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Abstract

Inmany control systems, sensors and actuators are integral parts, which can be utilized to detect
the change of the system and take the needful action to achieve the control purpose. However,
sensors and actuators have their own service life and can be damaged by various factors, which
results in financial loss and casualties. These phenomena, when sensors and actuators stop

working, are called sensors and actuators faults.

In this thesis, a Kalman Filter based Fault Detection and Diagnosis (FDD) scheme is proposed
to detect and isolate different actuator faults for a given three-input three-output plate structure
resonant system. This system can be used in many areas, such as doing operation on a
emergency vehicle. The mathematical model of the given resonant system is first modelled and
obtained by using open loop transfer function method and then changed into a discrete-time

State Space Representation (SSR) model for further design purpose.

By setting the initial estimated state and its corresponding estimation error covariance, the
following estimated state can be calculated by using the real-time control signals and measured
outputs using the technique of Kalman filter. To utilize the Kalman filter technique for FDD
purpose in a resonant system, the estimated outputs can be calculated using the estimated state.
Next, a set of corresponding output error residuals can be generated by comparing the
difference between the estimated outputs and measured outputs. A normalization algorithm
calculating the RMS value of the corresponding residuals is applied to determine a threshold

value to identify the location of actuator faults occurred in the system.

The concept of Kalman filter technique is first tested in an artificial system. Simulation results
indicate that the estimated states generated by the Kalman filter can quickly approach the actual
state values and track the actual state values all the time. The given 3*3 plate structure system
with one fault is tested via simulation in MATLAB SIMULINK, which validates the proposed
Kalman filter based FDD design. In the FDD design, four identical Kalman filters are
constructed to form a Kalman filter bank for no fault, as well as actuator 1, 2 and 3 fault cases
respectively. The estimated output of each case is computed by using the Kalman filter bank
estimated state. The residuals, which are produced using estimated outputs and measured
outputs, are analysed for the single fault detection and diagnosis. Then multiple actuator fault
cases are introduced to the plate structure system and tested via MATLAB SIMULINK. The



simulation results show that the corresponding multiple faults are detected successfully by

analysing the output residuals using the proposed normalization algorithm.

After the proposed Kalman filter based FDD scheme is validated in simulation, it is then tested
in a real-time experiment. Two discrete-time system models, a Kalman filter bank and a
normalization algorithm are built to construct the experimental Kalman filter FDD scheme.
One of the discrete-time system models is to produce the discrete-time measured outputs
without fault, which is used for fault detection. The other is introduced to compute the
measured outputs (possible with fault), which is used for fault diagnosis. The residuals
computed in the Kalman filter bank for both single actuator fault cases and multiple actuator
faults cases are generated. A set of residual data is recorded, and its RMS value is compared
with the set threshold constant. The result verifies that all the actuator fault cases are isolated

successfully.
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Chapter 1: Introduction

Chapter 1 : Introduction

1.1 Thesis background

The thesis background is the Multi-Input Multi-Output (MIMO) vibration control system and
equipment, in which the in-depth system researchwork is carried out. For the fault FDD of the

vibration control system, a new solution is proposed by applying the Kalman filter.

In many vibration control systems, once a fault occurs, it is likely to cause catastrophic damage
in the system due to a resonance effect. In order to improve the safety and reliability of the
system, it is necessary to monitor the fault and determine the fault location in real time during
the operation of the vibration system. This will allow for a certain period of time for hardware
replacement and emergency maintenance. Therefore, FDD technology is especially important

in vibration control.

Although FDD technology has achieved relatively fruitful research results through the decades
of its development, the technology of FDD is still not mature. First of all, many researchobjects
are nonlinear systems with diversity and complexity. Secondly, the system has some external
noise and unknown input signals in addition to the known control inputs; these have made FDD

research more difficult.

1.2 Research purpose and significance

Part of the vibration system state cannot be measured directly for a number of reasons. At this
time, the state of the system can be predicted by a state estimator. The core task of a state
estimate is to design filters. Among linear systems with Gaussian noise, the Kalman filter is
undoubtedly the optimal estimator when compared to other filters. Upon knowing the estimated
state of the system, it can be converted into an estimated measurement by the output equation
of the vibration system. Comparing the estimated measurement with the actual measurement,
it is possible to know whether the vibration system is in a normal state. The Kalman filter-
based FDD can effectively detect and locate system faults in real time, which greatly helps the

practical application of many vibration systems.

1.3 The outline of the thesis

In this project, a Kalman filter based FDD method is designed and demonstrated for a MIMO

mechanical plate structure with three pairs of sensors and actuators.
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In Chapter 2, an overall literature review is presented. FDD development and fault

classifications are introduced in detail as well as different FDD approaches.

In Chapter 3, the features and characteristics of the MIMO mechanical plate structure, of this
project, is introduced. Based on the theoretical analysis and physical experiments, the plant

structure system is modelled in a discrete-time SSR.

In Chapter 4, the Kalman filter based FDD method is discussed as the core technology of the
FDD approach adopted in this thesis. The structure of the discrete-time Kalman filter which
forms the basic concept in the fault detection approach is introduced firstly. Then a simple
example for understanding Kalman filter principle is discussed using MATLAB SIMULINK.
Lastly, the method to apply the Kalman filter in FDD is introduced.

In Chapter 5, The Kalman filter based FDD method is verified in both simulation and
experiment. The parameter values and simulation approach is discussed in MATLAB
SIMULINK. The comparison and analysis is demonstrated through experiment by using
dSPACE software.

In Chapter 6, meaningful conclusions are drawn based on the achievement of the thesis and

future works are suggested to develop the Kalman filter based FDD method.
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Chapter 2 : Literature Review

In this chapter, an overall literature related to FDD is reviewed. FDD development is firstly
discussed to explain the FDD importance and its history. Next the fault classifications are
introduced to illustrate the research object in this thesis. In the end, different FDD approaches

are discussed to obtain the best choice for this project.

2.1 FDD development

Modern control systems have been introduced into different complex systems, such as robotic
systems, radar systems, automotive systems, and so on, resulting with the control algorithms
becoming more and more sophisticated. These control systems are based on different kinds of
electronic components, which may cause a fault with the control systems. In high-level
intelligent and automated systems, the fault process can be extremely rapid. For some safety-
critical systems, the fault consequences can result in loss of life, economic loss and
environmental damage. [1] To avoid the irreversible tragedy and improve the safety and
reliability of the system, the technology of FDD is used to detect the reason, position and

damage degree during the system processing.

Since about the 1970s, FDD has gained a rising worldwide consideration both in theory and
application. Although FDD technique has developed over 40 years, the growing demand for
safety, reliability, maintainability, and survivability in control systems has drawn abundant
research achievements. [2] In 1996, Professor Frank (Duisburg University, German) assorted
FDD into three basic categories, which are the knowledge and knowledge-based methods,
analytical model-based methods and signal based methods.[3] Furthermore, each group
includes more detailed plans, as shown in Figure 2.1. In 2003, Professor VVenkata Subramanian
(Purdue University, USA) classified FDD methods as quantitative model-based methods,
qualitative model-based methods and process history.[4] As the development of artificial
intelligence (Al) has increased at an exponential rate, the adoption of Al technology in

monitoring, control, and diagnosis for FDD systems has also increased.[5]
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Figure 2.1 Methods for Fault Detection in Control Systems [6]
In general, the following functions should be distinguished in FDD systems: [7]

(a) Monitoring: for tolerance purpose, the FDD system should check measurable variables in

real time, and alarms should be generated all the time.

(b) Automatic protection: the monitoring function automatically activates an appropriate

countermeasure regarding a dangerous process state.

(c) Supervision with fault diagnosis: based on measured variables, the FDD system can
generate the changing feature and symptoms, detect the possible fault, and make the reasonable

decision for counteractions.

The classic FDD systems based on supervision methods (a) and (b) have a tremendous
advantage in simplicity and reliability. However, these two methods require a mass of
information to generate changes then react to the fault. Besides, in some specific fields, FDD
system with method (a) or (b) is not feasible. Therefore FDD system with method (c) is needed,

especially for satisfying the following requirements.

(1) Timely detection of small faults in germination or in an unexpected stage;
(2) FDD in sensors, actuators, and process components;

(3) FDD in closed-loop systems;

(4) Process supervision in transient states.

Although FDD technology is one of the most famous research topics, it is still immature and
can be further developed. Firstly, the linear and nonlinear systems have their complexity and
diversity. Secondly, the control systems typically have interrupt noise and unknown input

signals as well as known control signals. Besides, the introduction of the Internet in recent

4
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years comes up with plenty of new issues, for example, packet loss, time delay, disorder,
digitalisation, and so on. All of these bring further difficulties in FDD research. Therefore this

thesis introduces a particular FDD approach and its application in detail.

2.2 Faults classification

Faults in dynamic systems mean the aberration of the system structure or the disparate system
parameters forming the unusual situation. As the structure shown in Figure 2.2, the faults can
be blocking of the actuator, loss of a sensor, or system component disconnection. Faults can
change the interacting plant components or the plant and the controller interface. [8] Hence,
faults are the unexpected elements that can improve system performance and cause degradation

or a loss of system function.

——

Fault Detection
and Diagnosis
(FDD)

\ Actuator (W System ¥V Sensor
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(Reference) = Feedforward
Governor Controller -
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Reconfigurable
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Figure 2.2 A general structure of FDD

Usually, the fault classification can be sensor faults, actuator faults, and plant component faults

(system faults).

2.2.1 Sensor faults

Sensor fault, also named sensor data fault, is one of the major faults in FDD. The plant
properties are not affected by the sensor fault, but the sensor readings have abundant errors. In
the real project, three types of sensor faults often are observed: single-sample spikes sensor
readings, longer duration noisy readings, and anomalous constant offset readings. [9]
Numerous studies show that sensor fault frequently results in severe consequences for safety
and plants operation. Therefore, it is essential to study sensor faults to guarantee the safety and
the reliability of systems. [10]
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2.2.2 Actuator faults

Actuator fault means the fault of moving or controlling components in the system. Such faults
cannot affect the plant properties but can make the controller influence to be interrupted or
modified. An actuator fault is a type of system input failure. It may occur in the systems due to
abnormal operation or aging of material. Actuator faults can be represented by single or
multiple faults that can change the system behaviour, leading to degradation or even instability.
[11]

2.2.3 System component faults

System component faults are the other faults different from sensor faults and actuator faults.
They can be caused by plant structure, system modelling or other reasons. These kinds of faults
can change the system dynamical input/output properties. System component faults are the

most sophisticated faults because the faults can occur anywhere in the system.

In this thesis, the FDD method only focuses on the actuator faults.

2.3 FDD methods

With decades of development, there are a great diversity of FDD methods. These methods are
challenging problems in many disciplines such as aerospace engineering, nuclear engineering,
chemical engineering, and automotive systems. [12] In general, FDD methods can be divided

into two classes of redundancy; hardware redundancy and analytical redundancy.

Hardware Redundancy

Extra Set

of Sensors

4

1 Set of Output { Diagnostic Alarm

Sensors

Input
—ppl  Process

- = = - — -

—— o — o — o ————————

. FDD Algorithm using
a Mathematical
l \I' I(lf']

Analytical Redundancy

e

Diagnostic

Logic

Figure 2.3 lllustrations of the concepts of hardware redundancy and analytical redundancy for
FDD
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2.3.1 Hardware redundancy

Hardware redundancy means to compare repetitive signals generated by various hardware,
such as measurements of the same signal given by two or more physical copies of a hardware
component. Hardware redundancy may be the only way to improve the dependability of a

system.

Hardware redundancy has three classic types, which are passive, active, and hybrid. Without
any information about action from the system, passive redundancy can achieve FDD by
masking the faults. Active redundancy can acheieve fault tolerance with the detected faults.
After FDD, the actions are taken to remove the faulty component from the system. Active
techniques must stop the system to replace the system fault component. Hybrid redundancy
combines the two approaches that are mentioned above. Hybrid redundancy can fix system

faults without system downtime.
1. Passive redundancy

Instead of detecting faults, the passive redundancy approach masks faults to acheive
redundancy. This method only allows the correct values to perform as the system output
regardless of the fault percentage. Passive redundancy techniques are normally used in
applications with high-reliability. The high-reliability system does not accept any interruptions
and it is impossible to be repaired. The high-reliability system examples include an air force

combat control system, cardiac pacemaker, and deep-space electronics.
2. Active redundancy

Active redundancy method detects the faults in the system, then takes appropriate action
regarding recovering the fault and makes the system return to the original state. This is usually
applied in high availability systems, for example, transaction processing systems and time-
shared computing systems. The high availability system allows the temporary fault to happen,
which can be detected by active redundancy. However, these faults can be recovered quickly,

and the system can return to a normal operating state.
3. Hybrid redundancy

Hybrid redundancy takes advantages from passive and active approaches and makes the better
choice to tolerate the faults among the mentioned methods. It uses fault masking when the

system has unpredicted faults that can bring more problems to the system. While the fault
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tolerant method is also used when the unwanted faults can be fixed. Hybrid redundancy is
normally used in systems, which have very high safety requirements. Examples of these kinds
of systems are chemical process control systems, nuclear power plants, ordnance
manufacturing systems, medical manufacturing systems, aerospace systems, traffic systems,
and so on. [13]

Hardware redundancy also has its disadvantages: increasing weight, size, power consumption,
cost, design time, fabrication and testing time. To achieve the best result, a few choices must

be examined before incorporating hardware redundancy into a system.

