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Summary 

Calibration of numerical models as a precursor to predictive uncertainty analysis is 

now regarded as standard practice in groundwater modelling for management and 

decision support. Despite computational advances facilitating increasingly complex 

and realistic model-based representations of natural systems, model 

simplifications/imperfections relative to the incomprehensible detail of reality is 

unavoidable. 

Calibration of a simplified/imperfect model may lead to additional error in model 

predictions that is undetectable through standard uncertainty analysis approaches. This 

calibration-induced “bias” increases the risk of underestimation of potential predictive 

error, which defines ultimate failure of a modelling process. Assurance against 

modelling failure thus requires that calibration-induced predictive bias is forestalled 

or quantified. This thesis makes several key contributions to the knowledge base 

pertaining to calibration-induced predictive bias identification, and exposition of its 

origins, towards providing best-practice guidance for repressing its occurrence. 

The first component of work is a proof of concept for the “paired model analysis” 

(PMA) methodology for bias identification and reduction presented by Doherty and 

Christensen (2011). PMA has not previously been tested for empirical consistency 

with theoretical expectation. PMA is applied to a highly studied synthetic example, 

demonstrating good agreement between PMA-quantified uncertainty with the results 

of established methods. The reliability of PMA in identifying calibration-induced 

predictive bias is systematically demonstrated, together with its capacity to reduce the 

consequential inflation in potential predictive error. 

The second component of work builds upon the mathematical exposition of model 

simplification outcomes developed by Doherty and Christensen (2011). In particular 

it is extended to express “null-space entrainment”; a concomitant outcome of the 

parameter surrogacy that may occur during calibration and which is the fundamental 

cause of calibration-induced predictive bias. The developed linear concepts are 

employed in conjunction with PMA to examine the outcomes of two simplifications 

of a one-dimensional Richards equation-based vadose zone model. Substantial 

parameter surrogacy and consequential null-space entrainment is demonstrated to 

occur for both comparatively modest simplification (i.e., assumption of vertical 
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homogeneity), and more drastic simplification (i.e., replacement with a lumped 

parameter “bucket” model). Nonetheless, both simplified models are shown to make 

largely unbiased predictions of future recharge. This demonstrates that, for predictions 

that are similar in nature to the available calibration dataset, a model’s physical basis 

becomes less important to its predictive performance than attainment of a “good fit”. 

The final component of work explores the outcomes of employing the increasingly 

popular pilot-point-based regularized inversion approach for calibration in a 

categorically heterogeneous environment. PMA is used to thoroughly examine model 

performance in making multiple predictions subject to several regularization 

weighting strategies. For some predictions, ignoring the existence of preferential flow 

features does not compromise the ability of the calibration and uncertainty analysis 

processes to substantially reduce and quantify potential predictive error. 

Simultaneously, calibration unavoidably inflates the potential error in other 

predictions beyond prior uncertainty. The results emphasize the need for prediction-

specific tuning of the modelling process, to the extent that the most pragmatic approach 

for some predictions may be to forego calibration entirely and quantify uncertainty 

based on geologically realistic expressions of “expert knowledge” alone. 
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Chapter 1  

 

Background and objectives 

 

Numerical models are used globally as environmental forecasting tools. Enormous 

advancements in computing capabilities in recent decades have provided the capacity 

for increasingly complex and realistic numerical representations of natural systems 

(Vrugt et al., 2006; Ratto et al., 2011; Hunt and Zheng, 2012). Nonetheless, perfect 

model-based characterisation of subsurface environments in particular is impossible 

due to inevitably sparse and uncertain field information (Carrera and Neuman, 1986; 

Zhou et al., 2014, Anderson et al., 2015). Uncertainty in predictions made by a 

groundwater model is therefore inevitable, the characterization of which has long been 

recognised as fundamental to model use for environmental management and decision-

making (e.g., Freeze et al., 1990). 

The groundwater modelling community remains somewhat divided in terms of 

predictive uncertainty quantification philosophy (Hunt et al., 2007). The use of many 

stochastic model runs to explore the range of predictive possibilities within a Bayesian 

sampling-based framework is strongly advocated by some authors (e.g., Beven and 

Binley, 1992; Gómez-Hernández, 2006; Vrugt et al., 2009b). Bayesian approaches are 

generally recognized as providing the most reliable and robust estimates of uncertainty 

(e.g., Gallagher and Doherty, 2007a). However, despite the aforementioned recent 

advances in computing capabilities, including promise offered by cloud computing 

(Hunt et al., 2010; Langevin and Panday, 2012), such approaches often remain 

infeasible due to the requirement of a prohibitively large number of model runs (e.g., 

Mugunthan and Shoemaker, 2006; Mariethoz et al., 2010a; Borghi et al., 2016). Tolson 

and Shoemaker (2008) exemplify this, citing that the typical number of runs of their 

case study watershed model that would be required for a selected (informal) Bayesian 

approach would require 4.6 months of serial computing time (on a Pentium IV, 3 GHz 

computer). 
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Model calibration or “history-matching” as a precursor to (calibration-constrained) 

uncertainty analysis presents a vastly more efficient alternative to Bayesian 

approaches (e.g., Gallagher and Doherty, 2007a; Keating et al., 2010). The calibration 

process seeks an optimized set of model parameters (representing system hydraulic 

properties) based on which model outputs adequately reproduce real-world 

observations of system state (Konikow and Bredehoeft, 1992). Whilst some 

proponents of the Bayesian approach suggest that the notion of a single calibrated 

model has no place in environmental simulation, calibration now forms a standard 

component of defensible environmental modelling (Hunt et al., 2007; Anderson et al., 

2015). 

A calibrated model can never promise to provide a single accurate prediction; its role 

is to facilitate estimation of uncertainty bounds within which the “true” value of a 

prediction of future environmental behaviour can be guaranteed to lie (Doherty, 2011). 

The issue of groundwater model simplification is pervasive, this being attributable to 

three main sources: 

1. Groundwater model calibration almost always constitutes an ill-posed inverse 

problem due to large numbers of unknown parameters (Anderson et al., 2015). 

Attaining a unique solution to the inverse problem is itself an implicit model 

simplification device as it necessitates the simplest estimated parameter field 

that is compatible with inevitably sparse (and “noisy”) study area information 

(McLaughlin and Townley, 1996; Moore and Doherty, 2006; Welter et al., 

2015). 

2. Despite the abovementioned advancements in computing capabilities, 

deliberate simplification is generally required to achieve shorter execution 

times and numerical stability to facilitate the computationally intensive 

undertakings of history-matching and calibration-constrained predictive 

uncertainty analysis (Ratto et al., 2011; Burrows and Doherty, 2015). This also 

includes the necessarily subjective pre-calibration decisions faced by all 

modellers in terms of which model parameters and boundary conditions to fix 

and which to estimate through calibration (e.g., White et al., 2014). These 

factors may be further compounded from the practical perspective that 

groundwater modelling is often undertaken in a context of limited funding 

(Haitjema, 2011). 
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3. Even the most complex computer models are inherently simplified with respect 

to the incomprehensible complexity that defines the natural world, which 

inevitably includes “unknown unknowns” (Hunt and Welter, 2010; Hunt and 

Zheng, 2012). 

“Traditional” uncertainty analysis methods seek to address the first of the above 

sources of model simplification and resultant uncertainty in model predictions 

(Refsgaard et al., 2006). An optimally formulated calibration process can theoretically 

provide a set of estimated parameters, and thus model predictions, that have a 

minimum potential for error given the available information pertaining to the system 

under study. This provides an ideal foundation for the critical task of quantifying this 

potential through post-calibration predictive uncertainty analysis. A range of 

techniques exist for this purpose, examples of which include linear analysis (e.g., 

Moore and Doherty, 2005; Gallagher and Doherty, 2007a), calibration-constrained 

Monte Carlo methodologies (e.g., Tonkin et al., 2007; Tonkin and Doherty, 2009; 

Herckenrath et al., 2011; Yoon et al., 2013) or Pareto analysis/hypothesis-testing 

approaches (e.g., Moore et al. 2010). 

Model simplifications/imperfections pertaining to the second and third of the above 

sources are broadly acknowledged and have been referred to using a variety of terms, 

including for example model structural error (e.g., Doherty and Welter, 2010), 

conceptual uncertainty (e.g., Refsgaard et al., 2006), model inadequacy (e.g., Kennedy 

and O’Hagan, 2001), and model defects (e.g., White et al., 2014). Model imperfections 

present sources of potential predictive error that are supplementary to those quantified 

through traditional uncertainty analysis. Means of accounting for this additional error 

has been a topic of extensive study over many years. However, most approaches rely 

upon the expression of a model’s imperfections as a simulator of the natural 

environment in the form of model-to-measurement misfit (e.g., Beven and Binley, 

1992; Draper, 1995; Gupta et al., 1998; Kennedy and O’Hagan, 2001; Higdon et al., 

2005; Vrugt et al., 2005; Ye et al., 2008; Doherty and Welter, 2010; Spaaks and 

Bouten, 2013; Xu and Valocchi, 2015, among others). 

Recent literature in particular explores additional potential predictive error induced 

through calibration of a simplified model, where model imperfections do not 

compromise its ability to achieve a “good fit” with observation data (e.g., Doherty and 

Christensen, 2011; White et al., 2014). This calibration-induced “bias” as defined by 
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Doherty and Christensen (2011) is thus undetectable through traditional approaches to 

uncertainty analysis. As such, it threatens underestimation of the true range of post-

calibration potential predictive error. This increases the risk of “type II” statistical 

error, which defines the false rejection of a true hypothesis (e.g., Downes et al., 2002; 

Beven 2010). An example of type II statistical error in the environmental decision-

support context is the occurrence of an unacceptable environmental impact despite 

model-based assurance that it will not occur. This defines failure of a modelling 

process according to Doherty and Vogwill (2016). 

Avoidance of failure in environmental modelling practice requires either that bias in 

model predictions is accounted for, or that its occurrence is mitigated/prevented. This 

may be achieved through development of practical methodologies for quantifying 

and/or reducing the propensity for predictive error incurred though calibration of a 

simplified model in place of a more complex one. Doherty and Christensen (2011) 

present an approach that involves the pairwise use of both a complex and simplified 

model of the same system, allowing detection and reduction of calibration-induced 

predictive bias simultaneous with uncertainty quantification. These authors also 

present a mathematical exposition of the outcomes of calibrating a simplified model 

within a linear analysis framework, which is extended by White et al. (2014) to 

demonstrate an efficient linear approach to quantifying the effects of model 

imperfections upon post-calibration potential predictive error. Burrows and Doherty 

(2015; 2016) present novel calibration approaches also involving conjunctive 

complex/surrogate model usage. A reduced propensity for calibration-induced 

predictive bias is achieved through greater model complexity facilitated by 

conjunctive use of a surrogate model to increase numerical stability and reduce 

computational expense. 

Notwithstanding the computational advantages afforded by the above methodologies 

relative to standalone usage of a highly complex model, their application may yet 

remain infeasible in many practical circumstances. Moreover, White et al. (2014) 

acknowledge that such methodologies, whilst exposing potential predictive error that 

is “invisible” to traditional uncertainty analysis methods, cannot account for the 

indeterminable discrepancies that exists between even the most complex of models 

and reality itself (this being in accordance with the third source of potential predictive 

error as described above). In light of this, White et al. (2014) emphasize the need for 

synthetic studies involving calibration of models that are subject to representative 
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simplifications/imperfections relative to a known “reality”. The intention of this is to 

provide best-practice guidance through development of qualitative understanding of 

the causes of predictive bias, most susceptible prediction types and circumstances, and 

possible mitigating strategies that may be taken by a modeller. This is critical to the 

necessarily intuitive aspect of modelling that has been referred to by terms such as the 

“art” of modelling (e.g., Savenije, 2009; Doherty, 2011; White et al., 2014) and 

“hydrosense” (e.g., Hunt and Zheng, 2012; Simmons and Hunt, 2012; Anderson et al., 

2015). 

Doherty and Christensen (2011) explicate predictive bias as being caused by the 

surrogate roles adopted by some parameters during the calibration process, as they 

compensate for model imperfections in allowing a close fit between model outputs and 

observations to be attained. Parameter surrogacy/compensation as a potential outcome 

of the calibration process is widely acknowledged (e.g., Clark and Vrugt, 2006; Beven, 

2006; Spaaks and Bouten, 2013; Xu and Valocchi, 2015). Doherty and Christensen 

(2011) explain that this is accompanied by what they refer to as “null-space 

entrainment”. Parameters belonging to the so-called null space are those which are not 

informed by available calibration data. Deviation of their values from pre-calibration 

expected values (i.e., based on expert knowledge) should not occur if calibration is to 

achieve an estimated parameter set of maximum likelihood. Surrogate behaviour of 

simplified model parameters during calibration is accompanied by notional adjustment 

(i.e., “entrainment”) of the null-space parameters of the more complex model that the 

simplified model represents. Model predictions that are sensitive to entrained null-

space parameter components will be biased, thus incurring an additional (invisible) 

component of potential predictive error. 

This thesis addresses four overarching objectives related to the pervasive issue of the 

outcomes of calibrating simplified groundwater models. The first two objectives 

concern general methodological and theoretical progression that is relevant to practical 

application as well as research directed at advancing understanding. Applying these 

methodological and theoretical concepts, the second two objectives directly address 

the abovementioned need for synthetic studies that explore the outcomes of calibrating 

simplified models, towards providing best-practice guidance and building crucial 

modeller intuition. More specifically, the objectives of this thesis are to: 



6 
 

1. Systematically validate the reliability of the “paired model analysis” 

methodology presented by Doherty and Christensen (2011) in performing its 

key functions, these being predictive bias identification/reduction and 

uncertainty quantification. The methodology has not previously been tested for 

empirical consistency with theoretical expectation. 

2. Extend the Doherty and Christensen (2011) mathematical formulation of the 

outcomes of calibrating a simplified model. In particular, to express 

mathematically “null-space entrainment”, which is central to the predictive 

outcomes of calibrating a simplified model. 

3. Explore and compare the parameter and predictive outcomes of calibrating two 

simplified versions of a complex model built for the purpose of one-

dimensional recharge simulation. A concomitant aim is to explore the 

occurrence of null-space entrainment through application of the theory 

developed in accordance with the second objective above, and examine its 

predictive consequences. 

4. Explore the parameter and predictive outcomes of pilot-point-based 

regularized inversion when applied in an environment containing categorical 

heterogeneity. This represents a pervasive model simplification context; 

discrete, discontinuous features are common in the subsurface, whilst the 

increasingly popular use of pilot points necessitates estimation of a smooth, 

continuous parameter field. 

The first objective is addressed in Chapter 2, which is based on a manuscript in 

preparation for submission. The second and third objectives are addressed in Chapter 

3, which is based on a manuscript published in Water Resources Research. The fourth 

objective is addressed in Chapter 4, which is based on a manuscript in preparation for 

submission. Chapter 5 summarizes the conclusions of the thesis. 
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Chapter 2  
 
 

Paired model analysis for identifying 

predictive bias and quantifying 

uncertainty: a proof-of-concept study 

 

Abstract 

This work comprises a proof of concept for the methodology presented by Doherty 

and Christensen (2011), herein referred to as “paired model analysis” (PMA). PMA 

involves conjunctive use of both a complex and simplified model in order gain 

efficiency and stability for quantifying predictive uncertainty whilst accounting for 

predictive bias induced by calibration of the latter in place of the former. PMA is yet 

to be tested for empirical consistency with theoretical expectation. The purpose of the 

present study is to verify the efficacy of PMA in performing its key functions; bias 

identification and uncertainty quantification. PMA is applied to an idealised synthetic 

example in which the model subject to calibration is structurally identical to a 

hypothetical “reality model”, and predictions of advective transport are made 

following hydraulic conductivity estimation. First presented by Moore and Doherty 

(2005), the example is extensively studied in existing literature, providing a basis for 

comparison of PMA-quantified predictive uncertainty with the results of the 

previously applied “traditional” methods that do not account for the effects of model 

simplification. The structurally non-simplified example also allows analysis of the 

ability of PMA to detect calibration-induced predictive bias arising through other 

known sources in the absence of the potentially confounding influence of model 

structural defects. These sources are (1) overfitting with respect to measurement noise, 

and (2) suboptimal regularization. Results demonstrate that post-calibration 

uncertainty quantified through PMA is in good agreement with previous results. 

Calibration-induced predictive bias and the accompanying inflation in predictive error 

variance is shown to be expressed through PMA results where expected. 

Concomitantly, the results demonstrate the ability of the calibration process to 

simultaneously reduce the potential for error in one prediction, whilst increasing that 

in another, even in the idealised example of a structurally non-simplified model. 
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Finally, the large reduction in post-calibration potential predictive error achieved 

through application of PMA is demonstrated. 

2.1 Introduction 

Appropriate representation of prediction uncertainty has long been acknowledged as 

integral to environmental model-based decision making (e.g., Freeze et al., 1990). 

Model calibration as a precursor to calibration-constrained uncertainty analysis is now 

common practice (Anderson et al., 2015). This involves “history matching”, whereby 

model parameters are adjusted such that model outputs adequately reproduce field 

observations (Konikow and Bredehoeft, 1992). 

“Traditional” (terminology following Refsgaard et al., 2006) approaches to uncertainty 

analysis account for the nonuniqueness of estimated parameters in the presence of 

typically limited (and “noisy”) field data such measurements of hydraulic head or flux 

(Anderson et al., 2015). That is, groundwater model calibration generally presents an 

ill-posed inverse problem, a unique solution to which necessitates a more parsimonious 

estimated parameter field than the true degree of hydraulic property detail (e.g., 

McLaughlin and Townley, 1996; Moore and Doherty, 2006; Welter et al., 2015). Post-

calibration uncertainty analysis methods seek to quantify the resultant potential for 

error in model predictions made by the calibrated model, approaches to which include 

linear analysis techniques (e.g., Moore and Doherty, 2005; Gallagher and Doherty, 

2007a), calibration-constrained Monte Carlo methodologies (e.g., Tonkin et al., 2007; 

Tonkin and Doherty, 2009; Herckenrath et al., 2011; Yoon et al., 2013) or Pareto 

analysis/hypothesis-testing methodologies (e.g., Moore et al. 2010). 

Additional to the parameter uncertainty associated with solution of the inverse 

problem, all groundwater models are inherently simplified relative to the unknowable 

complexity of the natural subsurface (Hunt and Welter, 2010; Hunt and Zheng, 2012). 

Moreover, despite the enormous increase in computing power in recent decades, the 

use of large-scale physically based groundwater models remains hindered by 

computational limitations, particularly in a calibration context (Ratto et al., 2011). 

Further deliberate simplification is often required to attain the manageable run times 

and numerical integrity necessary for calibration and calibration-constrained 

uncertainty analysis (Burrows and Doherty, 2015; 2016). These are additional sources 
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of discrepancy between a model and reality, and thus may increase the potential for 

predictive error. 

Model parameter and predictive error that is attributable to model simplification has 

been extensively studied, however most approaches rely on model inadequacies as a 

simulator of environmental behaviour being expressed in the form of irreducible 

model-to-measurement misfit. Examples of this work include Beven and Binley, 1992; 

Draper, 1995; Gupta et al., 1998; Kennedy and O’Hagan, 2001; Higdon et al., 2005; 

Vrugt et al., 2005; Ye et al., 2008; Doherty and Welter, 2010; Spaaks and Bouten, 

2013; Xu and Valocchi, 2015, among others. 

Recent literature explores post-calibration predictive error in the case where model 

imperfections do not compromise the achievement of a “good fit” between model 

outputs and observation data (e.g., Doherty and Christensen, 2011; White et al., 2014). 

Doherty and Christensen (2011) discuss the compensatory roles played by some 

parameters as they compensate for model structural defects in order to achieve a close 

fit with calibration data. They introduce the concept of “null-space entrainment” as an 

inevitable accompaniment to parameter compensation. The so-called calibration null 

space is comprised of parameters or parameter combinations that are not informed by 

the available calibration dataset. Estimation of a set of parameters that have a minimum 

potential for error necessitates that null-space parameter components remain 

unperturbed from their (expert knowledge-based) pre-calibration expected values 

(Doherty and Christensen, 2011). Null-space parameter entrainment refers to the 

notional adjustment, through calibration of the simplified model, of null-space 

parameter components belonging to the “reality model”. (Null-space entrainment is 

explored mathematically in Chapter 3 of the present thesis.) Predictions that are 

sensitive to the affected parameters thus incur an unsupported potential for wrongness, 

which is defined as “bias” by Doherty and Christensen (2011).  

Calibration-induced predictive bias caused by the surrogate roles played by parameters 

in compensating for model structural error is an additional propensity for potential 

error that is not quantifiable through what we herein refer to as the “traditional” 

approach (following Refsgaard et al., 2006) to model uncertainty analysis. Moore and 

Doherty (2005) expound the components of predictive error variance comprising 

traditional uncertainty analysis, which quantifies the extent to which innate parameter 

uncertainty can be constrained in the presence of limited and uncertain observation 
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data. Calibration-induced predictive bias caused by model structural error is not 

unaccounted for, and therefore threatens the integrity of model predictions through 

increased potential for “type II” statistical error, which is defined as false rejection of 

a true hypothesis (e.g., Downes et al., 2002; Beven, 2010). An example of this would 

be the occurrence of an unwanted outcome of a proposed environmental management 

strategy despite model-based assurance that it is extremely unlikely. According to 

Doherty and Vogwill (2016), this defines failure of a modelling endeavour. As such, 

accounting for predictive bias (whether through prevention or quantification) is of 

critical importance. 

Doherty and Christensen (2011) present a methodology for identifying and reducing 

predictive bias in a calibrated environmental model, simultaneous with predictive 

uncertainty quantification. The methodology, described in detail in the following 

section, is herein referred to as “paired model analysis” (PMA). It is proposed as an 

approach that may be employed in practice where a model is required to be calibrated 

and subsequently used to make predictions of future system behaviour. Standalone use 

of a highly complex model for calibration and uncertainty analysis is often thwarted 

by debilitating computational expense and other difficulties such as solver non-

convergence and “numerical granularity” (e.g., Burrows and Doherty, 2015; 2016).  

PMA is designed to circumvent these issues through requiring that only a simplified 

model of the same system is calibrated. At the same time, it allows identification and 

reduction of predictive bias that may have been incurred through calibration of the 

simplified model in place of the more complex model. 

White et al. (2014) suggest that, despite the computational benefits offered by PMA in 

contrast to standalone use of a complex model, the computational expense may 

nonetheless remain infeasible in some situations due to the requirement for repeated 

calibration of the simplified model. In light of this, White et al. (2014) extend the 

mathematical description of model defect-induced predictive error presented by 

Doherty and Christensen (2011). They present an efficient linear subspace-based 

equation for predictive error variance quantification, which includes a supplementary 

term that accounts for additional predictive error variance owing to calibration-induced 

bias. 

White et al. (2014) demonstrate the utility of their methodology through application to 

an integrated surface-water/groundwater modelling synthetic example. They highlight 
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the complex and sometimes counterintuitive predictive outcomes of calibrating a 

simplified model, exploring different regularization schemes and objective function 

formulations. White et al. (2014) acknowledge that methodologies such as theirs as 

well as PMA are limited to identifying/quantifying calibration induced bias 

attributable to the discrepancy between the complex and simplified models employed 

in the analysis. The effect of the inevitable discrepancy between the complex model 

and reality itself cannot be quantified. For this reason, White et al. (2014) highlight the 

importance of further research in which synthetic studies are employed to characterize 

the predictive outcomes of calibrating models subject to representative 

simplifications/defects. This knowledge is also critical in the inevitable situations in 

which practical limitations preclude the employment of bias identification 

methodologies and thus necessitate standalone use of a relatively simplified model. 

Whilst allowing efficient representation of the various contributions to potential 

predictive error, the White et al. (2014) linear framework in which model 

simplification is formulated as “included” and “omitted” parameters does not facilitate 

straightforward representation of all discrepancies between a simplified and a complex 

model. Where it is computationally tractable, PMA provides a fully nonlinear 

alternative to the White et al. (2014) methodology that may be employed for research 

purposes (PMA is utilized in this manner in Chapter 3 and Chapter 4 of the present 

thesis). 

The PMA methodology has not previously been tested for consistency with theoretical 

expectation. In order to address this, the present study comprises a proof-of-concept 

analysis of the efficacy of PMA in performing its intended key functions, these being 

to (1) identify (and subsequently allow reduction of) calibration-induced predictive 

bias, and (2) quantify the associated post-calibration predictive uncertainty. 

The present proof-of-concept study is approached by applying PMA to an idealised 

synthetic example wherein the model subject to calibration is free from structural 

simplification. That is, it has the same geometry and boundary conditions as the 

“reality model”, as well as the same pilot-point-based parameterization mechanism 

(including the kriging process used to interpolate parameter values from pilot points 

to model cells). In other words, no sources of potential predictive error exist beyond 

the reaches of traditional uncertainty quantification methodologies. That is, potential 

predictive error arises solely through the calibration-induced parameter field 
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simplification that is necessary to attain uniqueness of the inverse problem as discussed 

above. Application of PMA in this context facilitates comparison of its results with 

previously published results obtained through the aforementioned traditional post-

calibration uncertainty quantification methods. This provides a means of verifying the 

capacity of PMA to quantify post-calibration potential predictive error. 

Application of PMA to an idealised non-structurally simplified model also supports a 

controlled examination of the ability of the methodology to identify calibration-

induced predictive bias. As discussed above, this is an outcome of parameter 

compensation. Parameter compensation is a widely acknowledged model calibration 

phenomenon (e.g., Konikow and Bredehoeft, 1992; Moore and Doherty, 2005; Beven, 

2006; Clark and Vrugt, 2006; Fienen et al., 2009; Doherty and Welter, 2010; Langevin 

and Zygnerski, 2013; Spaaks and Bouten, 2013; White et al., 2014; Xu and Valocchi, 

2015). There exist other sources of compensatory parameter and thus potential 

calibration-induced bias that are not attributable to model structural 

simplifications/defects. “Overfitting” with respect to measurement noise is one such 

commonly cited cause of parameter error/compensation (e.g., Yeh and Yoon, 1981; 

Fienen et al., 2009; James et al., 2009; Doherty and Hunt, 2010). This occurs when the 

seeking of a close fit between model outputs and field observations leads to model 

parameters playing erroneous roles in order to reproduce nuances in observation data 

that represent measurement noise rather than physical system behaviour. 

Additionally, calibration-induced parameter compensation is inevitable in the presence 

of “suboptimal” regularization. An optimal regularization scheme includes constraints 

on the correlation structure of estimated parameters such that expert knowledge 

pertaining to true hydraulic property variability is respected (e.g., Maurer et al., 1998; 

Alcolea et al., 2006). Failure to endow the calibration process with this information 

permits estimated parameter fields that do not respect geologically plausible spatial 

correlation and which are thus necessarily playing compensatory roles. These 

regularization concepts are further discussed below and in Chapter 3 of the present 

thesis. The reader is also referred to, for example, Tikhonov and Arsenin (1977); 

Moore and Doherty (2005; 2006); Fienen et al. (2009). 

Through a synthetic example involving calibration of an idealised structurally non-

simplified model, calibration-induced parameter compensation caused by overfitting 

and suboptimal regularization can be isolated from the influence of model structural 
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defects. Overfitting and suboptimal regularization are controllable sources of 

calibration-induced parameter compensation that provide a foundation for systematic 

examination of the ability of PMA to detect the resultant predictive bias. 

The current proof-of-concept study seeks to verify several fundamental properties of 

PMA (based upon the concepts and theory presented by Doherty and Christensen 

(2011) in proposing the methodology) that are central to its validity of its use in 

practice and the interpretation of its results for research purposes. The present study 

aims to: 

1. Confirm that PMA results indicate unbiased post-calibration model predictions 

following theoretically optimal calibration of a model that is structurally 

defect-free.  

2. Confirm the ability of PMA to quantify post-calibration predictive error 

variance. 

3. Test whether the occurrence of calibration-induced predictive bias is identified 

by PMA where expected (i.e., in the presence of calibration-induced parameter 

compensation). 

4. Demonstrate the capacity of PMA to reduce calibration-induced bias and thus 

post-calibration predictive error variance. 

This chapter is organized as follows: Section 2.2 provides a basic summary of the key 

theory and concepts that are relevant to the present study, including regularized 

inversion, predictive error variance quantification, the concept of optimal calibration, 

calibration-induced predictive bias, and finally the specifics of the PMA methodology. 

Section 2.3 details the synthetic test case. Section 2.4 provides the specific 

methodological steps undertaken to address the proof-of-concept aims. Results are 

presented in Section 2.5 and discussed progressively therein, with Section 2.6 

providing a synopsis of the proof of concept results along with additional concluding 

remarks. 

2.2 Theory and concepts 

The theory summarized in subsection 2.2.1 through subsection 2.2.4 is based on well-

established mathematical inversion concepts presented by, for example, Menke 
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(1989), Aster et al. (2005), Moore and Doherty (2005, 2006). For the sake of 

tractability, a linear relationship between model parameters and model outputs is 

assumed to apply in the following theory. This allows a model to be represented by a 

matrix, with model parameters representing system hydraulic properties and model 

outputs corresponding to observations being represented by vectors. Moreover, the 

values of parameter and model output vectors represent perturbations from their pre-

calibration expert knowledge-based values. 

2.2.1 History matching 

Let the vector k represent the parameters employed by the model to represent system 

hydraulic parameters. The Jacobian matrix X (containing sensitivities of model outputs 

with respect to model parameters) represents the action of the model on k to produce 

model outputs. Observations of system state comprising the available calibration 

dataset are contained in h such that: 

 h = Xk + ε (2.1) 

where the vector ε encapsulates measurement noise. Data assimilation or “history 

matching” involves adjustment of model parameters k in order to reduce model-to-

measurement misfit, this being represented by the “measurement objective function” 

Φm defined as: 

 Φm = (Xk – h)tQh(Xk – h) (2.2) 

Here, Qh is the “observation weight matrix” containing (the squares of) observation 

weights q. This matrix is ideally specified as proportional to the inverse of the 

covariance matrix of measurement noise C(ε) (e.g., James et al., 2009). 

2.2.2 The null space 

Unique estimation of all parameters in a complex environmental model is precluded 

by inevitable information deficits in available observation data (e.g., Welter et al., 

2015). The concept of the null space is central to parameter nonuniqueness. By 

definition, a non-zero parameter set kn belongs to the null space of X if: 

 0 = Xkn (2.3) 
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Momentarily ignoring the presence of measurement noise ε, consider an estimated 

parameter set k that fits the calibration dataset perfectly. That is: 

 h = Xk (2.4) 

From equation (2.3) and equation (2.4) we can write: 

 X(k + kn) = Xk = h (2.5) 

thus demonstrating the nonuniqueness of k due to existence of the null space. 

A calibration process ideally excludes null-space parameter components from 

adjustment. This may be achieved through appropriate regularization as discussed 

below. Any perturbation of null-space parameter components from their pre-

calibration expected values (based upon expert knowledge) is unsupported by the 

calibration dataset h and thus introduces asymmetry in the potential parameter error 

with respect to the maximum likelihood parameter set. This asymmetry necessarily 

induces an increased potential for error in estimated parameters and thus in predictions 

that are sensitive to these parameters. 

2.2.3 Regularization 

Calibration in most environmental modelling contexts constitutes an ill-posed inverse 

problem (Brunner et al., 2012), thus some form of regularization is necessary to attain 

uniqueness (e.g., Hunt et al., 2007). Following Moore and Doherty (2005), two 

alternative regularization mechanisms are employed in the present study. These are 

Tikhonov regularization (Tikhonov 1963a, 1963b, Tikhonov and Arsenin, 1977) and 

truncated singular value decomposition (SVD) (e.g., Aster et al., 2005). 

2.2.3.1 Tikhonov regularization 

The Tikhonov regularization theory presented herein pertains to the manner in which 

it is implemented by PEST (Doherty, 2016a). An ill-posed parameter estimation 

problem is made well-posed by supplementing h with a set of “regularization 

observations” r. These are expert knowledge-based preferred parameter values (or 

relationships) that will prevail unless information contained within the calibration 

dataset h dictates otherwise during the calibration process. A regularization objective 

function Φr is defined as: 
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 Φr = (Wk – r)tQr(Wk – r) (2.6) 

where r is a vector containing the abovementioned “regularization observations”, and 

Qr is the regularization weight matrix. The matrix W defines the relationship between 

r and k. Where regularization observations consist of preferred parameter values, and 

these are defined as pre-calibration expected parameter values (as in the present study), 

W = I and r = 0, thus equation (2.6) becomes: 

 Φr = ktQrk (2.7) 

Tikhonov-regularized inversion is thus formulated as a constrained minimization 

problem, whereby Φr is minimized subject to the constraint that Φm of equation (2.2) 

is not greater than Φm
l, this being the target measurement objective function (referred 

to in PEST as the “limiting measurement objective function”). This is a user-specified 

threshold that defines the level of model-to-measurement misfit tolerable to be deemed 

as “adequate calibration”. In an idealised case in which a model is free from structural 

defects, this is theoretically defined by a level of model-to-measurement misfit that is 

commensurate with measurement noise ε. Where the observation weight matrix is 

specified as the inverse of the covariance matrix of measurement noise C(ε), this level 

of fit is represented by a measurement objective function Φm = N, where N is the 

number of observations comprising the calibration dataset (see Appendix A for 

derivation). 

The Tikhonov-regularized inversion process thus involves minimization of the total 

objective function Φ, defined as: 

 Φ = Φm + Φr (2.8a) 

 Φm ≤ Φm
l (2.8b) 

where  is the “regularization weight factor”. This is equivalent to a Lagrange 

multiplier (as shown by de Groot-Hedlin and Constable, 1990) in the solution of the 

constrained minimization problem in which Φr is minimized subject to the constraint 

that Φm ≤ Φm
l. The value of  is determined iteratively by PEST as part of the 

optimization problem and thus reflects the relative weighting placed upon 

regularization constraints with respect to observations. Thus a decreasing value of  
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reflects an increase in the level of fit attained between observations and corresponding 

model outputs. 

