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Summary

Improved methods for extracting intelligence linking one sample of energetic material to another or
identifying the location and method of manufacture are important. By investigating several analytical
techniques with chemometric analysis, this research aims to assist in developing methodologies

which may provide indications of such linkages.

Samples were prepared utilising methods observed in clandestine manufacturing, to replicate real-
world variability due to differing starting materials or manufacturing procedures. These samples were
subjected to a wide range of analytical techniques to investigate characteristic signatures within
improvised energetic materials. The techniques included isotope ratio mass spectrometry (IR-MS),

inductively coupled plasma mass spectrometry (ICP-MS), Raman and infrared (IR) spectroscopy.

The spectrometric and spectroscopic data collected was analysed through chemometric means to
accomplish two goals. Firstly, to establish the quality of data obtained through each analytical
technique. Secondly, to enhance each dataset by combining them to increase the discriminatory
power of the data analysis, thereby capturing the unique traits and chemical “fingerprint’ or profile
of the material. Principal component analysis (PCA) was the primary method of analysis used, as it is
an unsupervised analysis better suited for the real-world application of extracting intelligence from

sample data where the identity is unknown.

Combining these goals through the exploratory multivariate data analysis, PCA, there is the potential
to condense data and extract the maximum value from it. The relative contributions of analysis
techniques were also assessed, leading to method optimisation. For example, every additional
element selected for ICP-MS analysis adds a significant amount of time, cost, and resources in regard
to sample analysis and method validation. Any additional element further complicates the

multivariate analysis so the number of elements should be optimised for to save time or reduce cost.

Chemical profiles enable the comparison of newly and previously acquired sample data with high
fidelity and a measure of confidence that samples, which may have been collected at different
locations and times, have a common origin. This process can be applied to large databases where

discrimination between samples is desired.

This research project investigated each of these aspects and the results confirm the ability for the

chemometric analysis of spectrometric and spectroscopic datasets to vyield discriminatory
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information from both independent and combined datasets. The analysis also identifies where the
discriminatory information comes from within each dataset. This allows a more targeted analysis and
comparison of samples on a greatly reduced number of variables. Clear clustering of related samples
was identified using an unsupervised multivariate analysis, rather than a supervised discriminatory
analysis such as LDA, which would favour clustering. This is ideal in a real-world setting where the

identities and relationships between samples are likely unknown prior to analysis.
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1. Introduction

In today’s digital age, information on almost any topic is accessible to the general population through
the power of the Internet and the plethora of devices that can connect to it. This has allowed for the
rapid progression of civilisation through the sharing of information at a previously unimaginable
speed. Though this technological advancement has undoubtably been a net positive for humanity

there are also negative aspects that are easy to identify but not so simple to mitigate or resolve.

An example of this is the transmission of potentially dangerous information on the topic of energetic
materials which enables anyone with the desire for such knowledge to gather it without many, if any,
barriers at all. The very real concern of such information falling into the wrong hands has been
realised through the numerous terror attacks across the world as well as countless minor incidents
involving hobbyists and other curious individuals. Much of this information is not only shared but
also collaboratively developed through numerous users of web forums effectively developing and
optimising methods for the production and use of energetic materials from commonly available
materials. Though many are just curious and pose very little threat there is no stopping bad actors
with nefarious intentions from participating in these open forums. This widely available information
is complimented by online marketplaces such as eBay can be used as sources of starting materials,
the equipment required to produce energetic materials and operational improvised explosive devices

(IEDs).

One possible method of preventing the manufacture of explosive devices is through the restriction
of access to such information and materials. Though in theory this would solve the issue, the
implementation of such restrictions has been ineffective in most cases. Internet restrictions have
been applied in certain countries around the world, the most notable case being China where the
government has strong control over not only what the population has access to but can go so far as
to suppress online discussions among citizens.! Even in the case of China however, the use of IEDs
has not been entirely eradicated. An example being on the 12 June 2016 where a man targeted

Pudong International Airport, Shanghai, with homemade explosive devices.?

In most democratic countries, however, Internet censorship is quite a contentious and divisive topic
with many arguments surrounding protection but also censorship and restricting freedoms,
particularly of speech. In 2012 a broad survey by The Internet Society of greater than 10,000 people

from 20 countries were asked about their attitude towards the internet.3 The results identified some



conflicting attitudes, with 71% of people agreeing that "censorship should exist in some form on the
Internet" however 86% supported the stance that "freedom of expression should be guaranteed on
the Internet". Even if stricter controls were to be implemented on users of the Internet, there are

many ways to circumvent such efforts and neutralising the effectiveness of the controls.

One of the more popular methods to evade Internet censorship is the use of a virtual private network
(VPN). According to GlobalWeblndex 30% of Internet users have used a VPN/proxy server in the last
month.* A VPN provides a greater level of anonymity on the Internet by encrypting a user’s data by
“tunnelling” through a wide area network, in this case the Internet, effectively removing the physical

location tag of the user.

With the limitations on Internet restrictions reducing the effectiveness of the strategy, another
option is to restrict the materials required to produce HMEs and components for effective IEDs. This
too has been implemented in the past, with many countries having lists of restricted and banned
chemicals. However, this method is quite difficult to enforce as ill-intentioned groups and individuals
find ways to smuggle the prohibited chemicals or find new methods to produce a different precursor
or explosive with what is readily available. As an extreme example, in 2010 the Afghan government
banned ammonium nitrate (AN) fertilisers due to its prevalent use in IEDs.> This ban was ineffective,
however, due to the large stockpiles of AN already within the country and the lack of restrictions in
neighbouring countries with shared land borders, making smuggling AN into the country a

rudimentary and lucrative process.®’

With neither the restriction on information or chemicals proving to be little more than a deterrent,
this identifies the need for investigators to collect data from the scene of the crime and extract as

much intelligence as possible from collected data.

Intelligence as defined by the United States Department of Defense?® is: “the product resulting from
the collection, processing, integration, evaluation, analysis, and interpretation of available
information concerning foreign nations, hostile or potentially hostile forces or elements, or areas of
actual or potential operations.” The document also delves into the various methods of intelligence
gathering and sources, including commonly utilised methods in police investigations and counter

terrorism applications. Some of these include:



e Human intelligence (HUMINT): information collected and provided by human sources.

e Measurement and signature intelligence (MASINT): information from quantitative and

gualitative analysis of physical phenomenon intrinsic to an object or event.
e Open source intelligence (OSINT): information derived from publicly available information.

e Scientific and technical intelligence (S&TI): product resulting from the collection, evaluation,

analysis, and interpretation of foreign scientific and technical information that covers:
o Foreign developments in basic and applied research.

o Scientific and technical characteristics, capabilities, and limitations of all foreign
military systems, weapons, weapons systems, and material; the research and
development related thereto; and the production methods employed for their

manufacture.

e Technological intelligence (TECHINT): intelligence derived from the collection, processing,
analysis and exploitation of data and information pertaining to foreign equipment and

material.

In relation to the aims of this research project the primary types of intelligence being sought after
are MASINT, S&Tland TECHINT: MASINT and S&TI through the forensic analysis of explosive materials
via a range of analytical techniques including, infrared spectroscopy, Raman spectroscopy, isotope
ratio mass spectrometry and inductively coupled plasma mass spectrometry; TECHINT through the
chemometric analysis of collected data from the previously mentioned analytical techniques. This
intelligence can then potentially be utilised to aid and assist criminal or terrorism investigations

involving the use of explosives.

When an incident involving the use of homemade explosives (HMEs) is investigated it is primarily
focused on two areas: associative evidence which tries to link an individual or group to the incident;
and physical/chemical evidence which may be collected from the site of the incident. In the case of
a one-off attack much of the physical/chemical evidence collected will be restricted to providing
intelligence to link the IED to the suspect, for example, matching to evidence such as IED components
(cabling, detonators, etc) or chemicals (same explosive material, precursor materials, etc) found at a

suspect’s property.



However, in the case of organised and coordinated attacks such as designated terrorist organisations
or wartime conflicts there is a prolonged usage of IEDs. This opens the possibly that the materials
used in one IED are potentially linked to another. Therefore, if an identifiable source of precursor
chemicals can be linked to multiple IEDs there is a greater opportunity for data collection to yield
potentially valuable intelligence. This may be in the form of impurities, common trace elements or
stable isotope ratios of carbon/nitrogen/oxygen as previously explored in past research projects at

Flinders University>!0 and internationally'®.

Though this is not a solution to preventing the use of such weapons or the manufacture of HMEs it

would allow a greater understanding of the networks behind the attacks.

Chemometrics has many definitions with slight variations. The Chemometrics Society defines'? it as
“The chemical discipline that uses mathematical and statistical methods to design or select optimal
procedures and experiments, and to provide maximum chemical information by analysing chemical
data.” Chemometrics differs from traditional data analysis methods by interrogating the data as a
collective multivariable dataset rather than analysing observations individually. This allows the
development of a model to fit the data, contrasting the classical case where the data is investigated

to test the validity of a theoretical model.

Advanced multivariate chemometric analysis could potentially be an integral component of forensic
analysis as it is a powerful way of extracting the maximum amount of information from forensic
chemical analysis techniques. This is an emerging field of study with research into multivariate
analysis of individual analytical techniques and data fusion of data collected from spectroscopic and
spectrometric analyses being undertaken.'%1113 For this application a technique specifically tailored
to classification/clustering of samples is required and an added benefit would be the reduction of the
dimensionality of the original dataset. Multivariate linear regression or multiple linear regression has

this potential, however there are many different statistical approaches to enable such a result.

Three commonly discussed and utilised options are linear discriminant analysis (LDA), partial least
squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Whilst all very similar
in outcome the process undertaken by each method is very different. The major difference is that

LDA and PLS-DA are supervised methods, meaning sample identities are considered, whereas PCA is



an unsupervised method, meaning that no sample identification is considered. This alone makes PCA
a strong choice as an unsupervised method of analysis that is well suited to an intelligence gathering
application. PCA will investigate the variance in a multivariate dataset, enabling data exploration and
dimensionality reduction through the transformation of the original data into linear orthogonal
principal components to resolve variance, whereas LDA and PLS-DA investigate the variance between
sample groups within a multivariate dataset. This unsupervised method allows an analysis to be
entirely exploratory without any major restraints or restrictions, and in the case where sample
identities can be entirely unknown this is the only option. A graphical representation of this

distinction can be seen in Figure 1.1.
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Figure 1.1: A) PCA data treatment. B) LDA data treatment.

As a result, the primary statistical method of analysis utilised in this research project will be principal
component analysis (PCA). The data set is represented mathematically as an n x p matrix, where n is
the number of samples and p is the number of variables. PCA is able to reduce this to a maximum n-
1 or p principal components (PCs), depending on which is the lesser value. For example, if 10 samples
were analysed by ICP-MS for 30 trace elements (10 x 30 matrix) this can be reduced to 9 PCs thus

transforming the dataset into a 10 x 9 matrix, effectively a third of the original data.

However, there are drawbacks to PCA. The most important of which is the effect data reduction has
on the variance of the original data. As the data reduction is a key aspect of any PCA the end user
must determine when an analysis has successfully compressed the data without losing vital,
potentially discriminatory information. For example, if only 3 samples were analysed rather than the

10 in the previous example, the raw data consists of a 3 x 30 matrix and the PCA would reduce this
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to 2 PCs, which in most cases cannot adequately represent the variance within the original dataset.
This means that datasets with a small number of samples in comparison to the number of variables

are not well suited for PCA analysis as the variance will not be well distributed.

Another important aspect of PCA are PC loadings as these identify the portion of the original dataset
a PCrepresents. PCs themselves do not correspond directly to one variable but are a combination of
multiple original variables and understanding this allows the analyst to determine where
discriminatory data lies within a dataset. Continuing with the previous example of the 10 samples
analysed for 30 trace elements, this analysis may conclude that for these 10 samples only 5 of the
trace elements are required to discriminate the 10 samples from one another and that in analysing
just those 5 elements 99.9% of the original variance is retained. In doing such an analysis the next
time the analysis is done there would be no need for a full 30 elements to be measured but only 5.
This greatly improves the efficiency of the chemical analysis, which is one of the core components of

chemometrics.

