INTRANASAL DELIVERY OF

MACROMOLECULES TO THE RODENT BRAIN

VIA OLFACTORY PATHWAYS.

A THESIS SUBMITTED IN TOTAL FULFILMENT

OF THE REQUIREMENTS OF

THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

Anthony Neil Pollard

Bachelor of Science (Honours)

Department of Human Physiology,

Centre for Neuroscience;

School of Medicine, Flinders University;

Adelaide, South Australia

March 2009

TABLE OF CONTENTS

THESIS SUMMARY	VII
DECLARATION	IX
ACKNOWLEDGEMENTS	X
GENERAL ABBREVIATIONS	XIII
BRAIN REGION NOMENCLATURE	XV
CHAPTER 1	1
LITERATURE REVIEW & PROJECT AIMS	
1.1 General Introduction	2
1.2 The Blood Brain Barrier	3
1.3 Delivery of macromolecules to the CNS	4
1.3.1 Parenteral systemic administration	5
1.3.2 Central administration	
1.3.2.1 Intracerebroventricular (ICV) administration	
1.3.2.2 Intrathecal (IT) administration	7
1.3.2.3 Intraparenchymal (IPa) administration	7
1.3.2.4 Intranasal (IN) administration	8
1.4 The Mammalian Nasal System	10
1.4.1 The Nasal Cavity	
1.4.2 The Respiratory Epithelium	11
1.4.3 The Olfactory Epithelium	11
1.4.4 The Olfactory Receptor Neuron	
1.4.5 The Olfactory Bulb	
1.4.5.1 Olfactory Nerve Layer (ONL)	
1.4.5.2 Glomerular Layer (GL)	
1.4.5.3 External Plexiform Layer (EPL)	
1.4.5.4 Mitral Cell Layer (MCL)	

1.4.5.5 Internal Plexiform Layer (IPL)	17
1.4.5.6 Granule Cell Layer (GCL)	18
1.4.6 Primary Olfactory Cortex	
1.4.7 Innervation of the olfactory system	19
1.5 Transport Pathways from Olfactory regions to the CNS	21
1.5.1 Intracellular transport pathways	
1.5.2 Extracellular transport pathways	
1.5.2.1 Transport via olfactory nerve perineural spaces	27
1.5.2.2 Transport via trigeminal nerve perineural spaces	28
1.5.3 Systemic and Lymphatic pathways	29
1.5.3.1 Nasal systemic pathway	29
1.5.3.2 Nasal lymphatic pathway	30
1.6 Intranasal Delivery of Therapeutic Macromolecules	31
1.6.1 Intranasal administration of neuroprotective agents	
1.6.2 Intranasal administration of neuroimmune modulatory	factors and
metabolic regulatory factors	
1.6.3 Intranasal administration of viral vectors for gene therapy	
1.7 Project Rationale, Hypothesis and Aims	38
1.7.1 Project Rationale and Overview	
1.7.2 Project Hypothesis	
1.7.3 Project Aims	42
Chapter 2 Aims:	
Chapter 2 Aims:	42
Chapter 2 Aims:	42
Chapter 2 Aims: Chapter 3 Aims:	42 42
Chapter 2 Aims: Chapter 3 Aims: CHAPTER 2 Intranasal delivery of CNTF to the rat brain along olfactory pathway	42 42 42 43 Vs
Chapter 2 Aims: Chapter 3 Aims: CHAPTER 2 Intranasal delivery of CNTF to the rat brain along olfactory pathway 2.1 Summary	42 42 43 ys 44