Parameters estimated through Tikhonov-regularized inversion (where equation (2.7) 

holds as in the present study) are given by: 

 k = (XtQhX + μQr)
-1XtQhh (2.9) 

2.2.3.2 Truncated SVD 

In the case of truncated SVD, well-posedness of the parameter estimation problem is 

achieved via reduction of the number of parameters estimated through the inversion 

process. The weighted Jacobian matrix is decomposed as follows: 

 XQhX = VSVT (2.10) 

Here, V is a matrix of orthogonal unit vectors that span the parameter space of the 

model (i.e., eigenvectors of XQhX). S is a diagonal matrix comprising singular values 

arranged in decreasing order. Based on S, partitioning occurs between the so-called 

“solution space” and the null space, such that: 

 XQhX = V1S1V1
T + V2S2V2

T (2.11) 

V1 contains unit vectors that span the solution space of the inverse problem, with S1 

containing the corresponding singular values. V2 contains the unit vectors that span 

the null space, these being associated with singular values of magnitude zero or near-

zero, which are contained in S2. 

The number of singular values at which truncation occurs to define the partitioning 

between S1 and S2 (and hence V1 and V2) is subjective and may be varied. The greater 

the number of (non-zero) singular values included in the solution space during the 

inversion process, the closer the level of fit sought between model outputs and 

observations. 

Parameters estimated through truncated SVD are given by: 

 k = V1S
-1

1V
t
1X

tQhh (2.12) 



18 
 

2.2.4 Quantification of predictive error variance 

Substitution of equation (2.1) into equation (2.9), and expansion of the terms of 

equation (2.12) and substitution of equations (2.1) and (2.10), yields a general form 

for parameters estimated through either Tikhonov regularized-inversion and truncated 

SVD: 

 k = Rk + Gε (2.13) 

where, for Tikhonov regularization: 

 R = (XtQhX + µQr)
-1XtQhX (2.14) 

 G = (XtQhX + µQr)
-1XtQh (2.15) 

and for truncated SVD: 

 R = V1V
t
1 (2.16) 

 G = V1S
-1

1V
t
1X

tQh (2.17) 

Error in estimated parameters is given by: 

 k – k = (I – R)k – Gε (2.18) 

where I is the identity matrix. The covariance matrix of post-calibration parameter 

error is thus given by: 

 C(k – k) = (I – R)C(k)(I – R) + GC(ε)G (2.19) 

C(k) is the covariance matrix pertaining to the prior probability distribution of true 

parameters k. 

The true value of a given (scalar) model prediction s is given by: 

 s = ytk (2.20) 

where y is a vector containing sensitivities of s to true parameters k. The pre-

calibration (prior) variance of prediction s is given by: 

 σ2
s = ytC(k)y (2.21) 

The prediction made by the calibrated model is given by: 
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 s = ytk (2.22) 

Post-calibration predictive error is thus given by: 

 s – s = yt(k – k) (2.23) 

Post-calibration predictive error variance is calculable as: 

 σ2
s-s = ytC(k – k)y (2.24) 

Substituting equation (2.19) we therefore have: 

 σ2
s-s = yt(I – R)C(k)(I – R)ty + ytGC(ε)Gty (2.25) 

The first term of equation (2.25) represents the null-space contribution to error 

variance, this arising from the components of pre-calibration parameter uncertainty 

that are not informed by available observation data. The second term of equation (2.25) 

is the contribution to post-calibration predictive error variance owing to the presence 

of measurement (and structural) noise. 

2.2.5 Optimal calibration 

Post-calibration predictive error variance has a theoretical lower limit set by the 

information content inherent in available data and expert knowledge pertaining to the 

system under study. Subject to optimal calibration, a structurally perfect model may 

theoretically achieve minimum error variance status for estimated parameters and thus 

for model predictions that are sensitive to these parameters. 

Theoretically optimal calibration as defined herein is achieved in conjunction with 

optimal regularization. An optimal regularization scheme is constrained to respect 

expert knowledge (e.g., expected spatial correlation) pertaining to the hydraulic 

properties of the system being modelled (e.g., Maurer et al., 1998; Alcolea et al., 2006). 

In the case of Tikhonov regularization, this is achieved through definition of the 

regularization weight matrix Qr as the inverse of the true parameter covariance matrix 

C(k). For truncated SVD, this may be effected through appropriate pre-calibration 

parameter transformation such as the Karhunen-Loѐve transform. The reader is 

referred to Chapter 3 of the present thesis for an extended discussion of optimal pre-

calibration parameter transformation. 
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Secondly, theoretically optimal calibration comprises an observation weight matrix Qh 

that is proportional to the inverse of the covariance matrix of measurement noise C(ε). 

This is accompanied by appropriately setting Φm
l of equation (2.8b) such as to incite a 

level of post-calibration model-to-measurement misfit that is commensurate with 

measurement noise as described above. 

2.2.6 Calibration-induced predictive bias 

Equation (2.25) represents what we herein refer to as traditional post-calibration 

predictive error variance quantification. Minimization of predictive error variance is 

considered as the point of optimal trade-off between the null-space and solution-space 

contributions (i.e., the first and second terms of equation (2.25), respectively). It does 

not account for the additional contribution to post-calibration predictive error arising 

through calibration of a structurally defective model. This additional component of 

error is thus not visible through use of equation (2.25). Extending the linear subspace 

theory presented by Doherty and Christensen (2011), White et al. (2014) reformulate 

equation (2.25) to include a third term that accounts for this contribution. It is this 

additional component of post-calibration predictive error that PMA is also designed to 

detect (and subsequently allow reduction of). 

As explained by Doherty and Christensen (2011) and explored mathematically in 

Chapter 3 of the present thesis, bias in estimated parameters (and thus bias in 

predictions that are sensitive to these parameters) occurs when the calibration process 

results in nominal adjustment of the null-space parameter components of the “reality 

model”. They refer to this process as “null-space entrainment”. This is an inevitable 

consequence of model parameters compensating for structural defects. 

As explained above, null-space parameter components are by definition not informed 

by available observation data, thus their deviation from expert knowledge-based 

expected values is unsupported by the calibration dataset. Predictions that are sensitive 

to the affected parameters thus possess an unsupported potential for wrongness, this 

being defined as bias by Doherty and Christensen (2011). 

Parameter compensation resulting in adjustment of null-space parameter components 

may also arise through other sources. One such source is overfitting with respect to 

measurement noise. The presence of measurement noise effectively expands the null-

space, thus commanding a lesser fit between model outputs and corresponding field 
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observations in order to minimise error variance. Attaining a closer fit between model 

outputs and observations than the associated level of measurement noise results in 

effective null-space parameter components being included in the parameter estimation 

process. This is commonly recognised as parameter compensation, as it will often be 

expressed as model parameters attaining unrealistic values in order for the model to 

reproduce nuances of the calibration dataset that are attributable to measurement noise 

rather than physical processes (e.g., Fienen et al., 2009; Langevin and Zygnerski, 

2013). In the same manner as null-space entrainment caused by calibration of a 

structurally defective model, predictions that are sensitive to the adjusted null-space 

parameter components will thus contain an unsupported propensity for predictive 

error, that is, calibration-induced predictive bias. 

Suboptimal regularization is another source of unsupported adjustment of null-space 

parameters during the calibration process. As discussed above, some form of 

regularization is necessary in order to attain uniqueness of the inverse problem. Where 

the employed regularization scheme does not respect available expert knowledge (e.g., 

pertaining to innate hydraulic property variability and correlation), parameter 

compensation and thus adjustment of parameter components during the calibration 

process that properly belong to the “true” null space. A more comprehensive 

presentation of the theory and discussion of optimal regularization/parameter 

transformation is provided in Chapter 3 of the present thesis. Furthermore, Appendix 

A provides a simple mathematical representation of null-space entrainment due to 

suboptimal pre-calibration parameter transformation (equivalent to suboptimal 

regularization). These examples pertain to optimal pre-calibration parameter 

transformation necessary to attain optimality of regularization as effected via truncated 

SVD. However, Optimality of a constrained minimization (Tikhonov) regularization 

process is equivalently achieved through provision of Tikhonov constraints with a 

stochastic weighting scheme (Maurer et al., 1998). 

The outcomes of parameter compensation (and accompanying null-space entrainment) 

for model predictive performance have been demonstrated to be highly prediction- 

specific (e.g., Doherty and Welter, 2010; Doherty and Christensen, 2011; White et al., 

2014). In general, predictions that are very similar in type to the calibration dataset are 

predominantly solution-space dependent. They will therefore tend to benefit 

unconditionally from an improved fit between model outputs and field observations. 

Simultaneously, however, predictions of a different nature are likely to be null-space 
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dependent and thus predictive performance will be degraded by parameter 

compensation. 

2.2.7 The paired model analysis methodology 

The PMA methodology is summarized as follows: 

1. A large number n of stochastic realizations of a complex “reality” model are 

generated based on expert knowledge alone. For each realization, model 

outputs equivalent to the available calibration dataset, as well as values for the 

prediction(s) of interest, are obtained through forward simulations. 

2. A simplified model is developed and calibrated against the outputs generated 

by each of the complex model realizations. The prediction of interest is also 

made by each calibrated simplified model, yielding n complex-simple 

prediction pairs for each prediction of interest. 

3. A scatterplot (represented schematically in Figure 2.1) of complex model 

prediction values (i.e., s) versus calibrated simplified model predictions (i.e., 

s) is generated. A regression line through the s-versus-s scatterplot may then 

be used to identify calibration-induced predictive bias. Regression lines are 

calculated by Doherty and Christensen (2011) and in the present study as: 

 s = a + bs (2.26) 

where a and b are the regression intercept and slope, respectively. A regression 

line slope b of less than unity indicates the occurrence of calibration-induced 

predictive bias induced by nonzero null-space parameter components. 

A measure of scatter about the regression line provides a quantification of 

(bias-corrected) post-calibration predictive uncertainty (see Figure 2.1b). In the 

present study 95% prediction intervals are used for this purpose (see, for 

example, Draper and Smith, 1998, eq. 1.4.12 for details of prediction interval 

calculations). 

4. Finally, the simplified model is calibrated against the available real world 

dataset and the prediction of interest is made using the calibrated simplified 

model. The s-versus-s scatterplot is subsequently used to correct for bias in the 

calibrated model prediction and quantify the associated uncertainty. 
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Figure 2.1a provides a schematic representation of predictive bias identification and 

correction as effected through a PMA s-versus-s scatterplot. Figure 2.1b depicts the 

subsequent quantification of post-calibration predictive uncertainty, including a 

representation of total post-calibration predictive uncertainty. The latter does not 

account for bias and is thus symmetrical about the unity line. Uncertainty bounds 

estimated through a given “traditional” post-calibration uncertainty analysis procedure 

would also be notionally symmetrical about the unity line in Figure 2.1b. However, 

the failure to account for calibration-induced bias would likely yield narrower 

uncertainty margins than the “true” margins represented in Figure 2.1b. Thus the threat 

of traditional post-calibration uncertainty analysis failing to capture the true prediction 

value within its estimated uncertainty interval following calibration of a defective 

model is clear. 

 

Figure 2.1. Schematic representation of a PMA s-versus-s scatterplot: (a) predictive 

bias identification/correction and (b) quantification of bias-corrected post-calibration 

potential predictive error (including a representation of total post-calibration potential 

predictive error for comparison).  

(a) 

(b) 
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2.3 Synthetic test case description 

We employ a synthetic example that has been analysed extensively in multiple 

previous studies, including Moore and Doherty (2005, 2006), Tonkin and Doherty 

(2005) and Moore et al. (2010). As discussed above, this provides a foundation for 

comparison of the results obtained in the present study through PMA. 

Figure 2.2a depicts the model domain – a single-layer confined aquifer of 10 m 

thickness and dimensions 800 m north-south by 500 m east-west. Water enters the 

system through the northern boundary as a fixed inflow of 0.1 m3/d per metre length 

of boundary, and exits the system through the southern boundary which has a 

prescribed head of 0 m. No-flow boundaries define the western and eastern edges of 

the domain. Steady-state groundwater flow is simulated using MODFLOW 2000 

(Harbaugh et al., 2000) with a finite-difference grid comprising 4000 10 m × 10 m 

cells. The movement of a particle released at the location indicated in Figure 2.2 is 

simulated using the ADV2 package (Anderman and Hill, 2001). 

Following all previous studies that have employed the same synthetic test case, the 

“reality” distribution of hydraulic conductivity (K) is defined by a log exponential 

variogram, with a mean of 0 log10(m/day), a sill of 0.2 log10(m/day) and a range of 

600 m. Figure 2.2b displays one of the stochastic log10K fields as an example 

(accompanied by the true particle path and travel time). 
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Figure 2.2. (a) Model domain and boundary conditions, including locations of pilot-

points and observation wells. (b) Arbitrary stochastic “reality” log10K field realization, 

including hydraulic head values (m) at observation wells, and true path and travel time 

of released particle. (c) Corresponding estimated (through stochastically weighted 

Tikhonov regularized based calibration for the 0.30 m standard deviation measurement 

noise case) log10K field and hydraulic head distribution, including predicted path and 

travel time of released particle. 

A minor difference between the present synthetic test case and previous studies is that 

stochastic “reality” log10K fields herein are generated using pilot-points (de Marsily, 

1978; de Marsily et al. 1984) rather than through direct cell-by-cell parameterization 

(i.e., values are generated at the 104 pilot point locations depicted in Figure 2.2 and 

then interpolated to model grid cells through kriging). This is to ensure complete 

structural equivalence between “reality” and the model for the purposes of the present 

study. Moore and Doherty (2005) state that the influence of kriging-induced 

smoothness was tested and found to be slight, to the extent that their predictive error 

variance analysis ignores its influence with insignificant consequences. Thus, this 

minor alteration in the synthetic test case does not impact upon comparison of results 

with those of the previous studies. 

Synthetic field observation data is comprised of 12 hydraulic heads from the “reality” 

model, the locations of which are displayed in Figure 2.2. Independent Gaussian noise 

with a mean of 0 is added to each set of observations to generate the calibration 
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datasets. Various Gaussian noise standard deviations (0.01 m, 0.10 m and 0.30 m) are 

employed for different purposes of the present study – specific details of which are 

described in the following section). 

The same 104 pilot point locations used for “reality” log10K field generation are 

employed as adjustable parameters in the calibration process (which are equivalently 

interpolated to model grid cells via kriging). Tikhonov regularization and truncated 

SVD schemes are employed separately in present study as described above. 

The Tikhonov regularization scheme involves assigning “preferred value” Tikhonov 

constraints (i.e., the values populating the r matrix of equation (2.6)) of 0 log10(m/day) 

to pilot points, this being equal to the mean of the log exponential variogram used for 

generation of “reality” fields. The Tikhonov scheme is stochastically weighted, 

whereby preferred values are accompanied by a regularization weight matrix Qr (see 

equation 2.7) that is calculated as the inverse of the covariance matrix C-1(k) that 

represents the variogram upon which the “reality” log10K fields are based (Maurer et 

al., 1998). 

Figure 2.2c displays an example log10K field (along with the associated hydraulic head 

distribution and particle fate predictions) estimated through Tikhonov-regularized 

inversion. This is based on calibration against “observed” steady-state hydraulic heads 

generated by the “reality” field of Figure 2.2b (after the addition of measurement noise 

of standard deviation 0.30 m). 

2.4 Approach 

In the context of the theoretical concepts and synthetic case study details described 

above, this section describes sequentially the numerical experiment and analysis 

components specific to addressing each of the key proof-of-concept aims outlined in 

the introductory text. 

It should be emphasised at this point that a general comparison between the Tikhonov 

and truncated SVD regularization mechanisms is not an intention of this study, nor do 

the results facilitate such a comparison. The respective regularization schemes are 

formulated to emulate the numerical experiments of Moore and Doherty (2005) for the 

purpose of comparing PMA results with the results of these authors, this being the 

chief intention of the present proof of concept. The manner in which the regularization 
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schemes are applied (described in detail below) in the selected examples from Moore 

and Doherty (2005) is such the Tikhonov regularization case constitutes an example 

of optimal regularization, whilst the truncated SVD case represents suboptimal 

regularization. Parameter estimation and predictive performance differences observed 

herein between the two regularization mechanisms arise through this 

optimality/suboptimality of their application and are not inherent to the regularization 

mechanisms themselves. Optimality of truncated SVD as a regularization device may 

equivalently be achieved through appropriate pre-calibration parameter transformation 

as described above. As a result it would be expected to provide similar results to the 

present (optimal) Tikhonov scheme. Likewise, Tikhonov regularization employed in 

the absence of the stochastic regularization weighting scheme would represent 

suboptimal regularization and would be expected to produce similar results to the 

present untransformed truncated SVD results. 

2.4.1 Optimal calibration 

The first aim of the proof of concept is to confirm the theoretical notion, discussed by 

Doherty and Christensen (2011), that PMA yields an s-versus-s scatterplot with a 

regression line slope of unity (this indicating unbiased model predictions) for optimal 

calibration of a structurally non-defective model. 

For this purpose an optimally weighted Tikhonov regularization scheme is employed. 

A very small measurement noise standard deviation of 0.01 m is applied initially, the 

intention being to eliminate any potential complicating effects introduced by 

significant measurement noise. Subsequent phases of the study involve the equivalent 

analysis in the presence of a greater measurement noise magnitudes (i.e., 0.10 m and 

0.30 m). This allows for additional examination of this theoretical notion, which 

asserts that measurement noise should increase scatter about an s-versus-s regression 

line which maintains a slope of unity. 

2.4.2 Quantification of predictive error variance 

The second aim of the proof of concept is to confirm that the vertical scatter about the 

s-versus-s best-fit line adequately represents post-calibration predictive uncertainty. 

This is approached through comparison of PMA results with the uncertainty 

quantification results of established methods presented in existing literature. 
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Both Moore and Doherty (2005) and Moore et al. (2010) employ the synthetic example 

adopted herein to demonstrate predictive error variance quantification methodologies 

and concepts. Moore and Doherty (2005) apply linear subspace analysis techniques to 

quantify error variance in prediction of the exit location of the released particle (see 

Figure 2.2). They employ both Tikhonov regularization and truncated SVD schemes 

in separate calibration and predictive error variance analysis processes. 

Moore et al. (2010) demonstrate a global optimization methodology utilising the 

Pareto front concept to quantify the uncertainty in prediction of the particle travel time 

(with regularization enforced through the same Tikhonov scheme as used by Moore 

and Doherty (2005)). 

These previous studies differ in terms of the magnitude of artificial (independent 

Gaussian) measurement noise introduced to the calibration datasets – Moore and 

Doherty (2005) adopt a standard deviation of 0.30 m whilst Moore et al. (2010) use a 

standard deviation of 0.10 m. In order to facilitate comparison with each of the 

previous studies, three separate PMA processes are therefore undertaken, summarized 

in Table 2.1. 

Table 2.1. Summary of PMA processes conducted for comparison of results with 

previous studies. σε is measurement noise standard deviation. 

PMA process Prediction σε (m) Regularization scheme 

a) Exit point 0.30 Tikhonov 

b) Exit point 0.30 Truncated SVD 

c) Log10 time 0.10 Tikhonov 

2.4.3 Predictive error variance minimization 

A number of additional PMA processes are undertaken for the purpose of extending 

the comparison of PMA results to include the characteristics of the error variance 

functions, such as the point at which their minima occur. This component of the 

analysis is equivalent to that conducted by Moore and Doherty (2005), thus 

measurement noise of standard deviation 0.30 m is used throughout. 

PMA processes ‘(a)’ and ‘(b)’ detailed in Table 2.1 are each repeated an additional 11 

times, spanning a broad range of model-to-measurement misfit (represented by the 

measurement objective function Φm). This is achieved for the Tikhonov regularization 

approach by varying the observation weights q comprising the diagonal of the 

observation weight matrix Qh of equation (2.2). For calibration based on truncated 
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SVD, the degree of fit is controlled through the number of singular values included in 

the solution space (i.e., the dimensionality of the V1 matrix of equation (2.11)). 

Whilst the analysis presented by Moore and Doherty (2005) is limited to prediction of 

particle exit location, the current analysis is extended to also include the travel time 

prediction. 

2.4.4 Predictive bias identification 

The two selected regularization approaches and abovementioned repetition of PMA to 

achieve various measurement objective functions also provides a basis for systematic 

examination of the ability of PMA to identify calibration-induced predictive bias. 

As discussed above, overfitting and suboptimal regularization are sources of parameter 

compensation and thus bias in some null-space-dependent predictions. Advection-type 

predictions, as considered in the present study, are known to be typically sensitive to 

parameterization detail that cannot be inferred through calibration based on relatively 

sparse hydraulic head data alone (e.g. Moore and Doherty, 2005; White et al. 2014). 

That is, they are null-space dependent and therefore provide a suitable indicator for 

assessment of the ability of PMA to identify the expected calibration-induced bias 

arising through overfitting and suboptimal regularization, respectively. 

The examination of the efficacy of PMA in identifying overfitting-induced bias is 

based on the specified independent Gaussian measurement noise of known standard 

deviation (the squares of which comprise the diagonal matrix C(ε)). In the case of the 

optimal regularization example (i.e., the Tikhonov scheme) the Qh matrix of equation 

(2.2) is chosen as C-1(ε). Thus a value of 12.0 for Φm of equation (2.2) defines the level 

of model-to-measurement misfit that is commensurate with measurement noise as 

described above. A Φm value lower than 12.0 therefore represents overfitting. The 

further Φm is reduced below 12.0, the greater the induced parameter compensation in 

the form of inclusion of effective null-space parameter components in the parameter 

estimation process. It is therefore expected that PMA s-versus-s scatterplots will 

identify the resultant increasing degree of bias in the advective transport predictions 

through an increasing deviation below unity of the regression line slope b. 

We also examine the ability of PMA to identify predictive bias arising through 

suboptimal regularization. As described above, optimality of the truncated SVD 

regularization would require pre-calibration parameter transformation based on the 
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covariance matrix C(k) that defines the innate variability of “reality” log10K fields. 

This is not undertaken in the present truncated SVD example. For this reason, 

compensatory parameter behaviour is a guaranteed outcome of the parameter 

estimation process, through allowance of spatial variability that is not supported by the 

(synthetic) expert geological knowledge. The s-versus-s scatterplots for the truncated 

SVD case are thus expected to indicate more prevalent calibration-induced predictive 

bias than the (optimal) Tikhonov case. That is, regression line slopes that deviate 

below unity are expected to occur pervasively, irrespective of the attained level of fit 

between model outputs and observations. 

2.4.5 Bias reduction and uncertainty quantification 

Subsequent to identification of calibration-induced predictive bias, the proposed utility 

of PMA is its allowance of post-calibration bias reduction. As demonstrated by Figure 

2.1a, this is achieved through s-versus-s scatterplots, wherein the regression line 

indicates the required adjustment from the calibrated model prediction to the true 

minimum error variance prediction. Prediction intervals based on the s-versus-s 

scatterplot regression line define the bias-corrected post-calibration prediction 

uncertainty. This uncertainty is theoretically be smaller than total post-calibration 

uncertainty due to removal of the influence of systematic error. 

In order to achieve the fourth aim of the proof of concept as outlined in the introductory 

text, bias-corrected post-calibration predictive error variance is quantified through s-

versus-s scatterplots (based on the standard deviation implied by the calculated 95% 

prediction interval). Comparison of bias-corrected predictive error variance functions 

with the total post-calibration predictive error variance functions enables assessment 

of the capacity of PMA to reduce the impact of calibration-induced predictive bias. 

2.5 Results and discussion 

Throughout the present study, any calibration realizations for which the target 

measurement objective function was not achieved (whether as a result of non-

convergence of MODFLOW or due to calibration process termination criteria) are 

excluded from the analysis. It should be noted, however, that due to the large number 

of “successful” realizations relative to failed realizations in all cases, the impact of this 

exclusion was tested and found to be insignificant to all results.  



31 
 

2.5.1 Optimal calibration 

Figure 2.3 displays s-versus-s scatterplots for the particle exit point and particle travel 

time predictions based on optimal calibration in the presence of a very little 

(σε = 0.01 m) measurement noise (i.e., stochastically weighted Tikhonov 

regularization and Φm = Φm
l = 12.0). The associated regression statistics are provided 

in Table 2.2. These results are based on 995 realizations, with the target measurement 

objective function of 12.0 not achieved for five realizations. 

 

Figure 2.3. s-versus-s scatterplots for predictions of particle exit point and log10 of 

particle travel time based on optimal (stochastically weighted Tikhonov) 

regularization in the presence of independent Gaussian measurement noise of standard 

deviation 0.01 m. The solid line is the scatterplot regression line, the dashed lines 

bound the 95% prediction interval and the dotted line represents the 1:1 line. 

Table 2.2. Regression coefficients and statistics pertaining to the s-versus-s 

scatterplots of Figure 2.2. a and b are the regression coefficients of equation (2.26), 

and r2 is the coefficient of determination. 

Prediction a b r2 

Exit point 1.32 0.99 0.86 

Log10 time 0.39 0.68 0.18 

The s-versus-s regression line slope for the particle exit location prediction is 

approximately unity. That is PMA indicates unbiased prediction of particle exit 

location, this being consistent with theoretical expectation for a structurally non-

defective model (Doherty and Christensen, 2011). 

The equivalent s-versus-s scatterplot for the particle travel time prediction returns a 

regression line slope of less than unity, indicating the presence of calibration-induced 

bias, which is unexpected given the theoretical optimality of the calibration process. 
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However, this is considered to be an outcome of the poor ability of the hydraulic head-

based calibration data to constrain this type of prediction, as pointed out by Moore and 

Doherty (2005). This is supported by the corresponding prior and posterior error 

distributions displayed in Figure 2.4, which demonstrate that the post-calibration 

potential for error in the prediction of particle travel time is barely reduced relative to 

the pre-calibration uncertainty (contrasting the marked reduction in uncertainty 

achieved for the particle exit location prediction). This is attributable to the fact that 

that small-scale K heterogeneity is a dominant control on contaminant transport rates 

(e.g., Eggleston and Rojstaczer, 1998; Zheng et al., 2011). Estimated fields are 

inevitably “blurred” and lack this detail; this being necessary for the attainment of a 

unique solution to the inverse problem in the presence of sparse observation data (e.g., 

McLaughlin and Townley, 1996; Moore and Doherty, 2006; Ulugergerli, 2011). The 

resultant extremely poor correlation in the particle travel time s-versus-s scatterplot 

(exemplified by the very low r2 value in Table 2.2) limits the meaningfulness of 

statistics such as regression line slope. 

 

Figure 2.4. Prior and posterior predictive error (s – s) distributions based on optimal 

(stochastically weighted Tikhonov) regularization in the presence of independent 

Gaussian measurement noise of standard deviation 0.01 m (corresponding to the s-

versus-s plots of Figure 2.3). Prior distributions were calculated through unconstrained 

Monte Carlo analysis. 

2.5.2 Quantification of predictive error variance 

Figure 2.5 displays s-versus-s scatterplots for each of the three PMA processes 

summarized in Table 2.1. Table 2.3 provides the associated regression statistics. In 

each case the target measurement objective function of 12.0 was achieved for all 1000 

realizations. 

Moore and Doherty (2005) and Moore et al. (2010) present quantified post-calibration 

uncertainty in a variety of forms. For the purpose of direct comparison with the present 
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PMA results, literature-based results were converted to equivalent 95% prediction 

intervals and are overlayed in Figure 2.5. The horizontal position of the vertical red 

line corresponds to the value of the prediction made by the calibrated model in the 

relevant previous study, whilst the vertical span of the line represents the equivalent 

95% prediction interval. 

Figure 2.5 demonstrates reasonable agreement between PMA results and the 

equivalent results from established predictive error variance analysis methods 

presented in existing literature. Minor discrepancies between PMA prediction interval 

widths and the Moore and Doherty (2005) results (for cases ‘(a)’ and ‘(b)’ in Figure 

2.5) are attributable to the assumption of linearity underpinning the Moore and 

Doherty (2005) analysis in the presence of model nonlinearity, due to which 

discrepancies are expected (e.g., James and Oldenburg, 1997; Christensen and 

Doherty, 2008; Brunner et al., 2012). 

Confirmation of the influence of the linearity assumption in the present case is 

achieved through comparison of prior error variance values. Particle exit point prior 

error variance calculated through linear analysis (equation (2.21)) (results not 

presented for the sake of brevity) overestimates the true prior uncertainty attained 

through unconstrained Monte Carlo analysis (presented in Figure 2.4). This is likely a 

consequence of model boundary influence within the relatively small synthetic model 

domain. Lateral particle movement in more extreme cases is restricted by the eastern 

and western no-flow boundaries, thus introducing nonlinearity into model sensitivities 

and resulting in systematic overestimation of the uncertainty quantified through linear 

error variance analysis. Small discrepancies between linear and nonlinear uncertainty 

quantification methods are expected in general. A closer comparison is observed for 

prediction of travel time in Figure 2.5c as the Moore et al. (2010) result upon which 

comparison is based was quantified using a nonlinear method. 
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Figure 2.5. s-versus-s scatterplots for paired model analyses ‘(a)’, ‘(b)’ and ‘(c)’ as per 

Table 2.1, overlaid by representations of results from previous studies for comparative 

purposes. The dotted line is the 1:1 line. 

(c) 

(b) 

(a) 
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Table 2.3. Regression coefficients and statistics pertaining to the s-versus-s 

scatterplots of Figure 2.5. a and b are the regression coefficients of equation (2.26), 

and r2 is the coefficient of determination. 

PMA process a b r2 

a) -40.8 1.16 0.49 

b) 76.8 0.68 0.26 

c) 0.19 0.84 0.13 

Note that the deviation from unity of the s-versus-s regression lines in Figure 2.5 

slightly complicates the above comparison. Figure 2.1b demonstrates schematically 

that a deviation from unity of the regression line slope causes a difference between 

total post-calibration potential predictive error and that quantified through PMA s-

versus-s scatterplots (the latter being the bias-corrected post-calibration potential 

predictive error in accordance with the goal of applying PMA to reduce bias). Due to 

the slight deviations from unity of the slopes in the Figure 2.5 plots, the comparison 

with previous results should strictly involve total post-calibration predictive 

uncertainty (i.e., the orange uncertainty margin of Figure 2.1b) instead of the displayed 

prediction intervals (i.e., the green uncertainty margin of Figure 2.1b). However, the 

difference between total and bias-corrected uncertainty was found to be negligible for 

the cases displayed in Figure 2.5 (in fact it slightly improves the agreement between 

the results), thus the comparison remains valid. 

2.5.3 Predictive error variance minimization 

2.5.3.1 Optimally regularized case 

The s-versus-s scatterplots for all 12 optimally regularized (stochastically weighted 

Tikhonov scheme) PMA processes, in which varying degrees of model-to-

measurement misfit are targeted, are displayed in Figure 2.6 (exit point prediction) and 

Figure 2.7 (travel time prediction). The relevant statistics are collated in Table 2.4. 

In most cases the attained measurement objective function Φm across the ensemble of 

n paired model realizations is highly consistent as indicated by the very small values 

of the coefficient of variation for Φm (CVΦm
). This indicates average Φm is generally 

representative of the value for each individual realization. CVΦm
 is greater for the very 

large measurement noise cases due to values below Φm
l being achieved for some 

realizations in the pre-calibration state (i.e., the initial uniform K of 1 m/day), resulting 

in immediate termination of the calibration process. 
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Figure 2.6. Particle exit location prediction s-versus-s scatterplots for Moore and 

Doherty (2005) Tikhonov case, for observation weights q of (a) 0.50, (b) 1.00, (c) 2.00, 

(d) 2.50, (e) 2.95, (f) 3.33, (g) 3.65, (h) 3.84, (i) 4.00, (j) 4.36, (k) 5.75 and (l) 10.0. (q 

value commensurate with σε is 3.33). The solid line is the scatterplot regression line, 

the dashed lines bound the 95% prediction interval and the dotted line represents the 

1:1 line. 

  

d) 

c) b) 

g) 

l) j) 

a) 

f) 

h) 

e) 

i) 
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Figure 2.7. Particle travel time prediction s-versus-s scatterplots for Moore and 

Doherty (2005) Tikhonov case, for observation weights q of (a) 0.50, (b) 1.00, (c) 2.00, 

(d) 2.50, (e) 2.95, (f) 3.33, (g) 3.65, (h) 3.84, (i) 4.00, (j) 4.36, (k) 5.75 and (l) 10.0. 

(q value commensurate with σε is 3.33). The solid line is the scatterplot regression line, 

the dashed lines bound the 95% prediction interval and the dotted line represents the 

1:1 line. 

  

a) b) c) 

d) f) e) 

g) i) h) 

j) k) l) 
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Table 2.4. PMA statistics for Tikhonov-regularized inversion (0.30 m standard 

deviation measurement noise case). q is the weight applied to observations (i.e., 

elements of the Qh matrix of equation (2.2)), n is the number of model-pair realizations, 

µ̅ is the average regularization weight factor, Φ̅m is the average measurement objective 

functiona, 𝜎𝐗𝐤−𝐡 is average standard deviation of post-calibration model-to-

measurement misfit, CVΦm
 is the coefficient of variation of the measurement objective 

function, a and b are the s-versus-s regression coefficients of equation (2.26), and r2 is 

the coefficient of determination. 