As these multivariate analyses can be quite computationally demanding, a more basic overview of
large datasets prior to analysis may be wise to determine if any discriminatory data is present. A well-
suited technique to employ for this brief screening of a dataset is Hierarchical Cluster Analysis (HCA).
This technique measures every data point to its closest neighbour and this is then displayed in the
form of a dendrogram. This measurement can be done in multiple ways, however, for this project
simple Euclidean distance is the selected metric. Euclidean distance is the length of a straight line in
Euclidean space. A basic dendrogram is depicted in Figure 1.2 and shows two clear groupings (A and
B) and also some closer relationships between individual samples within those groups such as A1/A2,
A3/A4,B1/B2 and B3/B4. The vertical line length is the Euclidean distance between points and hence
the shorter the length the more similar the sample. In the case of screening data this is an example
of a dataset that would be well suited for PCA analysis to determine the variables leading to this
separation. If on the other hand Euclidean distances between groupings is minimal this would be a

distinct red flag of very little discriminatory data within the dataset.
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Figure 1.2: Dendrogram of 9 samples showing 2 distinct clusters and samples with close
relationships.

The other benefit of undertaking an HCA is for the identification of significant outliers. Outliers can
be identified in a dendrogram when the Euclidean distance between a datapoint or cluster of
datapoints is far greater than the overall population. This will result in a compression of the

dendrogram with only the outlier samples being distinguished as a grouping.

PCA too can identify outliers however, this is through a purely mathematical process rather than a
simple graphical representation. This is done through the computation of either the Hotelling’s T%-
statistic or the Q-statistic. Both methods assume that the variance in the data follows a normal
distribution. The difference between the two is that the T?-statistic measures the variation of each
sample within the PCA model, whereas the Q-statistic measures the difference between a sample
and its projection into the PCA model. Therefore, a sample with a larger T? indicates an outlier within

the model and a larger Q indicates an outlier outside of the model.

1.3 Energetic Materials

Energetic materials (EMs) are compounds which store a large amount of chemical potential energy
which may be released. EMs can then be categorised into a further three subcategories including

explosives, pyrotechnics and propellants.

An explosive is a substance or mixture of substances that may be made to undergo a rapid chemical
change without an external supply of oxygen with the liberation of large quantities of energy,

generally accompanied by the evolution of hot gases or vapours.4



They may then be further categorised into primary and secondary explosives. Primary explosives are
highly sensitive to heat, friction, impact and electrostatic discharge and will detonate or burn rapidly
in very small quantities. These types of explosives are commonly used in the manufacture of
detonators and are normally unimolecular explosives, which are compounds which require no
additives to detonate.!®> Examples of primary explosives are triacetone triperoxide (TATP) and lead

azide (Pb(Ns)2).

Secondary explosives are much less sensitive and usually require the shockwave produced by a
primary explosive in order to initiate a detonation. These types of explosives are used in military and
commercial applications and some examples include 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX)
and ammonium nitrate-fuel oil (ANFO). RDX is an example of a unimolecular explosive whereas ANFO
is a fuel/oxidiser explosive involving the mixture of a fuel into the oxidiser in order to improve
performance. These fuel/oxidiser explosives are commonly found in HMEs as they are easier to

manufacture in large quantities.

The chemical energy previously mentioned within these compounds have two possible rapid energy
release pathways, either deflagration or detonation. Deflagration is a relatively slow explosion,
generating only subsonic pressure waves. This sort of explosion is usually produced by rapid chemical
combustion reactions, for instance of gunpowder in a firearm, or fuel in an internal combustion

engine.!®

Detonation, however, is a much more instantaneous release of the chemical energy stored within
the compound. In this case, rather than undergoing a combustion reaction the compound
decomposes through a shock wave phenomenon. This shock wave causes the bulk of the explosive
to decompose almost instantly releasing a large amount of heat and gas.!” The fast rate of reaction
and resulting rapid expansion of gases in conjunction with the shock wave itself produces the

explosive effects.

The following review covers all energetic materials and ingredients that have been featured within
this research project. Many are of interest as they are commonly featured in HMEs including: the
fertiliser-based explosives urea nitrate and ammonium nitrate; erythritol tetranitrate and potassium
chlorate. RDX and 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX) are less commonly

associated with HMEs as they are military grade high explosives. However, given their similar



molecular structure they were of interest in assessing the effectiveness of an emerging analytical

method utilising THz/far-infrared spectroscopy.

1.3.1 Urea Nitrate/ Uronium Nitrate (UN)

1.3.1.1 Background

Uronium nitrate (Figure 1.3), commonly referred to as urea nitrate (UN), is a fertiliser-based
explosive. There have been several incidents where UN has been used in terrorist incidents across
the world including those perpetrated by the Shining Path (South American terrorist cell). In the case
of the Shining Path the use of urea nitrate became so prolific that the Peruvian government banned
sales of urea.'® One high profile incident involving the use of UN was the 1993 World Trade Center

bombing.*®

HoN NH,
Figure 1.3: Urea nitrate chemical structure.
1.3.1.2 Production

Urea nitrate is a salt comprising of a nitrate anion and an uronium cation and takes the form of a
white powder. The explosive is often found in improvised explosive devices (IEDs) and can be simply
created by non-professionals with little to no specialised equipment via the simple combination of

urea and nitric acid (Figure 1.4).2°
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HoN NH,
Figure 1.4: Reaction scheme for urea nitrate production from urea and nitric acid.

This synthesis may also involve the production of the nitric acid in situ from a nitrate salt (e.g.,

potassium nitrate) and a mineral acid (e.g., sulfuric acid).



1.3.1.3 Forensic Analytical Techniques

Urea nitrate is an energetic material of high international interest as it has been used in illicit activities
due to its simplicity when it comes to manufacturing and handling. Due to this many previous studies
have been undertaken in order to be able to extract as much information out of the analytical
techniques as possible for both pre and post-blast material. The techniques include isotope ratio
mass spectrometry (IR-MS)% 22, inductively coupled plasma mass spectrometry (ICP-MS)°, infrared
spectroscopy (IR)'% 21 Raman'%23, ultraviolet-visible spectroscopy (UV-Vis)%, thermal analysis'” 2 and

liquid chromatography mass spectroscopy (LC-MS)*°.

Of these analytical techniques isotope ratio and inductively coupled plasma mass spectroscopy show
potential discriminatory power between samples of like materials®*°. A major drawback of these
analyses is that they do not chemically identify the material as they purely focus on isotope ratios
and trace metal content. Therefore, techniques that provide material identification will be required
and spectroscopic techniques are well suited for this application. Not only can they chemically
identify materials but potentially identify additional impurities or additives contributing to the

discrimination of samples of like material.
1.3.2 Ammonium Nitrate (AN)

1.3.2.1 Background

Ammonium nitrate (Figure 1.5), much like urea nitrate, is common in cases involving the misuse of
explosives such as terrorist attacks. Once again this is due to fertiliser-based explosives being quite
easy to manufacture from readily available starting materials due to minimal security checks in some
countries. An example of ammonium nitrate-based explosives being utilised as a key component of
an HME is the 1995 Oklahoma City Bombing.?* While ammonium nitrate can be an explosive in its
pure form, it is more often mixed with fuels for greater sensitivity and reliability of detonation. An
example of this is ammonium nitrate-fuel oil (ANFO) which in recent years has been found to be used

in many malicious attacks.?
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Figure 1.5: Ammonium nitrate chemical structure.

Though it is not feasible to completely restrict the usage of all AN purchased across the world, many
countries have begun to monitor its purchase including Australia. The Council of Australian
Governments (COAG) began this process in 2004 to restrict the widespread availability of AN that
could potentially be used to create an explosive.?® The class of AN to be restricted was termed

security sensitive AN (SSAN) and encompasses any mixture containing greater than 45% AN.

1.3.2.2 Production

AN is generally formed using the simple neutralisation of nitric acid with ammonia (Figure 1.6)

resulting in an AN solution?”.
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Figure 1.6: Reaction Scheme for Ammonium nitrate production from ammonia and nitric
acid.

An alternate source of AN is fertiliser-grade AN, generally purchased in solid form consisting of prills
which may contain a wide range of additional minerals, metals and nutrients designed to feed plants
or assist in slow release of fertiliser. This gives another avenue for forensic analysis through ICP-MS
guantification of the trace metals and even the potential of spectroscopic techniques to obtain

signals from the added nutrients.

Ammonium nitrate fuel oil (ANFO) is an explosive comprising of fertiliser-grade AN and a fuel. The
AN can be in the form of a powder or prill and quite a number of fuels may be used, including sugars,
starches, cellulose and diesel.?8 The prills can be used if small enough otherwise porous prills are
manufactured in order to allow for the fuel to be well incorporated into the mixture which promotes

the explosive capability of the mixture.?®
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Many other additives may also be used to improve the explosive properties of an AN explosive, each
having a specific purpose and application. Aluminium powder is commonly added as it results in a
much greater temperature of explosion, helping to increase the duration of vapour expansion and
thereby its work capacity.3® On the other hand other high explosives such as TNT or nitroglycerine

may be added to sensitise the material rather than increase explosive performance.!

1.3.2.3 Forensic Analytical Techniques

The widespread misuse of AN has promoted the use of a wide range of analytical techniques for the
forensic analysis of this material. AN, much like UN, can be effectively analysed via multiple
techniques such as IR-MS% 28 3135 |CP-MS10 25 |R10, Raman'® 23 30, YV-Vis?® and laser induced
breakdown spectroscopy (LIBS)3®. The literature indicates that spectroscopic techniques can
chemically identify the material analysed, however, they provide limited discrimination capabilities.
Conversely, IR-MS and ICP-MS have powerful discriminating power however lack the ability to

identify the material.
1.3.3 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX)

1.3.3.1 Background

1,3,5-Trinitro-1,3,5-triazacyclohexane (Figure 1.7) has been given various titles including
cyclotrimethylenetrinitramine, hexogen and cyclonite; however, the acronym RDX is how it is most
commonly known. The origin of this acronym is relatively unknown however two different possible
explanations for this abbreviation is that it is an acronym of either Royal Demolition Explosive or
Research Development Explosive where the second is more commonly quoted. It is mainly used in
munitions as it is fairly stable and cheap to produce in comparison with other explosives with similar

performance capabilities.
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Figure 1.7: RDX chemical structure.

Though being made specifically for military application there have been cases of RDX or its
formulations, including the plastic explosives Composition C-4 and Semtex, being stolen and/or

misused, especially in terrorist activities. Some events include:

e The 2006 Mumbai train bombings3’
e The 2008 Jaipur blasts3®
e The 1999 Moscow blast3?

e Aplane attack in Russia in 20044

1.3.3.2 Production

There are three main methods of manufacturing RDX, with the Woolwich method being the most
commonly used.*! Firstly, however, the least commonly used method known as the Schiessler-Ross

method will be discussed.

The Schiessler-Ross method reacts a 1:1 ratio of formaldehyde and ammonium nitrate in acetic
anhydride as depicted below in Reaction Equation 1.1. Other methods are favoured over the
Schiessler-Ross method in a commercial setting as it commonly utilises a catalyst which requires
additional steps to be removed from the final product. For Clandestine synthesis however, this is a

viable method as both formaldehyde and ammonium nitrate can be obtained.

Acy,0
3 CH,0 + 3 NH,NO; —> C3HgNsOg + 6 H,0
Equation 1.1: Reaction equation for the Schiessler-Ross method for manufacture of RDX.

The other methods of RDX production involve the nitration of hexamine and are known as the

Woolwich and Bachmann methods.*?
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The most commonly chosen method for RDX specific manufacture is the Woolwich method as it

produces less than 4% HMX impurity via Reaction Equation 1.2.

