

Automated style feedback for student
programmers

Supervisor Dr. Paul Calder

Submitted to the School of Computer Science, Engineering, and Mathematics in the

Faculty of Science and Engineering in partial fulfillment of the requirements for the Master’s

degree program of Computer Science at Flinders University South Australia, Australia

By

 Abdulaziz Alsulami - 2125070

 ii

Academic Integrity Declaration

I certify that this work does not incorporate without acknowledgment any material

previously submitted for a degree or diploma in any university and that, to the best of my

knowledge and belief, it does not contain any material previously published or written by

another person except where due reference is made in the text.

Signature Date..

30/1/2017

 iii

ACKNOWLEDGMENT

I would like to express my gratitude to my supervisor Paul Calder for the useful

comments, remarks and engagement through the learning process of this master thesis.

Furthermore, I would like to thank my parents and my wife who support my and motivate me

through my study. Also, I like to thank the participants in my survey, who have willingly

shared their precious time during the process of interviewing. Also, I like to thank my friends

for sharing knowledge and information with me.

 iv

ABSTRACT
Computer-based tools are used to provide automated feedback to student

programmers. Students appreciate being able to receive immediate feedback on their

code, and teaching staffs often use the tools to ensure that submitted work fully satisfies

program specifications. Many tools exist to check the functional aspects of code;

however, few tools aim to assess programming style. This thesis investigates

techniques that would allow for automatic assessment of novice students’ programming

style capabilities. The thesis describes a prototype automatic assessment tool which

can provide programming style feedback on several widely used programming

languages. The tool has been designed to check and provide feedback on a range of

aspects of accepted "good style", including indentation, choice of names, efficiency,

documentation, and complexity. The tool feedback has been evaluated by conducting

an experiment and survey. The targeted participants were academic staff who have

experience in teaching programming, so they are able to provide feedback about the

techniques used by the prototype tool and identify additional techniques that have not

been covered. Collecting feedback from teachers through the questionnaire helped to

reveal disadvantages of the tool feedback and suggest missing assessment factors that

need to be included.

 v

TABLE OF CONTENTS
Academic Integrity Declaration ... ii
ACKNOWLEDGMENT .. iii
ABSTRACT ... iv
TABLE OF CONTENTS ... v
LIST OF TABLES ... vii
LIST OF FIGURES ... viii
CHAPTER 1 .. 1

1 Introduction ... 1
1.1 Background .. 1
1.2 Static and dynamic analysis ... 2
1.3 Purpose of Study .. 4
1.4 Research Objectives .. 4
1.5 Problems ... 4
1.6 Contributions .. 5

2 Literature Review .. 6
2.1 Program Education Tools .. 6
2.2 Feedback ... 8
2.3 Automated assessment tools ... 10

2.3.1 Benefits of automated assessment tools ... 14
2.4 Automated-style assessment tools .. 17

2.4.1 Measurements of automated style assessment ... 19
CHAPTER 3 .. 23

3 Design .. 23
3.1 Overview ... 23
3.2 Design requirements .. 23
3.3 Different languages .. 24
3.4 Code Structure ... 25

CHAPTER 4 .. 28
4 Analysis ... 28

4.1 Assessment Factors .. 28
4.1.1 Code Layout .. 28
4.1.2 Variables and Operators Spacing .. 28
4.1.3 Blank line ... 31
4.1.4 Line length ... 32
4.1.5 Indentation ... 34

4.2 Name Choice ... 38
4.3 Method Extraction .. 42
4.4 Complexity .. 44
4.5 Documentation ... 46
4.6 Efficiency .. 47

 vi

4.7 Feedback ... 49
CHAPTER 5 .. 52

5 Validation ... 52
5.1 Study description ... 52
5.2 Significance of the study ... 52
5.3 Experiment .. 52

5.3.1 Experimental procedure ... 52
5.4 Survey ... 56
5.5 Study results ... 56

CHAPTER 6 .. 65
6 Conclusion and Future work ... 65

Appendix ... 67
References .. 70

 vii

LIST OF TABLES
Table 1: Participants recent experience (last 2 years) in teaching programming 56	
Table 2: Participants medium-term experience (last 5 years) in teaching programming 57	
Table 3: Participants long-term experience (last 10 years) in teaching programming 57	
Table 4: Participant’s opinion about Indentation .. 60	
Table 5: Participant’s opinion about code complexity ... 60	
Table 6: Participant’s opinion about choice of names .. 61	
Table 7: Participant’s opinion about Static efficiency .. 61	
Table 8: Participant’s opinion about documentation .. 62	

 viii

LIST OF FIGURES
Figure 1 ASSYST assessment process ... 14

Figure 2 Rees marking system (Rees 1982) .. 18

Figure 3 Sample of student programming exercise .. 30

Figure 4 The AFSA feedback regarding space between words and operators errors 30

Figure 5 AFSA feedback for blank-line errors .. 32

Figure 6 AFSA feedback for blank-line errors .. 32

Figure 7 Sample of student-programming exercise .. 33

Figure 8 The AFSA feedback for line-length errors .. 33

Figure 9 Sample of a student-programming exercise ... 36

Figure 10 Indentation of 2 spaces .. 37

Figure 11 AFSA feedback for indentation ... 38

Figure 12 sample of student programming exercise .. 41

Figure 13 The AFSA’s feedback for name-choice errors ... 41

Figure 14 The AFSA’s feedback on complexity code ... 46

Figure 15 AFSA feedbak based on category .. 50

Figure 16 grade scale ... 51

Figure 17 AFSA overall feedback ... 51

Figure 18 unannotated code sample .. 54

Figure 19 Annotated code sample .. 55

 i

CHAPTER 1
1 Introduction

 When it comes to learning programming languages, one of the most effective

ways is for students to work through a series of increasingly difficult exercises. This

method of learning would be incomplete unless students receive quick and accurate

feedback regarding the value of their solutions to these exercises. Since leaving tedious

and sometimes redundant assessment processes to instructors is not very efficient, it is

proposed in this thesis that implementation of automated-style feedback through an

autonomous system would eliminate the potential of error related to human factors and

also enhance the assessment experience for students and instructors alike.

1.1 Background
 As has been noted by (Vihavainen et al. 2013) students require a regular amount

of practice (exercise in the discipline) in order to master the subject they are studying.

Additionally, instructors should be aware of students' level of progress. However,

instructors are human and considering the large number of computing students, the

burden on a single instructor may become heavy if adhering strictly to manual-

assessment methods. Assessment by humans also can lead to subjectivity and

inconsistencies (Auffarth et al. 2008).

 The use of automated-assessment systems can be traced back to the 1960's.

Such systems have proven helpful in terms of reducing instructors’ workload and

improving the quality of assessments being made. Automated-assessment systems

 2

operate through a set of predetermined measurement values, which enable them to

perform a value-by-value comparison between the model (optimal) solution and an

individual student's solution (Gupta and Dubey 2012). It also is important to note that

automated systems are non-biased and fatigue-free compared to manual assessments

undertaken by humans, allowing for accurate and reliable results. However, for such

systems to work, the tasks received by students should be clearly defined, and codes

should be error-free for the system to be able to determine that a program is working

correctly.

1.2 Static and dynamic analysis
 Automated assessments can be undertaken through either a static or dynamic

program-analysis approach. The difference lies in the fact that static analysis does not

rely on the compilation or execution of a program code (making it especially viable for

programs that are unable to be compiled due to inherent errors), while dynamic analysis

is performed at the same time as executing a program based on certain test data

(Gupta and Dubey 2012).

 Additional difficulties lie in differences between the various programming

languages (and their respective syntaxes) as used by the students (Auffarth, López-

Sánchez et al. 2008). The understanding of basic programming syntax is crucial. A

typical complication faced by students is that syntax-based glitches and program-code

mistakes may be hard to detect (especially for the beginner). This results in a frustrating

‘rinse-and-repeat’ process of recompiling a program only to repeatedly face the same

error. From a learning-process perspective, this process may prove discouraging to

 3

students, thus the total number of attempts needed to recompile a potentially faulty

code should be reduced. Even if only a single aspect of programming eludes a student,

the entire process becomes hard to understand. Since the volume of knowledge needed

is comparatively large, there's no guarantee that instructors will be able to impart a

programming subject in its entirety. Consequently, reliance on automatic-assessment

systems is especially recommended when it comes to syntax-based errors and

analysis.

 An automated-assessment system should be able to understand the specifics of

the programming style and language used in order to analyze written code.

Measurements of code style can be divided into the following categories: Modularity,

typography, clarity, independence, effectiveness, and reliability. Additionally, a code-

style assessment also makes use of code metrics, such as maintainability index,

cyclamate complexity, structural complexity, depth of inheritance, the amount of code

lines, and class coupling.

 According to (Chen et al. 2011), a combination of the learning approaches of

exercise-based programming languages coupled with an independent automated

system capable of assessing and appropriately scoring the performance of students is

considered as one of the more effective approaches, especially for non-computer

science students. According to the research by (Pettit et al. 2015), automated-

assessment tools have proven very helpful in improving the performance of both

students and the teaching experience of instructors; while automatic assessment

generally is considered as reliably accurate.