    �̅�𝐗𝐤−𝐡 

(m) 

 

CVΦm
 

Exit point  Log10 travel time 

q n µ̅ Φ̅m a b r2  a b r2 

- - - 1283 3.11 - - - -  - - - 

0.50 1000 206 331 1.48 0.58 -970 4.96 0.04  -1.32 2.01 0.03 

1.00 1000 135 118 0.93 0.26 -565 3.31 0.11  -0.71 1.54 0.05 

2.00 1000 27.8 32.9 0.50 0.07 -243 1.99 0.33  -0.23 1.17 0.06 

2.50 1000 13.9 21.2 0.40 0.04 -142 1.57 0.42  -0.06 1.03 0.07 

2.95 1000 8.5 15.4 0.34 0.02 -79.1 1.32 0.47  0.11 0.90 0.07 

3.33 1000 6.1 12.0 0.30 0.01 -40.8 1.16 0.49  0.25 0.79 0.07 

3.65 1000 3.9 10.0 0.27 0.00 -15.4 1.05 0.49  0.38 0.69 0.07 

3.84 1000 3.7 9.0 0.26 0.00 -2.39 1.00 0.49  0.46 0.62 0.06 

4.00 1000 2.5 8.0 0.25 0.00 7.17 0.96 0.49  0.51 0.59 0.06 

4.36 1000 2.3 7.0 0.23 0.00 25.4 0.89 0.49  0.62 0.49 0.06 

5.75 995 1.9 4.0 0.17 0.01 64.9 0.73 0.47  0.89 0.29 0.04 

10.0 951 1.7 1.3 0.10 0.00 105 0.56 0.41  1.05 0.16 0.03 
a
Average measurement objective function Φ̅m values are all presented in terms of their equivalent value 

for observation weights equal to the inverse of measurement noise (i.e., q = 3.33) for the purposes of 

comparison with truncated SVD results and Moore and Doherty (2005) results. 

Based on the 12 PMA processes and following Moore and Doherty (2005), the 

relationship between predictive error variance and (the reciprocal of) the regularization 

weight factor µ is displayed as Figure 2.8. The magnitude of pre-calibration predictive 

error variance is represented by the horizontal dashed line. The diamond denotes the 

point on the error variance function at which the level of model-to-measurement misfit 

is commensurate with measurement noise (i.e., a Φm value of 12.0 as shown in Table 

2.4). 

Figure 2.8 indicates that for the particle exit point prediction, minimum predictive error 

variance does not occur at a Φ̅m value of 12.0. Rather, the minimum occurs at a higher 

value of 1/µ, that is, for a closer fit between observations and their model-generated 

counterparts. The minimum occurs at Φ̅m = 9.0 (the case for which s-versus-s 

regression line slope b = 1.00), which is equivalent to a misfit standard deviation of 

0.26 m (see Table 2.4). This indicates that slight overfitting is required to minimise 

predictive error variance for this prediction, which is consistent with the results of 

Moore and Doherty (2005). 
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Comparison of mean error variances for estimated log10K values for each PMA 

processes reveals the same trend, with the minimum occurring for Φ̅m = 9.0 (results 

not presented for the sake of brevity). This demonstrates that this outcome is not an 

artefact of the prediction and is an inherent product of the parameter estimation process 

itself. 

Additionally, results suggest that this outcome is dependent upon the level of 

measurement noise. Particle exit location prediction s-versus-s scatterplot regression 

line slopes for the 0.01 m, 0.1 m (results not shown) and 0.3 m standard deviation 

measurement noise cases are 0.99, 1.12 and 1.16, respectively (for Φ̅m = 12.0). In 

conjunction with the fact that minimum error variance corresponds to a regression line 

slope of unity (see Figure 2.6 and Table 2.4), this suggests an increasing degree of 

overfitting is required to minimise error variance in prediction of particle exit location. 

This observation extends the linear subspace-based results of Moore and Doherty 

(2005). Further examination of the influence of measurement noise upon the position 

of the minimum in the predictive error variance function is beyond the scope of the 

present study but is recommended as future work. 

In terms of the particle travel time prediction, Figure 2.8 reiterates and extends the 

section 2.5.1 discussion. Travel time predictive error variance is barely reduced 

relative to its pre-calibration magnitude for any degree of calibration. Furthermore, 

overfitting with respect to measurement noise (discussed in depth below) inflates 

particle travel time predictive error variance to well beyond its pre-calibration value. 

 

Figure 2.8. Predictive error variance versus the inverse of the average regularization 

weight factor (1/µ̅). The dashed lines represent pre-calibration predictive error 

variance (quantified through unconstrained Monte Carlo analysis). The hollow square 

in each plot represents the case for which model-to-measurement misfit is 
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commensurate with measurement noise (i.e., an average Φm of 12.0, corresponding to 

an average model-to-measurement misfit standard deviation of 0.30 m). 

Note that average µ values in Figure 2.8 span a somewhat smaller range than the 

equivalent results presented by Moore and Doherty (2005). The range of µ required to 

achieve varying levels of fit between model outputs and observations was found to be 

highly case specific. Some individual realizations exhibit a larger µ range more 

comparable with the results of Moore and Doherty (2005), whilst a larger number of 

realizations exhibit smaller ranges, thus reducing the range of average µ. 

2.5.3.2 Suboptimally regularized case 

The s-versus-s scatterplots pertaining to all 12 PMA processes undertaken for the 

truncated SVD case are displayed in Figure 2.9 and Figure 2.10 for the exit point and 

travel time predictions, respectively. Table 2.5 details the corresponding statistics. 

In contrast to the Tikhonov-regularized case, a significant degree of variability in Φm 

between realizations occurs in each PMA process (i.e., Φm for a given number of pre-

truncation singular values is highly case-dependent). This is indicated by the large 

values of CVΦm
 in Table 2.5 relative to the equivalent Tikhonov-case values in Table 

2.4. The effect of this degree of variability about the mean was tested through 

reproduction of results subject to Φm-based filtering (results not presented in the 

interests of brevity). An observed immunity of key s-versus-s regression 

characteristics to this filtering suggests that the large inter-realization Φm variability 

does not impact upon the interpretation of results in the present study. 
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Figure 2.9. Particle exit point prediction s-versus-s scatterplots for the suboptimally 

regularized (untransformed truncated SVD) case, for (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 

6, (g) 7, (h) 8, (i) 9, (j) 10, (k) 11 and (l) 12 pre-truncation singular values. The solid 

line is the scatterplot regression line, the dashed lines bound the 95% prediction 

interval and the dotted line represents the 1:1 line. 
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Figure 2.10. Particle travel time prediction s-versus-s scatterplots for the suboptimally 

regularized (untransformed truncated SVD) case, for (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 

6, (g) 7, (h) 8, (i) 9, (j) 10, (k) 11 and (l) 12 pre-truncation singular values. The solid 

line is the scatterplot regression line, the dashed lines bound the 95% prediction 

interval and the dotted line represents the 1:1 line. 
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Table 2.5. PMA statistics for truncated SVD-based inversion (0.30 m standard 

deviation measurement noise case). SVs denotes the number of pre-truncation singular 

values employed in the calibration process (i.e., the number of singular values assigned 

to the solution space, represented by S1 of equation (2.10)), n is the number of model-

pair realizations, Φ̅m is the average measurement objective function, 𝜎𝐗𝐤−𝐡 is average 

standard deviation of post-calibration model-to-measurement misfit, CVΦm
 is the 

coefficient of variation of the measurement objective function, a and b are the s-versus-

s regression coefficients of equation (2.26), and r2 is the coefficient of determination. 

   �̅�𝐗𝐤−𝐡 

(m) 

 Exit point  Log10 travel time 

SVs n Φ̅m CVΦm
 a b r2  a b r2 

0 - 1283 3.11 - - - -  - - - 

1 1000 131 0.76 3.35 222 0.10 0.00  3.75 -1.97 0.05 

2 1000 38.1 0.48 1.46 19.1 0.92 0.00  3.47 -1.75 0.05 

3 1000 24.2 0.38 1.69 57.3 0.76 0.10  3.13 -1.49 0.03 

4 1000 17.0 0.33 1.18 86.8 0.64 0.20  1.76 -0.41 0.00 

5 1000 12.4 0.28 1.07 76.8 0.68 0.26  1.37 -0.09 0.00 

6 1000 9.05 0.24 1.05 77.3 0.68 0.33  1.21 0.03 0.00 

7 1000 6.30 0.20 1.12 80.4 0.66 0.38  1.10 0.12 0.00 

8 1000 3.88 0.16 0.99 86.0 0.64 0.45  0.97 0.22 0.01 

9 997 2.51 0.12 1.22 94.3 0.61 0.43  0.93 0.26 0.01 

10 996 1.39 0.09 1.38 99.8 0.59 0.42  1.03 0.17 0.01 

11 985 0.62 0.05 2.39 109 0.55 0.39  1.13 0.10 0.00 

12 966 0.13 0.01 3.42 111 0.54 0.40  1.16 0.07 0.00 

Table 2.5 shows that use of five pre-truncation singular values results in the average 

Φm value closest to 12.0 (i.e., 12.4, which corresponds to an average model-to-

measurement misfit standard deviation of 0.28 m). This is consistent with the results 

presented by Moore and Doherty (2005), which also demonstrate that the use of five 

singular values results in the Φm value closest to 12.0 (i.e., 11.19, corresponding to an 

average model-to-measurement misfit standard deviation of 0.29 m). Also consistent 

with Moore and Doherty (2005) (as well as the above Tikhonov regularisation-based 

results), Figure 2.11 demonstrates that the error variance for the prediction of particle 

exit location is further reduced with the use of additional pre-truncation singular values 

beyond five (i.e., overfitting is again required to minimise predictive error variance). 

The predictive error variance function for particle exit location in Figure 2.11 differs 

slightly from the results presented by Moore and Doherty (2005). Figure 2.11 displays 

a distinct predictive error variance minimum at eight singular values, beyond which a 

significant increase is observed, which is not present in the results of Moore and 

Doherty (2005). Figure 2.11 in fact suggest that the combination of suboptimal 

regularization and overfitting (i.e., use of 11 or 12 pre-truncation singular values) 

almost entirely erodes the gains achieved through calibration such that post-calibration 

exit location error variance is nearly equal to its pre-calibration value. 
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In terms of the particle travel time prediction, Figure 2.11 demonstrates that, 

accompanied by suboptimal regularization (SVD in the absence of appropriate pre-

calibration parameter transformation in this case), calibration employing any number 

of singular values results in inflation of predictive error variance beyond its pre-

calibration magnitude. Thus, even for a model that is “well-calibrated” from a history 

matching point of view (and for any degree of history matching for that matter), the 

calibration process improves the ability of the model to predict particle exit point, 

whilst simultaneously degrading its ability to predict travel time relative to the 

uncalibrated model. Previous authors demonstrate counterintuitive prediction-

specificity in the outcomes of calibration as a result of model structural simplifications 

and defects (e.g., Christensen and Doherty, 2008; White et al., 2014). The present 

results demonstrate this for an idealised case wherein the model and “reality” are 

structurally equivalent, thus this outcome is solely a consequence of the (suboptimal) 

regularization mechanism employed to attain log10K field uniqueness. 

 

Figure 2.11. Predictive error variance versus number of singular values employed in 

the truncated SVD inversion process. The dashed lines represent pre-calibration 

predictive error variance (quantified through unconstrained Monte Carlo analysis and 

representing the use of zero pre-truncation singular values). The hollow square in each 

plot represents the case for which the average standard deviation of model-to-

measurement misfit is most commensurate with measurement noise (i.e., an average 

Φm of 12.4, corresponding to an average model-to-measurement misfit standard 

deviation of 0.28 m). 

2.5.4 Identification of predictive bias 

Figure 2.12 provides an illustrative example to support the following discussion of 

calibration-induced parameter compensation and consequential predictive bias. Figure 

2.12a provides a representative example of a “reality” log10K field. This is 

accompanied by three post-calibration log10K fields (each pertaining to the 0.30 m 
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standard deviation measurement noise case). Figure 2.12b represents optimal 

calibration and regularization (i.e., stochastically weighted Tikhonov scheme and post-

calibration model-to-measurement misfit that is commensurate with measurement 

noise (𝜎𝐗𝐤−𝐡 = 0.30 m)); Figure 2.12c is the same case in which overfitting has 

occurred (𝜎𝐗𝐤−𝐡 = 0.10 m); Figure 2.12d represents suboptimally regularized 

(untransformed truncated SVD) calibration using five pre-truncation singular values. 

 

Figure 2.12. (a) Arbitrary “reality” log10K field realization accompanied by three 

example post-calibration log10K fields yielded through different PMA processes (all 

for the σε = 0.30 m case): (b) Tikhonov-regularized calibration to level commensurate 

with measurement noise (Φ̅m = 12.0; 𝜎𝐗𝐤−𝐡 = 0.30 m); (c) Tikhonov-regularized case 

including substantial overfitting (Φ̅m = 1.3; 𝜎𝐗𝐤−𝐡 = 0.10 m); and (d) calibration 

effected through truncated SVD employing five pre-truncation singular values 

(Φ̅m = 12.4; 𝜎𝐗𝐤−𝐡 = 0.28 m). 

2.5.4.1 Overfitting-induced bias 

Figure 2.12c exemplifies the classic compensatory parameter behaviour induced by 

overfitting. It is clear that the model has been forced to introduce unrealistic parameter 

variability in order to closely fit the measurement dataset (i.e., a model-to-

measurement misfit standard deviation of 0.10 m) contaminated by measurement noise 

of standard deviation 0.30 m. The range of log10K variability in the estimated field is 

substantially inflated relative to the “reality” field (i.e., Figure 2.12a), and indeed 

violates “geological plausibility” defined by the variogram used to generate the 

ensemble of “reality” fields. 
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Simultaneously, the field of Figure 2.12c includes substantially more spatial detail than 

the “optimally calibrated” equivalent field in Figure 2.12b. This small-scale detail 

comprises parameter components that belong to the artificially expanded null space 

owing to the presence of a 0.30 m standard deviation measurement noise. As explained 

above, the calibration dataset does not support estimation of these null-space parameter 

components. However, attaining a model-to-measurement misfit standard deviation of 

0.10 m has resulted in their adjustment and thus an expected increase in error potential 

(bias) in predictions that are sensitive to them. 

This expectation is confirmed through inspection of Table 2.4 (and Figure 2.6l). PMA 

for this case yields s-versus-s regression line slopes of substantially less than unity for 

both predictions (0.56 and 0.16 for exit location and travel time, respectively). Thus 

PMA clearly identifies substantial calibration induced predictive bias caused by 

significant overfitting with respect to measurement noise. 

The suite of s-versus-s scatterplots for both predictions based the optimally regularized 

case demonstrate a monotonic reduction in regression line slope as model-to-

measurement misfit is reduced (see Figure 2.6, Figure 2.7, and/or Table 2.4). This 

monotonicity indicates that the PMA process is inherently consistent, and thus 

supports its reliability as an identifier of the presence of calibration-induced predictive 

bias (or lack thereof). 

2.5.4.2 Suboptimal regularization-induced bias 

PMA results pertaining to the suboptimally regularized (untransformed truncated 

SVD) case reveal that s-versus-s regression line slopes of less than unity are yielded 

for both predictions based on calibration employing any number of pre-truncation 

singular (see Figure 2.9, Figure 2.10 and/or Table 2.5). That is, consistent with 

theoretical expectation, PMA results indicate pervasive calibration-induced predictive 

bias resulting from any attempt at calibration accompanied by suboptimal 

regularization. In fact Figure 2.10 includes negative regression line slopes, indicating 

an inversely proportional relationship between model-predicted and “true” travel times 

up to and including the use of five pre-truncation singular values (for which Φ̅m is 

approximately commensurate with measurement noise). 

As described above, the failure to undertake appropriate pre-calibration parameter 

transformation in accordance with geological plausibility effectively hardwires 
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parameter compensation into the calibration process. Any degree of parameter 

adjustment through the calibration process thus includes unsupported adjustment of 

“reality model” null-space parameter components (the definition of which is based on 

C(k); this being discussed in detail in Chapter 3 of the present thesis). The inevitable 

outcome is calibration-induced predictive bias in null-space dependent predictions 

such as advective transport. 

This is demonstrated visually by Figure 2.12. Figure 2.12d is the parameter field 

estimated in the presence of suboptimal regularization employing five pre-truncation 

singular values (based on the “reality” field in 2.12a with 0.30 m standard deviation 

measurement noise added). The measurement objective function associated with 

Figure 2.12d is 13.1, thus it is an example for which model-to-measurement misfit is 

approximately commensurate with measurement noise, but with a very slight degree 

of underfitting. Despite this, the field of Figure 2.12d displays a visibly higher degree 

of variability than its optimally regularized counterpart in Figure 2.12b. Whilst Figure 

2.12b clearly captures the key features of Figure 2.12a and resembles a smoothed 

version of “reality”, Figure 2.12b exhibits some erroneous small-scale variations, some 

of which are clearly influenced by the locations of observation wells (see Figure 2.2a). 

A comprehensive analysis of the covariance structures of the various estimated 

parameter field ensembles to support the above commentary based on visual inspection 

of the example parameter fields in Figure 2.12 is beyond the scope of the present study. 

As a consequence of the pervasive bias caused by suboptimal regularization, predictive 

error variance is inflated relative to optimal regularization for most values of Φ̅m. 

Figure 2.13 displays predictive error variance versus Φ̅m for both regularization 

approaches to facilitate direct comparison. This highlights the erosion of the benefits 

of data assimilation caused by suboptimal regularization. For prediction of travel time, 

the regularization optimality (or lack thereof) determines whether predictive 

performance is improved or degraded through calibration (relative to pre-calibration 

predictive error variance).  

White et al. (2014) discuss the notion that inclusion of spatially correlated expert 

knowledge may cause parameter compensation to spread across larger regions of the 

model domain. This may explain the rise of the optimally regularized case error 

variance above that of the suboptimally regularized case for low values of Φ̅m (see 
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Figure 2.13). That is, the rapidly increasing degree of parameter compensation induced 

by an increasing degree of overfitting is more spatially expansive in the optimally 

regularized case, thus having a greater influence on predictions than the more localised 

parameter compensation facilitated by suboptimal regularization. 

 

Figure 2.13. Predictive error variance versus average measurement objective function 

Φ̅m based on both optimal regularization (stochastically weighted Tikhonov scheme) 

and suboptimal regularization (truncated SVD in the absence of appropriate parameter 

transformation). The hollow markers represent the cases for which model-to-

measurement misfit is most commensurate with measurement noise (see Table 2.4 and 

Table 2.5 for details). 

2.5.5 Bias-corrected post-calibration uncertainty 

Figure 2.14 provides plots of predictive error variance versus average Φm equivalent 

to Figure 2.13, but for predictive error variance quantified through the PMA s-versus-

s scatterplots (i.e., the 95% prediction interval for the true minimum error variance 

prediction that has been corrected for calibration-induced bias, as represented by 

Figure 2.1). 

The predictive error variance functions of Figure 2.13 are also displayed in Figure 2.14 

as dashed lines to facilitate direct comparison. Figure 2.14 thus clearly illustrates 1) 

the extent of the inflation in predictive error variance attributable to calibration-

induced parameter surrogacy and 2) the capacity of PMA to reduce the component of 

predictive error variance caused by predictive bias. This is particularly evident for low 

values of average Φm where bias is most severe due to substantial overfitting. For low 

values of average Φm, bias-corrected predictive error variance is relatively comparable 

regardless of whether regularization is optimal or suboptimal, and regardless of the 

degree of overfitting. This indicates that bias-corrected post-calibration predictive 
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error variance quantified through PMA s-versus-s scatterplots is almost entirely void 

of the deleterious effects of calibration-induced predictive bias. 

 

Figure 2.14. Bias-corrected (denoted as ‘BC’) predictive error variance functions 

quantified through PMA s-versus-s scatterplots (total predictive error variance 

functions from Figure 2.13 are shown as dashed lines for comparative purposes). The 

hollow markers represent the cases for which model-to-measurement misfit is most 

commensurate with measurement noise (see Table 2.4 and Table 2.5 for details). 

2.5.6 Robustness of s-versus-s metrics 

Doherty and Christensen (2011) employed 483 paired model realizations for the 

calculation of s-versus-s statistics in their study. An additional 500 realizations were 

plotted independently by these authors for testing. They observed qualitative 

agreement between the independent s-versus-s plots constructed using both sets of 

realizations. Quantitative 95% prediction interval testing by these authors returned 

acceptable results, albeit highlighting a degree of nonstationary scatter attributed to 

model nonlinearity. 

In the present study an arbitrarily large sample size of 1000 complex-simple model 

pair realizations was employed for PMA. In order to test the suitability of this sample 

size a convergence test was performed to verify the integrity of key PMA metrics. This 

involved repetition of PMA for an incrementally increasing sample size (including a 

total of 23 PMA repetitions using sample sizes ranging from 10 realizations to the full 

set of 1000 realizations). For completeness, a convergence test was performed for both 

Tikhonov (optimally regularized) and truncated SVD (suboptimally regularized) 

approaches. For this purpose, the q = 3.33 and 5 pre-truncation singular values cases 

were adopted, respectively. The sample size-dependence of several PMA-derived 

metrics was analyzed, these being s-versus-s regression line slope, predictive error 

variance and bias-corrected predictive error variance. 
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Figure 2.15a displays s-versus-s regression line slope versus complex-simple model 

pair sample size. Figure 2.15b displays PMA-derived predictive error variance (both 

total and bias-corrected) versus sample size. Figure 2.15a and Figure 2.15b indicate 

acceptable stabilization of the values of all tested metrics, most significantly after the 

sample size reaches approximately 500. 

 

 

Figure 2.15. Convergence (with respect to s-versus-s sample size n) test for PMA 

metrics including (a) s-versus-s regression line slope and (b) total and bias-corrected 

(BC) predictive error variance represented by the dashed and solid lines, respectively. 

Tikhonov example pertains to observation weights q = 3.33 and truncated SVD 

example pertains to 5 pre-truncation singular values. Sample-size increments in (b) are 

equivalent to those in (a); markers in (b) not displayed to reduce clutter. 

(a) 

(b) 
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2.6 Conclusions 

The present study comprises a systematic proof of concept for the PMA methodology, 

which was first presented by Doherty and Christensen (2011) and has not previously 

been tested for empirical consistency with theoretical expectations. For this purpose, 

PMA is applied to a hypothetical synthetic example, studied extensively in previous 

literature, in which the model to be calibrated and “reality” are structurally identical. 

This facilitates comparison of PMA results with well-established “traditional” 

uncertainty analysis results, as well as examination of its ability to identify calibration-

induced bias in the absence of the complicating influence of structural simplifications. 

Reflecting the key aims of the current proof of concept outlined in the introductory 

text, the outcomes of the present study are as follows: 

1. Subject to theoretically optimal regularization and calibration, PMA indicates 

unbiased post-calibration prediction of particle exit location, as theoretically 

expected. PMA applied to the prediction of particle travel time indicates a small 

amount of calibration-induced bias. This is attributed to the inability of the 

hydraulic head dataset to constrain this prediction due to its high sensitivity to 

small-scale heterogeneity. 

2. Post-calibration predictive error variance quantified through PMA is 

demonstrated to be in good agreement with equivalent results from previous 

studies attained via well-established “traditional” uncertainty analysis 

methods. Discrepancies, where they occur, are within a range that is acceptably 

attributable to the linearity assumption upon which some of the previous results 

are based. 

3. PMA identifies the occurrence of calibration-induced predictive bias where 

expected in the present synthetic example. Known sources of compensatory 

parameter behaviour (accompanied by unsupported adjustment of null-space 

parameter components), namely overfitting with respect to measurement noise, 

and suboptimal regularization is clearly elucidated by PMA. In the case of 

overfitting with respect to measurement noise, predictive bias is proportional 

to the degree of overfitting as expected. In the case of suboptimal 

regularization, predictive bias is pervasive as expected, due to parameter 

surrogacy being inherent to the formulation of the inverse problem. 
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4. PMA is demonstrated to allow extensive retroactive mitigation of the 

deleterious effects of calibration-induced predictive bias. The vast majority of 

post-calibration predictive error variance inflation associated with bias is 

removed through quantification of bias-corrected predictive error variance 

using s-versus-s scatterplots. 

The present study also yields some additional findings that are not directly related to 

the main aims of the proof of concept but are nonetheless pertinent, as well as some 

more general insights. These are summarized as follows: 

• PMA applied in the presence of optimal regularization yields a monotonic 

change in regression line slope with measurement objective function. This 

monotonicity strengthens the validation of PMA as it demonstrates inherent 

consistency and thus reliability as a bias identification (and reduction) tool. 

• PMA results based on theoretically optimal calibration suggest that as the level 

of measurement noise contaminating the calibration dataset is increased, an 

increasing degree of overfitting is required to minimise the particle exit 

location prediction error variance. This extends the single observation of this 

phenomenon identified by Moore and Doherty (2005) via their linear subspace 

analysis. Post-calibration parameter (i.e., log10K) error variance was found to 

produce the same trend, indicating that this is not a prediction-related artefact 

but inherent to the parameter estimation process itself. Further research is 

recommended to examine this phenomenon. 

• The present results demonstrate that, even through use of hypothetical 

structurally perfect model (which is unattainable in reality), a poorly forged 

calibration process (for example, in the form of an absence of appropriate pre-

calibration parameter transformation) has the ability to instil a greater potential 

for predictive error in a “well-calibrated” model than if the model had not been 

calibrated at all. 
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Chapter 3  
 

 

Parameter and predictive outcomes of 

model simplification 

 

Note: this chapter is based on the following paper: 

Watson, T. A., J. E. Doherty, and S. Christensen 2013. Parameter and predictive 

outcomes of model simplification. Water. Resources Research 49, 

doi:10.1002/wrcr.20145. 

 

Abstract 

Simplification is an unavoidable aspect of model usage. Even complex, physically 

based models are simplifications of reality. More profound simplification is required 

to construct the “lumped parameter” models of semi-physical basis that are often 

employed for simulation of large-scale processes operative over one or many 

watersheds. Simplification can lead to model predictive error beyond that which would 

be expected on the basis of study-area information deficits alone. Building on a 

recently developed mathematical description of the model simplification process, this 

work employs linear subspace methods to analyse in detail the nature and ramifications 

of that process when applied to a one-dimensional, Richards equation-based 

unsaturated zone model used to predict recharge to a groundwater system. Two 

simplified versions of this model are examined. The first achieves simplification 

through assuming vertical parameter uniformity. The second achieves simplification 

through use of a lumped parameter model in place of the Richards equation-based 

model. Relationships between parameters employed by the complex model and those 

used by each of the simplified models are analysed. The nature of predictive errors 

incurred through simplification is explored. Also explored is the ability of the 

calibration process to decrease the propensity for model error in making some 

predictions, while increasing the propensity for model error in the making of others – 

an outcome that may be considered counter-intuitive from a Bayesian perspective, but 

which is a natural consequence of suboptimal simplification. 
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3.1 Introduction 

The issue of simplification (as well as the closely related issues of model reduction 

and parameter upscaling) is central to environmental simulation. This is especially the 

case where modelling is carried out for the purpose of environmental management. In 

these circumstances a model is required to make one or a number of predictions on 

which decisions may be based. The extent to which the process of model simplification 

induces errors in predictions required of the model must be assessed so that decision-

makers and stakeholders can thereby be aware of the credibility of such predictions. 

The need for a proper understanding of model simplification arises first and foremost 

from the fact that all models are simplifications of reality. Hence they are imperfect 

simulators of the systems that they purport to represent. In addition to this, 

considerable simplification is often required for a model to be calibrated, for 

calibration uniqueness can only be attained at the cost of parameter simplification. 

Ideally, such simplification should achieve a status of minimized error variance for 

estimated parameters and for predictions which depend on them. Theoretically, this 

can be achieved through implementation of various types of mathematical 

regularization; see, for example, Tikhonov and Arsenin (1977), Menke (1984), Aster 

et al. (2005), and Moore and Doherty (2005; 2006). Following calibration, calibration-

constrained Monte-Carlo methodologies such as those described by Tonkin and 

Doherty (2009), Herckenrath et al. (2011), or hypothesis-testing methodologies such 

as that described by Moore et al. (2010) can be employed for analysis of the potential 

for error in predictions made by the simplified model. Ideally, analysis of the potential 

for errors in predictions made by a simplified/calibrated model is (almost) equivalent 

to analysis of the inherent uncertainty of these predictions given the information 

available for the system under study. 

Theoretically, uncertainty analysis without the need for simplification as a precursor 

to that analysis can be undertaken in a Bayesian framework under the assumption that 

a model’s inadequacies as a simulator of real-world environmental processes are small 

enough to be ignored. Examples of such analysis include the work of Harmon and 

Challenor (1997), Kuczera and Parent (1998), Campbell et al., (1999), Campbell and 

Bates (2001), Makowski et al. (2002), Qian et al. (2003), Kanso et al. (2003), Vrugt et 

al. (2009a) and references cited within these studies. Kennedy and O’Hagan (2001) 

extended Bayesian analysis to include the contributions made by simplification-



55 
 

induced model-to-measurement misfit to inferred posterior parameter uncertainty. 

Their analysis, however, was applied to parameter spaces of relatively low dimension 

where contributions to predictive uncertainty incurred by the existence of inestimable 

parameters, and/or inestimable combinations of parameters, are small or non-existent. 

In many cases of model design and usage, simplification is not carried out in such a 

mathematically controlled manner as that which is implemented through regularized 

inversion. Consequently, a mathematical description of the simplification process is 

rarely available. It is therefore difficult to account for the contribution that such 

simplification makes to the potential for error in predictions made by the simplified 

model. 

Recognition of the need for simplification dates back as far as modelling itself. Meisel 

and Collins (1973) discuss the need for model simplification in order to achieve 

(among other benefits) computational savings in an optimization context. More 

recently, Ratto et al. (2011) highlight that, despite the enormous advances in 

computing power over recent decades, computational limitations still remain a major 

barrier to use of large-scale, process-based simulation models in a decision-making 

context. Razavi et al. (2012) provide a review of the growing number of documented 

incidences of the use of simplified or surrogate models in place of complex, physically 

based models in studies that demand computation of model outcomes on the basis of 

many different sets of what they call “explanatory variables”, the nature of these 

depending on the nature of the study being undertaken.  

In response to the challenges posed by the need for model simplification, the recent 

literature documents a wide range of approaches to reducing the computational 

expense of simulating natural and man-made systems. Strategies include model 

emulation (or “metamodelling”) (e.g., Kennedy and O’Hagan, 2001; Oakley and 

O’Hagan, 2002; Sivakumar, 2008; Young and Ratto, 2009, 2011; Castelletti et al., 

2011; Stone, 2011), model “reduction” (e.g., Vermeulen et al., 2004, 2005, 2006; 

Cheng et al., 2011), and parameter upscaling (e.g., Farmer, 2002; Pachepsky et al., 

2006; Gerritsen and Lambers, 2008; Mondal et al., 2010). Meanwhile, less formal 

simplification strategies involving parameter and/or process lumping have been 

applied as a matter of course in model design and deployment over many years. See, 

for example, Lewis and Walker (2002), Dripps and Bradbury (2007), Zhu and Sun 

(2009), Francés et al. (2010), Martínez-Santos and Andreu (2010), Andreu et al. (2011) 
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and Touhami et al., (2012), all of whom modelled recharge to regional groundwater 

systems, this being the context of the example model discussed in the present study. 

While considerable effort has been devoted to seeking simplification strategies that 

reduce the computational burden of environmental simulation, few studies have 

explored the effects of simplification on a model’s predictive performance. Deleterious 

repercussions of simplification can include the introduction of predictive bias, and a 

loss of ability to quantify the full range of uncertainty associated with a prediction of 

interest; the latter is a fundamental requirement of model usage in decision support 

(Freeze et al., 1990). Such studies are difficult to undertake, for they often require that 

a simplified model be paired with a more complex one, with the latter providing 

metrics by which the former’s performance can be judged. Nevertheless, this approach 

was taken by Aanonsen (2008) and Scheidt et al. (2011) in the petroleum context, by 

Vrugt et al. (2004) and Schoups and Hopmans (2006) in the vadose zone context, and 

by Doherty and Christensen (2011) in the groundwater context. In most modelling 

contexts however, while the imperfect nature of model-based simulation is recognized, 

little or no attempt is generally made to quantify the effects of model imperfections on 

model predictive performance, for time and resources typically permit no such 

investigation. 

The present study seeks to improve our understanding of the effects of model 

simplification by undertaking such an investigation. It uses as its starting point theory 

and techniques developed by Doherty and Christensen (2011), who provided a 

generalized mathematical characterization of the model simplification process. By 

characterizing simplification as the omission from a model of parameters and 

processes that prevail in the real world, they were able to apply subspace concepts in 

their analysis. They then characterized simplification induced model predictive error 

as arising from one or more of the following sources. 

• Failure to represent parameter/process detail to which historical measurements 

of system state comprising the calibration dataset are sensitive. 

• Failure to represent parameter/process detail to which predictions of interest 

are sensitive. 
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• The compensatory roles that parameters of a defective model are forced to play 

during the calibration process, and then continue to play when the model is 

used to make predictions. 

The first of these represents a failure of the model calibration process to extract as 

much information from the calibration dataset as is available in that dataset. Because 

the (over-)simplified model provides no receptacles for such information, the post-

calibration propensity for error of some model predictions may be higher than it needs 

to be, given the available dataset. The gap between the information content of the 

calibration dataset and the receptacles that the model provides to hold that information 

is expressed as simplification-induced model-to-measurement misfit; this is 

commonly referred to as “structural noise”. Ideally, stochastic characterization of such 

noise would allow the effects of simplification to be at least partially included in the 

quantification of model predictive error. Methods such as those described by Kennedy 

and O’Hagan (2001), Cooley (2004), Cooley and Christensen (2006) and Cui et al. 

(2011) could be used for this purpose. However, Doherty and Welter (2010) point out 

that such analysis is likely to be hampered by the fact that the covariance matrix of 

structural noise is generally singular. 

