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Abstract 

In many control systems, sensors and actuators are integral parts, which can be utilized to detect 

the change of the system and take the needful action to achieve the control purpose. However, 

sensors and actuators have their own service life and can be damaged by various factors, which 

results in financial loss and casualties. These phenomena, when sensors and actuators stop 

working, are called sensors and actuators faults.  

In this thesis, a Kalman Filter based Fault Detection and Diagnosis (FDD) scheme is proposed 

to detect and isolate different actuator faults for a given three-input three-output plate structure 

resonant system. This system can be used in many areas, such as doing operation on a 

emergency vehicle. The mathematical model of the given resonant system is first modelled and 

obtained by using open loop transfer function method and then changed into a discrete-time 

State Space Representation (SSR) model for further design purpose.  

By setting the initial estimated state and its corresponding estimation error covariance, the 

following estimated state can be calculated by using the real-time control signals and measured 

outputs using the technique of Kalman filter. To utilize the Kalman filter technique for FDD 

purpose in a resonant system, the estimated outputs  can be calculated using the estimated state. 

Next, a set of corresponding output error residuals can be generated by comparing the 

difference between the estimated outputs and measured outputs. A normalization algorithm 

calculating the RMS value of the corresponding residuals is applied to determine a threshold 

value to identify the location of actuator faults occurred in the system.  

The concept of Kalman filter technique is first tested in an artificial system. Simulation results 

indicate that the estimated states generated by the Kalman filter can quickly approach the actual 

state values and track the actual state values all the time. The given 3*3 plate structure system 

with one fault is tested via simulation in MATLAB SIMULINK, which validates the proposed 

Kalman filter based FDD design. In the FDD design, four identical Kalman filters are 

constructed to form a Kalman filter bank for no fault, as well as actuator 1, 2 and 3 fault cases 

respectively. The estimated output of each case is computed by using the Kalman filter bank 

estimated state. The residuals, which are produced using estimated outputs and measured 

outputs, are analysed for the single fault detection and diagnosis. Then multiple actuator fault 

cases are introduced to the plate structure system and tested via MATLAB SIMULINK. The 
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simulation results show that the corresponding multiple faults are detected successfully by 

analysing the output residuals using the proposed normalization algorithm. 

After the proposed Kalman filter based FDD scheme is validated in simulation, it is then tested 

in a real-time experiment. Two discrete-time system models, a Kalman filter bank and a 

normalization algorithm are built to construct the experimental Kalman filter FDD scheme. 

One of the discrete-time system models is to produce the discrete-time measured outputs 

without fault, which is used for fault detection. The other is introduced to compute the 

measured outputs (possible with fault), which is used for fault diagnosis. The residuals 

computed in the Kalman filter bank for both single actuator fault cases and multiple actuator 

faults cases are generated. A set of residual data is recorded, and its RMS value is compared 

with the set threshold constant. The result verifies that all the actuator fault cases are isolated 

successfully.  
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Chapter 1 : Introduction 

1.1 Thesis background  

The thesis background is the Multi-Input Multi-Output (MIMO) vibration control system and 

equipment, in which the in-depth system research work is carried out. For the fault FDD of the 

vibration control system, a new solution is proposed by applying the Kalman filter. 

In many vibration control systems, once a fault occurs, it is likely to cause catastrophic damage 

in the system due to a resonance effect. In order to improve the safety and reliability of the 

system, it is necessary to monitor the fault and determine the fault location in real time during 

the operation of the vibration system. This will allow for a certain period of time for hardware 

replacement and emergency maintenance. Therefore, FDD technology is especially important 

in vibration control. 

Although FDD technology has achieved relatively fruitful research results through the decades 

of its development, the technology of FDD is still not mature. First of all, many research objects 

are nonlinear systems with diversity and complexity. Secondly, the system has some external 

noise and unknown input signals in addition to the known control inputs; these have made FDD 

research more difficult. 

1.2 Research purpose and significance 

Part of the vibration system state cannot be measured directly for a number of reasons. At this 

time, the state of the system can be predicted by a state estimator. The core task of a state 

estimate is to design filters. Among linear systems with Gaussian noise, the Kalman filter is 

undoubtedly the optimal estimator when compared to other filters. Upon knowing the estimated 

state of the system, it can be converted into an estimated measurement by the output equation 

of the vibration system. Comparing the estimated measurement with the actual measurement, 

it is possible to know whether the vibration system is in a normal state. The Kalman filter-

based FDD can effectively detect and locate system faults in real time, which greatly helps the 

practical application of many vibration systems. 

1.3 The outline of the thesis 

In this project, a Kalman filter based FDD method is designed and demonstrated for a MIMO 

mechanical plate structure with three pairs of sensors and actuators.  
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In Chapter 2, an overall literature review is presented. FDD development and fault   

classifications are introduced in detail as well as different FDD approaches.  

In Chapter 3, the features and characteristics of the MIMO mechanical plate structure, of this 

project, is introduced. Based on the theoretical analysis and physical experiments, the plant 

structure system is modelled in a discrete-time SSR.  

In Chapter 4, the Kalman filter based FDD method is discussed as the core technology of the 

FDD approach adopted in this thesis. The structure of the discrete-time Kalman filter which 

forms the basic concept in the fault detection approach is introduced firstly. Then a simple 

example for understanding Kalman filter principle is discussed using MATLAB SIMULINK. 

Lastly, the method to apply the Kalman filter in FDD is introduced.  

In Chapter 5, The Kalman filter based FDD method is verified in both simulation and 

experiment.  The parameter values and simulation approach is discussed in MATLAB 

SIMULINK. The comparison and analysis is demonstrated through experiment by using 

dSPACE software.  

In Chapter 6, meaningful conclusions are drawn based on the achievement of the thesis and 

future works are suggested to develop the Kalman filter based FDD method. 
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Chapter 2 : Literature Review 

In this chapter, an overall literature related to FDD is reviewed. FDD development is firstly 

discussed to explain the FDD importance and its history. Next the fault classifications are 

introduced to illustrate the research object in this thesis. In the end, different FDD approaches 

are discussed to obtain the best choice for this project.  

2.1 FDD development 

Modern control systems have been introduced into different complex systems, such as robotic 

systems, radar systems, automotive systems, and so on, resulting with the control algorithms 

becoming more and more sophisticated. These control systems are based on different kinds of 

electronic components, which may cause a fault with the control systems. In high-level 

intelligent and automated systems, the fault process can be extremely rapid. For some safety-

critical systems, the fault consequences can result in loss of life, economic loss and 

environmental damage. [1] To avoid the irreversible tragedy and improve the safety and 

reliability of the system, the technology of FDD is used to detect the reason, position and 

damage degree during the system processing. 

Since about the 1970s, FDD has gained a rising worldwide consideration both in theory and 

application. Although FDD technique has developed over 40 years, the growing demand for 

safety, reliability, maintainability, and survivability in control systems has drawn abundant 

research achievements. [2] In 1996, Professor Frank (Duisburg University, German) assorted 

FDD into three basic categories, which are the knowledge and knowledge-based methods, 

analytical model-based methods and signal based methods.[3] Furthermore, each group 

includes more detailed plans, as shown in Figure 2.1. In 2003, Professor Venkata Subramanian 

(Purdue University, USA) classified FDD methods as quantitative model-based methods, 

qualitative model-based methods and process history.[4] As the development of artificial 

intelligence (AI) has increased at an exponential rate, the adoption of AI technology in 

monitoring, control, and diagnosis for FDD systems has also increased.[5] 
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Figure 2.1 Methods for Fault Detection in Control Systems [6] 

In general, the following functions should be distinguished in FDD systems: [7] 

(a) Monitoring: for tolerance purpose, the FDD system should check measurable variables in 

real time, and alarms should be generated all the time. 

(b) Automatic protection: the monitoring function automatically activates an appropriate 

countermeasure regarding a dangerous process state. 

(c) Supervision with fault diagnosis: based on measured variables, the FDD system can 

generate the changing feature and symptoms, detect the possible fault, and make the reasonable 

decision for counteractions. 

The classic FDD systems based on supervision methods (a) and (b) have a tremendous 

advantage in simplicity and reliability. However, these two methods require a mass of 

information to generate changes then react to the fault. Besides, in some specific fields, FDD 

system with method (a) or (b) is not feasible. Therefore FDD system with method (c) is needed, 

especially for satisfying the following requirements. 

(1) Timely detection of small faults in germination or in an unexpected stage; 

(2) FDD in sensors, actuators, and process components; 

(3) FDD in closed-loop systems; 

(4) Process supervision in transient states.  

Although FDD technology is one of the most famous research topics, it is still immature and 

can be further developed. Firstly, the linear and nonlinear systems have their complexity and 

diversity. Secondly, the control systems typically have interrupt noise and unknown input 

signals as well as known control signals. Besides, the introduction of the Internet in recent 
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years comes up with plenty of new issues, for example, packet loss, time delay, disorder, 

digitalisation, and so on. All of these bring further difficulties in FDD research. Therefore this 

thesis introduces a particular FDD approach and its application in detail. 

2.2 Faults classification 

Faults in dynamic systems mean the aberration of the system structure or the disparate system 

parameters forming the unusual situation. As the structure shown in Figure 2.2, the faults can 

be blocking of the actuator, loss of a sensor, or  system component disconnection. Faults can 

change the interacting plant components or the plant and the controller interface. [8] Hence, 

faults are the unexpected elements that can improve system performance and cause degradation 

or a loss of system function. 

 

Figure 2.2 A general structure of FDD 

Usually, the fault classification can be sensor faults, actuator faults, and plant component faults 

(system faults). 

2.2.1 Sensor faults 

Sensor fault, also named sensor data fault, is one of the major faults in FDD. The plant 

properties are not affected by the sensor fault, but the sensor readings have abundant errors. In 

the real project, three types of sensor faults often are observed: single-sample spikes sensor 

readings, longer duration noisy readings, and anomalous constant offset readings. [9] 

Numerous studies show that sensor fault frequently results in severe consequences for safety 

and plants operation. Therefore, it is essential to study sensor faults to guarantee the safety and 

the reliability of systems. [10] 
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2.2.2 Actuator faults 

Actuator fault means the fault of moving or controlling components in the system. Such faults 

cannot affect the plant properties but can make the controller influence to be interrupted or 

modified. An actuator fault is a type of system input failure. It may occur in the systems due to 

abnormal operation or aging of material. Actuator faults can be represented by single or 

multiple faults that can change the system behaviour, leading to degradation or even instability. 

[11] 

2.2.3 System component faults 

System component faults are the other faults different from sensor faults and actuator faults.  

They can be caused by plant structure, system modelling or other reasons. These kinds of faults 

can change the system dynamical input/output properties. System component faults are the 

most sophisticated faults because the faults can occur anywhere in the system.  

In this thesis, the FDD method only focuses on the actuator faults. 

2.3 FDD methods 

With decades of development, there are a great diversity of FDD methods. These methods are 

challenging problems in many disciplines such as aerospace engineering, nuclear engineering, 

chemical engineering, and automotive systems. [12] In general, FDD methods can be divided 

into two classes of redundancy; hardware redundancy and analytical redundancy. 

 

Figure 2.3 Illustrations of the concepts of hardware redundancy and analytical redundancy for 
FDD 
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2.3.1 Hardware redundancy 

Hardware redundancy means to compare repetitive signals generated by various hardware, 

such as measurements of the same signal given by two or more physical copies of a hardware 

component. Hardware redundancy may be the only way to improve the dependability of a 

system.  

Hardware redundancy has three classic types, which are passive, active, and hybrid. Without 

any information about action from the system, passive redundancy can achieve FDD by 

masking the faults. Active redundancy can acheieve fault tolerance with the detected faults.  

After FDD, the actions are taken to remove the faulty component from the system. Active 

techniques must stop the system to replace the system fault component. Hybrid redundancy 

combines the two approaches that are mentioned above. Hybrid redundancy can fix system 

faults without system downtime. 

1. Passive redundancy 

Instead of detecting faults, the passive redundancy approach masks faults to acheive 

redundancy. This method only allows the correct values to perform as the system output 

regardless of the fault percentage. Passive redundancy techniques are normally used in 

applications with high-reliability. The high-reliability system does not accept any interruptions 

and it is impossible to be repaired. The high-reliability system examples include an air force 

combat control system, cardiac pacemaker, and deep-space electronics. 

2. Active redundancy 

Active redundancy method detects the faults in the system, then takes appropriate action 

regarding recovering the fault and makes the system return to the original state. This is usually 

applied in high availability systems, for example, transaction processing systems and time-

shared computing systems. The high availability system allows the temporary fault to happen, 

which can be detected by active redundancy. However, these faults can be recovered quickly, 

and the system can return to a normal operating state.  

3. Hybrid redundancy 

Hybrid redundancy takes advantages from passive and active approaches and makes the better 

choice to tolerate the faults among the mentioned methods. It uses fault masking when the 

system has unpredicted faults that can bring more problems to the system. While the fault 
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tolerant method is also used when the unwanted faults can be fixed. Hybrid redundancy is 

normally used in systems, which have very high safety requirements. Examples of these kinds 

of systems are chemical process control systems, nuclear power plants, ordnance 

manufacturing systems, medical manufacturing systems, aerospace systems, traffic systems, 

and so on. [13] 

Hardware redundancy also has its disadvantages: increasing weight, size, power consumption, 

cost, design time, fabrication and testing time. To achieve the best result, a few choices must 

be examined before incorporating hardware redundancy into a system.  

2.3.2 Analytical redundancy 

Analytical redundancy builds the mathematical model of the system and uses different 

algorithms to estimate the system state to achieve FDD. The analytical redundancy approach 

does not need additional hardware to perform its function, which can save money and time 

compared to the hardware redundancy. However, the target system is complicated by noise, an 

uncertain model, and unexpected disturbances, which makes the analytical redundancy 

approach more difficult to achieve. The systematic redundancy approach is harder to design 

compared to the hardware redundancy. 

 

Figure 2.4 Analytical redundancy 

There are many FDD methods of analytical redundancy, only several of the most popular 

methods are introduced in the following paragraph. 
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1. The parameter estimation 

The parameter estimation means the processes use the sampling data to estimate the required 

parameters. The parameter estimation is a method, which provides tools for the efficient usage 

in sampling data to estimate the constants appearing in the mathematic model, and for helping 

to model the system. In a different situation, the modelled systems have their character, which 

can be algebraic, differential, integral equations, or their associated conditions. Depending on 

the system, the estimated parameter may or may not have a direct physical significance. 

The parameter estimation can also be applied to the opposite problem. By knowing the initial 

condition, the boundary, and other parameters of the system, the parameter estimation can find 

the partial differential equations of the unknown systems. During the process, not all the 

constants of the system must need to be known. The constants that need to be estimated or used 

to find the system characters in parameter estimation are also called parameters. [14] 

The parameter estimation can be divided into Rank Regression (or Least Squares), Maximum 

Likelihood Estimation and Bayesian Estimation Methods.  

2. The Parity relation 

Another popular approach of analytical redundancy is the Parity relation. This method is firstly 

used to detect sensory faults in military control systems. Later, academics used it to detect not 

only sensor faults but also actuator faults. A lot of experiments show that the Parity relation is 

only suitable for linear systems. In linear systems, the Parity relation can detect the unexpected 

fault in a concise period and report the exact fault location. This method can easily handle 

systems with noise, unknown disturbance, and uncertain model. The most suitable situation is 

the single output system where the observer-based method is impractical.  

In 2007, academics have tried to apply the technique to the input-output model in nonlinear 

systems by using the TS fuzzy models.[15] In 2011, another group applied the Parity space 

approach to the fault detection and isolation based on nonlinear analytical reduncancy. [16] 

These examples show the ablility of the Parity relation in nonlinear systems. 

3. The Beard-Jones filter 

Beard and Jones first devised the Beard-Jones filter for fault diagnosis in real time systems. 

This filter is a state estimator like device, which can be only used in fault diagnosis. The core 

of the Beard–Jones fault detection filter is a Luenberger observer, which is designed in a unique 
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way that results in an “error” system. In the Luenberger observer, the faults model treats the 

fault as part of the input, and has a diagonal stable transfer function matrix.  [17] 

This approach does not rely on prior assumptions about the mode of component failure. The 

Beard-Jones filter is an individual observer that accentuates the effect of failure on the 

innovation (or prediction error) of the observer. The observer gain is chosen to detect the 

innovation vector in the output space, which can be used to identify the failed component. [18]  

The Beard-Jones filter is also designed for the linear system at the beginning. However, more 

and more theoretical developments in the Beard-Jones filter tried to adjust the filter to nonlinear 

applications. 

4. The Kalman filter 

In 1960, the Hungarian born American mathematician Kalman presented a new filter approach: 

The Kalman filter, which can be quickly calculated by the computer. 

(1) The basic Kalman filter (KF) 

The KF, also known as a linear quadratic estimation, is an algorithm based on a description of 

SSR with signals and noise. This filter requires that the system state equation and the output 

equation are the linear equation. The system noise and the measurement noise in the system 

are Gaussian white noise and independent of each other. By knowing all statistic features, the 

KF filter is the minimum variance unbiased estimator for the dynamic system unknown state. 

[19]  

The KF only needs the information of current measurement and previous estimation to 

calculate the current estimation by using the existing model. [20] This algorithm has  many 

advantages. 

(a) This algorithm brought the state variable into filter theory, along with solving filter 

problems of time-varying, multivariable, and non-stationary time series. 

(b) The KF is a recursive algorithm that can be easily calculated by the computer. 

(c) The KF does not need to store the historical data and is convenient for real-time processing. 

[21] 

The linear KF is sufficiently mature with plentiful applications, for example, the Apollo Moon-

landing project. The Kalman filter is an optimal filter in the linear system and can be easily 
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achieved in many systems. In this thesis, the system is modelled to a linear system that makes 

the Kalman filter the best choice. 

(2) The extended Kalman filter (EKF) 

In the next decades, academics tried to find a better way to apply the Kalman filter in the 

nonlinear system. One of the approaches is assuming all the changes are quasi-linear while 

ignoring high order terms. The first order Taylor series expansion is used to approximate the 

nonlinear systems in this method. [22] The EKF is an excellent estimator in nonlinear systems 

and has the outstanding robustness to model inaccuracy, parameter variations, measurement 

noise, and system uncertainties. [23] This filter makes a more natural algorithm, more 

convenient operation and at a cheaper cost. Therefore, it is widely used in industrial systems. 

However, it still has some theory limitations, which are discussed in the following: 

(a) When the systems have very high order items, the EKF method will increase the system 

error due to ignoring high order items with Taylor series expansion. 