2.3.2 Analytical redundancy

Analytical redundancy builds the mathematical model of the system and uses different
algorithms to estimate the system state to achieve FDD. The analytical redundancy approach
does not need additional hardware to perform its function, which can save money and time
compared to the hardware redundancy. However, the target system is complicated by noise, an
uncertain model, and unexpected disturbances, which makes the analytical redundancy
approach more difficult to achieve. The systematic redundancy approach is harder to design

compared to the hardware redundancy.

faults
noise disturbances
, outputs
inputs PLANT
primary
residuals
I MODEL

Figure 2.4 Analytical redundancy

There are many FDD methods of analytical redundancy, only several of the most popular

methods are introduced in the following paragraph.

8
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1. The parameter estimation

The parameter estimation means the processes use the sampling data to estimate the required
parameters. The parameter estimation is a method, which provides tools for the efficient usage
in sampling data to estimate the constants appearing in the mathematic model, and for helping
to model the system. In a different situation, the modelled systems have their character, which
can be algebraic, differential, integral equations, or their associated conditions. Depending on

the system, the estimated parameter may or may not have a direct physical significance.

The parameter estimation can also be applied to the opposite problem. By knowing the initial
condition, the boundary, and other parameters of the system, the parameter estimation can find
the partial differential equations of the unknown systems. During the process, not all the
constants of the system must need to be known. The constants that need to be estimated or used

to find the system characters in parameter estimation are also called parameters. [14]

The parameter estimation can be divided into Rank Regression (or Least Squares), Maximum

Likelihood Estimation and Bayesian Estimation Methods.
2. The Parity relation

Another popular approach of analytical redundancy is the Parity relation. This method is firstly
used to detect sensory faults in military control systems. Later, academics used it to detect not
only sensor faults but also actuator faults. A lot of experiments show that the Parity relation is
only suitable for linear systems. In linear systems, the Parity relation can detect the unexpected
fault in a concise period and report the exact fault location. This method can easily handle
systems with noise, unknown disturbance, and uncertain model. The most suitable situation is

the single output system where the observer-based method is impractical.

In 2007, academics have tried to apply the technique to the input-output model in nonlinear
systems by using the TS fuzzy models.[15] In 2011, another group applied the Parity space
approach to the fault detection and isolation based on nonlinear analytical reduncancy. [16]

These examples show the ablility of the Parity relation in nonlinear systems.
3. The Beard-Jones filter

Beard and Jones first devised the Beard-Jones filter for fault diagnosis in real time systems.
This filter is a state estimator like device, which can be only used in fault diagnosis. The core

of the Beard—Jones fault detection filter is a Luenberger observer, which is designed in a unique
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way that results in an “error” system. In the Luenberger observer, the faults model treats the

fault as part of the input, and has a diagonal stable transfer function matrix. [17]

This approach does not rely on prior assumptions about the mode of component failure. The
Beard-Jones filter is an individual observer that accentuates the effect of failure on the
innovation (or prediction error) of the observer. The observer gain is chosen to detect the

innovation vector in the output space, which can be used to identify the failed component. [18]

The Beard-Jones filter is also designed for the linear system at the beginning. However, more
and more theoretical developments in the Beard-Jones filter tried to adjust the filter to nonlinear

applications.
4. The Kalman filter

In 1960, the Hungarian born American mathematician Kalman presented a new filter approach:

The Kalman filter, which can be quickly calculated by the computer.
(1) The basic Kalman filter (KF)

The KF, also known as a linear quadratic estimation, is an algorithm based on a description of
SSR with signals and noise. This filter requires that the system state equation and the output
equation are the linear equation. The system noise and the measurement noise in the system
are Gaussian white noise and independent of each other. By knowing all statistic features, the
KF filter is the minimum variance unbiased estimator for the dynamic system unknown state.
[19]

The KF only needs the information of current measurement and previous estimation to
calculate the current estimation by using the existing model. [20] This algorithm has many

advantages.

(@) This algorithm brought the state variable into filter theory, along with solving filter

problems of time-varying, multivariable, and non-stationary time series.
(b) The KF is arecursive algorithm that can be easily calculated by the computer.

(c) The KF does not need to store the historical data and is convenient for real-time processing.
[21]

The linear KF is sufficiently mature with plentiful applications, for example, the Apollo Moon-
landing project. The Kalman filter is an optimal filter in the linear system and can be easily

10



Chapter 2: Literature Review

achieved in many systems. In this thesis, the system is modelled to a linear system that makes

the Kalman filter the best choice.
(2) The extended Kalman filter (EKF)

In the next decades, academics tried to find a better way to apply the Kalman filter in the
nonlinear system. One of the approaches is assuming all the changes are quasi-linear while
ignoring high order terms. The first order Taylor series expansion is used to approximate the
nonlinear systems in this method. [22] The EKF is an excellent estimator in nonlinear systems
and has the outstanding robustness to model inaccuracy, parameter variations, measurement
noise, and system uncertainties. [23] This filter makes a more natural algorithm, more
convenient operation and at a cheaper cost. Therefore, it is widely used in industrial systems.

However, it still has some theory limitations, which are discussed in the following:

(a) When the systems have very high order items, the EKF method will increase the system

error due to ignoring high order items with Taylor series expansion.

(b) If the initial estimate of the system state is incorrect, or if the modelling system is wrong,

the system will quickly diverge. [24]
(c) When the system achieved the stable state, EKF will lose the ability to track saltation.

So EKF is designed as a new approach for nonlinear systems, but its shortages limit its

application in more complicated and sensitive systems.
(3) The unscented Kalman filter (UKF)

To address the approximation issues of the EKF, a new FDD method, Julier and Uhlman came
up with the unscented Kalman filter (UKF). This method is based on the unscented
transformation, which can change the average value and covariance by sigma points. [25] The
algorithm is not restricted to Gaussian distributions and based on the intuition that is easier to
approximate a probability distribution than it is to approximate anarbitrary nonlinear function

or transformation. [26] Compared with the EKF, the UKF has a lot of advantages:

(a) The UKF does not need to calculate the system's Jacobi matrix, which makes the process

easier.

(b) The UKF is approximating a probability distribution rather than approximating an arbitrary
nonlinear function or transformation, which makes the system estimate accuracy higher than

the 1st order in Taylor series.

11
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(c) The UKF can be used to solve the systems with Gaussian noise and has wider application.
(d) The UKF uses the certainty-sampling method, which makes the filter accuracy improved.

Overall, the UKF method is the better FDD method for nonlinear systems comparing with the
EKF method. For further research of this thesis, the UKF method is another choice in the
nonlinear system model.
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Chapter 3 : System Identification of Plate Structure

To analyse and control a complex dynamic system, it is necessary to build a system model that
shows the dynamic system as a mathematical model. The mathematical model is a simplified
dynamic system, which contains all the essential information of the original system.

In this chapter, the method to build the existing dynamic system, the plate structure, into a
mathematical model is discussed in detail. Firstly, the MIMO plate structure feature and
characteristics are introduced in detail for analysing the dynamic model. Secondly, the
theoretical method is introduced to analyse and build the transfer function between inputs and
outputs. This theoretical method aims to get the general mathematic transfer function for
describing the physical systems. The experiment is conducted to get the system parameters by
using the ModalVIEW software. The system frequency response function (FRF) curve can be
observed to calculate the system parameters, such as model shapes, natural frequency and
damping ratios, for building the transfer function model. Afterthat, the system transfer function
is changed into a continuous-time SSR to apply the Kalman filter in FDD. The SSR can express
the system relationships in detail, for example, position, velocity and acceleration. Finally, the
continuous-time SSR is transformed to a discrete-time SSR by using the zero hold

discretization method.

3.1 Plate structure system components

Figure 3.1 shows the MIMO mechanical plate structure that is used in FDD. This plate structure
includes a base plate, a top plate, a disturbance transducer, three pairs of sensors on the top
plate, and three pairs of actuators between top plate and base plate.

13
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Figure 3.1 The MIMO mechanical structure

The whole system including sensors, actuators, and top plate is built on one side of the base
plate. The three sensors, which are accelerometers, can generate the amplitude of vibration
signals. The transducer 1, 2 and 3 are used as the three actuators that can operate the controlled
signals to reduce the vibration. The top plate is the main controlled object, which mounts the
three actuators by screws. The control aim is to keep the top plate motionless. At the other side
of the base plate, the disturbance transducer is used to generate artificial unknown disturbance

to the system.

As mentioned above, the system’s function is to reduce the top plate vibration from the artificial

disturbance. The system’s working process is described in the block diagram of Figure 3.2.

N Output |
Plant sensors
Fy

+

Feedback

actuators
controller

Figure 3.2 The MIMO close-loop system block diagram
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In the block diagram, when the disturbance transducer starts to generate unknown vibration
disturbance, the base plate will be influenced and transmit the vibration to three actuators by
the connecting screws. Though the vibration transmission from the actuator, the top plate will
no longer be stationary and start to vibrate at the same frequency of the disturbance signal.
Then the sensors on the top plate sense the vibration amplitude and send the signals to the
controller, which contains the control law to produce the controlled signals. Finally, the

actuators use the controlled signals to cancel the vibration on the top plate.
3.2 Theoretical open-loop transfer function for the plate structure

3.2.1 The general transfer function for the open-loop system

For a general open-loop system, the transfer function can be expressed as the following

equation.

Y(s) = G(s) xU(s) (3.2)
Where Y (s) can either be a variable or a vector and is the output signal of the system, U(s)
can either be a variable or a vector and is the input signal of the system, and G(s) can either be

ascalar or a matrix and is the transfer matrix of the system.

3.2.2 The plate structure transfer function for the open-loop system

The plate structure system shown in Figure 3.3 is a three-input and three-output system. To get
the transfer function of the plate structure, an input signal is introduced to each actuator
separately. When one of actuator starts to vibrate by using the input signal, the three sensors
can detect output signals at the same time. So the transfer function between single actuator and

single sensor can be derived as following.

Y 1(S) = Gy (5) X Upy(5) (3.2
Where Y, (s) is the single sensor output, the U,,(s) is the single actuator input, and the
G, (s) is the transfer function between the single actuator input and single sensor output. The
number n ranges from 1 to 3 and represents the sensor 1, 2, and 3 respectively, and the

number m ranges from 1 to 3 and represents the actuator 1, 2, and 3 respectively.
For example, if the transfer function of the plate structure system is:

Y1(5) = G12(s) X Uz(s) 3.3
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This represents the transfer function between input 1 and output 2.

61

Disturbance Top plate

Sensor and Sensor and

Actuator 1: T1

Sensor and
Actuator 2: T2 Actuator 3: T3

Base plate

Figure 3.3 Plate layout for open-loop system

The plate layout related to the plate structure open-loop system modelling also describes the
relationship between inputs and outputs. For the whole plate structure system, the system
transfer function can be derived as:

Yi(s) G11(8) G2(8) Gy3(s) U,(s)
Yo(9)| =1G21(8) Gaa(s) Gas(s)| x [Uz(s) (3.4)
Y3(s) G31(8) Gzz(8) G33(s) Us(s)

So for the open-loop system, the transfer matrix G(s) for the plate structure is a 3*3 matrix,
Which means that the measured output signal in each sensor is influenced by three actuators at
the same time and the input signal in each actuator impacts the three measured output signals
at the same time. The relationship between three sensor inputs and three actuator outputs is

also represented in the block diagram below.

Ui(s) N o F Yi(s)
> Giy(s)
» Gs(s)
> Gyuls)
Us ~ Y,
) > Gy(s) /=1®_h(i )
M Gu(s)

»| Gyy(s)

G(s)

Us(s) Goy(s) Yi(s)

A 4

Figure 3.4 MIMO control system block diagram

The plate structure system has been clearly explained above and its transfer function is derived
to model the system. To have a better understanding of the system transfer function, theoretical

analysis is introduced to delineate the transfer matrix G(s).
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3.3 The theoretical analysis of the system transfer matrix

For each transfer function between the single actuator input and single sensor output, the

transfer function can be written as the following equation [27].

oo oo

k ~k k
Gnm(s) = Z PP =Z Prim — (3.5)

k_lsz + 26k wk s+ wk? k_lsz + 2Gk wk. s +wk?2

Where k is the number of the mode, @k and ¢k, are mode shapes related to the actuator n and

the sensor m respectively, ¢k, is integrated by ¢X and ¢k, and is the mode shape between the
sensor n and the actuator m, Gk, is the damping ratio between the sensor n and the actuator

m, and w),, is the nature frequency between the sensor n and the actuator m.

The representation of the transfer function between the single actuator input and single sensor
output is critical for building the system. The parameters observed in the experiment are mode
shape, damping ratio, and nature frequency. In the next section, the experiment’s method and

results are given to complete the system transfer function.

3.4 Experiment of transfer function modelling

This experiment aims to produce the system transfer function parameters, such as mode shape,
damping ratio, and nature frequency. The physical experiment arrangement is shown in Figure
3.5.
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Single generator

Power supply
—

Interface board |

Current amplifier

e~
S S

Controller

NI DA,

‘— Sensors Top plate J "J'
\ l. ‘
Actuators = 11 'J

Wi =

Disturbance

Base plate

Figure 3.5 The arrangement of the physical system

3.4.1 Open-loop transfer function modelling method.

In the experiment, the signal generator produces a sinusoidal sweep signal, which has a
frequency ranging from 20 Hz to 100 Hz, and sends it to each actuator respectively. The
sinusoidal sweep signal is used as the input signal U;(s), U,(s), and Us(s) in the
corresponding actuator 1, 2, and 3. When the sinusoidal is inserted to one of the actuators, the
three sensors can detect the output signals Y, (s), Y,(s), and Y;(s) at the same time. The data
acquisition system (NI DAQ) recodes the sinusoidal sweep signal, and three output signals,

and sends them to ModalVIEW software for computing the frequency response function.