AcOH
(CHy)N, + 3 HNO3 —— C3HgNgOg + 3 CH,0 + NH,
Equation 1.2: Woolwich method for the production of RDX.

The final method known as the Bachmann process. It produces two moles of RDX for every mole of

hexamine the final product has a larger HMX impurity percentage than that of the Woolwich method.

The Bachmann process was developed in the 1940s and builds on the Schiessler-Ross and Woolwich
methods. In essence the Bachmann method forces the by-products of the Woolwich method to
create an additional RDX molecule via the reaction with a surplus of nitric acid and ammonium
nitrate. This second stage is, in actuality, the process undertaken in the Schiessler-Ross method,
however, no catalyst is required as the activation energy of the second stage is overcome by the

elevated temperature of the overall reaction.

AcOH, 75°C
(CH,)¢N, + 4 HNO; + 2 NH,NO5 + 6 Acy0 ——— 2 C3HgNgO¢ + 12 AcOH

Equation 1.3: Bachmann method for the production of RDX.
RDX is classified based on its HMX content, where RDX with less than 5% HMX is classed as Type | and
is generally synthesised using the Woolwich method. Type Il is synthesised using the Bachmann
process and has a 4-17% HMX impurity and if desired can be recrystallised to reduce the amount of
HMX to below 5% allowing it to be classed as Type I. This is undertaken to reduce the shock sensitivity

of the RDX and to prevent deterioration through aging.*3

1.3.3.3 Forensic Analytical Techniques

Though clandestine RDX manufacture is not prevalent as it is not as easy to produce compared to a
fertiliser-based explosive, there have been cases of material being stolen and misused as mentioned
earlier. Therefore, there has been little interest in forensically analysing military explosives such as
RDX other than to identify their presence in post-blast residues. Identification of RDX is possible
through spectroscopic techniques such as IR*, UV-Vis**, Raman3%44%>, Techniques that have
identified potential discriminatory power include gas chromatography coupled with IR-MS%47,

LIBS**, thermal analysis*® and x-ray diffraction (XRD)*°.
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1.3.41,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX)

1.3.4.1 Background

1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX, Figure 1.8)), much like RDX, has been referred
to by a number of names including Her/His Majesty’s Explosive, High Melting-point Explosive, and
octogen. HMX has similar properties to RDX; even though its energetic performance is in fact greater
than that of RDX it is much less commonly used as it is more sensitive and has a much greater cost of

production.

]
z

Figure 1.8: Chemical structure of HMX.
1.3.4.2 Production

It is most commonly produced using the Bachmann method (refer to RDX section) with yields of up
to 60%.4 As HMX is typically a minor impurity a yield of greater than 50% is quite reasonable and is
achievable through the manipulation of the reaction conditions, with the key being the temperature
to be restricted to 45°C. This temperature requirement can be explained as a key intermediate is
dinitropentamethylenetetramine (DPT), which decomposes at 50°C. Also, like RDX, HMX is graded
into two categories, where Grade A HMX has less than 7% RDX impurity, while Grade B HMX requires

less than 2% RDX.

1.3.4.3 Forensic Analytical Techniques

Though similar to RDX, HMX is mostly used for specific high-performance purposes. However, it is a
co-product in the production of RDX and hence traces of HMX may be found in RDX samples to be
forensically analysed. This ultimately means that literature relating to the forensic analysis of HMX

alone is sparse, but it has been examined by Raman3°, LIBS**, XRD* and ion chromatography (IC)>°.
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Though literature is lacking, the similar structure and properties to RDX should allow for the same

methodologies employed to forensically analyse RDX to be applicable to HMX.
1.3.5 Erythritol Tetranitrate (ETN)

1.3.5.1 Background

ETN (Figure 1.9) is an explosive that was first created in 1849°! and is closely related to
pentaerythritol tetranitrate (PETN) and nitroglycerine which are commonly used in military and
commercial applications. It is quite straightforward to prepare and performs comparatively to
military explosives.? ETN is also quite sensitive and as a result there have been a number of incidents
involving accidental initiation. ETN is a nitrate ester®*>* and has a commercial application in the
pharmaceutical industry where it is used as a vasodilator>>°® for the treatment of high blood

pressure.
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Figure 1.9: Chemical structure of erythritol tetranitrate.
1.3.5.2 Production

The generally used synthesis of ETN involves the nitration of erythritol using an acid solution made
up of nitric and sulfuric acid. The alternative involves the use of a nitrate salt (i.e. ammonium nitrate
or potassium nitrate) and sulfuric acid and there is literature showing the success of both methods.>’

The general reaction for both cases is summarised in Figure 1.10.
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Figure 1.10: Reaction Scheme for ETN production from erythritol with either potassium
nitrate or nitric acid with sulfuric acid.

1.3.5.3 Forensic Analytical Techniques

As the mass production of erythritol has increased due to its use as a sugar supplement its use for
the production of HMEs has emerged. The material is also of interest due to its properties
surrounding melt casting as this is highly desirable as it enables many more uses of the material.”® As
a result, studies involving the characterisation of the material have been increasing. This includes the
study of its general properties such as thermal behaviour®”°861 eutectics®?, decomposition®6%.63,
explosive performance®®%* and other basic physical properties>”>8%> such as melting point, solubility,

structure, etc.

Studies surrounding the forensic analysis and analytical characterisation of ETN have also been
undertaken with its discovery in the HME setting. This includes studies utilising calorimetry®%¢7,
Raman®’¢8 and infrared®”-’° spectroscopy, gas chromatography mass spectrometry (GC-MS)>"7%, LC-
MS>’, XRD®®, nuclear magnetic resonance spectroscopy (NMR)®” and various mass spectrometry
methods®”7274. Many of these studies identify the ability to detect and identify ETN however, they

do not investigate the ability to provenance or discriminate between samples of like material.

1.3.6 Potassium Chlorate (KCIO3)

1.3.6.1 Background

Potassium chlorate (KClOs, Figure 1.11) is a strong oxidising agent and once mixed with a fuel, can
form an effective explosive composition. The high level of oxygen in the molecule has made it
interesting to propellant designers and has been combined on a molecular level with RDX to design

a new propellant.”®
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Figure 1.11: Chemical structure of potassium chlorate.

Previously discussed in this review have been fertiliser-based explosives such as ammonium nitrate
which have been consistently used in terrorist activities. However, in some areas of the world
potassium chlorate is more readily available and therefore features in HMEs. This gives a reason for
KCIOs to be added to the list of energetic materials of interest to counter terrorism experts. Some of
the major events involving the use of KClIOs include the 2004 car bombing of the Australian Embassy

in Jakarta and the 2002 Bali car bombing.”®

1.3.6.2 Production

Industry manufacture of KClOs utilises the Liebig process which is commonly used in the preparation
of the majority of chlorates.”’ In the case of KCIOs the Liebig process involves adding chlorine into a
calcium hydroxide solution then the final addition of potassium chloride as depicted in Reaction

Equation 1.4 below.
6Ca(0OH),(aq) + 6Cl,(g) + 2KCl(aq) — 2KCl05(s) + 6CaCl,(aq) + 6H,0(1)

Equation 1.4: Reaction equation of overall Liebig process for the production of KCIOs.
Though this process is quite straightforward, the chemicals are not highly accessible so other
clandestine methods have been developed and spread through the Internet.”® The majority of
clandestine KCIOs is made using chlorine bleach and the salt substitute potassium chloride. This
method involves boiling the bleach (sodium hypochlorite, NaClO) until crystals form, effectively
forming sodium chloride and sodium chlorate. The next stage is to simply add a saturated solution of
potassium chloride which will cause a metathesis reaction and the produced KCIO3 precipitates out.
This process can also be adjusted to utilise pool chlorine rather than household bleach so long as the
pool chlorine contains calcium hypochlorite (Ca(ClO)2). The overall reaction schemes for these

methods are summarised in the reaction equations below.

3NaClO(aq) — 2NaCl(aq) + NaClOs(aq)

Equation 1.5: Reaction equation for the disproportionation stage of KClO3 synthesis from
household bleach.
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NaClOs(aq) + KCl(aq) = NaCl(aq) + KClO3(s)

Equation 1.6: Reaction equation for the metathesis stage of KCIO3; synthesis from household
bleach.

3Ca(ClO),(aq) — 2CacCl,(aq) + Ca(ClO;3),(aq)

Equation 1.7: Reaction equation for the disproportionation stage of KClO3 synthesis from
pool chlorine.

Ca(Cl03),(aq) + 2KCl(aq) — CaCl,(aq) + 2KClO5(s)

Equation 1.8: Reaction equation for the metathesis stage of KClIO3 synthesis from pool
chlorine.

A second method that is discussed online which is a little less common due to the requirement for
more equipment is the synthesis of potassium chlorate by the electrolysis of sodium chloride and/or
potassium chloride solution. This involves the use of an electrochemical cell, electrodes, power
supply unit, sodium chloride, potassium chloride and water. The general reaction mechanism is

described in the following reaction equations.
NaCl(aq) + 3H,0 (1) + 6e~ - NaCl0O5(aq) + 3H,(g)

Equation 1.9: Reaction equation for the electrolysis stage of KClO3 synthesis from sodium
chloride.

NaClOs(aq) + KCl(aq) = NaCl(aq) + KClO5(s)

Equation 1.10: Reaction equation for the metathesis stage of KClO3 synthesis from sodium
chloride.

KCl(aq) + 3H,0 (1) + 6e~ —» KClO5(aq) + 3H,(g)

Equation 1.11: Reaction Equation for the Electrolytic synthesis of KClIOs directly from
potassium chloride.

1.3.6.3 Forensic Analytical Techniques

Potassium chlorate and the related potassium perchlorate (KClO4) have not been extensively studied
apart from thermal decomposition analysis’>#. There have been general studies including IR and
Raman spectroscopy>’8¢, XRD and IC®”. The use of KClIO3 in HMEs tends to be seen in Asian countries
for two reasons. Firstly, the regulations are less strict and secondly fireworks are abundant and so

KCIOs is much easier to obtain.
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This project aimed to analyse explosives using a variety of analytical techniques to determine any
potential for discrimination between samples of like material. Additionally, data from the techniques
that led to any form of discrimination were combined and a second exploratory multivariate data
analysis was undertaken to determine if the discriminatory information is retained in a combined
dataset. The following analytical techniques have been selected based on the results of prior studies

undertaken.%10
1.4.1 Isotope Ratio Mass Spectrometry (IR-MS)

1.4.1.1 Background

Isotope ratio mass spectrometry enables the comparison of two or more chemically identical
compounds (e.g. two AN samples) by comparing the ratio of the stable (i.e. non-radioactive) isotopes.
Most commonly carbon (*3C/*2C) and nitrogen (*>N/%**N) isotopes are utilised, however, hydrogen
(H/*H), oxygen (*¥0/’0/'®0) and sulphur (365/34S/335/32S) isotopes may also be investigated.
Isotopes are atoms of an element which vary in the number of neutrons held within the nuclei of the
atom. Each element tends to have one major isotope (*H, *2C, **N, 0 and 32S) and one or more minor
isotopes (2H, 13C, 80, 170, 3¢S, 34S and 33S). For the elements that may be used in IR-MS the relative

abundances of the naturally occurring isotopes are summarised in Table 1.1.
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Table 1.1: Relative abundances of isotopes which may be analysed using IR-MS.38

Element (Chemical Symbol) Isotope Relative Abundance (%)
H 99.984
Hydrogen (H)
2H 0.0156
2c 98.892
Carbon (C)
3¢ 1.108
UN 99.635
Nitrogen (N)
S\ 0.365
160 99.759
Oxygen (0) 70 0.037
180 0.204
325 95.02
s 0.76
Sulphur (S)
345 4.22
355 0.014

The ratio of these stable isotopes has been shown to vary between samples due to differing
precursors and geographic location.?® Investigating a number of elements, such as nitrogen and
carbon, allows discrimination between samples® as the measured isotopic ratios can provide an

indication of the similarity between the samples.