The second source of error identified by Doherty and Christensen (2011) represents a 

failure on the part of a simplified model to represent the so-called “null space” 

contribution to predictive uncertainty. This source of uncertainty arises from a 

sensitivity of model predictions to parameters and/or parameter combinations that are 

not inferable through the model calibration process. That is, it arises from 

simplifications that do not degrade a model’s ability to replicate the past, but may 

compromise its ability to represent the future. In general, the magnitude of this term 

increases with the extent to which predictions of interest are different, or occur under 

different conditions, from those employed for model calibration. 

The third of the above sources of error can promote predictive bias. Doherty and 

Christensen (2011) show that adjustment of parameters of an imperfect model to 

achieve a good fit between model outputs and members of the calibration dataset 

requires that some parameters assume roles that they were not necessarily designed to 

play. At the same time, null-space parameter components are unwittingly adjusted 

away from their pre-calibration expected values, a process that Doherty and 

Christensen (2011) refer to as “null-space entrainment”. Predictions which are 
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sensitive to thus-adjusted null-space parameter components become biased as a result. 

Under certain circumstances this bias can dominate predictive error, engendering 

greater propensity for error in a model that has been calibrated than in a model that has 

not been calibrated at all. In contrast, if a prediction is entirely dependent on parameter 

combinations that are informed by the calibration dataset (i.e., so-called “solution 

space” parameter combinations), its propensity for predictive error may be 

significantly reduced by the model calibration process, regardless of model defects and 

regardless of the compensatory roles played by some model parameters during the 

calibration process and the degree of null-space entrainment endured by others. In 

general, this applies to predictions that are comprised of model outputs which are very 

similar in type and location to those used for model calibration. 

This study extends the work of Doherty and Christensen (2011) in examining the 

theory and ramifications of model simplification in contexts where a model must be 

calibrated before being used in a predictive capacity. With some slight modification of 

Doherty and Christensen’s (2011) original theory, simplification is viewed in the 

present study as parameter transformation and decomposition. The requirements of 

optimal transformation/decomposition are outlined, and the repercussions of 

suboptimal transformation/decomposition are described. The theory and concepts 

discussed herein are then illustrated using a relatively complex model of water 

movement through a heterogeneous soil profile built for the purpose of groundwater 

recharge estimation, together with two simplified versions of this same model. 

It is salient to point out that while Vrugt et al. (2004) and Schoups and Hopman (2004) 

also addressed the issue of model simplification in the vadose zone context, the present 

study differs from these previous studies in that its particular focus is on the potential 

for error in simplified model parameters, and in predictions that are sensitive to them, 

that is incurred through the act of calibrating the simplified model. As such, it forms a 

useful complement to this previous work. It is also salient to point out that a significant 

difference between the example used in this study and that employed by Doherty and 

Christensen (2011) is that calibration of the simplified models used in the present 

example constitutes a well-posed inverse problem. Furthermore, one of the simplified 

models is over-simplified, as the fit between outputs of this model and measurements 

comprising the calibration dataset are contaminated by structural noise. The effects of 

such “over-simplification” on model predictive performance are examined. In a further 

development of the theory presented by Doherty and Christensen (2011), the 
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relationships that parameters of a simplified model have with parameters of a partnered 

complex model (and, by inference, to the hydraulic properties of reality itself) are 

examined. The degree of null-space entrainment engendered through adjustment of 

simplified model parameters and its effects on model predictions are also examined 

through linear analysis. 

This chapter is organized as follows. Section 3.2 provides a brief review of the theory 

of simplification presented by Doherty and Christensen (2011). This theory is then 

extended to include the issue of optimal parameter transformation and the role of 

expert knowledge in seeking such optimality. Following that, transformations are 

developed through which the relationships between simplified model parameters and 

complex model parameters can be better understood. In section 3.3 we introduce a 

synthetic Richards equation-based model and two simplifications of it. In section 3.4 

the paired model methodology of Doherty and Christensen (2011), in conjunction with 

theory presented in section 3.2, are applied to this suite of models as they are employed 

to make predictions of groundwater recharge. Section 3.5 presents a discussion of the 

outcomes of these analyses. Section 3.6 draws conclusions that are salient not only to 

the models that are discussed in this study, but to environmental models in general. 

3.2 Concepts and theory 

3.2.1 Introduction 

The theoretical analysis of simplification presented herein rests on subspace concepts, 

whereby a simplified model is viewed as the outcome of a parameter transformation 

and decomposition process. One advantage of adopting such an approach is that, as we 

shall discuss, optimality of parameter transformation and decomposition (and hence of 

simplification) can, at least in principle, be defined. The success or otherwise of any 

particular simplification strategy can then be assessed according to this metric. It is 

important to point out that our analysis is not intended to constitute a mechanism for 

simplification and/or parameter upscaling that one would necessarily use in a real 

world context. It does, however, provide a means to understand and assess the 

outcomes of model simplification implemented in whatever way a modeller chooses. 

Our analysis assumes that the relationship between model outputs and parameters 

employed by a model is linear, and hence can be represented as a matrix. This 
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assumption is violated by most models; however it allows the use of subspace methods 

in our analysis. This, in turn, exposes outcomes of the simplification process which 

would be otherwise difficult or impossible to explore. These outcomes are not 

diminished by model nonlinearity; rather they are made more complex. Given that the 

intentions of our study are to expose and explore the general nature of these outcomes 

rather than their details in any specific modelling context, our analysis is not 

invalidated by the nonlinear nature of most models. Nevertheless, some numerical 

experiments were carried out to address this issue, and to thereby ensure the integrity 

of the conclusions drawn in the examples section of this chapter; details are provided 

in section 4.6. 

The following subsections provide a brief review of aspects of linear analysis that are 

salient to our analysis of model simplification. 

3.2.2 Linearization concepts 

3.2.2.1 General 

As stated above, to facilitate the application of subspace concepts and theory, a linear 

relationship between environmental process outputs and parameters pertaining to those 

processes is assumed. Reality, and any model that simulates it, are thus represented as 

matrices operating on parameters; the latter representing properties of a system. For 

ease of analysis we consider reality to be a very complex model (herein referred to as 

the “reality model”), and numerical simulators of reality to be simpler models that 

strive to provide the same outputs under the same conditions. In the text that follows 

we therefore make repeated reference to a “reality model” as our starting point for 

examining the effects of simplification, the latter being a necessary accompaniment of 

any attempt to simulate reality. Though a “reality model” does not actually exist (for 

only reality itself exists) we have retained this terminology in the following text in 

preference to the term “complex model” to depict the starting point for our analysis in 

order to reinforce the concept that all models, even the most complex, are gross 

simplifications of reality. Hence any model, no matter how complex, is subject to the 

same phenomena that we discuss below when parameters of that model are adjusted 

in order to ensure that its outputs better match the observed behaviour of the real world.  

For convenience in the analysis that follows, parameter values are formulated as 

perturbations from their expert knowledge-based expected values; model outputs are 
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treated in the same manner. Thus parameter values of zero give rise to model output 

values of zero. Adoption of this protocol reduces the complexity of the following 

equations. It also sets the mathematical context for optimal usage of subspace concepts 

in the model calibration process, namely that parameters (or combinations of 

parameters) should be assigned values of zero (and hence be informed by expert 

knowledge alone) unless information within the dataset supports estimation of these 

parameters (or parameter combinations). 

In accordance with the protocols just described, let k (a vector) denote the hydraulic 

properties of a real world system, or equivalently the parameters used by a “reality 

model” which simulates that system perfectly. Let Z represent the action of that model 

under calibration conditions, and let h represent the calibration dataset. The latter is 

contaminated by measurement noise ε so that: 

 h = Zk + ε (3.1) 

3.2.2.2 The null space 

The matrix Z of reality will normally have many more columns than rows, for reality 

is heterogeneous and complex, and its parameters are many. Unique estimation of 

these parameters from a calibration dataset is not possible. A parallel concept to that 

of parameter nonuniqueness is that of the null space. By definition, a non-zero 

parameter set kn belongs to the null space of Z if: 

 0 = Zkn (3.2) 

Suppose that a parameter set k can be found that fits the calibration dataset perfectly. 

Then: 

 h = Zk (3.3) 

By adding equation (3.2) to equation (3.3) the nonuniqueness of k in the face of the 

existence of a null space is demonstrated. 

Matrices that have more rows than columns can also possess a null space. However, a 

matrix with more columns than rows will surely possess a null space. In many 

modelling contexts the purpose of model simplification is to reduce the number of 

parameters employed by an existing model so that the null space is eliminated, thereby 

promulgating uniqueness of its calibration. However, calibration uniqueness can also 
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be achieved mathematically (and optimally, as will be explained) through the process 

of singular value decomposition (SVD). 

3.2.2.3 Singular value decomposition 

Through SVD, any matrix Z can be decomposed as: 

 Z = USVt (3.4) 

where U and V are orthonormal square matrices whose columns are unit vectors which 

span the output and parameter spaces of Z respectively. S is a matrix with diagonal 

elements, referred to as “singular values”, ordered from highest to lowest and all of 

which are positive or zero. Partitioning of S on the basis of zero and non-zero singular 

values leads to concordant partitioning of U and V. Applying subscripts 1 and 2 to the 

partitions that correspond to non-zero and zero singular values respectively, equation 

(3.4) becomes: 

 Z = U1S1V
t
1 + U2S2V

t
2 = U1S1V

t
1 (3.5) 

In practice, singular values that are close to zero, in addition to those that are exactly 

zero, are relegated to S2 in order to prevent “overfitting” (whereby a model is forced 

to reproduce characteristics of the calibration dataset that are more likely to represent 

measurement error rather than true system behaviour). The solution to the inverse 

problem of model calibration found through SVD is given by (see, for example, Aster 

et al., 2005): 

 k = V1S
-1

1U
t
1h (3.6) 

The fact that this amounts to a form of parameter simplification is demonstrated by 

pre-multiplying both sides of equation (3.6) by Vt
1 to yield: 

 α = Vt
1k = S-1

1U
t
1h = S-1

1φ (3.7a) 

where: 

 φ = Ut
1h (3.7b) 

α is a vector comprising estimates of the scalar projections of the real world parameter 

set k onto each of the orthogonal unit vectors v1i comprising the columns of V1. 

Collectively these orthogonal unit vectors span the parameter solution space; this is 
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the orthogonal complement of the null space – orthogonal because the projection of 

one of these subspaces onto the other is zero or, in more colloquial terms, because 

there is no overlap between them. The smaller is the dimensionality of the solution 

space, the fewer of these scalar projections are estimated, for the dimensionality of the 

solution space is defined as the number of columns comprising the V1 matrix. 

Meanwhile, parameter projections onto the v2i vectors which span the null space are 

not estimated. These projections therefore retain their pre-calibration values of zero.  

Projections of parameters onto the vi vectors can be considered to be linear 

combinations of the original parameter set k. The ratios in which these parameters are 

combined are given by the elements of each vi vector. The calibration process thus 

effectively provides estimates for multipliers pertaining to some of these combinations 

(i.e., parameter combinations belonging to the solution space), while multipliers for 

other parameter combinations are assigned a value of zero as the calibration dataset 

provides insufficient information for their estimation. At the same time, because of the 

diagonal status of S-1
1, each element of α is calculated directly from its corresponding 

element of φ through multiplication by the corresponding element of S-1
1. The i’th 

element of φ is the scalar projection of the observation dataset onto the i’th column of 

U, the latter being denoted as ui. In a similar fashion to vi for parameters, each ui 

contains coefficients that combine observations in a linear manner. Equation (3.7) thus 

states that the i’th combination of observations expressed by ui is uniquely and entirely 

informative of the i’th combination of parameters expressed by vi. The reader is 

referred to texts such as Aster et al. (2005) for further details. 

3.2.2.4 Optimal calibration 

Let s (a scalar) be a prediction made by the reality model. Let the vector y denote the 

sensitivity of this prediction to parameters k of the reality model. Then: 

 s = ytk (3.8a) 

When the prediction is made using the calibrated model, it is calculated as: 

 s = ytk (3.8b) 

It can be shown (see Moore and Doherty, 2005) that the error variance of the prediction 

made by the calibrated model is: 
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 σ2
s-s = ytV2V

t
2C(k)V2V

t
2y + ytV1S

-1
1C(ε)S-1

1V
t
1y (3.9) 

where C(ε) is the covariance matrix of measurement noise. C(k) is the covariance 

matrix associated with the prior probability distribution of parameters k. As such it is 

an encapsulation of expert knowledge. 

Let us suppose that C(k) and C(ε) can be expressed as follows: 

 C(k) = σ2
kI (3.10a) 

 C(ε) = σ2
εI (3.10b) 

The first of these equations states that, in terms of expert knowledge, all parameters 

are independently and equally variable, with no statistical correlation between them. 

The second states that the errors associated with measurements comprising the 

calibration dataset are also independent and of equal magnitude for all measurements. 

If the conditions given by equation (3.10) are met then equation (3.9) becomes: 

 σ2
s-s = σ2

ky
tV2V

t
2y + σ2

εy
tV1S

-2
1V

t
1y (3.11) 

The first term on the right of equation (3.11) falls monotonically as the number of 

singular values that are assigned to the solution space increases, whilst the second term 

rises monotonically at the same time. Meanwhile, the sum of these terms falls from its 

pre-calibration value (equal to pre-calibration predictive uncertainty) if no singular 

values are retained, achieves a minimum value at some number of positive singular 

values, and then rises, approaching infinity as the magnitude of singular values 

comprising the diagonal elements of S1 approaches zero. The minimum value of the 

predictive error variance curve defines the optimum number of singular values to 

employ in calibrating the model. 

Optimality of calibration can also be viewed from a parameter, as well as from a 

predictive, point of view. As the dimensionality of the solution space is increased, the 

error variance of the αi scalars comprising the elements of the α vector of equation 

(3.7) can be computed using a slight modification of equation (3.11). If the error 

variance of an αi is greater after calibration than before calibration (where its 

propensity for error is based on expert knowledge alone), it should not be estimated, 

and the corresponding vi vector should not be included in the solution space. In other 

words, parameters and parameter combinations which are not estimated through the 
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calibration process should be assigned values based on expert knowledge alone, for 

this endows such parameters and parameter combinations with less potential for error 

than that which they would accrue through the calibration process. 

Satisfaction of equations (3.10a) and (3.10b) is important for achieving optimality of 

calibration through minimization of predictive error variance through selection of the 

appropriate number of singular values to employ in the calibration process. Where 

equation (3.10a) in particular is not met, and especially where C(k) has off-diagonal 

elements, it is easy to find cases where a graph of σ2
s-s versus number of singular values 

rises before it falls. Note also that the number of singular values used in estimation of 

model parameters can be taken as a measure of calibration-induced simplification. The 

use of a small number of singular values implies a small dimensionality of the solution 

space, and hence a high degree of simplification. 

3.2.2.5 Optimal parameter transformation (the Karhunen-Loѐve transform) 

Rarely will expert knowledge be such that equation (3.10a) automatically holds. 

However, conceptually at least, it can be achieved through appropriate parameter 

transformation.  

Let the matrices F and E (the former being orthonormal and the latter being diagonal) 

be defined through the following equation in which the necessarily positive definite 

symmetric matrix C(k) is subject to SVD: 

 C(k) = FEFt (3.12) 

Now let the vector m be defined as: 

 m = E-1/2Ftk (3.13a) 

so that, by pre-multiplication of both sides of equation (3.13a) by E1/2 and F: 

 k = FE1/2m (3.13b) 

Using standard matrix relationships for propagation of covariance it is easily shown 

that: 

 C(m) = I (3.14) 
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Comparing equation (3.14) with the condition for optimal calibration expressed by 

equation (3.10a), it follows that parameter estimation should take place in m-space 

rather than k-space if it is to achieve a minimum error variance status for estimated 

parameters and for predictions which depend on them. From equations (3.1) and 

(3.13b): 

 h = Zk + ε = ZFE1/2m + ε = Ym + ε (3.15) 

where: 

 Y = ZFE1/2 (3.16) 

3.2.3 Simplification and subspaces 

3.2.3.1 Simplification strategies 

Strategies through which complex and heterogeneous natural systems are represented 

in a numerical model are often based on notions of averaging and/or fixing. In a 

groundwater model, for example, many facies may be simulated as a single layer; 

parameters assigned to that single layer are hydraulic properties vertically averaged 

over those facies. Similarly, horizontal spatial hydraulic property averaging is required 

in order to assign parameters to the (possibly large) cells or elements used by a regional 

numerical model.  

The process of model structure simplification has much in common with the process 

of parameter simplification that is often undertaken prior to model calibration in order 

to achieve well-posedness of the resulting inverse problem. The latter involves the 

fixing of some parameters at expert knowledge-informed values and the amalgamation 

of others so that average properties, rather than parameterization detail, are subject to 

estimation. As discussed above, optimality of parameter simplification required for 

model calibration can be achieved through SVD following appropriate parameter 

transformation. This too can be viewed as the process of fixing certain parameters and 

parameter combinations at “known” values (these being parameters and parameter 

combinations which lie entirely within the null space) while estimating a limited 

number of “averaged” parameters. The “averaging coefficients” (i.e., the elements of 

the vi vectors comprising the columns of the V1 matrix of equation (3.5)) are defined 

in a manner that guarantees orthogonality to null-space parameter components and 
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achieves a minimum error variance status for averaged parameters thus estimated, and 

for predictions which depend on them. 

3.2.3.2 Optimal model simplification 

Doherty and Christensen (2011) addressed the concept of optimality of model 

simplification through analysing model simplification in linear subspace terms. They 

showed that simplification can be viewed as a kind of parameter decomposition, this 

resulting in a set of actual and/or notional parameters which are “included” in the 

simplified model, together with a complimentary set of parameters which are 

“omitted” from this model. Under the assumption that the simplified model must be 

calibrated as part of its field deployment, they demonstrated that a necessary condition 

for achieving optimality of model simplification is that the parameter space 

decomposition implied by simplification be an orthogonal decomposition, and that the 

outcomes of this decomposition process resemble, as much as possible, that implied 

by transformation according to equations (3.13a) and (3.13b), followed by SVD of the 

resulting m parameter space. 

Doherty and Christensen (2011) characterized optimal model simplification as that 

which leads to predictions of minimized error variance. (Note that this error variance 

may be far from zero, as it is bounded from below by the innate uncertainty associated 

with model predictions given all available information pertaining to the system of 

interest.) They showed that where simplification is not in accordance with the 

transformation and decomposition process described above, a consequence may be 

inadvertent adjustment of parameter components that properly belong to the null space 

as the simplified model is calibrated. Predictions that are sensitive to thus entrained 

null-space parameter components will be biased and will therefore fail to achieve 

minimum error variance status. Such simplification is therefore suboptimal. 

Simultaneously with null-space entrainment certain model parameters and/or 

parameter combinations assume surrogate roles as they compensate for model defects 

while allowing model outputs to fit the calibration dataset; this further contributes to 

potential predictive bias. (A simple mathematical demonstration of calibration-

induced null-space parameter entrainment incurred through failure to comply with 

optimality of parameter transformation as described by equations (3.13a) and (3.13b) 

is provided in Appendix A.) 
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Doherty and Christensen (2011) further showed that the adverse effects of a 

suboptimal simplification strategy are prediction-specific. Where a prediction is 

similar in nature to data comprising the calibration dataset (and therefore is sensitive 

solely to parameter combinations occupying the solution space), optimality of 

simplification as far as that prediction is concerned requires only that a model be 

capable of replicating historical system behaviour well; a recognizably physical basis 

for its parameters is of secondary importance. Alternatively, where a model is required 

to make predictions under different conditions, or of a different type, to the 

observations which comprise the calibration dataset (as is often the case), its design 

must be such that these different conditions can indeed be simulated, and that its ability 

to make such predictions with minimized error variance is enhanced, rather than 

eroded, by the process of model calibration. The alignment of calibration and 

simplification subspaces discussed above is important in achieving this. 

3.2.3.3 Paired model analysis 

If model simplification approaches optimality, then all predictions made by the model 

after it has been calibrated are of minimized error variance regardless of their degree 

of solution and null space dependence. However, lack of representation of real world 

null-space parameter components in the simplified model may preclude the possibility 

of exploring the error variance associated with its predictions, and hence of quantifying 

their uncertainties. Doherty and Christensen (2011) propose a methodology for model 

predictive uncertainty analysis that involves conjunctive use of a simplified and 

complex model in order to overcome this problem. At the same time, this methodology 

allows identification of, and correction for, calibration-induced predictive bias. 

Although requiring construction of a complex model for use in conjunction with the 

simplified model, a benefit of this approach is that the complex model does not require 

calibration – an undertaking which may be hampered by long run times and/or 

numerical instability of the model. Moreover, use of a physically based complex model 

provides the means through which expert knowledge pertaining to a particular study 

site can be best expressed. 

The methodology is as follows. 

• Generate many different expert knowledge-based stochastic realizations of a 

complex model and its parameters, with these realizations including those 



69 
 

aspects of the system that are likely to contribute most to the uncertainty of 

predictions of interest. Obtain a suite of such predictions from the stochastic 

model realizations. Let each such prediction be referred to as s. Additionally, 

compute complex model outputs that correspond to observations comprising 

the available calibration dataset. 

• For each realization of the complex model, calibrate a simplified model against 

those complex model outputs that correspond to members of the calibration 

dataset. Then make the prediction of interest using each calibrated simplified 

model. Let these predictions be referred to as s. 

• Produce a scatterplot of s-versus-s. A regression (best-fit) line through the 

scatterplot can be used to correct simplified model predictions for 

simplification and calibration-induced predictive bias. Meanwhile, scatter 

about the line of best fit quantifies predictive uncertainty (this often being 

dominated by the sensitivity of a prediction to null-space parameter 

components that are not represented in the simplified model). 

• Calibrate the simplified model against the real world dataset. On the basis of 

information available from the s-versus-s plot, correct this prediction for bias 

and quantify its uncertainty. 

The described paired model analysis, whilst presented by Doherty and Christensen 

(2011) as a practical methodology for predictive uncertainty quantification and bias 

correction, also serves as a metric by which the success, in terms of predictive 

performance, of a given simplification approach can be judged. It is employed in the 

present study for this purpose. 

3.2.4 Relationships between complex and simplified model parameters 

In accordance with the approach taken by Doherty and Christensen (2011) we express 

the effects of simplification as the omission of parameters, and the processes that 

operate on them, from a complex “reality model” in order to derive the actual 

numerical model that we use in place of reality. Thus any model that we use to simulate 

reality can be viewed as possessing a suite of “visible” parameters, together with a set 

of implied “invisible” parameters. The latter specify corrections that should be made 

to any aspect of the physical, numerical and/or parameter structure of the model that 
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would allow that model to become a perfect replica of the real world and the processes 

that are operative therein. This is, of course, a simplistic notion; indeed any analysis 

of simplification will itself be a simplification. However, as will be demonstrated 

below, this conceptualization of simplification allows us to gain some important 

insights into the effects of the simplification process that would not otherwise be so 

clearly visible. 

Let the reduced number of parameters employed by a simplified model of the study 

site described by Z be represented by the vector p. Let the model which acts on this 

reduced set of parameters be designated as X. Then, under calibration conditions, from 

equation (3.1): 

 h = Xp + (Zk – Xp) + ε (3.17) 

The term (Zk – Xp) can be viewed as structural error (or sometimes “structural noise” 

when its presence becomes apparent through attempts to calibrate the model) as it 

represents simplification-induced model-to-measurement misfit. As discussed above, 

analysis of this can prove difficult for a number of reasons. Furthermore, if a simplified 

model fits the calibration dataset well, this term may be very small (or even non-

existent). Hence it is often more fruitful to examine the ramifications of simplification 

on the calibration process from the point of view of its effect on parameters rather than 

its effects on model outputs; see, for example, Vrugt (2005), Kavetski et al. (2006a, 

2006b) and Kuczera et al. (2006). Following Doherty and Christensen (2011) we write: 

 Zk – Xp = Zoko (3.18) 

where the subscript “o” stands for “omitted”. ko represents parameters omitted from 

the “reality” model in building the simplified model, while Zo represents the omitted 

processes which operate on them. Equation (3.17) therefore becomes: 

 h = Xp + Zoko + ε (3.19) 

The simplified model parameter set p can be characterized as being derived from the 

complex model parameter set k through a decomposition operation. If this is denoted 

by the matrix L then: 

 p = Lk (3.20) 

so that from equation (3.17): 
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 h = XLk + (Z - XL)k + ε (3.21) 

To simplify the following analysis we will assume that the model simplification 

process is such that X is of full rank, and that estimation of p from the calibration 

dataset therefore constitutes a well-posed inverse problem. If we further assume for 

simplicity that measurement noise is zero, and then provide all observations with the 

same weight, a value of p can be obtained for any k through calibrating the simplified 

model against a calibration dataset generated by the complex model. Thus: 

 p = (XtX)-1Xth = (XtX)-1XtZk = Lk (3.22) 

Equation (3.22) provides the relationship between p-space, the parameter space of the 

simplified representation of the real world that is the X model, and k-space, the 

parameter space of the reality model (which we characterize as the Z model). Through 

use of this relationship, the composition of any simplified model parameter in terms 

of reality model parameters can be established.  

While simplified models are often abstractions of reality, their designers often state 

that their parameters can be informed by expert knowledge; in fact they are often built 

specifically with this in mind. These considerations apply particularly to the lumped 

parameter soil moisture store models that form the basis of many regional 

rainfall/runoff/recharge simulators; indeed such a model is examined later in this 

study. Equation (3.22) can be used to examine whether any particular simplified model 

parameter does indeed perform the function that it was designed to perform. 

Furthermore, the extent to which expert knowledge should be respected in terms of the 

degree of simplified model parameter variability allowed during calibration can be 

judged by computing the prior covariance matrix C(p) of the simplified model 

parameter set. From equation (3.22), this can be calculated from that of the real-world 

parameter set using standard relationships for propagation of covariance as: 

 C(p) = (XtX)-1XtZC(k)ZtX(XtX)-1 (3.23) 

We note that this equation is similar to that derived by Gallagher and Doherty (2007b). 

Cooley and Christensen (2006) discuss the special case where model simplification is 

undertaken through assuming spatial parameter uniformity in place of heterogeneity 

while retaining all other computational aspects of the complex model in the 

simplification process. (This corresponds to one of the examples presented herein.) 
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They show that in this case the difference between estimated properties p and spatially 

averaged properties of the complex model, denoted as p*, is given by: 

 p – p* = (XtX)-1XtZ(I – γ(γtγ)γt)k (3.24a) 

The matrix γ is defined by the equation: 

 E(k) = γp (3.24b) 

where: 

 p = E(p)  (3.24c) 

with E( ) being the expected value operator. They show for a linear model that over 

many realizations:∙ 

 E(p – p*) = E(p – p) = 0 (3.25) 

However for any one realization p and p* will generally differ, as equation (3.24) 

shows. Cooley and Christensen (2006) also show that the discrepancy between p and 

p* can be reduced, though not eliminated, by employing an empirically determined 

weighting matrix instead of measurement weights in estimating p. This empirically 

determined weighting matrix is an estimate of the inverse of the total error covariance 

matrix, where the total error is the sum of observation error and structural error caused 

by the model’s neglect of spatial heterogeneity. 

3.2.5. Back-transformation to complex model parameter space 

To conform with nomenclature introduced above we will continue to employ k to 

represent a “reality” parameter set, or the parameter set employed by an equivalent 

complex model; Z represents the action of that model. We will assume, however, for 

the sake of simplicity in development of the theory, that equation (3.10a) holds (this 

may be either automatically or through appropriate parameter transformation) so that 

optimality of simplified parameterization can be achieved through SVD of Z. 

As decomposition of k to p involves parameter reduction, it is not possible to find a 

unique back-transformation from p to k. However, it is possible to find a unique 

transformation from p to the solution space of Z. This follows from the fact that, for a 

given h, p is unique and the projection of k onto its solution space is unique. This 

transformation is accomplished by seeking that k (where the underscore signifies 
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solution space occupancy) which provides the same h as Xp. We will refer to this 

back-transformed parameter set as kp and define the transformation as N. Thus, from 

equation (3.6): 

 kp = Np = V1S
-1

1U
t
1Xp (3.26) 

where V1, S1 and U1 are defined through SVD of Z. Using the specification for L 

provided by equation (3.22), equation (3.21) can be expanded as: 

 h = X(XtX)-1XtZk + (Z – X(XtX)-1XtZ)k + ε (3.27) 

We now introduce the identity (Aster et al., 2005): 

 V1V
t
1 + V2V

t
2 = I (3.28) 

where V1 and V2 are defined through equations (3.4) and (3.5), with partitioning taking 

place according to minimization of σ2
s-s through equation (3.11). Hence, from equation 

(3.1): 

 h = Zk + ε = ZV1V
t
1k + ZV2V

t
2k + ε = Zki + Zkn + ε (3.29) 

where we define ki as the “ideal” value of the calibrated parameter set. As such, it is 

the projection of the reality parameter vector k onto a solution space whose dimensions 

are those determined by minimization of predictive error variance of equation (3.11). 

It is thus calculable as: 

 ki = V1V
t
1k (3.30) 

Meanwhile kn is orthogonal to ki. This includes null space components of k, as well 

as components of k that are relegated to the null space as they are not worth estimating 

because their potential for error will be greater after calibration than before calibration. 

From equations (3.5) and (3.30) and the orthonormality of the vectors comprising V: 

 V1S
-1

1U
t
1Zk = V1S

-1
1U

t
1Zki = ki (3.31) 

If both sides of equation (3.29) are now pre-multiplied by V1S
-1

1U
t
1 and (3.31) is 

substituted into the right side we then obtain: 

 V1S
-1

1U
t
1h = ki + V1S

-1
1U

t
1ZV2V

t
2k + V1S

-1
1U

t
1ε (3.32) 
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Through SVD of Z and using the orthonormality of V and U, it is easy to show that 

the second term on the right of equation (3.32) is zero. Thus: 

 V1S
-1

1U
t
1h = ki + V1S

-1
1U

t
1ε (3.33) 

If both sides of equation (3.27) are now pre-multiplied by V1S
-1

1U
t
1, we obtain, with 

the help of equations (3.22) and (3.26): 

 V1S
-1

1U
t
1h = kp + V1S

-1
1U

t
1(I – X(XtX)-1Xt)Zk + V1S

-1
1U

t
1ε (3.34) 

The matrix X(XtX)-1Xt is an orthonormal matrix spanning the range space of the 

simplified model X. (I – X(XtX)-1Xt) spans the orthogonal complement of this. If this 

includes only system outputs calculated on the basis of parameter combinations 

corresponding to singular values that are below the singular value cutoff threshold, 

orthogonality of these outputs to U1 guarantees that the second term on the right of 

equation (3.34) is zero. However if it includes any outputs that have a non-zero 

projection onto the U1 subspace, this term will not be zero. In other words, the second 

term of equation (3.34) describes structural noise created by an inability of the 

simplified model X to fit those aspects of the system response (encapsulated in U1) 

that are considered to be worth fitting from a parameter estimation point of view. 

Ideally, the design of a simplified model should be such as to reduce this term to as 

close to zero as possible. To the extent that this is accomplished, a comparison of 

equation (3.34) with equation (3.33) reveals that kp approaches ki. Calibration of the 

simplified model thus achieves an effective real-world parameter set that has the same 

projection onto the real-world solution space as would have been achieved if the reality 

model itself were calibrated in an ideal manner. 

From equations (3.22) and (3.26) the relationship of kp to real-world parameters k is 

calculable as: 

 kp = V1S
-1

1U
t
1X(XtX)-1XtZk (3.35) 

Equation (3.35) describes only the solution space projection of the effective real-world 

parameter set achieved through calibration of the simplified model. Let the vector β 

contain the scalar projections of kp into each of the axes of parameter space defined 

through SVD of the reality model matrix Z. Then: 

 β = Vt
1kp = S-1

1U
t
1X(XtX)-1XtZk (3.36) 
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Meanwhile, the true (reality model) set of solution space projections β can be 

calculated as: 

 β = Vt
1k (3.37) 

Errors in these projections are therefore calculable as: 

 β – β = (S-1
1U

t
1X(XtX)-1XtZ - Vt

1)k (3.38) 

Given the assumption that equation (3.10a) holds and thus the covariance matrix of k 

(i.e., C(k)) is I, the covariance matrix of solution-space parameter projection error can 

be calculated from equation (3.38) as: 

 C(β – β) = (S-1
1U

t
1X(XtX)-1XtZ – Vt

1)(S
-1

1U
t
1X(XtX)-1XtZ – Vt

1)
t (3.39) 

If a simplified model is capable of fitting a noise-free calibration dataset perfectly, C(β 

– β) is 0, indicating achievement of correct real-world solution-space parameter 

projections through calibration of the simplified model. However, through 

unavoidable, simultaneous adjustment of real-world null-space parameter components 

as simplified model parameters are adjusted, these correct real-world solution-space 

parameter projections may be accompanied by non-zero (and hence biased) real-world 

null-space parameter projections. The propensity for this to occur can be calculated 

using an appropriately modified version of equation (3.39) as: 

 C(βn) = (S-1
2U

t
2X(XtX)-1XtZ)(S-1

2U
t
2X(XtX)-1XtZ)t (3.40) 

where 

 βn = Vt
2kp = S-1

2U
t
2X(XtX)-1XtZk (3.41) 

Equivalent to equation (3.37), the true set of null-space parameter projections βn is 

given by: 

 βn = Vt
2k (3.42) 

However, these can never be known. 

The presence of non-zero elements of C(βn) represents suboptimality of the model 

simplification process, as it implies that parameter components that are not inferable 

from the calibration dataset have been interjected into the effective parameter set of 
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the reality model through calibration of the simplified model (i.e., null-space 

entrainment). Though such components may indeed be present in the real-world 

parameter set k, their calibrated values must be zero if minimum error variance status 

of all model predictions is to be achieved (rather than just those that are solution space-

dependent). The S-1
2 term of equation (3.40) suggests that these unwanted terms may 

grow large as singular values get small. The error variance of some simplified model 

predictions may grow very large accordingly. 