Y (s)
U (s)

G (S) = (3.6)

3.4.2 The experiment result parameters

As shown in Figure 3.6, the experiment shows each transfer function G,,,,,(s) is a complicated
function that roughly has 11 modes. To simplify the transfer function G, (s), the first three
modes are chosen to calculate their parameters, because they have the most significant impact

on the system.
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G612 G212 G32

G13 G23 G33

Figure 3.6 Measured FRF curves for the open-loop real system

The ModalVIEW software can provide a Multiple Degree of Freedom (MDOF) polynomial
curve fitting method to compute the transfer function parameters in all the modes. The first
three modes’ parameters of each transfer function between single sensor and single actuator
are shown in Table 1.

Table 1. The first three mode parameters of the transfer function model

G4 (s)
Mode Mode shape X, Damping ratio GK,, | Natural frequency (rad/s) wk,,
1 0.15363842 0.01893171 145.907272
2 0.41430841 0.01653821 182.852866
3 0.19853058 0.01802016 222.785222
G21(s)
Mode Mode shape ¢X,,, | Damping ratio GX.. | Natural frequency (rad/s) w),,
1 0.11828148 0.017293 146.334548
2 0.18811558 0.0102591 184.371104
3 0.34159332 0.01584925 221.993378
G31(s)
Mode Mode shape ¢k, | Damping ratio Gk, | Natural frequency (rad/s) w)k,,
1 0.10027307 0.01737686 146.302265
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2 0.1920355 0.01125181 183.906556
3 0.27221838 0.01641266 221.994835
G2 (s)
Mode Mode shape @X,, | Damping ratio G¥,, | Natural frequency (rad/s) wk,,
1 0.07290046 0.01208586 146.205623
2 0.17558329 0.0090579 181.912795
3 0.34610302 0.02018604 221.391273
Go2(s)
Mode Mode shape ¢X,, | Damping ratio GX.. | Natural frequency (rad/s) w),,
1 0.05076275 0.01225517 145.738971
2 0.18305818 0.01036957 183.839301
3 0.61395187 0.01988154 221.280048
G32(s)
Mode Mode shape ¢k, | Damping ratio GX.. | Natural frequency (rad/s) w)k,,
1 0.04862492 0.01229378 145.757852
2 0.15373242 0.01063791 183.606333
3 0.51509689 0.01994371 221.295643
Gy3(s)
Mode Mode shape @X,, | Damping ratio G¥,, | Natural frequency (rad/s) wk,,
1 0.04698852 0.0108145 145.234739
2 0.07202531 0.00769278 184.634413
3 0.18801199 0.01680347 222.570149
Gp3(s)
Mode Mode shape ¢X,, | Damping ratio GX.. | Natural frequency (rad/s) w),,
1 0.03451708 0.0108145 145.234739
2 0.10226404 0.00769278 184.634413
3 0.35679415 0.01680347 222.570149
Gas(s)
Mode Mode shape ¢k, | Damping ratio Gk | Natural frequency (rad/s) w)k,,
1 0.02300727 0.00939594 144.835311
2 0.07687854 0.00754164 184.843744
3 0.25701579 0.01651211 222.45161
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By knowing all the parameters of the first three modes, the 3*3 plant structure transfer matrix

can be derived by using theoretical analyse of the system transfer function. [28]

The system transfer function model is completed as following.

Yi(s) G11(s) Gi2(8) Gy3(s) Ui(s)
Yo(9)| =1G21(8) Ga2(s) Gas(s)| x [Uz(s) (3.7
Y3(s) G31(s) G32(8) G33(s) Us(s)

And

3
Gun(5) = ) Glim(5) (38)
k=1

Where Gk, (s) is the transfer function between the single actuator input and single sensor

output at mode k, where k can be 1, 2, and 3 representing different modes.

3.5 Construction of continuous-time SSR

The SSR can describe many processes in the real world. It is a mathematical model of the
system, which helps to control the process and observe information by using mathematical
tools. For the system mathematical analysis and the FDD purpose, the system transfer function
representation needs to transform to a continuous-time SSR firstly. Then the continuous-time

SSR is transformed to a discrete-time SSR by using the zero-order hold discretization method.

As the system transfer function has been worked out before, the transfer function of the

measurement output for each sensor can be produced individually.

For sensor 1:

Y1(s) = [G11(5) + GF1(5) + G31()] X U1 (s) +[G12(s) + G2, (s)

(3.9)
+G3,(5)] X Ua(s) + [GI3(s) + GI3(s) + G33(s)] X U3(s)
For sensor 2;
Y2(s) = [G31(s) + G531 (5) + G31(5)] X U1(s) + [G3(s) + G35(5) .10)
+ G35(s)] X Uz(s) + [G33(s) + G33(s) + G33(s)] X U3(s)
For sensor 3:
Y3(s) = [G31(5) + G531 (s) + G31()] X U1(s) + [G35(s) + G35(s) 1)

+G3,(5)] X Us(s) + [Gh3(5) + G53(5) + G33(5)] X Us(s)
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The transfer function between single actuator and single sensor is introduced before, which is

the transfer function for all the modes.

[oe]

G (5) = Z ki (3.12)

k—152 + 26k wk. s+ wk2

For the single mode transfer function between single actuator and single sensor, the transfer

function can be written as:

Kk
PnPm
s2 +2Gk wk s+ wk?

Gim(s) = (3.13)

The state space modelling method used in this thesis sets a common denominator for the entire
modes. The denominator in each mode has different damping ratios and natural frequencies,
which need to be uniform. For uniforming the damping ratio, the largest value of the damping
ratios in one mode is selected to be the general damping ratio. For uniforming the natural
frequency, the average value of the natural frequency values is selected to be the general
frequency. Therefore two general equations canbe defined to describe the general parameters
of the common denominator.

kK _ ck
q’;m 5 ) (3.14)
Wnm =W

Where Gk is the largest value of the damping ratio at mode k and w* is the average value of

the nature frequency at mode k.

By using the common denominator, the transfer function between single actuator and single

sensor at the single mode is changed to a simplified equation.

pX ok,
s2+ 2Ckwks + wk?

Grm(s) = (3.15)

Sub the simplified equation (3.15) to each sensor transfer function. The transfer function of the

measurement output for each sensor is changed as follows:
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For sensor 1:

B P17 ofpf
Yl(s) = 7+ 2
s2+2Gwls+wl™  s2 4+ 2G2w2s + w?

0; 5
s?2 4+ 2Q3w3s + w32

lx U, (s)

1.1 2, 2
+I P1 P2 n P12

s?2+2Cwls+ wl? 52 4 2G%2w?s + w2’
Qi 03

s?2+233w3s + w3’

lx U,(s)

+[ P13 N P73
s?2+2Gwls+ wl® s2 4 2G%2w?s + w2? (3.16)
0 3
s+ 2G3w3s+w
_ @1 (p1U1(S) + 93U, (s) + p3U3(s))
s?2 +2CTwls + w1?
+ oL (L U1(S) + 3U5(s) + p5U3(s))
s2+2G2w?s + w2?
+ @2 (PP U1(s) + 3U,(s) + 93U3(s))
s2+2GQ3w3s + w3’

12] X U3(s)

For sensor 2:

~ Q301 p2p}
Y,(s) = 7t 2
s?2+ 2Ctwls +wl® 2 +2GQ%w2s + w?

3 3

PP
2 2] X Uy (s)

s2+233w3s + w3

+I 9292 N P393
s?2+2Ctwls+ wl? s24 2G%2w?s + w2?
(3.17)

3 3

P, P
A 2] X UZ(S)

s2+233w3s + w3

+l 9293 N P393
s?2+2Cwls+ wl? 52 4 2G%2w?s + w2’
0303
s?+2G3w3s+w

12] X U3(s)
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_ 920U+ 9, Uz(S)+<p Us(s))
s? +2Gtw? s +wt?
<p2(<p Ui(s) + 93 Uz(S)+<p Us(s))
s? 4+ 2G%w? s + w2
<P2(<P1 U1(S)+<P§U2(S)+<P§U3(S))
s24+2G3w3 s+ w3’

For sensor 3:

B P3p1 Q301
Y3(s) = 7+ 2
s?24+2Ctwls+wl™ 2+ 2G2w?2s + w?

3 3

P3¢
A 2] x Uy (s)

s2+233w3s + w3

N l 93¢ N 9305
s?2+2Gtwls+ wl?  s24 2G%2w?s + w2?

3 3
P39
372 2] X Uz(s)
s+ 2¢3w3s + w3

+l @393 N 0303
s?2+2Gwls+ wl? 52 4 2G%2w?s + w2’ (3.18)
P393
s+ 2G3w3s+w
I AHCANORXD: Uz(5)+<p Us(s))
s? +2Gtw? s+wt’
<p3(<p Ui(s) + o3 Uz(5)+<p Us(s))
s?2 +2G%w? s +w?’
<p3(<p Ui(s) + 93 Uz(5)+<p Us(s))
s24+2G3w3 s+ w3’

12] X U3(s)

An overall block diagram for the plate structure system is drawn to compute the SSR from the

three sensors’ transfer functions of the measurement outputs.
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U,(s)

Uy(s) o

Us(s) \'*8 Y,(s)
3 -|-|_

Figure 3.7 The block diagram of the plate structure system

The block diagram shows the relationship between the three inputs and the three outputs. From

1]

[*2]

. : : . : X
the set state in both sides of the integration block, the equations of each state ixiican be
e |

Lo

derived.

. 2
X, =[ol @3 @3]|U2|—2GTwlx, —wlx,
. 2 3.19
xo=lpf 0 @il|uz2|—2G2wix,— w2 x; (3.19)
J&'s = Xe¢

. 2
X6 =l @3 @3]|u2|—2Cw3xs—w3"xs
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For a general system in SSR, consider the process model is an nth-order, linear, time invariant,
continuous-time system with r inputs and m outputs.
X(t) = AX(t) + BU(t)

Y(t) = CX(t)
Where X(t) is (n * 1) state vector, Y (t) is (m = 1) output vector, and U(t) is (r * 1) input

(3.20)

vector. The state X (t) is the input vector before the integrator of X(t). The A matrix is (n * n)
system matrix, the B matrix is (n * ) input matrix, and the C matrix is (m = r) output matrix.
[*1]
[X2]

B51
X
In the plate structure system, the state vector X (t) = | le, the output vector Y (t) = [)’2], the

|x5| Y3
L]
0 1 0 0 0 0
—w?® —2¢iwl 0 0 0 0
t trix A=| 0 0 ; ) ) the input
system matrix A=l 0 w2 oty g 0 , the inpu
0 0 0 0 0 1
[ 0 0 0 0 —w3?  —2C3u3
r 0 0 0
1 1 1
8"1 ‘»002 ‘P% of 0 @f 0 @ 0
matrix B=| » - 2|, and the output matrix C =[5 0 @2 0 @3 0
2 ‘sz ) 1 2 3
0 0 0 3 0 @3 0 @3 O
Lo} 93 @3]

Based on Table 1 parameters and the system transfer function analysis, the parameters in the

system SSR are calculated in the following table.

Table 2. The system parameters of the SSR

Mode 1 Mode 2 Mode 3
of 0.3639 of 0.7229 o3 0.4552
o1 0.2821 02 0.4803 03 0.8414
o} 0.2384 Py 0.4456 @3 0.758
< 0.02677 G2 0.02533 G3 0.02419
wl 142.3048 w2 182.434 w3 218.9208
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3.6 Construction of discrete-time SSR

To apply the discrete-time Kalman filter algorithm, the plate structure system is finally
transformed to a discrete-time system SSR. There are several discretization methods, such as
the zero order hold on the inputs, the linear interpolation of inputs (first order hold), the bilinear
(Tustin) approximation, and the matched pole-zero method (for SISO system only). In this
thesis, the discretization method, the zero order hold on the inputs, is explained in detail, and

used to convert the continuous-time system to a discrete-time system.
The general form of the continuous-time time system SSR was discussed before.

X(t) = AX(t) + BU(t)
Y(t) = CX(t)
Where the first equation is called the state equation and the second equation is called the output

(3.21)

equation.

To apply the zero order hold on the inputs method, the state equation is transformed into the
following equation.

X() —AX(t) =BU(b) (3.22)
Multiply both side of the equation (3.22) by e~Af at the same time:

e AL[X(t) — AX(t)] = e ABU(t) (3.23)

Since:

4 le-Atx(0)] = [% e~AX (D) + e At [%X(t)]

dt (3.24)
= e A(—A)X(D) + e AX(D) = e A[X (D) — AX (D]
Sub the equation (3.24) to the equation (3.23):
d —At —At
—-[eMX(®)] = e ABU(H) (3.29)
Take the integration of both sides from ¢, tot:
t d t
f E[G_ATX(T)] dt = f e ATBU(1)dt
t t
° ° (3.26)

t

e AtX(t) — e Ao X(t,) = je‘ATBU(r) dr

to

27



Chapter 3: System Identification of Plate Structure

Multiply both sides of the equation (3.26) by e4t at the same time:

t

eAte=AtX(t) = eAte=AloX(t,) + eAt fe‘ATBU(T) dr
to

, (3.27)

X() = eAC-0) X(t,) + f eAC-DBU (1) dr
to

Assume t, to be the initial time “0”, which indicates the integration is from the initial time:

t

X(t) = eAtX(0) + feA(t‘T)BU(T) dt (3.28)
0

Assume for the corresponding discrete-time system, the sampling time is a constant value T,
and the discretization method is the holding effect (Zero-Order Hold on inputs). Therefore the
input vector U(t) changes only at sampling time T. In another word, U(t) = U(KT),
whenkT <t< (k+ 1T.