(b) If the initial estimate of the system state is incorrect, or if the modelling system is wrong, 

the system will quickly diverge. [24] 

(c) When the system achieved the stable state, EKF will lose the ability to track saltation. 

So EKF is designed as a new approach for nonlinear systems, but its shortages limit its 

application in more complicated and sensitive systems. 

(3) The unscented Kalman filter (UKF) 

To address the approximation issues of the EKF, a new FDD method, Julier and Uhlman came 

up with the unscented Kalman filter (UKF). This method is based on the unscented 

transformation, which can change the average value and covariance by sigma points. [25] The 

algorithm is not restricted to Gaussian distributions and based on the intuition that is easier to 

approximate a probability distribution than it is to approximate an arbitrary nonlinear function 

or transformation. [26] Compared with the EKF, the UKF has a lot of advantages: 

(a) The UKF does not need to calculate the system's Jacobi matrix, which makes the process 

easier. 

(b) The UKF is approximating a probability distribution rather than approximating an arbitrary 

nonlinear function or transformation, which makes the system estimate accuracy higher than 

the 1st order in Taylor series. 
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(c) The UKF can be used to solve the systems with Gaussian noise and has wider application. 

(d) The UKF uses the certainty-sampling method, which makes the filter accuracy improved. 

Overall, the UKF method is the better FDD method for nonlinear systems comparing with the 

EKF method. For further research of this thesis, the UKF method is another choice in the 

nonlinear system model. 
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Chapter 3 : System Identification of Plate Structure 

To analyse and control a complex dynamic system, it is necessary to build a system model that 

shows the dynamic system as a mathematical model. The mathematical model is a simplif ied 

dynamic system, which contains all the essential information of the original system. 

In this chapter, the method to build the existing dynamic system, the plate structure, into a 

mathematical model is discussed in detail. Firstly, the MIMO plate structure feature and 

characteristics are introduced in detail for analysing the dynamic model. Secondly, the 

theoretical method is introduced to analyse and build the transfer function between inputs and 

outputs. This theoretical method aims to get the general mathematic transfer function for 

describing the physical systems. The experiment is conducted to get the system parameters by 

using the ModalVIEW software. The system frequency response function (FRF) curve can be 

observed to calculate the system parameters, such as model shapes, natural frequency and 

damping ratios, for building the transfer function model. After that, the system transfer function 

is changed into a continuous-time SSR to apply the Kalman filter in FDD. The SSR can express 

the system relationships in detail, for example, position, velocity and acceleration. Finally, the 

continuous-time SSR is transformed to a discrete-time SSR by using the zero hold 

discretization method. 

3.1 Plate structure system components 

Figure 3.1 shows the MIMO mechanical plate structure that is used in FDD. This plate structure 

includes a base plate, a top plate, a disturbance transducer, three pairs of sensors on the top 

plate, and three pairs of actuators between top plate and base plate.  
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Figure 3.1 The MIMO mechanical structure 

The whole system including sensors, actuators, and top plate is built on one side of the base 

plate. The three sensors, which are accelerometers, can generate the amplitude of vibration 

signals. The transducer 1, 2 and 3 are used as the three actuators that can operate the controlled 

signals to reduce the vibration. The top plate is the main controlled object, which mounts the 

three actuators by screws. The control aim is to keep the top plate motionless. At the other side 

of the base plate, the disturbance transducer is used to generate artificial unknown disturbance 

to the system.  

As mentioned above, the system’s function is to reduce the top plate vibration from the artificial 

disturbance. The system’s working process is described in the block diagram of Figure 3.2. 

 

Figure 3.2 The MIMO close-loop system block diagram 
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In the block diagram, when the disturbance transducer starts to generate unknown vibration 

disturbance, the base plate will be influenced and transmit the vibration to three actuators by 

the connecting screws. Though the vibration transmission from the actuator, the top plate will 

no longer be stationary and start to vibrate at the same frequency of the disturbance signal. 

Then the sensors on the top plate sense the vibration amplitude and send the signals to the 

controller, which contains the control law to produce the controlled signals. Finally, the 

actuators use the controlled signals to cancel the vibration on the top plate. 

3.2 Theoretical open-loop transfer function for the plate structure 

3.2.1 The general transfer function for the open-loop system 

For a general open-loop system, the transfer function can be expressed as the following 

equation. 

 𝒀𝒀(𝑠𝑠) = 𝑮𝑮(𝑠𝑠) × 𝑼𝑼(𝑠𝑠) (3.1) 

Where 𝒀𝒀(𝑠𝑠) can either be a variable or a vector and is the output signal of the system, 𝑼𝑼(𝑠𝑠) 

can either be a variable or a vector and is the input signal of the system, and 𝐆𝐆(𝑠𝑠) can either be 

a scalar or a matrix and is the transfer matrix of the system. 

3.2.2 The plate structure transfer function for the open-loop system 

The plate structure system shown in Figure 3.3 is a three-input and three-output system. To get 

the transfer function of the plate structure, an input signal is introduced to each actuator 

separately. When one of actuator starts to vibrate by using the input signal, the three sensors 

can detect output signals at the same time. So the transfer function between single actuator and 

single sensor can be derived as following. 

 𝒀𝒀𝑛𝑛(𝑠𝑠) = 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) × 𝑼𝑼𝑛𝑛(𝑠𝑠) (3.2) 

Where 𝒀𝒀𝑛𝑛(𝑠𝑠) is the single sensor output, the 𝑼𝑼𝑛𝑛(𝑠𝑠) is the single actuator input, and the 

𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) is the transfer function between the single actuator input and single sensor output. The 

number 𝑛𝑛  ranges from 1 to 3 and represents the sensor 1, 2, and 3 respectively, and the 

number 𝑚𝑚 ranges from 1 to 3 and represents the actuator 1, 2, and 3 respectively. 

For example, if the transfer function of the plate structure system is: 

 𝒀𝒀1(𝑠𝑠) = 𝐆𝐆12(𝑠𝑠) × 𝑼𝑼2(𝑠𝑠) (3.3) 
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This represents the transfer function between input 1 and output 2.  

 

Figure 3.3 Plate layout for open-loop system 

The plate layout related to the plate structure open-loop system modelling also describes the 

relationship between inputs and outputs. For the whole plate structure system, the system 

transfer function can be derived as: 

 �
𝒀𝒀1(s)
𝒀𝒀2(s)
𝒀𝒀3(s)

� = �
𝐆𝐆11(s) 𝐆𝐆12(s) 𝐆𝐆13(s)
𝐆𝐆21(s) 𝐆𝐆22(s) 𝐆𝐆23(s)
𝐆𝐆31(s) 𝐆𝐆32(s) 𝐆𝐆33(s)

� × �
𝑼𝑼1(s)
𝑼𝑼2(s)
𝑼𝑼3(s)

� (3.4) 

So for the open-loop system, the transfer matrix 𝐆𝐆(𝑠𝑠) for the plate structure is a 3*3 matrix, 

Which means that the measured output signal in each sensor is influenced by three actuators at 

the same time and the input signal in each actuator impacts the three measured output signals 

at the same time. The relationship between three sensor inputs and three actuator outputs is 

also represented in the block diagram below. 

 

Figure 3.4 MIMO control system block diagram 

The plate structure system has been clearly explained above and its transfer function is derived 

to model the system.  To have a better understanding of the system transfer function, theoretical 

analysis is introduced to delineate the transfer matrix 𝐆𝐆(𝑠𝑠). 
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3.3 The theoretical analysis of the system transfer matrix 

For each transfer function between the single actuator input and single sensor output, the 

transfer function can be written as the following equation [27]. 

 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) = �
φ𝑛𝑛
𝑘𝑘φ𝑛𝑛

𝑘𝑘

𝑠𝑠2 + 2Ϛ𝑛𝑛𝑛𝑛𝑘𝑘 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 𝑠𝑠+ 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 2

∞

𝑘𝑘=1

= �
φ𝑛𝑛𝑛𝑛
𝑘𝑘

𝑠𝑠2 + 2Ϛ𝑛𝑛𝑛𝑛𝑘𝑘 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 𝑠𝑠+𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 2

∞

𝑘𝑘=1

 (3.5) 

Where 𝑘𝑘 is the number of the mode, φ𝑛𝑛
𝑘𝑘 and φ𝑛𝑛

𝑘𝑘  are mode shapes related to the actuator 𝑛𝑛 and 

the sensor 𝑚𝑚 respectively, φ𝑛𝑛𝑛𝑛
𝑘𝑘  is integrated by φ𝑛𝑛

𝑘𝑘 and φ𝑛𝑛
𝑘𝑘  and is the mode shape between the 

sensor 𝑛𝑛 and the actuator 𝑚𝑚, Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  is the damping ratio between the sensor 𝑛𝑛 and the actuator 

𝑚𝑚, and 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  is the nature frequency between the sensor 𝑛𝑛 and the actuator 𝑚𝑚. 

The representation of the transfer function between the single actuator input and single sensor 

output is critical for building the system. The parameters observed in the experiment are mode 

shape, damping ratio, and nature frequency. In the next section, the experiment’s method and 

results are given to complete the system transfer function. 

3.4 Experiment of transfer function modelling 

This experiment aims to produce the system transfer function parameters, such as mode shape, 

damping ratio, and nature frequency. The physical experiment arrangement is shown in Figure 

3.5. 
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Figure 3.5 The arrangement of the physical system 

3.4.1 Open-loop transfer function modelling method. 

In the experiment, the signal generator produces a sinusoidal sweep signal, which has a 

frequency ranging from 20 Hz to 100 Hz, and sends it to each actuator respectively. The 

sinusoidal sweep signal is used as the input signal 𝑼𝑼1(𝑠𝑠) , 𝑼𝑼2(𝑠𝑠) , and 𝑼𝑼3(𝑠𝑠)  in the 

corresponding actuator 1, 2, and 3. When the sinusoidal is inserted to one of the actuators, the 

three sensors can detect the output signals 𝒀𝒀1(𝑠𝑠), 𝒀𝒀2(𝑠𝑠), and 𝒀𝒀3(𝑠𝑠) at the same time. The data 

acquisition system (NI DAQ) recodes the sinusoidal sweep signal, and three output signals, 

and sends them to ModalVIEW software for computing the frequency response function. 

 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) =
𝒀𝒀𝑛𝑛(𝑠𝑠)
𝑼𝑼𝑛𝑛(𝑠𝑠) (3.6) 

3.4.2 The experiment result parameters 

As shown in Figure 3.6, the experiment shows each transfer function 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) is a complicated 

function that roughly has 11 modes. To simplify the transfer function 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠), the first three 

modes are chosen to calculate their parameters, because they have the most significant impact 

on the system. 
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Figure 3.6 Measured FRF curves for the open-loop real system 

The ModalVIEW software can provide a Multiple Degree of Freedom (MDOF) polynomia l 

curve fitting method to compute the transfer function parameters in all the modes. The first 

three modes’ parameters of each transfer function between single sensor and single actuator 

are shown in Table 1. 

Table 1. The first three mode parameters of the transfer function model  

G11(s) 

Mode Mode shape φnm
k  Damping ratio Ϛnmk  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.15363842 0.01893171 145.907272 

2 0.41430841 0.01653821 182.852866 

3 0.19853058 0.01802016 222.785222 

G21(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.11828148 0.017293 146.334548 

2 0.18811558 0.0102591 184.371104 

3 0.34159332 0.01584925 221.993378 

G31(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.10027307 0.01737686 146.302265 
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2 0.1920355 0.01125181 183.906556 

3 0.27221838 0.01641266 221.994835 

G12(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.07290046 0.01208586 146.205623 

2 0.17558329 0.0090579 181.912795 

3 0.34610302 0.02018604 221.391273 

G22(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.05076275 0.01225517 145.738971 

2 0.18305818 0.01036957 183.839301 

3 0.61395187 0.01988154 221.280048 

G32(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.04862492 0.01229378 145.757852 

2 0.15373242 0.01063791 183.606333 

3 0.51509689 0.01994371 221.295643 

G13(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.04698852 0.0108145 145.234739 

2 0.07202531 0.00769278 184.634413 

3 0.18801199 0.01680347 222.570149 

G23(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.03451708 0.0108145 145.234739 

2 0.10226404 0.00769278 184.634413 

3 0.35679415 0.01680347 222.570149 

G33(s) 

Mode Mode shape φ𝑛𝑛𝑛𝑛
𝑘𝑘  Damping ratio Ϛ𝑛𝑛𝑛𝑛𝑘𝑘  Natural frequency (rad/s) 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘  

1 0.02300727 0.00939594 144.835311 

2 0.07687854 0.00754164 184.843744 

3 0.25701579 0.01651211 222.45161 
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By knowing all the parameters of the first three modes, the 3*3 plant structure transfer matrix 

can be derived by using theoretical analyse of the system transfer function. [28] 

 The system transfer function model is completed as following. 

 �
𝒀𝒀1(s)
𝒀𝒀2(s)
𝒀𝒀3(s)

� = �
𝐆𝐆11(s) 𝐆𝐆12(s) 𝐆𝐆13(s)
𝐆𝐆21(s) 𝐆𝐆22(s) 𝐆𝐆23(s)
𝐆𝐆31(s) 𝐆𝐆32(s) 𝐆𝐆33(s)

� × �
𝑼𝑼1(s)
𝑼𝑼2(s)
𝑼𝑼3(s)

� (3.7) 

And 

 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) = �𝐆𝐆𝑛𝑛𝑛𝑛𝑘𝑘 (𝑠𝑠)
3

𝑘𝑘=1

 (3.8) 

Where 𝐆𝐆𝑛𝑛𝑛𝑛𝑘𝑘 (𝑠𝑠) is the transfer function between the single actuator input and single sensor 

output at mode 𝑘𝑘, where 𝑘𝑘 can be 1, 2, and 3 representing different modes. 

3.5 Construction of continuous-time SSR 

The SSR can describe many processes in the real world. It is a mathematical model of the 

system, which helps to control the process and observe information by using mathematical 

tools. For the system mathematical analysis and the FDD purpose, the system transfer function 

representation needs to transform to a continuous-time SSR firstly. Then the continuous-time 

SSR is transformed to a discrete-time SSR by using the zero-order hold discretization method. 

As the system transfer function has been worked out before, the transfer function of the 

measurement output for each sensor can be produced individually.  

For sensor 1: 

 
𝒀𝒀1(𝑠𝑠) =  [𝐆𝐆𝟏𝟏𝟏𝟏𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟏𝟏𝟏𝟏𝟐𝟐 (𝑠𝑠) + 𝐆𝐆𝟏𝟏𝟏𝟏𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼1(𝑠𝑠) + [𝐆𝐆𝟏𝟏𝟐𝟐𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟏𝟏𝟐𝟐𝟐𝟐 (𝑠𝑠)

+𝐆𝐆𝟏𝟏𝟐𝟐𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼2(𝑠𝑠) + [𝐆𝐆𝟏𝟏𝟑𝟑𝟏𝟏 (𝑠𝑠) + 𝐆𝐆𝟏𝟏𝟑𝟑𝟐𝟐 (𝑠𝑠) + 𝐆𝐆𝟏𝟏𝟑𝟑𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼3(𝑠𝑠) 
(3.9) 

For sensor 2: 

 
𝒀𝒀2(𝑠𝑠) = [𝐆𝐆𝟐𝟐𝟏𝟏𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟐𝟐𝟏𝟏𝟐𝟐 (𝑠𝑠) +𝐆𝐆𝟐𝟐𝟏𝟏𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼1(𝑠𝑠) + [𝐆𝐆𝟐𝟐𝟐𝟐𝟏𝟏 (𝑠𝑠) + 𝐆𝐆𝟐𝟐𝟐𝟐𝟐𝟐 (𝑠𝑠)

+𝐆𝐆𝟐𝟐𝟐𝟐𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼2(𝑠𝑠) + [𝐆𝐆𝟐𝟐𝟑𝟑𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟐𝟐𝟑𝟑𝟐𝟐 (𝑠𝑠) + 𝐆𝐆𝟐𝟐𝟑𝟑𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼3(𝑠𝑠) 
(3.10) 

For sensor 3: 

 
𝒀𝒀3(𝑠𝑠) = [𝐆𝐆𝟑𝟑𝟏𝟏𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟑𝟑𝟏𝟏𝟐𝟐 (𝑠𝑠) +𝐆𝐆𝟑𝟑𝟏𝟏𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼1(𝑠𝑠) + [𝐆𝐆𝟑𝟑𝟐𝟐𝟏𝟏 (𝑠𝑠) + 𝐆𝐆𝟑𝟑𝟐𝟐𝟐𝟐 (𝑠𝑠)

+𝐆𝐆𝟑𝟑𝟐𝟐𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼2(𝑠𝑠) + [𝐆𝐆𝟑𝟑𝟑𝟑𝟏𝟏 (𝑠𝑠) +𝐆𝐆𝟑𝟑𝟑𝟑𝟐𝟐 (𝑠𝑠) + 𝐆𝐆𝟑𝟑𝟑𝟑𝟑𝟑 (𝑠𝑠)] × 𝑼𝑼3(𝑠𝑠) 
(3.11) 
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The transfer function between single actuator and single sensor is introduced before, which is 

the transfer function for all the modes. 

 𝐆𝐆𝑛𝑛𝑛𝑛(𝑠𝑠) = �
φ𝑛𝑛
𝑘𝑘φ𝑛𝑛

𝑘𝑘

𝑠𝑠2 + 2Ϛ𝑛𝑛𝑛𝑛𝑘𝑘 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 𝑠𝑠+ 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 2

∞

𝑘𝑘=1

 (3.12) 

For the single mode transfer function between single actuator and single sensor, the transfer 

function can be written as: 

 𝐆𝐆𝑛𝑛𝑛𝑛𝑘𝑘 (𝑠𝑠) =
φ𝑛𝑛
𝑘𝑘φ𝑛𝑛

𝑘𝑘

𝑠𝑠2 + 2Ϛ𝑛𝑛𝑛𝑛𝑘𝑘 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 𝑠𝑠+𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 2 (3.13) 

The state space modelling method used in this thesis sets a common denominator for the entire 

modes. The denominator in each mode has different damping ratios and natural frequencies, 

which need to be uniform. For uniforming the damping ratio, the largest value of the damping 

ratios in one mode is selected to be the general damping ratio. For uniforming the natural 

frequency, the average value of the natural frequency values is selected to be the general 

frequency. Therefore two general equations can be defined to describe the general parameters 

of the common denominator. 