3.3 Synthetic case study – description 

The theory and concepts developed above are now applied to a synthetic one-

dimensional vadose zone example in which a model is to be built and calibrated for 

the purpose of transient groundwater recharge estimation. A “complex” model was 

developed, together with two different simplifications of this model. The latter differ 

in their degree of simplification, with one involving only parameter simplification and 

the other involving substantial process and structural simplification. These are now 

described. 

3.3.1 Complex model 

The complex model was constructed using HYDRUS-1D (Šimůnek et al., 2009). 

HYDRUS-1D simulates variably saturated flow in porous media by solving the one-

dimensional Richards equation: 

 S
z

h
K

zt
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 (3.43) 

where  [L3L-3] is the volumetric water content, t [T] is time, h [L] is the pressure head, 

z [L] is the vertical coordinate, S [L3L-3T-1] is the sink term and K [LT-1] is the 

unsaturated hydraulic conductivity function. The latter is defined using the Mualem-

van Genuchten (MVG) model for unsaturated soil hydraulic properties (van 

Genuchten, 1980), implemented using the following equations. 
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and: 

 nm /11  (3.46) 

In equations (3.45) and (3.46), Se [-] is the effective water content, r [L
3L-3] and s  

[L3L-3] are the residual and saturated water contents respectively,  [L-1] is the inverse 

of the air-entry pressure head hs [L], n [-] is a pore-size distribution index, Ks [LT-1] is 

the saturated hydraulic conductivity and l [-] is a pore-connectivity parameter. 

The complex HYDRUS-1D model used in our study simulates water movement within 

a 10-layer vertical soil column of 500 cm depth. The top of the column is defined by 

an atmospheric boundary condition. This switches between prescribed head and 

prescribed flux depending on the pressure head at the soil surface; meanwhile any 

excess water on the soil surface is immediately removed as surface runoff. A seepage 

face condition comprises the lower boundary. Root water uptake is simulated using 

the Feddes (1978) model of water uptake reduction. This model enforces cessation of 

root water uptake below wilting point and close to saturation, with a linear transition 

to a constant, optimal uptake between these two extremes. Daily time series of 

precipitation and potential evapotranspiration over a period of 522 weeks spanning 1st 

January 1990 to 31st December 1999 serve as inputs to the model. These time series 

were measured at the WMO 06072 weather observation station in Ødum, Denmark. 

The first 285 weeks of these data were used during the calibration and predictive 

phases of model deployment. The entirety of this dataset was employed during a 522 

week model warm-up period; see below. Only transpiration, with no evaporation, is 

assumed to occur in the simulated soil column. 

One thousand stochastic realizations of soil column hydraulic properties were 

generated based on synthetic expert knowledge encapsulated in prior parameter 

probability distributions. Two levels of variability were employed in assigning values 

to different parts of the 1-D model domain. First, for each soil column, random values 

were generated for s and r based on normal distributions, and for Ks,  and n based 

on log-normal distributions. The means µ and standard deviations σ1 of these 

distributions appear in the first two columns of Table 1. A random set of each 
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parameter type was then generated and assigned to the 10 layers comprising the model 

domain, each layer being of 50 cm thickness. (Log-)normal distributions were once 

again employed, with the mean of each distribution being the previously generated 

random value for each parameter type; standard deviations σ2 for these secondary 

distributions appear in the third column of Table 1. This stochastic parameter 

generation process was repeated for each of the 1000 realizations. A single value of 

100 cm for root depth was employed in all realizations. (Lack of numerical 

differentiability of model outputs with respect to this parameter precluded its inclusion 

in the linear analysis documented below.) 

For all parameter set realizations, HYDRUS-1D was run in order to generate a 

calibration dataset, as well as three different predictions. Unfortunately, HYDRUS-1D 

did not converge for two of the 1000 parameter set realizations; thus the nonlinear 

analysis presented below is based on 998 realizations. In all cases the model was run 

for a 522 week warm-up period driven by the precipitation and potential 

evapotranspiration time series described above. The calibration dataset was assumed 

to consist of observations of total weekly drainage through the bottom boundary of the 

column for the next 230 weeks (i.e., weeks 523 to 752 of the simulation). Predictions 

were then made over weeks 753 to 807 of the simulation. The three different 

predictions considered in this study are (1) the total recharge summed over all of the 

55 weeks comprising the prediction period, (2) the maximum recharge occurring 

during any 4-week interval within the prediction period, and (3) the maximum 

recharge occurring during any 1-week interval within the prediction period. 

For ease of reference, the above model is referred to as “complex HYDRUS” hereafter. 

Table 3.1. Statistical parameters used in generation of stochastic realizations of soil 

hydraulic properties employed by the HYDRUS-1D complex model.  and σ1 are the 

mean and standard deviation, respectively, for the first level of random parameter 

value generation, while σ2 represents the standard deviation defining inter-layer 

parameter variability within one particular soil column. 

Parameter  1 2 

Log(Ks) [cm/day] 2.03 0.5 0.1 

s [-] 0.41 0.05 0.01 

r [-] 0.065 0.02 0.004 

Log() [-] -1.12 0.5 0.1 

Log(n) [-] 0.28 0.1 0.02 
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3.3.2 Simplified models 

As mentioned above, two simplified models were employed in conjunction with 

complex HYDRUS. Both of these were driven by the same precipitation and 

evapotranspiration time series as complex HYDRUS. In obtaining the first simplified 

model, herein referred to as “simplified HYDRUS”, only parameterization 

simplification was undertaken; the 10 layer heterogeneous soil column of complex 

HYDRUS was simply replaced by a column that is homogeneous in all parameters. 

A lumped parameter “bucket” recharge model (herein referred to as LUMPREM, i.e., 

“LUMped Parameter REcharge Model”) was employed as the second simplified 

model. Like the two HYDRUS models, LUMPREM works on a daily time step. 

Evapotranspirational losses E [L] from the soil moisture store are calculated using the 

equation: 
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where f [-] is a crop factor, Ep [L] is potential evapotranspiration, γ [-] is a shape 

parameter, and v [-] is the relative volume of water in the bucket, i.e., V/Vmax, where 

V [L3] is the current volume of water in the bucket and Vmax [L
3] is the total bucket 

volume. 

Water lost as recharge to the groundwater domain (i.e., R [LT-1]) is calculated as: 

      R K v vs

l m m

    1 1
1

2
/

 (3.48) 

where m [-] is a shape parameter. An additional parameter rdelay [T] defines the delay 

between water draining from the soil moisture store and the same water appearing as 

recharge to the groundwater system. 

In conducting the numerical experiments discussed below, LUMPREM was run over 

the same time periods as were the HYDRUS models (including the 522 week warm-

up period), and generated the equivalent calibration and predictive outputs. 
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3.3.3 Calibration and prediction 

For each of the 998 realizations of the 50 stochastic parameters comprising the 

complex HYDRUS parameter set, both of the simplified HYDRUS and LUMPREM 

models were calibrated against the 230 weekly recharge observations comprising the 

calibration dataset as generated by the complex HYDRUS model. Equal weights were 

assigned to all recharge observations. For each of the simplified HYDRUS and 

LUMPREM models, five parameters were estimated using this calibration dataset. For 

simplified HYDRUS, these were s, r and the logs of Ks,   and n, whilst for 

LUMPREM, the logs of Vmax, rdelay, Ks, m and f were estimated. (The logarithms, 

rather than native values, of most parameters were estimated in order to improve model 

linearity and also to provide a degree of parameter normalization; this being implicit 

in the estimation of the logs of parameters.) 

Calibration of each of these simplified models against the 230 week recharge dataset 

constitutes a well-posed inverse problem. No random noise was added to the complex 

HYDRUS outputs in generating each calibration dataset; hence failure to achieve a 

perfect fit during the calibration of each simplified model is an outcome of model 

simplification alone. Calibration of LUMPREM was effected using the Gauss-

Marquardt-Levenberg parameter estimation method through PEST (Doherty, 2016a), 

while calibration of the simplified HYDRUS model was accomplished using the 

adaptation of the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) 

algorithm of Hansen and Ostermeier (2001) and Hansen et al. (2003) available through 

the PEST suite. While use of CMA-ES requires more model runs than that of PEST-

implemented Gauss-Marquardt-Levenberg parameter estimation, it affords better 

protection against model output numerical granularity and entrapment in local optima. 

Estimation of a set of LUMPREM parameters required approximately 20 s on a 3.07 

GHz Intel Core i7 CPU. In contrast, calibration of a simplified HYDRUS model 

required several hours. It is also pertinent to note that attempts were made to calibrate 

the complex HYDRUS model (using regularized inversion to estimate its 50 adjustable 

parameters) against complex HYDRUS-generated observation datasets. However, this 

could not be achieved because HYDRUS numerical instability resulted in frequent 

model run failures during these attempted calibration processes. This exemplifies the 

difficulties that are often encountered in calibrating complex models, and therefore 
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illustrates the attractiveness of using a relatively simple model in the calibration 

process. 

As stated above, the simplified HYDRUS and LUMPREM models were calibrated 

against all of the 998 datasets generated by the complex HYDRUS model, each 

calculated using a different stochastic parameter field. The outcomes of these 1996 

calibration exercises were 998 simplified HYDRUS and LUMPREM counterparts to 

the 998 complex HYDRUS model realizations. The same predictions as those that 

were made with the complex HYDRUS models were then made using each of the 

calibrated simplified models. 

3.3.4 Calculation of sensitivities 

The linear analysis discussed below employs sensitivities of the 230 weekly recharge 

model outputs used for calibration purposes and the three outputs used for predictive 

purposes, to the adjustable parameters of the complex HYDRUS, simplified 

HYDRUS, and LUMPREM models. Complex HYDRUS and simplified HYDRUS 

sensitivities were evaluated using finite differences, with all parameters slightly 

perturbed from their expected values (see Table 3.1). For LUMPREM, a parameter set 

obtained through calibration of this model against a dataset generated using the 

expected values of complex HYDRUS model parameters was employed in finite 

difference sensitivity calculation. 

3.4. Results 

Outcomes of all analyses are now presented. They are discussed as they are presented. 

A more general discussion follows in section 3.5. 

3.4.1 Quality of calibration 

Figure 3.1 shows fits attained between simplified and complex model outputs for one 

particular realization of the complex HYDRUS parameter set. These are representative 

of the average fits of both simplified HYDRUS and LUMPREM across the 998 

complex HYDRUS realizations. This figure demonstrates that weekly recharge values 

generated using a complex HYDRUS parameter field can be matched in nearly every 

detail by an appropriately parameterized simplified HYDRUS model. Given that the 

latter has only five parameters and that the former employs 50 parameters, if an attempt 

were made to calibrate a complex HYDRUS model against a calibration dataset of this 
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type, the dimensionality of the null space would be about 45, indicating non-

identifiability of about 45 combinations of parameters on the basis of this dataset. 

 

Figure 3.1. Example of the fits attained through calibration of both the simplified 

HYDRUS and LUMPREM models against complex HYDRUS weekly recharge 

outputs. 

Like the simplified HYDRUS model, the LUMPREM model also employs five 

parameters. However, while adjustment of these five parameters allow a reasonable fit 

to be obtained between its outputs and those of the complex HYDRUS model, the fit 

is far from perfect. This indicates that its parameters do not span the full solution space 

of the complex HYDRUS model when calibration is undertaken against this particular 

dataset. Nevertheless, as is evident from Figure 3.1, the salient features of the recharge 

time series are generally reproduced. Such a fit may be considered acceptable in many 

real-world modelling contexts where measurement noise would contribute 

significantly to misfit. 

3.4.2 Quality of predictions 

As discussed above, predictions of three types were made on the basis of each complex 

HYDRUS parameter set realization, and then using the two calibrated simplified 

model counterparts to each such realization. The predictive abilities of the latter were 

assessed using s-versus-s scatterplots as described in section 3.3.3. These plots for the 

three predictions are shown in Figure 3.2. Note that, to enhance the linearity of these 

scatterplots, the logs of each predicted recharge quantity are employed in lieu of their 

native values. Regression lines through the scatterplots are calculated as: 
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 s = a + bs (3.49) 

where a and b are the regression intercept and slope respectively. 95% prediction 

intervals are also displayed in Figure 2 (see, for example, Draper and Smith, 1998, eq. 

1.4.12 for details of prediction interval calculations). Table 3.2 lists regression 

parameters and statistics for the s-versus-s scatterplots of Figure 3.2. 

Table 3.2. Regression coefficients and statistics pertaining to the s-versus-s 

scatterplots depicted in Figure 3.2. a and b are the regression coefficients of equation 

(49), r2 is the coefficient of determination and σ is the standard deviation. 

 Simplified HYDRUS  LUMPREM 

Prediction a b r2 σ  a b r2 σ 

Total recharge 0.001 1.003 0.995 0.007  -0.008 0.902 0.967 0.018 

Max. 4-week recharge -0.002 0.998 0.989 0.010  0.010 0.998 0.793 0.043 

Max. 1-week recharge -0.009 0.994 0.988 0.016  0.152 1.131 0.724 0.074 

Equations describing the relationship between predictions made by a complex model 

and those made by a simplified model calibrated against a dataset generated by the 

former are derived in Doherty and Christensen (2011). These equations show that 

where a simplified model fits the calibration dataset well, vertical scatter of complex 

model predictions about the line of best fit appearing in plots such as those shown in 

Figure 3.2 records the null space contribution to predictive uncertainty. Horizontal 

scatter of simplified model predictions about this same line represents the contribution 

of measurement noise to predictive uncertainty. A regression line slope of less than 

unity indicates predictive bias incurred by calibration-induced null-space entrainment. 

Where a simplified model provides a less-than-perfect fit to complex model outputs, 

vertical scatter is increased through an artificially expanded null space, while 

horizontal scatter is increased because of the addition of structural noise to any 

measurement noise present in the calibration dataset. The extra null space dimensions 

comprise the solution space components that are missing from the simplified model. 
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Figure 3.2. s-versus-s scatterplots for simplified HYDRUS (left column) and for 

LUMPREM (right column). The dotted line is the 1:1 line. 
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The following features of the scatterplots of Figure 3.2 are salient. 

1. The limited vertical scatter in the simplified HYDRUS plots indicate limited 

null space contribution to the predictions which are the subject of the current 

study. 

2. The slopes of the s-versus-s lines of best fit for all simplified HYDRUS 

predictions are very close to unity. This is also a reflection of the predominant 

solution space dependency of the predictions considered in this study. (As will 

be shown below, it does not indicate the absence of null-space parameter 

entrainment. However such entrainment is invisible in these plots as the 

predictions of interest are not sensitive to entrained parameters.) 

3. The failure of LUMPREM parameters to span the full solution space of the 

complex HYDRUS model (highlighted by the less-than-perfect fit of 

LUMPREM to complex HYDRUS outputs demonstrated in Figure 1) results 

in an expanded null space and considerable scatter about the s-versus-s lines of 

best fit. This scatter is fairly mild for the long term recharge prediction, but 

much more pronounced for the short-term recharge predictions.  

4. The predictive performance of LUMPREM varies with prediction values, this 

being expressed through variability of scatter about the s-versus-s line of best 

fit. This suggests that LUMPREM’s performance as a recharge predictor is 

parameter dependent. 

If the complex model is made to include more hydraulic processes, while the 

complexities of its simplified counterparts are maintained at their present levels, the 

propensity for bias in simplified model predictions is likely to increase. This results 

from the need for simplified model parameters to adopt surrogate roles in fitting 

datasets generated on the basis of more complex processes than they are capable of 

simulating. This was tested by repeating the above analyses with variability of root 

depth included in the complex HYDRUS realizations. (As stated above, root depth was 

fixed at 100 cm in the preceding analyses.) Root depth was varied randomly between 

realizations using a normal distribution with a mean value of 100 cm and a standard 

deviation of 25.5 cm. The s-versus-s regression outcomes for these analyses are 

provided in Table 3.3. The s-versus-s scatterplots are not shown for the sake of brevity. 
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Table 3.3. Regression coefficients and statistics pertaining to s-versus-s scatterplots 

equivalent to Figure 2 but with variable root depth in complex HYDRUS realizations. 

 Simplified HYDRUS  LUMPREM 

Prediction a b r2 σ  a b r2 σ 

Total recharge 0.003 0.957 0.978 0.015  0.007 0.861 0.956 0.021 

Max. 4-week recharge -0.024 0.967 0.960 0.019  0.147 1.099 0.742 0.048 

Max. 1-week recharge -0.057 0.953 0.959 0.029  0.406 1.267 0.622 0.086 

It was found that the ability of simplified HYDRUS to fit the calibration dataset is only 

marginally degraded with the addition of root depth variability to complex HYDRUS 

parameter realizations. At the same time the level of scatter in the corresponding s-

versus-s plots increases (compare Tables 3.2 and 3.3). Similar considerations apply to 

LUMPREM. 

Comparison of Tables 3.2 and 3.3 demonstrates that the enhanced complexity of the 

complex model increases the propensity for bias in all predictions made by both 

simplified models. For simplified HYDRUS, the slopes b of the s-versus-s regression 

lines fall below unity. From this it can be inferred that the simplified HYDRUS 

parameter space is misaligned with the solution space of the complex HYDRUS 

model. Calibration of simplified HYDRUS against a dataset generated by the process-

enhanced complex HYDRUS therefore induces null-space parameter entrainment and 

the concomitant need for some estimated parameters to adopt compensatory roles to a 

greater extent. Because the predictions of interest are somewhat sensitive to null-space 

parameter components (predominantly plant root depth) they thus inherit this bias. 

The increase in the s-versus-s slopes for the LUMPREM maximum 4-week and 1-

week recharge predictions indicates that LUMPREM does not possess the parameter 

and process sophistication that would enable some of its parameters to adopt surrogate 

roles when undergoing calibration against the process-enhanced HYDRUS model. 

Furthermore, complex HYDRUS null-space parameter components that reflect root 

depth variability are effectively hard-wired at erroneous values in the LUMPREM 

model. Thus it cannot replicate the increased predictive variability that variability of 

plant root depth promulgates; an s-versus-s slope of greater than unity is the inevitable 

result. 

We now turn to linear analysis. Due to lack of differentiability of HYDRUS-1D model 

outputs with respect to root depth variability, the latter remains fixed at 100 cm for all 

subsequent analyses. 
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3.4.3 Optimal simplification 

It was proposed in section 2 that model simplification can be considered optimal when 

it is undertaken using SVD following transformation of reality model parameters to a 

parameter space where equation (10a) holds. In this section we demonstrate such 

simplification as applied to the complex HYDRUS model. 

Ranked singular values calculated for the Y matrix of equation (3.16) are plotted in 

Figure 3.3. All 50 singular values are non-zero, this indicating a zero-dimensional null 

space for a calibration dataset comprising the 230 weekly recharge values discussed 

above. However singular values beyond approximately the fifth are very small, this 

implying that adjustment of only 5 parameter combinations (at most) is required for 

attainment of a very good fit with the calibration dataset. This notion is supported by 

the fact that the simplified HYDRUS model, with only 5 parameters, is capable of 

fitting complex HYDRUS calibration outputs very well, as Figure 1 demonstrates. 

 

Figure 3.3. Singular values calculated for the complex HYDRUS Y matrix. 

In practice, a field calibration dataset would be contaminated by measurement noise. 

As discussed above, this would limit the number of singular values employed in the 

calibration process. Equation (3.11) can be used to determine the number of singular 

values at which predictive error variance is minimized in the presence of measurement 

noise, and to quantify this variance. This is achieved by plotting a curve such as that 

shown in Figure 3.4a, which pertains to the log maximum 1-week recharge prediction. 

In order to construct Figure 3.4a a measurement noise standard deviation of 1.5 mm, 

with no temporal correlation between measurements, was assumed. Similar curves 

emerge for the other predictions considered in this study. The vertical scale of Figure 

3.4a is truncated to clearly show the minimum of the curve and the contributions to 
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total predictive error variance made individually by the first (null space) and second 

(solution space) terms of equation (11). Note that the total predictive error variance for 

zero singular values is 5.21E-3, this corresponding to the prior uncertainty variance of 

this prediction. Figure 3.4b reproduces the total error variance curve of Figure 3.4a for 

a further four hypothetical magnitudes of measurement noise standard deviation. 

 

Figure 3.4. (a) Predictive error variance, including contributions from solution space 

and null space terms, versus number of singular values for the log maximum 1-week 

recharge prediction; measurement noise standard deviation is 1 mm. (b) The total 

predictive error variance curve reproduced for four additional measurement noise 

standard deviations. 

It is apparent from Figure 3.4 that the minimum of the predictive error variance curve 

occurs between 3 and 6 singular values; it is also apparent that this does not vary 

greatly over a range of realistic values of measurement noise standard deviation. The 

curve is essentially flat in this area. Hence, with these amounts of measurement noise, 

a properly designed simplified model need possess as few as three adjustable 

parameters to attain an acceptable fit with the calibration dataset. The dominant 
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contribution to the uncertainty of this particular prediction is made by the solution 

space term. The small contribution to predictive error variance made by null-space 

parameter components is supported by the small degree of scatter in Figure 3.2 s-

versus-s plots pertaining to simplified HYDRUS. 

The right column of Figure 3.5 depicts estimable combinations of parameters that 

emerge from optimal simplification (i.e., from SVD of the matrix representing the 

model after parameters have been appropriately transformed). Denoted as v1y through 

v5y, these are the first five columns of the matrix FE1/2Vy. Vy is equivalent to V of 

equation (3.4) but arises from SVD of Y instead of Z. Vy is pre-multiplied by FE1/2 

(see equation (3.13b)) so that these estimable combinations of parameters can be 

presented in k-space (and thus in terms of recognizable complex HYDRUS 

parameters) rather than m-space. The left column of Figure 3.5 depicts combinations 

of observations that are uniquely and directly informative of these parameter 

combinations. These are the columns of Uy which are partnered to the columns of Vy 

(see equation (3.7) together with text following that equation for further details). The 

elements of these columns of Uy (with columns being denoted as u1y through u5y) are 

plotted against time as the recharge observations to which they pertain (also shown in 

this plot) are time dependent. 
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Figure 3.5. The right column shows estimable combinations of parameters emerging 

from optimal simplification of complex HYDRUS (i.e., columns of the Vy matrix (v1y 

through v5y) calculated through SVD of the Y matrix of equation (3.16), after 

transformation to complex HYDRUS model parameter space. The left column shows 

corresponding combinations of calibration observations comprising the first 5 columns 

of the Uy matrix (u1y through u5y). The ten columns for each complex HYDRUS 

parameter type represent the different model layers (increasing with depth from left to 

right). 
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Salient features of Figure 3.5 are as follows. 

1. The most estimable parameter combination (i.e., the parameter combination 

corresponding to the largest singular value) is dominated by the ratio of log(α) 

to log(Ks). The information which furnishes this estimate resides in peak 

recharges and in the recharge decays which follow them. 

2. Information within the calibration dataset appears to be much more informative 

of α, Ks and n than it is of volumetric parameters. The former parameters affect 

the timing and sharpness of recharge events. Attempts at model simplification 

in this context should therefore result in a model that exposes these controls to 

adjustment. 

3. No one parameter type dominates any parameter eigencomponent (i.e., column 

of Vy), with the possible exception of v2y which features the α parameter 

prominently. The information on α appears to reside in the steepness of 

recharge peaks. 

4. As the singular value number increases, the amount of detail represented in uiy 

increases. Such detail is of high frequency content and may be difficult to 

distinguish from measurement noise in a real-world situation. The information 

contained in these combinations of observations is therefore easily lost; the 

parameter combinations which they inform are therefore likely to be uncertain. 

3.4.4 Simplified model parameter composition 

3.4.4.1 Complex model parameter contributions 

Equation (3.22) can be used to characterize the composition of each simplified model 

parameter in terms of complex model parameters, thereby elucidating the parameter 

decomposition implied by model simplification. Figure 3.6 shows the composition of 

each simplified HYDRUS and LUMPREM parameter in terms of complex HYDRUS 

parameters as calculated using (3.22). Recall that simplified HYDRUS is generally 

able to achieve a near perfect fit with calibration data generated by complex HYDRUS 

(see Figure 1) through adjustment of its five parameters. Because these parameters 

have the compositions illustrated in Figure 3.6, it follows that it is possible to replicate 

this particular calibration dataset by mainly adjusting volumetric and drainage 
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response parameters that pertain to only a small part (namely the shallowest layers) of 

the subsurface, rather than drainage response parameters pertaining to the whole model 

domain. 

The parameter compositions depicted in Figure 3.6 differ markedly from the 

compositions of optimal parameter components presented in Figure 3.5. Thus both 

simplified HYDRUS and LUMPREM constitute substantially suboptimal 

simplifications of the complex HYDRUS model. It follows that unless these models 

are used to make predictions which are predominantly solution space dependent 

(which are normally predictions that are very similar in character to those comprising 

the calibration dataset), predictions made by either of these models may be subject to 

a high degree of calibration-induced bias. It has been demonstrated that the predictions 

required of these models in the present case do, in fact, have a high solution space 

dependency and therefore are not as prone to bias as other predictions made by these 

models may be. In this sense, despite their suboptimal simplification, the simplified 

HYDRUS and LUMPREM models are “fit for purpose”. 

It is pertinent to examine the extent to which the compositions of simplified model 

parameters are consistent with the complex model parameters that they purport to 

represent. Ideally, from a parameter estimation perspective, parameter values achieved 

through calibration of the simplified HYDRUS model should equate to averages over 

the entire soil column of their complex model counterparts. Equation (3.24) 

demonstrates that, to the extent to which they can be considered to be estimates of 

averaged layer properties, these estimates are in error. Figure 3.6 reveals part of the 

reason for this error. At best, a given simplified HYDRUS parameter has a dominant 

contribution from the same complex HYDRUS parameter type over only a part of the 

overall soil column. At worst it almost entirely represents parameters other than that 

after which it is named. For example, complex HYDRUS parameters α and Ks are 

essentially absent from the compositions of simplified HYDRUS parameters of the 

same name. 

The situation is a little better for the LUMPREM model. The LUMPREM Vmax 

parameter does indeed appear to chiefly reflect complex HYDRUS θs - θr for the whole 

soil column. Nonetheless, similar to simplified HYDRUS, shallow complex HYDRUS 

parameters are generally better represented in LUMPREM parameters than are those 

associated with deeper parts of the soil column. 
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Figure 3.6. Normalized composition of each simplified HYDRUS (left column) and 

each LUMPREM (right column) parameter in terms of complex HYDRUS parameters 

(i.e., each row vector, normalized by its total length, comprising the matrix L of 

equation (3.22)). The ten columns for each complex HYDRUS parameter type 

represent the different model layers (increasing with depth from left to right). 
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3.4.4.2 Simplified model parameter variability 

Equation (3.23) allows calculation of the propensity for variability of simplified model 

parameters from that of complex model parameters. Presumably the latter are 

forthcoming from the expert knowledge of the modeller. In practice, expert knowledge 

may be supplied to the calibration process as a covariance matrix associated with prior 

information on model parameter values. It can also be used in the setting of parameter 

bounds in order to limit parameter variability to a level that is considered realistic as 

parameters are adjusted during the calibration process. In the present synthetic case 

the covariance matrix of “reality” is known (i.e., the covariance matrix C(k) describing 

the parameter variability that was employed in generating the random complex 

HYDRUS parameter sets discussed in section 3.1). The C(p) matrix computed through 

equation (3.23), on the other hand, is the expression of “expert knowledge” as it 

pertains to a simplified model. It is thus the covariance matrix that must be associated 

with the pre-calibration probability distribution of simplified model parameters. 

Failure to use this matrix (in particular, if a matrix that expresses a smaller degree of 

parameter variability is used in its place) may restrict the ability of the calibration 

process to assign values to simplified model parameters that allow that model to fit 

any dataset generated by the complex model that is feasible based on the pre-

calibration probability distributions of complex model parameters (i.e., true expert 

knowledge). 

Tables 3.4 and 3.5 provide the C(p) matrix for simplified HYDRUS and LUMPREM 

parameters calculated using equation (3.23). 

Table 3.4. Prior covariance matrix of simplified HYDRUS parameters calculated using 

equation (3.23). 

  log(α) log(Ks) log(n) θr θs 

log(α) 0.0326 -0.1062 -0.0026 0.0065 -0.0044 

log(Ks) -0.1062 1.0056 -0.0609 -0.0536 0.0426 

log(n) -0.0026 -0.0609 0.0130 0.0036 -0.0044 

θr 0.0065 -0.0536 0.0036 0.0055 -0.0034 

θs -0.0044 0.0426 -0.0044 -0.0034 0.0030 
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Table 3.5. Prior covariance matrix of LUMPREM parameters calculated using 

equation (3.23). 

  log(Vmax) log(rdelay) log(Ks) log(m) log(f) 

log(Vmax) 0.2913 0.0082 0.0019 -0.0316 0.0158 

log(rdelay) 0.0082 0.0003 0.0001 -0.0011 0.0001 

log(Ks) 0.0019 0.0001 0.0071 -0.0003 -0.0016 

log(m) -0.0316 -0.0011 -0.0003 0.0045 0.0001 

log(f) 0.0158 0.0001 -0.0016 0.0001 0.0042 

The size of the off-diagonal terms of both of these matrices indicates a high degree of 

correlation between parameters. Such inter-parameter statistical correlation does not 

exist for complex HYDRUS parameters. The square root of each diagonal element of 

the prior covariance matrix is the prior standard deviation of the corresponding 

parameter (or its log, as indicated). In the case of simplified HYDRUS, prior parameter 

standard deviations can be directly compared with the true standard deviations of their 

complex HYDRUS counterparts. Figure 3.7 shows the ratios of simplified HYDRUS 

parameter standard deviations to corresponding complex HYDRUS parameter 

standard deviations. It is apparent that the prior standard deviations of some simplified 

HYDRUS parameters are significantly inflated compared to their complex HYDRUS 

counterparts. This suggests that the role that true (real-world) expert knowledge can 

play in parameterization of a simplified model is, at best, unclear. Consider, for 

example, the question of what bounds a modeller should place on simplified model 

parameters during the calibration process, and/or what prior probability distribution 

he/she should award to these parameters in establishing posterior predictive 

probability distributions through Bayesian analysis. 

 

Figure 3.7. Ratio of each simplified HYDRUS model parameter standard deviation 

(s) to corresponding complex HYDRUS model parameter standard deviation (c). 
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3.4.5 Back-transformation to complex model parameter space 

Equations (3.39) and (3.40) allow us to explore the hypothetical propensity for error 

in a complex model incurred by its notional calibration through use of a surrogate 

simplified model. (Note that, because equation (3.10a) does not automatically hold for 

complex HYDRUS, this analysis required the replacement of Z in equations (3.39) 

and (3.40) with Y of equation (3.13a), and the replacement of S, U and V with Sy, Uy 

and Vy, respectively.) Ideally, C(β – β) of equation (3.39) should be 0, indicating 

perfect de facto estimation of complex model solution-space parameter components 

through simplified model calibration. C(βn) of equation (3.40) should also be 0, 

indicating the absence of complex model parameter null-space entrainment incurred 

through simplified model calibration. Figure 3.8 shows the square root of the first five 

diagonal elements of C(β – β) for both simplified HYDRUS and LUMPREM. It thus 

shows the standard error of estimation of each of the elements of β that define the 

values of solution-space parameter projections of the complex HYDRUS model. (Note 

that both C(β – β) and C(βn) are effectively normalized as C(β) is equal to I. This 

follows from equation (3.37) with m in place of k, and the orthonormality of V1.) 

 

Figure 3.8. Standard deviations of error incurred by simplification in estimation of 

projections of optimal complex HYDRUS model parameters onto parameter solution 

space axes. 
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surprising, however, is the rapidity with which these errors rise after the third singular 

value. This suggests (as does Figure 3.4) that a properly constructed model that uses 

as few as three parameters would be just as suitable for replicating a recharge time 

series as a model with five parameters, especially where the necessity for a good fit is 

relaxed through the presence of measurement noise in the calibration dataset. 

Figure 3.9 shows the square root of the diagonal elements of C(βn) for singular value 

indices of 6 to 15 (i.e., the first ten components of the complex HYDRUS null space). 

Ideally, parameter transformation and decomposition implied in calibration of the 

simplified HYDRUS and LUMPREM models should bestow values of zero on 

complex model parameter components that correspond to singular values beyond the 

fifth. Failure to achieve this implies entrainment of complex HYDRUS null-space 

parameter components through calibration of a simplified replacement model. Figure 

3.9 indicates that the risk of calibration-induced parameter bias is relatively high for 

both the LUMPREM and simplified HYDRUS models. As previously discussed, the 

degree to which this promulgates predictive bias is prediction specific, for it expresses 

itself only to the extent that a prediction is sensitive to entrained null-space parameter 

components. 

 

Figure 3.9. Standard deviations of error incurred by simplification in estimation of 

projections of optimal complex HYDRUS parameters onto parameter null space axes. 
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the phenomena exposed by our analyses are not related to the linearity (or otherwise) 

of a model. However, these phenomena are more easily exposed and described where 

local linearity is assumed. Nevertheless, in order to demonstrate the validity of the 

outcomes of the preceding analysis, we undertook a number of additional numerical 

experiments in order to assess the extent to which these outcomes are affected by 

nonlinearity of the models that we employed. Details are as follows; figures are not 

presented in the interests of brevity. 

• Figure 3.7 was re-plotted based on statistics inferred from actual parameter 

values estimated through calibration of simplified HYDRUS against complex 

HYDRUS outputs; see Section 3.3.3. The heights of the bars pertaining to 

different parameters are comparable. Relativity of these heights is preserved.  

• Figures 3.5 and 3.6 were re-plotted following calculations based on Z matrices 

computed using a number of different realizations of complex HYDRUS 

parameters. The plots differ only in minor details. 