Lett = (k+ 1)T and sub it into the equation (3.28):

(k+1)T
X[(k + 1)T] = eAK+DT x(0)  AGk+DT f e ATBU(1)dt (3.29)
0
Lett = kT and sub it into the equation (3.28):
KT
X (KT) = eAkT X(0) + eAKT f e ATBU(7)dt (3.30)

0

Multiply both sides of the equation (3.30) by eAT atthe same time:

KT

eATX (KT) = eAK+DT x(0) 4 eAK+DT f e ABU(1)dr (3.31)
0

Use the equation (3.29) to subtract the equation (3.31), the equation (3.32) canbe derived.
(k+1)T

X[(k + DT] = eATX(KT) + eAk+DT f e ATBU(7) dt (3.32)
kT

As mentioned above, when kKT <t < (k+ 1)T, the U(t) is constant and U(t) = U(KT). The

equation (3.32) can be modified as following.
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(k+1)T

X[(k+ DT] = eATX(KT) + eAlk+DT f e~AT dtBU(KT) (3.33)
kT

LetA = (k + 1)T — 7, the following equations canbe derived.

dAl= —drt
A =T, whent =KkT (3.34)
A=0,whent=(k+1)T

Therefore, the integration term inside equation (3.33) can be derived as follows.

(k+1)T 0 T
| emrar= [ etvrdan = e-awiir [ emaz @39)
kT T 0

Sub the changed integration term equation (3.35) back to the equation (3.33).

T

X[(k + DT] = AT X(KT) + f e~Ad 2 BU(KT) (3.36)
0

From the equation (3.36), the discrete-time model in state space canbe formed.

X[(k + DT] = G(T)X(KT) + H(T) U(KT) (3.37)
Where G(T) is (n *n) system matrix and H(T) is (n * r) input matrix. Both of these matrices

are functions of the sampling period T.

G(T) = e and H(T) = [, e"A\dAB (3.38)
For the output equation, the continuous-time model is based on the current value of X.

Therefore the discrete-time output equation is directly discretised by replacing ¢ with kT .

Y (kT) = CX(kT) (3.39)
Now, the continuous-time system has been discretised into a discrete-time system. The

discrete-time system SSR is given below.
X(k+ 1) = GX(k)+ HU(k)

Y (k) = CX(k)
Where X(Kk) is (n * 1) state vector, Y (k) is (m = 1) output vector, and U(Kk)is (r = 1) input

(3.40)

vector. The G matrix is (n * n) system matrix, the H matrix is (n * r) input matrix, and the C
matrix is (m * r) output matrix. Since the matrices A, B, C, of the continuous-time system are

time invariant, the matrices G, H, C, of the discrete-time system are also time invariant.
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According to the natural frequency of the previously measured system, the natural frequency

is about 222 Hz at mode 3. So the minimum period of the system is:

1
T= 7= 0.0045s (3.41)

Therefore, the sampling period is taken as0.001 seconds, which is about a quarter of the period.
For the plate structure system, the discrete-time SSR is constructed with the system matrix G,

the input matrix H, and the output matrix C.

[ 0.9899 0.001 0 0 0 0
—20.1057 0.9824 0 0 0 0
G = 0 0 0.9835 0.001 0 0
0 0 —32.9454 0.9743 0 0
0 0 0 0 0.9762 0.001
0 0 0 0 —47.2935 0.9658-

0.0002 0.0001 0.00017
0.3613 0.2801 0.2367
0.0004 0.0002 0.0002
0.7156 0.4754 0.4411
0.0002 0.0004 0.0004

0.4492 0.8303 0.7480-

03639 0 0.7229 0 0.4552 0
C=1]0.2821 0 0.4803 0 0.8414 O©
0.2384 0 0.4456 0 0.7580 O
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Chapter 4 : Kalman Filter Based FDD Method

In this chapter, the discrete-time Kalman filter is discussed in detail and summarized into a
single algorithm. To verify the Kalman filter algorithm, a simple application successfully uses
the Kalman filter to estimate its state. After that, a Kalman filter bank and a normalization
algorithm are designed to achieve the FDD Method.

4.1 The Discrete-time Kalman Filter algorithm

The system using the basic Kalman filter must be a linear system. [29] Consider the process
model is an nt-order, linear, time invariant, continuous-time system with r inputs and m

outputs.

X(k+1) =G6X(k) + HU(k)
Y (k) = CX(k)

In reality, the discrete-time system model above is not an idealized model. Due to many factors

(4.1)

such as material, connection, and environment, the system process may have unknown process

noise w. Also the system measurement cannot be exactly accurate, measurement noise v is

widely found in the real time system model.

X(k+ 1) = GX(k) + HU(k) + w(k)
Y (k) = CX(k) + v(k)
Where the system process noise w(k) and measurement noise v (k) are zero-mean Gaussian

(4.2)

distribution white noise, which are uncorrelated from each other. The unknown system process
noise w(k)is a (n* 1) vector with a (n * n) known covariance Q and the unknown system
measurement noise v(k) is a (im = 1) vector with a (m *m) known covariance R. The

mathematical representation is respectively showing below.
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(w; (k)]
w0 =20 0,0
Lw,, (k)
v, ()]
v = V20 | <0,R)
_v,,;.(.k)_ (4.3)
Flo®@ o) ={% "7
v ={%

Elw®) v({T] =0
In another word, the process noise covariance Q and the measurement noise covariance R (k)

are diagonal matrices.

Q =
[ / Elw@) o)  Elw(1) ®@2)7T] - Elw(1)oh-1)T Elo@) o) \1
II Elw(2) 0(1)"] Elo(2) o] ||
I |
I\E[w(n - 1) w7 Elw(n — 1) w(n) ]/I
I\ E [wn) w(D)T]  Elw®) w@)T] - Elwh) wh-1T] Elwh) oh)T] |
Elo(1) ()] - 0
= ( : : ) =diag(Q11,*,Qnn)
0 «+ Elowm) on)T]
R =
[/ ElviDv(D)T  Ev(Dv(2)T - ElvDvin-1T E@O)vn)T] \]
II Fv( v()T] Ev() v ||
I |
|\E[v(n— D v Elv(n— D v(m)T /I
l Elvin)v(1)T] ElvinD)v(2)T] - Elvin)vin-1T] Elv(n) v(n) ] J
E[v(D)v(D)T] - 0
= ( ): dl'ag(Ru""'Rnn)
0 e E[v(n) v(n)T]

Also, these two noises are uncorrelated from the state vectors.

Elw(®) X(§) =0

(4.4)
Elv(k) X()T] =0
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The system model representation can also be described as the following block diagram.

w(k) v(k)
U(k) j{'(k +1) X(k) *
+ Y (k)
O +

+

G

Figure 4.1The system model block diagram with noise

In this block diagram, all the array signals are vectors, which include input vectors, state
vectors, noise vectors and output vectors. All the arrowhead line directions represent the signal
flow direction. The z~11box is the n delay elements in parallel. The blocks G, H, C represent
the respective matrices. w(k) and v (k) are the noises in the system, while they effect different

parts of the system.

The Kalman filter algorithm is known as a linear quadratic estimate. Therefore, some

definitions need to be declared before introduction of the Kalman filter algorithm.

The discrete-time system used in the Kalman filter is introduced before. The Kalman filter
algorithm’s purpose is to find the optimal estimate of the system state X (k). The system state
estimate is based on the system dynamics and the system output measurement with noise ¥ (k).
If the state estimate X(k) is formed by using all the measurements up to and including time k,
then this state estimate is called an posteriori estimate, which is defined as Xj. This state
estimate can also be explained in another way, which uses the expectation value of X (k) based

on all of the measurements up to and including time k.

X{ =E[X®|Y(1),Y(2),,¥Y(k)] = a posteriori estimate (4.5)
If the state estimate of X (k) is formed by using all the measurements up to but not including
time k, then this state estimate is called an priori estimate, which is defined as X. This state
estimate can also be explained in another way, which uses the expected value of X (k) based

on all of the measurements up to, but not including, time k.

33



Chapter 4. Kalman Filter Based FDD method

X, =E[X®I|Y(1D,Y(),-,Y(k—1)] = apriori estimate (4.6)
Both of the state estimates )?; and )?; are Kalman filter estimates of the state X (k). However,
the state estimate X;, is computed before the current output measurement ¥ (k) is taken into
account, and the state estimate X is computed after the current output measurement ¥ (k) is

taken into account. Therefore the posteriori estimate X7 is expected to be more accurate than

the priori estimate X .

Correspondingly, the term Py is used to donate the covariance of the state estimated error. Py

is the covariance of the state estimated error of X7 and P, is the covariance of the state

estimated error of X.

The covariance definition is that, for a vector N = (N;, N,,---,N,,), the covariance of the

vector N is:

Z(N) = cov(N,N) = E[(N-= N)(N = N)"] 4.7)

Where N is the estimated value of N.

Hence, according to the definition of covariance, the covariance of the estimates are defined as
following.
— ~.\T
P = EI(x00 ~ %) (x00 - 1)) s
- —~_\T '
P = E[(X () — X)) (X() — X ) ]
As the Kalman filter required parameters are introduced, the Kalman filter algorithm can be

operated under the conditioned of the information that was explained before

(1) The Kalman filter is based on the previous predicted state and the current measurement
value. At time “0”, the Kalman filter doesn’t have any estimate, because the system’s initial
condition is unknown. Thus, the initial step needs to set the initial estimate and only needs to
be executed once. Assume the initial system state is X(0) and the initial system priori estimated
state is X’O‘. Since there are no measurements for the estimated system state X(0), it is
reasonable to set the posteriori estimate X to be equal to priori estimate X, which is the

expected value of initial system state X (0).
So the initial state estimate is the equation shown below:

X¢ = X5 = EX(0)] 4.9)

34



Chapter 4. Kalman Filter Based FDD method

The corresponding covariance P also assumes to be the given value based on the information
of the system. For example, if the system’s initial state estimate is totally the same asthe system
initial state, the covariance of the estimated error will be 0, PF = 0. This is the ideal case and
almost does not exist in the real world. If the system initial estimate is not the exact value (the
estimate is not accurate), then P§ will be a symmetric matrix. Only the diagonal line
parameters of the matrix have the corresponding covariance, which describe the difference
from the actual situation and the estimated value. In general, P{ represents the uncertainty of
the initial estimate X(0).

Pt = E[(X(0) — X)(X(0) — X%)"], which is given. (4.10)
(2) The measurement noise v (k) and the process noise w (k) are assumed to be unknown, the

estimate of the next time can only derived from the equation (4.1). This means the noises in
process and measurement are not taken into consideration in the posteriori estimation.

Therefore, the state estimate X (k) can be calculated by the state function without noise.

XKk =GX(k—-1)+HU(k-1) (4.12)
In the Kalman filter algorithm, there are two estimates mentioned before, the state estimate Xj,
is computed before the current output measurement ¥ (k) is taken into account, and the state
estimate X ¥ is computed after the current output measurement ¥ (k) is taken into account. The
posteriori state estimate X; is expected to be more accurate than the priori estimate X .
Therefore, the prior state estimate X + can be computed from the previous time posterior state

estimate X7_,.

X, =GX{_,+HUK-1) (4.12)
This is the general equation that shows how to obtain X; from Xi_,. The initial state
estimate X is already given in step (1). Hence, from the equation (4.12), the priori estimate at

time 1 can be derived.

X = GX} + HU(0) (4.13)
(3) The priori state estimate X is already computed in the equation (4.12). Accordingly, its

corresponding covariance P;, of state estimate error X, can be derived from the equation (4.8).
The real system equation (20) is also needed by going back a step. The previous step real system

state equation is shown below.

XK =6G6X(k—-1)+HUK-1) + wk—1) (4.14)
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Sub the equation (4.12) and the equation (4.14) into the equation (4.8).
Py = E[(X(0) - %) (X0 — X;)']
=E[(GX(k—1) + HU(k— 1) + w(k — 1) — GX{_, — HU(k
~D)(6XKk-1) +HUK-1) +w(k—1) - GX;_,
~HUK-1))']
= E[(6X(k— 1) + w(k - 1)

- GX{_)(6X(k— 1) + w(k— 1)~ GX{_,)'|

= E|(cxx - - %) (4.15)

+ w(k— 1)) (G(X(k 1) -X_ ) +wk- 1))T]
= GE [(X(k— D -X)(Xk-1)— )?,t_l)T]GT
—GE[(Xk-1) - X Dwk-1)T]
~Elok- D(xk-1 - X;_,)"]|6"
+ Elok —Dwk-—1)T]

The estimated error (X(k —1) — X;_,) at time (k— 1) is independent of the process

noise w(k — 1). Therefore the covariance of estimated error and process noise is equal to O.

P T -

Elok-D(X&-1-Xf_,) | =E[(xGk - D) - X} Jwk- D] =0 (4.16)

Sub the equation (4.16) into the equation (4.15).

P P T
P, =GE|(X(k—-1) —-X;_ )(X(k—1) —X{_ GT
c=cr i )] an
+Elwk—1Dwk —1)T]
Recall the equation (4.3) and the equation (4.8), take a step back and sub them into the equation
(4.17).

P, =GP;_,G" +Q (4.18)
The equation (4.18) is the general equation of state estimated error covariance P,,. At time 1,

the state estimated error covariance is shown as follows.

P; = GP{G" + Q (4.19)
(4) As mentioned before, the Kalman filter estimate is a quadratic estimate algorithm. The

posteriori estimate )A(,Jg is calculated based on the measurement Y (k) on time K. Assume the
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Kalman filter gain matrix is defined as K, the posteriori estimate X; can be calculated from

the priori estimate X,.

Xi=X; + K.Y & — CXy) (4.20)
The term (Y (k) — CXj,) is the error between the measurement ¥ (k) and vector CX3, which is

called the correction term.