 
Ϛ𝑛𝑛𝑛𝑛𝑘𝑘 = Ϛ𝑘𝑘 

𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘 = 𝑤𝑤𝑘𝑘  
(3.14) 

Where Ϛ𝑘𝑘 is the largest value of the damping ratio at mode 𝑘𝑘 and 𝑤𝑤𝑘𝑘 is the average value of 

the nature frequency at mode 𝑘𝑘. 

By using the common denominator, the transfer function between single actuator and single 

sensor at the single mode is changed to a simplified equation. 

 𝐆𝐆𝑛𝑛𝑛𝑛𝑘𝑘 (𝑠𝑠) =
φ𝑛𝑛
𝑘𝑘φ𝑛𝑛

𝑘𝑘

𝑠𝑠2 + 2Ϛ𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠+ 𝑤𝑤𝑘𝑘2
 (3.15) 

Sub the simplified equation (3.15) to each sensor transfer function. The transfer function of the 

measurement output for each sensor is changed as follows: 
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For sensor 1: 

 

𝒀𝒀1(𝑠𝑠) =  �
𝜑𝜑11𝜑𝜑11

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑12𝜑𝜑12

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+ 𝑤𝑤22

+
𝜑𝜑13𝜑𝜑13

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼1(𝑠𝑠)

+ �
𝜑𝜑11𝜑𝜑21

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑12𝜑𝜑22

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑13𝜑𝜑23

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼2(𝑠𝑠)

+ �
𝜑𝜑11𝜑𝜑31

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑12𝜑𝜑32

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑13𝜑𝜑33

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤12
�× 𝑼𝑼3(𝑠𝑠) 

=
𝜑𝜑11(𝜑𝜑11𝑼𝑼1(𝑠𝑠) + 𝜑𝜑21𝑼𝑼2(𝑠𝑠) +𝜑𝜑31𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12

+
𝜑𝜑12(𝜑𝜑12𝑼𝑼1(𝑠𝑠) + 𝜑𝜑22𝑼𝑼2(𝑠𝑠) +𝜑𝜑32𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22

+
𝜑𝜑13(𝜑𝜑13𝑼𝑼1(𝑠𝑠) + 𝜑𝜑23𝑼𝑼2(𝑠𝑠) +𝜑𝜑33𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32
 

 

(3.16) 

For sensor 2: 

 

𝒀𝒀2(𝑠𝑠) =  �
𝜑𝜑21𝜑𝜑11

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12
+

𝜑𝜑22𝜑𝜑12

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22

+
𝜑𝜑23𝜑𝜑13

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼1(𝑠𝑠)

+ � 𝜑𝜑21𝜑𝜑21

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑22𝜑𝜑22

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑23𝜑𝜑23

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼2(𝑠𝑠)

+ � 𝜑𝜑21𝜑𝜑31

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑22𝜑𝜑32

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑23𝜑𝜑33

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤12
�× 𝑼𝑼3(𝑠𝑠) 

(3.17) 
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=
𝜑𝜑21(𝜑𝜑11𝑼𝑼1(𝑠𝑠) + 𝜑𝜑21𝑼𝑼2(𝑠𝑠) +𝜑𝜑31𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12

+
𝜑𝜑22(𝜑𝜑12𝑼𝑼1(𝑠𝑠) + 𝜑𝜑22𝑼𝑼2(𝑠𝑠) +𝜑𝜑32𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22

+
𝜑𝜑23(𝜑𝜑13𝑼𝑼1(𝑠𝑠) + 𝜑𝜑23𝑼𝑼2(𝑠𝑠) +𝜑𝜑33𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32
 

 

For sensor 3: 

 

𝒀𝒀3(𝑠𝑠) =  �
𝜑𝜑31𝜑𝜑11

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12
+

𝜑𝜑32𝜑𝜑12

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22

+
𝜑𝜑33𝜑𝜑13

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼1(𝑠𝑠)

+ � 𝜑𝜑31𝜑𝜑21

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑32𝜑𝜑22

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑33𝜑𝜑23

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤32
�× 𝑼𝑼2(𝑠𝑠)

+ � 𝜑𝜑31𝜑𝜑31

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+ 𝑤𝑤12
+

𝜑𝜑32𝜑𝜑32

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠 +𝑤𝑤22

+
𝜑𝜑33𝜑𝜑33

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+ 𝑤𝑤12
�× 𝑼𝑼3(𝑠𝑠) 

=
𝜑𝜑31(𝜑𝜑11𝑼𝑼1(𝑠𝑠) + 𝜑𝜑21𝑼𝑼2(𝑠𝑠) +𝜑𝜑31𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12

+
𝜑𝜑32(𝜑𝜑12𝑼𝑼1(𝑠𝑠) + 𝜑𝜑22𝑼𝑼2(𝑠𝑠) +𝜑𝜑32𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22

+
𝜑𝜑33(𝜑𝜑13𝑼𝑼1(𝑠𝑠) + 𝜑𝜑23𝑼𝑼2(𝑠𝑠) +𝜑𝜑33𝑼𝑼3(𝑠𝑠))

𝑠𝑠2 + 2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32
 

 

(3.18) 

An overall block diagram for the plate structure system is drawn to compute the SSR from the 

three sensors’ transfer functions of the measurement outputs.  
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Figure 3.7 The block diagram of the plate structure system 

The block diagram shows the relationship between the three inputs and the three outputs.  From 

the set state in both sides of the integration block, the equations of each state 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

 can be 

derived.  

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�̇�𝑥1 = 𝑥𝑥2

�̇�𝑥2 = [𝜑𝜑11 𝜑𝜑21 𝜑𝜑31]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
� − 2Ϛ1𝑤𝑤1𝑥𝑥2−𝑤𝑤12𝑥𝑥1

�̇�𝑥3 = 𝑥𝑥4

�̇�𝑥4 = [𝜑𝜑12 𝜑𝜑22 𝜑𝜑32]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
� − 2Ϛ2𝑤𝑤2𝑥𝑥4− 𝑤𝑤22𝑥𝑥3

�̇�𝑥5 = 𝑥𝑥6

�̇�𝑥6 = [𝜑𝜑13 𝜑𝜑23 𝜑𝜑33]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
� − 2Ϛ3𝑤𝑤3𝑥𝑥6− 𝑤𝑤32𝑥𝑥5

 (3.19) 
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For a general system in SSR, consider the process model is an nth-order, linear, time invariant, 
continuous-time system with r inputs and m outputs.  

 
�̇�𝑿(t) = 𝐀𝐀𝑿𝑿(t) +𝐁𝐁𝑼𝑼(t)       

𝒀𝒀(t) = 𝐂𝐂𝑿𝑿(t) 
(3.20) 

Where 𝑿𝑿(t)  is (𝑛𝑛 ∗ 1)  state vector, 𝒀𝒀(t) is (𝑚𝑚 ∗ 1) output vector, and 𝑼𝑼(t) is (𝑟𝑟 ∗ 1) input 

vector. The state �̇�𝑿(t) is the input vector before the integrator of 𝑿𝑿(t). The 𝐀𝐀 matrix is (𝑛𝑛 ∗ 𝑛𝑛) 

system matrix, the 𝐁𝐁 matrix is (𝑛𝑛 ∗ 𝑟𝑟) input matrix, and the 𝐂𝐂 matrix is (𝑚𝑚 ∗ 𝑟𝑟) output matrix.  

In the plate structure system, the state vector 𝑿𝑿(t) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

, the output vector 𝒀𝒀(t) = �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
�, the 

system matrix 𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0 0 0
−𝑤𝑤12 −2Ϛ1𝑤𝑤1 0 0 0 0

0 0 0 1 0 0
0 0 −𝑤𝑤22 −2Ϛ2𝑤𝑤2 0 0
0 0 0 0 0 1
0 0 0 0 −𝑤𝑤32 −2Ϛ3𝑤𝑤3⎦

⎥
⎥
⎥
⎥
⎥
⎤

, the input 

matrix 𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝜑𝜑11 𝜑𝜑21 𝜑𝜑31
0 0 0
𝜑𝜑12 𝜑𝜑22∫ 𝜑𝜑32

0 0 0
𝜑𝜑13 𝜑𝜑23 𝜑𝜑33 ⎦

⎥
⎥
⎥
⎥
⎤

, and the output matrix 𝐂𝐂 = �
𝜑𝜑11 0 𝜑𝜑12 0 𝜑𝜑13 0
𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23 0
𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33 0

�. 

Based on Table 1 parameters and the system transfer function analysis, the parameters in the 

system SSR are calculated in the following table.  

Table 2. The system parameters of the SSR 

Mode 1 Mode 2 Mode 3 

𝜑𝜑11 0.3639 𝜑𝜑12 0.7229 𝜑𝜑13 0.4552 

𝜑𝜑21 0.2821 𝜑𝜑22 0.4803 𝜑𝜑23 0.8414 

𝜑𝜑31 0.2384 𝜑𝜑32 0.4456 𝜑𝜑33 0.758 

Ϛ1 0.02677 Ϛ2 0.02533 Ϛ3 0.02419 

𝑤𝑤1 142.3048 𝑤𝑤2 182.434 𝑤𝑤3 218.9208 
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3.6 Construction of discrete-time SSR 

To apply the discrete-time Kalman filter algorithm, the plate structure system is finally 

transformed to a discrete-time system SSR. There are several discretization methods, such as 

the zero order hold on the inputs, the linear interpolation of inputs (first order hold), the bilinear 

(Tustin) approximation, and the matched pole-zero method (for SISO system only). In this 

thesis, the discretization method, the zero order hold on the inputs, is explained in detail, and 

used to convert the continuous-time system to a discrete-time system. 

The general form of the continuous-time time system SSR was discussed before. 

 
�̇�𝑿(t) = 𝐀𝐀𝑿𝑿(t) + 𝐁𝐁𝑼𝑼(t) 

𝒀𝒀(t) = 𝐂𝐂𝑿𝑿(t) 
(3.21) 

Where the first equation is called the state equation and the second equation is called the output 

equation. 

To apply the zero order hold on the inputs method, the state equation is transformed into the 

following equation. 

 �̇�𝑿(t) −𝐀𝐀𝑿𝑿(t) = 𝐁𝐁𝑼𝑼(t)  (3.22) 

Multiply both side of the equation (3.22) by 𝑒𝑒−𝐀𝐀𝑡𝑡  at the same time: 

 𝑒𝑒−𝐀𝐀𝑡𝑡[�̇�𝑿(t) −𝐀𝐀𝑿𝑿(t)] = 𝑒𝑒−𝐀𝐀𝑡𝑡𝐁𝐁𝑼𝑼(t) (3.23) 

Since: 

 
𝑑𝑑
𝑑𝑑𝑑𝑑 [𝑒𝑒−𝐀𝐀𝑡𝑡𝑿𝑿(t)] = [

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒

−𝐀𝐀𝑡𝑡]𝑿𝑿(t) + 𝑒𝑒−𝐀𝐀𝑡𝑡 �
𝑑𝑑
𝑑𝑑𝑑𝑑𝑿𝑿

(t)�

= 𝑒𝑒−𝐀𝐀𝑡𝑡(−𝐀𝐀)𝑿𝑿(t) + 𝑒𝑒−𝐀𝐀𝑡𝑡�̇�𝑿(t) = 𝑒𝑒−𝐀𝐀𝑡𝑡��̇�𝑿(t) −𝐀𝐀𝑿𝑿(t)� 
(3.24) 

Sub the equation (3.24) to the equation (3.23): 

 
𝑑𝑑
𝑑𝑑𝑑𝑑 [𝑒𝑒−𝐀𝐀𝑡𝑡𝑿𝑿(t)] = 𝑒𝑒−𝐀𝐀𝑡𝑡𝐁𝐁𝑼𝑼(t) (3.25) 

Take the integration of both sides from 𝑑𝑑0 to 𝑑𝑑: 

 

� 𝑑𝑑
𝑑𝑑𝑑𝑑 [𝑒𝑒−𝐀𝐀𝜏𝜏𝑿𝑿(𝑑𝑑)]

𝑡𝑡

𝑡𝑡0

𝑑𝑑𝑑𝑑 = �𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑡𝑡

𝑡𝑡0

𝑑𝑑𝑑𝑑 

𝑒𝑒−𝐀𝐀𝑡𝑡𝑿𝑿(t) − 𝑒𝑒−𝐀𝐀𝑡𝑡0𝑿𝑿(t0) = �𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑡𝑡

𝑡𝑡0

𝑑𝑑𝑑𝑑 

(3.26) 
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Multiply both sides of the equation (3.26) by 𝑒𝑒𝐴𝐴𝑡𝑡  at the same time: 

 

𝑒𝑒𝐀𝐀𝑡𝑡𝑒𝑒−𝐀𝐀𝑡𝑡𝑿𝑿(t) = 𝑒𝑒𝐀𝐀𝑡𝑡 𝑒𝑒−𝐀𝐀𝑡𝑡0𝑿𝑿(t0) + 𝑒𝑒𝐀𝐀𝑡𝑡 �𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑡𝑡

𝑡𝑡0

𝑑𝑑𝑑𝑑 

𝑿𝑿(t) = 𝑒𝑒𝐀𝐀(𝑡𝑡−𝑡𝑡0)𝑿𝑿(t0) + �𝑒𝑒𝐀𝐀(𝑡𝑡−𝜏𝜏)𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑡𝑡

𝑡𝑡0

𝑑𝑑𝑑𝑑 

(3.27) 

Assume 𝑑𝑑0 to be the initial time “0”, which indicates the integration is from the initial time: 

 𝑿𝑿(t) = 𝑒𝑒𝐀𝐀𝑡𝑡𝑿𝑿(0) + �𝑒𝑒𝐀𝐀(𝑡𝑡−𝜏𝜏)𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑡𝑡

0

𝑑𝑑𝑑𝑑 (3.28) 

Assume for the corresponding discrete-time system, the sampling time is a constant value T, 

and the discretization method is the holding effect (Zero-Order Hold on inputs). Therefore the 

input vector 𝑼𝑼(t)  changes only at sampling time T. In another word, 𝑼𝑼(t) = 𝑼𝑼(kT) , 

when kT ≤ t ≤ (k + 1)T. 

Let 𝑑𝑑 = (𝑘𝑘 + 1)𝑇𝑇 and sub it into the equation (3.28): 

 𝑿𝑿[(k + 1)T] = 𝑒𝑒𝐀𝐀(k+1)T 𝑿𝑿(0) + 𝑒𝑒𝐀𝐀(k+1)T � 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)

(k+1)T 

0

𝑑𝑑𝑑𝑑 (3.29) 

Let 𝑑𝑑 = 𝑘𝑘𝑇𝑇 and sub it into the equation (3.28): 

 𝑿𝑿(kT) = 𝑒𝑒𝐀𝐀kT  𝑿𝑿(0) + 𝑒𝑒𝐀𝐀kT � 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)
kT 

0

𝑑𝑑𝑑𝑑 (3.30) 

Multiply both sides of the equation (3.30) by 𝑒𝑒𝐀𝐀𝑇𝑇  at the same time: 

 𝑒𝑒𝐀𝐀𝑇𝑇𝑿𝑿(kT) = 𝑒𝑒𝐀𝐀(k+1)T 𝑿𝑿(0) + 𝑒𝑒𝐀𝐀(k+1)T� 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)
𝑘𝑘𝑇𝑇 

0

𝑑𝑑𝑑𝑑 (3.31) 

Use the equation (3.29) to subtract the equation (3.31), the equation (3.32) can be derived. 

 𝑿𝑿[(k + 1)T] = 𝑒𝑒𝐀𝐀𝑇𝑇𝑿𝑿(kT) + 𝑒𝑒𝐀𝐀(k+1)T � 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁𝑼𝑼(𝑑𝑑)

(k+1)T 

𝑘𝑘𝑇𝑇

𝑑𝑑𝑑𝑑 (3.32) 

As mentioned above, when kT ≤ t ≤ (k + 1)T, the 𝑼𝑼(τ) is constant and 𝑼𝑼(τ) = 𝑼𝑼(kT). The 

equation (3.32) can be modified as following. 
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 𝑿𝑿[(k + 1)T] = 𝑒𝑒𝐀𝐀𝑇𝑇𝑿𝑿(kT) + 𝑒𝑒𝐀𝐀(𝑘𝑘+1)𝑇𝑇 � 𝑒𝑒−𝐀𝐀𝜏𝜏
(𝑘𝑘+1)𝑇𝑇 

𝑘𝑘𝑇𝑇

𝑑𝑑𝑑𝑑𝐁𝐁𝑼𝑼(kT) (3.33) 

Let 𝜆𝜆 = (𝑘𝑘 + 1)𝑇𝑇 − 𝑑𝑑, the following equations can be derived. 

 

𝑑𝑑𝜆𝜆 = −𝑑𝑑𝑑𝑑 

𝜆𝜆 = T, when 𝑑𝑑 = kT 

𝜆𝜆 = 0, when 𝑑𝑑 = (k + 1)T 

(3.34) 

Therefore, the integration term inside equation (3.33) can be derived as follows. 

 � 𝑒𝑒−𝐀𝐀𝜏𝜏
(𝑘𝑘+1)𝑇𝑇 

𝑘𝑘𝑇𝑇

𝑑𝑑𝑑𝑑 = � 𝑒𝑒−𝐀𝐀[(𝑘𝑘+1)𝑇𝑇−𝜏𝜏]

 0

𝑇𝑇

(−𝑑𝑑𝜆𝜆) = 𝑒𝑒−𝐀𝐀(𝑘𝑘+1)𝑇𝑇� 𝑒𝑒−𝐀𝐀𝜆𝜆𝑑𝑑𝜆𝜆
 T

0

 (3.35) 

Sub the changed integration term equation (3.35) back to the equation (3.33). 

 𝑿𝑿[(k + 1)T] = 𝑒𝑒𝐀𝐀𝑇𝑇𝑿𝑿(kT) +� 𝑒𝑒−𝐀𝐀𝜆𝜆𝑑𝑑𝜆𝜆
 T

0

𝐁𝐁𝑼𝑼(kT)  (3.36) 

From the equation (3.36), the discrete-time model in state space can be formed. 

 𝑿𝑿[(𝑘𝑘 + 1)𝑇𝑇] = 𝐆𝐆(T)𝑿𝑿(kT) +𝐇𝐇(T)𝑼𝑼(kT)  (3.37) 

Where 𝐆𝐆(T) is (𝑛𝑛 ∗ 𝑛𝑛) system matrix and 𝐇𝐇(T) is (𝑛𝑛 ∗ 𝑟𝑟) input matrix. Both of these matrices 

are functions of the sampling period T. 