 4

1.3 Purpose of Study
 The value of automated-assessment tools as means of providing feedback to

students is a considerable area of research. Many tools exist to check the functional

aspects of code. However, this thesis aims to use static analysis to promote good

programming-style habits by novice programmers. Additionally, it is aimed at helping

students and instructors by providing them with a style-based automatic assessment

tool, which would make use of the most efficient automatic-assessment techniques. To

that end, the scope of this study will cover only a selected range of programming

languages.

1.4 Research Objectives
 Research objectives consist of investigating techniques that would allow for

automatic assessments of students’ current programming style capabilities; thus

developing a prototype automating-assessment tool, which would be able to provide

feedback on several widely-used programming languages; and validating such

feedback through a selected, sample range of student programming exercises is crucial.

1.5 Problems
There are some problems that relate to the scope of this thesis. The first is defining the

assessment factors that cover the many aspects of code style. The second is the

analysis and design tools that assess code style and generate useful feedback. The

third is recognizing the structures of the various programming languages that have been

 5

chosen to generate useful feedback. In the following section, methods regarding how

these problems can be solved will be discussed.

1.6 Contributions
In order to solve the first problem, the selected design tool defines the assessment

factors that assess various aspects of code style. These factors are indentation, code

complexity, choice of names, static efficiency and documentation. Regarding the

second problem, which is building a tool that assesses and generates feedback about

code style, (the tool being built using Java programming language). Regarding the third

issue, which recognizes how certain languages differs from others in order to analysis

them, the tool uses a different algorithm for each language.

The structure of the thesis as the following chapter 2 presents literature review of

automated assessment tools. Chapter 3 introduces the design of the prototype that use

to assess the code style. Chapter 4 describes the implementation of the prototype.

Chapter 5 evaluates the tool feedback that presented in chapter 4. Chapter 6 highlights

the summary of the thesis and the future work.

 6

CHAPTER 2

2 Literature Review

2.1 Program Education Tools
The introduction of computers and the continual release of the different software

used in computing have created ongoing changes in the field. New tools have enhanced

teaching and learning in the field. (Deek and McHugh.1998) Programming learning

tools have been classified into four groups: Programming environment, debugging aids,

intelligent-tutoring systems and intelligent-programming environment, with each group

including many types of tools. Novices and experts alike are increasing their learning

skills through the introduction of such tools. When students learn programming, they

use tools that have been made available to them by their academic institution.

Computers are the essential platforms used when programming subjects are learned.

Consequently, improved software technology has led to an increase in the number of

tools used to teach programming subjects (Salleh et al. 2013). There are a number of

different skills that need be applied when learning programming as an academic

subject. Some of these include planning, testing, designing and debugging. The

programming syntax is another essential aspect that programming students should

understand. This is because students need to know the basics so that they can create

programs.

It is devastating to students when creating a program that will eventually fail due

to lack of understanding the proper procedures in creating a program. Practical

sessions should be undertaken in association with the theoretical. Theory must be well

 7

understood so that it can be put into practice during lessons. Students may find it hard

to learn programming since it is considered to be highly complicated. Many researchers

have endeavoured to come up with the best and simplest tools that can be used to ease

the difficulties of learning programming at an academic institution. There are various

learning tools such as those by Alice, BlueJ, Jeliot, Scratch and Greenfoot that have

been used to aid in the programming learning process. Meanwhile, instructors also have

experienced difficulties teaching classes (Salleh, Shukur et al. 2013). Programming

instructors found it important to have a comprehensive understanding of students’

attitudes towards programming. Learning strategies, such as telling stories and gaming

activities help capture students’ attention in class. Consequently, there have been

improvements in the field of programming and many students have benefited through

various new teaching and learning tools.

Programming comprises three aspects: The program itself, the programming

tools, and the programming language. Development and implementation of

programming is supported by tools, which are essential. Programs give instructions

through programming tools. Programming tools also support the implementation and

testing of programs. It is in the tools where aspects such as programming language,

syntax, and logic are mentioned, and programmers rely highly on tools. Also,

programming skills are developed through programming tools. The increased levels of

technology have promoted the creation of different tools used in programming. Through

universities and the computer market, many programming tools are available, but only a

very few will be adopted for learning and teaching. Even though the programming field

 8

has been increasingly supported by the rise in the level of technology. Consequently,

challenges are faced by those employed in the programming field. To overcome these,

programmers endeavor to make his or her needs known so that software developers

can work towards meeting their specific requirements. At times, it is difficult for

programmers to understand the underlying concepts of software programs, such as

error messages and the complexities of a software interface. These create challenges

that, consequently, have reduced the number of programming tools used in the current

teaching environment.

2.2 Feedback
In the past, faculty staff and lecturers provided feedback to student programmers in

scheduled laboratory sessions and classes. Further, the amount of individual attention

and time a learner received was haphazard. At present, lecturers may need to give

inline feedback on the scholar’s code to help them improve on programming skills.

Analysis of learner’s coding tasks is done using criteria like the style, design, and

functionality. Pieterse posits that offering exercises as opportunities to practice is

essential, and they become more valuable if instructors provide accurate and fast

feedback (Pieterse, 2013). According to Koyya et al., a response to student

programming assignments on quality is a laborious and tedious task for the tutor.

Markedly, it is hard to spot comments added on the hundreds of lines of code. Today,

online submission applications have been designed to address the needs of student

programmers by offering instant and automatic feedback to their commitments and

efforts, and such solutions have reduced the administrative loads for participating

 9

institution employees such as lecturers required to provide results to the learners

(Koyya et al. 2013).

Recently, a typical scenario with programming students involves emailing supervisors

with copies of their codes. The emailed program is often incomplete and corrupted with

errors. In effect, programmers need an annotation mechanism that would allow them to

include comments and queries asking for help. In a similar manner, the approach

should enable tutors to assess, analyse, and reply to the questions in a structured and

straightforward way. Accordingly, students can get timely and frequent responses to the

codes. On the other hand, faculty staff can offer their comments effectively, which

improves overall learning.

Today, several computer-aided tools have been created for examining coding

assignments and providing feedback (Ala-Mutka 2005). In many programming courses

and units in colleges and universities, the use of automated assessment and feedback

has proved useful through the deployment of these software applications. Moreover,

learners and tutors have observed several benefits of this approach. Firstly, Pieterse

mentions consistency, speed, availability, and objectivity of the assessment. Computer-

aided tools provide immediate evaluation reports for students who can benefit from

early disambiguation of errors and misconceptions. Moreover, online feedback tools

have the potential to facilitate learning for trainees who get feedback from any location

and at any time. Such systems allow student programmers to be held to higher

standards and to meet them.

 10

Significantly, some factors contribute to the efficient use of automatic assessment for

student developers. Firstly, the quality of the tests is crucial to the success of a learner.

A significant part of successful programming courses is correct tasks. Traditional and

manual assessment may fail to recognize this factor. In contrast, automatic assessment

focuses on the pedagogical design of codes. Secondly, students should clearly

formulate tasks for the application of computer-aided tools. In effect, learners take

additional care to avoid vagueness. Thirdly, this approach allows the use of test cases.

Accordingly, wrong codes identified as correct through manual assessment can be

established. Ultimately, computer-aided tools allow students to resubmit corrected and

improved software in response to the instructor’s feedback. The prompt fulfilment upon

such improvements strengthens the overall training intended by the approach where

learners submit assignments and tutors provide feedback. Multiple submissions support

iterative studying. On the contrary, in manual and traditional assessment, the trend of

multiple submissions may cause negative behaviours. Eventually, deploying automatic

assessment using computer-aided tools offers an experience where student

programmers understand the course in a more professional manner, with more focus on

robust and accurate codes over quick and erroneous solutions (Pieterse, 2013).

2.3 Automated assessment tools
With computer-science education and programming-learning systems, it is

important to give detailed and comprehensive assignments to students. This way,

students will increase their knowledge of programming languages if they are given well-

designed assignments. Software development and implementation also pose

 11

challenges to the students, and much has to be done to increase their understanding

and upgrade programming skills. Instructors and lecturers, therefore, are required to

dedicate their time and resources to ensure that they have completed enough training to

be able to devise and assess problems and assignments (Rahman and Nordin 2007).

Assignments given to students must satisfy certain requirements, and it is up to the

instructor and the lecturer to ensure that assignments meet these needs. This task

becomes difficult when most students are physically removed from their educators and

sometimes instructors may lack adequate time to assess student work. There has been

much academic research undertaken on automated-assessment systems that can

evaluate the progress of programming students.

Assessment systems are grouped in generations; where the first generation is

the oldest. Hollingsworth undertook the initial first-generational automated assessment

in 1960 (Douce et al. 2005). With this system, students were given exercises on

programming, which they submitted on punched cards. The students’ answers were run

on graded programs that provided two outputs; namely wrong answer and program

complete. The main advantage of the system was that it was efficient, and it helped

many students in understanding and learning programming. The second generation,

conversely, tested the working of the program. Isaacson and Scott utilized this system

in 1989, and it checked if the program functioned properly and if the programming style

used was done sensibly. Other systems in this generational assessment were the TRY

system, which is Unix-based system code submission. The TRY allowed students to

test the programs they had created with a test program. The tester then provided

 12

students with results from the program, and the attempt was recorded (Ala-Mutka

2005). Finally, there were the third generation systems that used complicated testing

techniques and web technology. These systems allowed students, instructors,

developers and tutors to become involved, and test the program in different ways. It will

test the design format of the program, the complexity, the execution efficiency and

finally the operation and function of the program. This system is referred to as the

course marker, and a tutor can change the number of users, edit the content and revise

the course in the system (Higgins et al. 2005).