2.3 Materials and Methods 50	0
2.3.1 Animals	0
2.3.2 CNTF solutions	0
2.3.3 Immunofluorescence	1
2.3.4 Immunofluorescence double-labelling	2
2.3.5 Haematoxylin and Eosin staining method for frozen sections	2
2.3.6 Zinc Sulphate application	2
2.3.7 Phosphorylated STAT3 Immunohistochemistry	3
2.3.8 Intranasal delivery of I ¹²⁵ -CNTF into Sprague-Dawley rats	4
2.3.9 Intranasal delivery of huCNTF into OZR (fa/fa)	5
2.3.10 Statistical analysis	6
2.4 Results 5'	7
2.4.1 Localization of biotinylated CNTF in brain regions 30mins-2hrs after	r
intranasal delivery	7
2.4.2 Intranasal administered CNTF co-localizes with neurofilament marke	r
(N52) and cytoskeletal marker GFAP58	8
2.4.3 Effect of ZnSO ₄ denervation of olfactory mucosa prior to biotinylated	d
CNTF intranasal application	8
2.4.4 pSTAT3 immunofluorescence in thalamic and hypothalamic section	S
30mins after intranasal delivery of CNTF into SD rats	9
2.4.5 Temporal and spatial distribution of intranasal applied I ¹²⁵ -CNTF in rats	3.
	0
2.4.6 Spatial distribution of intranasal applied I ¹²⁵ -CNTF in rats and effect o	of
unlabelled CNTF	1
2.4.7 Effect of ZnSO ₄ denervation of olfactory mucosa prior to I ¹²⁵ -CNTI	F
intranasal application	1

2.4.8 Reduction of body weight induced by intranasal delivered	CNTF in obese
Zucker rats	
2.4.9 Summary	
2.5 Discussion	65
2.6 Conclusions	72
CHAPTER 3	73
Viral vector gene delivery of EGFP to the brain via the olfactory p	oathway
3.1 Summary	74
3.2 Introduction	75
3.3 Materials and Methods	77
3.3.1 Animals	77
3.3.2 Viral Vectors	77
3.3.3 Intranasal delivery of Ad5CMV-EGFP and AAV2-EGFP in	nto rats77
3.3.4 EGFP expression <i>in vivo</i>	78
3.3.5 Immunofluorescence	79
3.3.6 Immunohistochemistry	80
3.3.7 Protein analysis by western blotting	80
3.3.8 Image acquisition and analysis	81
3.3.9 Real-time RT-PCR analysis	81
3.4 Results	84
3.4.1 Adenovirus-mediated EGFP expression in the olfactory	epithelium and
olfactory bulb in vivo	84
3.4.2 EGFP detected in other brain regions	85
3.4.3 Immuno-localization of expressed EGFP	
3.4.4 Localization of EGFP in brain tissue extracts	
3.4.5 AAV delivered EGFP localized in several brain regions at	fter 6wk period

3.4.6 Immunostaining of EGFP localized in brain regions
3.4.7 EGFP localized within N52 positive neurons in midbrain
3.4.8 EGFP mRNA expression in olfactory epithelium only, 6 wks after i.n.
delivery
3.5 Discussion 90
3.6 Conclusions95
CHAPTER 496
GENERAL DISCUSSION AND CONCLUSIONS
4.1 General Summary97
4.2 Understanding the pathways of nose to brain transport 99
4.2.1 Animal models
4.2.2 Intranasal delivery of a neurotrophic factor
4.2.3 Intranasal delivery of viral vectors
4.3 Thesis Conclusion 107
4.4 Future Directions107
APPENDICES111
Appendix 1. Experimental Protocols Used in Chapter 3112
Appendix 1.1 Western Blotting Analysis
Appendix 1.2 Reverse transcription of total RNA to cDNA using SuperScript [™]
II
Appendix 1.3 Real-time RT-PCR118
Appendix 2. Personal Publications (2000-2007)118
BIBLIOGRAPHY120

Dedicated to my Nanna,

Muriel Estella Bartle

1912-2006

THESIS SUMMARY

One of the major limitations in drug development and gene therapy for brain diseases is the natural defensive structure called the blood brain barrier (BBB), which prevents therapeutic polypeptide drugs and viral vectors from entering the brain. Intranasal delivery of therapeutic gene products into the brain offers a non-invasive alternative towards a feasible gene and protein therapy for neurological diseases. From recent studies involving axonal transport, it is tempting to speculate that therapeutic macromolecules including neurotrophic factors and viral vectors can be delivered into the brain by peripheral neurons, such as olfactory receptor neurons (ORNs), which span the BBB. It is thought that the nasal pathway into the brain involves two general mechanisms; intracellular (intraneuronal) or extracellular routes of transport. However the pathways involved have not yet been fully characterized.