• Equation (3.22) was used to calculate a simplified HYDRUS parameter set p 

from each of the 998 stochastic realizations of complex HYDRUS parameter 

sets k. Calibration objective functions computed on the basis of these 

parameter sets were all acceptably low, this demonstrating their ability to fit 

corresponding complex HYDRUS-generated calibration datasets. 

• Figure 3.8 was re-plotted using sensitivities pertaining to a number of different 

complex HYDRUS parameter realizations together with those pertaining to 

corresponding best-fit simplified model parameters. The points corresponding 

to the fourth and fifth singular value indices showed some variability between 

realizations, particularly for the simplified HYDRUS model. However, 

relativity of these values was preserved. 

• The above analysis was also undertaken for Figure 3.9, with similar outcomes. 
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3.5 Discussion 

The present study advances the theory and concepts that were introduced in a previous 

work (namely Doherty and Christensen, 2011), and applies them to a different kind of 

model from that which was investigated in that work. The theoretical work of Doherty 

and Christensen (2011) explores both optimality of simplification and the 

consequences of suboptimal simplification in contexts wherein a model must be 

calibrated before being employed in a predictive capacity. The present study employs 

linear analysis to demonstrate and explore these concepts as they apply to a vadose 

zone model constructed for the purpose of providing time-varying recharge to a 

groundwater model. The intention of this paper is therefore twofold: (1) to extend the 

theoretical basis of model simplification from a subspace perspective, thus providing 

a foundation for further theoretical and numerical research into the confounding but 

pervasive issue of model simplification; and (2) to contribute to current understanding 

of the parameter and associated predictive outcomes of typical simplification practice, 

through the application of this theory, together with other analyses, to some 

representative synthetic examples. 

Model simplification can be considered optimal when calibration of a thus simplified 

model allows implicit estimation of reality model solution-space parameter 

components without concomitant assignment of non-zero values to reality model null-

space parameter components. Or, to put it another way, simplification is optimal when 

calibration of a simplified model leads to the same predictive outcomes that would be 

achieved if the reality model itself were calibrated using truncated SVD in estimation 

of parameters that have been transformed in accordance with their prior variability. 

All predictions made by a reality model calibrated in this way would possess minimal 

bias. 

Calibration of a suboptimally simplified model awards non-zero values to at least some 

reality model null space components; in doing this it implicitly alters at least some 

reality model parameter values that are not supported by the data. However if 

calibration of the simplified model achieves a good fit with field data, reality model 

solution space components are nevertheless implicitly well estimated. Hence 

predictions made by the calibrated simplified model that are solely dependent on 

reality model solution-space parameter components will be made with as much 

accuracy as if the reality model itself were calibrated and then used to make these same 



100 
 

predictions. In fact, if there was no measurement noise associated with the calibration 

dataset, such predictions would be made without error by the simplified model. If a 

simplified model has been built and calibrated to make only these kinds of predictions, 

then suboptimality of simplification matters little, for the model is entirely fit for 

purpose. (This is not expected to be a common phenomenon, however. Models are 

usually built to make predictions of system behaviour under conditions that are at least 

partially different from those that prevailed during its calibration. These predictions 

are therefore likely to be sensitive to at least some parameters, or combinations of 

parameters, that are not informed by the calibration dataset, and hence belong to the 

null space.)  

In carefully considering the processes simulated by a model, model simplification 

strategies often attempt to separate those processes that are either salient to a prediction 

or are informed by a calibration dataset, from those processes which are not. The 

former are then represented in a form whereby, through averaging or appropriate 

definition of lumped process elements, inestimable parameters and/or parameter 

relationships (these often pertaining to system detail) are eliminated from the model. 

Such physically based simplification implicitly attempts to follow the precepts of 

optimal simplification outlined herein, in that it attempts to separate system 

components which can be informed by the measurement dataset from those which 

cannot be thus informed. Such separation takes place under an implied assumption that 

the two components are indeed separable, and hence are orthogonal from a parameter 

estimation point of view. Rarely will such separation be completely orthogonal 

however, as is suggested by the examples analysed in the present study. Hence while 

careful physically based simplification can attain much in terms of the metrics 

presented herein, it is unlikely that the possibility of calibration-induced bias for at 

least some predictions will be completely eliminated. 

Through linear analysis of a complex vadose zone model, together with two 

simplifications of this model, we have attempted to illustrate the consequences of 

suboptimal simplification by demonstrating the implicit and unavoidable 

transformation of reality model parameters that occurs when a simplified model is 

calibrated in its place. We have shown that despite this transformation, if a simplified 

model can fit the calibration dataset well, the legitimacy of estimation of the projection 

of reality model parameters onto the calibration solution space is maintained. In 

contrast, where simplification is such as to compromise the ability of a simplified 
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model to fit the calibration dataset well, implicit estimates of reality model solution-

space parameter projections are demonstrably in error. 

The unintended adjustment of reality model null-space parameter components from 

their preferred values of zero through calibration of a substitute simplified model has 

also been demonstrated. Should a prediction required by a simplified model be 

sensitive to these aspects of reality, the simplified model would incur significant error 

in making that prediction as a consequence of this. 

The present study has demonstrated that even comparatively mild simplification, in 

the present case applied through replacing hydraulic property heterogeneity by 

hydraulic property homogeneity, can lead to significant entrainment of reality model 

null-space parameter components. At the same time, the homogeneous parameters that 

are estimated through calibration of the simplified model have a complicated 

relationship with parameters of the reality model that they replace. As estimates of the 

average values of equivalent reality model parameters they are thus significantly in 

error. Though beyond the scope of the present paper, this has repercussions for 

interpretation of experimental data gathered at field sites (such as lysimeter sites) 

where experiments are designed explicitly to allow estimation, through calibration, of 

“field scale” hydraulic properties. It also has repercussions for the role of expert 

knowledge in calibrating a simplified model. The variability of most simplified 

HYDRUS parameters required to reproduce complex HYDRUS data is greater than 

the true variability of the complex HYDRUS reality model parameters that they 

purport to represent. Thus if expert knowledge is applied in defining parameter bounds 

employed in calibrating a simplified HYDRUS model, its application would 

compromise the ability of this model to fit the calibration dataset. This would, in turn, 

compromise the ability of the calibration process to implicitly estimate reality model 

solution-space parameter components, and would therefore degrade the accuracy of 

simplified model predictions which depend solely on these parameter components. On 

the other hand, it would lessen the degree of null-space entrainment, through reducing 

the degree of parameter surrogacy that is allowed to occur during calibration; in doing 

so it would reduce the propensity for error in predictions which are sensitive to such 

entrained components. 

It appears, therefore, that an important outcome of suboptimal simplification is the 

creation of a tension between expert knowledge on the one hand and information 
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contained in a calibration dataset on the other hand. This tension extends beyond the 

often-encountered situation whereby expert knowledge and historical measurements 

of system state may suggest different values for certain parameters. This tension is 

more fundamental, in that it reflects an inability on the part of a model to adequately 

respond to information originating from both of these sources simultaneously, for 

response to one of these sources compromises its ability to respond to the other. It 

follows that the goodness of fit sought between simplified model outputs and historical 

measurements of system state should be prediction-specific. Where a prediction 

required of a model is entirely solution space dependent (i.e., is entirely informed by 

past system behaviour), a modeller is entitled to fit historical data to a level that is 

commensurate with measurement noise. On the other hand, where a prediction 

depends on null-space parameter components that are subject to entrainment through 

the simplified model calibration process, a modeller should seek a reduced level of fit 

between model outputs and field measurements in calibrating the model, thus allowing 

expert knowledge to hold greater sway in the model parameterization process. 

Unfortunately however, a modeller cannot know the extent to which he/she should 

“fail to fit” field data to accommodate this imperative and minimize potential 

predictive error. If simplification were optimal in the way defined above, this would 

not be an issue, for application of expert knowledge (soft data) would not compromise 

assimilation of hard data. The tension (bordering on incompatibility) between the two 

kinds of information required for reduction of predictive error is an outcome of the 

fact that less-than-optimal model simplification provides receptacles that cannot hold 

both types of information simultaneously. 

3.6. Conclusions 

All models are simplifications of reality. Some are made very simple by design. Others 

are specifically designed to include as much real-world complexity as possible, but are 

nevertheless simple when compared with reality. Most models employed for 

environmental management are calibrated against historical behaviour of the system 

which they simulate. This serves a number of purposes. One of these is to verify that 

the model can indeed replicate the behaviour of that system. Another is to extract 

information from the historical record that informs parameters, and thereby reduces 

the propensity for error associated with predictions of future system behaviour made 

by the model. 
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Simplification comes at a cost. Informed model-based decision making requires that 

this cost be understood and accommodated. In this paper we have cast model 

simplification as a form of parameter transformation and decomposition. This has 

allowed us to define optimal simplification as a standard against which other forms of 

simplification can be judged. Simplification is considered to be optimal when its 

outcomes are identical to those that would have been achieved through transformation 

of real world parameters in accordance with the nature of their variability, followed by 

orthogonal decomposition of these transformed parameters into solution and null 

subspaces defined on the basis of the available calibration dataset.  

If a simplified model can reproduce a historical calibration dataset well, then a 

prediction which is entirely solution-space dependent (and is thereby completely 

informed by this dataset) will be made with little error, regardless of the physical basis 

(or lack thereof) of the simplified model. However, where a prediction is less than 

totally informed by the calibration dataset, the history-matching process may detract 

from the credibility of that prediction by introducing distortions into the components 

of that prediction which must be informed by expert knowledge. Simplification is 

suboptimal when it allows this to occur. Mathematically, this happens when the 

decomposition of real world parameter space implied by simplification is not aligned 

with that provided by the idealized simplification process described above.  

Bayesian analysis informs us that, if a model is a perfect simulator of environmental 

behaviour, its predictive performance can only be enhanced by imposing constraints 

on parameter values through the history matching process. The same cannot be said 

for a simplified model unless simplification is optimal in the sense described above 

(which will rarely, if ever, be the case). Where a model’s simulation of real-world 

processes is defective, the benefits of calibration become prediction-specific. When a 

simplified model extracts information from an historical observation dataset, it may 

place that information into incorrect receptacles. For certain types of predictions 

(namely those bearing greatest similarity to observations comprising the calibration 

dataset), this may be of no consequence, for extraction of information from the 

calibration dataset is all that matters; all information receptacles are therefore “good 

receptacles”. For other types of predictions, namely those that require that information 

from both the calibration dataset and expert knowledge be combined, the “pushing 

aside” of expert knowledge that occurs when calibration information is placed into 

suboptimal parameter receptacles which cannot hold both of these types of information 
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simultaneously, can engender bias in those predictions. Without a complementary 

complex model through which the performance of a simplified model can be assessed, 

this (possibly very substantial) bias cannot be quantified.  

In the present paper we have studied a complex model of a type that finds common 

usage in everyday modelling practice, together with two simplified counterparts of that 

model. Through linear analysis we have attempted to formulate the transformations 

that are implied in simplification of the complex model, and to then understand the 

extent to which simplification has, or has not, compromised the performance of the 

simplified models. To the extent that lessons learned from the analyses documented 

herein have broader implications, we now state conclusions from this work that can be 

extended to other modelling contexts. 

• Even where the model simplification process is such that a simplified model 

tries to be faithful to the physics of the processes that it simulates, and employs 

parameters that attempt to replicate measurable physical properties of the 

system, what each such parameter actually represents in the calibrated model 

may be very different from the system property after which it is named. 

• As a result, attempts to infer local system properties through calibration of even 

a highly complex physically based model may lead to highly erroneous 

estimates of these properties. 

• When even a highly complex physically based model is calibrated against a 

real-world dataset, attainment of a good fit with that dataset may require a 

greater range of parameter variability than that which would be allowed on the 

basis of expert knowledge alone. 

• Where a model is intended to make predictions that are similar in character to 

the observations against which it is calibrated, obtaining a good fit with the 

calibration dataset is more important than adherence to user-informed 

parameter bounds. In fact a correct physical basis for the model may matter 

less than whether its parameters collectively span the solution space of the 

reality model of which it is a simplification. 

• Where a model is built to make predictions of many different types (as many 

models are) the benefits of constraining parameters in order to ensure 
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replication of past system behaviour become difficult to assess. Even a 

relatively small amount of non-optimal simplification can force parameters to 

play roles that compensate for model inadequacies and thereby entrain reality 

model null-space parameter components as they are adjusted. Any prediction 

that is sensitive to these null-space parameter components will be biased as a 

result. It is possible that calibration of the model for the making of those 

particular types of prediction will do more harm than good. 

The conclusions from this study are far from satisfying, and in some ways pose more 

questions than they answer. These include the following. 

• Should the accepted notion (which underpins a great deal of commercial and 

research-based model usage) that calibration and prediction are entirely 

separate aspects of model construction and deployment be abandoned (together 

with the sense of finality that the word “calibration” implies)?  

• Should a model be calibrated not once, but many times according to different 

fitting metrics, in order to thereby optimize its ability to make different types 

of predictions?  

• Where predictions can be demonstrated to be predominantly solution space 

dependent, should reliance be placed more on lumped parameter models that 

are easily calibrated than on complex physically based models that are difficult 

to calibrate?  

• Where predictions have a moderate to high degree of null space dependency, 

should a model that is complex enough to express this null space be calibrated 

only mildly, or perhaps not at all? 
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Chapter 4  
 
 

Outcomes of pilot point-based regularized 

inversion in a categorically heterogeneous 

environment 

 

Note: software was developed as part of this work to facilitate stochastic generation 

of categorical hydraulic property distributions, which forms the basis of the study 

presented in this chapter. The software allows generation of a user-specified number 

of random distributions of discrete linear features with flexible control of the 

variability in length, orientation and number of features including minimum 

separation threshold specification. It may be used in conjunction with, for example, 

geostatistical field generation software available in the PEST software suite (Doherty, 

2016b) in order to generate ensembles of stochastic hydraulic property fields for 

Monte Carlo simulation purposes. Examples of the software’s outputs are presented 

as Appendix B. 

 

Abstract 

The use of pilot-point-based regularized inversion to calibrate highly parameterized 

groundwater models is increasingly common practice. Despite the inevitable loss of 

detail in estimated hydraulic property fields as a cost of attaining a unique solution to 

the inverse problem, regularized inversion can theoretically provide estimated model 

parameters and associated predictions that have a minimised potential for wrongness. 

The subsequent quantification of this potential forms the ultimate goal of modelling in 

a decision-support context. The current study explores the outcomes of regularized 

inversion in a subsurface environment comprising discrete preferential flow features 

(“faults”), wherein theoretically ideal formulation of Tikhonov constraints within a 

multi-Gaussian framework (which is common groundwater modelling practice) is not 

possible. Paired model analysis is applied to a synthetic example to quantify the 

success of the inversion process, at the same time as elucidating the specific 

contributions to post-calibration potential predictive error, particularly predictive bias. 
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Several regularization weighting strategies are tested and compared in terms of 

estimated parameter field characteristics and model performance in making multiple 

predictions. The presence of faults is shown to induce substantial pre-calibration bias 

in all predictions. It is shown that for some predictions, ignoring the existence of the 

faults does not compromise the ability of the inversion process to “calibrate out” the 

initial bias and markedly reduce (and allow quantification of) potential predictive 

error. Simultaneously, the calibration process magnifies bias in other predictions, 

inflating their potential for wrongness far beyond prior uncertainty based on “expert 

knowledge” alone and thus threatening the integrity of the modelling process. No 

employed regularization weighting strategy reduces the potential for error in one 

prediction without simultaneously raising the potential for error in another. 

Formulation of regularization weights in a heuristic manner demonstrably promotes 

representation of fault-like features in estimated parameter fields. This is shown to 

reduce “hardwired” predictive bias, but at the same time inflate bias caused by 

parameter surrogacy. For the making of some predictions, this renders calibration 

inevitably fruitless at best and highly detrimental at worst. The present study thus 

emphasizes the need for prediction-specific tuning of a model calibration process, to 

the extent that the most pragmatic approach for some predictions may be to forego 

calibration entirely and quantify uncertainty based solely on the purest possible 

expression of expert knowledge. 

4.1 Introduction 

Calibration as a precursor to uncertainty analysis is now considered to be standard 

practice in environmental modelling for decision support (Hunt et al., 2007; Anderson 

et al., 2015). The pilot point method (de Marsily, 1978; de Marsily et al. 1984) is of 

increasing popularity as a spatial hydraulic property parameterization device in 

groundwater model calibration (Kourakos and Mantoglou, 2012). It allows hydraulic 

property heterogeneity to arise freely in accordance with the information contained in 

the calibration dataset, rather than being constrained by predefined zones (e.g., 

Doherty, 2003; Hunt et al., 2007). Moreover, pilot-point-based parameterization is 

highly compatible with well-established and relatively computationally efficient 

methods for undertaking the critical task of estimating the post-calibration propensity 

for error in model predictions, through for example linear analysis (e.g., Moore and 

Doherty, 2005; Gallagher and Doherty, 2007a), calibration-constrained Monte Carlo 
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methodologies (e.g., Tonkin et al., 2007; Tonkin and Doherty, 2009; Herckenrath et 

al., 2011; Yoon et al., 2013) or Pareto analysis/hypothesis-testing methodologies (e.g., 

Moore et al. 2010). 

Central to the pilot-point approach is the use of a large number of pilot points such that 

parameter heterogeneity may arise in accordance with the information contained 

within the calibration dataset, and be explored through uncertainty analysis (e.g., 

Doherty, 2003). The inevitable ill-posedness of the inverse problem necessitates some 

form of regularization. Tikhonov regularization is a constrained minimization 

approach employed extensively in geophysical data interpretation (e.g., Constable et 

al., 1987; Portniaguine and Zhdanov, 1999; Greenhalgh et al., 2006; Zhdanov, 2010). 

It allows for inclusion of “expert knowledge” (e.g., expected parameter values or 

relationships based on site characterization activities) in the inversion process. A 

number of examples of its use in the groundwater modelling context to regularize pilot-

point-based inversion are found in recent literature (e.g., Tonkin and Doherty, 2005; 

Alcolea et al., 2006, Alcolea et al. 2008; Singh et al., 2008; Hendricks Franssen et al., 

2009; Fienen et al., 2009; Herckenrath et al., 2011; Knowling et al., 2015). 

Supplementing Tikhonov constraints such as preferred parameter values, additional 

expert knowledge may be included in the inversion process in the form of a covariance-

based regularization weighting scheme based on the nature of expected hydraulic 

property variability (Maurer et al., 1998). As model parameters are adjusted during the 

calibration process they are thus constrained to respect “geological plausibility” to the 

greatest extent possible. Expression of expert knowledge in terms of a covariance 

matrix assumes multi-Gaussian hydraulic property variability. While this assumption 

is convenient and has been evinced as suitable in many settings (Freeze, 1975; 

Hoeksema and Kitanidis, 1985), discrete non-Gaussian features are common in natural 

formations, and may not be identifiable from field data (Wen and Gomez-Hernandez, 

1998; Sarma et al., 2008; Zhou et al., 2014). 

Pilot-point-based regularized inversion is an implicit simplification device due to the 

unavoidable cost of attaining a unique solution to the inverse problem; estimated 

parameter fields are inevitably “smooth” and lack true hydraulic property detail (e.g., 

McLaughlin and Townley, 1996; Doherty, 2003; Moore and Doherty, 2006). In 

idealistic circumstances, theoretically optimal regularized inversion (refer to Chapter 

2 of the present thesis for details) may nonetheless provide an estimated parameter 

field that approaches a minimum potential for wrongness, and which thus provides 
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predictions with a minimum propensity for error (Christensen and Doherty, 2008; 

Doherty et al., 2010). This provides an optimal foundation for post-calibration 

predictive uncertainty analysis. Imperfections within the modelling process, however, 

such as estimation of a continuous pilot-point-based field in the presence of 

categorically heterogeneous hydraulic properties, may compromise the integrity of 

model predictions. 

Characterization of the predictive ramifications of model simplifications or 

imperfections (also referred to interchangeably in existing literature as, for example, 

model structural error, model inadequacies or model defects) has been a subject of 

extensive study over many years. However, most approaches rely upon a model’s 

imperfections as a simulator of the natural environment being expressed through the 

calibration process as irreducible model-to-measurement misfit (e.g., Beven and 

Binley, 1992; Draper, 1995; Gupta et al., 1998; Kennedy and O’Hagan, 2001; Higdon 

et al., 2005; Vrugt et al., 2005; Ye et al., 2008; Doherty and Welter, 2010; Spaaks and 

Bouten, 2013; Xu and Valocchi, 2015). Recent literature focuses on the 

characterization of calibration-induced predictive bias in the case where a model’s 

imperfections do not compromise the ability of the calibration process to achieve a 

“good fit” (e.g., Doherty and Christensen, 2011; White et al., 2014; Chapter 3 of the 

present thesis). Calibration-induced predictive bias erodes the gains achieved through 

history matching and increases the risk of post-calibration uncertainty assessment 

failing to capture the true prediction value within estimated uncertainty ranges. 

Underestimation of potential predictive error defines failure of a modelling process 

according to Doherty and Vogwill (2016). It creates potential for “type II” statistical 

error (i.e., the false rejection of a true hypothesis), whereby an unacceptable impact of 

a proposed environmental management strategy occurs despite model-based assurance 

that it is extremely unlikely (e.g., Downes et al., 2002; Beven, 2010). 

Doherty and Christensen (2011) present a methodology designed to allow 

identification and reduction of predictive bias incurred through calibration of a 

simplified model, simultaneous with predictive uncertainty quantification. It involves 

the conjunctive use of a relatively complex model and a simplified model of the system 

under study. It is proposed as a practical methodology that provides efficiency and 

numerical stability gains relative to calibration and calibration-constrained uncertainty 

analysis performed using the former in a standalone fashion, whilst simultaneously 

accounting for predictive performance degradation that may be incurred through 



110 
 

standalone use of the latter. Chapter 2 of the current thesis presents a comprehensive 

proof-of-concept study of this methodology, herein referred to as “paired model 

analysis”, validating its efficacy in performing these functions. White et al. (2014) 

extend the subspace-based theory presented by Doherty and Christensen (2011) to 

demonstrate a relatively efficient linear approach to quantifying the additional 

component of predictive error variance attributable to model simplification/defects. 

Application of methodologies designed to quantify the additional component of 

potential predictive error attributable to model imperfections will not always be 

feasible in practice. Furthermore, methodologies such as those presented by Doherty 

and Christensen (2011) and White et al. (2014) facilitate quantification of the 

component of potential predictive error attributable to model imperfections relative to 

a more complex model. However, even the most complex numerical representation of 

an environmental system is inevitably imperfect relative to reality. Any predictive bias 

arising through this discrepancy is beyond the reach of these methodologies. For these 

reasons, White et al. (2014) advocate synthetic studies emulating real-world modelling 

contexts, wherein methodologies such as these are employed in order to quantify the 

predictive consequences of representative model simplifications. The intention of this 

is to provide best-practice guidance through development of qualitative understanding 

of the causes of predictive bias, most susceptible prediction types and circumstances, 

and possible mitigating measures that may be taken by a modeller. 

In light of the abovementioned increasing popularity of pilot-point-based regularized 

inversion, the present study explores the outcomes of the approach in a context wherein 

the existence of discrete preferential flow features (hereafter referred to as “faults” for 

the sake of convenience) precludes holistic expression of expert knowledge in multi-

Gaussian terms. A simple synthetic example is employed wherein hydraulic 

conductivity K is characterized both by multi-Gaussian and categorical components of 

heterogeneity. This is similar to a test case presented by Zimmerman et al. (1998) in 

which the U.S. Department of Energy’s Waste Isolation Pilot Plant (WIPP) site is 

conceptualised as disconnected high-transmissivity fracture zones or “channels” 

embedded within a geostatistical “background” field. In their study, Zimmerman et al. 

(1998) explore the performances of seven different inverse approaches, including the 

pilot point method, for estimating transmissivity and predicting advective path and 

travel time in this setting. The focus of their study is on the relative performance of the 

various inverse methods. They conclude that the pilot point method performs 
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comparatively well across a broad range of performance evaluation measures, despite 

results indicating the presence of substantial predictive bias. However, limited 

conclusions are drawn pertaining to the specific predictive outcomes of employment 

of the pilot point method. 

The present study employs paired model analysis in order to examine in detail the 

predictive outcomes of pilot-point-based regularized inversion in the presence of 

categorical heterogeneity. Paired model analysis is chosen due to it being a nonlinear 

approach and allowing the overall success of the inversion process (i.e., the reduction 

of potential predictive error relative to prior uncertainty) to be broken down into its 

various contributions, in particular multiple sources of predictive bias. The 

performance of the calibrated model in making multiple predictions is assessed, 

including ungauged hydraulic head, drawdown and advective transport path and travel 

time. The calibration outcomes based on a number of alternative regularization 

strategies are tested. These include the application of no stochastic expert knowledge 

through a regularization weighting scheme, incorporation of “partial” stochastic expert 

knowledge pertaining only to the background geostatistical field characteristics (this 

representing a case in which the existence of the faults is ignored, or perhaps 

unknown), as well as attempted representation of the existence of faults through ad 

hoc “compromise” regularization weighting. It should be noted that the latter does not 

reflect the current state of the art of Tikhonov regularization capabilities. It is intended 

as a rudimentary ad hoc example of the potential outcomes of modified regularization 

in a context where theoretically optimal regularization is precluded in this case by non-

Gaussian hydraulic property features. Doherty (2015) points out the active field of 

research involving the continuous, differentiable expression of complex non-Gaussian 

categorical parameter fields based on multiple point geostatistics (e.g., Sarma et al., 

2008; Ma and Zabaras, 2011; Vo and Durlofsky, 2014), which are thus compatible 

with gradient-based optimization algorithms and may facilitate more sophisticated 

Tikhonov regularization strategies. However, the consideration of methods beyond the 

standard two-point geostatistical functionality currently offered by widely used 

inversion software such as PEST (Doherty, 2016a) is beyond the scope of the present 

study. Nonetheless, as will be discussed, the application of more sophisticated 

regularization techniques is not expected to affect the general conclusions drawn from 

the results of the present study. 
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This chapter is organized as follows. Section 4.2 briefly summarizes the theory and 

concepts that are central to the analyses conducted in present study, as well as the 

paired model analysis methodology and predictive error/uncertainty quantification 

approaches. Section 4.3 describes the synthetic example employed in the present study, 

including the specifics of the regularized inversion and subsequent predictive analysis. 

Results from the synthetic example are presented and briefly discussed in section 4.4, 

while sections 4.5 includes a more thorough discussion as well as insights for 

modelling practice more broadly. Section 4.6 provides the conclusions of the study. 

4.2 Theory, concepts and methods 

Subsection 4.2.1 through subsection 4.2.3 contains concepts and equations belonging 

to widely-applied mathematical inversion theory presented, for example, by Menke 

(1989), Aster et al. (2005), Moore and Doherty (2005, 2006). A linear relationship 

between model parameters and model outputs is assumed to apply in the following 

theory. This provides simplicity and tractability, allowing a model to be represented 

by a matrix, and model parameters model outputs to be represented by vectors. Further 

tractability is achieved through formulation of parameter and model output vectors 

such that they represent perturbations from pre-calibration, expert knowledge-based 

values. 

4.2.1 History matching 

Let the vector k represent the parameters employed by the model to represent system 

hydraulic parameters. The Jacobian matrix X represents the action of the model on k 

to produce model outputs. Observations of system state comprising the available 

calibration dataset are contained in h such that: 

 h = Xk + ε (4.1) 

where the vector ε contains measurement noise. The data assimilation or “history 

matching” process seeks to minimise model-to-measurement misfit (to a level 

commensurate with measurement noise such as to avoid “overfitting” – refer to 

Chapter 2 of the present thesis for a thorough discussion of this topic). Model-to-

measurement misfit is represented by the “measurement objective function” Φm, 

defined as: 
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 Φm = (Xk – h)tQh(Xk – h) (4.2) 

where Qh is the “observation weight matrix”. This contains (the squares of) 

observation weights q, and is ideally specified to be proportional to the inverse of the 

covariance matrix of measurement noise C(ε) (e.g., James et al., 2009). 

4.2.2 The null space 

The increasingly common highly parameterized approach to modelling precludes 

unique estimation of all model parameters based on the calibration dataset. The inverse  

problem is ill-posed when parameters outnumber observations. Even when 

observations outnumber parameters, ill-posedness will often prevail in a highly 

parameterised context on the basis of limited information content within the set of 

observations (e.g., Welter et al., 2015). 

The existence of a so-called “null space” follows from ill-posedness of the inverse 

problem. By definition, a non-zero parameter set kn belongs to the null space of X if: 

 0 = Xkn (4.3) 

Momentarily ignoring the presence of measurement noise ε for convenience, consider 

a parameter set k that reproduces the calibration dataset h perfectly. That is: 

 h = Xk (4.4) 

From equation (4.3) and equation (4.4) we can write: 

 X(k + kn) = Xk = h (4.5) 

thus demonstrating the nonuniqueness of k due to existence of the null space. 

Null-space parameter adjustment is by definition unsupported by the calibration 

dataset h (Doherty and Christensen, 2011). Through an optimal inversion process any 

parameter components belonging to the null space should thus remain unperturbed 

relative to their pre-calibration expected values (i.e., kn = 0). Any such adjustment 

induces asymmetry in, and thus increases, the potential for error in these parameter 

components and subsequently in predictions that are sensitive to them. 
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Regularization provides a means through which uniqueness of the inverse problem is 

attained though separation of null-space parameter components from those that are 

estimable on the basis of the calibration dataset (the so-called “solution-space” 

parameter components). This may conceptually be achieved manually through pre-

calibration parameter fixing or lumping, or mathematically through regularization (the 

latter being central to the highly parameterized modelling context). Two alternative 

forms of mathematical regularization are constrained minimization regularization (i.e., 

Tikhonov regularization (Tikhonov 1963a, 1963b; Tikhonov and Arsenin, 1977)) and 

truncated SVD (e.g., Aster et al., 2005). However, the focus of the present study and 

thus the theory presented hereafter is limited to Tikhonov regularization. 

4.2.3 Tikhonov regularization 

The Tikhonov regularization theory presented herein is specific to the way in which it 

is implemented by PEST. Well-posedness of the inverse problem is achieved by 

supplementing the calibration dataset h with a set of “regularization observations” r. 

These are “preferred” parameter values (or relationships) based on expert geological 

knowledge (or “soft data”) that will prevail unless information contained within the 

available calibration dataset (“hard data”) dictates otherwise. A “regularization 

objective function” Φr is defined as: 

 Φr = (Wk – r)tQr(Wk – r) (4.6) 

Here, r is a vector containing the abovementioned regularization observations. Qr is a 

“regularization weight matrix”. The matrix W defines the relationship between k and 

r. Where regularization observations consist of preferred parameter values, and these 

are defined as pre-calibration expected parameter values, W = I and r = 0, thus 

equation (4.6) becomes: 

 Φr = ktQrk (4.7) 

Tikhonov-regularized inversion constitutes a constrained minimization problem in 

which Φr is minimized subject to the constraint that Φm of equation (4.2) is not greater 

than a user-specified target measurement objective function Φm
l (referred to in PEST 

as the “limiting measurement objective function”). That is: 

 Φ = Φm + Φr (4.8a) 



115 
 

 Φm ≤ Φm
l (4.8b) 

Here,  is the “regularization weight factor”. This is determined iteratively by PEST 

as part of the inversion process and is equivalent to a Lagrange multiplier in the 

solution of the constrained minimization problem (de Groot-Hedlin and Constable, 

1990). 

The threshold Φm
l should be specified to represent “adequate calibration”. In an 

idealised case in which a model is free from structural defects, “adequate calibration” 

is theoretically defined by a level of model-to-measurement misfit that is 

commensurate with measurement noise ε. If the observation weight matrix of equation 

(4.2) is specified as the inverse of the covariance matrix of measurement noise C(ε), 

this level of fit is represented by Φm = N, where N is the number of observations 

comprising the calibration dataset. 

Where equation (4.7) applies, as it does in the present study, parameters estimated 

through Tikhonov-regularized inversion are given by: 

 k = (XtQhX + μQr)
-1XtQhh (4.9) 

4.2.4 Paired model analysis and predictive bias 

The paired model analysis methodology, first presented by Doherty and Christensen 

(2011), is summarized as follows: 

1. A large ensemble of stochastic realizations of “reality” are generated based on 

expert geological knowledge. For each realization, model-generated 

“observations” equivalent to the available calibration dataset, as well as outputs 

pertaining to the prediction(s) of interest, are obtained through forward 

simulations. 

2. A simplified model of the same system is calibrated against the “observations” 

generated by each of the complex model realizations. Each calibrated 

simplified model is then used to make the prediction(s) of interest, yielding an 

ensemble of complex-simple prediction pairs for each prediction. 

3. A scatterplot of complex model prediction values (denoted as s) versus 

calibrated simplified model predictions (denoted as s) is generated. 
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Discrepancies between a regression line through the s-versus-s scatterplot and 

the unity line represent predictive bias. Regression lines are calculated by 

Doherty and Christensen (2011) and in the present study as: 

 s = a + bs (4.10) 

where a and b are the regression intercept and slope, respectively. A measure 

of scatter about the regression line (e.g., a prediction interval) provides a 

quantification of post-calibration predictive uncertainty. 

4. As the final step in the case of employment of the paired model analysis in 

practice, the simplified model is calibrated against the available real world 

dataset and subsequently used to produce the prediction(s) of interest. The 

s verses s scatterplot is subsequently used to correct for any bias in the 

calibrated model prediction and quantify the associated uncertainty. This final 

step is not undertaken in the present study as no single hypothetical “reality” 

is considered. 

Doherty and Christensen (2011) discuss two general sources of predictive bias as it 

manifests itself through s-versus-s scatterplots. Figure 4.1 provides a schematic 

representation of each of these sources as expressed through a paired model analysis 

s-versus-s scatterplot. The two sources are isolated for illustrative purposes in Figure 

4.1, but are not mutually exclusive and some combination of the two may arise. 

