood of ȳ converges
to ȳ. That is,

lim
t→∞y(t) = ȳ.

Note that the concept of stability requires only that small perturbations of the
equilibrium yield a solution that remains close to the equilibrium, whereas
asymptotic stability requires that the solution eventually (in infinite time)
returns to the equilibrium.

Our goal is to design the running cost g in (4.2) in such a way that a desired
equilibrium ȳ is asymptotically stable for optimal trajectories.

Remark 4.5. In the literature, the term asymptotic stability is more commonly used
for systems controlled by a feedback control u(t) = F(y(t)). Here we use it in a
more general sense also for time dependent control functions which, of course, may be
generated by a feedback law.

To achieve asymptotic stability, we impose the following structure on g.

Assumption 4.6. Given an equilibrium point ȳ ∈ Y and the equilibrium control
ū ∈ U, the running cost g : Y ×U→ R satisfies

(i) g(y,u) > 0 for y 6= ȳ and

(ii) g(ȳ, ū) = 0.

This assumption states that g penalises deviations of the state y from the
desired state ȳ and the expectation is that this forces the optimal solution which



54 construction of stabilising controls

minimises the integral over g to converge to ȳ. A typical simple choice of g
satisfying this assumption is the quadratic penalisation

g(y,u) = ‖y− ȳ‖2 + λ‖u− ū‖2 (4.3)

with λ > 0.

It is well known that undiscounted optimal control can be used in order to
enforce asymptotic stability of the optimally controlled system. Prominent
approaches using this fact are the linear quadratic optimal controller or model
predictive control (MPC). In the latter, the infinite horizon (undiscounted)
optimal control problem is replaced by a sequence of finite horizon optimal
control problems. Unless stabilising terminal constraints or costs are used,
this approach is known to work whenever the optimisation horizon of the
finite horizon problems is sufficiently large, cf. e.g., [31, 40, 50] or [33, Chapter
6]. The idea of using discounted optimal control for stabilisation bears some
similarities with this finite horizon approach, as in discounted optimal control
the far future contributes very weakly to the value of the functional J in (4.2),
i.e., the effective optimisation horizon is also finite. It thus comes as no surprise
that the conditions we are going to use in order to deduce stability are similar
to conditions which can be found in the MPC literature. More precisely, we will
use the following assumption on the optimal value function.

Assumption 4.7. There exists K > C such that

KV(y) 6 g(y,u). (4.4)

holds for all y ∈ Y and u ∈ U.

This assumption in fact involves two conditions. Firstly, the inequality (4.4)
expresses that the optimal value function can be bounded from above by the
running cost (a similar condition is used in the MPC literature [see 32, 34, 35,
40, 58]). Secondly, the constant K in the left-hand-side of (4.4) should be greater
than the discount rate C.

4.2 stability results

In this section we are going to derive the stability results. Everywhere in what
follows it is assumed that the optimal control exists. The optimal control and
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the corresponding solution of (4.1) are denoted as u∗(·) and y∗(·) respectively.
Note that, due to the dynamic programming principle, we have

V(y0) =

∫t
0

e−Csg(y∗(s),u∗(s))ds+ e−CtV(y∗(t))

implying

V(y∗(t)) = eCtV(y0) − e
Ct

∫t
0

e−Csg(y∗(s),u∗(s))ds.

Proposition 4.8. If Assumption 4.7 is satisfied, then following inequality is valid

V(y∗(t)) 6 e−(K−C)tV(y0), ∀t > 0. (4.5)

Proof of Proposition 4.8. Since the map t 7→ V(y∗(t)) is absolutely continuous,
we can differentiate V(y∗(t)) for almost all t [45, Chap. IX, Section 2, Corollary
to Theorem 1] and under Assumption 4.7 we obtain

d

dt
V(y∗(t)) = CeCtV(y0) −Ce

Ct

∫t
0

e−Csg(y∗(s),u∗(s))ds− g(y∗(t),u∗(t))

= CV(y∗(t)) − g(y∗(t),u∗(t))

6 −(K−C)V(y∗(t)).

The Gronwall-Bellman inequality implies (4.5)

By Proposition 4.8, V(y∗(t)) tends to 0 as t→∞. Below, we show that Assump-
tion 4.7, implies asymptotic stability.

Recall that a function α : R>0 → R>0 is of class K∞ if it is continuous, strictly
increasing, unbounded and satisfies α(0) = 0. Note that if α(·) ∈ K∞, then the
inverse function α−1(·) ∈ K∞ as well. From this point on we shall assume g is
presented in the form of the quadratic penalisation (4.3).

Lemma 4.9. If Assumption 4.7 is satisfied, then there exist, functions α1,α2 ∈ K∞
such that the inequality

α1(‖y− ȳ‖) 6 V(y) 6 α2(‖y− ȳ‖)

holds for all y ∈ Y.
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Proof of Lemma 4.9. We note that the upper bound in Lemma 4.9 is immediate
from Assumption 4.7 as the inequality is satisfied for y 7→ infu∈U g(y,u), where
we have

KV(y) 6 inf
u∈U

g(y,u) 6 g(y,u).

Due to (4.3), this implies

V(y) 6
‖y− ȳ‖2

K
.

That is, the right-hand-size inequality in Lemma 4.9 is proved with

α2(r) = r
2/K.

Regarding the lower bound, we show existence in the case when f is bounded
on Y ×U, we first observe that

J(y,u(·)) >
∫∞
0

e−Ct‖y(t) − ȳ‖2dt.

Since the solution satisfies y(t) = y0 +
∫t
0 f(y(s),u(s))ds, we obtain

‖y(t) − ȳ‖ > ‖y0 − ȳ‖−
∫t
0

‖f(y(s),u(s))‖ds > ‖y0 − ȳ‖−Mt

for M def
= sup(y,u)∈Y×U‖f(y,u)‖.

Choosing τ = min{‖y0 − ȳ‖/(2M), 1}, we have two cases to consider:

(i) For ‖y0 − ȳ‖/(2M) > 1, we could take τ = 1 however the inequality is
preserved if we use τ = ‖y0 − ȳ‖/(2M) and obtain

‖y(t) − ȳ‖ > ‖y0 − ȳ‖−M‖y0 − ȳ‖/(2M), ∀t ∈ [0, τ].

Which simplifies to

‖y(t) − ȳ‖ > 1

2
‖y0 − ȳ‖, ∀t ∈ [0, τ].

(ii) For ‖y0 − ȳ‖/(2M) < 1, we take τ = ‖y0 − ȳ‖/(2M) and obtain a result
identical to (i) i.e.,

‖y(t) − ȳ‖ > 1

2
‖y0 − ȳ‖, ∀t ∈ [0, τ].
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Together this yields

J(y,u(·)) >
∫τ
0

e−Ct‖y(t) − ȳ‖2dt > e−Cτ
∫τ
0

1

4
‖y0 − ȳ‖2dt.

The expression is simplified by taking τ = 1 in the e−Cτ term and using
τ = min{‖y0 − ȳ‖/(2M), 1} elsewhere to obtain

J(y,u(·)) > e−C 1
4
‖y0 − ȳ‖2min{‖y0 − ȳ‖/(2M), 1}.

By Assumption 4.7 we have K > C from which we further obtain

J(y,u(·)) > e−K 1
4
‖y0 − ȳ‖2min{‖y0 − ȳ‖/(2M), 1}.

That is, the left-hand-side inequality in Lemma 4.9 is proved with

α1(r) = e
−Kmin{r3/(8M), r2/4}.

Proposition 4.10. If Assumption 4.7 holds, then the point ȳ is asymptotically stable
for optimal trajectories y∗(·).

Proof of Proposition 4.10. Convergence y∗(t)→ ȳ follows immediately from
the fact that V(y∗(t)) → 0 and ‖y∗(t) − ȳ‖ 6 α−1

1 (V(y∗(t))), noting that the
inverse function of a K∞ function is again a K∞ function.

In order to prove stability, let ε > 0. For all t > 0 we have

‖y∗(t) − ȳ‖ 6 α−1
1 (V(y∗(t))) 6 α−1

1 (V(y0))

6 α−1
1 (α2(‖y0 − ȳ‖)).

Thus, for ‖y0 − ȳ‖ 6 δ = α−1
2 (α1(ε)) we obtain ‖y∗(t) − ȳ‖ 6 ε and thus the

desired stability estimate.

4.3 controllability conditions

In this section we give sufficient controllability conditions under which As-
sumption 4.4 holds.
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4.3.1 Finite time controllability

Assumption 4.11. Let there exist β > 0 such that for any initial condition y(0) =
y0 ∈ Y there exists an admissible control û(·) ∈ U which will drive our system from
y0 to ȳ in time t(y0) 6 β‖y0 − ȳ‖2.

Proposition 4.12. Under Assumption 4.11, the optimal value function for g from
(4.3) with any λ > 0 satisfies Assumption 4.7 for all 0 < C < 1

(1+λ)Mβ , where
M = max(y,u)∈Y×U{‖y− ȳ‖2 + ‖u− ū‖2}.