 𝑮𝑮(𝑇𝑇) = 𝒆𝒆𝐀𝐀𝑇𝑇  and  𝑯𝑯(𝑇𝑇) = ∫ 𝒆𝒆−𝐀𝐀𝝀𝝀𝒅𝒅𝝀𝝀𝑇𝑇
0 𝑩𝑩 (3.38) 

For the output equation, the continuous-time model is based on the current value of 𝑿𝑿 . 

Therefore the discrete-time output equation is directly discretised by replacing 𝑑𝑑 with 𝑘𝑘𝑇𝑇. 

 𝒀𝒀(𝑘𝑘𝑇𝑇) = 𝑪𝑪𝑿𝑿(𝑘𝑘𝑇𝑇) (3.39) 

Now, the continuous-time system has been discretised into a discrete-time system. The 

discrete-time system SSR is given below. 

 
𝑿𝑿(k + 1) = 𝐆𝐆𝑿𝑿(k) + 𝐇𝐇𝑼𝑼(k) 

𝒀𝒀(k) = 𝐂𝐂𝑿𝑿(k) 
(3.40) 

Where 𝐗𝐗(k)  is (𝑛𝑛 ∗ 1)  state vector, 𝒀𝒀(k) is (𝑚𝑚 ∗ 1) output vector, and 𝑼𝑼(k) is (𝑟𝑟 ∗ 1) input 

vector. The 𝐆𝐆 matrix is (𝑛𝑛 ∗ 𝑛𝑛) system matrix, the 𝐇𝐇 matrix is (𝑛𝑛 ∗ 𝑟𝑟) input matrix, and the 𝐂𝐂 

matrix is (𝑚𝑚 ∗ 𝑟𝑟) output matrix. Since the matrices 𝐀𝐀, 𝐁𝐁, 𝐂𝐂, of the continuous-time system are 

time invariant, the matrices 𝐆𝐆, 𝐇𝐇, 𝐂𝐂, of the discrete-time system are also time invariant. 
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According to the natural frequency of the previously measured system, the natural frequency 

is about 222 Hz at mode 3. So the minimum period of the system is： 

 T =
1
𝑓𝑓 = 0.0045s (3.41) 

Therefore, the sampling period is taken as 0.001 seconds, which is about a quarter of the period. 

For the plate structure system, the discrete-time SSR is constructed with the system matrix 𝐆𝐆, 

the input matrix 𝐇𝐇, and the output matrix 𝐂𝐂. 

𝐆𝐆 =

⎣
⎢
⎢
⎢
⎢
⎡ 0.9899 0.001 0 0 0 0
−20.1057 0.9824 0 0 0 0

0 0 0.9835 0.001 0 0
0 0 −32.9454 0.9743 0 0
0 0 0 0 0.9762 0.001
0 0 0 0 −47.2935 0.9658⎦

⎥
⎥
⎥
⎥
⎤

 

𝐇𝐇 =

⎣
⎢
⎢
⎢
⎢
⎡0.0002 0.0001 0.0001
0.3613 0.2801 0.2367
0.0004 0.0002 0.0002
0.7156 0.4754 0.4411
0.0002 0.0004 0.0004
0.4492 0.8303 0.7480⎦

⎥
⎥
⎥
⎥
⎤

 

𝐂𝐂 = �
0.3639 0 0.7229 0 0.4552 0
0.2821 0 0.4803 0 0.8414 0
0.2384 0 0.4456 0 0.7580 0

� 
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Chapter 4 : Kalman Filter Based FDD Method 

In this chapter, the discrete-time Kalman filter is discussed in detail and summarized into a 

single algorithm. To verify the Kalman filter algorithm, a simple application successfully uses 

the Kalman filter to estimate its state. After that, a Kalman filter bank and a normalization 

algorithm are designed to achieve the FDD Method. 

4.1 The Discrete-time Kalman Filter algorithm 

The system using the basic Kalman filter must be a linear system. [29] Consider the process 

model is an nth-order, linear, time invariant, continuous-time system with r inputs and m 

outputs.  

 
𝑿𝑿(k + 1) = 𝐆𝐆𝑿𝑿(k) +𝐇𝐇𝑼𝑼(k) 

𝒀𝒀(k) = 𝐂𝐂𝑿𝑿(k) 
(4.1) 

In reality, the discrete-time system model above is not an idealized model. Due to many factors 

such as material, connection, and environment, the system process may have unknown process 

noise 𝝎𝝎. Also the system measurement cannot be exactly accurate, measurement noise 𝝂𝝂 is 

widely found in the real time system model. 

 
𝑿𝑿(k + 1) = 𝐆𝐆𝑿𝑿(k) +𝐇𝐇𝑼𝑼(k) +𝝎𝝎(k) 

𝒀𝒀(k) = 𝐂𝐂𝑿𝑿(k) + 𝝂𝝂(k) 
(4.2) 

Where the system process noise 𝝎𝝎(k) and measurement noise 𝝂𝝂(k) are zero-mean Gaussian 

distribution white noise, which are uncorrelated from each other. The unknown system process 

noise 𝝎𝝎(k) is a (𝑛𝑛 ∗ 1) vector with a (𝑛𝑛 ∗ 𝑛𝑛) known covariance 𝑸𝑸 and the unknown system 

measurement noise 𝝂𝝂(k)  is a (𝑚𝑚 ∗ 1)  vector with a (𝑚𝑚 ∗𝑚𝑚)  known covariance  𝑹𝑹 . The 

mathematical representation is respectively showing below. 
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𝝎𝝎(k) = �

𝝎𝝎1(𝑘𝑘)
𝝎𝝎2(𝑘𝑘)

…
𝝎𝝎𝑛𝑛(𝑘𝑘)

�~(0,𝑸𝑸) 

𝝂𝝂(k) = �

𝝂𝝂1(𝑘𝑘)
𝝂𝝂2(𝑘𝑘)

…
𝝂𝝂𝑛𝑛(𝑘𝑘)

�~(0,𝑹𝑹) 

𝐸𝐸[𝝎𝝎(k) 𝝎𝝎(j)T] = � 𝑸𝑸, 𝑘𝑘 = 𝑗𝑗
0,      𝑘𝑘 ≠ 𝑗𝑗  

𝐸𝐸[𝝂𝝂(k) 𝝂𝝂(j)T] = � 𝑹𝑹, 𝑘𝑘 = 𝑗𝑗
0,      𝑘𝑘 ≠ 𝑗𝑗  

𝐸𝐸[𝝎𝝎(k) 𝝂𝝂(j)T] = 0 

(4.3) 

In another word, the process noise covariance 𝑸𝑸 and the measurement noise covariance 𝑹𝑹(k) 

are diagonal matrices. 

𝑸𝑸 = 

⎣
⎢
⎢
⎢
⎢
⎡

⎝

⎜⎜
⎛

𝐸𝐸[𝝎𝝎(1) 𝝎𝝎(1)T] 𝐸𝐸[𝝎𝝎(1) 𝝎𝝎(2)T] ⋯ 𝐸𝐸[𝝎𝝎(1) 𝝎𝝎(n − 1)T] 𝐸𝐸[𝝎𝝎(1) 𝝎𝝎(n)T]
𝐸𝐸[𝝎𝝎(2) 𝝎𝝎(1)T]

⋮
𝐸𝐸[𝝎𝝎(n − 1) 𝝎𝝎(1)T]

⋱
𝐸𝐸[𝝎𝝎(2) 𝝎𝝎(n)T]

⋮
𝐸𝐸[𝝎𝝎(n − 1) 𝝎𝝎(n)T]

𝐸𝐸[𝝎𝝎(n) 𝝎𝝎(1)T] 𝐸𝐸[𝝎𝝎(n) 𝝎𝝎(2)T] ⋯ 𝐸𝐸[𝝎𝝎(n) 𝝎𝝎(n − 1)T] 𝐸𝐸[𝝎𝝎(n) 𝝎𝝎(n)T] ⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

 

= �
𝐸𝐸[𝝎𝝎(1) 𝝎𝝎(1)T] ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐸𝐸[𝝎𝝎(n) 𝝎𝝎(n)T]

� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸𝟏𝟏𝟏𝟏 ,⋯ ,𝑸𝑸𝒏𝒏𝒏𝒏) 

𝑹𝑹 = 

⎣
⎢
⎢
⎢
⎢
⎡

⎝

⎜⎜
⎛

𝐸𝐸[𝝂𝝂(1) 𝝂𝝂(1)T] 𝐸𝐸[𝝂𝝂(1) 𝝂𝝂(2)T] ⋯ 𝐸𝐸[𝝂𝝂(1) 𝝂𝝂(n − 1)T] 𝐸𝐸[𝝂𝝂(1) 𝝂𝝂(n)T]
𝐸𝐸[𝝂𝝂(2) 𝝂𝝂(1)T]

⋮
𝐸𝐸[𝝂𝝂(n− 1) 𝝂𝝂(1)T]

⋱
𝐸𝐸[𝝂𝝂(2) 𝝂𝝂(n)T]

⋮
𝐸𝐸[𝝂𝝂(n − 1) 𝝂𝝂(n)T]

𝐸𝐸[𝝂𝝂(n) 𝝂𝝂(1)T] 𝐸𝐸[𝝂𝝂(n) 𝝂𝝂(2)T] ⋯ 𝐸𝐸[𝝂𝝂(n) 𝝂𝝂(n − 1)T] 𝐸𝐸[𝝂𝝂(n) 𝝂𝝂(n)T] ⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

 

= �
𝐸𝐸[𝝂𝝂(1) 𝝂𝝂(1)T] ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐸𝐸[𝝂𝝂(n) 𝝂𝝂(n)T]

�= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑹𝑹𝟏𝟏𝟏𝟏 ,⋯ ,𝑹𝑹𝒏𝒏𝒏𝒏) 

Also, these two noises are uncorrelated from the state vectors. 

 
𝐸𝐸[𝝎𝝎(k) 𝑿𝑿(j)T] = 0 

𝐸𝐸[𝝂𝝂(k) 𝑿𝑿(j)T] = 0 
(4.4) 
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The system model representation can also be described as the following block diagram. 

 

Figure 4.1The system model block diagram with noise 

In this block diagram, all the array signals are vectors, which include input vectors, state 

vectors, noise vectors and output vectors. All the arrowhead line directions represent the signal 

flow direction. The z−1I box is the n delay elements in parallel. The blocks 𝐆𝐆, 𝐇𝐇, 𝐂𝐂 represent 

the respective matrices. 𝝎𝝎(k) and 𝝂𝝂(k) are the noises in the system, while they effect different 

parts of the system. 

The Kalman filter algorithm is known as a linear quadratic estimate. Therefore, some 

definitions need to be declared before introduction of the Kalman filter algorithm. 

The discrete-time system used in the Kalman filter is introduced before. The Kalman filter 

algorithm’s purpose is to find the optimal estimate of the system state 𝑿𝑿(k). The system state 

estimate is based on the system dynamics and the system output measurement with noise 𝒀𝒀(k).  

If the state estimate 𝑿𝑿(k) is formed by using all the measurements up to and including time  k, 

then this state estimate is called an posteriori estimate, which is defined as 𝑿𝑿�𝑘𝑘+. This state 

estimate can also be explained in another way, which uses the expectation value of 𝑿𝑿(k) based 

on all of the measurements up to and including time k. 

 𝑿𝑿�𝑘𝑘+ = 𝐸𝐸[𝑿𝑿(k)|𝒀𝒀(1), 𝒀𝒀(2),⋯ , 𝒀𝒀(k)] = 𝑑𝑑 𝑝𝑝𝑝𝑝𝑠𝑠𝑑𝑑𝑒𝑒𝑟𝑟𝑑𝑑𝑝𝑝𝑟𝑟𝑑𝑑  𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒 (4.5) 

If the state estimate of 𝑿𝑿(k) is formed by using all the measurements up to but not including 

time k, then this state estimate is called an priori estimate, which is defined as 𝑿𝑿�𝑘𝑘−. This state 

estimate can also be explained in another way, which uses the expected value of 𝑿𝑿(k) based 

on all of the measurements up to, but not including, time k. 
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 𝑿𝑿�𝑘𝑘− = 𝐸𝐸[𝑿𝑿(k)|𝒀𝒀(1), 𝒀𝒀(2),⋯ , 𝒀𝒀(k− 1)] = 𝑑𝑑 𝑝𝑝𝑟𝑟𝑑𝑑𝑝𝑝𝑟𝑟𝑑𝑑 𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒 (4.6) 

Both of the state estimates 𝑿𝑿�𝑘𝑘+ and 𝑿𝑿�𝑘𝑘− are Kalman filter estimates of the state 𝑿𝑿(k). However, 

the state estimate 𝑿𝑿�𝑘𝑘− is computed before the current output measurement 𝒀𝒀(k) is taken into 

account, and the state estimate 𝑿𝑿�𝑘𝑘+ is computed after the current output measurement 𝒀𝒀(k) is 

taken into account. Therefore the posteriori estimate 𝑿𝑿�𝑘𝑘+ is expected to be more accurate than 

the priori estimate 𝑿𝑿�𝑘𝑘−. 

Correspondingly, the term 𝑷𝑷𝒌𝒌 is used to donate the covariance of the state estimated error. 𝑷𝑷𝑘𝑘+ 

is the covariance of the state estimated error of 𝑿𝑿�𝑘𝑘+ and 𝑷𝑷𝑘𝑘− is the covariance of the state 

estimated error of 𝑿𝑿�𝑘𝑘−. 

The covariance definition is that, for a vector 𝑵𝑵 = (𝑵𝑵1 ,𝑵𝑵2,⋯ ,𝑵𝑵𝑛𝑛) , the covariance of the 

vector 𝑵𝑵 is: 

 𝛴𝛴(𝑵𝑵) = 𝑐𝑐𝑝𝑝𝑐𝑐(𝑵𝑵,𝑵𝑵) = 𝐸𝐸[�𝑵𝑵− 𝑵𝑵���𝑵𝑵 −𝑵𝑵� �
𝑇𝑇

]  (4.7) 

Where 𝑵𝑵�  is the estimated value of 𝑵𝑵. 

Hence, according to the definition of covariance, the covariance of the estimates are defined as 

following. 

 
𝑷𝑷𝑘𝑘+ = 𝐸𝐸[�𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘+��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘+�

𝑇𝑇
] 

𝑷𝑷𝑘𝑘− = 𝐸𝐸[�𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�
𝑇𝑇

]  
(4.8) 

As the Kalman filter required parameters are introduced, the Kalman filter algorithm can be 

operated under the conditioned of the information that was explained before 

 (1) The Kalman filter is based on the previous predicted state and the current measurement 

value. At time “0”, the Kalman filter doesn’t have any estimate, because the system’s initial 

condition is unknown. Thus, the initial step needs to set the initial estimate and only needs to 

be executed once. Assume the initial system state is 𝑿𝑿(0) and the initial system priori estimated 

state is  𝑿𝑿�0− . Since there are no measurements for the estimated system state  𝑿𝑿(0) , it is 

reasonable to set the posteriori estimate 𝑿𝑿�0+ to be equal to priori estimate 𝑿𝑿�0−, which is the 

expected value of initial system state 𝑿𝑿(0). 

So the initial state estimate is the equation shown below: 

 𝑿𝑿�0+ = 𝑿𝑿�0− = 𝐸𝐸[𝑿𝑿(0)] (4.9) 
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The corresponding covariance 𝑷𝑷0+ also assumes to be the given value based on the information 

of the system. For example, if the system’s initial state estimate is totally the same as the system 

initial state, the covariance of the estimated error will be 0, 𝑷𝑷0+ = 0. This is the ideal case and 

almost does not exist in the real world. If the system initial estimate is not the exact value (the 

estimate is not accurate), then  𝑷𝑷0+  will be a symmetric matrix. Only the diagonal line 

parameters of the matrix have the corresponding covariance, which describe the difference 

from the actual situation and the estimated value. In general, 𝑷𝑷0+ represents the uncertainty of 

the initial estimate 𝑿𝑿(0). 

 𝑷𝑷0+ = 𝐸𝐸[�𝑿𝑿(0) −𝑿𝑿�0+��𝑿𝑿(0)− 𝑿𝑿�0+�
𝑇𝑇

], which is given. (4.10) 

 (2) The measurement noise 𝝂𝝂(k) and the process noise 𝝎𝝎(k) are assumed to be unknown, the 

estimate of the next time can only derived from the equation (4.1). This means the noises in 

process and measurement are not taken into consideration in the posteriori estimation. 

Therefore, the state estimate 𝑿𝑿�(k) can be calculated by the state function without noise. 

 𝑿𝑿�(k) = 𝐆𝐆𝑿𝑿�(k − 1) +𝐇𝐇𝑼𝑼(k− 1) (4.11) 

In the Kalman filter algorithm, there are two estimates mentioned before, the state estimate 𝑿𝑿�𝑘𝑘− 

is computed before the current output measurement 𝒀𝒀(k) is taken into account, and the state 

estimate 𝑿𝑿�𝑘𝑘+ is computed after the current output measurement 𝒀𝒀(k) is taken into account. The 

posteriori state estimate  𝑿𝑿�𝑘𝑘+ is expected to be more accurate than the priori estimate  𝑿𝑿�𝑘𝑘−.  

Therefore, the prior state estimate 𝑿𝑿�𝑘𝑘+ can be computed from the previous time posterior state 

estimate 𝑿𝑿�𝑘𝑘−1+ . 

  𝑿𝑿�𝑘𝑘− = 𝐆𝐆𝑿𝑿�𝑘𝑘−1+ + 𝐇𝐇𝑼𝑼(k− 1) (4.12) 

This is the general equation that shows how to obtain  𝑿𝑿�𝑘𝑘−  from  𝑿𝑿�𝑘𝑘−1+ . The initial state 

estimate 𝑿𝑿�0+ is already given in step (1). Hence, from the equation (4.12), the priori estimate at 

time 1 can be derived. 

  𝑿𝑿�1− = 𝐆𝐆𝑿𝑿�0+ + 𝐇𝐇𝑼𝑼(0) (4.13) 

 (3) The priori state estimate 𝑿𝑿�𝑘𝑘− is already computed in the equation (4.12). Accordingly, its 

corresponding covariance 𝑷𝑷𝑘𝑘− of state estimate error 𝑿𝑿�𝑘𝑘− can be derived from the equation (4.8). 

The real system equation (20) is also needed by going back a step. The previous step real system 

state equation is shown below. 

 𝑿𝑿(k) = 𝐆𝐆𝑿𝑿(k− 1) +𝐇𝐇𝑼𝑼(k − 1) + 𝝎𝝎(k− 1) (4.14) 
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Sub the equation (4.12) and the equation (4.14) into the equation (4.8). 