This variation is a result of isotopic fractionation during chemical or physical processes. The
fractionation occurs as the slight difference in intra- or intermolecular bond energies, as a
consequence of the variance of atomic weight in the different isotopes, causes a difference in rates
during bond forming and breaking processes. Natural isotopic fractionation involves the removal of
either the heavier or lighter isotope due to a process, as an example the evaporation of water. The
lighter water molecules (such as *H'H®0) require less energy to vaporise and so the bulk body of
water will become enriched in the heavier isotopes (such as 2H?H*80, *H2H80) as the lighter water
molecules more readily evaporate. This also applies to materials in solution as evaporation may lead
to artificial fractionation hence samples are to be thoroughly dried and kept dry immediately after
synthesis. Therefore, the isotopic ratios associated with a sample are a record of the chemical and

environmental history of that sample and can be exploited to provide discriminatory power.
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In terms of this project, the explosives and ingredients synthesised using differing starting materials
could contribute to different isotope ratios in the end products. The method of synthesis may also
result in a variation in isotopic composition as they are carried out under different environmental

conditions as well as potentially using different reagents.

The isotopic ratios are measured by introducing a very small amount (50 pg of carbon or 65 ug of
nitrogen) of sample into a combustion furnace. The sample undergoes rapid combustion, and/or
pyrolysis reactions to quantitatively transform the sample from the solid state to its gaseous form.*°
For the commonly investigated elements of carbon and nitrogen the sample is converted to carbon
dioxide (COz) and nitrogen gas (N2) respectively through the process of combustion and reduction of

resultant gases.

These gas molecules are then ionised prior to travelling through a magnetic field where the ion
trajectory will be altered depending on the mass of the ion which varies based on the carbon and
nitrogen isotope ratios of the gaseous ion. This allows the separation and hence
detection/collection of the different mass-to-charge ratio (m/z) ions via a Faraday cup detector. This

is depicted in the schematic Figure 1.12 below.
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Figure 1.12: Schematic diagram of the separation and collection of ions within a magnetic
field.%2

As the amount of sample is typically on the microgram scale care must be taken during sample
preparation as the slightest contaminant would throw results significantly. Therefore, the sample is
placed in tin capsules and crushed into a ball using steel tweezers to avoid contact with fingers or

rubber/latex gloves.
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1.4.1.2 Resultant Data

There are three mass-to-charge ratios for the carbon isotope analysis (CO3) 44, 45 and 46. These are
made up as follows: 12C'%0,= 44 m/z; 13C'®0;, and ?C'®*0Y0= 45 m/z; 2CY0,, '2C'*0'80 and
13C1e0Y70= 46 m/z.

For the analysis of nitrogen isotope analysis (N2) three mass-to-charge ratios are recorded, 28, 29

and 30. These are made up as follows:**N**N= 28 m/z, ¥*N*°*N= 29 m/z and >N*°*N= 30 m/z.

This data is then used to calculate delta (6) values using Equation 1.13, where the isotope ratio of the
sample is compared to that of a known standard.> The units of the delta value are per mil.%® It is
significant to note that the natural abundance of isotopes summarised in Table 1.1 previously are an

average and that these values vary depending on the location in the world.®3

abundance of heavy isotope

R (ratio) =
(ratio) abundance of light isotope

Equation 1.12: Equation for the calculation of isotope ratio values.

5= 1000(R5ample - RStandard)

RStandard

Equation 1.13: Equation for the calculation of delta values.

These delta values provide a comparison of the isotopic ratio of the respective element in the sample

to the standard. These standards are internationally recognised zero-point samples, including:

e Vienna Peedee Belemnite (VPDB) for carbon (*3C/*2C),
e Atmospheric nitrogen (Air-N3) for nitrogen (**N/**N),

e Vienna Standard Mean Ocean Water (VSMOW) for hydrogen (2H/*H) and oxygen (*30/*0).

All samples are relative to these zero-point values and therefore, measured values may be positive
or negative. Positive delta values indicate that the sample has more of the heavier isotope than the
zero-point standard and negative values means there is a greater abundance of the lighter isotope in

the sample.

As most of the energetic materials previously discussed are organic molecules containing both carbon
and nitrogen (excluding AN and KClOs), this can provide useful data when it comes to discriminating

between samples of like material. One important drawback to keep in mind, however, is that the
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resultant data cannot identify the chemical being analysed. It purely focusses on the isotope ratio of

the specified element under investigation and not the chemical structure of the molecule.

Analysis of the collected data is quite simple as a material may only result in up to five delta values
(C, N, O, Hand S). This is further simplified in the scenario of explosives, as typically only one to three
elements are investigated of carbon, nitrogen and oxygen, depending on the explosive and its
elemental or mixture composition. Chemometric analysis on such a dataset requires no additional
analysis as a simple one to three-dimensional plot can display the entire dataset without losing any
information. This data, however, when added to a larger database as additional variables then
undergo chemometric analysis to determine how much it may contribute to the building of a profile

for a sample of explosive.
1.4.3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

1.4.3.1 Background

Inductively coupled plasma mass spectrometry (ICP-MS) allows ultra-trace detection for a range of
elements. With time instruments are becoming more compact and yet the low detection limit is still
being improved.®* A typical ICP-MS setup includes an introduction device (depicted in Figure 1.13)

which vaporises the sample prior to being sent to the mass spectrometer.®®
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Figure 1.13: Schematic of a general sample introduction device.

Liquid samples are pumped into the nebuliser at a controlled rate with a peristaltic pump where they
are transformed into an aerosol. This aerosol is then exposed to an argon plasma with a gas
temperature of up to 10,000 K. The plasma maintained through the constant introduction of argon
gas to a magnetic field provided by the radio frequency (RF) coil and depicted around the plasma in

Figure 1.13. This plasma vaporises and ionises the sample resulting in the atomisation of the majority
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of the molecules. The minority that are not atomised may be reduced by a flow of helium passed
through the atom stream post-plasma which either breaks them apart or dislodges them from the
ion beam. Gas samples are introduced to the plasma at a controlled flow rate and solid samples may
be dissolved in a solution then introduced in the same manner as liquid samples. Solid samples may

also be directly transformed into an aerosol via the use of laser ablation (LA-ICP-MS).

In general, explosive samples are analysed for a wide range of elements as the exact composition of
trace elements in each sample is unknown and the greater the number of elements the greater the
resolution of a sample’s elemental profile. This however raises a number of potential issues that must
be addressed. The limitations of the analysis must be understood starting with the plasma utilised.
In the case of this project the plasma is argon based and therefore some elements are not very well
ionised. The first ionisation energy of argon is 15.8 eV and therefore, elements with ionisation
energies near this energy, such as selenium (9.8 eV), sulphur (10.4 eV) and chlorine (13.0 eV), are not

well ionised in the plasma resulting in poor sensitivity.%®

As the ICP-MS analysis undertaken in this project quantifies trace elements to low ppt levels potential
interferences must be understood and minimised. There are three key interferences which must be

considered.

The first is isobaric interference. This occurs when two different elements have isotopes which have
very similar masses and therefore, share the same mass-to-charge ratio if within the resolution of
the mass spectrometer. This can easily be avoided by selecting isotopes for which this overlap is
minimal or non-existent, keeping in mind the natural abundance of the isotopes. An example of this
is 7“Ge (35.94% relative abundance) which clashes with 74Se (0.89% relative abundance); however, if
Ge is a target element selecting 7>Ge (27.66% relative abundance) may be a better choice as there is

no overlap in mass with any other element’s isotope.®

Doubly charged interference is when a species obtains a double charge rather than ionising to a single
charged species. This means the mass-to-charge ratio is effectively halved and so is recorded at that
level far from what is expected. This can be avoided by altering the ionisation conditions in the
plasma, however, some elements are more prone to this than others.?” An example of a commonly
doubly charged species includes #°Ce?* which results in a mass-to-charge ratio of 70 which will cause

issues for the measurement of 7°Ge* and 7°Zn* species.”’
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The final and most significant form of interference is polyatomic interference, and this is when
multiple atomic ions combine to form a molecule of high mass-to-charge ratio. This can be broken
into two key groups, plasma-based and sample-based. Plasma-based interferences have a direct
correlation with the type of plasma used and its interaction with the aqueous solution such as (in the
case of argon plasma) %°Ar38Ar or 4°Arl®0. These two examples create large interferences at a mass
of 78 and 56 respectively. Though 78 is not an issue as it does not interfere with any other elemental
mass, the atomic mass of 56 directly corresponds to *6Fe which is an issue if this is a measured

element.

Sample-based interferences are directly linked to sample matrix components, examples of this being
35CI0 or 345325.8 Though polyatomic interferences are by far the greatest interference issue involved
in ICP-MS analysis, techniques have been developed to eliminate or mitigate their effects. The helium
collision mode developed by Agilent Technologies utilises an inert collision gas (He) to remove all
polyatomic species.’® This same mode is called the KED or Kinetic Energy Discrimination mode in
Perkin-Elmer ICP-MS systems. As the polyatomic species have a greater cross-sectional area this
means that they have a much greater collision rate with the He gas, significantly lowering their kinetic

energy and preventing them from leaving this region of the He gas cell.

Ultra-trace detection requires that the sample preparation for the ICP-MS analysis must be strictly
controlled in order to avoid any possible minor impurities as detection limits extend to the ppt level.
Samples are to be prepared with trace grade digestion acids and ultrapure water in closed vessels to
avoid any interaction with the surrounding environment. Samples are digested to ensure that the

target trace elements are free from the sample and stable in solution for analysis.

Though methodology exists on some of the proposed energetic materials and ingredients such as AN
and UN, (which involves a nitric acid digest)®'°, other materials require methodologies to be
developed or altered, such as a change in digestion acid, conditions (temperature) and dilution
factors. The methodology will have to be modified based on the success of digestion and
concentration of elements within the samples themselves. For example, calcium content in
potassium chlorates made from calcium hypochlorite may have greatly elevated levels of calcium and

therefore, may require further dilutions to reduce this to within the working range of the instrument.

This will not only lead to a clear method of digestion but also an outline of target elements which

allow discrimination for the samples.
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1.4.3.2 Resultant Data

Data from ICP-MS analysis are collected in the form of concentrations for the target elements of each
sample which is then processed using the dilution factor of the acid digestion to calculate the total
concentration of the element in the original sample. This data may then be statistically interrogated
using principal component analysis which effectively reduces the large multivariate dataset into a
condensed and more easily manageable and interpretable data set. This simplification of the raw
data allows for the elements with highest discriminatory power to be clearly identified and hence
distinguish between samples based on the elemental variation of the key trace elements. An
additional benefit of such an analysis is that not only will the useful elements be identified but so too
will the elements that do not contribute to the overall “fingerprint” of the sample. This may allow
future analysis on the same explosive to become more efficient and streamlined by only routinely
analysing for the elements regularly found in that explosive saving time and reducing the costs

associated with analysis.
1.4.4 Raman Spectroscopy (Raman)

1.4.4.1 Background

Raman spectroscopy is an ideal analytical technique for forensic applications as it is non-destructive,
allowing the same sample to be analysed by more than one technique. It is a non-destructive, rapid
analysis and samples to be analysed generally require little to no sample preparation prior to analysis.
The technique also requires no alterations to analyse a variety of sample types and can easily be

utilised to measure gases, liquids and solids.1%

Over the years the instrumentation required to perform the technigue has evolved rapidly and the
technigue now has high portability with a small sacrifice in performance. Compared to many other
typically used analytical techniques the equipment required to perform a basic analysis for Raman is
quite small and can be scaled all the way down to a handheld device such as the Thermo Scientific
FirstDefender RM (depicted below in Figure 1.14). This portability makes Raman spectroscopy an
ideal technique to transport to any location requiring the analysis with minimal effort rather than
relocating the sample to a laboratory. The portable systems also allow a “Point-and-Shoot” analysis
which enables the device to analyse a sample through some sealed containers avoiding any direct

contact to a potentially harmful/unstable substance, i.e., an energetic material.1%
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Figure 1.14: Thermo Scientific FirstDefender Portable Handheld Raman Spectrometer.1%6

The sample is analysed by firing a monochromatic light source, usually a laser, at the sample and
measuring the wavelength and intensity of the inelastic scattering (Raman scattering) of the incident
light from the sample.’%”19%8 The spectrum obtained from the Raman scattering can then be
investigated to determine the composition of the sample. This Raman scattering is produced by the
changes in the induced dipole moment of a molecule or polarisation, which depends on how tightly
the electrons are bound to the nuclei. As long as the molecule has a change in polarisation due to the
energy of the incident light, then the molecule is Raman active. As varying functional groups will
cause different scattering of the light, this information allows the determination of functional groups

within the sample.