Proof of Proposition 4.12. Let ŷ(·) denote the solution corresponding to û(t)
starting in y0. Since (ŷ(t), û(t)) ∈ Y×U, ‖ŷ(t)− ȳ‖2 6M and ‖û(t)− ū‖2 6M.
We have

V(y) 6
∫t(y)
0

e−Cτ(‖ŷ(τ) − ȳ‖2 + λ‖û(τ) − ū‖2)dτ

6 (1+ λ)M

∫t(y)
0

e−Cτdτ.

Applying the inequality 1− e−x 6 x we obtain

V(y) 6
(1+ λ)M

C
(1− e−Ct(y)) 6 (1+ λ)Mt(y)

6 (1+ λ)Mβ‖(y− ȳ‖2 6 (1+ λ)Mβg(y,u),

which implies (4.4) with K = 1
(1+λ)Mβ . For Assumption 4.7 to be satisfied, we

need K > C. Hence the assumption holds whenever C < 1
(1+λ)Mβ .

4.3.2 Exponential controllability

Assumption 4.13.

(i) There are constants δ > 0 and M > 1 such that for any initial condition
y(0) = y0 ∈ Y there exists an admissible control û(·) ∈ U such that the
corresponding solution ŷ(·) of (4.1) satisfies

‖ŷ(t) − ȳ‖ 6Me−δt‖y0 − ȳ‖,

i.e. the control drives the system from y0 to ȳ exponentially fast.



4.3 controllability conditions 59

(ii) The control function from (i) satisfies the inequality

‖û(t) − ū‖ 6Me−δt‖y0 − ȳ‖

with δ > 0 and M > 1 from (i).

Proposition 4.14. Under Assumption 4.13(i), the optimal value function for g with
λ = 0 satisfies Assumption 4.7 for all 0 < C < 2δ

(M2−1)
. If, in addition, Assump-

tion 4.13(ii) holds, then Assumption 4.7 also holds for any λ > 0 for all 0 < C <
2δ

((1+λ)M2−1)
.

Proof of Proposition 4.14. For λ = 0 we have

V(y) 6
∫∞
0

e−Cτ‖ŷ(τ) − ȳ‖2dτ

6
∫∞
0

e−CτM2e−2δτ‖y0 − ȳ‖2dτ

=
M2

C+ 2δ
‖y0 − ȳ‖2

6
M2

C+ 2δ
g(y,u).

If Assumption 4.13(ii) holds, for any λ > 0 we have

V(y) 6
∫∞
0

e−Cτ(‖ŷ(τ) − ȳ‖2 + λ‖û(τ) − ū‖2)dτ

6
∫∞
0

e−CτM2e−2δτ(1+ λ)‖y0 − ŷ‖2dτ

=
(1+ λ)M2

C+ 2δ
‖y0 − ȳ‖2

6
(1+ λ)M2

C+ 2δ
g(y,u).

Thus, in both cases we obtain (4.4) with

K =
C+ 2δ

(1+ λ)M2
.

For Assumption 4.7 to be satisfied, we again need K > C which holds if

C+ 2δ

(1+ λ)M2
> C.

Which we rearrange to find

C <
2δ

(1+ λ)M2 − 1
.
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Note in conclusion that an algorithm and code for the solution of two-dimensional
linear programs is presented in Chapter 5. The algorithm is then applied to
solve a nonlinear discounted optimal control problem. In particular, in Chap-
ters 6 and 7, we apply the linear programming framework to solve problems
which stabilise such systems to both a point and a closed curve.



Part II

N U M E R I C A L E X P E R I M E N T S





5
D A M P E D M A S S - S P R I N G S Y S T E M

In this chapter we shall demonstrate how to solve a discounted optimal control
problem using the linear programming method outlined in Chapters 1, 2 and 3.

In Section 5.1, a problem of optimal control of a damped mass-spring system
is introduced (the results of this chapter can be compared with the results of
a similar problem solved in [26] using a long run average optimality criteria).
In Section 5.2, we outline a general framework for numerical solutions of
discounted optimal control problems with two state variables and one control
variable. In Section 5.3, the optimal control problem is solved numerically and
the results for two values of the discount factor C are explicitly presented.
Finally, in Section 5.4 a working example of the linear programming method
is presented. The example is written for MATLAB and CPLEX users who may
wish to replicate these results or undertake their own research.

5.1 problem formulation

Consider a controlled damped mass-spring system

y1
′(t) = y2(t),

y2
′(t) = −ω2y1(t) − ky2(t) + u(t),

y(0) = y0,

(5.1)

with the control restricted by the inequality |u(t)| 6 1.

Let g(y,u) = βu2 − y21 and thus the objective function takes the form

J(y0,u(·)) =
∫∞
0

e−Ct(βu(t)2 − y1(t)
2)dt. (5.2)

63
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We consider the optimal control problem

V(y0)
def
= inf

(y(·),u(·))

∫∞
0

e−Ct(βu(t)2 − y1(t)
2)dt,

where the minimisation of is over the set of admissible pairs (y(·),u(·)) satisfy-
ing the system of equations 5.1.

For our numerical experiments, we take the constants k = 0.3, ω = 2 and β = 1,
then define the following entities,

y
def
= (y1,y2),

f(y,u) def
=

 y2

−4y1 − 0.3y2 + u

 , (5.3)

g(y,u) def
= u2 − y21 and y0 = (−4,−4),

with

u ∈ U = [−1, 1] ⊂ R1,

y = (y1,y2) ∈ Y = {(y1,y2) : y1 ∈ [−6, 6],y2 ∈ [−8, 8]} ⊂ R2

(Note that the set Y is chosen to be large enough to contain all the solutions to
the system under consideration).

5.2 the linear programming framework

It is useful at this point to outline a framework for the construction of an
N∆-approximating problem of two state variables and one control variable
which we will use to solve problem (5.1).

The first step is to define the grid of Y ×U by a suitable choice of intervals ∆y1 ,
∆y2 and ∆u with the equations

y∆1,i
def
= y1,min + i∆y1 , ∀i = 0, 1, . . . , (y1,max − y1,min)/∆y1 ,

y∆2,j
def
= y2,min + j∆y2 , ∀j = 0, 1, . . . , (y2,max − y2,min)/∆y2 , (5.4)

u∆k
def
= umin + k∆u, ∀k = 0, 1, . . . , (umax − umin)/∆u,

where the ∆ are chosen in such a way that 1/∆ is an integer. The size of each ∆
may differ to match the dynamics of the problem or to include (or exclude) a
specific coordinate within the grid system.
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Then, using the discretisation described above, the N∆-approximating LP
problem can written in the form

GN,∆(y0)
def
= min
γ∈WN,∆(y0)

∑
i,j,k

g(y∆1,i,y
∆
2,j,u

∆
k )γi,j,k, (5.5)

where we let γN,∆ = {γi,j,k} stand for the solution of (5.5). The polyhedral set
WN,∆(y0) is defined by the equation

WN,∆(y0)
def
=
{
γ = {γi,j,k} > 0 :

∑
i,j,k

γi,j,k = 1,

∑
i,j,k

(φ′i1,i2(y
∆
1,i,y

∆
2,j)

T f(y∆1,i,y
∆
2,j,u

∆
k )

+C(φ(y0) −φ(y
∆
1,i,y

∆
2,j)))γi,j,k = 0, (i1, i2) ∈ IK

}
,

where
∑
i,j,k =

∑L∆
l=1

∑K∆
k=1 and the indexation of the components of γ ∈

WN,∆(y0) corresponds to the indexation of the grid points. The functions
φi1,i2(y1,y2) are the monomials φi1,i2(y1,y2)

def
= yi11 y

i2
2 , i1, i2 = 0, 1, . . . , J,

i1+ i2 > 0. Note that the number N which characterises the N∆-approximating
problem is equal to (J+ 1)2 − 1.

The problem dual to the N∆-approximating problem (5.5) is of the form

max
(µ,λi1 ,i2)

{
µ : µ 6 g(y∆1,i,y

∆
2,j,u

∆
k )

+
∑

(i1,i2)∈IK

λN,∆
i1,i2

(φ′(y∆1,i,y
∆
2,j)

T f(y∆1,i,y
∆
2,j,u

∆
k )

+C(φ(y0) −φ(y
∆
1,i,y

∆
2,j))), ∀(y∆1,i,y

∆
2,j,u

∆
k )
}

. (5.6)

Let {µN,∆, λN,∆
i1,i2

} stand for the solution of the problem (5.6) and define the
equation

ψN,∆(y1,y2)
def
=

∑
(i1,i2)∈IK

λN,∆
i1,i2

φi1,i2(y1,y2). (5.7)

From the latter, we can construct the feedback control function uN,∆(y1,y2) :
Y 7→ U defined as

uN,∆(y1,y2)
def
= argmin

u∈U

{
g(y1,y2,u) +ψN,∆′(y1,y2)T f(y1,y2,u)

}
, (5.8)

which is approximately optimal in the sense that the value of the objective
function obtained with this control tends to the optimal one as N → ∞ and
∆→ 0.
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5.3 the numerical solution

For problem (5.2), the N∆-approximating LP problem is as follows (see (5.5)),

GN,∆(y0) = min
γ∈WN,∆(y0)

∑
i,j,k

(u2k − y
2
1,i)γi,j,k (5.9)

where

WN,∆(y0) =
{
γ = {γi,j,k} > 0 :

∑
i,j,k

γi,j,k = 1,

∑
i,j,k

(
∂(yl11,iy

l2
2,j)

∂y1,i
y2,j +

∂(yl11,iy
l2
2,j)

∂y2,j
(−4y1,i − 0.3y2,j + uk)

+C((−4)l1+l2 − yl11,iy
l2
2,j)))γi,j,k = 0

}
.