 

𝑷𝑷𝑘𝑘− = 𝐸𝐸[�𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�
𝑇𝑇

] 

= 𝐸𝐸[�𝐆𝐆𝑿𝑿(k − 1) + 𝐇𝐇𝑼𝑼(k− 1) + 𝝎𝝎(k− 1) −𝐆𝐆𝑿𝑿�𝑘𝑘−1+ − 𝐇𝐇𝑼𝑼(k

− 1)��𝐆𝐆𝑿𝑿(k− 1) + 𝐇𝐇𝑼𝑼(k− 1) +𝝎𝝎(k− 1) −𝐆𝐆𝑿𝑿�𝑘𝑘−1+

−𝐇𝐇𝑼𝑼(k− 1)�
𝑇𝑇

] 

= 𝐸𝐸 ��𝐆𝐆𝑿𝑿(k− 1) +𝝎𝝎(k− 1)

− 𝐆𝐆𝑿𝑿�𝑘𝑘−1+ ��𝐆𝐆𝑿𝑿(k− 1) + 𝝎𝝎(k− 1)− 𝐆𝐆𝑿𝑿�𝑘𝑘−1+ �𝑇𝑇� 

= 𝐸𝐸 ��𝐆𝐆(𝑿𝑿(k− 1) −𝑿𝑿�𝑘𝑘−1+ )

+ 𝝎𝝎(k− 1)� �𝐆𝐆(𝑿𝑿(k − 1) −𝑿𝑿�𝑘𝑘−1+ ) +𝝎𝝎(k − 1)�
𝑇𝑇
� 

= 𝐆𝐆𝐸𝐸 ��𝑿𝑿(k− 1) −𝑿𝑿�𝑘𝑘−1+ ��𝑿𝑿(k− 1)− 𝑿𝑿�𝑘𝑘−1+ �𝑻𝑻�𝐆𝐆𝑇𝑇

− 𝑮𝑮𝐸𝐸��𝑿𝑿(k − 1) − 𝑿𝑿�𝑘𝑘−1+ �𝝎𝝎(k− 1)𝑻𝑻�

− 𝐸𝐸 �𝝎𝝎(k− 1)�𝑿𝑿(k− 1) − 𝑿𝑿�𝑘𝑘−1+ �𝑻𝑻�𝐆𝐆𝑇𝑇

+ 𝐸𝐸[𝝎𝝎(k − 1)𝝎𝝎(k− 1)𝑻𝑻] 

(4.15) 

The estimated error �𝑿𝑿(k − 1) − 𝑿𝑿�𝑘𝑘−1+ �  at time (k− 1)  is independent of the process 

noise 𝝎𝝎(k− 1). Therefore the covariance of estimated error and process noise is equal to 0.  

 𝐸𝐸 �𝝎𝝎(k− 1)�𝑿𝑿(k − 1) − 𝑿𝑿�𝑘𝑘−1+ �𝑻𝑻� = 𝐸𝐸��𝑿𝑿(k− 1) −𝑿𝑿�𝑘𝑘−1+ �𝝎𝝎(k− 1)𝑻𝑻� = 0 (4.16) 

Sub the equation (4.16) into the equation (4.15). 

 
𝑷𝑷𝑘𝑘− = 𝐆𝐆𝐸𝐸 ��𝑿𝑿(k − 1) −𝑿𝑿�𝑘𝑘−1+ ��𝑿𝑿(k− 1) −𝑿𝑿�𝑘𝑘−1+ �𝑻𝑻�𝐆𝐆𝑇𝑇

+𝐸𝐸[𝝎𝝎(k− 1)𝝎𝝎(k − 1)𝑻𝑻] 
(4.17) 

Recall the equation (4.3) and the equation (4.8), take a step back and sub them into the equation 

(4.17). 

 𝑷𝑷𝑘𝑘− = 𝐆𝐆𝑷𝑷𝑘𝑘−1+ 𝐆𝐆𝑇𝑇 +𝑸𝑸 (4.18) 

The equation (4.18) is the general equation of state estimated error covariance 𝑷𝑷𝑘𝑘−. At time 1, 

the state estimated error covariance is shown as follows. 

 𝑷𝑷1− = 𝐆𝐆𝑷𝑷0+𝐆𝐆𝑇𝑇 + 𝑸𝑸 (4.19) 

 (4) As mentioned before, the Kalman filter estimate is a quadratic estimate algorithm. The 

posteriori estimate 𝑿𝑿�𝑘𝑘+ is calculated based on the measurement 𝒀𝒀(k) on time K. Assume the 
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Kalman filter gain matrix is defined as 𝐾𝐾𝑘𝑘 , the posteriori estimate 𝑿𝑿�𝑘𝑘+ can be calculated from 

the priori estimate 𝑿𝑿�𝑘𝑘−. 

  𝑿𝑿�𝑘𝑘+ = 𝑿𝑿�𝑘𝑘− +𝐾𝐾𝑘𝑘(𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−) (4.20) 

The term (𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−) is the error between the measurement 𝒀𝒀(k) and vector 𝐂𝐂𝑿𝑿�𝑘𝑘−, which is 

called the correction term. 

To finish one sequence of the Kalman filter algorithm, the posteriori estimate is shown as 

follows at time 1. 

  𝑿𝑿�1+ = 𝑿𝑿�1− +𝐾𝐾1�𝒀𝒀(k)−𝐂𝐂𝑿𝑿�1−� (4.21) 

(5) The reason why the Kalman filter has the optimal estimate of states in the linear system is 

that the Kalman filter can estimate the state with the smallest estimate error covariance in total.  

Therefore, to calculate the Kalman filter gain 𝐾𝐾𝑘𝑘 , the sum of the variances of the estimated 

errors at time k, which is cost function 𝑱𝑱𝑘𝑘 , should be minimized. 

 

𝑱𝑱𝑘𝑘 = 𝐸𝐸 ��𝑿𝑿(1) −𝑿𝑿�1+�
𝟐𝟐
�+⋯+ 𝐸𝐸 ��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘+�

𝟐𝟐
� 

= 𝑇𝑇𝑟𝑟(𝑷𝑷𝑘𝑘+) 

= 𝑇𝑇𝑟𝑟 �𝐸𝐸 ��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘+��𝑿𝑿(k)−𝑿𝑿�𝑘𝑘+�
𝑇𝑇
�� 

(4.22) 

Sub the equation (4.20) into the equation (4.22). 

 
𝑱𝑱𝑘𝑘 = 𝑇𝑇𝑟𝑟 �𝐸𝐸 ��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘− +𝐾𝐾𝑘𝑘(𝒀𝒀(k)

− 𝐂𝐂𝑿𝑿�𝑘𝑘−)��𝑿𝑿(k)−𝑿𝑿�𝑘𝑘− +𝐾𝐾𝑘𝑘(𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−)�
𝑇𝑇
�� 

(4.23) 

Sub the equation (4.1) into the equation (4.23). 

 

𝑱𝑱𝑘𝑘 = 𝑇𝑇𝑟𝑟 �𝐸𝐸 ��𝑿𝑿(k) − 𝑿𝑿�𝑘𝑘− +𝐾𝐾𝑘𝑘�𝐂𝐂𝑿𝑿(k) + 𝝂𝝂(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−���𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘− +

𝐾𝐾𝑘𝑘�𝐂𝐂𝑿𝑿(k) + 𝝂𝝂(k)−𝐂𝐂𝑿𝑿�𝑘𝑘−��
𝑇𝑇
��  

= 𝑇𝑇𝑟𝑟 �𝐸𝐸 ��(𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−) + 𝐾𝐾𝑘𝑘𝐂𝐂�𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�

+ 𝐾𝐾𝑘𝑘𝝂𝝂(k)��(𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−) + 𝐾𝐾𝑘𝑘𝐂𝐂�𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−� +𝐾𝐾𝑘𝑘𝝂𝝂(k)�
𝑇𝑇
�� 

= 𝑇𝑇𝑟𝑟 �𝐸𝐸 ��(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)�𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�

+ 𝐾𝐾𝑘𝑘𝝂𝝂(k)��(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)�𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�+ 𝐾𝐾𝑘𝑘𝝂𝝂(k)�
𝑇𝑇
�� 

(4.24) 
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= 𝑇𝑇𝑟𝑟 �(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝐸𝐸 ��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�
𝑇𝑇
�(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇

+ (𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝐸𝐸��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�𝝂𝝂(k)𝑇𝑇�

+𝐸𝐸 �𝝂𝝂(k)�𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�
𝑇𝑇
�(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇

+𝐾𝐾𝑘𝑘𝐸𝐸�𝝂𝝂(k)𝝂𝝂(k)𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇�� 

The estimated error �𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−� is independent of the measurement noise 𝝂𝝂(k). 

 𝐸𝐸��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�𝝂𝝂(k)𝑇𝑇�= 𝐸𝐸 �𝝂𝝂(k)�𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�
𝑇𝑇
�= 0 (4.25) 

Sub the equation (4.25) into the equation (4.24) 

 
𝑱𝑱𝑘𝑘 = 𝑇𝑇𝑟𝑟 �(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝐸𝐸 ��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘−�

𝑇𝑇
�(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇

+𝐾𝐾𝑘𝑘𝐸𝐸�𝝂𝝂(k)𝝂𝝂(k)𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇�� 
(4.26) 

Sub the equation (4.3) and the equation (4.8) into the equation (4.26). 

 𝑱𝑱𝑘𝑘 = 𝑇𝑇𝑟𝑟 �(𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰− 𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇+ 𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇� (4.27) 

The optimal Kalman filter gain 𝐾𝐾𝑘𝑘  needs to be found to make the cost function 𝑱𝑱𝑘𝑘  as small as 

possible. Here, the optimal Kalman filter gain 𝐾𝐾𝑘𝑘  will change the cost function derivative equal 

to zero. The function to choose the optimal Kalman filter gain 𝐾𝐾𝑘𝑘  is shown below. 

 𝜕𝜕𝑱𝑱𝑘𝑘
𝜕𝜕𝐾𝐾𝑘𝑘

=
𝜕𝜕𝑇𝑇𝑟𝑟 �(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇 +𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇�

𝜕𝜕𝐾𝐾𝑘𝑘
= 0 (4.28) 

There is a matrix calculus that is used to simplify the equation (4.28), which is introduced as 

the following. [30] 

 𝜕𝜕𝑇𝑇𝑟𝑟(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇)
𝜕𝜕𝐴𝐴 = 2𝐴𝐴𝐴𝐴    𝑑𝑑𝑓𝑓 𝐴𝐴 = 𝐴𝐴𝑇𝑇  (4.29) 

So the equation (4.28) can be transformed into the equation (4.30). 
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𝜕𝜕𝑇𝑇𝑟𝑟 �(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰− 𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇 +𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇�
𝜕𝜕𝐾𝐾𝑘𝑘

=
𝜕𝜕𝑇𝑇𝑟𝑟�(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇� + 𝜕𝜕𝑇𝑇𝑟𝑟𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇

𝜕𝜕𝐾𝐾𝑘𝑘

=
𝜕𝜕𝑇𝑇𝑟𝑟�(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇�

𝜕𝜕(𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂) ∗
𝜕𝜕(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)

𝜕𝜕𝐾𝐾𝑘𝑘

+
𝜕𝜕𝑇𝑇𝑟𝑟𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇

𝜕𝜕𝐾𝐾𝑘𝑘
= 2(𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(−𝐂𝐂𝑇𝑇) + 2𝐾𝐾𝑘𝑘𝑹𝑹 = 0 

𝐾𝐾𝑘𝑘𝑹𝑹 = (𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇 

𝐾𝐾𝑘𝑘(𝑹𝑹 + 𝐂𝐂𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇) = 𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇 

𝐾𝐾𝑘𝑘 = 𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇(𝐂𝐂𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇 + 𝑹𝑹)−𝟏𝟏 

(4.30) 

At time 1, the Kalman filter gain is shown as the following. 

 𝐾𝐾1 = 𝑷𝑷1−𝐂𝐂𝑇𝑇(𝐂𝐂𝑷𝑷1−𝐂𝐂𝑇𝑇 +𝑹𝑹)−𝟏𝟏 (4.31) 

 (6) As the posteriori estimate 𝑿𝑿�𝑘𝑘+ is updated by the Kalman filter gain 𝐾𝐾𝑘𝑘, its corresponding 

estimate error covariance is derived from the posterior estimate 𝑿𝑿�𝑘𝑘+ function.  

 

𝑷𝑷𝑘𝑘+ = 𝐸𝐸[�𝑿𝑿(k) −𝑿𝑿�𝑘𝑘+��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘+�
𝑇𝑇

] 

= 𝐸𝐸 ��𝑿𝑿(k)− 𝑿𝑿�𝑘𝑘− −𝐾𝐾𝑘𝑘�𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−���𝑿𝑿(k) − 𝑿𝑿�𝑘𝑘− −𝐾𝐾𝑘𝑘�𝒀𝒀(k)−𝐂𝐂𝑿𝑿�𝑘𝑘−��
𝑇𝑇
� 

= 𝐸𝐸 ���𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−� −𝐾𝐾𝑘𝑘�𝐂𝐂𝑿𝑿(k) −𝐂𝐂𝑿𝑿�𝑘𝑘−�

+𝐾𝐾𝑘𝑘𝝂𝝂(k)� ��𝑿𝑿(k) −𝑿𝑿�𝑘𝑘−�− 𝐾𝐾𝑘𝑘�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�+ 𝐾𝐾𝑘𝑘𝝂𝝂(k)�
𝑇𝑇
� 

= 𝐸𝐸 ��(𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�

+ 𝐾𝐾𝑘𝑘𝝂𝝂(k)��(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−� +𝐾𝐾𝑘𝑘𝝂𝝂(k)�
𝑇𝑇
� 

= 𝐸𝐸 �(𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−��𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�
𝑇𝑇(𝑰𝑰−𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇

+ (𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�𝝂𝝂(k)𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇

+𝐾𝐾𝑘𝑘𝝂𝝂(k)�𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�
𝑇𝑇(𝑰𝑰−𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇 +𝐾𝐾𝑘𝑘𝝂𝝂(k)𝝂𝝂(k)𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇� 

(4.32) 

Recall the equation (4.25) and sub it into the equation (4.32), the covariance of the estimate 

error can be simplified as below. 
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𝑷𝑷𝑘𝑘+ = (𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)𝐸𝐸[�𝐂𝐂𝑿𝑿(k) − 𝐂𝐂𝑿𝑿�𝑘𝑘−��𝐂𝐂𝑿𝑿(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−�
𝑇𝑇

](𝑰𝑰− 𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇

+𝐾𝐾𝑘𝑘𝐸𝐸[𝝂𝝂(k)𝝂𝝂(k)𝑇𝑇]𝐾𝐾𝑘𝑘𝑇𝑇

= (𝑰𝑰 − 𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰− 𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇 

(4.33) 

At time 1, the Kalman filter gain is shown as the following. 

 𝑷𝑷1+ = (𝑰𝑰 − 𝐾𝐾1𝐂𝐂)𝑷𝑷1−(𝑰𝑰− 𝐾𝐾1𝐂𝐂)𝑇𝑇 +𝐾𝐾1𝑹𝑹𝐾𝐾1𝑇𝑇 (4.34) 

As the examples at time 1 shown in each part, from the initial estimate 𝑿𝑿�0+ and its corresponding 

covariance of estimated error 𝑷𝑷0+, the posteriori estimate 𝑿𝑿�1+ and its corresponding covariance 

of estimated error 𝑷𝑷1+ have been derived. These examples show the process of the Kalman filter, 

and can be used to predict the next time estimate. 

4.2 The discrete-time Kalman filter conclusion 

The previous steps show the procedure of the Kalman filter in several algorithms. However, 

only the five equations in the Kalman filter are needed to predict the state and correct the state. 

Therefore, a conclusion of the Kalman filter is drawn here by combining the above equations 

into a single algorithm. 

1. The discrete-time system with the process and measurement noise is shown by the following 

equations. 

 

𝑿𝑿(k + 1) = 𝐆𝐆𝑿𝑿(k) +𝐇𝐇𝑼𝑼(k) + 𝝎𝝎(k) 

𝒀𝒀(k) = 𝐂𝐂𝑿𝑿(k) + 𝝂𝝂(k) 

𝐸𝐸[𝝎𝝎(k) 𝝎𝝎(j)T] = � 𝑸𝑸, 𝑘𝑘 = 𝑗𝑗
0,      𝑘𝑘 ≠ 𝑗𝑗  

𝐸𝐸[𝝂𝝂(k) 𝝂𝝂(j)T] = � 𝑹𝑹, 𝑘𝑘 = 𝑗𝑗
0,      𝑘𝑘 ≠ 𝑗𝑗  

𝐸𝐸[𝝎𝝎(k) 𝝂𝝂(j)T] = 0 

(4.35) 

2. The initialization of the Kalman filter is artificially set from the basic information of the 

researched system. 

 
𝑿𝑿�0+ = 𝐸𝐸[𝑿𝑿(0)] 

𝑷𝑷0+ = 𝐸𝐸[�𝑿𝑿(0) −𝑿𝑿�0+��𝑿𝑿(0) −𝑿𝑿�0+�
𝑇𝑇

] 
(4.36) 

3. The Kalman filter algorithm is calculated using the following equations, which are used for 

each time step k = 1, 2, 3⋯ 
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𝑷𝑷𝑘𝑘− = 𝐆𝐆𝑷𝑷𝑘𝑘−1+ 𝐆𝐆𝑇𝑇 +𝑸𝑸 

 𝑿𝑿�𝑘𝑘− = 𝐆𝐆𝑿𝑿�𝑘𝑘−1+ + 𝐇𝐇𝑼𝑼(k− 1) 

 𝑿𝑿�𝑘𝑘+ = 𝑿𝑿�𝑘𝑘− +𝐾𝐾𝑘𝑘(𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘−) 

𝐾𝐾𝑘𝑘 = 𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇(𝐂𝐂𝑷𝑷𝑘𝑘−𝐂𝐂𝑇𝑇 + 𝑹𝑹)−𝟏𝟏 

𝑷𝑷𝑘𝑘+ = (𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑷𝑷𝑘𝑘−(𝑰𝑰 −𝐾𝐾𝑘𝑘𝐂𝐂)𝑇𝑇 +𝐾𝐾𝑘𝑘𝑹𝑹𝐾𝐾𝑘𝑘𝑇𝑇 

(4.37) 

The Kalman filter algorithm is also given in the following block diagram, which describes the 

equations relationship that were discussed before. 
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Figure 4.2 The discrete-time Kalman filter algorithm block diagram 
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4.3 An application of the Kalman filter 

A simple application of the Kalman filter and it simulation is provided to verify the Kalman 

filter algorithm. As can be seen in Figure 4.3, a person is driving a car on a straight road. Only 

the position can be measured per 1 second in this case. By knowing the acceleration, the the 

Kalman filter can be used to estimate its velocity.  