To finish one sequence of the Kalman filter algorithm, the posteriori estimate is shown as

follows attime 1.
X=X +K (Y —cx;) (4.21)
(5) The reason why the Kalman filter has the optimal estimate of states in the linear system is

that the Kalman filter can estimate the state with the smallest estimate error covariance in total.

Therefore, to calculate the Kalman filter gain K., the sum of the variances of the estimated

errors at time k, which is cost function J;., should be minimized.
Ji = E[(x) = &) |+ + E[ (%00 - %)
=Tr(Py) (4.22)
= Tr (E [(X(k) — X)) (x(k) — X;)T])

Sub the equation (4.20) into the equation (4.22).

J =Tr (E [(x(k) — X; + K (Y (K)

) B L (4.23)
— CX) (X(0) — X5 + K (Y (k) — €Xp)) ' |)
Sub the equation (4.1) into the equation (4.23).
Ji = (E[ (%09 - % + K (€X00 + v - €Xp) ) (XG0 - X5 +
K (CX(O) + (k) — c:?,;))T])
=Tr (E [((X(k) - X)) + K C(x(K) — X))
(4.24)

+ Kev(0) (X0 - X7) + K C(X () — X)) + Kk”“‘))T )
= Tr <E [((1 — K. O (X() — Xy)

+ Kkv(k)) ((I — ch)(x(k) - XI;) + Kkv(k))TD
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—Tr ((1 - KOE [ (X0 - X7) (X0 - %) U - KO
+U - K OE[(X(K) — X )v(K)T]

—~ T
+E [vi0(X(0) - X7) | U - KO
+ KkE[v(k)v(k)TKkTD
The estimated error (X (k) —X’;) is independent of the measurement noise v(k).

E[(X(0 — X v = E[v(0 (X 00 - X)"] = 0 (4.25)

Sub the equation (4.25) into the equation (4.24)

Je =7 (U - K OE [ (X(0 - %) (%00 ~ %) | U - KO

(4.26)
+KE[v0vOTK,T])
Sub the equation (4.3) and the equation (4.8) into the equation (4.26).
Jie = Tr (U = K ©PE (U - KO + KR ") (4.27)

The optimal Kalman filter gain K;, needs to be found to make the cost function J;, as small as
possible. Here, the optimal Kalman filter gain K, will change the cost function derivative equal

to zero. The function to choose the optimal Kalman filter gain K;, is shown below.

o, T (U - KOPL U - KO + KiRK,")
0Ky, 0Ky
There is a matrix calculus that is used to simplify the equation (4.28), which is introduced as
the following. [30]

0 (4.28)

oTr(ABAT)
0A
So the equation (4.28) can be transformed into the equation (4.30).

=24B if B =BT (4.29)
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oTr ((1 — K P (I — K, C)T + KkRKkT)
0Ky
_orr((I - K OP, (I — K O)T) + 0T K RK;
0Ky
aTr (I — K C)P; (I — K, O)T) (I — K;.C)
- a(I — K,.C) Tk, (4.30)

oTrK,RK,,"
dK;

KxR = (I — K, C)P;,CT
Kx (R + CP,CT) = P, CT
K = P,CT(CP,CT+ R)~1

At time 1, the Kalman filter gain is shown as the following.

Ky = P/CT(CP{CT+R)1 (4.31)
(6) As the posteriori estimate X is updated by the Kalman filter gain Ky, its corresponding

estimate error covariance is derived from the posterior estimate X3 function.
< ~\T
Pt = E[(X(0) —X{) (X0 - X;) ]

[(x00 — % — k(v 00 — €X7)) (%00 — X5 ~ K (¥ (0 — X7)) |

E
= £ |((x00 - %) - K (€X 0 — CX)

+Kev () (X0 - X;0) - K (X — €X7) + KkV<k))T]

=E [((1 - K. 0)(CX(k) — CX;) (4.32)

+ Kkv(k)) ((1 — K. O(CX(K) — CX7) + Kkv(k))T]
= E[(1 - K©)(CX (k) - CXy)(CX () — €Xp) (I - K, ©)T
+U - K, 0(CX(K) — CX )v(K)TK, "

+ K v(R)(CX(K) — C)?;)T(I — K, OT 4+ K, v(K)v(k) TKkT]

Recall the equation (4.25) and sub it into the equation (4.32), the covariance of the estimate
error can be simplified as below.
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P} = (I - K OE[(CX(0) — CX;p) (CX (0 — €X;) 1 - KO
+ K Ev v TIK, " (4.33)
= (I — K, C)P; (I — K, C)T + Ky RK;."

At time 1, the Kalman filter gain is shown as the following.

Pf = - K COP;(I-KCT+KRK" (4.34)
Asthe examples at time 1 shown in each part, from the initial estimate X} and its corresponding
covariance of estimated error Pg, the posteriori estimate X; and its corresponding covariance
of estimated error P; have been derived. These examples show the process of the Kalman filter,

and can be used to predict the next time estimate.

4.2 The discrete-time Kalman filter conclusion

The previous steps show the procedure of the Kalman filter in several algorithms. However,
only the five equations in the Kalman filter are needed to predict the state and correct the state.
Therefore, a conclusion of the Kalman filter is drawn here by combining the above equations

into a single algorithm.

1. The discrete-time system with the process and measurement noise is shown by the following

equations.

X(k+ 1) = GX(K) + HU(K) + w(k)
Y(&) = CX(K) +v(K)

Elo®) 0()T] = { % kl;:jj (4.35)
E[v(k) V(])T] = {R;)' k];:jj

Elw®v(§T=0
2. The initialization of the Kalman filter is artificially set from the basic information of the
researched system.
X5 = E[X(0)]

_ T (4.36)

P§ = E[(X(0) - X3)(X(0) - X7) ]
3. The Kalman filter algorithm is calculated using the following equations, which are used for
eachtime stepk =1,2,3 -

40



Chapter 4. Kalman Filter Based FDD method

P, =GP;_,G" +Q
X, =GX;_, +HU(k—1)
X=X, + K.Y (& - CX}) (4.37)
K, = P,CT(CP,CT+ R)~1
P} = (I - K, Q)P (I — K C)T + K RK,,"
The Kalman filter algorithm is also given in the following block diagram, which describes the

equations relationship that were discussed before.
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Figure 4.2 The discrete-time Kalman filter algorithm block diagram

42



Chapter 4. Kalman Filter Based FDD method

4.3 An application of the Kalman filter

A simple application of the Kalman filter and it simulation is provided to verify the Kalman
filtter algorithm. As canbe seenin Figure 4.3, a person is driving a car on a straight road. Only
the position can be measured per 1 second in this case. By knowing the acceleration, the the

Kalman filter can be used to estimate its velocity.

What is the velocity?

W " Acceleration
i R i | -/1

Position

Figure 4.3 The Kalman filter application system

According to the Kinematic equations, the system can be derived as follows:

1
Sp = Sp_q1F+Vp_1t+—a,_,t>
k k=1 T V-1l + 5 Qg (4.38)

Vi = V-1t A1t
Where sy, is the position attime k, v is the velocity attime k, a,_4 is acceleration attime k —

1, and ¢ is time.

The system SSR can be obtained as:
[l =lo Sl

V=11 ol[}]

Ap—1

t 2
2
t (4.39)
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Where Y, is the measurement at time k.

If the system model is built in SSR block of MATLAB Simulink, it will only show the system
input and system output. In this case, in order to compare the system state with the estimated

state, the block diagram is drawn to simulate the system model in Figure 4.4.

o+
N

0|

Figure 4.4 The block diagram of the Kalman filter application system

In the block diagram, the system state parameters are clearly shown. Therefore, each state
parameter can be taken out as needed. According to the system block diagram, the system is
built in the MATLAB Simulink in Figure 4.5.

]

Jnllu_l @ | 1 1 +: ,D

> U
xha‘gbr 4:|—>D
»y =

Figure 4.5 The MATLAB Simulink for the Kalman filter application system

The Kalman filter uses the input and output of the system to estimate the system state. The
acceleration in this case is set to be a discrete-time sinewave with 100 Hz/s frequency and
1second sampling time. The system state velocity is taken to compare with the estimated state

velocity in scope 2. For the initial state estimate of the system, the position and the velocity are
assumed to be zero.
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[oo] = [o

Assume the covariance of the initial state estimated error to be:

Assume the covariance of the measurement noise to be:
R = [0]

The compared result is given in Figure 4.6.

Figure 4.6 The compared result between the real system state and the estimated state

As shown in the figure, the yellow curve is the real system state while the blue curve is the

estimated state. For the sine wave velocity, a certain difference will exist between the real

system state and the estimated state when the velocity trend is changing. However, it is clearly

shown that the estimated velocity is tracking the real velocity all the time. This application

successfully indicates that the Kalman filter can produce the optimal estimate of the linear

system.
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4.4 The FDD method by using the Kalman filter

The system fault classifications are discussed before, which are sensor fault, actuator fault, and
system component fault. In the plate structure system, the researched fault object is actuator
faults. Once the actuator in the plate system is broken, the control signal cannot control the top
plate to be stable. This could cause the control accident in the plate structure. Without the three
control inputs into the system, the top plate will have strenuous vibration that will break the

entire system.

4.4.1 The classifications of system actuator faults

As the plate structure system introduced before, there are three actuators in the system. Figure

4.7 shows their relationships in the system.

T lat
Disturbance op piate

Sensor and
Actuator 1: T1

Sensor and Sensor and
Actuator 2: T2 Actuator 3: T3

Base plate

Figure 4.7 The system actuators position relationships

The classification of actuator faults can be defined as two kinds of faults. One of them is signal
fault, which can be actuator 1 fault, actuator 2 fault, or actuator 3 fault. Another kind of fault
is a double fault, which can be actuator 1, 2 fault, actuator 2, 3 fault, or actuator 1, 3 fault. The
FDD purpose is to detect the random fault, and supply information to solve problems (to
interrupt system or change the control law). If the three actuators have faults together, the whole
system will stop working and will be uncontrollable. Therefore, detecting faults happening to
the three actuators at the same time is unnecessary in the plate structure system. Figure 4.8

shows the classification of actuator faults.

T2 Single fault

T3

Figure 4.8 The classification of actuator faults
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4.4.2 Fault detection method

Figure 4.9 gives a simplified Kalman filter algorithm block diagram. From the Kalman filter
algorithm, it is known that the Kalman filter can compute the system’s estimated state by using
the real time system output measurement and system control input.

The Kalman filter
estimated state

Xi

The measured output

Yk
Gain K

The control signal
Uik)

Figure 4.9 The simplified Kalman filter algorithm

When the actuator fault occurs in the system, the alterations in the system are the state and
output measurement. According to the system measurement function without measurement

noise, the system state estimate is transformed to the system output estimate.

Y (k) = cX(k) (4.40)
Where Y (k) is the estimated output, and the state estimate X (k) is the Kalman filter posteriori

state estimate X;.

u(k) Y (k)

U(k),without fault Y(k),without fault

Kalman filter
without fault

Figure 4.10 The fault detection method block diagram
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The fault detection method is described in Figure 4.10. As shown in the figure, the Kalman
filter used to detect faults is called the Kalman filter without fault. This Kalman filter uses the
input signal and output signal without fault to produce a no-fault state estimate. A residual can
be calculated by comparing the estimated output from the Kalman filter and measured output.
From the Kalman filter algorithm design, the Kalman filter state estimate is the optimal
estimate in linear system. Therefore, if the system does not have fault, the Kalman filter using
the matrixes in the system will compute the optimal estimated output, which is almost the same
as the measured output. In this situation, the residual is named no-fault residual, which will be
a zero-mean noise with a very small value. If the system has fault, the residual is named fault
residual that will be a very large zero-mean noise. Assume the residual is E,.. (k), its transfer

function is:

E..() =Yk - Yk =Yk - CX;

{VETe (k) < Tinreshora,there is no fault in the system. (4.41)

3E, . (K) > Tihreshora,the system has unknown fault.

Where Tipresnoia 1S the threshold value, which is chosen between the upper limit of the no-

fault residual and the upper limit of the fault residual.

Inthe block diagram, the Kalman filter without fault block is the Kalman filter using the system
matrix G, the input matrix H, and the output matrix C in no-fault system. This is the essential

point to get the almost equivalent estimated output and measured output.

This method can be used to detectany kind of fault in the system not only the actuator fault. If
fault occurs to the system, the system model will change and influence the system output.
However this method cannot be used to diagnose the fault, another fault diagnosis method is

presented to complete the FDD function.

4.4.3 Fault diagnosis method

The fault diagnosis purpose is to find the accurate fault in this thesis. Itis important to find the
difference between different actuator faults. In the system modelling part, it is introduced that
the control singles U4 (s), U3 (s), and U3 (s) are executed by the actuators. The input matrix H
and the control inputs U4 (s), Up(s), and U3 (s) construct the control impact to the system.

Assume the control impact is I ., (s), its transfer function of the plate structure is shown below.
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Hy1 Hyiz Hjs
Hz1 Hzz Hjyj Uy (s)
H H H
I.on(s) =HU(s) = Hii HZ Hi; x |Uz(s)
U
Hs1 Hs; Hss 3(s) 20
'lHg1 Hez Hesd (4.42)

= (Hyy + Hyq + H3q + Hyq + Hgq + Hgq) X Uy (s)

+ (Hqz + Hap + H3y + Hyp + Hsz + Hg2) X Uz (s)

+ (Hy3 + Hp3 + H3z + Hyz + Hs3 + Hgz) X Us(s)
This control impact transfer function is the essential part to apply the Kalman filter in fault
diagnosis and shows the relationship of the input signal and input matrix in multiple input
situations. All the fault situations discussed later will be based on the concept of control impact.