The problem dual to the FDLP problem is of the form (see (5.6)),

max
(µ,λl1 ,l2)

{
µ : µ 6 u2k − y

2
1,i+

∑
l1,l2

λN,∆
l1,l2

(
∂(yl11,iy

l2
2,j)

∂y1,i
y2,j +

∂(yl11,iy
l2
2,j)

∂y2,j
(−4y1,i − 0.3y2,j + uk)

+C((−4)l1+l2 − yl11,iy
l2
2,j)), ∀(y1,i,y2,j,uk)

}
. (5.10)

It is a characteristic of the CPLEX solver that solutions λN,∆ for problem
(5.10) are generated simultaneously with the primal results γN,∆. Using the
coefficients λN,∆, we find ψN,∆(y1,y2) as the expansion of (5.7) and then
construct the control uN,∆(y1,y2) in accordance with (5.8). For this example
we have

uN,∆(y1,y2) = argmin
u∈U

{
u2 +

∂ψN,∆(y1,y2)
∂y2

u
}

.

Which is equivalent to

uN,∆(y1,y2) =


aN,∆(y1,y2), if −1 6 aN,∆(y1,y2) 6 1,

−1, if aN,∆(y1,y2) < −1,

1, if aN,∆(y1,y2) > 1,

where

aN,∆(y1,y2) = −
1

2

∂ψN,∆(y1,y2)
∂y2

.
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The problem of (5.9) was solved numerically with the CPLEX [39] solver. The
discretisation parameters used are ∆y1 = 0.01, ∆y2 = 0.01, ∆u = 0.05 and
N = 49. The results presented in this section were computed for the initial
condition y0 = (−4,−4) and a range of discount factors C = 0.01 to C = 1.

Substituting the control uN,∆(y1,y2) into the system (5.3) and integrating with
the MATLAB ode45 solver allows us to obtain the state trajectory yN,∆(t) =

(yN,∆
1 (t),yN,∆

2 (t)), the control uN,∆(yN,∆(t)) and a numerical estimate of the
cost function GNUM(T), where

GNUM(T) = C

∫T
0

e−Ct(u(y1(t),y2(t))2 − y1(t)2)dt, T > 0.

T is chosen large enough that the integral from T to ∞ is sufficiently small.
In our numerical experience, we choose T = 10/C. The optimal LP values
GN,∆(y0) and the numerical estimates of the optimal value function GNUM(T)

are shown in Table 5.1.

Table 5.1: Approximately optimal values GN,∆(y0) and GNUM(T) for different
discount factors C.

C T GN,∆(y0) GNUM(T)

+0.0100 1000 −1.8243 −1.7688

+0.0200 500 −2.2270 −2.1723

+0.0500 200 −3.2139 −3.1734

+0.1000 100 −4.4204 −4.3896

+0.2000 50 −6.0063 −5.9878

+0.5000 20 −8.5134 −8.5041

+1.0000 10 −10.8989 −10.8896

To aid our discussion, we define the set

ΘN,∆ def
=
{
(yl,uk) : γ

N,∆
l,k > 0

}
.

Each element of ΘN,∆ being associated with positive components of the LP
solution vector γN,∆. From which, we also define the set

YN,∆ def
=
{
yl : (yl,uk) ∈ ΘN,∆} = {yl : ∑

k

γN,∆
l,k > 0

}
, (5.11)

which is a projection of the set ΘN,∆ onto the (y1,y2) plane. The elements
of YN,∆ and the state trajectory yN,∆(t) are shown in Figures 5.1 and 5.4 for
C = 0.01 and C = 1 respectively.
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The controls uN,∆(yN,∆(t)) for C = 0.01 and C = 1 are shown in Figures 5.2
and 5.5.

In Figure 5.3 the numerical convergence of the optimal value function GNUM(T)

to the LP solution GN,∆(y0) is demonstrated. The error ε = |GN,∆(y0) −

GNUM(1000)| in Figure 5.3 is not unexpected and arises from the long inte-
gration period when C is small.

The fact that the state trajectory passes near the points YN,∆ and, most impor-
tantly, the fact that the value of the objective function obtained via integration
is the same (within the given proximity) as the optimal value of the finite
dimensional problem indicate that the admissible solution found is a good
approximation of the optimal one.
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Figure 5.1: The approximate optimal trajectory yN,∆(t) of problem 5.2 for the
discount factor C = 0.01. The points YN,∆ associated with positive elements of
the vector γN,∆ are indicated by the small black circles on this graph. Integrated
for twenty seconds, the solution traces a spiral inwards from the initial condition
y0 = (−4,−4) (shown as a solid blue dot).
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Figure 5.2: The approximate optimal control uN,∆(yN,∆(t)) of problem 5.2 for
C = 0.01. The control is bound by the restriction |u(t)| 6 1.
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Figure 5.3: Numerical convergence of optimal value function GNUM(T) to the
optimal LP value GN,∆(y0) for C = 0.01.
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Figure 5.4: The approximate optimal trajectory yN,∆(t) of problem 5.2 for the
discount factor C = 1. The points YN,∆ associated with positive elements of the
vector γN,∆ are indicated by the small black circles on this graph. Integrated for
twenty seconds, the solution traces a spiral inwards from the initial condition
y0 = (−4,−4) (shown as a solid blue dot).
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Figure 5.5: The approximate optimal control uN,∆(yN,∆(t)) of problem 5.2 for
C = 1.
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GN,∆(y0) ≈ GNUM(10) ≈ −10.8899

Figure 5.6: Numerical convergence of optimal value function GNUM(T) to opti-
mal LP value GN,∆(y0) for C = 1.

There are a number of observations we can make with respect to the examples
shown. They are (a) for C small, the control uN,∆(yN,∆(t)) swings between the
maximum and minimum values imposed by the restriction |u(t)| 6 1 and there
is a tendency for the trajectory yN,∆(t) to approach a limit cycle; (b) For C large
the control uN,∆(yN,∆(t)) operates smoothly within |u(t)| 6 1 and there is a
tendency for the trajectory yN,∆(t) to approach (0, 0).

5.4 a sample of matlab code using cplex

This chapter is concluded with a sample of MATLAB code which can be used
to investigate the linear programming method as it is applied to discounted
optimal control. The example requires an academic or professional installation
of CPLEX. The student versions of CPLEX which are freely available will not
support huge linear programs. The author has found that attempts to use the
MATLAB linprog solver are thwarted by memory issues and other solvers
such as GNU GLPK do not cope well with the size of the problems discussed
here.
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5.4.1 Solving the N∆-approximating LP

Listing 5.1 below, is a minimal example of the solver written in MATLAB. The
program builds a vector of objective function coefficients (f in CPLEX notation)
and a corresponding 3-tuple of y and u coordinates which will be useful for
plotting the grid points which are associated with significant concentrations
of occupation measure. The program then builds the matrix of constraint
coefficients Aeq using monomials for the functions φ(·). There are N rows of
constraint coefficients plus an additional row of 1 ′s to enforce the constraint∑
γi,j,k = 1. The right-hand-side column vector beq is all 0 ′s excepting the

last row associated with the
∑
γi,j,k = 1 constraint which has a coefficient of 1.

Finally, lower (zero) and upper bound (unity) vectors constructed.

Listing 5.1: MATLAB example (lpp.m)

% A minimal working example to reproduce the results of chapter 5.

% Requires a fully featured version of IBM ILOG CPLEX Optimization

% Studio. The variables containing the results are written to the

% MATLAB file - ’lpp-output.mat’. Tested on MATLAB 7.7.0 (R2008b).

% Parameters

pv = 7; cv = 1; y0 = [-4, -4];

% Intervals

IntU1 = 20; IntY1 = 120; IntY2 = 160;

% Spans

MinU1 = -1; MaxU1 = +1;

MinY1 = -6; MaxY1 = +6;

MinY2 = -8; MaxY2 = +8;

% Vectors for each dimension of the grid

fprintf(1, ’\nStarting ..\n’);

y1 = linspace(MinY1, MaxY1, IntY1 + 1);

y2 = linspace(MinY2, MaxY2, IntY2 + 1);

u1 = linspace(MinU1, MaxU1, IntU1 + 1);

sz = length(y1) * length(y2) * length(u1);

% Vector of point costs and (y1,y2,u1) tuples

fprintf(1, ’Building f vector\n’);

col = 1;

f = zeros(1, sz);

z = zeros(3, sz);

for i = 1 : length(y1)

for j = 1 : length(y2)
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for k = 1 : length(u1)

f(:, col) = u1(k) * u1(k) - y1(i) * y1(i);

z(:, col) = [y1(i); y2(j); u1(k)];

col = col + 1;

end;

end;

end;

% Populating the Aeq array of coefficients

fprintf(1, ’Populating Aeq[] array\n’);

Aeq = zeros((pv + 1) ^ 2, sz);

col = 1;

for i = 1 : length(y1)

for j = 1 : length(y2)

for k = 1 : length(u1)

row = 1;

for x = 0 : pv

for y = 0 : pv

if x + y > 0

if x == 0

d1 = 0;

else

d1 = x * (y1(i) ^ (x-1)) * y2(j) ^ y;

end;

if y == 0

d2 = 0;

else

d2 = y * (y2(j) ^ (y-1)) * y1(i) ^ x;

end;

f0 = (y0(1) ^ x) * (y0(2) ^ y);

fn = (y1(i) ^ x) * (y2(j) ^ y);

Aeq(row, col) ...