In this study I firstly investigated the temporal and spatial localisation pattern of both biotinylated and I¹²⁵ labelled ciliary neurotrophic factor (CNTF) following nasal delivery into Sprague-Dawley rats. Results showed that intranasal delivered CNTF was transported to several brain regions by both intracellular/axonal pathway through ORNs and the extracellular trigeminal pathway. Excess unlabelled CNTF competed for receptor binding in the olfactory mucosa confirming receptor mediated intracellular transport to the olfactory bulb via ORNs. Denervation of the olfactory mucosa prior to CNTF delivery failed to prevent CNTF transport to trigeminal and hypothalamic brain regions. Intranasal delivered CNTF was biologically active, resulting in activation of the STAT3 signalling pathway in the thalamus and hypothalamus.

To examine the functional activity of intranasal delivered CNTF, I conducted a weight loss trial using an obese Zucker rat (OZR) model to test whether CNTF treatment caused body weight loss. Intranasal administration of CNTF resulted in reduced body weight in the CNTF treated OZR group compared to the BSA control group during the 12 day trial and for 3 days after. Intranasal delivery of CNTF may be a valuable method for the treatment of obesity.

In the second study, I investigated the temporal and spatial expression of Enhanced Green Fluorescent Protein (EGFP) transferred by a single nasal delivery of either a recombinant adenovirus vector (Ad5CMV-EGFP) or an adeno-associated virus vector (AAV2-EGFP) into Sprague-Dawley rats. Adenovirus mediated EGFP expression was localized in ORNs throughout the olfactory epithelium after 24 hours. EGFP in the ORNs appeared to be anterogradely transported along their axons to the olfactory bulb and transferred in glomeruli to second-order neurons. EGFP was transferred to several brain regions including the cortex, hippocampus, and brainstem after 7 days. EGFP expression co-localized with Olfactory Marker Protein and was confirmed with EGFP immunofluorescence labelling and western blotting. AAV expressed EGFP localized in similar olfactory and brain regions 6 weeks after delivery. mRNA levels suggested that the AAV-EGFP construct was only incorporated into olfactory mucosa cells and the viral vector was not present in olfactory bulb and brain regions.

In conclusion, this simple and non-invasive polypeptide and gene delivery method provides ubiquitous macromolecule distribution throughout the rodent brain and may be useful for the treatment of neurological disorders.

DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

The author acknowledges that copyright of published work contained within this thesis resides with the copyright holder/s of those works.

Anthony N Pollard

March 2009

ACKNOWLEDGEMENTS

This PhD project has most certainly led me on a fantastic journey through the field of neuroscience, in particular, olfactory neuroscience. Firstly, I would like to acknowledge my principle supervisor, Prof. Xin-Fu Zhou, who introduced me to this exciting project and provided me support, encouragement and exceptional patience that allowed the completion of this thesis possible. I am very grateful for his excellent scientific insight, enthusiasm in this field and deep knowledge.

Secondly, many thanks to my co-supervisors, Prof. Gino Saccone and Prof. Johnno Oliver for providing excellent critical review of my thesis and great assistance and advice for my final PhD seminar. Additionally I would also like to thank my other co-supervisor, Dr. Steve Johnson, for good advice and discussions early in my candidature.

Many thanks to all the members of the Neuroregeneration lab both past and present for their good advice and technical support during my project. In particular I would like to especially thank Ernesto Aguilar, my PhD bro and running mate, for excellent friendship, support and good discussions over a few beers or sangria's. I would also certainly like to thank my other PhD brother and friend, Dr. John Wang, for his great surgical knowledge in teaching me animal surgery skills and a healthy appreciation for Chongquing (Szechuan) cuisine + Chinese rice wine. My appreciation also goes to Dr. Henry Li for good advice and assistance in fluorescent microscopy, and Michelle Norman for excellent histological advice and training. The staff of the Flinders Uni animal house provided me with good support and patience, with my thanks going to Ray, Stuart, Theresa and Peggy. For allowing me to use their lab space for my radioiodination experiments, thanks goes to Dr. Heather Barr and Prof. Bill Blessing. Quite regularly, the members of the FURACS group of level6 gave me good companionship over a few reds, and thanks to Robyn, Jen, Mary-Louise, Rainer, Rodrigo, Matty, Mal & Bren. Also thanks to Dusan who helped me channel my frustrations into healthy competition of indoor soccer.