. One of the commonly used automated-assessment tools is CourseMarker

(Douce, Livingstone et al. 2005). This is an automated-assessment tool that is used to

mark programs. This assessment tool was developed at Nottingham University and

supports four different users. It can support the student, the tutor, the teacher and the

developer. This program has been built on Ceilidh systems (Benford et al. 1995). The

original Ceilidh systems was used to give simple and short answers as marks for work

that had been submitted. CourseMarker later was been used to give better feedback to

students. It also gave the students an alphabetical scale that showed the percentage

and the feedback tree. Through this, the student was able to identify errors and see

where marks had been lost (Higgins et al. 2005). There is now existed a provision of

tools that enabled an administrator to change user profiles. New users could be added

while the old could be removed.

Another assessment system that currently is being used is the BOSS (Joy et al.

2005). This system has continued to develop since it was made, and currently has a

 13

web-server component. Through the web-server component, an instructor can review

submissions that have been done by students using a web browser. BOSS also has the

ability to detect plagiarism in work submitted by students. There are two different

phases that this system uses. These are the open-source and the implementation.

These are open-source works have been used on all Java platforms by being installed.

The implementation format only is used at Warwick University.

 Another useful assessment tool is RoboProf (Douce, Livingstone et al. 2005).

Daly and his colleagues at Dublin City University developed this in the year 2004. It

uses a browser platform where students are provided with an online box where they can

write their program. When the program is complete, it will be submitted to the

assessment tool that will compile it, run it, and return the results. After the program has

been validated, the student is given a chance to proceed to the next programming task.

Tasks offered by this system are provided in levels, and the student will move to the

next level after completing the previous level. The feature of students being able to

move on to the next level by students has increased their chances of better progress in

programming (Truong 2007).

Another development undertaken in the field of automated assessment is the

Automated System for Assessment of Programming (ASAP). This system was

developed at Kingston University and was focused on the Java programming language.

Innovative improvements have been made with this system, and various features have

been installed. For example, ASAP is able to detect plagiarism, ready submission and

 14

provide results through the program. ASSYST is another program that has been used to

relieve tutors from the burden of assessing the many programs used by students. It

offers a graphical interface, and has an increased level of automated-assessment

criteria. ASSYST provides three stages of assessment, the management of student-

exercise submission, the management of student exercises, and the management of

the directories and files stored for submission. It also reports on assessment tasks and

the grading associated with a report (Jackson & Usher). Figure 2 shows the assessment

process of ASSYST system.

Figure 1 ASSYST assessment process

2.3.1 Benefits of automated assessment tools
Automated-assessment systems have been used in many different areas. As

previously mentioned, the first generation was used in 1960, and many different

systems since have been used. The automated assessment tools and systems have

improved student understanding of the programming language. Consequently, many of

 15

the educational institutions where students learn programming, instructors lack the time

to adequately assess each student. With the use of automated systems, students are

able to have their exercises properly assessed in a timely manner thus improving

professional skills in the programming field.

Quality assignments and the clear formulation of tasks can be expected when

automated assessments are undertaken. For any course to be completed successfully,

assignments must be well performed. Consequently, when working with programming

tasks that will be assessed using automated systems, students must have a clear

definition of the programming codes since any error will result in an incorrect answer. In

the first generation of the automated systems, the assessment tool gives two answers;

namely wrong answer and program complete. For a student assignment to be complete,

the program must run effectively and execute correctly. As a consequence, students will

have to work hard and improve their programming skills so that their programming will

be error-free.

During the marking of student assignments, automated systems can work on

some assignments, while other assignments can be assessed by humans. Manual

assessment requires the instructor to spend much time with students who may not be

present at the required time in some institutions. When students use their own tester

programs, many more programs can be submitted and this will increase the number of

students who will learn good programming skills (Pieterse 2013).

Regarding teaching programs, assessment is a very important tool for better

progress. Assessment can have a strong and positive effect on learning. Students learn

 16

better when they are frequently assessed, and proper feedback is given. On the other

hand, the assessment may become hard work for tutors and lecturers alike (Pieterse

2013). Creating exercises and ensuring that the students have completed them takes

time and the majority of tutors and instructors fail to have enough time to devote to this

task. Tutors will use this time outside doing other constructive work that will enable them

to earn money rather than teaching (Haley et al. 2007). Academic institutions have,

therefore, adopted computerized marking methods and, in this case, they use

automated assessment systems. While such systems are expensive to install, they are

highly advantageous compared to human-assessment procedures.

When human are marking, they get fatigued after marking for a long time, and

may mark differently. The marking order may also get them confused, and the

assessment will not be as effective. For instance, when a human marker comes across

a brilliant answer in the first exercise, he or she may become biases when assessing

the other exercises. Personal feelings by instructors towards students also can affect

the marking criteria sometimes leading to poor assessment (Ribeiro and Guerreiro

2009). Remaining unbiased is one of the reasons why automated assessment has

become very important in the field of programming. Students need to be clear in every

aspect. Since programming not only deals with the theoretical, the practical part also is

very important especially in software designing where error codes may affect the entire

program. The results obtained from the automated assessment tools are reliable and

will work for long periods without fatigue. The number of students that can be assessed

through the use of these systems will be higher when compared to those of human

 17

markers (Rahman and Nordin 2007). There will be no bias, no personal feeling. The

results that are obtained from the automated assessment systems will remain exactly

the same regardless of the order in which the answers are presented. Therefore, these

systems are accurate and can be relied upon (Enström et al. 2011).

2.4 Automated-style assessment tools
As mentioned before, automated-assessment tools provide two types of programming

assessment, function analysis and static analysis. There also exist tools that generate

feedback about these two types of assessment, including ASSYST, CourseMaster,

Web-CAT and Automatic Exams. Other tools such as Style++ and Fortran analyzer

generate feedback on the static aspects of programming.

Rees developed one of the early-style tools (Rees 1982); his tool was built to assess

Pascal programs. This automated tool suggested 10 measurements to check code

style. Five of these measurements were related to layout and other measurements

concerning identifiers. As shown in Figure 2, this tool defines five assessor areas and,

by testing every line, the tool calculates measurement values. To achieve full marks, the

value has to be between two values, which are called lotol, and hitol. If the value falls

between lo and lotol or hitol and hi, only part of the maximum mark will be given; while

less than lo and more than hi a mark of zero will be given. This tool inspired Berry and

Meekings (1985) to work with a tool that can check C code style. Their tool was later the

basis of one of the best-known automated assessment tools which was Ceilidh

(Benford, Burke et al. 1995).

 18

Figure 2 Rees marking system (Rees 1982)

Some years later (Redish and Smyth 1986), the Fortran analyzer was created. Fortran

analysed style based on a different approach. The Fortran analyzer focused on stylistic

factors of programming. It proposed six measurements to assess code style. The

measurements are modularity, simplicity, economy, structure, layout and

documentation.

Style++ was developed in 2004 and has been used in the C++ programming for

the UNIX environment, which is the standard environment where programming course

work is done. Style++ uses six metrics for program style. These metrics are modularity,

typography, clarity, independence, effectiveness and reliability. The program style was

designed to have output that resembles the compiler. Controlling the output and the

content of the program will happen when different options are given to the style-

 19

assessment tool. For instance, the outputs from the style assessment can give scores

and comments on the entire program. Comments also can be about those areas in the

program that are defective and need to be changed (Ala-Mutka et al. 2004).

One of the current currently created to check program style is Checkstyle. Programming

languages such as Java use a Checkstyle-assessment style that helps programmers to

write program codes in Java. This tool is used to check the Java codes that have been

used in a computer program (Burn 2003).

 Checksyle is highly coded, and so can support various coding standards.

Common features of Checkstyle are the ability to check aspects of the source code,

determine method-design problems and class-design problems. Code layout and

formatting issues can be displayed in this style, which improves the ability of students to

increase their programming skills.

2.4.1 Measurements of automated style assessment
There are the varied approaches of automated-assessment system that assess

different features. Al-Mutka (2007) classified these tools according to their functionality

into Dynamic assessment, and Static assessments. Dynamic assessment is an

approach that assesses programming code after its execution while static assessment

assesses a source code without executing it.

Programming style is the manner in which the students use a different

programming language to write program codes. Programming style is a very important

tool in the field of programming. A program that has been created using the wrong

 20

codes will be hard for other programmers to understand. Additionally, the outcome of

such a program will fail. When a program tester runs against such a program, errors will

be displayed, and the execution protocol will fail. Programming languages like the C++

will need special attention when coding because the coding is language dependent.

Errors in this programming language are intensely avoided to ensure that the program

will be able to run. It is, therefore, a requirement that programmers follow the required

guidelines and rules that reduce the chances of the errors that eventually will make the

program fail.