 

Figure 4.3 The Kalman filter application system 

According to the Kinematic equations, the system can be derived as follows: 

 
𝑠𝑠𝑘𝑘 = 𝑠𝑠𝑘𝑘−1 + 𝑐𝑐𝑘𝑘−1𝑑𝑑+

1
2 𝑑𝑑𝑘𝑘−1𝑑𝑑

2 

𝑐𝑐𝑘𝑘 = 𝑐𝑐𝑘𝑘−1 + 𝑑𝑑𝑘𝑘−1𝑑𝑑 
(4.38) 

Where 𝑠𝑠𝑘𝑘 is the position at time 𝑘𝑘, 𝑐𝑐𝑘𝑘 is the velocity at time 𝑘𝑘, 𝑑𝑑𝑘𝑘−1 is acceleration at time 𝑘𝑘 −

1, and 𝑑𝑑 is time. 

The system SSR can be obtained as: 

 
�
𝑠𝑠𝑘𝑘
𝑐𝑐𝑘𝑘� = �1 𝑑𝑑

0  1� �
𝑠𝑠𝑘𝑘−1
𝑐𝑐𝑘𝑘−1�+ �

𝑑𝑑2

2
𝑑𝑑
�𝑑𝑑𝑘𝑘−1 

𝑌𝑌𝑘𝑘 = [1 0] �
𝑠𝑠𝑘𝑘
𝑐𝑐𝑘𝑘� 

(4.39) 
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Where 𝑌𝑌𝑘𝑘 is the measurement at time 𝑘𝑘. 

If the system model is built in SSR block of MATLAB Simulink, it will only show the system 

input and system output. In this case, in order to compare the system state with the estimated 

state, the block diagram is drawn to simulate the system model in Figure 4.4.  

 

Figure 4.4 The block diagram of the Kalman filter application system 

In the block diagram, the system state parameters are clearly shown. Therefore, each state 

parameter can be taken out as needed. According to the system block diagram, the system is 

built in the MATLAB Simulink in Figure 4.5. 

 

Figure 4.5 The MATLAB Simulink for the Kalman filter application system 

The Kalman filter uses the input and output of the system to estimate the system state. The 

acceleration in this case is set to be a discrete-time sinewave with 100 Hz/s frequency and 

1second sampling time. The system state velocity is taken to compare with the estimated state 

velocity in scope 2. For the initial state estimate of the system, the position and the velocity are 

assumed to be zero.  
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�
𝑠𝑠0
𝑐𝑐0� = �0

0
� 

Assume the covariance of the initial state estimated error to be: 

𝑷𝑷0+ = �0.1 0
0 0.1

� 

Assume the covariance of the process noise to be: 

𝑸𝑸 = �0.1 0
0 0.1

� 

Assume the covariance of the measurement noise to be: 

𝑹𝑹 = [0] 

The compared result is given in Figure 4.6. 

 

Figure 4.6 The compared result between the real system state and the estimated state 

As shown in the figure, the yellow curve is the real system state while the blue curve is the 

estimated state. For the sine wave velocity, a certain difference will exist between the real 

system state and the estimated state when the velocity trend is changing. However, it is clearly 

shown that the estimated velocity is tracking the real velocity all the time. This application 

successfully indicates that the Kalman filter can produce the optimal estimate of the linear 

system.  
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4.4 The FDD method by using the Kalman filter 

The system fault classifications are discussed before, which are sensor fault, actuator fault, and 

system component fault. In the plate structure system, the researched fault object is actuator 

faults. Once the actuator in the plate system is broken, the control signal cannot control the top 

plate to be stable. This could cause the control accident in the plate structure. Without the three 

control inputs into the system, the top plate will have strenuous vibration that will break the 

entire system. 

4.4.1 The classifications of system actuator faults 

 As the plate structure system introduced before, there are three actuators in the system. Figure 

4.7 shows their relationships in the system. 

 

Figure 4.7 The system actuators position relationships 

The classification of actuator faults can be defined as two kinds of faults. One of them is signal 

fault, which can be actuator 1 fault, actuator 2 fault, or actuator 3 fault. Another kind of fault 

is a double fault, which can be actuator 1, 2 fault, actuator 2, 3 fault, or actuator 1, 3 fault. The 

FDD purpose is to detect the random fault, and supply information to solve problems (to 

interrupt system or change the control law). If the three actuators have faults together, the whole 

system will stop working and will be uncontrollable. Therefore, detecting faults happening to 

the three actuators at the same time is unnecessary in the plate structure system. Figure 4.8 

shows the classification of actuator faults. 

 

Figure 4.8 The classification of actuator faults 
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4.4.2 Fault detection method 

Figure 4.9 gives a simplified Kalman filter algorithm block diagram. From the Kalman filter 

algorithm, it is known that the Kalman filter can compute the system’s estimated state by using 

the real time system output measurement and system control input.  

 

Figure 4.9 The simplified Kalman filter algorithm 

When the actuator fault occurs in the system, the alterations in the system are the state and 

output measurement. According to the system measurement function without measurement 

noise, the system state estimate is transformed to the system output estimate. 

 𝒀𝒀�(k) = 𝐂𝐂𝑿𝑿�(k) (4.40) 

Where 𝒀𝒀�(k) is the estimated output, and the state estimate 𝑿𝑿�(k) is the Kalman filter posteriori 

state estimate 𝑿𝑿�𝑘𝑘+. 

 

 

Figure 4.10 The fault detection method block diagram 
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The fault detection method is described in Figure 4.10. As shown in the figure, the Kalman 

filter used to detect faults is called the Kalman filter without fault. This Kalman filter uses the 

input signal and output signal without fault to produce a no-fault state estimate. A residual can 

be calculated by comparing the estimated output from the Kalman filter and measured output. 

From the Kalman filter algorithm design, the Kalman filter state estimate is the optimal 

estimate in linear system. Therefore, if the system does not have fault, the Kalman filter using 

the matrixes in the system will compute the optimal estimated output, which is almost the same 

as the measured output. In this situation, the residual is named no-fault residual, which will be 

a zero-mean noise with a very small value. If the system has fault, the residual is named fault 

residual that will be a very large zero-mean noise. Assume the residual is 𝑬𝑬𝑟𝑟𝑟𝑟(k), its transfer 

function is: 

 
𝑬𝑬𝑟𝑟𝑟𝑟(k) = 𝒀𝒀(k)− 𝒀𝒀�(k) = 𝒀𝒀(k)− 𝐂𝐂𝑿𝑿�𝑘𝑘+ 

�∀𝑬𝑬𝑟𝑟𝑟𝑟(k)≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is no fault in the system.
∃𝑬𝑬𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,the system has unknown fault. 

(4.41) 

Where 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold value, which is chosen between the upper limit of the no-

fault residual and the upper limit of the fault residual.  

In the block diagram, the Kalman filter without fault block is the Kalman filter using the system 

matrix 𝐆𝐆, the input matrix 𝐇𝐇, and the output matrix 𝐂𝐂 in no-fault system. This is the essential 

point to get the almost equivalent estimated output and measured output.  

This method can be used to detect any kind of fault in the system not only the actuator fault. If 

fault occurs to the system, the system model will change and influence the system output. 

However this method cannot be used to diagnose the fault, another fault diagnosis method is 

presented to complete the FDD function. 

4.4.3 Fault diagnosis method 

The fault diagnosis purpose is to find the accurate fault in this thesis. It is important to find the 

difference between different actuator faults. In the system modelling part, it is introduced that 

the control singles 𝑼𝑼𝟏𝟏(s), 𝑼𝑼𝟐𝟐(s), and 𝑼𝑼𝟑𝟑(s) are executed by the actuators. The input matrix 𝐇𝐇 

and the control inputs 𝑼𝑼𝟏𝟏(s), 𝑼𝑼𝟐𝟐(s), and 𝑼𝑼𝟑𝟑(s) construct the control impact to the system. 

Assume the control impact is 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s), its transfer function of the plate structure is shown below. 
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 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = 𝐇𝐇𝑼𝑼(s) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐇𝐇𝟏𝟏𝟏𝟏 𝐇𝐇𝟏𝟏𝟐𝟐 𝐇𝐇𝟏𝟏𝟑𝟑
𝐇𝐇𝟐𝟐𝟏𝟏 𝐇𝐇𝟐𝟐𝟐𝟐 𝐇𝐇𝟐𝟐𝟑𝟑
𝐇𝐇𝟑𝟑𝟏𝟏 𝐇𝐇𝟑𝟑𝟐𝟐 𝐇𝐇𝟑𝟑𝟑𝟑
𝐇𝐇𝟒𝟒𝟏𝟏 𝐇𝐇𝟒𝟒𝟐𝟐 𝐇𝐇𝟒𝟒𝟑𝟑
𝐇𝐇𝟓𝟓𝟏𝟏 𝐇𝐇𝟓𝟓𝟐𝟐 𝐇𝐇𝟓𝟓𝟑𝟑
𝐇𝐇𝟔𝟔𝟏𝟏 𝐇𝐇𝟔𝟔𝟐𝟐 𝐇𝐇𝟔𝟔𝟑𝟑⎦

⎥
⎥
⎥
⎥
⎤

× �
𝑼𝑼𝟏𝟏(s)
𝑼𝑼𝟐𝟐(s)
𝑼𝑼𝟑𝟑(s)

�

= (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) ×  𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s) 

(4.42) 

This control impact transfer function is the essential part to apply the Kalman filter in fault 

diagnosis and shows the relationship of the input signal and input matrix in multiple input 

situations. All the fault situations discussed later will be based on the concept of control impact. 

1. Single fault on actuator 1 

The single fault situation is a very common situation in system fault. A way to detect single 

fault on actuator 1 is introduced here. When a fault occurs to actuator 1, the control signal 

𝑼𝑼𝟏𝟏(s) cannot be executed to control the system. Therefore, the control signal 𝑼𝑼𝟏𝟏(s) is equal to 

0 in the actuator 1 fault situation. The control impact of the whole system is changed from the 

no-fault situation to the actuator 1 fault situation. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟐𝟐 + 𝐇𝐇𝟐𝟐𝟐𝟐+ 𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 + 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s) 

(4.43) 

From the plate structure state representation, the control impact of the actuator 1 fault situation 

influences the output of the system. To diagnose the fault, another Kalman filter called the 

Kalman filter with fault 1 is built to estimate the actuator 1 fault system output. The system 

matrix and the output matrix is the same comparing the actuator 1 system and the no-fault 

system. The input matrix needs to change for the actuator 1 system output estimation. The new 

input matrix should achieve the same control impact of the actuator 1 fault system regardless 

of the input signal. Therefore the new control impact is: 
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 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) ×  𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟐𝟐 + 𝐇𝐇𝟐𝟐𝟐𝟐+ 𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 + 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s) 

(4.44) 

From the control impact equation, a way of getting the same control impact is to set the sum of 

parameters in the first row of the no-fault system input matrix to be 0 and make other 

parameters in the first row of the no-fault system input matrix remain the same.  

 𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏 = 0 (4.45) 

In the input matrix of the Kalman filter with fault 1, the parameters in the first row are set to 

be 0 and the other parameters remain the same as the no-fault system input matrix.  

𝐇𝐇𝒇𝒇𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡
𝟎𝟎 𝐇𝐇𝟏𝟏𝟐𝟐 𝐇𝐇𝟏𝟏𝟑𝟑
𝟎𝟎 𝐇𝐇𝟐𝟐𝟐𝟐 𝐇𝐇𝟐𝟐𝟑𝟑
𝟎𝟎 𝐇𝐇𝟑𝟑𝟐𝟐 𝐇𝐇𝟑𝟑𝟑𝟑
𝟎𝟎 𝐇𝐇𝟒𝟒𝟐𝟐 𝐇𝐇𝟒𝟒𝟑𝟑
𝟎𝟎 𝐇𝐇𝟓𝟓𝟐𝟐 𝐇𝐇𝟓𝟓𝟑𝟑
𝟎𝟎 𝐇𝐇𝟔𝟔𝟐𝟐 𝐇𝐇𝟔𝟔𝟑𝟑⎦

⎥
⎥
⎥
⎥
⎤

 

Where 𝐇𝐇𝒇𝒇𝟏𝟏 is the input matrix of actuator fault 1 system. 

 

Figure 4.11 The fault diagnosis of the actuator fault 1 method block diagram 

The fault diagnosis of the actuator fault 1 method is illustrated in Figure 4.11. A residual can 

be calculated by comparing the estimated output from the Kalman filter with fault 1 and the 

measured output. The residual is named the fault 1 residual, which will be a zero-mean noise 

with a very small value when the system has fault on actuator 1. If the system does not have 

fault on actuator 1, the residual is named no-fault 1 residual that will be a very large zero-mean 

noise. Assume the residual is 𝑬𝑬1𝑟𝑟𝑟𝑟(k), its transfer function is: 

 𝑬𝑬1𝑟𝑟𝑟𝑟(k) = 𝒀𝒀(k)− 𝒀𝒀�𝟏𝟏(k) (4.46) 
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� ∀𝑬𝑬1𝑟𝑟𝑟𝑟(k) ≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , there is fault on actuator 1.
∃𝑬𝑬1𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is no fault on actuator 1 

Where 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold value, which is chosen between the upper limit of the fault 1 

residual and the upper limit of the no-fault 1 residual, and 𝒀𝒀�𝟏𝟏(k) is the estimated output of the 

Kalman filter with fault 1. 

2. Single fault on actuator 2 

A way to detect single fault on actuator 2 is introduced here. When a fault occurs to actuator 2, 

the control signal 𝑼𝑼𝟐𝟐(s) cannot be executed to control the system. Therefore, the control signal 

𝑼𝑼𝟐𝟐(s) is equal to 0 in the actuator 2 fault situation. The control impact of the whole system is 

changed from the no-fault situation to the actuator 2 fault situation. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s) 

(4.47) 

From the plate structure state representation, the control impact of the actuator 2 fault situation 

influences the output of the system. To diagnose the fault, another Kalman filter called Kalman 

filter with fault 2 is built to estimate the actuator 2 fault system output. The system matrix and 

the output matrix is the same comparing the actuator 2 system and the no-fault system. The 

input matrix needs to change for the actuator 2 system output estimation. The new input matrix 

should achieve the same control impact of actuator 2 fault system regardless of the input signal. 

Therefore the new control impact is: 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) ×  𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) ×  𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) ×  𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑 +𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) ×  𝑼𝑼𝟑𝟑(s) 

(4.48) 

From the control impact equation, a way of getting the same control impact is to set the sum of 

parameters in the second row of the no-fault system input matrix to be 0 and make other 

parameters in the no-fault system input matrix remain the same.  

 𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐+ 𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐 = 0 (4.49) 
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In the input matrix of the Kalman filter with fault 2, the parameters in the second row are set 

to be 0 and other parameters remain the same in thee no-fault system input matrix.  

𝐇𝐇𝒇𝒇𝟐𝟐 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐇𝐇𝟏𝟏𝟏𝟏 𝟎𝟎 𝐇𝐇𝟏𝟏𝟑𝟑
𝐇𝐇𝟐𝟐𝟏𝟏 𝟎𝟎 𝐇𝐇𝟐𝟐𝟑𝟑
𝐇𝐇𝟑𝟑𝟏𝟏 𝟎𝟎 𝐇𝐇𝟑𝟑𝟑𝟑
𝐇𝐇𝟒𝟒𝟏𝟏 𝟎𝟎 𝐇𝐇𝟒𝟒𝟑𝟑
𝐇𝐇𝟓𝟓𝟏𝟏 𝟎𝟎 𝐇𝐇𝟓𝟓𝟑𝟑
𝐇𝐇𝟔𝟔𝟏𝟏 𝟎𝟎 𝐇𝐇𝟔𝟔𝟑𝟑⎦

⎥
⎥
⎥
⎥
⎤

 

Where 𝐇𝐇𝒇𝒇𝟐𝟐 is the input matrix of actuator fault 2 system. 

 

Figure 4.12 The fault diagnosis of actuator fault 2 method block diagram 

The fault diagnosis of actuator fault 2 method is described in Figure 4.12. A residual can be 

calculated by comparing the estimated output from the Kalman filter with fault 2 and the 

measured output. The residual is named fault 2 residual, which will be a zero-mean noise with 

a very small value when the system has fault on actuator 2. If the system does not have fault 

on actuator 2, the residual is named no-fault 2 residual that will be a very large zero-mean 

noise. Assume the residual is 𝑬𝑬2𝑟𝑟𝑟𝑟(k), its transfer function is: 

 
𝑬𝑬2𝑟𝑟𝑟𝑟(k) = 𝒀𝒀(k)− 𝒀𝒀�𝟐𝟐(k) 

� ∀𝑬𝑬2𝑟𝑟𝑟𝑟(k)≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, there is fault on actuator 2.
∃𝑬𝑬2𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there  is no fault on actuator 2 

(4.50) 

Where 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold value, which is chosen between the upper limit of the fault 2 

residual and the upper limit of the no-fault 2 residual, and 𝒀𝒀�𝟐𝟐(k) is the estimated output of the 

Kalman filter with fault 2. 

3. Single fault on actuator 3 

A way to detect single fault on actuator 3 is introduced here. When a fault occurs to actuator 3, 

the control signal 𝑼𝑼𝟑𝟑(s) cannot be executed to control the system. Therefore, the control signal 
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𝑼𝑼𝟑𝟑(s) is equal to 0 in the actuator 3 fault situation. The control impact of the whole system is 

changed from the no-fault situation to the actuator 3 fault situation. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s) 

(4.51) 

From the plate structure state representation, the control impact of the actuator 3 fault situation 

influences the output of the system. To diagnose the fault, another Kalman filter called Kalman 

filter with fault 3 is built to estimate the actuator 3 fault system output. The system matrix and 

the output matrix is the same comparing the actuator 3 system and the no-fault system. The 

input matrix needs to change for the actuator 3 system output estimation. The new input matrix 

should achieve the same control impact of actuator 3 fault system regardless of the input signal. 

Therefore the new control impact is: 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) ×  𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s) 

(4.52) 

From the control impact equation, a way of getting the same control impact is to set the sum of 

parameters in the third row of the no-fault system input matrix to be 0 and make other 

parameters in the no-fault system input matrix remain the same.  