Finally, my deepest thanks and love go to my family, Mum, Dad and Mike for their unconditional love and support throughout difficult times.

Lastly, I would like to especially thank my loving wife, Fiona for all her support, friendship, advice and tender care during this tough time. I am very blessed too have known her and cherished the time we spent together.

PERSONAL PUBLICATIONS AND CONFERENCE

PRESENTATIONS

Personal Publications (2005-2009)

Refereed Journal Articles

- Pollard AN, Aguilar-Salegio EA, Wang YJ, Sun Y and Zhou XF.
 (2009) Delivery of CNTF along olfactory pathways and the implication in the therapeutic treatment of obesity. (Submitted to J Cell Molec. Med.).
- 2) Pollard AN, Wang YJ, Aguilar-Salegio EA, and Zhou XF. (2009) Adenoviral and AAV vector gene delivery of enhanced-GFP to the brain via the olfactory receptor neurons. (in manuscript).
- 3) Aguilar-Salegio EA, Pollard AN, Smith M and Zhou XF. (2009) Depletion of macrophages prevents regeneration of pre-conditioned adult dorsal root ganglion neurons after spinal cord injury. (Submitted to Brain Behav Immun.)
- Wang YJ, Valadares D, Sun Y, Wang X, Zhong JH, Liu XH, Majd S, Chen L, Gao CY, Chen S, Lim Y, Pollard AN, Aguilar E, Gai WP, Yang M, Zhou XF. (2009) Effects of proNGF on Neuronal Viability, Neurite Growth and Amyloid-beta Metabolism. Neurotox Res. 2009 Aug 13. [Epub ahead of print]
- 5) Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard AN, Fenech M, Zhou XF. (2009) Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer's disease mouse. Neurotox Res. 15:3-14.
- 6) Wang YJ, Pollard AN, Zhong JH, Dong XY, Wu XB, Zhou HD and Zhou XF. (2009) Intramuscular delivery of a single chain antibody gene reduces brain amyloid-beta burden in a mouse model of Alzheimer's disease. Neurobiol of Aging. 30:364-376.

7) Thomas P, Wang YJ, Pollard AN, Zhong JH, Kosaraju S, O'Callaghan NJ, Zhou XF, Fenech M. (2008) Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer's disease. Mutat Res. (Nov 6. Epub ahead of print)

Conference proceedings

- Wang YJ*, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, Fenech M, Zhou XF. (2008) Consumption of polyphenol-rich grape seed extract prevents amyloid deposition and suppresses inflammation in the brain of a transgenic mouse model for Alzheimer's disease. Society for Neuroscience (SfN) 38th annual meeting, Washington DC, US, Nov19 (Symposium talk)
- Pollard AN*, Zhou FH, Zhong JH, Oliver J and Zhou XF. (2007) Intranasal delivery of ciliary neurotrophic factor to the rat brain along olfactory pathways. Society for Neuroscience (SfN) 37th annual meeting,. San Diego, Calif, US, Nov 3-7. (Poster presentation)
- Pollard AN*, Zhong JH, Wang YJ and Zhou XF. (2006) Adenoviral Vector Gene Delivery to the Brain via the Olfactory Sensory Receptor Neurons. Australian Neuroscience Society (ANS) 26th annual meeting, Sydney, Australia, Jan 31-Feb 3. (Poster presentation)
- Wang YJ*, Pollard AN, Zhou HD, Zhong JH, and Zhou XF. (2006) Characterization of an Alzheimer's Disease Mouse Model Bearing Mutant Genes of Amyloid Precursor Protein and Human Presenilin 1. Australian Neuroscience Society (ANS) 26th annual meeting, Sydney, Australia, Jan 31-Feb 3. (Poster presentation)
- Pollard AN*, Li L, Zhou FH, Zhong JH, Wu XB and Zhou XF. (2005) AAV-Mediated Gene Delivery of GFP to the Brain via the Olfactory Pathway. Australian Neuroscience Society (ANS) 25th annual meeting, Perth, Australia, 30 Jan - 2 Feb 2005. (Symposium talk)
- * Presenting author.