= d1 * y2(j) ...

+ d2 * (-4 * y1(i) - 0.3 * y2(j) + u1(k)) ...

+ cv * (f0 - fn);

row = row + 1;

end;

end;

end;

Aeq(row, col) = 1;

col = col + 1;

end;

end;

end;

% Populating the beq, lb and ub vectors
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fprintf(1, ’Populating beq[], lb[] and ub[] vectors\n’);

beq = zeros((pv + 1) ^ 2, 1); beq(end, :) = 1;

lb = zeros(1, sz); ub = zeros(1, sz) + 1;

% Memory usage

fprintf(1, ’\nMemory summary\n’);

memory

% Invoke the CPLEX solver

fprintf(1, ’\nCalculating...\n’);

[x, fval, exitflag, output, lambda] = ...

cplexlp(f, [], [], Aeq, beq, lb, ub);

% Save workspace variables if successful

if exitflag > 0

fprintf(1, ’\nObjValue = %.10E\n’, fval);

save(’lpp-output.mat’, ’x’, ’fval’, ’exitflag’, ...

’output’, ’lambda’, ’pv’, ’cv’, ’y0’, ...

’MinU1’, ’MaxU1’, ’z’);

else

fprintf(1, ’\nNo solution or error.\n’);

end;

% end-of-file

5.4.2 Find the approximate control and integrate

A successful application of the “lpp.m” example (see Listing 5.1 above) will
produce an output file called “lpp-output.m”. The output file contains the
primal and dual solutions and important properties of the problem such as the
values of C and y0 which we will need to construct an approximate control and
numerically integrate the problem. The following MATLAB program “dlp.m”
(see Listing 5.2) will load the output file and integrate the damped mass-
spring problem from the initial condition for a period of 10/C seconds. The
control function and the dynamics of the system are contained within the m-file
“spring.m” (see Listing 5.3 below). The results are then summarised in a graph.

Listing 5.2: MATLAB example (dlp.m)

% This program ’dlp.m’ loads the output file from ’lpp.m’ and integrate

% the damped mass-spring problem from the initial condition for a period

% of 10/C seconds. The results are then summarised in a graph.
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% Fetch pre-computed variables

s = load(’lpp-output.mat’);

% Use a ’rule of thumb’ for integration times

T = 10/s.cv;

% Integrate from y0 for T seconds. Note that three variables ’y1’,

% ’y2’ and ’g’ are being integrated. This requires us to provide the

% initial condition ’T=0’ in addition to ’y0’.

[t, y] = ode45(@(t, y)spring(t, y, ...

-s.lambda.eqlin(1 : (s.pv + 1)^2 - 1), ...

s.pv, s.cv, [s.MinU1 s.MaxU1]), [0 T], [s.y0 0]);

% Compute the objective value

G = y(:, 3) * s.cv;

fprintf(1, ’\nNumValue = %.10E\n’, G(end));

% Plot the trajectory

figure;

plot(y(:, 1),y(:, 2));

% Plot the evolution of the objective function

figure;

plot(t, G);

% end-of-file

Listing 5.3: MATLAB example (spring.m)

%% This function ’spring.m’ computes the control function and system

%% dynamics of the damped mass-spring problem for each time step of

%% the ODE45 solver. The parameters passed are ’t’ - the time step,

%% ’y’ - the state variables, ’dv’ - the dual coefficients, ’cv’ -

%% the value of C and ’uv’ - the restrictions on the control value.

function ret = spring(t, y, dv, pv, cv, uv)

% Compute a value for the derivative of the ’psi’ function using

% monomials and dual coefficients.

ix = 1;

kv = zeros((pv + 1)^2 - 1, 2);

for i = 0 : pv

for j = 0 : pv

if i + j > 0

kv(ix, 1) = i * (y(1) ^ (i - 1)) * y(2) ^ j;

kv(ix, 2) = j * (y(2) ^ (j - 1)) * y(1) ^ i;

ix = ix + 1;
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end

end

end

% Compute the control value and apply the restrictions.

uhat = (1 / 2) * sum(kv(: , 2) .* dv);

u = min(max(uhat, uv(1)), uv(2));

% Advance the dynamics of the system by one time step.

s(1) = y(2);

s(2) = -4 * y(1) - 0.3 * y(2) + u;

s(3) = exp(-cv * t) * (u * u - y(1) * y(1));

ret = s’;

% end-of-file
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M O D E L O F N E C K A N D D O C K N E R

In this chapter, we apply the linear programming approach to the construction
of an optimal control for the Neck and Dockner model proposed in [46, 47] and
later studied by Feichtinger and Hartl [36].

In Section 6.1, the discounted optimal control problem is introduced. Then, in
Section 6.2 the optimal control problem is solved numerically and the results for
various values of the discount rate C are presented. In Section 6.3 we consider a
periodic optimisation problem. The optimal solutions of the discounted optimal
control problem described in Section 6.2 converge to the optimal solution of
this periodic optimisation problem if the discount factor C is small enough.

6.1 the model of neck and dockner

Following the consideration in [46] and [47], we consider the system

y1
′(t) = α−βy2(t), y2′(t) = u(t), y(0) = y0, (6.1)

where y1(t) is interpreted as the rate of inflation expected by the public at time
t, y2(t) represents the excess of the rate of unemployment over its minimum
level, u(t) is the rate of change of unemployment and α, β are known positive
constant parameters.

Attached to this system is the objective function

J(y0,u(·)) def
=

∫∞
0

e−Ct(ρ2(t) + ĉ(t) +
1

2
u2(t))dt,

where ρ(t) = f1 − a1y2(t) + y1(t) is the "actual rate of inflation" and ĉ(t) =

ln(b0y2(t) + 1) + b1y42(t) is the “cost arising from a certain level of unemploy-
ment” [see 46, 47].
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In the next section, we describe a numerical solution to the discounted optimal
control problem

V(y0)
def
= inf
u(·)∈U admissible

∫∞
0

e−Ct(f21 + y
2
1(t) − 2a1y1(t)y2(t)

+ 2f1y1(t) + ĉ(t) +
1

2
u2(t))dt, (6.2)

where the parameters in the problem are taken to be as follows

α = 0.02, β = 0.5, a1 = 1.5, f1 = 0.02, b0 = 1.5, b1 = 1.0.

6.2 the numerical solution

We follow the framework presented in Chapter (5.2).

The N∆-approximating LP problem can be written in the form (see (5.5))

GN,∆(y0) = min
γ∈WN,∆(y0)

∑
i,j,k

(0.0004+ y21,i − 3y1,iy2,j

+ ln(1.5y2,j + 1) + 0.04y42,j + 0.5u
2
k)γi,j,k,

where

WN,∆(y0) =
{
γ = {γi,j,k} > 0 :

∑
i,j,k

γi,j,k = 1,

∑
i,j,k

(
∂(yl11,iy

l2
2,j)

∂y1,i
(0.02− 0.5y2,j) +

∂(yl11,iy
l2
2,j)

∂y2,j
uk)

+C((0.04)l1+l2 − yl11,iy
l2
2,j)))γi,j,k = 0

}
.

The problem dual to the FDLP problem is of the form (see (5.6)),

max
(µ,λl1 ,l2)

{
µ : µ 6 0.0004+ y21,i − 3y1,iy2,j + ln(1.5y2,j + 1) + y

4
2,j

+ 0.04y1,i + 0.5u2k +
∑
l1,l2

λN,∆
l1,l2

(
∂(yl11,iy

l2
2,j)

∂y1,i
(0.02− 0.5y2,j) +

∂(yl11,iy
l2
2,j)

∂y2,j
uk

+C((0.04)l1+l2 − yl11,iy
l2
2,j)), ∀(y1,i,y2,j,uk)

}
.
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Using the coefficients λN,∆, we find ψN,∆(y1,y2) as the expansion of (5.7)
and then construct the control uN,∆(y1,y2) in accordance with (5.8). For this
example we have

uN,∆(y1,y2) = argmin
u∈U

{
0.5u2 −

∂ψN,∆(y1,y2)
∂y2

u
}

.

Which is equivalent to

uN,∆(y1,y2) =
aN,∆(y1,y2), if −0.0275 6 aN,∆(y1,y2) 6 +0.0275,

−0.0275, if aN,∆(y1,y2) < −0.0275,

+0.0275, if aN,∆(y1,y2) > +0.0275,

where

aN,∆(y1,y2) =
∂ψN,∆(y1,y2)

∂y2
.

The problem of (6.2) was solved numerically with the CPLEX [39] solver. The
discretisation parameters used are ∆y1 = 0.0002, ∆y2 = 0.002, ∆u = 0.001 and
N = 49. The results presented in this section were computed for the initial
condition y0 = (0.04, 0.04) and a range of discount rates from C = 0.001 to
C = 1.