1. Single fault on actuator 1

The single fault situation is a very common situation in system fault. A way to detect single
fault on actuator 1 is introduced here. When a fault occurs to actuator 1, the control signal
U, (s) cannot be executed to control the system. Therefore, the control signal U, (s) is equal to
0 in the actuator 1 fault situation. The control impact of the whole system is changed from the
no-fault situation to the actuator 1 fault situation.

Icon(s) = (Hyq+ Hpy + H3q + Hyq + Hgy + Hgy) X 0

+ (Hyz + Hpz + H3p + Hyp + Hsz + Hep) X Uz (s)

+ (Hy3+ Hp3 + Hz3 + Hys + Hs3 + Hgz) X Us(s) (4.43)

= (Hyz + Hzz + H3z + Hyz + Hsz + Hegz) X Uz (s)

+ (Hy3 + Ha3 + H3z + Hyz + Hs3 + Hg3) X U3 (s)
From the plate structure state representation, the control impact of the actuator 1 fault situation
influences the output of the system. To diagnose the fault, another Kalman filter called the
Kalman filter with fault 1 is built to estimate the actuator 1 fault system output. The system
matrix and the output matrix is the same comparing the actuator 1 system and the no-fault
system. The input matrix needs to change for the actuator 1 system output estimation. The new
input matrix should achieve the same control impact of the actuator 1 fault system regardless
of the input signal. Therefore the new control impact is:
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Icon(s) = (Hyq+ Hpy + H3q + Hyq + Hgq + Hgy) X Uy (s)
+ (Hyz + Hyz + H3z + Hyp + Hsz + Hez) X Uz (s)
+ (Hy3 + Ha3 + H3z + Hyz + Hsz + Hg3) X U3 (s) (4.44)
= (Hyz + Hzz + H3z + Hyz + Hsz + Hez) X Uz (s)
+ (Hy3 + Ha3 + H3z + Hyz + Hs3 + Hg3) X U3 (s)
From the control impact equation, a way of getting the same control impact is to set the sum of
parameters in the first row of the no-fault system input matrix to be 0 and make other

parameters in the first row of the no-fault system input matrix remain the same.

H11 + H21 + H31 + H41 + H51 + H61 = 0 (445)
In the input matrix of the Kalman filter with fault 1, the parameters in the first row are set to

be 0 and the other parameters remain the same as the no-fault system input matrix.

Hfl =

cocoococcoco

Where Hg4 is the input matrix of actuator fault 1 system.

u(k) ¥ (k)

+

II
Residual

Xt ¥, (k)

Figure 4.11 The fault diagnosis of the actuator fault 1 method block diagram

The fault diagnosis of the actuator fault 1 method is illustrated in Figure 4.11. A residual can
be calculated by comparing the estimated output from the Kalman filter with fault 1 and the
measured output. The residual is named the fault 1 residual, which will be a zero-mean noise
with a very small value when the system has fault on actuator 1. If the system does not have
fault on actuator 1, the residual is named no-fault 1 residual that will be a very large zero-mean

noise. Assume the residual is Eq,.(k), its transfer function is:

Elre (k) = Y(k) - ?1(1() (4.46)
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{ VE i ¢(K) < Tipreshoia, there is fault on actuator 1.
3E ;. (K) > Tihreshoia,there is no fault on actuator 1

Where Tipresnoa 1S the threshold value, which is chosen between the upper limit of the fault 1
residual and the upper limit of the no-fault 1 residual, and ¥, (k) is the estimated output of the

Kalman filter with fault 1.
2. Single fault on actuator 2

A way to detect single fault on actuator 2 is introduced here. When a fault occurs to actuator 2,
the control signal U, (s) cannot be executed to control the system. Therefore, the control signal
U, (s) is equal to 0 in the actuator 2 fault situation. The control impact of the whole system is

changed from the no-fault situation to the actuator 2 fault situation.

Icon(s) = (Hyq + Hzq + H3q + Hyq + Hsq + Hg1) X U4 (5)

+ (Hy2 + Hyz + H3zp + Hyp + Hgp + Hg) X 0

+ (Hy3 + Hp3 + H33+ Hy3 + Hs3 + Hg3) X U3 (s) (4.47)

= (Hyq + Hzq + Hzq + Hyy + Hgy + Hgy) X Uy (5)

+ (Hy3 + Hz3 + H33 + Hys + Hs3 + Hg3) X Uz (s)
From the plate structure state representation, the control impact of the actuator 2 fault situation
influences the output of the system. To diagnose the fault, another Kalman filter called Kalman
fitter with fault 2 is built to estimate the actuator 2 fault system output. The system matrix and
the output matrix is the same comparing the actuator 2 system and the no-fault system. The
input matrix needs to change for the actuator 2 system output estimation. The new input matrix
should achieve the same control impact of actuator 2 fault system regardless of the input signal.

Therefore the new control impact is:

Icon(s) = (Hyg + Hpq + Hzq + Haq + Hsg + Hgp) X Uy (5)
+ (Hqz + Haz + H3z + Hyp + Hsz + Hez) X Uz (s)
+ (Hy3 + Ha3 + H3z + Hyz + Hs3 + Hg3) X Uz (s) (4.48)
= (Hyy + Hpq + H3q + Hyq + Hgq + Hgq) X Uy (s)
+ (Hy3 + Hp3 + H3z + Hy3 + Hs3 + Hgz) X Us(s)
From the control impact equation, a way of getting the same control impact is to set the sum of
parameters in the second row of the no-fault system input matrix to be O and make other

parameters in the no-fault system input matrix remain the same.

le + HZZ + H32 + H42 + H52 + H62 = 0 (449)

ol



Chapter 4. Kalman Filter Based FDD method

In the input matrix of the Kalman filter with fault 2, the parameters in the second row are set

to be 0 and other parameters remain the same in thee no-fault system input matrix.

Hi1 0 Hgpz

Hz1 0 Hp3

H. — |Hs1 0 Hss
f271Hy; 0 Hys
Hs; 0 Hs3

[ Hg1 0 Hgs

Where Hp, is the input matrix of actuator fault 2 system.

U(Kk) Yik)

+

Residual

% 0 L®

k

Figure 4.12 The fault diagnosis of actuator fault 2 method block diagram

The fault diagnosis of actuator fault 2 method is described in Figure 4.12. A residual can be
calculated by comparing the estimated output from the Kalman filter with fault 2 and the
measured output. The residual is named fault 2 residual, which will be a zero-mean noise with
a very small value when the system has fault on actuator 2. If the system does not have fault
on actuator 2, the residual is named no-fault 2 residual that will be a very large zero-mean

noise. Assume the residual is E,.. (k), its transfer function is:

Epe(®) =Y(k) — ¥,(k)

{ VE, . (K) < Tinreshora there is fault on actuator 2. (4.50)
3E,,.(K) > Tihreshoia,there is no fault on actuator 2

Where Tipresnoa 1S the threshold value, which is chosen between the upper limit of the fault 2
residual and the upper limit of the no-fault 2 residual, and ¥, (k) is the estimated output of the

Kalman filter with fault 2.
3. Single fault on actuator 3

A way to detect single fault on actuator 3 is introduced here. When a fault occurs to actuator 3,

the control signal U5 (s) cannot be executed to control the system. Therefore, the control signal
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U; (s) is equal to 0 in the actuator 3 fault situation. The control impact of the whole system is

changed from the no-fault situation to the actuator 3 fault situation.

Icon(s) = (Hyq + Hzq + H3q + Hyy + Hsq + Hg1) X U4 (5)

+ (Hyz + Hpz + H3z + Hyp + Hsp + Hez) X Uz (5)

+ (Hy3 + Hp3 + H33+ Hy3 + Hs3 + Hg3) X O (4.51)

= (Hy1 +Hzq + H3q + Hyq + Hgy + Hg1) X Uy (5)

+ (Hyz + Hpz + H3p + Hyp + Hsp + Hez) X Uz (5)
From the plate structure state representation, the control impact of the actuator 3 fault situation
influences the output of the system. To diagnose the fault, another Kalman filter called Kalman
fitter with fault 3 is built to estimate the actuator 3 fault system output. The system matrix and
the output matrix is the same comparing the actuator 3 system and the no-fault system. The
input matrix needs to change for the actuator 3 system output estimation. The new input matrix
should achieve the same control impact of actuator 3 fault system regardless of the input signal.
Therefore the new control impact is:

Icon(s) = (Hyq + Hpq + Hzq + Hyy + Hgy + Hgq) X Uy (s)
+ (Hyz + Hap + H3z + Hyp + Hsy + Hg) X Uz (s)
+ (Hy3 + Hz3 + H33 + Hys + Hs3 + He3) X Uz (s) (4.52)
= (Hyq + Hzq + Hzq + Hyy + Hgy + Hgq) X Uy (5)
+ (Hyz + Hpz + H3z + Hyp + Hsp + Hez) X Uz (5)
From the control impact equation, a way of getting the same control impact is to set the sum of
parameters in the third row of the no-fault system input matrix to be O and make other

parameters in the no-fault system input matrix remain the same.

H13 + H23 + H33 + H43 + H53 + H63 = 0 (453)
In the input matrix of the Kalman filter with fault 3, the parameters in the third row are set to

be 0 and other parameters remain the same in the no-fault system input matrix.

Hys = Hy1 Hyo

cocoococoo
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Where Hg is the input matrix of actuator fault 3 system.

U(K) Y(k)

+

Residual

Xt ¥3(k)

Figure 4.13 The fault diagnosis of actuator fault 3 method block diagram

The fault diagnosis of actuator fault 3 method is described in Figure 4.13. A residual can be
calculated by comparing the estimated output from Kalman filter with fault 3 and measured
output. The residual is named fault 3 residual, which will be a zero-mean noise with a very
small value when the system has fault on actuator 3. If the system does not have fault on
actuator 3, the residual is named no-fault 3 residual that will be a very large zero-mean noise.

Assume the residual is Es,.. (k), its transfer function is:

Ege (k) =Y(k) — Y3(k)

{ VE 3. (K) < Tinreshora there is fault on actuator 3. (4.54)
3E 53, (K) > Tihreshora,there is no fault on actuator 3

Where Tipresnoa 1S the threshold value, which is chosen between the upper limit of the fault 3
residual and the upper limit of the no-fault 3 residual, and ¥3(k) is the estimated output of the

Kalman filter with fault 3.

Based on all the fault diagnosis methods mentioned before, the three Kalman filters are formed
to achieve single fault diagnosis. Figure 4.14 shows the Kalman filter bank and the process of

single fault diagnosis.
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Figure 4.14 The Kalman filter bank to diagnose single fault

By using the Kalman filter bank above, the single actuator fault can be diagnosed in the plant

structure system. In the fault classification, the actuator faults are classified into the single

actuator fault and the double actuators fault. The following part will introduce the fault

diagnosis for the double actuators fault situations.

4. Double faults on actuator 1 and 2

When afault occurs to actuator 1 and 2, the control signal U, (s) and U, (s) cannot be executed

to control the system. In another word, the control signal U4 (s) and U, (s) are equal to 0 in

the actuator 1 and 2 fault situation. The control impact in double faults on actuator 1 and 2 is

shown as the following.

I.on(s) = (Hyy + Hyq + H3y + Hyq + Hsq + Hg1) X O

+ (le + HZZ + H32 + H42 + H52 + H62) X0
+ (Hy3 + Hy3 + H33 + Hy3 + Hs3 + Hg3) X U3 (s)
= (Hy3 + Hz3 + H33 + Hy3 + Hs3 + Hg3) X U (s)

(4.55)

This transfer function illustrates the control impact on the real system. For the Kalman filter

with fault 1 in figure 4.14, the control impact is computed as below.

Icon(S) =0x0+ (le + H22+ H32 + H42 + H52 + H62) X0

+ (Hy3 + Hy3 + H33 + Hy3 + Hs3 + Hg3) X U3 (s)
= (Hy3 + Hz3 + H33 + Hy3 + Hs3 + Hg3) X U3 (s)
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For the Kalman filter with fault 2, the control impact is also represented.

Icon(s) = (Hyq + Hpy+ H3g+ Hyg + Hsg + Hg1) X 0+ 0 X0
+ (H13 + H23 + H33 + H43 + H53 + H63) X U3 (S) (457)
= (Hy3 + Hz3 + H33 + Hy3 + Hg3 + He3) X U3 (s)

For the Kalman filter with fault 3, the control impact is also represented.

Icon(s) = (Hyq + Hzq + Hzg+ Hyq + Hgy + Hgy) X 0
+ (Hyz + Hzz + H3z + Hyp + Hsp + Hg2) X 0 + 0 X Uz (s)  (4.58)
=0
By comparing the control impacts, the first three control impacts are the same. According to
the relationship between the control impacts and outputs, both of the estimated output ¥, (k)
and Y, (k) should be almost the same as the measured output ¥ (k). However the estimated

output ¥ 5 (k) is different from the measured output ¥ (k).

(G AGER AGER AN (4.59)

Therefore, the following conclusion indicates the fault diagnosis result

{VElre (k) = VE ;. (K) = 0 < Tipresnoid,there is fault on actuator 1 and 2.

4.60
3E 3, (K) > Tihreshoia,there is no fault on actuator 3 (4.60)

5. Double faults on actuator 2 and 3

When a fault occurs to actuator 2 and 3, the control signal U, (s) and U5 (s) cannot be executed
to control the system. In another word, the control signal U, (s) and U3 (s) is equal to 0 in the
actuator 1 and 2 fault situation. The control impact in double faults on actuator 1 and 2 is shown

as the following.

I.on(s) = (Hyq + Hpq + H3q + Hyy + Hgq + Hg1) X U4 (5)
+ (Hy2 + Hyp + H3p+ Hyy + Hsp + Hg) X 0
+ (Hyg + Hyg + Haz + Hyz + Hgz + Hg3) X 0 (460)
= (Hyq + Hzq + Hzq + Hyy + Hgy + Hgy) X Uy (5)
This transfer function illustrates the control impact on the real system. For the Kalman filter

with fault 1, the control impact is computed as below.