Raman spectroscopy has been used to forensically analyse a vast array of substances including

narcotics,1%-11 paints,1?

alcoholic beverages!!® and explosives!? displaying the applicability of the
technique for sample discrimination. Though it is quite simple and fast for even a weaker portable
Raman spectrometer to identify different materials it is much more difficult to distinguish between
samples of like material. The key difficulty in discriminating between samples of like material is that
this relies on impurities to be present in a concentration great enough to have a statistically
significant effect on the resultant spectrum. This will vary depending on the material and components
within the sample as Raman analysis can suffer from fluorescence which will effectively mask any
Raman signals. However, altering the instrumentation in terms of laser wavelength can reduce this
fluorescence as longer wavelengths may reduce fluorescence to reveal vital Raman signals. This also

reduces the intensity of the Raman signals and therefore an optimal middle ground must be

maintained.
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1.4.4.2 Resultant Data

The data collected as a result of Raman analysis will be in the form of spectra identifying Raman shifts
(cm1). The Raman shifts and peak intensity ratios may be statistically analysed via PCA. Ideally the
statistical analysis will be able to reduce the dimensionality of the data set from being “number of
samples” x “range of wavenumbers” to just a handful of principal components in the form of certain
Raman shifts. The dataset for the application of statistical methods may also include signal intensities

at selected key frequencies.
1.4.5 Infrared (IR) Spectroscopy

1.4.5.1 Background

Like Raman spectroscopy, infrared spectroscopy is an optical analysis technique. However, they are
commonly referred to as complementary techniques as they measure the effects due to differing
physical processes. IR spectroscopy requires the dipole moment of a molecule to change in order to
detect vibrational motion. For example, some molecules are not IR active as there is no dipole
moment; however, they may be Raman active as the stretching of the bonds changes the molecular
polarizability. Another difference is that IR spectroscopy measures the absorption of light of certain
energies which correspond to vibrational excitations within the molecule rather than light
scattering.”® As they are complementary techniques, using both to analyse a single sample will ensure
the maximum amount of information may be gathered for any given sample. This is particularly
important in forensic analysis as one technique may be able to highlight an impurity that is
unresponsive in the other technique. Maximal discriminatory data allows for greater statistical

significance, which is the basis of forensic analysis.

IR spectroscopy is highly versatile as it can be used to analyse gases, liquids and solids, although
sample preparation for IR analysis can sometimes require additional processes. For example, a solid

may be ground into a fine powder and pressed into a KBr disk rather than analysed directly.

IR spectroscopy has been used for forensic examination of a variety of sample types similar to the
Raman spectroscopy, including, but not limited to, narcotics,'% paintsi®%192 and explosives!03104,
Though IR has been shown to identify material quite rapidly and with little preparation the ability to
discriminate between like material samples is more difficult. In order for this higher level of

discrimination the impurities within the sample would have to affect the resultant spectra on a
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magnitude that is statistically significant, which may not be possible for every sample depending on

the resolution power of the instrument utilised.

1.4.5.2 Resultant Data

Much the same as Raman, IR analysis results in a spectrum of the sample identifying the frequencies,
generally expressed in wavenumbers (cm™t), at which the molecule interacts with the incident light.
Once again this may be investigated statistically using PCA. Ideally this analysis will be able to reduce
the dimensionality of the data set from being “number of scans” x “range of wavenumbers” to just a
handful of principal components in the form of certain wavenumber ranges. The dataset for the

application of statistical methods may also include signal intensities at selected key frequencies.

1.4.6 Terahertz/Far-Infrared Spectroscopy (THz/Far-IR)

The terahertz radiation band is located between microwave and infrared radiation. This region is
typically regarded as the frequencies between 100 GHz and 30 THz or 3-1000 cm™ and recent
technological advancements have made research into the field more prominent!!4, Extending into
this frequency range beyond the standard fingerprint region of a typical infrared analysis may vyield
additional signature peaks. A key development, terahertz domain spectroscopy (TDS), has allowed
the analysis of molecules in the condensed phase.'’> This has shown potential, especially in
explosives screening applications as various materials such as paper, leather, cotton and synthetic
fabrics are transparent in the THz region.!'>%?2 Recently, this technology has been harnessed to
develop a portable laser device able to perform standoff GHz to mid-infrared analysis making it an
ideal technique for the screening of explosives.'*> This may lead to future far-infrared spectroscopy
capabilities being added to the toolbox of onsite investigators to identify unknown materials even
within some wrappings or containers. Other benefits of THz spectroscopy include the non-destructive
nature of the analysis ensuring the same sample material can be interrogated using other analytical
techniques. It is also rapid with an instant result that can identify the material being analysed so long

as the material’s spectrum has been recorded into a library.

This project explored this fast-developing novel technology to provide additional information
including extending the region of the infrared spectra currently acquirable with modern technology.
As the THz radiation harnessed is from a Synchrotron (Australian Synchrotron, ANSTO), the spectra

acquired are of very high resolution and can be the beginning of an explosives database for THz
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spectra. With this high level of resolution, a determination on whether or not the technology can also
provide discriminatory signals between samples of like material may be possible based on the

detection of impurities within samples.
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2. Method Development

In this chapter the development of synthesis and analysis methods is discussed.

This includes the synthesis of potassium chlorate via three methods. These methods included the use
of household bleach, pool chlorine and the electrolysis of saltwater. Erythritol tetranitrate was

synthesised by explosives chemists at DST Group and supplied for analysis.

The analytical methods employed include; isotope ratio mass spectrometry, inductively coupled
plasma mass spectrometry, infrared spectroscopy, Raman spectroscopy and terahertz/far-infrared
spectroscopy. All aspects of sample preparation, data collection and data handling/analysis are

covered.

In today’s world of information technology any individual with access to the Internet may search for
information on how to synthesise almost any chemical in the world and purchase the precursors
required. Confronting this issue is a formidable task as forums are too difficult to police due to their

number, and some precursors cannot be regulated due to their abundance of legitimate uses.

An alternate approach is to identify signatures which may allow the connection of starting materials
and synthesis methods to their final products. This would result in being able to collect data that may
provide vital intelligence in an investigation and, while the information may not be rigorous enough
to be presented as incontrovertible evidence in a court of law, it may lead to finding more concrete

evidence through a more targeted investigation.

To this end, two materials have been selected for examination, KCIOs and ETN. These two materials
are of particular interest due to the prevalence of their usage in illicit activities including the
production of homemade IEDs. Both substances may be easily produced using basic household items
and precursors sourced from either Internet marketplaces or even local supermarkets and hardware
stores. Information on how to perform the synthesis for both materials can be openly sourced

through the Internet.
2.1.1 Potassium Chlorate (KCIOs)

Potassium chlorate is an inorganic oxidiser which can form an explosive when mixed with a fuel and

is commonly discussed online amongst hobbyists due to its ease of synthesis and availability of
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precursors. Common methods openly discussed typically involve synthesis from household bleach,
swimming pool chlorine or through the electrolysis of saltwater. In each case minimal equipment is
required, with the first two methods only requiring the ability to heat a volume of solution by any
means, and the electrolysis typically utilising a standard desktop computer power supply. There is
also no chemistry knowledge required as forums will allow individuals with no knowledge to use
other people’s experiences and discussions to understand enough to successfully perform a

synthesis.

The final procedures utilised in this project have undergone significant alteration and amendment,
starting with basic instructions from online forums and YouTube videos then developing them further
to yield the desired product on a consistent basis. Details of the optimised procedures will not be
given in this publicly available thesis due to security concerns but will be published in a classified
report. Starting materials were sourced from supermarkets, hardware shops and online marketplaces
and the exact identities have been redacted and replaced with codes (refer to sample matrix in
Table2.1). Therefore, the final products therefore should mimic real world samples and their

variability.

Care was taken not to inadvertently introduce potential fuels into the potassium chlorate samples
manufactured to minimise the risk of formation of sensitive explosive mixtures. Potassium chlorate
is a strong oxidiser with known incompatibilities with combustible materials, ammonium salts and
acids. Solid potassium chlorate and solutions should be kept at neutral pH and should be stored and
handled with this in mind. All procedures were undertaken at the minimum scale for practicality and

consistency.

2.1.1.1 Potassium Chlorate from Household Bleach

The synthesis of potassium chlorate from household bleach is easily found in message boards and
forums online. In theory it is a simple process requiring household bleach containing sodium
hypochlorite (NaOCl) and potassium chloride (KCl) salt. The reagents can be easily sourced from
supermarkets, health food shops, hardware stores and online. Equipment requirements are also
minimal with only the need for a receptacle capable of being heated, a heat source and a basic filter
such as filter paper. In practice, however, the process is not very efficient or consistent as there are
many types of bleach products and they can behave very differently due to other ingredients in their

formulations.
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The general method utilised was as described below:

1. Household bleach was placed in a beaker.

2. This was boiled on a hotplate with magnetic stirring until visible crystals formed and
precipitated out of solution.

3. Potassium chloride was added to the solution, stirred and chilled in an ice bath. At this point
a visible potassium chlorate precipitate was formed.

4. The solution was then filtered and washed with chilled water.
5. This solid was then recrystalised with boiling water to remove sodium/potassium chloride.
6. This final product was then dried in a desiccator for 24 hours and stored in plastic containers.

Safety points relating to this procedure are:

e Care must be taken to ensure that the hot and corrosive bleach solution does not bubble
over or overflow. This bubbling over is due to the presence of detergent in the solution and

the amount varies depending on the brand of bleach.

e Thevapour released from the heating is also quite corrosive and toxic so the entire procedure

from start to finish was completed within a fume hood.
e The entire process was undertaken behind a blast shield for added safety.

One precursor that did not successfully produce the desired product was a health food supplement
salt labelled as LITE in the sample matrix (Table 2.1). This was a low sodium alternative to table salt
and is a mixture of sodium and potassium chloride. Samples KCIO3 40-45 have been included,
however, the yields were very poor and as recrystallisation was not possible the end products were
essentially a mixture of potassium and sodium chloride with trace amounts of potassium chlorate as

shown below in Figure 2.1.
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Figure 2.1: Spectra comparison between commercial KClIO3 (blue) to LITE salt precursor

KClOs (green).

2.1.1.2 Potassium Chlorate from Pool Chlorine

The synthesis of potassium chlorate from pool chlorine is equally as easy to find in message boards

and forums online as the bleach method previously described; typically, it is mentioned as an

alternative to the bleach method. The procedure is very similar to the bleach method, with

substitution of the bleach solution for pool chlorine liquid or granules containing calcium

hypochlorite (Ca(OCl).). The reagents can be easily sourced from supermarkets, health food shops,

hardware stores and online. Equipment requirements are also minimal with only the need for a

receptacle capable of being heated, a heat source and a basic filter such as filter paper.

The general method utilised was as described below:

1.

Pool chlorine granules or liquid chlorine (containing calcium hypochlorite) was dissolved in
water.

The solution is then heated to boiling temperature on a hotplate with stirring until there is a
substantial volume reduction (approximately 90%).

This solution was then filtered to remove calcium solids, retaining the filtrate.

The filtrate was the reheated to boiling point briefly and potassium chloride was added, and
the solution stirred.

The solution was then removed from heat and cooled to room temperature then chilled in an
ice bath. At this point crystals of potassium chlorate will become visible and precipitate out
of solution.