Substituting the control uN,∆(y1,y2) into the system (6.1) and integrating with
the MATLAB ode45 solver allows us to obtain the state trajectories yN,∆(t) =

(yN,∆
1 (t),yN,∆

2 (t)) as shown in Figure 6.1 and a numerical estimate of the cost
function GNUM(T)

GNUM(T) = C

∫T
0

e−Ct(f21 + y
2
1(t) − 2a1y1(t)y2(t)

+ 2f1y1(t) + ĉ(t) +
1

2
u2(t))dt,

where T = 10/C.
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(b) C = 0.05
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(c) C = 0.02
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(d) C = 0.01

Figure 6.1: The approximate optimal trajectory yN,∆(t) of problem 6.2 for
decreasing values of discount rates C = 0.1, 0.05, 0.02 and 0.01. Each problem
has the same initial condition y0 = (0.04, 0.04) (shown as a solid blue dot).
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The optimal LP values GN,∆(y0) and the numerical estimates of the cost func-
tion GNUM(T) are shown in Table 6.1.

Table 6.1: Approximately optimal values GN,∆(y0) and GNUM(T) for different
discount factors C.

C T GN,∆(y0) GNUM(T)

+0.0010 10000 +0.05680 +0.05681

+0.0050 2000 +0.05677 +0.05677

+0.0100 1000 +0.05666 +0.05666

+0.0200 500 +0.05620 +0.05620

+0.0500 200 +0.05351 +0.05352

+0.1000 100 +0.04549 +0.04554

+0.2000 50 +0.02905 +0.02909

+0.5000 20 +0.01291 +0.01288

+1.0000 10 +0.02482 +0.02480

Finally, the trajectory for C = 0.001 is shown in Figure 6.2. The approximately
optimal control is shown in Figure 6.3.
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Figure 6.2: The approximate optimal trajectory yN,∆(t) of problem 6.2 for the
discount factor C = 0.001. The points YN,∆ associated with positive elements of
the vector γN,∆ (see (5.11)) are indicated by the small black circles on this graph.
The solution traces a spiral outwards from the initial condition y0 = (0.04, 0.04)
(shown as a solid blue dot).
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Figure 6.3: The approximate optimal control uN,∆(yN,∆(t)) of problem 6.2 for
C = 0.001.

6.3 vanishing discount rate

As can be seen from Figures 6.1c, 6.1d and Figure 6.2, the optimal state trajecto-
ries obtained with small values of the discount rate seem to be approaching
a certain closed curve. It is natural to conjecture that this closed curve is an
optimal solution of the following periodic optimisation problem

GPER
def
= inf

(y(·),u(·),T)

1

T

∫T
0

(f21 + y
2
1(t) − 2a1y1(t)y2(t)

+ 2f1y1(t) + ĉ(t) +
1

2
u2(t))dt,

where inf is over the length of the time interval T , over admissible controls de-
fined on [0, T ] and over the solutions of (6.1) satisfying the periodicity condition
y(0) = y(T).

The infinite dimensional LP problem corresponding to this problem is obtained
from (6.2) by setting C = 0. It has been solved using a technique similar to the
one we are using to solve the problem for C > 0. The resulting state trajectory
is the orbit depicted (blue) in Figure 6.4, this, in fact, being the closed curve
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towards which the trajectories in Figure 6.1c, 6.1d and Figure 6.2 converge. The
orbit depicted (red) in Figure 6.4 is the periodic state trajectory obtained with
the control

u(t) = ε sinωt, with ω = 2π/T , (6.3)

where T = 9 and ε = 0.0275. Note that the use of this control was proposed
by Feichtinger and Hartl [36] who indicated that the value of the objective
function 0.05684 obtained with this control is an improvement with respect to
the value 0.05707 obtained with the steady state solution ȳ = (0.04, 0.04), ū = 0.
Also note that the value of the objective function achieved with the control
obtained through the LP approach 0.05680 is slightly better than the objective
value obtained with the periodic control (6.3).
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ȳ = (0.04, 0.04)

Figure 6.4: The inner trajectory (shown in red) is the trajectory of the system
(6.1) obtained with the periodic control (6.3). The outer trajectory (shown in
blue) is the trajectory yN,∆(t) of the discounted optimal control problem (6.2)
for which C = 0. The small blue dot is the initial integration condition. The
steady state ȳ = (0.04, 0.04) which exists under the control ū = 0 is shown as a
small black dot.



7
S TA B I L I S AT I O N O F A L O T K A - V O LT E R R A S Y S T E M

The aim of this chapter is to present a series of experiments which demonstrate
the stabilisation of a Lotka-Volterra system using discounted optimal controls
solved using the linear programming method introduced in earlier chapters.

Section 7.1 introduces the well-known Lotka-Volterra system as the dynamical
system to be studied. Sections 7.2 and 7.3 present the results of several numerical
experiments which aim to demonstrate the stabilisation of a system to (a) a
point in the state space and (b) an orbit.

7.1 the dynamic model

The Lotka-Volterra [53] system is described by two first-order, nonlinear differ-
ential equations

y1
′ = −y1 + y1y2,

y2
′ = +y2 − y1y2,

(7.1)

and has a general solution in the form of a closed curve

lny2(t) − y2(t) + lny1(t) − y1(t) = K,

where the constant K is dependent upon the initial conditions. A sample of
such curves are shown in Figure 7.1.
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Figure 7.1: Two Lotka-Volterra closed curves characterised by the constants
KA ≈ −2.0500 and KB ≈ −2.1271. The evolution of state is in a clockwise
direction about the equilibrium point at (1, 1) which is associated with the
constant KC = −2.

In a biological context the Lotka-Volterra system is used to model the interaction
between predator and prey species where y1 represents the number of predators
and y2 represents the number of prey. We shall introduce a positive control
0 6 u 6 1 which simulates the introduction of a ”poison” or “bait” acting upon
the predator species.

The controlled system of equations then becomes:

y1
′(t)= −y1(t) + y1(t)y2(t) − y1(t)u(t),

y2
′(t)= +y2(t) − y1(t)y2(t),

(7.2)
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where

u ∈ U = [0, 1] ⊂ R1,

y = (y1,y2) ∈ Y = {(y1,y2) : y1 ∈ [0.6, 1.6],y2 ∈ [0.6, 1.6]} ⊂ R2

With u(t) ≡ 0, the system (7.2) becomes the Lotka-Volterra equations (7.1).

It can readily be seen that the set S of steady state admissible pairs (ȳ, ū) ∈ Y×U
such that f(ȳ, ū) = 0 is defined by the equation

S = {(ȳ, ū) : ȳ = (1, ū+ 1), ∀ū ∈ [0, 0.6]}.

Each of the optimal control problems in this chapter were solved using the
CPLEX [39] solver for various discount rates between C = 0.01 and C = 1.
The discretisation parameters used are ∆y1 = 0.01, ∆y2 = 0.01, ∆u = 0.05 and
N = 49 on the grid defined by (5.4).

7.2 stabilisation to a point

In this section there are two stabilisation problems. The first problem attempts
to stabilise a controlled Lotka-Volterra system (7.2) to an equilibrium point
using a cost function which is consistent with the formulation in Chapter 4. The
second problem is an earlier study which attempted to control the system to a
specified equilibrium point but failed to do so because the cost function was
inconsistent. Whilst the result trajectories did converge to a point. The location
of this point was dependent on the value of the discount rate C.

7.2.1 A properly constructed cost function

Consider the problem of stabilising the system to a point ȳ = (1, 1.26) from the
initial condition (1.4, 1.4). In accordance with the results obtained in Chapter 4,
the stabilising control can be found by solving the optimal control problem

V(y0) = inf
u(·)∈U admissible∫∞
0

e−Ct((y1(t) − 1)
2 + (y2(t) − 1.26)2 + (u(t) − 0.26)2)dt. (7.3)
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From the results of Chapters 1, 2 and 3 it follows that an approximately optimal
solution of the problem 7.3 can be constructed on the basis of solution of the
finite dimensional (FD) linear programming (LP) problem

GN,∆(y0) = min
γ∈WN,∆(y0)

∑
i,j,k

((y1,i − 1)
2 + (y2,j − 1.26)2 + (uk − 0.26)2)γi,j,k

where

WN,∆(y0) =
{
γ = {γi,j,k} > 0 :

∑
i,j,k

γi,j,k = 1,

∑
i,j,k

(
∂(yl11,iy

l2
2,j)

∂y1,i
(−y1,i + y1,iy2,j − y1,iuk) +

∂(yl11,iy
l2
2,j)

∂y2,j
(y2,j − y1,iy2,j)

+C(1.4l1+l2 − yl11,iy
l2
2,j)))γi,j,k = 0

}
. (7.4)

The problem dual to the FDLP problem is of the form

max
(µ,λl1 ,l2)

{
µ : µ 6 (y1,i − 1)

2 + (y2,j − 1.26)2 + (uk − 0.26)2

+
∑
l1,l2

λN,∆
l1,l2

(
∂(yl11,iy

l2
2,j)

∂y1,i
(−y1,i + y1,iy2,j − y1,iuk)

+
∂(yl11,iy

l2
2,j)

∂y2,j
(y2,j − y1,iy2,j) +C(1.4l1+l2 − y

l1
1,iy

l2
2,j)),

∀(y1,i,y2,j,uk)
}

. (7.5)

Denote by (µ, λ) an optimal solution of the problem (7.5) and declare ψN,∆ as
the function

ψN,∆(y1,y2) =
∑
l1,l2

λN,∆
l1,l2y

l1
1,iy

l2
2,j.