Different programming-style assessment has been used to ensure that learning

in programming is efficient. Care and attention should, therefore, be paid when

developing assessment practices to be used across the different courses. In the

Tampere University of Technology, most of the programming was done using the C++

programming language. Therefore, an automated C++ assessment style was developed

to ensure that the students in this university followed the rules in this programming

language (Ala-Mutka et al. 2004). Other programming’ languages will have different

assessment styles since coding in the various languages have been found to be quite

different from each other.

There are different categories that the coding-practices measurement features

are based on. These are modularity, typography, clarity, independence effectiveness

and reliability. Modularity needs for inherited instructors and destructors in the inherited

classes. This category also includes the use of friends, general summarization, pointers

 21

and private data (Ala-Mutka, Uimonen et al. 2004). Typography comprises of the

commenting practices, issues pertaining the layout of the code and naming

conventions. Clarity and simplicity also is determined by length of the different codes,

the short circuit statements, and the inherent blocks and braces. Independence deals

with return values that are correct and avoid numerical literals. Effectiveness is based

on the size of the variable scopes, which must be small (Ala-Mutka, Uimonen, &

Järvinen, 2004). Finally, regularity is based on setting the pointer to zero if there is

deletion of the memory blocks. Instructors who are assessing programming

assignments should bear in mind the features of the program style, the acceptance

levels of each of feature, verbal feedback messages and the weighting factors given to

each feature.

Style assessment also includes measurements of a code combining the use of

code metrics. Complexity of a software code is one of the factors that affect how reliable

and maintainable a code is. Code-metric measure complete programs, which helps in

the evaluation and testing of the code thus establishing where a code needs revision or

a complete rewrite. Code metrics create better understanding of the types and methods

that need revising within a program.

Some code metrics include; maintainability index, which determines how easy it

is to maintain a code. The measure ranges between 0 and 100 where the highest value

represents better maintainability. Another code metric is cyclomatic complexity, which

determines the code’s structural complexity. Structural complexity is about the flow of a

 22

code. The number of paths of flow in a program using a complex flow is difficult to

control, and requires many tests to ensure maximum coverage with low maintainability.

Depth of inheritance is another code metric. This measures how well one understands a

certain code and depends on the number of class definitions extending to class

hierarchy root. It is more difficult to understand a code with a deep hierarchy in

comparison to a code that endless defined and redefined fields or methods. Lines of

code is a common term to all programmers but they do not know it is a code metric. A

large number of lines in a method or type indicate that the particular method is loaded

with too much work and requires splitting. Large number of lines also indicates difficulty

in the maintenance. Class coupling is another code metric. Low coupling and high

cohesion is highly recommended for a good software design. High coupling makes a

design difficult to maintain and reuse due to several interdependencies.

 23

CHAPTER 3
3 Design

3.1 Overview
 In order to assess a novice program, style it is important to define what is good

programming style. There are many studies that developed measurements to define

what good style is and some of them are presented in the literature. One of these

studies is Rees (1982). Rees presented 10 measurements that were based on

readability. Consequently, after that (Oman and Cook 1990) proposed taxonomy and

guidelines for a good code style, which involved four elements: general practices,

typography, flow control and information structure style. (Mäkelä and Leppänen 2004)

suggested four measurements to assess the quality of code style. These measurements

are visual aspects of the code, program structure, semantic and logical. However, there

is an ongoing debate over what metrics should be chosen to determine the quality of

code style. In general, it is obvious that, the goal of using these measurements is to

make the code readable and able to maintain

3.2 Design requirements
In order to investigate programming style feedback, I designed and built a prototype

Automated Feedback for Style Assessment (AFSA) tool. Since there is no perfect

standard or one guideline for code style, AFSA strives to adopt the most common

convention and provide a consistent style guideline for programmers. The goal of

designing the tool is using the principle of programming style guidelines in order to

enhance the readability of the code. AFSA use these assessment factors that been

 24

used to judge the style aspect of codes. These factors are layout, name choice,

complexity, documentation and efficiency. The implementation of these factors will be

discussed in the analysis chapter. Java programming language was the language that

used to implement this tool. AFSA tool is designed to detect errors related to code style

and complexity. Some old measurements that had been checked by previous tools are

no longer applicable since they now are self-assessed by the compiler. Thus, a variable

start with capital letters will be detected by the compiler and also will start with special

characters. The AFSA doesn’t detect the compile-time errors because the compiler

already would detect these types of errors. It is important that the code already be

compiled successfully because the AFSA relies on this. If the code is not compiled

correctly, then the AFSA may not work properly. For example, the AFSA uses open and

close brackets to extract the block of methods and if the bracket count is incorrect.

Conversely, the AFSA uses the programmer’s code at a textual level to analysis the

style of the code and generates feedback on it.

3.3 Different languages
Tools are designed to check and analyse the style of code for different languages,

including C, C++, C# and Java. There are many cases where different approaches

needed to be considered for each computer language. Some languages are object-

oriented and contain classes and methods, but some languages like C does not contain

a class, so it was necessary to consider both structures. Each language also has a

different set of reserved words that needed to be considered when analysing names of

the variables. At the start of running the AFSA, it reads the file name from a given

 25

location and determines the language it is written in by considering the file extension. It

then applies the relevant settings for that specific language to be considered and also

used in other parts of the analysis.

3.4 Code Structure
Code structure consists of different packages and classes based on the

functionality of each part. The following are descriptions:

● Main class: This is responsible for creating all the necessary objects ensuring

they are called in the right order and given the right inputs in order to provide the

necessary results for correctly undertaking the procedure of reading files. Also for

processing the context, evaluating the code, and returning the results and

feedback.

● Constants: This is a class for defining all the constants required throughout the

code. Rather than repeating these variables they are stored in one location as

static variable that can be used anywhere in the code. Examples of these

constant values include:

o Messages to be displayed for the different errors,

o The necessary values (such as min, max) to be used in some of the

evaluations.

o Reserved words in each programming language that should be ignored

during part of the evaluation.

 26

● Language: is an enum class that defines and represents different languages and

some related properties, such as file extensions for each language used to find

the relevant language of code written in the given files.

● FileHandler: Handles file reading and writing to scan code from the input files

and write the evaluation/feedback to the output files. After reading the file from a

given path, it then is returned as a map of line number to the line text. This helps

in the future process of reading the content line-by-line and evaluating it with

feedback on each line. FileHandler also contains a method for reading all files

within a folder, so it could simplify the given file path for each file.

● MethodBlock: This class is used to represent a method block by holding

information about the method name, content (body), and start line. This mostly is

used when evaluation is required per each method, such as the code complexity,

or method documentation.

● JazzySpellChecker: This class is provided from an external library (‘jazzy-core-

0.5.2.jar’ obtained from (Idzelis 2003) http://jazzy.sourceforge.net/), which is

called the Jazzy Library and is used as an English spelling check of words in

order to evaluate if the variable names have some meaning. There also is a

dictionary file added (‘data/dic/dictionary.txt’) that is used by the class.

Additionally, there are extra files added to the data folder for testing purposes.

● Feedback package: Contains classes for providing feedback. These classes

include:

 27

o ErrorImpact: This is an enum defining the impact of an error for the

purpose of providing feedback, because different may be of different

importance.

o ErrorType: This is an enum defining the type or category of errors for the

sake of providing better overall feedback of a number of errors for each

category. Some of the types include: White space, indentation, complexity,

variable name, and documentation.

o ErrorMsg: This is a class that represents an error, and includes the error

message text, the error type, and the error impact, as well as the line

number that the error occurred in order to provide a better feedback.

o GradingScale: This is an enum so as to define the different range of

scores into a specific category of High Distinction, Distinction, Credit,

Pass, or Fail.

● Evaluator: This is the most important and largest class that uses logic for

assessing student-code style. It contains various methods for checking different

factors for code style such as white spaces, indentation, naming, documentation,

complexity, and efficiency. In the following chapter, each of these aspects is

explained in further detail.

 28

CHAPTER 4
4 Analysis

4.1 Assessment Factors
The AFSA tool considers a number of assessment factors to analyse the style of each

code. Factors considered to check the style are as follows:

● Variables and Operators Spacing

● Blank line

● Line length

● Indentation

● Name choice

● Complexity

● Documentation

● Efficiency

In the following sections, each of the assessment factors is described and the approach

taken to implement checking and analysing code based in them is explained.

4.1.1 Code Layout
One of the key factors that used to assess the code style is the layout of the code. By

having an organized layout, programmer will be able to follow and understand the

program. The code layout can be examined from different aspects such as: space

between words and operators, blank line, line length and indentation.

4.1.2 Variables and Operators Spacing
Convention, dictates that spaces should be used to separate binary operators and not

be used with unary operators (Oracle, 1999). The AFSA uses one space to separate

operators, which is defined in the Constants class. This can further be modified if more

spacing is required. The algorithm goes through each line of code and checks how

 29

much spacing exists between variable names and operators. The text for single line and

block comments are ignored when checking spacing as this is only considered for the

actual code.

The code line is then converted to display an array of characters plus the white space

character is counted between each character. Spacing should not be too much or too

little. The algorithm checks that there is not a large gap (more than one spacing)

between the variables and the operators. It also checks that the operators contain one

space between the adjacent variables. If the amount of space is incorrect, then an error

message is created to indicate in which line the spacing error is.