This solution is then filtered and washed with chilled water.
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7. The crude product was then recrystalised with boiling water to remove calcium/potassium
chloride.

8. The final product was then allowed to dry in a desiccator for 24 hours and stored in a plastic
container.

Throughout the procedure the vapours released from the heating are toxic, so the entire process was

completed within a fume hood. A small blast shield was used for added safety.

The synthesis of one sample, KCIO3 20, was only partially successful. As with samples KCIOs 40-45,
the yield was very poor and as recrystallisation was not possible the end product was essentially

potassium chloride with trace amounts of potassium chlorate as shown below in Figure 2.2.

—KClO3 21
—KClO3 20
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Figure 2.2: Spectra comparison between successful pool chlorine KCIO3 (blue) to a partially
successful KCIOs (green).

2.1.1.3 Potassium Chlorate from the Electrolysis of Sodium Chloride Solution

This synthesis is commonly described on the Internet by hobbyists; however, many variations are
found due to differing equipment used. To mimic these improvised methodologies a homemade
electrochemical cell was produced and connected to a DC power generator that can reach and
maintain the required voltage and current. This did not directly mimic the method of using computer

power supplies from desktop computers but provided a greater level of control and safety.
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Figure 2.3: Schematic of the basic electrochemical cell constructed for the synthesis of
potassium chlorate from sodium chloride solution (left) and DC power supply used (right).

The only reagents required for this process are sodium chloride and potassium chloride making the
method highly consistent and the chemicals required trivial to obtain. The difficulty of this
manufacturing method is the experimental set up of the electrolytic cell and cell conditions including
electrodes, salt concentration, temperature, concentration, voltage and current. The specific
optimised cell conditions and the process of optimising this synthesis have been redacted from this

document due to its sensitive nature.
The general method utilised was as described below:

1. A sodium chloride solution was added into the electrochemical cell.

2. Electrodes were introduced and the current passed through the solution, topping up the cell
with water occasionally depending on the rate of evaporation.

3. The power supply was then turned off after the optimal length of time and the electrodes
disconnected and removed.

4. The solution is then filtered to remove and metal particulates from the degradation of the
electrodes. Resulting in a yellow/brown clear solution as depicted in Figure 2.4.

Figure 2.4: Filtered solution post electrolysis.

5. The filtrate was then heated, and potassium chloride was added until saturation.
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The solution is brought up to a boil to remove any remaining chlorine gas then allowed to cool
and chilled in an ice bath. Crystals of crude product will become visible and precipitate. At this
point crystals of potassium chlorate will become visible and precipitate out of solution.

The crude product was then filtered and washed with chilled water.

This was then recrystalised with boiling water to remove any sodium/potassium chloride
resulting in the final product as depicted in Figure 2.5.

The final product was then allowed to dry for 24 hours in a desiccator and stored in a plastic

container.
v

B

Figure 2.5: Final filtered product potassium chlorate.

Though this method seems simple theoretically, in practice discovering the correct set up and
conditions of the electrochemical cell was quite arduous.

Aside from the complexities of the electrochemical cell this synthesis also has many other hazards:

The procedure involves the application of electricity to saltwater which is highly conductive
and so general electrocution is a very real hazard.

The synthesis produces a significant amount of gas which includes highly toxic chlorine gas
and so a suitably rated fume hood was used throughout the entirety of the synthesis. The
gases are also highly corrosive and so any exposed metal surrounding the reaction vessel was
corroded.

This reaction was also conducted behind a blast shield to provide protection against
unexpected pressure build up.
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2.1.1.4 Potassium Chlorate Samples
The following Tables 2.1-2.3, display details on the precursors for all KCIOs samples.

Table 2.1: Sample matrix for KCIO3 samples made using the bleach method.

Potassium chloride
Bleach
KCi1 E508 LITE
KCIO3 1
KCIO3 2
KCIO3 3 KCIO3 28 KCIO3 43
SACB KCIO33 2 KCIO3 29 KCIO3 44
KClO3 4 KClO3 30 KClO3 45
KCIO3 5
KClO3 6
KClO3 7
HBL KClO3 8
KClO3 9
KClO3 10 KClO3 37
WKR KClO3 11 KClO3 38
KCIO3 12 KCIO3 39
KCIO3 13 KCIO3 35
WKL KClO3 14 KCIO3 36
KCIO3 15 KCI0336_2
KCIO3 16 KCIO3 31 KCIO3 40
FCB KClO3 17 KCIO3 32 KClO3 41
KCIO3 18 KCIO3 33 KCIO3 42

Table 2.2: Sample matrix for KCIO3 samples made using the pool chlorine method.

Potassium chloride
Pool chlorine

KCi1 E508

KCIO3 19
KCIO3 20 (partially successful
synthesis) KCIO3 25
KClO3 21 KCIO3 25_2
HCSS KCIO3 22 KCIO3 26

KCIO3 23 KClO3 27
KCIO3 24

PT1

Sigald Ca(OCl)2 SIGALD




Table 2.3: Sample matrix for KCIO3; samples made using the electrolysis method.

Sample Code Anode
Cu Copper
El Titanium
E2 Titanium
ICPMS1 Titanium
SS Titanium

All used the same sodium chloride (Univar), potassium chloride (KCI2) and a titanium Cathode.

As well as these synthesised samples of potassium chlorate DST Group supplied 3 commercial
samples labelled DSTG1, DSTG2 and DSTG3.

2.1.2 Erythritol Tetranitrate (ETN)

The synthesis of ETN in a clandestine HME setting is relatively new and on the rise since the large-
scale synthetic production and increasing use of erythritol as an artificial sweetener.>” These
advancements have made erythritol a household staple for many looking at reducing their calorific
intake. As a result, erythritol can now be purchased at low cost and in large quantities from any

supermarket or health food store in most countries around the world.

The most commonly discussed method of ETN production online is through a mixed acid synthesis.
However, rather than imitating these crude methodologies, adaptations of literature methodologies
were used to prepare samples by three different methods.>”*38 The three methods utilised mixed

acid, acetyl nitrate and nitrate salt nitration mixtures.

All samples analysed in this investigation were prepared by experienced staff at the Defence Science
and Technology Group, Edinburgh, South Australia, in laboratories designed for the synthesis of
explosives. Samples were prepared using both commercial and laboratory grade erythritols. The
nitric acids were also made in-house from the same nitrate salts used in the nitrate salt method
samples in addition to one commercially obtained fuming nitric acid. The specific identities of the
precursors are once again redacted and are rather denoted by codes, for example, potassium nitrates

PN1 and PN2 are sourced from two different manufacturers.

2.1.1.1 ETN Samples

The following Tables 2.4-2.7, display details on the precursors for all ETN samples. Some nitric acids

used were also produced by DST Group and the details for these are described in Table 2.4.
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Table 2.4: Nitric acid precursors

DST NA1 Manufactured from PN1 + H,SO4. Two batches produced.

DST NA2 Manufactured from PN2 + H;SOa.

DST NA3 Manufactured from AN1 + H,SOa. Redistilled during ETN syntheses.
DST NA4 Manufactured from AN2 + H,SOa4. Two batches produced.

DST NA5 Manufactured from CN + HSOa.

Table 2.5: Sample matrix for ETN samples produced via the acetyl nitrate nitration method.

L Erythritol
Nitric acid - - - - -

Sigma-Aldrich Unison International (Ausweet) Natvia

DST NA1 (Batch 2) d-15-4 e-16-4 f-17-4
DST NA2 g-8-5 h-8-5 i-13-5

DST NA3 j-13-5 K-14-5 L-14-5
DST NA4 (Batch 2) DA-95A DA-96A DA-97A
DST NA5 P-23-5 Q-22-5 R-27-5

All syntheses used a common acetic anhydride (Ajax).

Table 2.6: Sample matrix for ETN samples produced via the mixed acid nitration method.

Nitric acid Erythritol

Sigma-Aldrich Unison International (Ausweet) Natvia

Sigma-Aldrich 100% a-12-6 b-13-6 c-15-6

DST NA1 (Batch 1) d-18-6 e-19-6 f-20-6

DST NA2 g-25-6 h-26-6 i-27-6

DST NA3 j-25-7 K-27-7 L-7-8

DST NA4 (Batch 1) M-5-12 N-6-12 0-7-12
DST NA4 (Batch 2) DA-98A DA-99A DA-100A

DST NAS P-25-3 Q-27-3 R-1-4

All syntheses used a common 98% sulfuric acid (APS Specialty Chemicals).

Table 2.7: Sample matrix for ETN samples produced via the nitrate salt nitration method.

Erythritol
Nitrate salt - - - - -
Sigma-Aldrich | Unison International (Ausweet) Natvia
Potassium Nitrate 1 (PN1) DA-84A BCH-1-27 BCH-1-32
Potassium Nitrate 2 (PN2) DA-85A BCH-1-37 BCH-1-33
Ammonium Nitrate 1 (AN1) DA-86A BCH-1-29 BCH-1-34
Ammonium Nitrate 2 (AN2) BCH-1-25 BCH-1-30 BCH-1-35
Calcium Nitrate (CN) BCH-1-26 BCH-1-31 BCH-1-36

All syntheses used a common 98% sulfuric acid (APS Specialty Chemicals).
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Many techniques have been used in the forensic analysis of explosives as well as other materials as
previously discussed. However, methods of extracting the maximal amount of forensic intelligence
from gathered data can be improved. In this chapter the methodologies for both the collection and

analysis of data for each analytical technique employed within the project are outlined.

2.2.1 Isotope Ratio Mass Spectroscopy (IR-MS)
2.2.1.1 Sample Analysis

The IR-MS system was located in Flinders Analytical and consists of an IsoPrime (GV Instruments)
stable isotope ratio mass spectrometer including an Elementar Vario Isotope elemental analyser
coupled with an Isoprime diluter. The system utilised Isoprime’s Stable Isotope Ratio Mass
Spectrometry software, lonVantage for isoprime??3, Build 1.6.1.0 and Elementar’s variolSOTOPE cube
software?*. The analysis method was continuous flow, elemental analysis, nitrogen and diluted

carbon isotope ratio utilising helium as the carrier gas.

Samples were prepared in tin boats (4 x 4 x 11 mm) manufactured by Elementar Analysensysteme
GmbH (batch S22137418). Standards were supplied by Flinders Analytical and included the NIST
reference materials:
e 8573 L-Glutamic Acid USGS40: Light carbon (-26.39 + 0.09%o) and nitrogen (-4.52 + 0.12%o)
isotopes in L-glutamic acid.
e 8574 L-Glutamic Acid USGS41: Heavy carbon (+37.63 £ 0.10%o) and nitrogen (+47.57 £ 0.22%o)
isotopes in L-glutamic acid.
These reference materials are internationally recognised, and their values are determined through
comparison to the zero-point standards previously discussed. These have been used instead due to
their cost, availability and in order to allow a two-point linear calibration between distant delta

values.

Samples were weighed using a Satorius Cubis microbalance with a readability of 0.001 mg, into tin
boats and these are then carefully sealed and crushed into round balls using tweezers to avoid
contamination. The final balled sample is then reweighed to confirm no loss of sample during the
preparation and the mass recorded. 1.2-1.6 mg (1.4 + 0.2 mg) of both standards and samples were

weighed out in triplicate. Samples are then loaded into their assigned positions within a 96 welled
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sample holder and stored within a desiccator until ready for analysis at which point the samples are

loaded into the autosampler.