I.on(s) =0 xUqy(s) + (Hyz+ Hyz + Hzp + Hyp + Hsz + Hgz) X 0

(4.62)
+(H13+H23+H33+H43+H53+H63)X0 =0
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For the Kalman filter with fault 2, the control impact is represented.

I.5n(s) = (Hyq+ Hzq +H3q + Hyqg + Hgg + Hgy) X U;(s) +0 X0
+ (H13 + Hzg + H33 + H43 + H53 + H63) xX 0 (463)
= (Hq1 + Hzq + H3q + Hyq + Hsy + Hgqg) X U4(5)

For the Kalman filter with fault 3, the control impact is also represented.

Icon(s) = (Hyg +Hyq + Hzy + Hyq + Hgg + Hegq) X Uy (5)
+ (Hy2 +Hpz + H3z; + Hyp + Hsp + Hg2) X0+ 0% 0 (4.64)
= (Hq1+ Hzq + H3q + Hyq + Hgy + Hgq) X Uy (5)
By comparing the control impacts, these four control impacts are the same. According to the
relationship between the control impacts and outputs, both of the estimated output ¥, (k) and
Y3(k) should be almost the same to the measured output ¥ (k). However the estimated output

Y (k) is different from the measured output ¥ (k).

Y(k) =V, k) = ¥V;3k) #¥,k) (4.65)
Therefore, the following conclusion indicates the fault diagnosis result

{VE are(K) = VE3,..(K) = 0 < Tipresnoia,there is fault on actuator 2 and 3.

4.66
3E ;. (K) > Tihreshoia,there is no fault on actuator 1 (4.66)

6. Double faults on actuator 1 and 3

When a fault occurs to actuator 1 and 3, the control signal U4 (s) and U3 (s) cannot be executed
to control the system. In another word, the control signal U4 (s) andU3(s) are equal to O in
the actuator 1 and 3 fault situation. The control impact in double faults on actuator 1 and 3 is

shown as the following.

I.on(s) = (Hyq + Hyqg + H31 + Hygy + Hsy + Hgy) X 0
+ (Hqz + Hyz + H3z + Hyp + Hsy + Hgz) X Uz (S) 467)
+(H13+H23+H33+H43+H53+H63)X0 .

= (Hy3 +Hz3 + H33+ Hy3 + Hs3 + Hg3) X U (s)
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This transfer function illustrates the control impact on the real system. For the Kalman filter

with fault 1, the control impact is computed as below.

I;on(s) =0 X0+ (Hyz+ Hyp + Hzp + Hyp + Hgz + Hep) X Uz (s)
+ (Hy3 + Hp3+ H33 + Hy3 + Hs3 + Hg3) X O (4.68)
= (Hy3 + Hz3 + H33 + Hy3 + Hs3 + He3) X Uz (s)
For the Kalman filter with fault 2, the control impact is represented.

I.on(s) = (Hyq+ Hyq + Hgq + Hyq + Hgq + Hgq) X 0+ 0 X U (s) (4.69
+(H13+H23+H33+H43+H53+H63)X0:0 .

For the Kalman filter with fault 3, the control impact is also represented.

Icon(s) = (Hyq + Hzq + Hzg + Hyq + Hgy + Hgy) X 0
+ (Hyz +Hyz + H3p+ Hyp + Hsy + Hgp) X Uz (s) +0x 0 (4.70)
= (Hy + Hyz + H3p + Hyp + Hp + Hgp) X Uz (s)
By comparing the control impacts, these four control impacts are the same. According to the
relationship between the control impacts and outputs, both of the estimated output ¥, (k) and
Y3(k) should be almost the same to the measured output ¥ (k). However the estimated output
Y, (k) is different from the measured output ¥ (k).

Y(k) =¥,k = ¥V;3(k) #¥V,k) (4.71)
Therefore, the following conclusion indicates the fault diagnosis result

{VElre (k) = VE3,.(K) = 0 < Tipresnoid,there is fault on actuator 1 and 3.

3E,,.(K) > Tihreshoia,there is no fault on actuator 2 (4.72)

As discussed above, the three combinations of double actuators fault can be diagnosed by the
existing Kalman filter bank. It is not necessary to build more Kalman filters for the double

actuators fault. The Kalman filter bank for FDD is described in Figure 4.15.
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Figure 4.15 The block diagram of the Kalman filter bank for FDD

The system model and the Kalman filter bank supply the four residuals for FDD. By comparing
the threshold values and the residuals, the result can be analysed to diagnosis fault. Taking the

fault detection analyse as an example, the method for detecting system fault is as follows.

{ VE, (k) < Tinreshola,there is no fault in the system. (4.73)

3E, . (K) > Tihreshora,the system has unknown faults.
However the residual E,.(k)is a zero-mean noise. If the system has unknown faults, the
residual E,. (k) will not be larger than the threshold value all the time. If only the threshold
value is used to analyse the residuals to detect faults, the detection result cannot properly reflect
the real situation of the system. The fault detection, simply using the threshold value, is plotted
in Figure 4.16.
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Residual value

Tthreshoid

| Fault fixed

Figure 4.16 The fault detection simply using the threshold value

Based on the theoretical analysis before, the artificial residual is created in three different
situations, which are no-fault situation, fault situation, fault fixed situation. Inno-fault and fault
fixed situations, the detection results are considered acceptable by comparing all the residual
values and the threshold value. However, the fault detection method only detects the fault
situation when the residual value is larger than the threshold value. In the case of a fault, the
fault cannot be detected when the residual value is less than the threshold value. This kind of
unstable detection canalso occur during analysing the fault diagnosis residuals. Therefore, this
thesis creates a new algorithm, the normalization algorithm to analyse the residuals to obtain
the FDD results.

4.4.4 The normalization algorithm

In the theoretical analysis of the residual, it is generally considered that the initial condition of
the residual is zero. But in reality, most of the initial condition of the residuals are not zero.

Each different initial condition brings unnecessary interference to the fault detection.

So the first goal of the normalization algorithm is to eliminate the impact of the initial state on
the residual analysis. The system previously described in this thesis was transformed to a
discrete-time system. Figure 4.17 shows an artificial example where the initial condition of the

residual is not zero.
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Residual value

Initial condition

Time

Figure 4.17 Non-zero initial condition example of the residual

One way to solve the above problem is to subtract the residual value of the time K from the

residual value at time K+1 to obtain a new residual. (Take the fault detection as the example)

E,.(k+1) =E,.,(k+1)— E,.(k) (4.74)

Where E,,.(k + 1) is the new zero mean residual with zero initial condition.

This method achieves the elimination of the initial state by calculating the difference between
the residual E,.. (k) ateach moment and the previous moment. Aftereliminating the initial state
of the residual E,.(k), at each moment, the normalization algorithm takes the previous N
samples (including the samples at the current time) for the new residual with an initial state of
zero. This means that the sampling must start at time N. The value of N needs to be greater
than one period of the new residual to ensure the accuracy of the sample analysis. Atthe same
time, the value of N is less than twice the new residual period to ensure the efficiency of fault
detection.

Sea = [Ene(K), Epe(k — 1), Epe(k — 2),+, Ene(k— N)], Tpe <N < 2T, (4.75)
Where S, is the N samples of the residual E,,.(k), and T,, is the period of the residual
E,.(k).After sampling, the normalization algorithm calculates the RMS value of the previous

N samples at each time.

1
RMSsq = \/N(Ene(k)z + Epe(k— 12+ Epo(k—2)2+ -+ Epo(k —N)2  (4.76)

The normalization algorithm calculates the RMS value of the sample in the fault detection case
and the non-fault situation will be very different. The calculated RMS value will not be a
variable that is a zero mean. In the case of fault detection, the RMS value in the event of a fault

would be a large variable and have a lower limit of not less than zero. At the same time, in the
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case of non-fault, the RMS value will be a small value and have an upper limit of not less than
zero. The upper RMS value of non-fault conditions will be less than the lower RMS value of
fault conditions. Therefore, the fault detection based on the RMS value judgment is easier to

implement.

VRMS,,, < VRMS;, (4.77)
Where RMS,,, is the RMS value of the non-fault condition and RMS;, is the RMS value of

the fault condition.

Based on the above analysis, a threshold value is createdto determine if the system has fault.
This threshold is an arbitrary value between the upper RMS value of non-fault condition and
the lower RMS value of fault condition. The threshold value determines the response time and
the accuracy of fault detection. How to value the threshold will be described in detail later in

the system simulation.

vRMSno < TRthreshold < vRMSfot (4-78)

Where Trinresnora 1S the threshold value for analysing the RMS value.

The above method is a description of the working principle of the normalization algorithm.
Figure 4.18 summarizes the normalization algorithm into a flow chart.

E, (k) |+

Ers(k'l)

Figure 4.18 The normalization algorithm block diagram for analysing the fault detection
residual

The above algorithm can also analyse and compare the three residuals of the fault diagnosis to

obtain the detection result. Figure 4.19 shows the complete algorithm block diagram.
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Figure 4.19 The normalization algorithm block diagram for analysing the FDD residuals

Through the design of the Kalman filter bank and the normalization algorithm, the Kalman
fitter based FDD method can be successfully applied to the plant structure system. The overall

Kalman filter based FDD method is shown in Figure 4.20.

63



Chapter 4: Kalman Filter Based FDD method

uk)

U(k),

without fault

Kalman filter
without fault

Samples

Kalman filter with

fault 1

Kalman filter with
fault 2

ey [alman filter with
fault 3

Samples

Samples

Samples

mu.ﬂ,a?.mv

Compare
with
constant

Compare
with
constant

Compare
with
constant

Compare
with
constant

Figure 4.20 The Kalman filter based FDD block diagram
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In the following chapters, in order to verify the Kalman filter based FDD method, the

corresponding system simulation and experiment are carried out.

65



Chapter 5: Kalman Filter Based FDD Method Validation

Chapter 5 : Kalman Filter Based FDD Method Validation

Firstly, based on the knowledge of the introduction of the system identification and the Kalman
fitter based FDD method, an artificial plant structure system was created in MATLAB
Simulink. In simulation, three gains are added between the controller and the system feedback
to simulate the system'’s actuator failure. The plant structure system simulates the case of single
fault and double faults by setting the values of three gains. The Kalman filter based FDD
method is used to detect the artificially set fault. In the simulation, the relevant parameters are
valued according to the actual situation of the system. Subsequently, the Kalman filter based
FDD method was applied to the real vibration system. The two system models are linear
discrete-time systems that are simplified according to the real plant structure system. The
signals emitted the controller and emitted by the actuator are taken out in the real system and
inputted into the two models. The experiment also shows the process of the Kalman filter based

FDD, especially the observation of residuals.

5.1 Conceptual Kalman filter based FDD method validation.

MATLAB Simulink is a simulation and model-based design tool for dynamic systems and
embedded systems. It can design, simulate, execute and testa variety of time-varying systems.
In this part, a linear discrete-time system simplified by the Plant structure is created in
Simulink. In order to make the system produce a vibration output, according to the frequency
corresponding to the first three modes of the system at the time of modelling, three sine waves
of the corresponding frequency are used as disturbance in the system. The system will generate
vibration signals with the maximum observable amplitude at these three frequencies. A
controller called PPFis applied to the system to reduce the impact of disturbance to the system.
In fact, any controller that has control effect over the system can be used as a controller here,
as long as it can generate the corresponding control signals. Therefore, the PPF controller is
not analysed and introduced in detail in this article. The specific information can be found in
the reference [28]. The three gain blocks represent actuators 1, 2, and 3. When the value of gain
is 1, it is equivalent to the actuator not having fault. When the value of gain is O, it is equivalent
to the corresponding actuator fault. Because the sensor fault is not the researched object of this
thesis, it is not deliberately drawn in the simulation. The signal from the artificial system can

be the signal feedback from the sensor by default. The artificial system is shown in Figure 5.1.
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Figure 5.1 The artificial system to validate the Kalman filter based FDD method

As previously introduced, due to the presence of disturbances, the control signals given by the
controller and the control signals after the actuator are taken from the artificial system.
According to the original open-loop system, a system model containing two same artificial

systems is introduced to provide the necessary information to the Kalman filter bank.

inz outz
system model —H

H fFaaudt

faaltl

fauh2

fauhd

KF bank

Figure 5.2 The Kalman filter bank simulation to derive four residuals
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Figure 5.2 shows how the Kalman filter bank and system model are connected. At the output
of the Kalman filter bank, four residuals are calculated in real time. The structure of the system
model is shown in Figure 5.3 and the structure of the Kalman filter bank is shown in Figure
5.4.

Ipii = Axg + B
I B
@ v ¥p= Cx, + i, = @
Ipii = Axg + Buy
[ [
€D M et Du, (2 )

Figure 5.3 The structure of the system model
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Figure 5.4 The structure of the Kalman filter bank

In each Kalman filter, the initial state estimate of the system, the covariance of the initial state

estimate error, the covariance of the process noise, and the covariance of the measurement
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noise must all be given. In the plant structure system, it is desirable that the top plate is always
in a stable and stationary state, so the position and speed of the three measuring points of the

system are all 0. Therefore, the initial state estimate of the system is set as follows.