Denote also

aN,∆(y1,y2) =
1

2

∂ψN,∆(y1,y2)
∂y1

y1 + 0.26.

In Section 5.2 it has been shown that the control

uN,∆(·) =


aN,∆(y1,y2), if 0 6 aN,∆(y1,y2) 6 1,

0, if aN,∆(y1,y2) < 0,

1, if aN,∆(y1,y2) > 1.

(7.6)
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that minimises the expression

min
u∈U

{
(u− 0.26)2 +

∂ψN,∆(y1,y2)
∂y1

(−y1u)
}

,

can serve as an approximation for the optimal control for N large enough and
∆ small enough.

The control system (7.2) was integrated using the control rule (7.6) and termi-
nated at T = 10/C. The final values for the state and control variables lie close
to the anticipated equilibrium value ȳ = (1, 1.26) and ū = 0.26. The numerical
value of the cost function GNUM(T) and LP objective value GN,∆(y0) are close.
The terminal characteristics of this problem are summarised in the Table 7.1.

Table 7.1: Terminal characteristics of the optimal control problem 7.3.

C y1 y2 u GN,∆(y0) GNUM(T)

+0.0100 +1.0001 +1.2600 +0.2599 +0.0017 +0.0016

+0.0200 +1.0000 +1.2588 +0.2603 +0.0033 +0.0033

+0.0500 +1.0000 +1.2598 +0.2599 +0.0081 +0.0081

+0.1000 +1.0011 +1.2606 +0.2607 +0.0159 +0.0158

+0.2000 +0.9995 +1.2586 +0.2592 +0.0301 +0.0300

+0.5000 +1.0000 +1.2599 +0.2599 +0.0644 +0.0643

+1.0000 +1.0016 +1.2689 +0.2600 +0.1011 +0.1010

The resulting state trajectories are shown in Figure 7.2 and the approximately
optimal controls are shown in Figure 7.3.
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Figure 7.2: A sample of approximately optimal state trajectories for the optimal
control problem 7.3 where each trajectory shows convergence to the point
ȳ = (1, 1.26).
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Figure 7.3: A sample of approximately optimal control rules for the optimal
control problem 7.3.

As one can see, in all cases, the state trajectories converge to the selected steady
state point (1, 1.26).

7.2.2 A poorly constructed cost function

Consider the problem of stabilising the system to a point ȳ = (1, 1.5) from
the initial condition (1.4, 1.4). In this example the cost function is inconsistent
with the findings of Chapter 4 in that f(ȳ, ū) 6= 0. We find that the trajectory
converges to a point (ŷ, û) 6= (ȳ, ū) which is dependent on C.

V(y0) = inf
u(·)∈U admissible∫∞

0

e−Ct((y1(t) − 1)
2 + (y2(t) − 1.5)2 + u2(t))dt. (7.7)

From the results of Chapters 1, 2 and 3 it follows that an approximately optimal
solution of the problem 7.7 can be constructed on the basis of solution of the
finite dimensional linear programming problem

GN,∆(y0) = min
γ∈WN,∆(y0)

∑
i,j,k

((y1,i − 1)
2 + (y2,j − 1.5)2 + u2k)γi,j,k

where WN,∆(y0) is defined in 7.4.
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The problem dual to the FDLP problem is of the form

max
(µ,λl1 ,l2)

{
µ : µ 6 (y1,i − 1)

2 + (y2,j − 1.5)2 + u2k

+
∑
l1,l2

λN,∆
l1,l2

(
∂(yl11,iy

l2
2,j)

∂y1,i
(−y1,i + y1,iy2,j − y1,iuk)

+
∂(yl11,iy

l2
2,j)

∂y2,j
(y2,j − y1,iy2,j) +C(1.4l1+l2 − y

l1
1,iy

l2
2,j)),

∀(y1,i,y2,j,uk)
}

. (7.8)

Denote by (µ, λ) an optimal solution of the problem (7.8) and declare ψN,∆ as
the function

ψN,∆(y1,y2) =
∑
l1,l2

λN,∆
l1,l2y

l1
1,iy

l2
2,j.

Denote also

aN,∆(y1,y2) =
1

2

∂ψN,∆(y1,y2)
∂y1

y1,

In Section 5.2 it has been shown that the control

uN,∆(·) =


aN,∆(y1,y2), if 0 6 aN,∆(y1,y2) 6 1,

0, if aN,∆(y1,y2) < 0,

1, if aN,∆(y1,y2) > 1.

(7.9)

that minimises the expression

min
u∈U

{
u2 +

∂ψN,∆(y1,y2)
∂y1

(−y1u)
}

,

can serve as an approximation for the optimal control for N large enough and
∆ small enough.

The control system (7.2) was integrated using the control rule (7.9) and ter-
minated at T = 10/C. The final values for the state and control variables are
dependent on the value of the discount rate C. The numerical value of the
cost function GNUM(T) and LP objective value GN,∆(y0) are close. The terminal
characteristics of this problem are summarised in the Table 7.2.
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Table 7.2: Terminal characteristics of the optimal control problem 7.7.

C y1 y2 u GN,∆(y0) GNUM(T)

+0.0100 +1.0000 +1.2499 +0.2499 +0.1284 +0.1283

+0.0200 +0.9999 +1.2498 +0.2499 +0.1317 +0.1317

+0.0500 +0.9989 +1.2489 +0.2482 +0.1415 +0.1414

+0.1000 +1.0001 +1.2487 +0.2489 +0.1573 +0.1572

+0.2000 +1.0000 +1.2459 +0.2460 +0.1868 +0.1867

+0.5000 +0.9998 +1.2269 +0.2265 +0.2571 +0.2569

+1.0000 +0.9999 +1.1748 +0.1749 +0.3177 +0.3176

The resulting state trajectories are shown in Figure 7.4 and the approximately
optimal controls are shown in Figure 7.5.
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Figure 7.4: A sample of approximately optimal state trajectories for the optimal
control problem 7.7.
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Figure 7.5: A sample the approximately optimal control rules for the optimal
control problem 7.7.

As one can see, in all cases, the state trajectories converge to a steady state
point dependent upon the value of C. Note that the dependence of the optimal
solution on the discount rate is consistent with results described in Chapter 6

of [15].



7.3 stabilisation to a curve 99

7.3 stabilisation to a curve

The problems of the previous section are concerned with problems of optimal
control related to asymptotic stabilisation to the point (ȳ, ū). In this section, we
consider an optimal control problem which stabilises a Lotka-Volterra system
to an orbit characterised by a constant K.

The system of equations (7.2) is to be controlled from an initial condition
y0 = (1.4, 1.4) lying on the characteristic curve KB ≈ −2.127 to converge to a
closed curve characterised by the constant KA ≈ −2.0500. Consider the problem

V(y0) = inf
u(·)∈U admissible∫∞

0

e−Ct((ln(y1(t)) + ln(y2(t)) − y1(t) − y2(t) + 2.05)2 + u2(t))dt. (7.10)

From the results of Chapters 1, 2 and 3 it follows that an approximately optimal
solution of the problem 7.3 can be constructed on the basis of solution of the
finite dimensional linear programming problem

GN,∆(y0) =

min
γ∈WN,∆(y0)

∑
i,j,k

((ln(y1,i) + ln(y2,j) − y1,i − y2,j + 2.05)2 + u2k)γi,j,k

where WN,∆(y0) is defined in 7.4.

The problem dual to the FDLP problem is of the form

max
(µ,λl1 ,l2)

{
µ : µ 6 (ln(y1,i) + ln(y2,j) − y1,i − y2,j + 2.05)2 + u2k

+
∑
l1,l2

λN,∆l1, l2(
∂(yl11,iy

l2
2,j)

∂y1,i
(−y1,i + y1,iy2,j − y1,iuk)

+
∂(yl11,iy

l2
2,j)

∂y2,j
(y2,j − y1,iy2,j) +C(1.4l1+l2 − y

l1
1,iy

l2
2,j)), ∀(y1,i,y2,j,uk)

}
.

Denote by (µ, λ) an optimal solution of the problem (7.10) and declare ψN,∆ as
the function

ψN,∆(y1,y2) =
∑
l1,l2

λN,∆
l1,l2y

l1
1,iy

l2
2,j.
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Denote also

aN,∆(y1,y2) =
1

2

∂ψN,∆(y1,y2)
∂y1

y1.

In Section 5.2 it has been shown that the control

uN,∆(·) =


aN,∆(y1,y2), if 0 6 aN,∆(y1,y2) 6 1,

0, if aN,∆(y1,y2) < 0,

1, if aN,∆(y1,y2) > 1.

(7.11)

that minimises the expression

min
u∈U

{
u2 +

∂ψN,∆(y1,y2)
∂y1

(−y1u)
}

,

can serve as an approximation for the optimal control for N large enough and
∆ small enough.

The control system (7.2) was integrated using the control rule (7.11) and termi-
nated using the following stopping rule:

Remark 7.1. Unlike the problems in Section 7.2 where numerical integration pro-
ceeded for a fixed period of time a stopping rule was applied to problem 7.10 of the
form

Stop if t > T or |ln(y1) + ln(y2) − y1 − y2 −KA| < δ,

where T = 40 seconds, KA = −2.05 and δ = 0.0001.