2.2.1.2 Data Analysis

This is a very small dataset in comparison to all the other analytical methods within this project with
only 2 variables, carbon and nitrogen delta values, and so, was treated quite differently. The raw data
was examined by plotting the isotope ratios for both carbon and nitrogen individually and as a two-
dimensional combination. This can highlight similarities and differences within samples based on
these ratios and can also identify linkages to precursor materials. The second stage of analysis for

this data was to incorporate it into the ICP-MS dataset.
2.2.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

2.2.2.1 Sample Analysis

The ICP-MS instrument used was located at Flinders Analytical and is a Perkin-EImer NexION 350D
utilising the Syngistix Version 1.1 (Build 1.1.4624.0) software!?>. The system is equipped with a PC3
Peltier Cooler Organics Sample Introduction Kit allowing for the chilling of the nebuliser to reduce
polyatomic interferences, such as oxides, and nickel cones were used for all analysis. The ion path is
unique with a schematic shown below in Figure 2.5 below??®. The unique features of this system are
the triple cone interface to focus the ion beam for extra stability and a quadrupole ion deflector to

redirect positively charged ions 90° rather than the use of lenses as in other systems.

Three quadrupoles to maximize sensitivity for every elementin a run.

a

_____ehee—f
SR 0 101 O I @ | | —
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Figure 2.6: Schematic of the Perkin EImer NexION 350D.
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All analysis was done in a collision mode using the instrument’s kinetic energy discrimination (KED)

mode which fills the cell with helium gas to collide with interfering ions with larger cross sections and

hence remove them prior to detection.

Before every use the ICP-MS was tuned with a daily tuning solution containing 1 ppb of Be, Ce, Fe,

In, Mg, Pb and U and a Kinetic Energy Discrimination (KED) mode tuning solution containing 1 ppb Ce

and 10 ppb Co to within the specifications displayed in Table 2.8. The system was also tested for

stability by measuring the ion counts for the internal standard solution for an extended period of

time (6 minutes) prior to analysis. In the case of this project a 100 ppb indium solution was utilised

as the internal standard and across this period of time the acceptable relative standard deviation

(%RSD) was below 3%.

Table 2.8: Nexion ICP-MS tuning specifications.

Daily tune criteria

KED tune criteria

Be 9 > 2000 cps

Co-high 58.93 > 15000 cps

In 115 > 50000 cps

Ar2-high 77.92 < 30 cps

U 238 > 40000 cps

ClO-high 50.96/Co-high 58.93 < 0.005

Background 220 < 1 cps

CeO-high 155.9/Ce-high 139.91<0.01

CeO/Ce £0.015

ClO-low 50.97/Co-low 58.94 < 0.02

Ce?* 70/Ce 140 < 0.03

Many of the instrument operating conditions were based on these daily tunings including the torch

position, nebuliser flow rate and standard/KED mode quadrupole ion deflector voltages. Further

static operating conditions are displayed in Table 2.9.

Table 2.9: Operating conditions for the ICP-MS instrument.

RF Power 1600 W

Nebuliser Meinhard Glass TR-50-C0.5, 0.5 mm |.D.
Spray chamber Quartz glass cyclonic with Peltier Cooler (PC3)
Injector 2 mm |.D. Quartz Injector

Torch Demountable quartz

Triple cone interface Nickel/Aluminium

Plasma gas flow 18 L/min

Nebuliser gas flow 0.87 L/min*

Sweeps per reading/replicates per sample 10 sweeps/3 replicates

Helium gas flow 4.7 mL/min

Detector mode

Dual (pulse/analog)

*may vary as optimised by tunings
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The sample solution was introduced via a peristaltic pump under the parameters recorded in Table
2.10. The internal standard moves through a 0.19 mm internal diameter tube while the sample travels
through a 0.76 mm internal diameter tube to the mixing junction. At the pump rotation of sample
introduction during measurements (9 rpm), 0.45 mL of sample and 0.03 mL of internal standard are

introduced per minute.

Table 2.10: Sample introduction parameters for the peristaltic pump.

Time (s) Speed (rpm)
Sample flush 35 24
Read delay 45 9
Wash 45 24

ICP-MS sample preparation was identical for both the KCIO3 and ETN samples. 50 mg of sample
(weights recorded) were weighed out into 50 mL plastic digestion vessels from Environmental
Express (Cole-Palmer). Each batch of these vessels are tested for volume graduation lines and trace
metal contents of 68 elements for quality assurance purposes and the resultant report is delivered
with each order. This is vital when considering ultra-trace detection research. For example, a
randomly selected vial not specifically manufactured for trace elemental analysis was tested for the
same range of elements during the ETN analysis and produced the following results (Table 2.11). 1

mL of nitric acid was placed in the vial and left overnight then made up to 50 mL and analysed.

Table 2.11: Results of preparing a blank in a randomly selected 15 mL vial showing its lack of
suitability for ultra-trace elemental analysis.

Al Ca K Co Ni Ru U Sr Fe Mg Zn

ppb | ppb | ppb | ppb | ppb | ppb | ppb | ppb | ppb | ppb | ppb
Vial | 15,5 | 80.8 | © 0 0 0 0 0 87 | 32 | 1.0

The results show that a vial such as this would not be acceptable as the levels in a blank would have
ppb levels of Al, Ca, Fe, Mg and Zn whilst the measured range in this project is as low as 100 ppt or

0.1 ppb for these elements.

To prepare samples for analysis 100 uL of ultrapure water (Milli-Q) followed by 1000 uL of trace grade
69% nitric acid was added to the digestion vessels. The water was added prior to the introduction of
the acid purely for the minimisation of any reaction between the nitric acid and the samples which
may result in the loss of elements. For example, the ETN and KCIOs; from pool chlorine starting
materials tended to react with neat acid and resulted in some bubbling and degassing which could
potentially affect the retention of trace metals within the solution and so the addition of 100 uL of
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water was utilised. The vessels were then lightly capped and left in a fume hood overnight to ensure
a complete digestion and any potential gas production was safely contained and removed. The vials
were then inspected to confirm the digestion by examining the solutions for any particulates and or
colour to indicate an incomplete digestion. This is a gentle digestion method requiring no heat or the
use of a microwave digestion system, however, if desired the process may be accelerated using a
heating block or water bath at 60°C in which case digestion may be complete typically within an hour.
Digested samples are then made up to 50 mL with ultrapure water making up the sample solution to
2% nitric acid, which is the selected matrix for the internal standard as well as all calibration solutions.
This is an important factor as matrix matching ensures that all the solutions have the same aerosol

characteristics when being introduced into the plasma by the nebuliser.

The calibration solutions for KCIOs and ETN differ in their trace elemental contents as differing
elements were targeted in each material depending on predicted elements that may be contained
within real world samples. For example, as KCIOs may be created using an electrochemical cell, metals
that may be used as electrodes (copper, titanium, etc.) were investigated, whereas for ETN elements
that were reported to be more commonly found in artificial sugars were selected.'?’”A summary of
the target elements for each material is described in Table 2.12. The elemental standards were

sourced from either Choice Analytical or Australian Chemical Reagents and were all in 2% nitric acid.

Table 2.12: Range of elements selected for ICP-MS analysis for both KCIO3 and ETN samples.

KClOs Target Elements ETN Target Elements

Choice Analytical

Australian Chemical
Reagents

Choice Analytical

Australian Chemical
Reagents

Al, Ca, Cu, Mg, Ru, U,

Ba, Cr, Fe, Mn, Ni, Pt,

Al, Ca, K, Mg, Ru, U,

Co, Fe, Ni, Sr

Zn Sr, Ti Zn

These were used to make 5-point calibration curves between 100 ppt and 100 ppb (100 ppt, 500 ppt,
1000 ppt, 10 ppb and 100 ppb) for all elements apart from the rarer elements Ru, Pt and U where a
range of 10 ppt to 10 ppb (10 ppt, 50 ppt, 100 ppt, 1 ppb and 10 ppb) were used.

Quality control in trace metal quantification is paramount in producing reliable results. All ICP-MS
analyses should incorporate a minimum level of quality control procedures including an internal

standard together with regular blank and check solutions.

The internal standard ensures that the system is not unknowingly drifting over time by either

increasing or decreasing counts. If not measured throughout an analysis the samples measured
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towards the beginning may not be comparable to samples measured towards the end of the batch.
This is the reason for the internal standard stability test prior to commencing analysis. If a trendline
is identified it may be used to correct across the batch analysis by accounting for drift, however, it is
preferable for the system be confirmed to be stable prior to starting an analysis. The secondary
purpose for the internal standard is to measure any matrix effects present within digested sample
solutions. This is important as samples must have similar matrix behaviours to the calibration
standards they are being measured against, otherwise the comparison is unreliable. Differences in
the matrices of the sample solutions and the internal standard and calibration solutions result in
dissimilar aerosol characteristics in the nebuliser and spray chamber. This difference in aerosol
droplet size then leads to a differing ionisation once exposed to the plasma, greatly affecting the
recovery of internal standard. Examples of a poor matrix matching, and acceptable matrix matching
are displayed in Figure 2.7. This acceptable matrix range is between 80%-120% internal standard

recovery.
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Figure 2.7: An example of significant matrix effects within a batch (left) and of acceptable
matrix effects (right).

The blank solutions ensure that there is no carry over or contamination effects due to samples with
high concentrations of measured elements. This should be run every 10 samples at a minimum to
confirm that trace elements are being properly washed out by the rinse solution. The readings for

blanks should be below the limit of quantification.

In anideal situation check solutions should consist of certified reference materials. These are samples
with known concentrations for the elements being analysed which are chemically and physically

similar to the samples being analysed. For example, when plant samples are being analysed a certified
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reference plant material may be used which has known amounts of all the elements being measured.
The analyses performed in this project did not involve the use of a certified reference material and
so additional quality control methods were employed. Firstly, a pre-digestion blank was prepared in
order to guarantee that the handling and digestion of samples did not introduce trace elements to
the samples. This also ensures that the plasticware and trace grade acids did not contribute to the
concentration of elements within samples. Secondly, a dilution check is regularly measured
immediately after the regular blank which is simply a dilution of the stock solution of the standard to
track any drift in calibration during a run. Thirdly, random duplicates were run alongside samples to
ensure that the digestion and sample preparation methods result in consistent measurements. This
is not necessary if all samples are measured in duplicate or triplicate, however, in the analysis of trace
or residual explosives where only very small amounts of sample may be analysed this may not be
possible. There may only be the possibility of a single sample solution and so the digestion method

should be well validated prior to the analysis of these samples.

If ICP-MS analysis is to be used in the future to create profiles for explosive samples, an in-house
reference material should be developed for each type of material to ensure reliability and validity of
the analysis of such materials. Ideal reference materials should be highly stable but have similar
chemical and physical properties to the samples being analysed. As both KCIO3 and ETN are not as
stable it would be better to select their more stable and less sensitive counterparts. For potassium
chlorate a reference material of potassium perchlorate and for erythritol tetranitrate PETN could be

selected.

2.2.2.2 Data Analysis

Raw data was first examined to identify variables that provide no information i.e. elements below
the limit of quantification for all samples. These may be removed prior to commencing the
multivariate exploratory analysis as each variable included in the analysis requires additional
computational power and time to perform. Therefore, any reduction of ineffectual data possible prior

to the pre-processing and multivariate analysis should be undertaken.

The raw data was then investigated using a combination of HCA for the initial overview of potential
clustering followed by PCA to explore the level of discrimination possible from the raw dataset. As

this is a raw data analysis there will always be a high probability of outliers resulting in poor
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discrimination due to the nature of PCA as previously discussed in the introduction. Therefore, a

further elimination of these outliers was undertaken, and the analysis repeated.