0]
o]
ol
Lo

S OO OO O

Assume all the initial estimated states have the error in 1. The covariance of the initial state

estimate error is:

P; =

cCoococoRrm
coocoRro
cooRr oo
comooo
o ococoo
rooooo

The covariance of the process noise is shown as follows:

1 0 0 0 0 O
01 0 0 0 O
0= 001000
oo o100
0 0 0 01 O
0 0 0 0 0 1
The covariance of the measurement noise is:
1 0 O
R=10 1 O]
0 0 1

The analysis of the residuals by the normalization algorithm is also established in the system,

the structure of which is shown in Figure 5.5.
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Figure 5.5 The simulation structure of the Kalman filter based FDD method

The four scopes in Figure 5.5 are used to observe the four residuals of the Kalman filter bank,
while the four display blocks are used to display troubleshooting and results. The structure of
the Normalization algorithm is shown in Figure 5.6, where the threshold values are explained

in detail in the simulation.
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Figure 5.6 The structure of the normalization algorithm

In the normalization algorithm, each period has 4.5 samples according to the previous
calculation and sampling time of the system, and the RMS value is calculated by taking the
previous 7 samples at each time. Each residual of the Kalman filter bank has 3 signals. To
analyse all of the signals, eachsignal uses the normalization algorithm. All the analysed signals

have been amplified 1010 times.

Take the first signal of fault detection residual as an example. After introducing the complete
simulation structure, the observations of the fault detection RMS values without any faults, and
the fault detection RMS values with faults, are compared in the system. When the system does

not have fault, the first signal fault detection RMS value is shown in Figure 5.7.
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Figure 5.7 The fault detection RMS value when system do not have fault

When the system has fault, the first signal of fault detection RMS value is shown in Figure 5.8.

Figure 5.8 The fault detection RMS value when the system has fault

As shown in Figure 5.7 and Figure 5.8, when the system does not have fault, the first signal of
fault detection RMS value has the largest value at 4.3 x 10~1%, When the system has fault, the
first signal of fault detection RMS value has the lowest value at 22. Therefore, the threshold

value is setto 0.01 to ensure the fault detection efficiency and accuracy for this case.
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By observing all the RMS values in no-fault system and fault systems. All the threshold values
are setto 0.01.

5.1.1 No fault system simulation result

All the structures and parameters of the fault detection and positioning system have been

introduced. In the simulation, first observe the four residuals and test results without faults.
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Figure 5.9 The four residuals and results without faults in simulation

According to the simulation, in the first no fault scope, the signals in residual are very small
zero mean values, and their maximum values are around 5 x 10~14. The other three scopes
have maximum values of around 2 to 4. The maximum values in the first residual is
significantly lower than that in the other three residuals, and the system is not faulty at the
moment. In the display block, 1 means that the name of the display block is valid, and 0 means
that the display block is invalid. In the display block, the same FDD result shows the system
having no fault.

5.1.2 Actuator fault 1 system simulation result

By setting the gain in actuator fault 1, the simulation result can be observed in Figure 5.10.
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Figure 5.10 The four residuals and results with actuator fault 1 in simulation

According to the simulation, in the fault 1 scope, the three signals in residual are very small

zero mean values, and their values are around 0. The other three scopes have maximum values

of around 2 to 80. The signals in the second residual are significantly lower than that in the

other three residuals, which means the system is having fault 1 at the moment. In the display

block, the same FDD result shows the system having fault 1.

5.1.3 Actuator fault 2 system simulation result

By setting the gain in actuator fault 2, the simulation result can be observed in Figure 5.11.
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Figure 5.11 The four residuals and results with actuator fault 2 in simulation
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According to the simulation, in the fault 2 scope, the three signals residual are very small zero
mean values, and their values are around 0. The other three scopes have maximum values of
around 2 to 75. The signals in the third residual are significantly lower than that in the other
three residuals, which means the system is having fault 2 at the moment. In the display block,
the same FDD result shows the system having fault 2.

5.1.4 Actuator fault 3 system simulation result
By setting the gain in actuator fault 3, the simulation result can be observed in Figure 5.12.
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Figure 5.12 The four residuals and results with actuator fault 3 in simulation

According to the simulation, in the fault 3 scope, the signals in residual are very small zero
mean values, and their values are around 0. The other three scopes have maximum values
around 2 to 60. The fourth residual is significantly lower than the other three residuals, which
means the system is having fault 3 at the moment. In the display block, the same FDD result
shows the system having fault 3.

5.1.5 Actuatorfault 1 and 2 system simulation result

By setting the gain in actuator fault 1 and 2, the simulation result can be observed in Figure
5.13.
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Figure 5.13 The four residuals and results with actuator fault 1 and 2 in simulation

According to the simulation, in the fault 1 and 2 scope, the signals in residuals are very small
zero mean values, and all of the values are around 0. The other two scopes have maximum
values of around 2 to 150. The second and third residuals are significantly lower than the other
two residuals, which means the system is having fault 1 and 2 at the moment. In the display

block, the same FDD result shows the system having fault 1 and 2.

The other interesting finding is that the maximum value of signal in no-fault block of the double

faults situation is larger than that of the single fault situation.

5.1.6 Actuatorfault 2 and 3 system simulation result

By setting the gain in actuator fault 2 and 3, the simulation result can be observed in Figure
5.14.
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Figure 5.14 The four residuals and results with actuator fault 2 and 3 in simulation

According to the simulation, in the fault 2 and 3 scope, the signals in residuals are very small
zero mean values, and all of the values are around 0. The other two scopes have maximum
values around 3 to 140. The third and fourth residuals are significantly lower than the other
two residuals, which means the system is having fault 2 and 3 at the moment. In the display

block, the same FDD result shows the system having fault 2 and 3.

5.1.7 Actuatorfault 1 and 3 system simulation result

By setting the gain in actuator fault 1 and 3, the simulation result can be observed in Figure
5.15.
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Figure 5.15 The four residuals and results with actuator fault 1 and 3 in simulation

According to the simulation, in the fault 1 and 3 scope, the signals in residuals are very small
zero mean values, and all of the values are around 0. The other two scopes have maximum
values around 3 to 140. The second and fourth residuals are significantly lower than the other
three residuals, which means the system is having fault 1 and 3 at the moment. In the display

block, the same FDD result shows the system having fault 1 and 3.

In conclusion, the simulations above validate the Kalman filter based FDD method can be
applied to the plant structure system. The results via the different simulations confirm that the
designed Kalman filter based FDD method is able to detect the real time faults in the plant

structure successfully.

5.2 The Kalman filter based FDD method via experiment

After verifying the Kalman filter based FDD method in the simulation, this method was applied
to the actual Plant structure system. The experiment used a software called dSPACE, which
reads the signal generated by the sensor from the actual system, then the controller feeds the
control signal back to the actuator of the system. At the same time, this software can observe
various parameters in the real-time system. The controller used in the experiment is the same
PPF control mentioned before. In the actual system, the experiment also takes two control
signals from the controller behind the system and after the actuator. Therefore, when building
the dSPACE model, three gains are added before the controller and before the external output
signal. When any of the three gains is zero, the corresponding actuator of the system will not
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work. As shown in Figure 5.16, the relevant model is set up in MATLAB and then modelled

into dSPACE to control the real system.
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Figure 5.16 The structure for the experiment

In the simulation, no faults and six faulty conditions were tested. In order to test the practicality

of the FDD method, the above seven cases are also applied in the test.

5.2.1 No fault system experiment result

First, the test is conducted without any fault in the system. In the dSPACE software, the FDD

results of the four residuals obtained from the Kalman filter bank are shown in Figure 5.17.
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Figure 5.17 The four residuals and results without faults in experiment

As can be seen in Figure 5.17, the value of the first residual is 0, and the largest value in the
simulation is 5 x 1014, are almost equal. In theory, this residual should be a zero mean noise.
The value in the experiment is zero because the scale of the coordinate axis is large, so this
noise cannot be displayed. The other three residuals are very large noise, but not zero mean,
which is consistent with theoretical analysis. This is because in the experiment, the initial
condition of the system may not be 0. In the result of FDD, the system shows no fault. Although
the results of the simulation and experiment seem to be a little different, in fact the results of
the simulation and experiment are the same. The previous theoretical analysis about the

residual is verified again.

5.2.2 Actuator fault 1 system simulation result

Artificial setting actuator fault 1, observe the results of FDD and four residuals in Figure 5.18.
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Figure 5.18 The four residuals and results with actuator fault 1 in simulation

Comparing Figure 5.18 with Figure 5.17, the three signals in the first residual changes from
noises close to 0 to very large noises, while the signals in the second residual changes from
very large noises to noises close to straight lines. Asin the previous analysis, all results are the
same compared to the simulation, except for the initial condition of the residual. In the fault

detection and diagnostic results, the actuator 1 fault is displayed.

5.2.3 Actuator fault 2 system simulation result

Avrtificial setting actuator fault 2, observe the results of FDD and four residuals in Figure 5.19.
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Figure 5.19 The four residuals and results with actuator fault 2 in simulation
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Comparing Figure 5.19 with Figure 5.17, the three signals in the first residual change from

noises close to 0 to very large noises, while the signals in the third residual change from very

large noises to noises close to straight lines. As in the previous analysis, all results are the same

compared to the simulation, except for the initial condition of the residual. Inthe fault detection

and diagnostic results, the actuator 2 fault is displayed.

5.2.4 Actuator fault 3 system simulation result

Avrtificial setting actuator fault 3, observe the results of FDD and four residuals in Figure 5.20.
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Figure 5.20 The four residuals and results with actuator fault 3 in simulation
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Comparing Figure 5.20 with Figure 5.17, the three signals in the first residual change from

noises close to 0 to very large noises, while the signals in the fourth residual change from very

large noises to noises close to straight lines. As in the previous analysis, all results are the same

compared to the simulation, except for the initial condition of the residual. Inthe fault detection

and diagnostic results, the actuator 3 fault is displayed.

5.2.5 Actuatorfault 1 and 2 system simulation result

Artificial setting actuator fault 1 and 2, observe the results of FDD and four residuals in Figure

5.21.
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Figure 5.21 The four residuals and results with actuator fault 1 and 2 in simulation

Comparing Figure 5.21 with Figure 5.17, the three signals in the first residual changes from
noises close to 0 to very large noises, while the second and third residuals change from very
large noises to noises close to straight lines. As in the previous analysis, all results are the same
compared to the simulation, except for the initial condition of the residual. Inthe fault detection

and diagnostic results, the actuator 1 and 2 fault is displayed.

5.2.6 Actuatorfault 2 and 3 system simulation result

Acrtificial setting actuator fault 2 and 3, observe the results of FDD and four residuals in Figure
5.22.
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Figure 5.22 The four residuals and results with actuator fault 2and 3 in simulation
Comparing Figure 5.22 with Figure 5.17, the three signals in first residual changes from noises
close to 0 to very large noises, while the third and fourth residuals change from very large
noises to very small noises, in which the largest values are around 1.5 x 10~°. However, the
third and fourth residuals are still very close to straight lines. As in the previous analysis, all
results are the same compared to the simulation, except for the initial condition of the residual.

In the fault detection and diagnostic results, the actuator 2 and 3 fault is displayed.

5.2.7 Actuatorfault 1 and 3 system simulation result

Avrtificial setting actuator fault 1 and 3, observe the results of FDD and four residuals in Figure
5.23.
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Figure 5.23 The four residuals and results with actuator fault 1 and 3 in simulation
Comparing Figure 5.23 with Figure 5.17, the three signals in the first residual changes from
noises close to 0 to very large noises, while the second and fourth residuals change from very
large noises to noises close to straight lines. As in the previous analysis, all results are the same
compared to the simulation, except for the initial condition of the residual. Inthe fault detection

and diagnostic results, the actuator 2 and 3 fault is displayed.

In summary, in all experiments the FDD results are exactly the same as the simulation, and
only the residuals of the observations areslightly different. The reasons for the differences have
also been discussed in the experiment. Therefore, the Kalman filter based FDD method has
proven to be an effective method for detecting and diagnosing faults in simulations and

experiments.
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Chapter 6 : Conclusion

First of all, this thesis studies the MIMO plant structure system characteristics, and simplifies
it into a linear discrete-time SSR. Then, the discrete-time Kalman filter is studied to produce
the system state estimate. The system output estimate is obtained by using the system state
estimate and the system output equation. By comparing the real system output with the
estimated output, a series of residuals can be calculated to detect the similarity of the two
outputs. Using the same method for other single fault cases, a Kalman filter bank is created,
which included the Kalman filter of the normal system and the Kalman filter of three different
single fault cases. In order to analyze the residuals, the thesis comes up with a new algorithm
called normalization algorithm. And then, by observing the parameters of the simplified linear
discrete-time system in the simulation, the previous theoretical variables are valued to obtain
the correct FDD results. At the same time, the intermediate process signal, the residuals, are
also observed in the simulation to verify the normalization algorithm. Finally, the Kalman filter
based FDD method is used in the experiment. The experimental results are compared with the

simulation results to further verify the feasibility of this method.

In the experiment, it is found that the existing experimental equipment has its limitations. In
the existing experimental equipment, it is impossible to physically set the actuator fault and get
relevant signals. However, this method also has its limitations. It requires that the theoretical
model in the experiment must match the real system. Once the real system changes, the results

of FDD will no longer be credible.

For the above two points, the future work can be completed in two steps. First, in the
experiment, a new PCB board will be designed for the simulation between the actuator and the
dSPACE. Accordingly, designing a switch on the new PCB board will simulate the actuator
fault. Second, the Kalman filter based FDD method will be improved to make it more versatile,
not only to perform correct FDD to required system changes (analyze a specific system and
create a system library), but also detecting and diagnosing sensor faults as well as the actuator
fault. After the improvement of the Kalman filter based FDD method, it will have a better

performance to do FDD in other vibration control systems.
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Appendix

Appendix A: MATLAB Code

The MATLAB codes for each section are kept within the Advanced Control Research Group,
Flinders University. The MATLAB codes can be provided upon request.
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