The state trajectories for discount rates C = 0.1 and C = 1 are shown in Figures
7.6 and 7.7 respectively, with the associated control rules in Figure 7.8. For each
integration the trajectory leaves the initial condition y0 and takes a different
path which ultimately converges to the same curve KA = −2.05. The same
remarks apply for the control variable u which converges to zero. In each case
the integrated objective value GNUM(T) agrees closely with the objective value
obtained from the LP solution GN,∆(y0). From this result we can conclude that
the trajectories generated by the control rule (7.11) are approximately optimal.
The terminal characteristics of this problem are summarised in Table 7.3.
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Table 7.3: Terminal characteristics of the problem 7.10. Numerical values for the
objective function GNUM(T) agree closely with the LP objective values GN,∆(y0).

C K u GN,∆(y0) GNUM(T)

+0.0100 −2.0443 +0.0017 +0.0001 +0.0002

+0.0200 −2.0386 +0.0017 +0.0002 +0.0004

+0.0500 −2.0352 +0.0018 +0.0007 +0.0008

+0.1000 −2.0463 +0.0000 +0.0014 +0.0014

+0.2000 −2.0324 +0.0024 +0.0024 +0.0024

+0.5000 −2.0500 +0.0026 +0.0041 +0.0040

+1.0000 −2.0375 +0.0043 +0.0051 +0.0050

y1

y2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Equilibrium

(1, 1)

(1.4, 1.4)

KA ≈ −2.0500

KB ≈ −2.1271

KC = −2

Figure 7.6: Approximately optimal state trajectory for problem 7.10 with a
discount rate C = 0.1. The trajectory converges to a curve characterised by the
constant KA ≈ −2.0500.
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1.2

1.3
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1.5

1.6
KB ≈ −2.1271

KA ≈ −2.0500

Equilibrium

(1, 1)

KC = −2

(1.4, 1.4)

Figure 7.7: Approximately optimal state trajectory for problem 7.10 with a
discount rate C = 1.0. The trajectory converges to a curve characterised by the
constant KA ≈ −2.0500.
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C = 0.5
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Figure 7.8: A sample of control rules for Problem 7.10. Each control rule appears
to be converging to zero.

7.4 conclusion

The problems studied in this chapter demonstrate the applicability of the
linear programming method to the stabilisation of a dynamical system. We
have demonstrated that the controls constructed on the basis of a solution of
the corresponding LP problems steer the Lotka-Volterra system to a desired
equilibrium or orbit.





8
S Y N T H E S I S O F N E A R - O P T I M A L C O N T R O L M A P S

In the numerical examples of Chapters 5, 6 and 7 we generated approximately
optimal controls for time discounted optimal control problems using the linear
programming method. We note that these controls are constructed for a specific
initial condition y(0) = y0 and are near-optimal only on a trajectory which
satisfies such a condition. Using a Lotka-Volterra example from Chapter 7.3,
we discuss a way to construct a feedback control that is near-optimal from an
arbitrary initial condition y′0.

In Section 8.1, the Lotka-Volterra problem is solved by the linear programming
method outlined in Chapter 5.2. Using two different initial conditions, located
inside and outside the characteristic closed curve K, we show that the solution
to each problem exhibits stabilising behaviour.

In Section 8.2 we show that the controls which were stabilising in Section 8.1,
lead to non-stabilising behaviour when the system is integrated from a starting
point y′0 which does not coincide with the initial condition y0.

In Section 8.3, we describe how a control map can be synthesised by solving
time discounted optimal control problems on a regular grid of initial conditions.

8.1 stabilisation to a curve

We consider the controlled Lotka-Volterra system first described in Chapter 7.3
which is reproduced below

y1
′(t)= −y1(t) + y1(t)y2(t) − y1(t)u(t),

y2
′(t)= +y2(t) − y1(t)y2(t),

(8.1)

105
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where

u ∈ U = [0, 1] ⊂ R1,

y = (y1,y2) ∈ Y = {(y1,y2) : y1 ∈ [0.5, 1.7],y2 ∈ [0.5, 1.7]} ⊂ R2.

(The set Y has been expanded to accommodate the dynamics of the optimal
control problems needed for the construction of the optimal control map
described later in this chapter.)

Then consider the problem of stabilisation to an orbit characterised by the
constant K = −2.05,

V(y0) = inf
u(·)∈U admissible∫∞

0

e−Ct((ln(y1(t)) + ln(y2(t)) − y1(t) − y2(t) + 2.05)2 + u2(t))dt. (8.2)

In Chapter 7.3 it has been shown that the control

uN,∆(·) =


aN,∆(y1,y2), if 0 6 aN,∆(y1,y2) 6 1,

0, if aN,∆(y1,y2) < 0,

1, if aN,∆(y1,y2) > 1.

(8.3)

that minimises the expression

min
u∈U

{
u2 +

∂ψN,∆(y1,y2)
∂y1

(−y1u)
}

,

steers the solution yN,∆(t) to the orbit characterised by the constant K.

Two time discounted optimal control problems were solved using the CPLEX
[39] solver for the discount rate C = 0.05. The first problem used an initial
condition y0 = (0.7, 1.4) which is external to the closed curve K (see, Figure 8.1a)
and the second problem used an initial condition y0 = (1.1, 0.9) which is
internal to the closed curve K (see, Figure 8.1b). The discretisation parameters
used are ∆y1 = 0.01, ∆y2 = 0.01, ∆u = 0.05 and N = 49 on the grid defined by
(5.4).

The near-optimal trajectories yN,∆(t) obtained by the numerical integration
of the system (8.1) from the respective initial conditions, under the influence
of the control (8.3), spiral inwards or outwards (as the case may be) from the
initial condition to stabilise on the desired orbit.
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(a) Trajectory yN,∆(t) from y0 = (0.7, 1.4).
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(b) Trajectory yN,∆(t) from y0 = (1.1, 0.9).

Figure 8.1: The trajectory yN,∆(t) of problem 8.2. Each trajectory is near-optimal
with respect to the initial condition y0 for which the control was constructed.
(y0 is shown as a solid blue dot).

8.2 initial condition dependency

The controls in Section 8.1 are constructed for a specific initial condition and
optimal only on a trajectory which includes the initial condition y0 on it’s path.
To illustrate this point, Figure 8.2a shows a trajectory yN,∆(t) originating from
a starting point y′0 = (1.1, 0.9) which differs from the initial condition y0 =

(0.7, 1.4) under which the integrating control was constructed. The trajectory
fails to stabilise to the orbit K (c.f. Figure 8.1b). Figure 8.2b shows a trajectory
yN,∆(t) originating from a starting point y′0 = (0.7, 1.4) which differs from
the initial condition y0 = (1.1, 0.9) under which the integrating control was
constructed. This trajectory also fails to stabilise to the orbit K (c.f. Figure 8.1a).

8.3 synthesised optimal control map

Below, we indicate a way to construct a control map ûN,∆(y), the use of
which leads to the stabilising behavior of solutions for any initial conditions.
Construction is based on the solution of LP problems related to (8.2) for a set
(regular grid) of initial conditions Y0:

Y0
def
= {(y1,y2) : y1 ∈ {0.6, 0.7, . . . , 1.6},y2 ∈ {0.6, 0.7, . . . , 1.6}}.

Denote by uN,∆
y0,1,y0,2(·) the control (8.3) constructed on the basis of the solu-

tion of the corresponding LP problem with (y1(0),y2(0)) = (y0,1,y0,2) ∈ Y0.
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(a) y0 = (1.1, 0.9) 6= y′0 = (0.7, 1.4).
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(b) y0 = (0.7, 1.4) 6= y′0 = (1.1, 0.9).

Figure 8.2: The trajectory yN,∆(t) of problem 8.2. The trajectories are integrated
from a starting point y′0 (shown as a solid blue dot) using a control constructed
from a different initial condition y0 6= y′0 (shown as red circle and dot). Neither
trajectory stabilises to the desired orbit.

For (y1,y2) ∈ Y0, take ûN,∆(y1,y2)
def
= uN,∆

y1,y2(y1,y2). For (y1,y2) /∈ Y0, de-
fine ûN,∆(y1,y2) via interpolation. The trajectory obtained under the interpo-
lated control ûN,∆(y1,y2) we denote as ŷN,∆. The two dimensional interpo-
lation used in these examples is the MATLAB bilinear interpolation function
interp2() with the “linear” option selected.

Each of the 121 optimal control problems associated with Y0 were solved
using the CPLEX [39] solver for the discount rate C = 0.05. The discretisation
parameters used are ∆y1 = 0.01, ∆y2 = 0.01, ∆u = 0.05 and N = 49 on the grid
defined by (5.4).