There are some exceptions for operator characters that are joined such as ‘++’ or ‘>=’

and with these, there should not be any spacing between the operators. Figure 4 shows

feedback generated from AFSA system that checks spacing between words and

operators of student samples in Figure 3. At line 33, there is no space before and/or

after the equal sign ‘=’ and also on the same line, there is a statement i<argc; with no

space between the operators <. The same error occurred again at line 37 and 42. This

symbol ‘ | ‘ refers to the start of indentation.

 30

Figure 3 Sample of student programming exercise

Figure 4 The AFSA feedback regarding space between words and operators

errors

 31

4.1.3 Blank line
A well-styled code should have a good balance of empty lines between code lines.

Using a blank line makes the code both readable and understandable. Conversely, too

many blank lines between the code lines make it difficult to read and understand the

code. Therefore, the AFSA algorithm checks the code to ensure that the blank lines do

not exceed the configured constant number.

The way an algorithm works is by going through each line and using the String trim()

method to remove spaces and tabs. It then compares the trimmed string to see if it

equals the empty string. If the line is empty, then the number of blank lines is

incremented. Then, the following line is checked. If the line is not empty, the counter is

reset to zero otherwise it continues incrementing. After each increment, the counter is

checked to see if it exceeds the configured constant number, which in this case is set to

two. Also, if the number of blank lines is more than the constant then a style error is

created to prompt the user. Figure 6 shows the AFSA feedback about the blank line of

the student sample Figure 5. There are three lines empty, which styles the code layout

as disorganized.

 32

Figure 5 Sample of student programming exercise

Figure 6 AFSA feedback for blank-line errors

4.1.4 Line length
As a convention for code style, it is good to keep the length of the code lines up to a

certain length so it is easier to read (Android 2015). When the code length is too long it

moves off the screen and the programmer has to scroll to the left and write when trying

to read and understand the code.

The AFSA tool goes through the lines of code one by one and compares the length of

the line with the configurable constant value, which in this case is set to 160 characters.

If the length of the line is bigger than this constant, then the style error is created to act

 33

as a prompt to the user. As shown in Figure 7 the line length of line number 47

exceeded the limit of the screen view, which forced the programmer to scroll to the right

to see the rest of the code line. Figure 8 is illustrates the feedback that generated from

the tool about this bad style

Figure 7 Sample of student-programming exercise

Figure 8 The AFSA feedback for line-length errors

 34

4.1.5 Indentation
Indentation refers to whitespace added at the beginning of each code line in order to

suggest code structure. There are different conventions in regards to what size the

indent should be and this may vary between one language and another. For example,

here are the conventions of the code-indentation size for Drupal and Python languages.

Drupal.org and JavaScript use two spaces as a guideline for indentation (Gallagher

2000), whereas Python considers four spaces to be the standard regarding indentation

(Guido van Rossum. 2001).

Regardless of the indentation size, it is important there be consistency throughout the

code. With AFSA, the approach is to try to determine what is the most common

indentation size used by a programmer in the code file.

This is accomplished by testing the provided code with different indentation sizes

ranging from a configurable minimum and maximum indentation, and finding the value

that has the least number of errors for indentation. In this case, the minimum and

maximum indentations are configured as 1 and 20. For each integer within this range

the code is analysed to see how different the actual code indentation is from the current

value (representing the indentation). Algorithms add the number of lines that are not

aligned with the current indentation size. At the end, the indentation size that has the

least number of misaligned lines is selected as the final indentation size that is

considered best for examining a given code.

 35

The chosen indentation is checked to ensure it is within the allowable indentation size

range that is configured as 2 to 8. If the chosen indentation size is out of this range an

error with a high-impact ratio is created to indicate that the indentation is not good.

After finding the correct indentation size, the algorithm goes through each line of code

and checks if that line is aligned or misaligned with the indentation and adds up the

number of lines that are not following the indentation. The comments and empty lines

are not considered in this calculation and are ignored.

The algorithm counts the number of empty space character by character to

determine the number of indentations. An issue that needs to be considered is that

some empty spaces might occur because of the tab insertions. A tab is considered to be

a single character but is equivalent to four spaces. Moreover, a tab has different

interpretations over different environments. Therefore, the tab characters are

temporarily replaced with a space for checking the indentation.

The code indentation would change based on methods or different code syntax

such as loops and conditional statements. In order to determine the correct indentation

in the code, the algorithm considers the number and state of open/close curly brackets.

For example, the code inside of a class should be indented one level higher than the

class. Similarly what comes inside of a method block should be indented a level higher

that the class-level code. So every time an open bracket is detected, the following

codes should be indented a level higher repeatedly until the matching closing bracket is

reached. Some special cases need to be considered because of the location of the

open bracket at the end of the same line or the start of the following. Figure 9 shows

 36

student sample that has zero indentation errors. The calculated indentation for this

sample was 1 space, even though this indentation size does not generate any

indentation errors but it is not desirable. Because using one space for indentation

affects the readability of the code.

Figure 9 Sample of a student-programming exercise

Figure 10 is an example of bad indentation. The calculated indentation for code is four

spaces, which generate many errors that shown in Figure 11. At line 104 of Figure 10

the line indented by four spaces, which is the calculated indentation size. So the next

line, which is 105, should keep the same size of indentation because there is no open

 37

bracket that increases the level of indentation. The programmer has the same level of

indentation for the next lines, 106 and 107 which means incorrect indentation. Following

the correct indentation level will result in nested indentation, which increases the code

readability.

Figure 10 Indentation of 2 spaces

 38

Figure 11 AFSA feedback for indentation

4.2 Name Choice
Names of variables and methods are extracted for analysis if they have a good name. A

good name is considered as a name that is meaningful and descriptive, and is the right

length, meaning that it is not too long, or too short. Names at the higher-level scope,

such as class-level variables, it is more important to follow this rule.

Also, names may consist of other combined names. Convention dictates that, when

joining words together to make a longer name, they are separated by a ‘_’ or by making

 39

the first letter of following word uppercase (Camelcase). The program checks that the

name of variables, classes, and methods are meaningful. It does this by breaking the

word into its sub-words and using the SpellChecker from Jazzy library to see if the word

exists in the dictionary of words.

Regular expressions are used frequently to find relevant words from the code text.

An algorithm works as follows:

To loop through each line of code, do the following for each line of code:

a. Temporarily remove the comment and text within quotations

b. Trim the line to remove empty spaces at the both ends and ignore the empty

lines

c. Use a regular expression to split the code line statement based on ' ', ';', '[', '(', '{',

'=', ‘*’, ‘&’ in order to find names, because these characters are usually placed

next to a name (variable, method, class), when they are mentioned for the first

time. It considers different languages such as C where the (‘*’, and ‘&’) are used

for pointers:

 String[] wordsInLine = trimedLine.split(" |;|\\[|\\(|\\{|\\=|\\,|*|\\&");

d. For each word in the line, do the following:

i. If the word is already checked, continue on to next word

ii. Check if the word is not a reserved word for the language of this code

(that’s already determined in other parts of the code).

 40

iii. Use a regular expression to check if the word contains numbers or

alphabetical characters:

Pattern pattern = Pattern.compile("[a-zA-Z0-9_]{1,}");

 matcher = pattern.matcher(name);

 if (matcher.matches()) ...

iv. If the previous condition is true, it means that the program has reached a

word that is a feasible name

v. Check the length of the name to ensure it is not too short or too long

based on the configured values

vi. Then the name is split into its sub-names (if any exists) based on the

separator or camelcase naming, using the following regular expression:

String[] nameSlices =

 name.split("(?<!(^|[A-Z]))(?=[A-Z])|(?<!^)(?=[A-Z][a-z])|_|[0-9]");

vii. For each sub-name, the JazzySpellChecker is used to check that each

sub-name exists in the dictionary. If not, it will add the word to a list that

keeps track of the misspelled algohm.

For every misspelled word add an error message for wrong naming. The

feedback about name- choice factors is depicted in Figure 13 for the sample that was

selected in Figure 12. There is a class variable at line 4, which is WrongNaming. The

 41

system didn’t detect any errors for this variable after breaking it down into two words.

The words wrong and naming are found in the dictionary file. If the second word naming

is not capitalized the system feedback will ask to restructure the variable. At line 11 and

24 there are misspelling variables. The tool only generated feedback on the first error

that occurred and ignored the second one.

 Figure 12 sample of student programming exercise

Figure 13 The AFSA’s feedback for name-choice errors

 42

4.3 Method Extraction

In order to analyse some aspects of code, it is necessary to determine which parts of

text are related to a method. For example, knowing the content and location of s method

is important when measuring code complexity, the existence of method documentation,

and efficiency of code. These assessments will be covered in the following sections.

This section only talks about how methods are extracted and determined from the code

text.

The program extracts method blocks and stores them as a List of MethodBlocks,

which then can be fed to other methods to individually assess each method. The

MethodBlock contains information, such as the name and content of a method, and the

starting line number. The methods are extracted through the following procedures:

The program goes through each line of code to determine the start and end of a method

by looking for special indicators. The most important information is found by determining

where the method is through using open and close curly brackets ‘{’. Also, ‘}’, which are

common indicators for the start and end of the methods in the various languages

examined in this project. Although, using brackets as an indicator for determining

method structure is a good approach, one thing to be considered is that not all curly

brackets indicate the start or end of the method. Some indicate the statements, loops or

class structure. Therefore, it is important to consider the level of the brackets as well,

which means the position of the nested bracket (the brackets within the other open

brackets).