GENERAL ABBREVIATIONS

Abbreviation	<u>Full name</u>
AAV	adeno associated virus
ABC	avidin-biotin conjugate
AdV	adenovirus
ALS	amyotrophic lateral sclerosis
BBB	blood brain barrier
BCA	bicinchoninic acid
BSA	bovine serum albumin
cDNA	complementary DNA from mRNA
cm, mm, μm	centimetre, millimetre, micrometre
CNS, PNS	central nervous system, peripheral nervous system
rhCNTF	recombinant human ciliary neurotrophic factor
CO_2	carbon dioxide
CPM/mg	counts per minute/ milligram
CSF	cerebral spinal fluid
DAB	3'3'-diamino-benzidine tetrachloride
DAPI	4',6-diamidino-2-phenylindole
DNA	deoxyribonucleic acid
ECL	enhanced chemiluminescence
EDTA	ethylenediaminetetraacetic acid
EGFP	enhanced green fluorescence protein
H&E	haematoxylin & eosin
h, min, s	hour, minute, second
H_2O_2	hydrogen peroxide
HCl	hydrogen chloride
HRP	horse-radish peroxide
IGF	insulin growth factor
ICV, IM, IN, IPa, IT, IV	intracerebroventricular, intramuscular, intranasal,
	intraparenchymal, intrathecal, intravenous
IL	interleukin
KDa	kilo daltons
Kg, g, mg, µg, ng	kilogram, gram, milligram, microgram, nanogram

L, ml, µl	litre, millilitre, microlitre
M, mM, µM, nM	molar, millimolar, micromolar, nano molar
mRNA	messenger ribonucleic acid
MW	molecular weight
NaCl	sodium chloride
NaNO ₃	sodium nitrate
NaOH	sodium hydroxide
NHS	normal horse serum
NGF	nerve growth factor
°C	degrees celsius
OMP	olfactory marker protein
ORN	olfactory receptor neuron
OZR	obese Zucker rat
PAGE	polyacrylamide gel electrophoresis
PB	phosphate buffer
PBS	phosphate buffered saline
PBST	PBS + 0.1% tween-20
RT-PCR	reverse transcription polymerase chain reaction
pН	hydrogen ion concentration
pSTAT3	phospho- signal transduction and activation of
	transcription 3
RT	room temperature
SD	Sprague Dawley
SDS	sodium dodecylsulphate
pSTAT	phosphorylated signal transduction and activation of
	transcription
TBS	tris buffered saline
TCA	trichloracetic acid
WGA	wheat germ agglutinin
ZnSO ₄	zinc suphate

BRAIN REGION NOMENCLATURE

<u>Abbreviation</u>	<u>Full name</u>
AOB	accessory olfactory bulb
AOV	anterior olfactory nucleus, ventral part
ArcM	arcuate nucleus, medial part
CA2	field CA2 of hippocampus
CA3	field CA3 of hippocampus
Cb	cerebellum
CPu	caudate putamen (striatum)
DEn	dorsal endopiriform cortex
DG	dentate gyrus
EPL	external plexiform layer of olfactory bulb
GL	glomerular layer of olfactory bulb
GCL	granular cell layer of olfactory bulb
IC	inferior colliculus
IPL	internal plexiform layer of olfactory bulb
LC	locus coeruleus
LEnt	lateral entorhinal cortex
LH	lateral hypothalamus
MCL	mitral cell layer of olfactory bulb
MOB	main olfactory bulb
ONL	olfactory nerve layer
Pr5VL	principal sensory trigeminal nucleus, ventrolateral part
PVP	paraventriular thalamic nucleus, posterior part
sp5	spinal trigeminal tract
VCA	ventral cochlear nucleus, anterior part
VMH	ventromedial hypothalamic nucleus
VPL	ventral postereolateral thalamic nuclei