 𝐇𝐇𝟏𝟏𝟑𝟑+ 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑 = 0 (4.53) 

In the input matrix of the Kalman filter with fault 3, the parameters in the third row are set to 

be 0 and other parameters remain the same in the no-fault system input matrix.  

𝐇𝐇𝒇𝒇𝟑𝟑 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐇𝐇𝟏𝟏𝟏𝟏 𝐇𝐇𝟏𝟏𝟐𝟐 𝟎𝟎
𝐇𝐇𝟐𝟐𝟏𝟏 𝐇𝐇𝟐𝟐𝟐𝟐 𝟎𝟎
𝐇𝐇𝟑𝟑𝟏𝟏 𝐇𝐇𝟑𝟑𝟐𝟐 𝟎𝟎
𝐇𝐇𝟒𝟒𝟏𝟏 𝐇𝐇𝟒𝟒𝟐𝟐 𝟎𝟎
𝐇𝐇𝟓𝟓𝟏𝟏 𝐇𝐇𝟓𝟓𝟐𝟐 𝟎𝟎
𝐇𝐇𝟔𝟔𝟏𝟏 𝐇𝐇𝟔𝟔𝟐𝟐 𝟎𝟎⎦

⎥
⎥
⎥
⎥
⎤
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Where 𝐇𝐇𝒇𝒇𝟑𝟑 is the input matrix of actuator fault 3 system. 

 

Figure 4.13 The fault diagnosis of actuator fault 3 method block diagram 

The fault diagnosis of actuator fault 3 method is described in Figure 4.13. A residual can be 

calculated by comparing the estimated output from Kalman filter with fault 3 and measured 

output. The residual is named fault 3 residual, which will be a zero-mean noise with a very 

small value when the system has fault on actuator 3. If the system does not have fault on 

actuator 3, the residual is named no-fault 3 residual that will be a very large zero-mean noise. 

Assume the residual is 𝑬𝑬3𝑟𝑟𝑟𝑟(k), its transfer function is: 

 
𝑬𝑬3𝑟𝑟𝑟𝑟(k) = 𝒀𝒀(k)− 𝒀𝒀�𝟑𝟑(k) 

� ∀𝑬𝑬3𝑟𝑟𝑟𝑟(k)≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, there is fault on actuator 3.
∃𝑬𝑬3𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there  is no fault on actuator 3 

(4.54) 

Where 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold value, which is chosen between the upper limit of the fault 3 

residual and the upper limit of the no-fault 3 residual, and 𝒀𝒀�𝟑𝟑(k) is the estimated output of the 

Kalman filter with fault 3. 

Based on all the fault diagnosis methods mentioned before, the three Kalman filters are formed 

to achieve single fault diagnosis. Figure 4.14 shows the Kalman filter bank and the process of 

single fault diagnosis. 
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Figure 4.14 The Kalman filter bank to diagnose single fault 

By using the Kalman filter bank above, the single actuator fault can be diagnosed in the plant 

structure system. In the fault classification, the actuator faults are classified into the single 

actuator fault and the double actuators fault. The following part will introduce the fault 

diagnosis for the double actuators fault situations. 

4. Double faults on actuator 1 and 2 

When a fault occurs to actuator 1 and 2, the control signal 𝑼𝑼𝟏𝟏(s)  and 𝑼𝑼𝟐𝟐(s) cannot be executed 

to control the system. In another word, the control signal 𝑼𝑼𝟏𝟏(s)  and 𝑼𝑼𝟐𝟐(s)  are equal to 0 in 

the actuator 1 and 2 fault situation. The control impact in double faults on actuator 1 and 2 is 

shown as the following. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s) 

(4.55) 

This transfer function illustrates the control impact on the real system. For the Kalman filter 

with fault 1 in figure 4.14, the control impact is computed as below. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = 𝟎𝟎× 𝟎𝟎 + (𝐇𝐇𝟏𝟏𝟐𝟐 + 𝐇𝐇𝟐𝟐𝟐𝟐+ 𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 + 𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s) 

(4.56) 
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For the Kalman filter with fault 2, the control impact is also represented. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎+ 𝟎𝟎 × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s)

= (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟑𝟑(s) 

(4.57) 

For the Kalman filter with fault 3, the control impact is also represented. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐+ 𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎 + 𝟎𝟎× 𝑼𝑼𝟑𝟑(s)

= 0 

(4.58) 

By comparing the control impacts, the first three control impacts are the same. According to 

the relationship between the control impacts and outputs, both of the estimated output 𝒀𝒀�𝟏𝟏(k) 

and 𝒀𝒀�𝟐𝟐(k) should be almost the same as the measured output 𝒀𝒀(k). However the estimated 

output 𝒀𝒀�𝟑𝟑(k) is different from the measured output 𝒀𝒀(k). 

 𝒀𝒀(k) ≅ 𝒀𝒀�𝟏𝟏(k)≅ 𝒀𝒀�𝟐𝟐(k) ≠ 𝒀𝒀�𝟑𝟑(k) (4.59) 

Therefore, the following conclusion indicates the fault diagnosis result 

 �∀𝑬𝑬1𝑟𝑟𝑟𝑟(k) ≅ ∀𝑬𝑬2𝑟𝑟𝑟𝑟(k) ≅ 0 ≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is fault on actuator 1 and  2.
∃𝑬𝑬3𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there  is no fault on actuator 3  (4.60) 

5. Double faults on actuator 2 and 3 

When a fault occurs to actuator 2 and 3, the control signal 𝑼𝑼𝟐𝟐(s)  and 𝑼𝑼𝟑𝟑(s) cannot be executed 

to control the system. In another word, the control signal 𝑼𝑼𝟐𝟐(s)  and 𝑼𝑼𝟑𝟑(s)  is equal to 0 in the 

actuator 1 and 2 fault situation. The control impact in double faults on actuator 1 and 2 is shown 

as the following. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s) 

(4.61) 

This transfer function illustrates the control impact on the real system. For the Kalman filter 

with fault 1, the control impact is computed as below. 

 
 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = 𝟎𝟎 × 𝑼𝑼𝟏𝟏(s) + (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 +𝐇𝐇𝟒𝟒𝟐𝟐 + 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 + 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎 = 𝟎𝟎 
(4.62) 
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For the Kalman filter with fault 2, the control impact is represented. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s) + 𝟎𝟎 × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟑𝟑 + 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s) 

(4.63) 

For the Kalman filter with fault 3, the control impact is also represented. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 + 𝐇𝐇𝟒𝟒𝟏𝟏+ 𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s)

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 + 𝐇𝐇𝟒𝟒𝟐𝟐+ 𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝟎𝟎+ 𝟎𝟎× 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 + 𝐇𝐇𝟒𝟒𝟏𝟏+ 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝑼𝑼𝟏𝟏(s) 

(4.64) 

By comparing the control impacts, these four control impacts are the same. According to the 

relationship between the control impacts and outputs, both of the estimated output 𝒀𝒀�𝟐𝟐(k) and 

𝒀𝒀�𝟑𝟑(k) should be almost the same to the measured output 𝒀𝒀(k). However the estimated output 

𝒀𝒀�𝟏𝟏(k) is different from the measured output 𝒀𝒀(k). 

 𝒀𝒀(k) ≅ 𝒀𝒀�𝟐𝟐(k)≅ 𝒀𝒀�𝟑𝟑(k) ≠ 𝒀𝒀�𝟏𝟏(k) (4.65) 

Therefore, the following conclusion indicates the fault diagnosis result 

 �∀𝑬𝑬2𝑟𝑟𝑟𝑟(k) ≅ ∀𝑬𝑬3𝑟𝑟𝑟𝑟(k) ≅ 0 ≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is fault on actuator 2 and 3.
∃𝑬𝑬1𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is no fault on actuator 1  (4.66) 

6. Double faults on actuator 1 and 3 

When a fault occurs to actuator 1 and 3, the control signal 𝑼𝑼𝟏𝟏(s)  and 𝑼𝑼𝟑𝟑(s) cannot be executed 

to control the system. In another word, the control signal 𝑼𝑼𝟏𝟏(s)  and 𝑼𝑼𝟑𝟑(s)  are equal to 0 in 

the actuator 1 and 3 fault situation. The control impact in double faults on actuator 1 and 3 is 

shown as the following. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 + 𝐇𝐇𝟐𝟐𝟏𝟏+ 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 + 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐 +𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟑𝟑 +𝐇𝐇𝟐𝟐𝟑𝟑 + 𝐇𝐇𝟑𝟑𝟑𝟑+ 𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 +𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟐𝟐(s) 

(4.67) 
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This transfer function illustrates the control impact on the real system. For the Kalman filter 

with fault 1, the control impact is computed as below. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = 𝟎𝟎 × 𝟎𝟎+ (𝐇𝐇𝟏𝟏𝟐𝟐+ 𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 + 𝐇𝐇𝟒𝟒𝟐𝟐+ 𝐇𝐇𝟓𝟓𝟐𝟐+ 𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 + 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟑𝟑 + 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 +𝐇𝐇𝟓𝟓𝟑𝟑 + 𝐇𝐇𝟔𝟔𝟑𝟑) × 𝑼𝑼𝟐𝟐(s) 

(4.68) 

For the Kalman filter with fault 2, the control impact is represented. 

 
 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏+ 𝐇𝐇𝟐𝟐𝟏𝟏 +𝐇𝐇𝟑𝟑𝟏𝟏 +𝐇𝐇𝟒𝟒𝟏𝟏 + 𝐇𝐇𝟓𝟓𝟏𝟏+ 𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎+ 𝟎𝟎× 𝑼𝑼𝟐𝟐(s)

+ (𝐇𝐇𝟏𝟏𝟑𝟑 + 𝐇𝐇𝟐𝟐𝟑𝟑+ 𝐇𝐇𝟑𝟑𝟑𝟑 +𝐇𝐇𝟒𝟒𝟑𝟑 + 𝐇𝐇𝟓𝟓𝟑𝟑+ 𝐇𝐇𝟔𝟔𝟑𝟑) × 𝟎𝟎 = 𝟎𝟎 
(4.69) 

For the Kalman filter with fault 3, the control impact is also represented. 

 

 𝑰𝑰𝑐𝑐𝑜𝑜𝑛𝑛(s) = (𝐇𝐇𝟏𝟏𝟏𝟏 +𝐇𝐇𝟐𝟐𝟏𝟏 + 𝐇𝐇𝟑𝟑𝟏𝟏+ 𝐇𝐇𝟒𝟒𝟏𝟏 +𝐇𝐇𝟓𝟓𝟏𝟏 +𝐇𝐇𝟔𝟔𝟏𝟏) × 𝟎𝟎

+ (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 + 𝐇𝐇𝟑𝟑𝟐𝟐+ 𝐇𝐇𝟒𝟒𝟐𝟐+ 𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s) + 𝟎𝟎× 𝟎𝟎

= (𝐇𝐇𝟏𝟏𝟐𝟐 +𝐇𝐇𝟐𝟐𝟐𝟐 +𝐇𝐇𝟑𝟑𝟐𝟐 + 𝐇𝐇𝟒𝟒𝟐𝟐+ 𝐇𝐇𝟓𝟓𝟐𝟐 +𝐇𝐇𝟔𝟔𝟐𝟐) × 𝑼𝑼𝟐𝟐(s) 

(4.70) 

By comparing the control impacts, these four control impacts are the same. According to the 

relationship between the control impacts and outputs, both of the estimated output 𝒀𝒀�𝟏𝟏(k) and 

𝒀𝒀�𝟑𝟑(k) should be almost the same to the measured output 𝒀𝒀(k). However the estimated output 

𝒀𝒀�𝟐𝟐(k) is different from the measured output 𝒀𝒀(k). 

 𝒀𝒀(k) ≅ 𝒀𝒀�𝟏𝟏(k)≅ 𝒀𝒀�𝟑𝟑(k) ≠ 𝒀𝒀�𝟐𝟐(k) (4.71) 

Therefore, the following conclusion indicates the fault diagnosis result 

 �∀𝑬𝑬1𝑟𝑟𝑟𝑟(k) ≅ ∀𝑬𝑬3𝑟𝑟𝑟𝑟(k) ≅ 0 ≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is fault on actuator 1 and  3.
∃𝑬𝑬2𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there  is no fault on actuator 2  (4.72) 

As discussed above, the three combinations of double actuators fault can be diagnosed by the 

existing Kalman filter bank. It is not necessary to build more Kalman filters for the double 

actuators fault. The Kalman filter bank for FDD is described in Figure 4.15. 
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Figure 4.15 The block diagram of the Kalman filter bank for FDD 

The system model and the Kalman filter bank supply the four residuals for FDD. By comparing 

the threshold values and the residuals, the result can be analysed to diagnosis fault. Taking the 

fault detection analyse as an example, the method for detecting system fault is as follows. 

 � ∀𝑬𝑬𝑟𝑟𝑟𝑟(k)≤ 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,there is no fault in the system.
∃𝑬𝑬𝑟𝑟𝑟𝑟(k) > 𝐓𝐓𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ,the system has unknown faults. (4.73) 

However the residual 𝑬𝑬𝑟𝑟𝑟𝑟(k) is a zero-mean noise. If the system has unknown faults, the 

residual 𝑬𝑬𝑟𝑟𝑟𝑟(k) will not be larger than the threshold value all the time. If only the threshold 

value is used to analyse the residuals to detect faults, the detection result cannot properly reflect 

the real situation of the system. The fault detection, simply using the threshold value, is plotted 

in Figure 4.16. 
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Figure 4.16 The fault detection simply using the threshold value 

Based on the theoretical analysis before, the artificial residual is created in three different 

situations, which are no-fault situation, fault situation, fault fixed situation. In no-fault and fault 

fixed situations, the detection results are considered acceptable by comparing all the residual 

values and the threshold value. However, the fault detection method only detects the fault 

situation when the residual value is larger than the threshold value. In the case of a fault, the 

fault cannot be detected when the residual value is less than the threshold value. This kind of 

unstable detection can also occur during analysing the fault diagnosis residuals. Therefore, this 

thesis creates a new algorithm, the normalization algorithm to analyse the residuals to obtain 

the FDD results. 

4.4.4 The normalization algorithm 

In the theoretical analysis of the residual, it is generally considered that the initial condition of 

the residual is zero. But in reality, most of the initial condition of the residuals are not zero. 

Each different initial condition brings unnecessary interference to the fault detection. 

So the first goal of the normalization algorithm is to eliminate the impact of the initial state on 

the residual analysis. The system previously described in this thesis was transformed to a 

discrete-time system. Figure 4.17 shows an artificial example where the initial condition of the 

residual is not zero. 
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Figure 4.17 Non-zero initial condition example of the residual 

One way to solve the above problem is to subtract the residual value of the time K from the 

residual value at time K+1 to obtain a new residual. (Take the fault detection as the example) 

 𝑬𝑬𝑛𝑛𝑟𝑟(k + 1) = 𝑬𝑬𝑟𝑟𝑟𝑟(k + 1)− 𝑬𝑬𝑟𝑟𝑟𝑟(k) (4.74) 

Where 𝑬𝑬𝑛𝑛𝑟𝑟(k + 1) is the new zero mean residual with zero initial condition. 

This method achieves the elimination of the initial state by calculating the difference between 

the residual 𝑬𝑬𝑟𝑟𝑟𝑟(k) at each moment and the previous moment. After eliminating the initial state 

of the residual 𝑬𝑬𝑟𝑟𝑟𝑟(k), at each moment, the normalization algorithm takes the previous N 

samples (including the samples at the current time) for the new residual with an initial state of 

zero. This means that the sampling must start at time N. The value of N needs to be greater 

than one period of the new residual to ensure the accuracy of the sample analysis. At the same 

time, the value of N is less than twice the new residual period to ensure the efficiency of fault 

detection.  

 𝑺𝑺𝑟𝑟𝑠𝑠 = [𝑬𝑬𝑛𝑛𝑟𝑟(k),𝑬𝑬𝑛𝑛𝑟𝑟(k− 1),𝑬𝑬𝑛𝑛𝑟𝑟(k− 2),⋯ ,𝑬𝑬𝑛𝑛𝑟𝑟(k− N)], T𝑛𝑛𝑟𝑟 ≤ N ≤ 2T𝑛𝑛𝑟𝑟 (4.75) 

Where 𝑺𝑺𝑟𝑟𝑠𝑠 is the N samples of the residual 𝑬𝑬𝑛𝑛𝑟𝑟(k), and T𝑛𝑛𝑟𝑟 is the period of the residual 

𝑬𝑬𝑛𝑛𝑟𝑟(k).After sampling, the normalization algorithm calculates the RMS value of the previous 

N samples at each time. 

 RMS𝑟𝑟𝑠𝑠 = �1
N (𝑬𝑬𝑛𝑛𝑟𝑟(k)𝟐𝟐 +𝑬𝑬𝑛𝑛𝑟𝑟(k− 1)𝟐𝟐+ 𝑬𝑬𝑛𝑛𝑟𝑟(k− 2)𝟐𝟐+ ⋯+ 𝑬𝑬𝑛𝑛𝑟𝑟(k−N)𝟐𝟐 (4.76) 

The normalization algorithm calculates the RMS value of the sample in the fault detection case 

and the non-fault situation will be very different. The calculated RMS value will not be a 

variable that is a zero mean. In the case of fault detection, the RMS value in the event of a fault 

would be a large variable and have a lower limit of not less than zero. At the same time, in the 
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case of non-fault, the RMS value will be a small value and have an upper limit of not less than 

zero. The upper RMS value of non-fault conditions will be less than the lower RMS value of 

fault conditions. Therefore, the fault detection based on the RMS value judgment is easier to 

implement. 

 ∀RMS𝑛𝑛𝑜𝑜 ≤ ∀RMS𝑓𝑓𝑠𝑠  (4.77) 

Where RMS𝑛𝑛𝑜𝑜  is the RMS value of the non-fault condition and  RMS𝑓𝑓𝑠𝑠  is the RMS value of 

the fault condition. 

Based on the above analysis, a threshold value is created to determine if the system has fault.  

This threshold is an arbitrary value between the upper RMS value of non-fault condition and 

the lower RMS value of fault condition. The threshold value determines the response time and 

the accuracy of fault detection. How to value the threshold will be described in detail later in 

the system simulation. 

 ∀RMS𝑛𝑛𝑜𝑜 ≤ 𝐓𝐓𝑅𝑅𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ≤ ∀RMS𝑓𝑓𝑠𝑠  (4.78) 

Where 𝐓𝐓𝑅𝑅𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold value for analysing the RMS value. 

The above method is a description of the working principle of the normalization algorithm. 