Firstly, an s-versus-s regression line slope b of less than unity indicates parameter 

surrogacy incurred through the calibration process. The potential for parameters to 

play surrogate roles during the calibration process in order to compensate for 

measurement noise and/or model structural defects is widely acknowledged (e.g., 

Clark and Vrugt, 2006; Beven, 2006; Spaaks and Bouten, 2013; Xu and Valocchi, 

2015). Doherty and Christensen (2011) explain that this compensatory parameter 

behaviour inevitably includes the adjustment of parameter components that belong to 

the null space. They refer to this process as “null-space entrainment”. As explained 

above, adjustment of null-space parameter components is by definition unsupported 

by the calibration dataset. It thus adds a component of random error to estimated model 

parameters, which increases the error variance in model predictions that are sensitive 

to these parameters. This is expressed as additional horizontal scatter in s-versus-s 
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scatterplots (as it affects s and not s), which serves to decease the regression line slope. 

This results in discrepancies between the s-versus-s regression line and the unity line, 

and thus predictive bias. This bias varies with s and is more likely to affect more 

extreme predictions (see Figure 4.1). 

Secondly, s-versus-s scatterplots may exhibit a degree of systematic offset relative to 

the unity line (which, in terms of equation (4.10), will be represented by a nonzero 

value of a when b = 1). This is due to “hardwired” error in null-space parameter 

components that are omitted from the simplified model. This component of predictive 

bias is independent of predictive error variance and is constant for all values of s (see 

Figure 4.1). 

For ease of reference the two general sources of bias are herein referred to simply as 

“surrogacy-induced” bias and “hardwired” bias, respectively. 

 

Figure 4.1. Schematic representation of the two general sources of predictive bias as 

identified through a paired model analysis s-versus-s scatterplot: (a) “surrogacy-

induced” predictive bias; and (b) “hardwired” predictive bias. 

4.2.6 Predictive uncertainty 

4.2.6.1 Nonlinear analysis 

The key metric by which the degree of success of the model inversion process is judged 

in the present study is the reduction in potential predictive error relative to prior 

predictive uncertainty. Prior uncertainty is calculated herein as the (sample) variance 
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of the prediction s calculated on the basis of an ensemble of expert-knowledge based 

stochastic realizations of the “reality” model. That is: 
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where n is the number of realizations in the ensemble. 

As described above, scatterplots of s-versus-s obtained through paired model analysis 

facilitate quantification of post-calibration predictive uncertainty (e.g., through 95% 

prediction intervals characterizing scatter about the s-versus-s regression line). In 

accordance with the function of paired model analysis, this uncertainty is bias-

corrected and is thus smaller than the actual propensity for error in calibrated model 

predictions (see Chapter 2 of the present thesis for a thorough discussion and 

demonstration of this concept). As explained above, the aim of the present study is to 

characterize model predictive performance in the absence of a bias-correction 

methodology such as paired model analysis, rather than to utilise the bias-reducing 

benefits of the analysis itself. For this reason, s-versus-s scatterplots are not used to 

quantify potential predictive error, with outright discrepancies between calibrated 

model predictions and “true” predictions being analysed for this purpose instead 

(Chapter 2 of the present thesis provides a validation of predictive error variance 

estimates obtained through paired model analysis in this manner). 

Post-calibration predictive error variance is calculated herein based on the ensemble 

of n complex-simple prediction pairs obtained through paired model analysis as: 
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As described above, predictive bias caused by parameter surrogacy-induced 

adjustment of null-space parameter components during the calibration process 

increases potential predictive error through increased random scatter. This increases 

predictive error variance. However, error variance does not account for systematic or 

average error in predictions. The total penchant for predictive error is the sum of both 

its variance and its systematic component, this being quantifiable through mean square 

error (MSE) as (e.g., Parkin et al., 1988): 
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 2biasvarianceMSE   (4.13a) 

MSE is calculable simply as: 
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From equation (4.13b) and equation (4.12), equation (4.13a) can be rewritten as: 
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It is clear that the “bias” term of equation (4.13a) is equal to the mean predictive error 

(the square of which is summed with predictive error variance to give MSE). It should 

be emphasised that this term accounts exclusively for what is referred to herein in as 

“hardwired” bias, caused by consistent (i.e., nonzero mean) predictive error. The 

influence of “surrogacy-induced” bias, as discussed above, is to inflate the “variance” 

term of equation (4.13a) rather than the “bias” term. 

4.2.6.2 Linear analysis 

An efficient linear estimate of prediction uncertainty variance of a (scalar) prediction 

s made by a calibrated model is given by (for details the reader is referred to, for 

example, Christensen and Doherty, 2008; Dausman et al., 2010; Doherty 2015): 

 
2

s  = ytC(k)y – ytC(k)Xt[XC(k)Xt + C(ε)]-1XC(k)y (4.14) 

where y is a vector comprising sensitivities of s to model parameters k, C(k) is the 

covariance matrix describing prior parameter variability based on expert knowledge, 

and C(ε) is the measurement noise covariance matrix. The first term on the right-hand-

side of equation (4.14) represents prior uncertainty (and thus is the linear equivalent to 

equation (4.11)). The second term on the right-hand-side of equation (4.14) represents 

the amount by which this uncertainty is reduced through the constraints imposed by 

the available (noisy) calibration dataset. 
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4.3 Synthetic case study 

4.3.1 Model description 

Figure 4.2 shows the synthetic example model domain. It is a single-layer unconfined 

aquifer with dimensions 800 m by 800 m. Water enters the system as uniform diffuse 

recharge at 3.8E-5 m/day and fixed inflow through the northern boundary at 9.1E-3 

m3/day per meter length of boundary. Groundwater exits the domain through the 

southern boundary where heads are fixed at 5 m. The western and eastern edges of the 

domain are defined by no-flow boundaries. Steady-state groundwater flow within the 

domain is simulated using MODFLOW 2000 (Harbaugh et al., 2000) with a finite-

difference grid comprising 6400 cells with dimensions of 10 m × 10 m. 

 

Figure 4.2. Synthetic example model domain and boundary conditions, including 

locations of pilot points, observation wells, pumping well, particle release point, head 

prediction point and drawdown prediction points.  
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4.3.2 Stochastic K field generation 

One thousand “reality” log10K field realizations were generated stochastically based 

on synthetic expert knowledge for use in the paired model analysis described in section 

4.2.4. As described above, the nature of subsurface geology in the present synthetic 

example is similar to one of the test cases considered by Zimmerman et al. (1998). It 

includes discrete faults (acting as preferential flow features) embedded in a 

“background” geostatistical field. 

Background log10K variability was generated using the sequential Gaussian simulation 

method (Deutsch and Journel, 1998), and is defined by a log-exponential variogram 

with a mean of -1 log10(m/day), a sill of 0.1 log10(m/day) and a range of 300 m. 

The number of faults per stochastic log10K field realization was generated as a random 

number between 1 and 3 with a central tendency represented by a discrete probability 

distribution of (0.25, 0.5, 0.25). The length and strike of each fault were also 

randomized, the former from a uniform distribution between 300 m and 800 m and the 

latter from a uniform distribution between 35°T and 55°T. The K within each fault is 

a homogeneous value generated from a log-normal distribution with a mean of 

1 log10(m/day) (i.e., two orders of magnitude greater than the mean of the geostatistical 

background field) and a standard deviation of 0.17 log10(m/day). Additional 

constraints on the stochastic fault generation process included a specified minimum 

separation of 100 m between fault centres, as well as a minimum distance of faults 

from lateral no-flow boundaries of 50 m. 

Illustrative examples of the stochastically generated log10K fields are provided in 

Figure 4.3. This clearly demonstrates the influence of the presence of the faults upon 

the potentiometric surface (under non-pumping/calibration conditions), advective 

transport behaviour, and drawdown distribution under pumping conditions. 



122 
 

 

Figure 4.3. Examples of stochastic log10K field realizations, including, left, steady-

state hydraulic head distribution under calibration conditions (1 m increments) with 

associated particle behaviour and, right, steady-state drawdown contours (0.05 m 

increments) under pumping conditions. 

4.3.3 Calibration 

The calibration dataset in the present synthetic example comprises 12 observations of 

steady-state hydraulic head at the locations indicated in Figure 4.2. Gaussian noise 

with a standard deviation of 0.1 m was added to each of the 1000 sets of head 

observations, generated by the 1000 stochastic “reality” log10K field realizations 

described above, in order to generate the ensemble of synthetic calibration datasets 

required for paired model analysis as described in section 4.2.4. 

Log10K values are estimated at 380 evenly distributed pilot points (see Figure 4.2) 

through regularized inversion using PEST (Doherty, 2016a). Measurement weights for 

the 12 observations in the calibration dataset were each set at 10.0, this being the 

inverse of the measurement noise standard deviation of 0.1 m. Φm
l was accordingly set 
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to 12.0, this representing a level of model-to-measurement misfit commensurate with 

measurement noise as described above. 

4.3.4 Regularization weighting strategies 

All 380 pilot points were assigned a “preferred value” (represented by the 

regularization observation vector r of equation (4.6)) of -1 log10(m/day), this being 

equal to the mean of the variogram used to generate the Gaussian “background” log10K 

fields. 

PEST allows direct user supply of a parameter covariance matrix to supplement 

Tikhonov regularization observations, the inverse of which is calculated and employed 

as a regularization weight matrix (i.e., Qr of equation (4.6)). A discussed above, the 

categorical nature of expert geological knowledge in the present synthetic case 

precludes its holistic expression in terms of a covariance matrix. There thus exists no 

theoretically optimal Qr matrix for regularized inversion in the present synthetic case 

(the reader is referred to Chapter 2 of the present thesis for a discussion of optimal 

regularization). The parameter and predictive outcomes arising through application of 

four alternative (suboptimal) regularization weighting strategies are thus examined. 

The first weighting strategy involves uniform regularization weights. That is, no 

parameter covariance matrix is supplied to PEST for regularization weighting 

purposes. This is equivalent to defining Qr = I. All pilot point parameters therefore 

possess an equal and independent propensity for variability during the inversion 

process (i.e., no preferential spatial correlation structure controls deviations from 

preferred values). This is referred to hereafter as the “uniform” regularization 

weighting strategy. 

For the second regularization weighting strategy, a covariance matrix was constructed 

based on the log-exponential variogram that was used to generate the stochastic 

“background” log10K fields of “reality”. This covariance matrix is denoted as C(kb). 

In the absence of the existence of faults in the synthetic system under study, this 

strategy would represent the theoretically optimal formulation of Qr. This is hereafter 

referred to as the “background” regularization weighting strategy. 

For the third regularization weighting strategy a covariance matrix was derived 

empirically from the suite of stochastic fields. All 1000 fields (defined by cell-by-cell 

variability) were upscaled (via least squares) to pilot point resolution, based on which 
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a covariance matrix was calculated. This is referred to hereafter as the “empirical” 

weighting strategy. 

The fourth regularization weighting strategy is heuristic in nature. (This strategy was 

provoked by an observed negligible impact of the above “empirical” weighting 

strategy relative to the “background” weighting strategy, which is discussed in due 

course.) The empirical covariance matrix C(k) was modified according to: 

 C’(k) = AC(k) (4.15) 

where C’(k) denotes the modified empirical covariance matrix, and A acts as selection 

matrix, formulated to effectively perform a filtering operation on the off-diagonal 

elements of C(k). Only the 0.5% (this being an arbitrarily selected threshold) of off-

diagonal elements with the largest magnitude were retained, with the remainder 

reduced to a negligibly small value. In other words, the covariance matrix C(k) was 

manipulated to encompass only the most prominent inter-pilot-point spatial 

correlations identified empirically based on the 1000 stochastic realizations. This is 

hereafter referred to as the “heuristic” weighting strategy. 

Figure 4.4 displays graphically the three covariance matrices used for the 

“background”, “empirical” and “heuristic” regularization weighting strategies, 

respectively. 

 

Figure 4.4. (Left) covariance matrix C(kb) pertaining to the log-exponential variogram 

used to generate true background log10K field variability; (middle) empirically derived 

covariance matrix C(k); and (right) modified empirical covariance matrix C’(k) upon 

which the “heuristic” regularization weighting strategy is based.  
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4.3.5. Predictive analysis 

Five model predictions are examined in the present study. The movement of a particle 

released at the point indicated in Figure 4.2 is simulated using the ADV2 package of 

MODFLOW 2000 (Anderman and Hill, 2001). The time taken for the particle to exit 

the domain at the southern boundary and its exit location comprise two predictions. 

Other predictions include the steady-state hydraulic head in the centre of the domain, 

and steady-state drawdown at two locations as a result of simulated abstraction at a 

rate of 3.1 m3/day from the centre of the domain (see Figure 4.2). The simulated 

abstraction comprises a separate predictive simulation and does not affect the 

advective transport nor hydraulic head predictions. 

Examination of the predictive success or otherwise of the pilot-point-based regularized 

inversion approach in the presence of categorical heterogeneity is based primarily on 

the following calculations made for each of the five predictions: 

1. Prior prediction uncertainty variance calculated from equation (4.11), based on 

the ensemble of 1000 stochastic realizations of the “reality” model. This is the 

benchmark against which the ultimate success or otherwise of the calibration 

process is judged, as it is the degree of uncertainty that exists based on expert 

geological knowledge alone. 

2. Pre-calibration MSE calculated using equation (4.13b), based on the ensemble 

of 1000 expert knowledge-based realizations of the “reality” model, where the 

model prediction s is that made by the uncalibrated model. Pre-calibration MSE 

ideally coincides with prior uncertainty variance (i.e., where the “bias” term in 

equation (4.13a) is zero). However, as will be demonstrated, the potential for 

error in model predictions made by the uncalibrated model in the present 

synthetic example (i.e., based on the initial uniform log10K field of -

1 log10(m/day)) is not symmetrical with respect to prior uncertainty, due to the 

systematic influence of the faults. Thus the “bias” term of equation (4.13a) is 

nonzero. As such, pre-calibration MSE elucidates the additional potential for 

wrongness in model predictions initially inherited through employment of the 

pilot-point-based regularization method in the presence of categorical 

heterogeneity. It thus provides additional insight into the gains achieved 

through the calibration process itself, relative to uncalibrated model 
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3. A linear estimate of posterior prediction uncertainty variance based on equation 

(4.14). This is calculated in order to add additional perspective to the outcomes 

of the calibration process, through demonstration of whether or not the “true” 

prediction value is successfully captured within estimated uncertainty margins. 

This, after all, ultimately defines the success or failure of the modelling process 

as discussed above. This linear uncertainty analysis method was employed 

instead of a calibration-constrained nonlinear technique such as the null-space 

Monte Carlo method (see, for example, Tonkin and Doherty, 2009; 

Herckenrath et al., 2011) due to its efficiency for the sake of the present study, 

as well as perhaps greater relevance to practical situations due to its 

applicability as a result of this efficiency. A nonlinear technique through which 

expression of the faults is made possible is expected to improve the 

performance of post-calibration uncertainty assessment in terms of the chances 

of capturing the true prediction. However, this is beyond the scope of the 

present study. 

4. Post-calibration predictive error variance quantified through equation (4.12), 

based on the 1000 complex-simple prediction pairs obtained through paired 

model analysis (repeated for each of the five regularization weighting 

strategies). This is a key component of total post-calibration potential 

predictive error (see equation (4.13c)). As discussed above, it quantifies the 

influence of predictive bias caused by calibration-induced parameter 

surrogacy. 

5. Post-calibration prediction MSE calculated through equation (4.13b), based on 

the 1000 complex-simple prediction pairs obtained through paired model 

analysis (repeated for each of the five regularization weighting strategies). This 

is the measure of the total potential for error in predictions made by the 

calibrated model, accounting for both post-calibration predictive error variance 

as well as systematic (i.e., nonzero mean) predictive error (see equation 

(4.13c)). 
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4.4 Results 

4.4.1 Prior uncertainty of predictions 

The prior uncertainty of predictions is obtained through unconstrained Monte Carlo 

analysis based on the suite of 1000 stochastic “reality” log10K field realizations. 

Histograms for the ensemble of “true” prediction values are displayed in Figure 4.5. 

Gaussian probability density functions (overlaid on the Figure 4.5 histograms) based 

on the calculated prediction variance σ2
s (obtained through equation 4.11) were 

adjudged as reasonable approximations of the histograms for all predictions and thus 

for convenience are used to represent prior uncertainty in the remainder of the study. 

Also indicated in Figure 4.5 are the prediction values made by the uncalibrated model 

(i.e., based on the preferred value-populated homogeneous log10K field of -

1 log10(m/day)). Each prediction made by the uncalibrated model is clearly not central 

with respect to the prior probability distribution. This represents pre-calibration 

predictive bias introduced by the presence of the faults. 

4.4.2. Estimated parameter field characteristics 

Average measurement objective function Φm values achieved across the 1000 

calibrated model pairs is equal to 12.0 for each of the four regularization strategies, 

this being equal to the specified target measurement objective function Φm
l. 

Furthermore, a high degree of consistency in Φm across the 1000 calibrated model pairs 

for each regularization strategy is indicated by small Φm standard deviations of 0.05, 

0.03, 0.03 and 0.2 for the “uniform”, “background”, “empirical” and “heuristic” 

regularization weighting strategies, respectively. Thus all models comprising the 

present analysis can be considered “well-calibrated” from a history-matching point of 

view. 
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Figure 4.5. Prediction histograms based on unconstrained Monte Carlo analyses using 

all 1000 “reality” log10K fields. Overlain are the theoretical Gaussian probability 

density functions used to approximate each histogram. Also indicated is the pre-

calibration value of each prediction (i.e., as made by the uncalibrated model 

comprising a homogeneous log10K field of -1 log10(m/day)). 
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Figure 4.6. (a) arbitrary realization of a “reality” log10K field, (b) uncalibrated model (based on pre-calibration preferred values), and post-calibration 

counterparts of the realization shown in (a) based on (c) “uniform”, (d) “background”, (e) “empirical” and (f) “heuristic” regularization weighting 

strategies. Information is displayed pertaining to both particle fate prediction under calibration conditions (top) and drawdown prediction under pumping 

conditions (bottom).
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Figure 4.6 depicts an arbitrary stochastic “reality” field realization and its post-

calibration counterparts based on each regularization weighting strategy (as well as the 

uncalibrated model). Prediction-related information for both calibration (non-

pumping) and pumping conditions is also displayed. 

As discussed above, the inevitable cost of attaining a unique solution to the inverse 

problem is an estimated parameter field that is smoother than the true field. This is 

clearly evident for all estimated log10K fields displayed in Figure 4.6. Log10K field 

heterogeneity arising through the “uniform” weighting scheme is clearly a function of 

observation well locations (the latter are displayed in Figure 4.2). Locally “tweaked” 

heterogeneity manifesting as “bullseyes” is widely condemned as a data-fitting artefact 

that is unlikely to constitute a useful representation of the system (e.g., Freyberg 1988; 

Voss, 2011; Black and Black, 2012; Kourakos and Mantoglou, 2012). These features 

are free to arise in the absence of a correlation-based regularization weighting scheme 

and consequential spatial independence of pilot-point adjustment. 

The effect of all covariance matrix-based regularization weighting schemes in 

removing “bullseye”-type heterogeneity is clear from Figure 4.6. The “background” 

weighting scheme promotes variability in the estimated log10K field that is in 

accordance with the large-scale background field heterogeneity defining the true field. 

The field estimated on the basis of the “empirical” regularization weighting scheme 

shares very similar large-scale features, including a faint presence of northwest-

southeast trending elongation within the log10K field. In contrast, the influence of the 

“heuristic” regularization weighting strategy is profound, with it clearly promoting the 

expression of “fault-like” features. However, these features are obviously of a highly 

surrogate nature; they are significantly thicker and have not arisen in the same 

locations as the faults in the “reality” field. Additionally, regions of low log10K also 

follow the same “fault-like” correlation structures, which is not a feature of the 

“reality’ field conceptualisation. Despite this, the field may in some respects be 

considered to be more in harmony with the key geologic features of “reality” and thus 

more geologically plausible than the estimated fields in which the existence of the 

faults is neglected.  
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The characteristics of the estimated log10K fields are explicated through eigenanalysis. 

Singular value decomposition (SVD) of the matrix X of equation (4.1) yields: 

 X = USVT (4.16) 

The columns of U and V are unit vectors that span the output and parameter spaces of 

X, respectively. S is a diagonal matrix containing the ranked singular values of X. 

These are displayed in Figure 4.7 on a semi-log plot. The first two singular values are 

relatively dominant, indicating that adjustment of just two combinations of parameters 

may be sufficient to achieve the majority of model-to-measurement misfit reduction 

during the history matching process. (This is particularly the case in the presence of 

measurement noise – as is artificially included in the present synthetic example – 

where a less-than-perfect fit is sought in order to avoid overfitting. The reader is 

referred to Chapter 2 of the present thesis for a thorough discussion of overfitting.) 

 

Figure 4.7. Singular values calculated for the Jacobian matrix X (based on equation 

(4.17)). 

SVD of any covariance matrix C(k) yields: 

 C(k) = VSVT (4.17) 

Here, the eigenvectors comprising the columns vi of the matrix V are the set of 

orthogonal basis functions spanning the model domain (Doherty et al., 2010). 

Figure 4.8 provides a comparison between selected eigenvectors of C(kb), C(k) and 

C’(k). The elements of the eigenvectors are arranged in Figure 4.8 in accordance with 

the spatial distribution of the pilot points within the model domain. (Note that some 
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values comprising the eigenvectors of C’(k) exceed the colour scale presented in 

Figure 4.8, which is truncated to enhance contrast in the C(kb) and C(k) eigenvectors.) 

Inspection of Figure 4.8 shows a high degree of similarity between C(kb) and C(k) in 

the eigenvectors pertaining to the largest two singular values in particular (i.e., v1 and 

v2). This indicates that, despite the stochastic inclusion of faults within the empirical 

covariance matrix calculation process, the eigencomponents corresponding to the 

largest singular values remain dominated by the larger scale background field 

correlation characteristics. This explains the similarity of parameter fields estimated 

through regularized inversion employing either C(kb) or C(k), as exemplified by 

Figure 4.5. More prominent “fault-like” correlation structures are visible in the fourth 

and fifth C(k) eigenvectors in particular. However the features of these less dominant 

eigenvectors do not find prominence in the estimated parameter fields due to the 

relative dominance of a very small number of singular values in the inversion problem 

as discussed above. 

Inspection of the eigencomponents of the modified empirical covariance matrix C’(k) 

clearly demonstrates the effect of the ad hoc modification process based on equation 

(4.15). The eigenvectors of C’(k) are wholly comprised of “fault-like” correlation 

structures occupying different parts of the model domain. 

 

Figure 4.8. Selected eigenvectors (arranged in accordance with the spatial distribution 

of pilot points within model domain) of the background log10K covariance matrix 

C(kb); the empirical log10K covariance matrix C(k); and the modified empirical log10K 

covariance matrix C’(k). 
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Tables 4.1 and 4.2 provide a quantitative summary of the parameter outcomes of 

calibration. For the “reality” log10K fields and corresponding fields estimated through 

each regularization strategy, Table 4.1 contains the mean, minimum and maximum 

standard deviation of log10K within each cell of the model domain calculated on the 

basis of all 1000 realizations. Table 4.2 summarizes the standard deviations of error in 

estimated log10K field cells relative to the corresponding cell in the “reality” field 

(denoted as log10Ktrue). 

Table 4.1. Summary of standard deviations of log10K in each model cell within the 

domain calculated based on all 1000 realizations. 

𝜎log10𝐾 [log10(m/day)] “Reality” “Uniform” “Background” “Empirical” “Heuristic” 

Mean 0.41 0.15 0.19 0.19 0.22 

Minimum 0.29 0.01 0.05 0.04 0.00 

Maximum 0.63 0.35 0.30 0.29 0.64 

Table 4.2. Summary of standard deviations of error in estimated log10K in each model 

cell within the domain calculated based on all 1000 realizations. 

𝜎log10𝐾𝑡𝑟𝑢𝑒 − log10𝐾 

[log10(m/day)] 

Pre-cal. “Uniform” “Background” “Empirical

” 

“Heuristic” 

Mean 0.41 0.39 0.38 0.38 0.42 

Minimum 0.29 0.23 0.22 0.22 0.23 

Maximum 0.63 0.62 0.62 0.61 0.75 

The mean 𝜎log10𝐾 values of Table 1a highlight the relative “smoothness” of all 

calibrated fields relative to the complex fields, with the values for each estimated field 

substantially smaller than for the “reality” fields. The influence of the “background” 

(and “empirical”) regularization weighting strategies in removing localised 

“bullseyes”, and inducing broader-scale correlation structures in accordance with 

expert knowledge, is clear from the increase in mean 𝜎log10𝐾 accompanied by a 

decrease in minimum and maximum 𝜎log10𝐾. Despite the “more realistic” correlation 

structures introduced through the “background” regularization weighting scheme, a 

high degree of surrogacy observable remains in the estimated field. In their study of 

the calibration of a defective model, White et al. (2014) discuss the spreading of 

parameter surrogacy across larger regions of the model domain as a result of pre-

calibration (Karhunen-Loѐve) transformation of parameters in accordance with expert 

knowledge. In the present study parameter surrogacy is inherent in the chosen 

calibration approach, with a continuous parameter field replacing discrete features. 

The spreading of parameter surrogacy across a larger area is visible in Figure 4.6d. In 

order to reproduce the lowering of the hydraulic head in the southwestern part of the 
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model domain (caused by the faults in the “reality” model), a relatively large area of 

higher log10K is introduced. Table 4.2 indicates that cell-by-cell error in estimated 

log10K is barely reduced through the “background” regularization weighting scheme 

relative to the “uniform” scheme. Thus the error in estimated log10K at any given point 

in the domain is effectively unchanged despite the introduction of more realistic broad-

scale variability. 

The “heuristic” weighting strategy promotes the highest overall variability in 

estimated log10K, with localised extremes. Some cells within the model domain exhibit 

a 𝜎log10𝐾 as low as 0.00 across the ensemble of 1000 estimated fields, whilst in others 

the variability is approximately equivalent to the true maximum degree of log10K 

variability found in “reality”. This is accompanied by a general increase in estimated 

log10K error across the domain (resulting in a mean log10K error that is in fact greater 

than the mean pre-calibration log10K error), providing quantitative confirmation of an 

increased degree of parameter surrogacy incurred through the “heuristic” 

regularization weighting strategy. 

4.4.2 Predictive outcomes 

4.4.2.1 s-versus-s scatterplot characteristics 

All s-versus-s scatterplots are displayed in Figure 4.9, accompanied by regression lines 

as defined by equation (4.10) and 95% prediction intervals (based on Draper and Smith 

(1998), eq. 1.4.12). Regression statistics pertaining to each s-versus-s scatterplot are 

provided in Table 4.3. For the sake of conciseness, the regression statistic a is not 

presented due to limited relevance to discussion herein. (Note: s-versus-s scatterplots 

for drawdown predictions are based on 997 realizations, due to “drying” and 

subsequent deactivation of the cell containing the pump in three stochastic 

realizations.) 

From Figure 4.9 and Table 4.3, the prediction-specific outcomes of the calibration 

process are clear. Substantial predictive bias exists in some predictions, including both 

hardwired bias (indicated by a lateral offset in the regression line) and parameter 

surrogacy-induced bias (indicated by a regression line slope of less than unity). Also 

clear is the influence of regularization weighting scheme alteration, affecting 

regression line slope, offset and scatter (as indicated by r2).  
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Table 4.3. Regression line slope b and coefficient of determination r2 pertaining to the 

s-versus-s scatterplots of Figure 4.9. 

 Uniform  Background  Empirical  Heuristic 

Prediction b r2  b r2  b r2  b r2 

Exit point 0.62 0.21  0.57 0.24  0.59 0.25  0.56 0.14 

Log10 time 1.31 0.18  0.87 0.20  0.92 0.21  0.59 0.17 

Head 1.07 0.96  1.02 0.97  1.02 0.97  0.93 0.93 

Drawdown A 1.16 0.81  1.07 0.83  1.08 0.83  1.00 0.84 

Drawdown B 1.16 0.82  0.97 0.84  0.97 0.85  0.61 0.60 

 

 

Figure 4.9. s-versus-s scatterplots for all five predictions based on each regularization 

weighting strategy. Axis units are as indicated in the respective plot headings. 
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Figure 4.9 and Table 4.3 show that all s-versus-s regression line slopes except that of 

the particle exit location prediction are greater than unity for calibration based on the 

“uniform” regularization weighting strategy. This reflects limited predictive range of 

the ensemble of calibrated models relative to their “reality” model counterparts. This 

is analogous to the outcome of “underfitting” in a paired model analysis context as 

discussed in Chapter 2 of the present thesis. In the present case, all models are “well-

calibrated” from a goodness of fit point of view (i.e., model-to-measurement misfit is 

commensurate with measurement noise as explained above). However, the highly 

localised “bullseye”-type parameter compensation allowed by the lack of a covariance-

based regularization weighting scheme serves to achieve the target measurement 

objective function without the need for broader-scale parameter adjustment. The 

overall outcome is unrealistically (i.e., compared with “reality”) limited domain-wide 

log10K variability in the “uniform” case (see Table 4.1), which translates to an 

unrealistically limited range in predictions. As Figure 4.9 and Table 4.3 demonstrate, 

s-versus-s regression line slopes in all predictions are reduced through use of the 

“background” regularization weighting strategy. This reflects an increased predictive 

range of the suite of calibrated models attributable to the broad-scale correlation 

structures of the “background” log10K variogram. For all predictions other than particle 

exit location, this results in an s-versus-s slope that is closer to unity than in the 

“uniform” case. As will be demonstrated, this corresponds to a reduction in predictive 

error variance consistent with the theoretical basis of s-versus-s analysis explored in 

detail in Chapter 2 of the present thesis. Thus, model performance for the making of 

most predictions depends upon the representation of a more realistic degree of broad-

scale log10K variability. 

The particle exit location prediction is an exception, for which the “background” 

covariance-based regularization weighting strategy inflates predictive bias relative to 

the “uniform” strategy. In contrast all other predictions, substantial “surrogacy-

induced” bias exists in the exit location prediction following regularized inversion 

using the “uniform” strategy (i.e., an s-versus-s slope of 0.62 as shown in Table 4.3). 

This reflects the extreme sensitivity of this prediction to the presence of the faults, and 

thus sensitivity to the surrogate nature of the estimated “smooth” parameter fields that 

do not incorporate faults (resulting in a high degree of random error expressed as 

“surrogacy-induced” bias). Whilst all other predictions benefit from the more realistic 

degree of broad-scale log10K variability introduced through the “background” 
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regularization strategy through a more realistic predictive range of the calibrated 

model, the broadened range of exit location predictions serves only to increase the 

degree of random error (i.e., the s-versus-s slope is further reduced to 0.57). 

Similar to the relative influence of the “background” regularization weighting strategy 

compared to the “uniform” strategy, the “heuristic” strategy further reduces the s-

versus-s regression line slope for all predictions (see Figure 4.9 and Table 4.3). The 

translation of these s-versus-s characteristics in terms of predictive is highly 

prediction-specific. For some predictions, for example drawdown “A”, the s-versus-s 

regression line slope remains greater than unity through use of the “background” or 

“empirical” strategies, despite some reduction relative to the “uniform” strategy. 

Employment of the “heuristic” weighting strategy further reduces the regression line 

slope such that it equals unity, this corresponding to further reduction in predictive 

error variance as will be demonstrated below. Simultaneously, however, the reduction 

in s-versus-s regression line slope for other predictions such as drawdown “B” 

represents “surrogacy-induced” predictive bias and corresponds to inflation of 

potential predictive error as will be demonstrated below. 

It is clear from Figure 4.9 that changes in the degree of consistent offset in the s-versus-

s scatterplots of some predictions accompanies the changes in regression line slope 

discussed above. The translation of these characteristics in terms of overall predictive 

performance is explored in the following subsection. 

4.4.2.2 Potential predictive error 

Post-calibration predictive error probability density functions are displayed in Figure 

4.10. For the sake of clarity these are represented by Gaussian distributions (which 

were adjudged to be reasonable representations of the histograms in the same manner 

were prior probability histograms) based on σ2
s-s calculated using equation (4.12). Also 

included in Figure 4.10 are the prior probability density functions, as well as the mean 

predictive error of the uncalibrated model. The latter represents pre-calibration bias as 

discussed above. (For the sake of clarity, only the mean is represented in Figure 4.10 

instead of the entire probability density function, given that the width of the latter is 

identical to the prior uncertainty probability density function and it can thus easily be 

visualised as such, with its peak coinciding with the indicated mean.) Finally, Figure 

4.10 also includes probability density functions representing linear post-calibration 
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uncertainty variance quantified through equation (4.14). Note that the latter is based 

on use of the background covariance matrix C(kb) in equation (4.14). Use of the either 

the empirical covariance matrix C(k) or modified empirical covariance matrix C’(k) 

returns comparable or narrower probability density functions. It is emphasized that 

these linear estimates are provided solely as an example of the potential performance 

of a computationally manageable post-calibration uncertainty assessment in the 

present context. The performance of alternative (e.g., nonlinear) methods is likely to 

differ, but would not be expected to invalidate the conclusions drawn herein. 

 

Figure 4.10. Probability density functions representing post-calibration potential 

predictive error based on each regularization weighting strategy. For the sake of 

clarity, “empirical” distributions are not displayed due to high degree of similarity with 

“background” distributions. Also displayed is prior uncertainty variance σ2
s (shaded), 

pre-calibration mean predictive error and the linear estimate of post-calibration 

uncertainty variance σ2
s. 
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From Figure 4.10 it is clear that, in most cases, post-calibration mean predictive error 

(represented by the peaks of the respective probability density functions) is of 

significantly smaller magnitude than pre-calibration mean predictive error. This 

indicates that pre-calibration predictive bias has largely been “calibrated out” in most 

cases. For the particle exit location prediction, however, this bias is in fact magnified 

by the calibration process for most weighting strategies. That is, based on the 

“uniform”, “background” and “empirical” regularization weighting strategies, particle 

exit location predicted by the calibrated model is on average more in error than particle 

exit location predicted by the uncalibrated, homogeneous model parameterized by 

preferred values alone. 