 43

For different languages, the method-level brackets are at different levels. For example,

in object-oriented language such as Java and C#, the first open bracket usually

indicates the start of a class (or interface, enum, etc.), and the method is started with

the second nested open bracket. The constructor could also be considered as a method

or referred to as one for simplicity. In the procedural languages such as C, there is no

class-level bracket (as there is no class). Therefore, the first open bracket often

indicates the start of a method.

The program considers the type of language in order to know what level of

nested brackets to use for measuring the start of a method. For example, the procedural

language of C uses the first-level bracket as method, and object-oriented programs of

Java and C# use the second-level bracket to determine the methods.

To simplify the process of finding methods, unnecessary texts within the code is

ignored, such as comments or text within the quotations. Then, depending on the type

of language, the program goes through each line and searches for open and close

brackets. It also keeps the count of the level of bracket. The level starts with 0, then is

incremented by 1 every time a ‘{’ is detected and decremented by 1 when a ‘}’ is

detected. Then as the bracket-level count changes, the program checks level of

bracket. If the bracket-level is changed from a higher level down to the method-level,

then it recognises that it has entered a method so it begins saving the content of the

data being read, until the bracket-level count changes from method level to the higher

level (e.g. class-level). At this point it senses that it has come out of the method and

 44

therefore creates a new MethodBlock object to store the recorded content of the

method, before saving the object to the List of MethodBlocks.

4.4 Complexity
There are many different approaches for calculating the complexity of code. In this case

McCabe's Cyclomatic Complexity approach is used to measure flow complexity.

One of McCabe's original applications was to limit the complexity of routines during

program development (McCabe 1976). This is measured by counting the complexity of

modules that been developed, and splitting them into smaller modules whenever the

Cyclomatic complexity of the module exceeded 10.

The flow complexity of a method is measured by counting 1 for each place where the

flow changes from a linear flow (Swartz 2007), such as: conditional statements (e.g. if,

else, case), loops (for, while, do-while, break, and continue), operators (e.g. &&, ||, ?, :)

and returns.

In order to measure the complexity of each code module, first it is required to

identify/extract the modules. The code modules are different in each specific language

depending on whether the language is object-oriented. In object-oriented languages

(such as Java and C#) the code module is the methods within a class. In the procedural

language (such as C) there is no class so the modules are simply the methods. For

"multi-paradigm" languages (such as C++), which can be both object oriented or

procedural, extra consideration is required to ensure code blocks are considered

correctly.

 45

The algorithm for measuring complexity first extracts the code modules (as explained in

the Method Extraction section) and then stores the information in a map of code-module

identifiers (e.g. method name) within the module content. The code module is

represented by the MethodBlock class as described in the previous section, which

contains the content, identifier, start line and method complexity.

Once the code blocks or modules (e.g. methods) are identified, each of them is passed

into the method for measuring complexity, which does the following:

● Temporarily remove comments and quotation text, and forces lines to ignore

comments and empty lines

● Initialize a counter for complexity starting with value of 1

● Use regular expression to split the code line around the end of line or characters

of ‘;’, ‘[’, ‘{’ ‘(’, ‘)’, ‘=’, ‘*’, ‘,’.

● For each splitted word, check if the work is a reserved word related to McCabe’s

approach, increment the complexity counter by one if it is.

Figure 14: Shows the way the tool provides feedback about the complexity of each

block. The tool also shows the line number of blocks and provides feedback on

complexity.

 46

Figure 14 The AFSA’s feedback on complexity code

4.5 Documentation
The program checks for the existence of documentation regarding the methods. The

documentation could be single-line documentation as indicated by ‘//’ or a block

comment as indicated by ‘/*’ or ‘/**’, and ‘*/’. This part of assessment takes advantage of

the Method Extraction process. One of the initial approaches taken was to count the

number of methods extracted, and compare it with the number of block comments.

However, this approach did not seem to be effective, as it did not ensure that the block

comments were for the corresponding method, because the block comment could be

added to any part of the code. By academic convention, the comments for methods

should be placed immediately before the method definition. Therefore, a different

approach was considered to ensure that each method was commented on. The

procedure for this was as follows:

 47

The method-extraction procedure is known as the ‘get the list of MethodBlocks’ in the

code. The MethodBlocks contain the start-line number for the method. Therefore, the

program begins from the start of the method, then goes backwards to check the

previous lines to see if any indicator is found for the single-comment line or the end of

the block comment immediately prior to the method. If there are empty lines or space in

the previous lines prior to the method, the program ignores them and continues to the

lines before the previous one. It stops as soon as it reaches a line that does not have a

comment indicator, which means that the method being assessed was without

documentation.

4.6 Efficiency
The efficiency is that the number of resources that been used in order to solve a certain

task (Carmichael 2002). With this tool the efficiency of code is measured by counting

the total number of lines of code written by the student and then comparing it with the

line of code written by the instructor. Lines are defined by the lines that finish with ';'.

The reason for this consideration is that some lines might be segmented and placed on

the following lines for visual purposes. The aim is to measure the lines of code that have

some values or importance in terms of use of resources. Therefore, the comment lines

or empty lines, or what is in quotations for print statements is ignored. Also, the curly

brackets are removed because often they occupy the whole line for the sake of styling

the code as shown below, and the code style should not affect the efficiency. For

example:

 if (condition) { ... }

 48

or

 if (condition)

 {

...

 }

 The above codes are the same in terms of efficiency and use of resources, but

the second one occupies two more lines than the first one because of the brackets.

Also, for simplicity, it was decided to remove what is inside of the curved brackets '(' and

')' of for loop. That is because different implementation could affect the efficiency count

as the program is written to count ';' as a new line and some implementation of for loop

has different number of ';'. For example, the first implementation of for loop has two

semicolons, whereas the second implementation has 0 semicolons but, in terms of the

number of resources, they both use a single variable:

 for (int i = 0; i < MAX; i++) // has 2 semicolons

 for (Integer i : values) // has 0 semicolon

After removing all the unnecessary parts of code, the code lines for each file is

counted and added to the total sum of all the files provided by the student.

The same procedure is done with the code provided by the instructor and the total line

is calculated. Then the student measurement is compared to the tutor’s code and the

difference calculated. Finally, the difference is checked against some defined ranges to

provide clear feedback to the student.

 49

4.7 Feedback
Providing constructive feedback is very important in order to help the student or

the instructor understand exactly what the inherent problems are in providing feedback.

The ErrorMsg class was created to store information on the errors such as the type and

impact of error, the error message to be displayed and the line number, in which the

error occurred.

The line number and error message serve the purpose of directing the user to

where the problem is and what the issue is so it can be assessed or fixed.

The impact of error is used to determine the severity of error and the amount of marks

that should be deducted. Most of the errors are of the basic type. Some examples of

when the higher impact error types are used include the situation when the code

complexity of methods is above the highest defined threshold, or when the indentation

is distant from the allowed range.

The error types are defined as the assessment factors such as indentation,

whitespace, variable name, complexity, and documentation. This type of error is used

as a way of grouping errors with similar issues. This allows for the giving of an overall

mark for a different category or aspect of assessment.

The feedback is provided in two ways. Firstly, each line of code that is issue-

based in the code assessment is listed to indicate what the issue is as shown in figure

15.

 50

Figure 15 AFSA feedbak based on category

Another manner in which feedback is provided is by showing the total number of

errors for each category of assessment (e.g. Indentation, Complexity, etc.). The total

number of errors for each category is measured and a percentage is calculated in order

to determine a specific score for each category. The denominator used for calculating

the percentage is different depending on the type of error. For example, for the case of

the indentation, the denominator is the total number of lines in the code, whereas in the

case of complexity, the denominator is the number of method blocks because it is

measured on a per method block basis.

The score then is checked against some defined range of values to determine

the mark depending on which range it falls into. The defined ranges include High

Distinction, Distinction, Credit, Pass, or Fail as defined by Figure 16.

 51

Figure 16 grade scale

A sample output of the program’s feedback is shown below, where it shows the number

of errors for the different categories.

Figure 17 AFSA overall feedback

The overall mark is calculated by taking scores for each category and then averaging

them.

The following chapter evaluates the feedback provided by the prototype by using

sample of student programs.

 52

CHAPTER 5

5 Validation

5.1 Study description
A study was conducted in order to validate the tool feedback and assess the

effectiveness of the programming style feedback of the tool. In addition, the study

assesses the difference between manual style marking and automated style marking.

The study contains tow parts experiment and survey that was conducted in papers. The

targeted participants were academic staffs that have a programming background and

teach programming. Six tutors out of twelve agreed to participate in the study.

5.2 Significance of the study
The targeted participants were the academic staffs who has experience in teaching

programming, so they are able to provide feedback about the techniques used by the

prototype tool and identify technique that have not been covered. Moreover, The

targeted participants are familiar with assessing the code manually, which means they

have the ability to determine which techniques need to be investigated.

5.3 Experiment

5.3.1 Experimental procedure
Participant was given four scenario packages, each of which contains printed copies of

the following information:

• A description of a sample student-programming task that used for a practical

activity in a programming topic.