Figure 4.18 summarizes the normalization algorithm into a flow chart. 

 

Figure 4.18 The normalization algorithm block diagram for analysing the fault detection 
residual 

The above algorithm can also analyse and compare the three residuals of the fault diagnosis to 

obtain the detection result. Figure 4.19 shows the complete algorithm block diagram. 
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Figure 4.19 The normalization algorithm block diagram for analysing the FDD residuals 

Through the design of the Kalman filter bank and the normalization algorithm, the Kalman 

filter based FDD method can be successfully applied to the plant structure system. The overall 

Kalman filter based FDD method is shown in Figure 4.20. 



Chapter 4: Kalman Filter Based FDD method 

64 
 

 

Figure 4.20 The Kalman filter based FDD block diagram 
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In the following chapters, in order to verify the Kalman filter based FDD method, the 

corresponding system simulation and experiment are carried out. 
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Chapter 5 : Kalman Filter Based FDD Method Validation 

Firstly, based on the knowledge of the introduction of the system identification and the Kalman 

filter based FDD method, an artificial plant structure system was created in MATLAB 

Simulink. In simulation, three gains are added between the controller and the system feedback 

to simulate the system's actuator failure. The plant structure system simulates the case of single 

fault and double faults by setting the values of three gains. The Kalman filter based FDD 

method is used to detect the artificially set fault. In the simulation, the relevant parameters are 

valued according to the actual situation of the system. Subsequently, the Kalman filter based 

FDD method was applied to the real vibration system. The two system models are linear 

discrete-time systems that are simplified according to the real plant structure system. The 

signals emitted the controller and emitted by the actuator are taken out in the real system and 

inputted into the two models. The experiment also shows the process of the Kalman filter based 

FDD, especially the observation of residuals. 

5.1 Conceptual Kalman filter based FDD method validation. 

MATLAB Simulink is a simulation and model-based design tool for dynamic systems and 

embedded systems. It can design, simulate, execute and test a variety of time-varying systems.  

In this part, a linear discrete-time system simplified by the Plant structure is created in 

Simulink. In order to make the system produce a vibration output, according to the frequency 

corresponding to the first three modes of the system at the time of modelling, three sine waves 

of the corresponding frequency are used as disturbance in the system. The system will generate 

vibration signals with the maximum observable amplitude at these three frequencies. A 

controller called PPF is applied to the system to reduce the impact of disturbance to the system. 

In fact, any controller that has control effect over the system can be used as a controller here, 

as long as it can generate the corresponding control signals. Therefore, the PPF controller is 

not analysed and introduced in detail in this article. The specific information can be found in 

the reference [28]. The three gain blocks represent actuators 1, 2, and 3. When the value of gain 

is 1, it is equivalent to the actuator not having fault. When the value of gain is 0, it is equivalent 

to the corresponding actuator fault. Because the sensor fault is not the researched object of this 

thesis, it is not deliberately drawn in the simulation. The signal from the artificial system can 

be the signal feedback from the sensor by default. The artificial system is shown in Figure 5.1. 
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Figure 5.1 The artificial system to validate the Kalman filter based FDD method 

As previously introduced, due to the presence of disturbances, the control signals given by the 

controller and the control signals after the actuator are taken from the artificial system. 

According to the original open-loop system, a system model containing two same artificial 

systems is introduced to provide the necessary information to the Kalman filter bank. 

 

Figure 5.2 The Kalman filter bank simulation to derive four residuals 

. 
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Figure 5.2 shows how the Kalman filter bank and system model are connected. At the output 

of the Kalman filter bank, four residuals are calculated in real time. The structure of the system 

model is shown in Figure 5.3 and the structure of the Kalman filter bank is shown in Figure 

5.4. 

 

Figure 5.3 The structure of the system model 

 

Figure 5.4 The structure of the Kalman filter bank 

In each Kalman filter, the initial state estimate of the system, the covariance of the initial state 

estimate error, the covariance of the process noise, and the covariance of the measurement 
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noise must all be given. In the plant structure system, it is desirable that the top plate is always 

in a stable and stationary state, so the position and speed of the three measuring points of the 

system are all 0. Therefore, the initial state estimate of the system is set as follows. 

𝑿𝑿(0) =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

 

Assume all the initial estimated states have the error in 1. The covariance of the initial state 

estimate error is: 

𝑷𝑷0+ =

⎣
⎢
⎢
⎢
⎢
⎡1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

The covariance of the process noise is shown as follows: 

𝑸𝑸 =

⎣
⎢
⎢
⎢
⎢
⎡1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

The covariance of the measurement noise is: 

𝑹𝑹 = �
1 0 0
0 1 0
0 0 1

� 

The analysis of the residuals by the normalization algorithm is also established in the system, 

the structure of which is shown in Figure 5.5. 
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Figure 5.5 The simulation structure of the Kalman filter based FDD method 

The four scopes in Figure 5.5 are used to observe the four residuals of the Kalman filter bank, 

while the four display blocks are used to display troubleshooting and results. The structure of 

the Normalization algorithm is shown in Figure 5.6, where the threshold values are explained 

in detail in the simulation. 
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Figure 5.6 The structure of the normalization algorithm 

In the normalization algorithm, each period has 4.5 samples according to the previous 

calculation and sampling time of the system, and the RMS value is calculated by taking the 

previous 7 samples at each time. Each residual of the Kalman filter bank has 3 signals. To 

analyse all of the signals, each signal uses the normalization algorithm. All the analysed signals 

have been amplified 1010 times. 

Take the first signal of fault detection residual as an example. After introducing the complete 

simulation structure, the observations of the fault detection RMS values without any faults, and 

the fault detection RMS values with faults, are compared in the system. When the system does 

not have fault, the first signal fault detection RMS value is shown in Figure 5.7. 
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Figure 5.7 The fault detection RMS value when system do not have fault 

When the system has fault, the first signal of fault detection RMS value is shown in Figure 5.8. 

 

Figure 5.8 The fault detection RMS value when the system has fault 

As shown in Figure 5.7 and Figure 5.8, when the system does not have fault, the first signal of 

fault detection RMS value has the largest value at 4.3 × 10−14. When the system has fault, the 

first signal of fault detection RMS value has the lowest value at 22. Therefore, the threshold 

value is set to 0.01 to ensure the fault detection efficiency and accuracy for this case. 
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By observing all the RMS values in no-fault system and fault systems. All the threshold values 

are set to 0.01. 

5.1.1 No fault system simulation result 

All the structures and parameters of the fault detection and positioning system have been 

introduced. In the simulation, first observe the four residuals and test results without faults. 

 

Figure 5.9 The four residuals and results without faults in simulation 

According to the simulation, in the first no fault scope, the signals in residual are very small 

zero mean values, and their maximum values are around 5 × 10−14. The other three scopes 

have maximum values of around 2 to 4. The maximum values in the first residual is 

significantly lower than that in the other three residuals, and the system is not faulty at the 

moment. In the display block, 1 means that the name of the display block is valid, and 0 means 

that the display block is invalid. In the display block, the same FDD result shows the system 

having no fault. 

5.1.2 Actuator fault 1 system simulation result 

By setting the gain in actuator fault 1, the simulation result can be observed in Figure 5.10.  
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Figure 5.10 The four residuals and results with actuator fault 1 in simulation 

According to the simulation, in the fault 1 scope, the three signals in residual are very small 

zero mean values, and their values are around 0. The other three scopes have maximum values 

of around 2 to 80. The signals in the second residual are significantly lower than that in the 

other three residuals, which means the system is having fault 1 at the moment. In the display 

block, the same FDD result shows the system having fault 1. 

5.1.3 Actuator fault 2 system simulation result 

By setting the gain in actuator fault 2, the simulation result can be observed in Figure 5.11.  

 

Figure 5.11 The four residuals and results with actuator fault 2 in simulation 



Chapter 5: Kalman Filter Based FDD Method Validation 

75 
 

According to the simulation, in the fault 2 scope, the three signals residual are very small zero 

mean values, and their values are around 0. The other three scopes have maximum values of 

around 2 to 75. The signals in the third residual are significantly lower than that in the other 

three residuals, which means the system is having fault 2 at the moment. In the display block, 

the same FDD result shows the system having fault 2. 

5.1.4 Actuator fault 3 system simulation result 

By setting the gain in actuator fault 3, the simulation result can be observed in Figure 5.12.  

 

Figure 5.12 The four residuals and results with actuator fault 3 in simulation 

According to the simulation, in the fault 3 scope, the signals in residual are very small zero 

mean values, and their values are around 0. The other three scopes have maximum values 

around 2 to 60. The fourth residual is significantly lower than the other three residuals, which 

means the system is having fault 3 at the moment. In the display block, the same FDD result 

shows the system having fault 3. 

5.1.5 Actuator fault 1 and 2 system simulation result 

By setting the gain in actuator fault 1 and 2, the simulation result can be observed in Figure 

5.13.  
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Figure 5.13 The four residuals and results with actuator fault 1 and 2 in simulation 

According to the simulation, in the fault 1 and 2 scope, the signals in residuals are very small 

zero mean values, and all of the values are around 0. The other two scopes have maximum 

values of around 2 to 150. The second and third residuals are significantly lower than the other 

two residuals, which means the system is having fault 1 and 2 at the moment. In the display 

block, the same FDD result shows the system having fault 1 and 2. 

The other interesting finding is that the maximum value of signal in no-fault block of the double 

faults situation is larger than that of the single fault situation. 

5.1.6 Actuator fault 2 and 3 system simulation result 

By setting the gain in actuator fault 2 and 3, the simulation result can be observed in Figure 

5.14.  
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Figure 5.14 The four residuals and results with actuator fault 2 and 3 in simulation 

According to the simulation, in the fault 2 and 3 scope, the signals in residuals are very small 

zero mean values, and all of the values are around 0. The other two scopes have maximum 

values around 3 to 140. The third and fourth residuals are significantly lower than the other 

two residuals, which means the system is having fault 2 and 3 at the moment. In the display 

block, the same FDD result shows the system having fault 2 and 3. 

5.1.7 Actuator fault 1 and 3 system simulation result 

By setting the gain in actuator fault 1 and 3, the simulation result can be observed in Figure 

5.15.  
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Figure 5.15 The four residuals and results with actuator fault 1 and 3 in simulation 

According to the simulation, in the fault 1 and 3 scope, the signals in residuals are very small 

zero mean values, and all of the values are around 0. The other two scopes have maximum 

values around 3 to 140. The second and fourth residuals are significantly lower than the other 

three residuals, which means the system is having fault 1 and 3 at the moment. In the display 

block, the same FDD result shows the system having fault 1 and 3. 

In conclusion, the simulations above validate the Kalman filter based FDD method can be 

applied to the plant structure system. The results via the different simulations confirm that the 

designed Kalman filter based FDD method is able to detect the real time faults in the plant 

structure successfully. 

5.2 The Kalman filter based FDD method via experiment 

After verifying the Kalman filter based FDD method in the simulation, this method was applied 

to the actual Plant structure system. The experiment used a software called dSPACE, which 

reads the signal generated by the sensor from the actual system, then the controller feeds the 

control signal back to the actuator of the system. At the same time, this software can observe 

various parameters in the real-time system. The controller used in the experiment is the same 

PPF control mentioned before. In the actual system, the experiment also takes two control 

signals from the controller behind the system and after the actuator. Therefore, when building 

the dSPACE model, three gains are added before the controller and before the external output 

signal. When any of the three gains is zero, the corresponding actuator of the system will not 
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work. As shown in Figure 5.16, the relevant model is set up in MATLAB and then modelled 

into dSPACE to control the real system. 

 

Figure 5.16 The structure for the experiment 

In the simulation, no faults and six faulty conditions were tested. In order to test the practicality 

of the FDD method, the above seven cases are also applied in the test. 

5.2.1 No fault system experiment result 

First, the test is conducted without any fault in the system. In the dSPACE software, the FDD 

results of the four residuals obtained from the Kalman filter bank are shown in Figure 5.17. 
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Figure 5.17 The four residuals and results without faults in experiment 

As can be seen in Figure 5.17, the value of the first residual is 0, and the largest value in the 

simulation is 5 × 10−14, are almost equal. In theory, this residual should be a zero mean noise. 

The value in the experiment is zero because the scale of the coordinate axis is large, so this 

noise cannot be displayed. The other three residuals are very large noise, but not zero mean, 

which is consistent with theoretical analysis. This is because in the experiment, the initial 

condition of the system may not be 0. In the result of FDD, the system shows no fault. Although 

the results of the simulation and experiment seem to be a little different, in fact the results of 

the simulation and experiment are the same.  The previous theoretical analysis about the 

residual is verified again. 

5.2.2 Actuator fault 1 system simulation result 

Artificial setting actuator fault 1, observe the results of FDD and four residuals in Figure 5.18. 
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Figure 5.18 The four residuals and results with actuator fault 1 in simulation 

Comparing Figure 5.18 with Figure 5.17, the three signals in the first residual changes from 

noises close to 0 to very large noises, while the signals in the second residual changes from 

very large noises to noises close to straight lines. As in the previous analysis, all results are the 

same compared to the simulation, except for the initial condition of the residual. In the fault 

detection and diagnostic results, the actuator 1 fault is displayed. 

5.2.3 Actuator fault 2 system simulation result 

Artificial setting actuator fault 2, observe the results of FDD and four residuals in Figure 5.19. 
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Figure 5.19 The four residuals and results with actuator fault 2 in simulation 

Comparing Figure 5.19 with Figure 5.17, the three signals in the first residual change from 

noises close to 0 to very large noises, while the signals in the third residual change from very 

large noises to noises close to straight lines. As in the previous analysis, all results are the same 

compared to the simulation, except for the initial condition of the residual. In the fault detection 

and diagnostic results, the actuator 2 fault is displayed. 

5.2.4 Actuator fault 3 system simulation result 

Artificial setting actuator fault 3, observe the results of FDD and four residuals in Figure 5.20. 
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Figure 5.20 The four residuals and results with actuator fault 3 in simulation 

Comparing Figure 5.20 with Figure 5.17, the three signals in the first residual change from 

noises close to 0 to very large noises, while the signals in the fourth residual change from very 

large noises to noises close to straight lines. As in the previous analysis, all results are the same 

compared to the simulation, except for the initial condition of the residual. In the fault detection 

and diagnostic results, the actuator 3 fault is displayed. 

5.2.5 Actuator fault 1 and 2 system simulation result 

Artificial setting actuator fault 1 and 2, observe the results of FDD and four residuals in Figure 

5.21. 
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Figure 5.21 The four residuals and results with actuator fault 1 and 2 in simulation 

Comparing Figure 5.21 with Figure 5.17, the three signals in the first residual changes from 

noises close to 0 to very large noises, while the second and third residuals change from very 

large noises to noises close to straight lines. As in the previous analysis, all results are the same 

compared to the simulation, except for the initial condition of the residual. In the fault detection 

and diagnostic results, the actuator 1 and 2 fault is displayed. 

5.2.6 Actuator fault 2 and 3 system simulation result 

Artificial setting actuator fault 2 and 3, observe the results of FDD and four residuals in Figure 

5.22. 
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Figure 5.22 The four residuals and results with actuator fault 2and 3 in simulation 

Comparing Figure 5.22 with Figure 5.17, the three signals in first residual changes from noises 

close to 0 to very large noises, while the third and fourth residuals change from very large 

noises to very small noises, in which the largest values are around 1.5 × 10−9. However, the 

third and fourth residuals are still very close to straight lines. As in the previous analysis, all 

results are the same compared to the simulation, except for the initial condition of the residual. 

In the fault detection and diagnostic results, the actuator 2 and 3 fault is displayed. 

5.2.7 Actuator fault 1 and 3 system simulation result 

Artificial setting actuator fault 1 and 3, observe the results of FDD and four residuals in Figure 

5.23. 
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Figure 5.23 The four residuals and results with actuator fault 1 and 3 in simulation 

Comparing Figure 5.23 with Figure 5.17, the three signals in the first residual changes from 

noises close to 0 to very large noises, while the second and fourth residuals change from very 

large noises to noises close to straight lines. As in the previous analysis, all results are the same 

compared to the simulation, except for the initial condition of the residual. In the fault detection 

and diagnostic results, the actuator 2 and 3 fault is displayed. 

In summary, in all experiments the FDD results are exactly the same as the simulation, and 

only the residuals of the observations are slightly different. The reasons for the differences have 

also been discussed in the experiment. Therefore, the Kalman filter based FDD method has 

proven to be an effective method for detecting and diagnosing faults in simulations and 

experiments. 
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Chapter 6 : Conclusion  

First of all, this thesis studies the MIMO plant structure system characteristics, and simplif ies 

it into a linear discrete-time SSR. Then, the discrete-time Kalman filter is studied to produce 

the system state estimate. The system output estimate is obtained by using the system state 

estimate and the system output equation. By comparing the real system output with the 

estimated output, a series of residuals can be calculated to detect the similarity of the two 

outputs. Using the same method for other single fault cases, a Kalman filter bank is created, 

which included the Kalman filter of the normal system and the Kalman filter of three different 

single fault cases. In order to analyze the residuals, the thesis comes up with a new algorithm 

called normalization algorithm.  And then, by observing the parameters of the simplified linear 

discrete-time system in the simulation, the previous theoretical variables are valued to obtain 

the correct FDD results. At the same time, the intermediate process signal, the residuals, are 

also observed in the simulation to verify the normalization algorithm. Finally, the Kalman filter 

based FDD method is used in the experiment. The experimental results are compared with the 

simulation results to further verify the feasibility of this method. 

In the experiment, it is found that the existing experimental equipment has its limitations. In 

the existing experimental equipment, it is impossible to physically set the actuator fault and get 

relevant signals. However, this method also has its limitations. It requires that the theoretical 

model in the experiment must match the real system. Once the real system changes, the results 

of FDD will no longer be credible. 

For the above two points, the future work can be completed in two steps. First, in the 

experiment, a new PCB board will be designed for the simulation between the actuator and the 

dSPACE. Accordingly, designing a switch on the new PCB board will simulate the actuator 

fault. Second, the Kalman filter based FDD method will be improved to make it more versatile, 

not only to perform correct FDD to required system changes (analyze a specific system and 

create a system library), but also detecting and diagnosing sensor faults as well as the actuator 

fault. After the improvement of the Kalman filter based FDD method, it will have a better 

performance to do FDD in other vibration control systems. 
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Appendix A: MATLAB Code 

The MATLAB codes for each section are kept within the Advanced Control Research Group, 

Flinders University. The MATLAB codes can be provided upon request. 
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