The overall success of calibration is immediately evident from Figure 4.10. For some 

predictions, such as hydraulic head and drawdown “A”, post-calibration potential 

predictive error is substantially smaller than prior uncertainty. Furthermore this 

potential error is wholly captured by post-calibration uncertainty analysis, irrespective 

of the employed regularization weighting strategy. For both advective transport 

predictions, some portion (in some cases a very large portion) of each predictive error 

probability density function clearly falls outside the range of potential predictive error 

quantified through post-calibration uncertainty analysis. This, as discussed above, 

represents failure of the modelling process. Moreover, the post-calibration predictive 

error probability density functions for the advective transport predictions in most cases 

exceed the span of prior uncertainty. Thus not only do these predictions exhibit a 

potential for error beyond range of the post-calibration uncertainty estimate, the 

potential for wrongness in the predictions made by the calibrated model is greater than 

the prior uncertainty range defined by expert geological knowledge alone. 

The prediction-specific influence of the regularization weighting strategy upon post-

calibration potential predictive error is also clear from Figure 4.10. For example, the 

“heuristic” strategy reduces both mean predictive error and predictive error variance 

in drawdown “A” (evinced by the more centralised and slightly narrower probability 

density function). At the same time, the hydraulic head predictive error probability 

density function obtained through the “heuristic” strategy exhibits both a greater mean 

error and greater error variance. 

For the particle exit location, particle travel time and drawdown “B” predictions, the 

“heuristic” regularization strategy observably reduces mean post-calibration predictive 
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error, whilst simultaneously increasing predictive error variance. For the latter two 

predictions, mean predictive error is effectively eliminated completely. However, the 

simultaneous increase in predictive error variance renders the post-calibration 

predictive error probability density functions very similar in width to the prior 

uncertainty probability density functions (which represents no overall benefit of the 

history matching process in these cases). 

As discussed above, MSE provides a means of quantifying the overall potential for 

predictive error, accounting for both predictive error variance and mean predictive 

error (see equation (4.13c)). Figure 4.11 displays MSE for each prediction calculated 

using equation (4.13b), normalized with respect to the prior uncertainty variance of 

each prediction calculated through equation (4.11) such as to provide a measure of the 

overall success of the calibration process in reducing potential predictive error relative 

to prior uncertainty based on expert knowledge alone. 

 

Figure 4.11. Post-calibration prediction mean square error (MSE) for each 

regularization strategy, normalised with respect to prior prediction variance. The 

shaded region represents the boundary (i.e., at normalized MSE = 1) between reduction 

and inflation relative to prior prediction variance. (Note: dashed lines joining the 

results of each regularization weighting strategy are displayed only to aid relative 

comparison; there exists no explicit relationship between the separate inversion 

processes.) 
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The values at the y-axis in Figure 4.11 are all greater than one, representing the pre-

calibration bias in all predictions introduced through the employed regularized 

inversion approach as discussed above. The magnitude of this pre-calibration bias is 

substantial in some cases; for example the pre-calibration MSE in drawdown “B” is 

over 100% greater than prior uncertainty variance. 

Despite the pervasive pre-calibration bias, Figure 4.11 indicates that post-calibration 

prediction MSE is reduced through calibration to a value below prior uncertainty 

variance for all predictions other than the particle exit location. Reflecting the 

probability density function characteristics discussed above, post-calibration MSE is 

generally reduced substantially below prior uncertainty for the hydraulic head and 

drawdown predictions irrespective of the regularization weighting strategy. An MSE 

reduction of 70-97% relative to prior uncertainty is achieved in all but one case, which 

is discussed below. 

For the advective transport predictions, Figure 4.11 shows that post-calibration MSE 

is either comparable to, or greater than, prior uncertainty variance irrespective of the 

employed regularization weighting strategy. For prediction of travel time, the 

calibration process has the capacity to eliminate the initial bias introduced by the 

uncalibrated model. However, MSE is barely reduced relative to prior uncertainty 

based solely on expert knowledge. In the case of particle exit location, normalized 

MSE reaches a value of 4.5 at worst. This translates to prediction MSE that is 300% 

greater than the uncalibrated, homogeneous model, and 350% greater than prior 

uncertainty variance based on expert knowledge alone. The “heuristic” regularization 

weighting strategy achieves a slight exit location prediction MSE reduction relative to 

the MSE of the uncalibrated model, however post-calibration MSE remains greater 

than prior uncertainty variance. Thus, for these predictions, very little is gained from 

calibration at best, and at worst the process is highly detrimental to model predictive 

performance. 

Finally, Figure 4.11 highlights the potential complexities in the outcomes of 

calibration of a simplified model. Firstly, prediction specificity in the success of the 

calibration process is not limited to predictions of a distinctly different type. For 

example, employment of the “background” regularization weighting strategy in place 

of the “uniform” regularization weighting strategy decreases the MSE in the prediction 

of particle travel time, but simultaneously raises particle exit location prediction MSE. 
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Similarly, employment of the “heuristic” regularization weighting strategy in place of 

any other strategy yields a decrease in MSE for the prediction of drawdown “A”, whilst 

at the same time causing a marked inflation in the drawdown “B” prediction MSE. In 

fact, Figure 4.11 demonstrates that, in the present synthetic example, any reduction in 

the MSE of a given prediction achieved through a change of the in regularization 

weighting strategy, is accompanied by an increase in the MSE of at least one other 

prediction (and vice-versa). 

4.5 Discussion 

Moore and Doherty (2005) allude to the potentially prediction-specific success of 

calibration in terms of optimizing model predictive performance. They suggest that 

multiple specifically tailored calibration processes may be required for the making of 

multiple predictions. It follows that there exists a need to abandon the notion that a 

model, once “calibrated”, is thereafter fit for making any prediction required of it. A 

particular focus in recent literature, including Chapter 3 of the present thesis, is the 

extent to which various model simplifications/defects amplify the degree of 

prediction-specificity in the success of calibration (e.g., Doherty and Welter, 2010; 

Doherty and Christensen, 2011; White et al., 2014). 

Means of tailoring a calibration process that have received focus in recent literature 

include observation pre-processing (e.g., Moore and Doherty, 2005; Doherty and 

Welter, 2010; White et al., 2014), pre-calibration parameter transformation (e.g., 

Chapter 3 of the present thesis; White et al., 2014), and alteration of the goodness of 

fit sought between model outputs and the calibration dataset (e.g., White et al., 2014). 

The present study explores the weighting of Tikhonov regularization constraints as an 

additional means. The results emphasize the potential importance of undertaking 

multiple calibration processes for the purpose of making multiple predictions. Through 

alteration of the regularization weighting strategy in the present synthetic example, no 

improvement in the ability of the model to make a given prediction is achieved without 

degrading its ability to make at least one other prediction. 

The results of the present study provide transparency to the causes of prediction-

specific calibration success through identification of the various components of 

potential predictive error, in particular the different sources of predictive bias. As 

explained in section 4.2.4, Doherty and Christensen (2011) describe two forms of 
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predictive bias in the context of paired model analysis, which are herein distinguished 

between as “hardwired” bias and “surrogacy-induced” bias. The former is attributable 

to consistent errors in null-space parameter components that are omitted from the 

simplified model, and is expressed as a systematic offset in s-versus-s scatterplots (and 

a corresponding non-zero mean in the predictive error probability density function). 

The latter is a consequence of the surrogate roles played by parameters of a 

simplified/defective model as they compensate for structural inadequacies in order to 

fit the calibration data. This is inevitably accompanied by inclusion in the parameter 

estimation process of parameter components that properly belong to the null space. 

This null-space entrainment induces random error in estimated parameters and thus 

predictions that are sensitive to those parameters. This manifests as a reduction in the 

slope of the s-versus-s scatterplot regression line, which is associated with an increase 

in predictive error variance (expressed as a broadening of the width of predictive error 

probability density functions). 

Despite the aforementioned high degree of prediction specificity in the outcomes of 

regularized inversion applied to the present synthetic example, some more general 

outcomes may be drawn from the results. Firstly, ignoring the presence of the faults 

does not prevent the calibration process from achieving a substantial reduction in 

potential predictive error in the hydraulic head-related predictions under both non-

pumping and pumping conditions. Moreover, efficient linear uncertainty analysis 

adequately “captures” the full post-calibration potential for error in each of these 

predictions. 

For all predictions except particle exit location, inclusion of a covariance-based 

regularization weighting scheme based on the geostatistical background log10K field 

of “reality” provides a reduction in post-calibration predictive MSE relative to a lack 

of a covariance-based regularization weighting scheme (i.e., uniform weights). This is 

perhaps unsurprising, given that the former represents inclusion of additional, albeit 

partial, expert knowledge in the calibration process. The ability of the model to make 

most predictions benefits from an enhanced predictive range provided by the 

introduction of more realistic broad-scale correlation structures in the estimated 

parameter fields (despite the fact that the overall accuracy of estimated log10K values 

at a cell-by-cell level is barely improved).  
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The attempted incorporation of “more complete” expert knowledge, though a 

regularization weighting strategy based on the covariance matrix calculated 

empirically using the suite of stochastic “reality” fields, has a generally insignificant 

effect upon the estimated log10K fields (and thus all predictions) compared with the 

“background” regularization weighting strategy. This is consistent with the 

expectation that small-scale log10K features such as the faults in the present synthetic 

example lie predominantly within the “true” null space where the calibration dataset 

comprises relatively sparse hydraulic head observations (e.g., Moore and Doherty, 

2005; 2006). This expectation is supported by eigenanalysis in the present study, which 

suggests that adjustment of a small number (two or three) parameter combinations 

dominates the history matching process in the present synthetic example. Moreover, 

SVD of the empirically derived covariance matrix indicates that “fault-like” 

correlation structures become more prominent only for eigencomponents 

corresponding to smaller singular values. Thus, introduction of such structures is “not 

required” during the parameter estimation process in order achieve a satisfactory fit 

between model outputs and the calibration dataset. 

“Heuristic” modification of the empirically derived covariance matrix is demonstrated 

to effectively force the calibration process to introduce “fault-like” correlation 

structures through the calibration process. Despite the associated increase in cell-by-

cell log10K error incurred through this approach, minimisation of the potential for error 

in some predictions depends on the expression of these correlation structures. This 

occurs mainly through observable reduction in “hardwired” bias in most predictions, 

for it constitutes surrogate representation of null-space parameter components whose 

omission from the calibrated simplified models was the original cause of the consistent 

predictive error. At the same time, the forced inclusion of null-space parameter 

components in the parameter estimation process is equivalent to null-space 

entrainment. As a result, the “heuristic” regularization weighting strategy induces an 

inflation of predictive error variance in most predictions owing to “surrogacy-induced” 

bias. Thus, the reduction in “hardwired” bias is generally accompanied by an increase 

in “surrogacy-induced” bias, such that the reduction in the propensity for model 

predictive error afforded by the former is eroded by the latter. 

It is worth noting briefly in further support of the present discussion that an additional 

paired model analysis process was undertaken (the results of which are not presented 

for the sake of brevity) wherein the “heuristic” regularization weighting strategy was 
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accompanied by anisotropic interpolation (with a northwest-southeast principal axis of 

anisotropy). As per all other paired model analysis processes, 1000 calibrated model 

pairs (Φ̅m = 11.9) were evaluated. Post-calibration prediction MSE results are 

generally similar to those attained through the “heuristic” weighting strategy, but the 

individual components of MSE exhibit further trade-off between the two sources of 

predictive bias. For example, “hardwired” bias in the particle exit location prediction 

is further reduced, whilst “surrogacy-induced” predictive bias is simultaneously 

inflated, effecting minor net reduction in post-calibration prediction MSE, which 

remains greater than prior uncertainty variance. (For the purposes of comparison with 

the results presented herein: mean predictive error is reduced to 37 m, predictive error 

variance is increased to 8644 m2 (accompanied by an s-versus-s regression line slope 

b of 0.41).) 

The apparent trade-off between “hardwired” and “surrogacy-induced” predictive bias 

discussed above prevents reduction of advective transport potential predictive error 

below prior uncertainty in the present synthetic example. Thus, in this case there is 

little to be gained and much to be lost through pilot-point-based regularized inversion 

for the making of these predictions in the presence of categorical heterogeneity. In this 

particular instance calibration appears to be inevitably unfruitful at best and at worst 

highly detrimental, and should therefore be abandoned altogether. Nonetheless, 

predictive uncertainty must still be quantified in some manner, for it is the critical 

outcome of any modelling process in the decision support context. 

Approaches rooted in a classical Bayesian framework allow expert geological 

knowledge to be expressed in its purest form and eschew the potential for calibration-

induced predictive bias (see, for example, Harmon and Challenor, 1997; Kuczera and 

Parent, 1998; Campbell and Bates, 2001; Qian et al., 2003; Vrugt et al., 2009a; Sadegh 

and Vrugt, 2014, and references cited therein). The popularity of gradient-

based/optimization approaches such as regularized inversion using pilot points is 

rooted in their computational efficiency relative to a Bayesian framework, with the 

latter often demanding a prohibitively large number of model runs (Mugunthan and 

Shoemaker, 2006; Mariethoz et al., 2010a). However, construction of a prediction 

uncertainty envelope through unconstrained Monte Carlo analysis can be achieved via 

a far more manageable number of model runs. For example, 1000 expert knowledge-

based realizations are used for this purpose in the present study, which is substantially 

fewer model runs than required for a single calibration process based on the employed 
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small-scale synthetic example (the number of which rapidly increases for larger 

models with more parameters). Let us suppose that the present synthetic example 

represents a case in which a Bayesian approach is computationally infeasible. 

Expression of advective transport prediction uncertainty is thus most frugally achieved 

via unconstrained Monte Carlo analysis based solely on stochastic expert knowledge. 

This provides (in the case of the present synthetic study) an uncertainty range that is 

at worst comparable, and at best substantially smaller, than potential predictive error 

obtained through pilot-point-based regularized inversion. Most importantly, it 

safeguards against underestimation of uncertainty. This is in accordance with a key 

modelling strategy metric proposed by Doherty and Simmons (2013) in a recent 

discussion paper on modelling in the decision-making context: the modelling process 

must be guaranteed to exaggerate the uncertainty associated with a prediction of an 

unwanted event. 

The capacity for stochastic expression of expert geological knowledge for Monte Carlo 

simulation purposes is ever increasing. Recent literature details a plethora of 

increasingly sophisticated multiple point geostatistics-based techniques and software 

that facilitate efficient generation of suites of realistic stochastic fields that conform to 

complex conceptualizations of subsurface heterogeneity (see, for example, Mariethoz 

et al. 2010b; Mariethoz and Kelly, 2011; Meerschman et al. 2013; Mahmud et al., 

2014; Mariethoz and Lefebvre, 2014; Zahner et al., 2016 and references cited therein). 

Finally, as discussed above, Doherty (2015) points out that recent literature also 

presents ongoing development of state-of-the-art methods for continuous, 

differentiable representations of complex categorical parameter fields based on 

multiple point geostatistics (e.g., Sarma et al., 2008; Ma and Zabaras, 2011; Vo and 

Durlofsky, 2014). These methods provide compatibility with gradient-based 

optimization algorithms and thus may facilitate more sophisticated Tikhonov 

regularization schemes that facilitate expression of more complex and realistic 

geological expert knowledge. Nonetheless, the general insights provided by the 

present study are not expected to be invalidated by the application of more 

sophisticated regularization capabilities. The present “heuristic” strategy provides a 

rudimentary example of the potential outcomes of formulating the inversion process 

in a manner that emphasizes a certain desired component of parameter variability in 

an estimated field. More realistic post-calibration parameter fields would be expected 

to reduce parameter surrogacy (caused though the present “heuristic” strategy by the 
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aforementioned thickness and “blurriness” of the fault-like features, as well as the 

unrealistic elongation of low-K regions) and thus reduce null-space entrainment to 

some degree. However a more sophisticated regularization strategy alone cannot 

reduce the inherent nonuniqueness of the inverse problem, which precludes the faults 

from being accurately resolved by the available calibration data. Thus, in the same 

manner as observed in the present study, inclusion of such features in the estimated 

parameter field may therefore reduce “hardwired” predictive bias but would be 

expected to increase error variance through “surrogacy-induced” bias caused by null-

space entrainment, as discussed above. The influence of more sophisticated 

regularization approaches is nonetheless of interest and the application of a multiple 

point geostatistics-based method in the same context is recommended as future work. 

4.6 Conclusions 

In light of the increasing popularity of pilot-point-based regularized inversion as a 

means of calibrating highly parameterized groundwater models, the present study 

explores the outcomes of this approach in a synthetic context that represents an 

environment where hydraulic property variability cannot be wholly characterised in 

idealistic multi-Gaussian terms due to the existence of discrete features, which are 

common in subsurface formations (Wen and Gomez-Hernandez, 1998; Sarma et al., 

2008; Zhou et al., 2014). 

The presence of preferential flow features (faults) in the present synthetic example is 

shown to induce substantial pre-calibration predictive bias in all predictions. 

Nonetheless, failure to account for the presence of the faults does not prevent the 

calibration process from providing the model with the ability to make hydraulic head 

and drawdown predictions with little bias and highly reduced potential error (and 

which is quantifiable through standard linear uncertainty analysis). The pre-calibration 

bias is “calibrated out”, with the history matching process resulting in substantial 

overall reduction in potential predictive error relative to prior uncertainty (i.e., MSE 

reductions of 70-97%). For this purpose, a covariance-based regularization weighting 

scheme limited to broad-scale correlation structures only (i.e., representing “partial” 

expert knowledge) is most reliable. This yields better predictive performance than 

uniform weighting of regularization constraints. Whilst further improvement in 

performance is shown to be possible through heuristic modification of regularization 
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weights, the risks appear to outweigh the potential benefits with drastic degradation 

occurring in the ability of the model to make other predictions. 

The present study highlights the potential extremes of prediction-specificity in the 

outcomes of simplified model calibration. For example, calibration employing a 

regularization weighting scheme based on broad-scale hydraulic conductivity field 

geostatistics achieves a near-100% reduction (relative to the uncalibrated model) in 

MSE for the making of an ungauged hydraulic head prediction, whilst simultaneously 

inducing a 300% inflation in particle exit location prediction MSE. The potential 

degree of prediction specificity in the outcomes of simplified model calibration is 

further highlighted by the fact that no alteration of the regularization weighting 

strategy improves the ability of the model to make one prediction without degrading 

its ability to make another. 

Elucidation of the individual components of total post-calibration potential predictive 

error across various regularization weighting strategies provides some more general 

insights into the outcomes of calibration. Through heuristic formulation of 

regularization weights, the “forced” representation of “fault-like” features in estimated 

parameter fields is accompanied by a reduction in “hardwired” predictive bias (i.e., 

consistent predictive error) for most predictions. However, it simultaneously comes at 

the expense of increased error variance in most predictions due to increased 

calibration-induced parameter surrogacy and inclusion of null-space parameter 

components within the parameter estimation process (i.e., “surrogacy-induced” 

predictive bias). The total potential for error in some predictions is reduced due to the 

reduction in “hardwired” bias, whilst that in others is drastically inflated due to the 

increase in predictive error variance caused by “surrogacy-induced” predictive bias. 

For some predictions, the apparent tendency for a trade-off between these two sources 

of predictive bias prevents any calibration approach from reducing the potential 

predictive error below that defined by prior uncertainty. For these predictions the 

calibration process is thus futile. Extending the notion that a model should be 

calibrated multiple times for the making of multiple predictions, this suggests that 

calibration should be abandoned altogether for the making of some predictions. For 

practical situations wherein constrained uncertainty analysis within a Bayesian 

framework is computationally prohibitive (which is the reason for employing a more 

efficient approach such as regularized inversion in the first place), the most pragmatic 

means of fulfilling the critical requirement of characterizing model prediction 
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uncertainty may thus be through unconstrained Monte Carlo analysis alone. This can 

be based upon the purest possible expression of expert knowledge through 

geologically realistic fields generated using state-of-the-art methods. This will 

necessarily come at the cost of prediction uncertainty overestimation but, crucially, 

calibration-induced predictive bias and the associated potential for type II statistical 

error (and thus ultimate failure of the modelling process) are forestalled.  
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Chapter 5  
 

 

Conclusions 

 

This thesis addresses the pervasive and important topic of the outcomes of calibrating 

simplified/imperfect groundwater models. The insights presented herein are founded 

upon a wealth of experimental modelling data, with the work in total based on over 

thirty-thousand model calibration processes (comprising over sixty-million individual 

forward model runs). The accompanying development and application of linear 

mathematical analysis based on model sensitivities facilitates deeper insight into the 

interactions between calibration data, model parameters and model predictions 

through the calibration process. 

The key contributions of the thesis include 1) a proof-of-concept study for a recently 

developed and previously untested bias identification and uncertainty quantification 

methodology, 2) extension of a recently developed mathematical framework 

describing the outcomes of calibrating a simplified model, and 3) application of these 

nonlinear and linear approaches to multiple representative synthetic examples of 

model simplification and calibration, contributing to the ongoing development of 

knowledge and best-practice guidance for curtailing calibration-induced predictive 

bias in everyday modelling. More specific conclusions pertaining to the three studies 

comprising the present thesis are now summarized. 

The first study, presented as Chapter 2, comprises a proof of concept for the “paired 

model analysis” (PMA) methodology presented by Doherty and Christensen (2011). 

PMA is designed to identify and allow correction of predictive bias induced through 

calibration of a simplified model in place of relatively complex model, simultaneous 

with quantification of post-calibration predictive uncertainty. It has not previously 

been verified for empirical consistency with theoretical expectation. For this purpose, 

paired model analysis is applied to a simple synthetic example that is extensively 

studied in existing literature. Consistency of post-calibration uncertainty quantified 
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through PMA is demonstrated to be in good agreement with the results of established 

linear and nonlinear methods. Known sources of predictive bias, namely “overfitting” 

with respect to measurement noise, and “suboptimal” regularization, are shown to be 

reliably identified through paired model analysis. The results concomitantly 

emphasize the potential ramifications of a poorly forged calibration process. Even in 

the idealised case where a model is structurally flawless, suboptimal regularization 

(for example, through failure to undertake appropriate pre-calibration parameter 

transformation) can instil a greater potential for error in a “well-calibrated” model than 

if the model had not been calibrated at all. Finally, the capacity for reduction of the 

potential error in model predictions via bias correction achieved through paired model 

analysis is demonstrated. 

The second study, presented as Chapter 3, builds upon the mathematical formulation 

of simplified model calibration presented by Doherty and Christensen (2011). In 

particular, a linear subspace-based description of “null-space entrainment” is 

presented. This concept is introduced by Doherty and Christensen (2011), and refers 

to the unwitting inclusion of inestimable parameter components within the parameter 

estimation process as a consequence of the parameter surrogacy that may occur during 

calibration of a simplified/imperfect model. Sensitivity of model predictions to 

entrained null-space parameter components is the cause of calibration-induced 

predictive bias. The developed linear framework is employed together with PMA to 

thoroughly examine the parameter and predictive outcomes of calibrating two 

simplified versions of a one-dimensional, Richards equation-based unsaturated zone 

model used to predict recharge to a groundwater system. The simplification processes 

are considered typical of modelling practice, these being 1) assumed vertical parameter 

uniformity, and 2) replacement with a lumped parameter “bucket” model. Substantial 

calibration-induced parameter surrogacy and consequential null-space entrainment is 

demonstrated to occur for both levels of simplification. Nonetheless, both simplified 

models are shown to make largely unbiased predictions of future recharge. This 

demonstrates that despite potentially poor parameter estimates that compensate for 

model imperfections, if predictions are of a similar nature to the available field 

observations, then a model’s physical basis becomes less important in the making of 

future predictions than its ability to achieve a good fit with available calibration data. 

The third study, presented as Chapter 4, explores the outcomes of employing the 

increasingly popular method of pilot-point-based regularized inversion for model 
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calibration in an environment containing discrete preferential flow features (referred 

to herein as “faults”). PMA is applied to quantify the success of calibration in terms of 

the post-calibration potential error in multiple predictions, subject to various 

regularization weighting strategies. A number of metrics are considered in order to 

elucidate the various contributions to potential predictive error, particularly different 

sources of predictive bias. Extending the linear analysis-based insights of Chapter 3, 

the prediction-specific sensitivity to calibration-induced compensatory parameter 

behaviour and concomitant null-space entrainment is highlighted. It is shown that for 

some predictions, ignoring the existence of faults and estimating a surrogate smooth 

hydraulic conductivity field does not compromise the ability of the inversion process 

to “calibrate out” pre-calibration bias and provide predictions with greatly reduced, 

quantifiable potential for error. At worst, predictions made by a “well-calibrated” 

model may possess a far greater post-calibration potential for error than its prior 

uncertainty based on expert geological knowledge alone (the present study 

demonstrates a case in which post-calibration mean square error is 350% greater than 

prior uncertainty variance). The potential degree of prediction specificity in the 

outcomes of calibrating a simplified model is highlighted through demonstration that 

no employed regularization weighting strategy reduces the potential for error in one 

prediction without simultaneously raising the potential for error in another. Varying 

degrees of null-space entrainment controlled by the employed regularization weighting 

strategy is demonstrated. It is shown that certain null-space entrainment may in fact 

improve model performance, through reduction of “hardwired bias”, for the making of 

predictions that possess a systematic dependence on those null-space parameter 

components. At the same time, however, the resultant “surrogacy-induced” predictive 

bias that accompanies null-space entrainment inflates predictive error variance in other 

predictions. The apparent trade-off between these different sources of predictive bias 

explicates the inevitable fruitlessness of calibration for predictions that are highly 

sensitive to null-space parameter components, which by definition cannot be resolved 

based on information contained within the available calibration data. This work thus 

emphasizes the need for prediction-specific tuning of a modelling process, to the extent 

that the most pragmatic approach for some predictions may be to forego calibration 

entirely and quantify uncertainty based solely on the purest possible expression of 

expert knowledge using state-of-the-art geological simulation methods.  
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Appendix A: Derivation of Φm = N for 

model-to-measurement misfit 

commensurate with measurement noise 

 

The observation weight matrix Qh of equation (2.2) is given (for statistically 

independent observations contained in h) as: 

 𝐐h =

[
 
 
 
𝑞1

2 0 ⋯ 0

0 𝑞2
2 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 𝑞𝑁

2 ]
 
 
 

 (A1) 

Where qi is the weight assigned to the ith observation and N is the number of 

observations. Where observation weights are specified as the inverse of measurement 

noise standard deviation, we have: 

 𝐐h =

[
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 (A2) 

From equation (2.2) defining the measurement objective function Φm, model-to-

measurement misfit is represented by the term (Xk – h). Where model-to-measurement 

misfit is commensurate with measurement noise, we therefore have: 

 (𝐗𝐤 –  𝐡) = [

σ1

σ2

⋮
σ𝑁

]  (A3) 

Substituting the right-hand sides of equations (A2) and (A3) into equation (2.2): 

 Φm = [σ1 σ2 ⋯ σ𝑁]
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 = 𝑁 (A6)  
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Appendix B: Inappropriate parameter 

transformation and null-space entrainment 

 

This appendix provides a simple demonstration of failure to take account of prior 

parameter uncertainty when simplification is effected through combining complex 

model parameters into a smaller number of parameters in order to achieve well-

posedness of an inverse problem. It also demonstrates that, like other forms of 

suboptimal simplification, this can lead to null-space parameter entrainment as the 

simplified model is calibrated. A linear model is employed in this example; hence the 

analysis that follows is exact. 

Figure B1 depicts a section through an aquifer. Let r1 and r2 define the resistances of 

the two hydrogeological units represented in the figure. We define resistance to 

groundwater flow through the equation: 

 r = Δh/q (B1) 

where q is the flow through the permeable unit and Δh is the drop in potential across 

it incurred by this flow. Let us suppose that the only data available for estimation of 

these resistances is a single upgradient head measurement. The inverse problem of 

estimating r1 and r2 is obviously ill-posed. Let the action of the model on these two 

parameters be represented by the matrix Z; let the vector r represent both of these 

together. Then (ignoring measurement noise for the sake of simplicity of the analysis): 

 h = Zr (B2) 

where: 

 Z = q[1  1] (B3) 
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r

r
r  (B4) 

and: 

 h = [h] (B5) 
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q in equation (B3) is inflow into the right of the model domain while h in equation 

(B5) is the head measured in the well at the right of the domain. For convenience we 

assume that the head at the left boundary of the model domain is fixed at zero. 

 

Figure B1. Conceptual model for estimation of two resistances using a single head 

measurement. The head is fixed at zero at the left of the model domain; inflow into the 

right is known. 

Suppose that geological considerations suggest that r2 has a greater propensity for 

variability than r1. Its prior uncertainty is therefore greater than that of r1. For 

illustrative purposes let us assume that it is, in fact, twice as uncertain. If C(r) is the 

covariance matrix of r, then: 
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01
C r  (B6) 

where α is a constant of proportionality. Suppose that, in an attempt to solve this 

inverse problem, we use SVD without normalizing parameters with respect to their 

innate variability. This is equivalent to estimating the average value of r1 and r2 and 

assigning it to the whole model domain (a common calibration strategy). The V matrix 

achieved through SVD of Z is: 
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Because the calibration dataset is comprised of only one observation, the solution 

subspace of parameter space contains only one dimension. From equation (A7) it is 

defined by the vector 
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 ; meanwhile the null space is defined by the vector 
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As discussed in the body of this paper, the solution to the inverse problem of model 

calibration is obtained as the projection of the real (and unknown) parameter vector 

onto the solution space. We thus seek a value for the sum of r1 and r2 while insisting 

that the difference between r1 and r2 be zero. That is, we seek a value for the average 

r, with “average” defined as (r1 + r2)/2. Parameter space is depicted in Figure B2. 

 

Figure B2. Two-dimensional parameter space showing the one-dimensional solution 

and null spaces arising from the inverse problem depicted in Figure B1. 

Figure B3 depicts a “reality” vector r, as well as its projection onto the solution space. 

A prior probability contour of r is also shown; let it be assumed that this is a contour 

of low probability so that the shaded area defines the area of parameter space in which 

r is most likely to lie. It is apparent that the calibration process endows r1 with a greater 

post-calibration potential for error than it had prior to calibration. The same will apply 

to any model prediction that is heavily dependent on r1. 

r1

r2

r2=r1

r2 = -r1
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Figure B3. Solution of the inverse problem is obtained as the projection of the true 

parameter vector onto the solution space. The region of high prior probability of r is 

shown shaded. 

The fact that calibration increases, rather than decreases, the potential for error of some 

model predictions arises because parameters were not normalized with respect to their 

propensity for variability before being estimated. As a consequence of this, null-space 

parameter components are entrained as the model is calibrated, as will now be 

demonstrated. A solution to the inverse problem of model calibration, which conforms 

to expert knowledge as reflected in the C(r) prior parameter covariance matrix, should 

ensure that r1 is varied from its pre-calibration expected value less than r2 is varied 

from its pre-calibration expected value. In fact, to the extent that such variation is 

required in order to fit the single head observation h, r2 should be encouraged to vary 

twice as much as r1. This can be achieved through estimation of two transformed 

parameters t1 and t2, with the transformation T defined as: 
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The covariance matrix of t is then given by: 

 C(t) = TC(r)Tt = 
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  (B9) 

The model equation then becomes: 
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r2 = -r1
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 h = Zr = ZT-1t = Yt (B10) 

where Y, the model used for parameter estimation purposes, is defined as: 

 Y = q[1  2] (B11) 

The null space of Y is defined by the unit vector 
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 while its solution space is 

defined by the vector 
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. Obviously, these spaces are orthogonal to each other in 

t-space. However, back-transformation of these to r-space using the T-1 transformation 

leads to the non-orthogonal spaces 
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Unsurprisingly, the former is aligned with the previous null space. The latter is 

depicted in Figure B4, together with the projection onto this space implied by 

calibration of the Y-based model. The fact that the solution to the inverse problem is 

more in harmony with expert knowledge is obvious. 

 

Figure B4. Solution of the inverse problem in t-space after back-transformation to r-

space. 

In contrast, the one-dimensional solution space found through SVD undertaken in r-

space T-transforms to the vector t shown in Figure B5, which depicts t-space. Null-

space entrainment of the r-space solution in this space is obvious. 
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Figure B5. Solution of the inverse problem in r-space after transformation to t-space. 

The r-space solution to the inverse problem has a non-zero projection onto the t-space 

null space. 

The importance of taking expert knowledge into account during simplification is thus 

obvious. This applies irrespective of the simplification methodology adopted. For 

example, suppose that a modeller decides to fix one of the resistances in Figure B1 and 

estimate the other, rather than implicitly or explicitly estimating an average resistance. 

Obviously he/she should fix r1 and estimate r2 as r1 has less innate variability than r2; 

the potential for wrongness in fixing the chosen parameter at its expected value is 

therefore smaller. 

  

t1

t2

t

t2=t1/2

t
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Appendix C: Developed stochastic software 

 

The software developed for the study presented in Chapter 4 facilitates generation of 

stochastic arrangements of discrete linear features. It allows optional randomization of 

feature number, length and orientation (within specified dominant angle range(s)), in 

addition to optional constraints on proximity to domain boundaries and separation of 

feature centres. Figure C1 provides some arbitrary graphical examples of the software 

outputs (here used in conjunction with FIELDGEN (Doherty, 2016b) to provide multi-

Gaussian parameterization of the “background” fields). 

 

Figure C6. Arbitrary examples of outputs from the developed stochastic software.
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