 53

• A code listing of sample student code that submitted as a solution for the

programming task.

• A code listing of the student code annotated with style feedback based on

analysis from the automated style feedback tool

For each scenario, first, the participant was asked to examine unannotated code listing

and consider what feedback he would provide about each of the style attributes.

Secondly, the participant was asked to to examine the annotated code listing and

consider how accurately the code-generated feedback matches his view of the

feedback that would best assist the student. Lastly, the participant was asked to

consider any other feedback that would provide if he were manually assessing the code

style.

Participant was free to withdraw from the experiment at any stage during the experiment

and also free to question about the material. Figure 18 is an example of unannotated

code sample that was given to the participant and Figure 19 is annotated code sample

that was used to show the participant the generated tool feedback.

 54

Figure 18 unannotated code sample

 55

Figure 19 Annotated code sample

 56

5.4 Survey
 After the experiment stage, participants were requested to complete the questionnaire.

Questionnaire is the most suitable method to collect primary data for the current

research as it allows the researcher to receive direct feedback and additional ideas for

improvement of project tool. The aim of the survey was to collect ideas and features that

the teaching staff rated as the most important for automated feedback tool. The

researcher carefully reviewed the analysis of these responses in order to evaluate the

tool feedback that generated from the tool. ‘See the appendix to see the survey’

The survey consists of 10 closed-ended questions and 2 open-ended questions.

Questions were grouped into three logical blocks: “Use of Automated Feedback”,

“Evaluation of Feedback” and “Additional Information.

5.5 Study results
Use of Automated Feedback

None

A little

Moderate

Extensive

Introductory

Students

1

-

1

4

Intermediate

Students

1

-

3

2

Advance
Students

1

2

1

2

Table 1: Participants recent experience (last 2 years) in teaching programming

 57

None

A little

Moderate

Extensive

Introductory

Students

1

2

3

Intermediate

Students

1

-

3

2

Advance
Students

1

1

2

2

Table 2: Participants medium-term experience (last 5 years) in teaching programming

None

A little

Moderate

Extensive

Introductory

Students

1

3

2

Intermediate

Students

1

3

2

Advance
Students

1

3

2

Table 3: Participants long-term experience (last 10 years) in teaching programming

 58

Table 1 shows that majority of participants claimed to have recent extensive experience

(last 2 years) teaching programming to introductory students: Four participants chose

this option in the first question whereas one participant has a recent moderate

experience and one participant does not have a recent experience in teaching

programming to introductory students. The second choice in the same question was

“moderate experience with intermediate students”. Five out of six participants have a

moderate and extensive experience whereas one participant has no experience in

teaching programming for intermediate students. Finally, with advance student three

participants claimed to have moderate and extensive experience of teaching

programming to advanced students over the last 2 years whereas the other either have

no or little experience of teaching programming.

In the second question Table 2, the situation remained largely the same with few

changes exceptions. In question 3 which was, how much long-term experience (last ten

years) do you have teaching programming? Table 3 shows that five participants

answered that they had moderate and extensive experience of teaching programming to

introductory student over the last 10 years. One respondent replied that he had no

teaching experience with introductory students. On the other hand, It been noticed that

none of the participants have an extensive experience with long term.

 59

Table 1, Table 2 and Table 3 show the participants experience in teaching

programming to different students levels. It is obvious that the predominant majority of

respondents claimed to have moderate and extensive experience teaching

programming to students in medium and short terms.

Regarding the participant experience with automatic programming tool

assessment, the predominant majority of teaching staff stated that they are aware of

automatic programming tools. In particular, five participants claimed to be familiar with

“try” program; 1 respondent reported that he is not familiar with “try”. And regarding

CodeRunner(quiz-based function testing in FLO), all the participants agree that they

familiar with it. One respondent have used it in the past and two planning to include the

software in their future teaching activities.

 Regarding automated style assessment tools in specific, only two respondents

are planning to use checkstyle (open-source style checking) in the future. Interestingly,

these respondents either have or had moderate or extensive experience of teaching

programming to introductory students. That may reflects the important of using

automated style tool for novice programmers. The other participants check the code

style manually by using common standard.

 60

The majority of respondents who claimed to teach introductory students believe that

there is substantial extent to which automated tools can replace manual assessment of

code style. Whereas the majority of participants believe that the extent is partial in the

case of intermediate students and advanced students correspondingly.

Evaluation of feedback

Indentation Strongly
disagree

Somewhat
disagree

Neutral

Somewhat
agree

Strongly
agree

Feedback is
accurate

3

3

Feedback is
appropriate

5

1

Feedback is easy to
understand

1

1

4

Feedback is helpful
to learning

2

4

Table 4: Participant’s opinion about Indentation

Code complexity Strongly
disagree

Somewhat
disagree

Neutral

Somewhat
agree

Strongly
agree

Feedback is
accurate

2

3

1

Feedback is
appropriate

3

2

1

Feedback is easy to
understand

1

3

1

1

Feedback is helpful
to learning

2

3

1

Table 5: Participant’s opinion about code complexity

 61

Choice of names Strongly
disagree

Somewhat
disagree

Neutral

Somewhat
agree

Strongly
agree

Feedback is
accurate

1

3

1

1

Feedback is
appropriate

 6

Feedback is easy to
understand

 1 5

Feedback is helpful
to learning

 1 5

Table 6: Participant’s opinion about choice of names

Static efficiency Strongly
disagree

Somewhat
disagree

Neutral

Somewhat
agree

Strongly
agree

Feedback is
accurate

1

4

1

Feedback is
appropriate

3

2

1

Feedback is easy to
understand

2

3

1

Feedback is helpful
to learning

2

2

2

Table 7: Participant’s opinion about Static efficiency

 62

Documentation Strongly
disagree

Somewhat
disagree

Neutral

Somewhat
agree

Strongly
agree

Feedback is
accurate

3

3

Feedback is
appropriate

3

4

Feedback is easy to
understand

2

4

Feedback is helpful
to learning

1

3

2

Table 8: Participant’s opinion about documentation

In terms of indentation, Table 4 indicates that all respondents agree that AFSA

feedback is good in relation to accuracy, appropriateness, easy of understanding, and

contribution to learning. Three of respondents somewhat agree with the remaining part

strongly agree. It is been noticed that a participant was Neutral toward this statement

“Feedback is easy to understand”. He mentions that he prefers a different way of

providing feedback about indentation. So instead of giving just the number of correct

indentation size add a message to the number of indentation.

In terms of code complexity, the AFSA use McCabe's Cyclomatic Complexity approach

to measure flow complexity. The tool checks the complexity of every method and

provides feedback to the programmers, see the complexity feedback in Figure 14.

Academic staff evaluated the tool feedback. Half of them were neutral toward the

 63

appropriateness of tool feedback. Some of them claimed that the provided feedback

does not tell the student the way that the tool measures the complexity Table 5.

In terms of choice of names, there was a more united attitude towards AFSA feedback

for name choices. The majority of participants somewhat agree about accuracy,

appropriateness, easy of understanding, and contribution to learning of tool feedback.

But some of them were not confident about the accuracy of using an embedded

dictionary in order to check the meaning of identifiers Table 6.

Table 7 shows that respondents have different opinions toward tool feedback in

terms of static efficiency. The tool uses a tutor sample to check the efficiency of student

code. Some participants argued that there are different ways of solving a certain

exercise. So, it is difficult to judge the code efficiency of student against one tutor

sample. Consequently, some of them were neutral toward some aspects of the

feedback.

Table 8 shows that all the majority of participants were satisfied about the tool

feedback for indentation.

 64

Additional Information

Among other parameters that participants suggest to be included in the automated

feedback tool are: indentation aspect such as use new-line use/spacing (66%), also the

style of the braces position of braces/code structure (84%), in addition, a participant

suggests using minimum space between methods, duplication of code, check

‘CamleCase’ for classes and functions/methods. One participant made an additional

comment and suggested highlighting in-line comments.

Results of the survey clearly indicate the predominant majority of programming

teaching staff is already familiar with or used automated assessment tools to provide

valuable insights on students’ code but most of them are not familiar with automated

style assessment. In general, the study shows that the majority participants consider the

tool feedback is helpful to learning. On the other hand, collecting feedback from

participants through the questionnaire helped to reveal disadvantages of tool feedback

and consider missing assessment factors that need to be included. In addition, the

result reflects some strong aspect of the tool feedback. Regarding the evaluation of

feedback, all respondents recognize that feedback is important for programmers.

 65

CHAPTER 6
6 Conclusion and Future work

Thesis research developed a prototype tool that automatically assesses

programming style for student programmers. The factors that been use to assess the

code style are indentation, name choice, complexity, efficiency and documentation.

These factors have been chosen to increase the readability of programs. The tools

provide feedback for several common programming languages, such as Java, C++, C#

and C. These programming languages have different syntax so the tool uses different

algorithms to deal with differences such as reserved words. In addition, this thesis

conducted a study to evaluate the tool’s feedback. The targeted participants were

academic staff who had experience in teaching programming. The result of the study

showed that the majority of participants considered the tool feedback was helpful to

learning.