The two examples in Section 8.2 have been integrated again from the same
starting points using the synthesised optimal control ûN,∆(y). The trajectories
in Figure 8.3a and 8.3b now stabilise to the desired orbit K.
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(a) Trajectory ŷN,∆(t) from y′0 = (1.1, 0.9).
Stabilisation to the desired orbit is restored.
c.f. Fig. 8.2a.
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(b) Trajectory ŷN,∆(t) from y′0 = (0.7, 1.4).
Stabilisation to the desired orbit is restored.
c.f. Fig. 8.2b.

t

u

5 10 15 20 25 30 35 40 45 50

0.02

0.04

0.06

0.08

0.10

(c) uN,∆(yN,∆(t)) (blue) and ûN,∆(yN,∆(t))
(red) for Fig 8.3a.
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(d) uN,∆(yN,∆(t)) (blue) and ûN,∆(yN,∆(t))
(red) for Fig 8.3b.

Figure 8.3: In (a) and (b) above, the near-optimal trajectory ŷN,∆(t) steered by
the synthesised optimal control is shown in blue. The starting point y′0 is shown
as a solid blue dot. In (c) and (d), the near-optimal controls (blue) obtained in
Section 8.1 and the synthesised optimal controls (red) are shown as functions
of time.
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Proof of Proposition 1.6

The following is a proof for Proposition 1.6 which was originally published in
[25]. The proof is reproduced here for convenience.

Due to the approximating property of the sequence of the functions φi(·),
i = 1, 2, . . . (see (2.1) and Lemma 2.2), the set W(y0) can be presented in the
form

W(y0) =
{
γ ∈ P(Y ×U) :∫

Y×U
(φ′i(y)

T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du) = 0,

i = 1, 2, . . .
}

, (A.1)

where, without loss of generality, one may assume that the functions φi(·)
satisfy the following normalisation conditions:

max
y∈D̂

{
|φi(y)|, ‖φ′i(y)‖

}
6
1

2i
, i = 1, 2, . . . (A.2)

where ‖φ′i(y)‖ is a norm of φ′i(y) in Rm, and D̂ is a closed ball in Rm that
contains Y in its interior.

Let l1 and l∞ stand for the Banach spaces of infinite sequences such that, for any
x = (x1, x2, . . . ) ∈ l1, ‖x‖l1

def
=
∑
i|xi| < ∞ and, for any λ = (λ1, λ2, . . . ) ∈ l∞,

‖λ‖l∞ def
= supi|λi| <∞. It is easy to see that, given an element λ ∈ l∞, one can

define a linear continuous functional λ(·) : l1 → R1 by the equation

λ(x) =
∑
i

λixi, ∀x ∈ l1, ‖λ(·)‖ = ‖λ‖l∞ . (A.3)

It is also known (see, e.g., [52], p.86) that any continuous linear functional
λ(·) : l1 → R1 can be presented in the form (A.3) with some λ ∈ l∞.
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By (A.2), (φ1(y),φ2(y), . . . ) ∈ l1 and (∂φ1∂yj
, ∂φ2∂yj

, . . . ) ∈ l1 for any y ∈ Y. Hence,
the function ψλ(y),

ψλ(y)
def
=
∑
i

λiφi(y), λ = (λ1, λ2, . . . ) ∈ l∞, (A.4)

is continuously differentiable, with ψ′λ(y) =
∑
i λiφ

′
i(y).

Proof of Proposition 1.6(iii). If the function ψ(·) satisfying (1.16) exists, then

min
(y,u)∈Y×U

{
−ψ′(y)T f(y,u) −C(ψ(y0) −ψ(y))

}
> 0

and, hence,

lim
α→∞ min

(y,u)∈Y×U

{
g(y,u) +α(−ψ′(y)T f(y,u) −C(ψ(y0) −ψ(y)))

}
=∞.

This implies that the optimal value of problem 1.13 is unbounded (µ(y0) =∞).

Assume now that the optimal value of problem 1.13 is unbounded. That is,
there exists a sequence (µk,ψk(·)) such that limk→∞ µk =∞,

µk 6 g(y,u) + (ψ′k(y)
T f(y,u) +C(ψk(y0) −ψk(y))), ∀(y,u) ∈ Y ×U,

=⇒ 1 6
1

µk
g(y,u) +

1

µk
(ψ′k(y)

T f(y,u)

+C(ψk(y0) −ψk(y))), ∀(y,u) ∈ Y ×U.

For k large enough, 1
µk

|g(y,u)| 6 1
2 , for all (y,u) ∈ Y ×U. Hence

1

2
6
1

µk
(ψ′k(y)

T f(y,u) +C(ψk(y0) −ψk(y))), ∀(y,u) ∈ Y ×U.

That is, the function ψ(y) def
= − 1

µk
ψk(y) satisfies (1.16).

Proof of Proposition 1.6(i). From (1.14) it follows that, if W(y0) is not empty,
then the optimal value of problem (1.13) is bounded.
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Conversely, let us assume that the optimal value µ∗(y0) of problem (1.13) is
bounded and let us establish that W(y0) is not empty. Assume that it is not
true and W(y0) is empty. Define the set Q by the equation

Q
def
=
{
x = (x1, x2, . . . ) :

xi =

∫
Y×U

(φ′i(y)
T f(y,u) +C(φi(y0) −φi(y)))γ(dy,du), γ ∈ P(Y ×U)

}
.

It is easy to see that the set Q is a convex and compact subset of l1 (the fact that
Q(y0) is relatively compact in l1 is implied by (A.2); the fact that it is closed
follows from that P(Y ×U) is compact in weak? convergence topology).

By (A.1), the assumption that W(y0) is empty is equivalent to the assumption
that the set Q does not contain the “zero element” (0 6∈ Q). Hence, by a sep-
aration theorem (see, e.g., [52], p.59), there exists λ̄ = (λ̄1, λ̄2, . . . ) ∈ l∞ such
that

0 = λ̄(0) >max
x∈Q)

∑
i

λ̄ixi

= max
γ∈P(Y×U)

∫
Y×U

(ψ′
λ̄
(y)T f(y,u) +C(ψλ̄(y0) −ψλ̄(y)))γ(dy,du)

= max
(y,u)∈Y×U

{
ψ′
λ̄
(y)T f(y,u) +C(ψλ̄(y0) −ψλ̄(y))

}
,

where ψλ̄(y) =
∑
i λ̄iφi(y) (see (A.4)). This implies that the function ψ(y) def

=

ψλ̄(y) satisfies (1.16), and, by Proposition 1.6(iii), µ∗(y0) is unbounded. Thus,
we have obtained a contradiction that proves that W(y0) is not empty.

Proof of Proposition 1.6(ii). By Proposition 1.6(i), if the optimal value of prob-
lem (1.13) is bounded, then W(y0) is not empty and, hence, a solution to
problem (1.8) exists.

Define the set Q̂ ⊂ R1 × l1 by the equation

Q̂
def
=
{
(θ, x) : θ >

∫
Y×U

g(y,u)γ(dy,du), x = (x1, x2, . . . ),

xi =

∫
Y×U

(
φ′i(y)

T f(y,u) +C(φi(y0) −φi(y))
)
γ(dy,du), γ ∈ P(Y ×U)

}
.

The set Q̂ is convex and closed. Also, for any j = 1, 2, . . . , the point (θj, 0) 6∈
Q̂, where θj

def
= G∗(y0) −

1
j and 0 is the zero element of l1. On the basis of
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a separation theorem (see [52], p.59), one may conclude that there exists a
sequence (κj, λj) ∈ R1 × l∞, j = 1, 2, . . . (with λj def

= (λj1, λj2, . . . )) such that

κj(G∗(y0) −
1

j
) + δj 6 inf

(θ,x)∈Q̂

{
κjθ+

∑
i

λ
j
ixi
}

= inf
γ∈P(Y×U)

{
κjθ+

∫
Y×U

(ψ′λj(y)
T f(y,u) +C(ψλj(y0) −ψλj(y)))γ(dy,du)

s.t. θ >
∫
Y×U

g(y,u)γ(dy,du)
}

, (A.5)

where δj > 0 for all j and ψλj(y) =
∑
i λ
j
iφi(y). From (A.5) it immediately

follows that κj > 0. Let us show that κj > 0. In fact, if it was not the case, one
would obtain that

0 < δj 6 min
γ∈P(Y×U)

∫
Y×U

(ψ′λj(y)
T f(y,u) +C(ψλj(y0) −ψλj(y)))γ(dy,du)

= min
(y,u)∈Y×U

{
ψ′λj(y)

T f(y,u) +C(ψλj(y0) −ψλj(y))
}

which implies

max
(y,u)∈Y×U

{
−ψ′λj(y)

T f(y,u) −C(ψλj(y0) −ψλj(y))
}
6 −δj < 0.

The latter would lead to the validity of the inequality (1.16) with ψ(y) =

−ψλj(y), which, by Proposition 1.6(iii), would imply that the optimal value of
the dual problem (1.13) is unbounded. Thus, κj > 0.

Dividing (A.5) by κj one can obtain that

G∗(y0) −
1

j

< (G∗(y0) −
1

j
) +

δj

κj

6 min
γ∈P(Y×U)

{ ∫
Y×U

(g(y,u) +
1

κj
[ψ′λj(y)

T f(y,u))

+C(ψλj(y0) −ψλj(y)))γ(dy,du)
}

= min
(y,u)∈Y×U

{
g(y,u) +

1

κj
(ψ′λj(y)

T f(y,u) +C(ψλj(y0) −ψλj(y)))
}

6 µ∗(y0)

=⇒ G∗(y0) 6 µ
∗(y0).

The latter and (1.14) prove (1.15).
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