Although much work was done on assessing code style, given the time constraints, it

wasn’t possible to finish all aspects in full detail. In particular it was not possible to

consider all the ‘on the edge cases’, so the focus was on the most common aspects of

this research. Here are some examples of what could further be explored:

● Naming issue: The variables with a high scope (e.g. class-level) should have a

longer length of characters. Also the process of extracting variables could be

refined more so it does not rely on checking a list of reserved words.

 66

● Efficiency: Instead of comparing the student code efficiency against tutor code

efficiency, other factors could be considered towards measuring code efficiency.

● Consistency: There are many acceptable styles for the position of braces, but

some programmers use different styles in the same program, which is not

desirable. Also, it is important to have a consistent number of blank lines

between methods.

● Other Languages: In this project, the focus has been on the languages of C, C#,

C++ and Java. In future, the work could be extended to include other languages

such as Python, PHP, and more.

● Graphical User Interface: It would be useful to provide feedback using a GUI,

so it is easier and more convenient for the programmer to retrieve errors.

 67

Appendix
Academic questionnaire

Providing Automated Style Feedback for Student Programmers

Survey	&	Feedback	
Use	of	Automated	Feedback	

1. How much recent experience (last 2 years) do you have teaching
programming?
 None A little Moderate Extensive

Introductory students
Intermediate students
Advanced students

2. How much medium-term experience (last 5 years) do you have teaching
programming?
 None A little Moderate Extensive

Introductory students
Intermediate students
Advanced students

3. How much long-term experience (last 10 years) do you have teaching
programming?
 None A little Moderate Extensive

Introductory students
Intermediate students
Advanced students

4. For each of these automatic programming assessment tools, indicate
which you are familiar with, which you have previously used in your
teaching, and which you intend to use in future.
 Familiar Past

use
Future
use

“try” program (command-line function testing)
CodeRunner (quiz-based function testing in FLO)
Other function testing (specify ….……………………..)

 68

Checkstyle: open-source style checking
Other style checking (specify …………………………)

5. To what extent do you think an automated tool such as this can replace
manual assessment of code style?
 Not at all Partially Substantially Completely

Introductory students
Intermediate students
Advanced students

Evaluation	of	Feedback	

The following questions relate to different aspects of style on which the tool provides
feedback. For each aspect, indicate your opinion of the tool’s feedback in relation to
accuracy, appropriateness, easy of understanding, and contribution to learning.

6. Indentation
 Strongly

disagree
Somewhat
disagree

Neutral Somewhat
agree

Strongly
agree

Feedback is accurate
Feedback is appropriate
Feedback is easy to understand
Feedback is helpful to learning

7. Code complexity
 Strongly

disagree
Somewhat
disagree

Neutral Somewhat
agree

Strongly
agree

Feedback is accurate
Feedback is appropriate
Feedback is easy to understand
Feedback is helpful to learning

8. Choice of names
 Strongly

disagree
Somewhat
disagree

Neutral Somewhat
agree

Strongly
agree

Feedback is accurate
Feedback is appropriate
Feedback is easy to understand
Feedback is helpful to learning

 69

9. Static efficiency
 Strongly

disagree
Somewhat
disagree

Neutral Somewhat
agree

Strongly
agree

Feedback is accurate
Feedback is appropriate
Feedback is easy to understand
Feedback is helpful to learning

10. Documentation
 Strongly

disagree
Somewhat
disagree

Neutral Somewhat
agree

Strongly
agree

Feedback is accurate
Feedback is appropriate
Feedback is easy to understand
Feedback is helpful to learning

Additional	Information	

11. The tool provides feedback about indentation, complexity, choice of
names, efficiency and documentation. What other aspects of coding
style should be included in an automated feedback tool?
……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

12. Do you have any additional comments or suggestions about the tool?
……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

……………………………………………………..……………………………………………..………………

 70

References
Ala-Mutka, K. M. (2005). "A survey of automated assessment approaches for
programming assignments." Computer science education 15(2): 83-102.

Ala-Mutka, K., T. Uimonen and H.-M. Jarvinen (2004). "Supporting students in C++
programming courses with automatic program style assessment." Journal of Information
Technology Education: Research 3(1): 245-262.

Android. Code Style for Contributors. Retrieved 1 Nov, 2016, from
https://source.android.com/source/code-style.html#java-language-rules

Auffarth, B., M. López-Sánchez, J. Campos i Miralles and A. Puig (2008). System for
automated assistance in correction of programming exercises (SAC). International
Congress University Teaching and Innovation (CIDUI).

Benford, S. D., E. K. Burke, E. Foxley and C. A. Higgins (1995). The Ceilidh system for
the automatic grading of students on programming courses. Proceedings of the 33rd
annual on Southeast regional conference. Clemson, South Carolina, ACM: 176-182.

Burn, O. (2003). " Checkstyle." SourceForge. net. Posted at http://checkstyle.
sourceforge. net/(accessed October 16, 2003).

 Carmichael, R. M. (2002). "Measures of efficiency and effectiveness as indicators of
quality–A systems approach." Journal of Institutional Research Southeast Asia
(JIRSEA) 1(1): 3-14.

Chen, W., X. Li and W. Liu (2011). Teaching computer programming to non-computer
science students. Proceedings of the 3rd Asian Conference on Education (ACE).
Katahira: IAFOR Publications.

Deek, F. P. and J. A. McHugh (1998). "A survey and critical analysis of tools for learning
programming." Computer science education 8(2): 130-178.

Douce, C., D. Livingstone and J. Orwell (2005). "Automatic test-based assessment of
programming: A review." Journal on Educational Resources in Computing (JERIC) 5(3):
4.

Drupal. (2016). CSS formatting guidelines. Retrieved 8 Nov, 2016, from
https://www.drupal.org/docs/develop/standards/css/css-formatting-guidelines

 71

Enström, E., G. Kreitz, F. Niemelä, P. Söderman and V. Kann (2011). Five years with
kattis—Using an automated assessment system in teaching. Frontiers in Education
Conference (FIE), 2011, IEEE.

Guido van Rossum, B. W., Nick Coghlan (2001). "https://www.python.org/dev/peps/pep-
0008/." Python.org.

Gupta, S. and S. K. Dubey (2012). "Automatic assessment of programming
assignment." Computer Science & Engineering 2(1): 67.

Haley, D. T., P. Thomas, A. De Roeck and M. Petre (2007). "Seeing the whole picture:
evaluating automated assessment systems." Innovation in Teaching and Learning in
Information and Computer Sciences 6(4): 203-224.

Higgins, C. A., G. Gray, P. Symeonidis and A. Tsintsifas (2005). "Automated
assessment and experiences of teaching programming." Journal on Educational
Resources in Computing (JERIC) 5(3): 5.

Idzelis, M. (2003). "Jazzy." iEdit programmer's Text Editor.

Joy, M., N. Griffiths and R. Boyatt (2005). "The boss online submission and assessment
system." Journal on Educational Resources in Computing (JERIC) 5(3): 2.

Koyya, P., Y. Lee and J. Yang (2013). "Feedback for Programming Assignments Using

Software-Metrics and Reference Code." ISRN Software Engineering 2013.

McCabe, T. J. (1976). "A complexity measure." IEEE Transactions on software
Engineering(4): 308-320.

Oracle. (1999). White space Retrieved 8 Nov, 2016, from
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-
141388.html#475

Pettit, R., J. Homer, K. Holcomb, N. Simone and S. Mengel (2015). Are automated
assessment tools helpful in programming courses. 2015 ASEE Annual Conference and
Exposition.

Pieterse, V. (2013). Automated assessment of programming assignments. Proceedings
of the 3rd Computer Science Education Research Conference on Computer Science
Education Research, Open Universiteit, Heerlen.

 72

Rahman, K. A. and M. J. Nordin (2007). A review on the static analysis approach in the
automated programming assessment systems. Proceedings of the national conference
on programming.

Redish, K. and W. Smyth (1986). "Program style analysis: A natural by-product of
program compilation." Communications of the ACM 29(2): 126-133.

Rees, M. J. (1982). "Automatic assessment aids for Pascal programs." ACM Sigplan
Notices 17(10): 33-42.

Ribeiro, P. and P. Guerreiro (2009). "Improving the automatic evaluation of problem
solutions in programming contests." Olympiads in Informatics 3: 132-143.

Salleh, S. M., Z. Shukur and H. M. Judi (2013). "Analysis of Research in Programming
Teaching Tools: An Initial Review." Procedia-Social and Behavioral Sciences 103: 127-
135.

Swartz, F. (2007). Java: Computing Cyclomatic Complexity. Retrieved 10 Oct, 2016,
from http://www.leepoint.net/principles_and_practices/complexity/complexity-java-
method.html

Truong, N. (2007). A web-based programming environment for novice programmers,
Queensland University of Technology. PhD.

Truong, N., P. Roe and P. Bancroft (2005). Automated feedback for "fill in the gap"
programming exercises. Proceedings of the 7th Australasian conference on Computing
education - Volume 42. Newcastle, New South Wales, Australia, Australian Computer
Society, Inc.: 117-126.

Vihavainen, A., T. Vikberg, M. Luukkainen and M. Pärtel (2013). Scaffolding students'
learning using test my code. Proceedings of the 18th ACM conference on Innovation
and technology in computer science education, ACM.