A second PCA was then undertaken in a similar fashion to the analysis of spectral data, where prior
to analysis a pre-processing method was utilised. In the case of elemental data, however, the pre-
processing procedure was quite different. This dataset required pre-processing not to correct for
physical phenomena effecting the true value of a measurement but rather to somewhat standardise
the data due to the various elemental mass fractions having varying orders of magnitude across the
dataset. This can be accomplished by a variety of methods, however, the method selected for this
analysis is done through the use of a logarithmic transformation for elemental data which has been
used for elemental data in other studies and seems well suited to this role. This method transforms
an asymmetrically skewed dataset, such as in the case of trace element analysis, where some
commonly abundant elements (e.g., K, Na, etc.) may be in far greater levels than other rarer elements
(such as Ti, Pt, etc.). Taking the logarithm of heavily skewed data shrinks the distribution tail

centralising the data and making it more symmetrically distributed as is ideal for PCA.12%12°

Prior to a log transformation the values require an initial translation by the scalar addition of a
constant (in this case 1) as elements below the limit of quantification are reported as O ppb and the
log of zero is undefined. Once the entire dataset is translated by 1 the log transformation can be
undertaken and results in the null data reverting to zero as log;, 1 = 0. This scalar addition is allowed
as adding a constant value to a variable does not change the variance as the mean increases by the

same amount?3°,
2.2.3 Infrared Spectroscopy (IR)

2.2.3.1 Sample Analysis

The IR spectrometer utilised was located at Flinders University and manufactured by Perkin-Elmer in
the Frontier FTIR range. The system utilises a rotary Michelson interferometer resulting in a
wavelength accuracy of £ 0.1 cm™ at 1600 cm™, spectral resolution of 0.4-64 cm™ and a spectral range
of 8300-350 cm™. The attenuated total reflectance (ATR) sampling accessory was used however it
must be noted that this may not be the correct procedure for all energetic materials due to the
pressure and friction involved. The Spectrum Software Package!3! was used to export the raw data

as well as some basic processing including the baseline correction and normalisation of the data.
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The collection of the data involves cleaning the ATR crystal with an ethanol wipe, allowing to dry and
collecting a background scan. A small amount of sample was then placed on the crystal (just enough
to cover it, approximately 1 mg) and pressure carefully applied to an appropriate level. Data was then
collected, the parameters selected were 32 scans between 600-4000 cm™* with a resolution of 1 cm-
Lin percent transmittance (%T) output mode. The number of scans was varied between 8, 16, 32, 64,
128 and 256 scans, however the resulting spectra for 32 scans were indistinguishable from any higher
number of scans and takes approximately 15 minutes to complete rather than 30 mins or greater for
no added information, consistency or higher resolution. Post data collection the sample may be
retrieved from the crystal platform as this is a non-destructive analytical technique and therefore

may be saved for further analysis.

2.2.3.2 Data Analysis

Raw data was initially examined in the standard manner, by visual inspection of the spectra, to
confirm the identity of the material by comparing it to the spectra of known material. This
examination also gives an overview of the variance in the dataset and identifies potential
discriminatory signals within the material. Following this a hierarchical cluster analysis (HCA) is

undertaken to identify the level of discriminatory variance within the dataset.

The dataset was then altered using a pre-processing stage prior to further exploratory data analysis
of the dataset. There are many forms of pre-processing employed for the transformation of spectral
datasets, with researchers selecting various procedures based on their specific dataset and the issues
encompassed within it. Potential issues include; distinct outliers which will render PCA unusable as it
will overshadow the rest of the variance within the dataset and uneven magnitudes of variance across
variables which will reduce the equal comparison of all variables within a dataset reducing the
effectiveness of the PCA. Many of the methods only slightly differ, all striving to accomplish the same
goal and are rarely contrasted and compared to one another. A review article discussing this lack of
comparison published in 2009 aimed to discuss and evaluate many of the most common pre-

processing methodologies in the case of near-infrared spectral datasets!3?.

The goal of the pre-processing is to improve the quality and consistency of the data by minimising or
removing physical phenomena within the data to enhance further multivariate statistical or
exploratory analysis. This is not a substitute for collecting the highest quality of data possible,

however, it can to some extent increase the quality of non-optimal data collection especially when
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considering the quality of the instrument employed. In the case of spectral datasets, it must be noted
that no level of pre-processing can correct for specular reflectance (direct scattering) and any spectra

significantly affected by this phenomenon must be removed as outliers prior to multivariate analysis.

In the case of this project’s infrared spectra, the pre-processing involves two key steps. Firstly, a
polynomial baseline correction was performed for all spectra. Secondly, a normalisation of each
spectrum to the largest common signature peak across all spectra in the dataset. This is a very minor
pre-processing procedure as one the goals of this project was to investigate the application of a
standard process to a variety of spectral datasets and a major disadvantage of increasing the pre-
processing model complexity will begin to reduce the robustness of the model for predictions of
additional datasets. There is also the possibility of valuable variability to be lost the more the data is
transformed or manipulated prior to multivariate analysis. The initial baseline correction will adjust
the baseline of each spectrum to mitigate systemic variability due to the device used to collect the
data. Normalisation is a scatter correction method designed to reduce the physical variability
between samples due to scatter and adjusts for baseline shifts between samples. This will allow for
a greater level of consistency between spectra and enable much more suitability for direct

comparison which is vital when a mathematical approach such as PCA is utilised.

PCA is performed to interrogate and reduce the dimensionality of the dataset to identify

discriminatory areas of the spectra and determine any level of clustering within the samples.
2.2.4 Raman Spectroscopy (Raman)

2.2.4.1 Sample Analysis

The bench-top Raman used was located at Flinders University manufactured by DeltaNu in their
Advantage series. The system utilises a 633 nm 3 mW HeNe laser with a spectral resolution of 5-7 cm™

133

and spectral range of 200-3400 cm*. Baseline removal was employed through the NuSpec?33 program

then exported in printable file format (.prn) for Microsoft Excel compatibility.

Minimal sample preparation is required as the explosives are placed in a 5 mm diameter vial and
inserted into the Raman spectrometer. Depending on the sample, a delay timer may be set allowing
the user to create some distance between themselves and the analysis if there are concerns for safety

surrounding potential laser induced initiation.
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Prior to the data collection of each sample the signal is tuned to maximise the signal to noise ratio by
setting a survey scan, the sample vial is rotated and its distance from the laser source manipulated.
Once this optimised position is located the data is collected with a 10 s integration time over the

range 200-3400 cm™.

Due to failure of the DeltaNu spectrometer data collection for ETN samples required the use of a
different instrument. The Raman spectra were recorded between -199 and 4000 cm™ on a XploraRA
Horiba Scientific Confocal Raman microscope using a 50x objective (numerical aperture 0.6) at an
excitation wavelength of 786 nm and using a grating of 600 gratings mint. The acquisition was 6
accumulations of 20 s integration times. The instrument was calibrated to the 520.7 cm™ line of
silicon and an additional spectrum was collected at a laser wavelength of 532 nm to confirm the

spectrum recorded at 786 nm.

Sample preparation involved placing a very small amount of sample (barely visible) onto a glass
microscope slide and placing it under the lens of the microscope. The sample platform is then moved
to place a small indicator light from the microscope on to the sample then further fine translations
are done using the microscope camera to ensure a good positioning. The focus was then adjusted by
moving the sample closer or further away from the lens for maximum signal to noise ratio. Once the
signal was optimised the acquisition was conducted and the sample removed. Though the power
level of the laser is much greater than in the case of the DeltaNu spectrometer this is still a non-
destructive technique and so the sample may be reclaimed. This may not be the case for all
energetics, especially mixtures where laser sensitivity may be heightened and therefore caution must

be used prior to using full power on any sample and slowly increased for greater levels of signal.

2.2.4.2 Data Analysis

The analysis of this dataset was be identical to the IR spectroscopy method as the spectral datasets
are highly similar.

2.2.5 Terahertz/Far-Infrared Spectroscopy (THz/Far-IR)

All measurements were taken at the THz/Far-IR Beamline at the Australian Synchrotron with samples
of explosives provided by Forensic Science Service, Victoria Police. This synchrotron project was also
in collaboration with the French-German Research Institute of Saint-Louis and conducted in three

stages.
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The initial experiments involved developing a method to consistently prepare non-energetic samples
through the pelletisation of materials into thin film 3 mm diameter pellets of polyethylene (PE)
and/or wax. These findings were used to prepare explosives and ingredients for analysis and to collect
high resolution spectra of both explosives and potential packaging materials (various plastics and
paper). Following this, an investigation utilising the recent additional capability of the THz/Far-IR

beamline to be able to collect Far-IR spectra using an out-of-vacuum ATR accessory was undertaken.
The materials investigated throughout included the following:

e Explosives and ingredients
o RDX
HMX
PETN
AN
KCIO3
Hexamethylene triperoxide diamine (HMTD)
UN
o Nitrourea (NU)
e Precursors
o Hexamine
o Erythritol
o Urea

o O O O O O

All these materials were sourced in a powdered form and as the samples for the initial experiments
prior to the availability of the ATR accessory required mounting onto a sample holder and placed
under vacuum these powders had to be pelletised. Initially PE pelletising methodology was
developed by altering the ratio of sample to PE and it was found that the optimal amount of sample
was 15-25% by weight. Typically, 1.5 mg of the sample/PE mixture is pelletised using a PIKE
Technologies hand pelletiser (further details below). Similar methodology was used with paraffin wax
as the matrix material and the same ratio was selected to provide a strong signal without saturation.
This was performed with samples of precursor materials only as the first set of experiments did not

involve the direct use of explosives.

The developed method was then applied to the pelletising of explosives. However, the previously
optimised methodology was not robust and applicable to all the explosive materials as there were
significant absorption differences between materials. For example, RDX and HMX absorb 60% of the
THz radiation at a 1:1 sample:PE ratio. However, the same ratio of PETN:PE will only absorb 10% of

the THz radiation producing a far weaker peak intensity in the resultant spectrum. Therefore, the
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methodology was modified increasing the percentage of sample in PE to between 25-50% depending
on the material. PE was chosen over paraffin wax due to the difficulties involved with handling wax

as it tended to have adhesive properties.

The pellets were pressed with a PIKE Technologies Hand Press using a 3 mm die set. These pellets
were then mounted into a three-position sample mount and placed onto a Cryostat (Janis Research)
and mounted to the sample compartment of the Bruker IFS 125HR FTIR spectrometer. Though
mounted on the cryostat, the heating and cooling functions were not utilised for any of this research;
it was just used as a sample holder. The compartment was then evacuated to approximately 103
mbar and the beamline from the synchrotron was opened. The system utilises a Michelson
interferometer with an optical path length of 942 cm and resolves linewidths of <0.0009 cm™ over a
broad spectral range of 5 cm™ (Far-IR) to >50,000 cm™* (UV). The detector used was a liquid nitrogen
and helium cooled Si Bolometer with a 6 um Multilayer Mylar beam splitter and data was processed
through the Bruker software package OPUS34. The data processing for pelletised samples involved
the averaging of 10 spectra, subtracting the background and converting these averaged spectra to
absorbance spectra. The spectra are then cropped to between 30-650 cm™ as this is the optimum
window utilising the chosen detector and PE as the pelletising material. This data was exported into

a data point table (.dpt) format for compatibility in Microsoft Excel.

The third set of experiments with the beamline involved collecting the spectra of the same materials
with the new GladiATR™ Single Reflection ATR Accessory mounted onto the sample compartment of
the Bruker IFS 125HR FTIR spectrometer. For this analysis a very small amount of sample is placed to
cover the top of the crystal (<1 mg), the anvil is positioned on top and lightly screwed down to ensure
good contact between the diamond and the sample. After data collection, an extended ATR
correction was applied through OPUS to account for the difference in refractive indices between
sample and diamond. Though refractive index is referred to as an optical constant it does vary
depending on the wavelength of light due to optical dispersion and this has been studied for
explosives.'3> The mean refractive index was used for each material to apply the ATR correction. This
then allowed the development of a spectrum from the THz/Far-IR region all the way through to the
near-IR region by combining the THz/Far-IR spectrum with the mid- to near-IR spectrum collected
using a standard FTIR instrument. To do this the spectra were normalised to a common peak recorded

in both spectra in the 600-650 cm™ region.
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3. Initial Development of Data Analysis and Fusion Methodology

In this chapter the data from a past project® was re-examined to develop a suitable data pre-
processing method to combine IR-MS and ICP-MS data. The resultant data was analysed using the
exploratory multivariate data analysis technique, PCA, to assess the suitability and success of the pre-
processing employed. The PCA results were then used to identify any information that may be
valuable for intelligence gathering purposes. This includes any information that may indicate a link

between sample and precursor.

Data collected as part of a past research conducted by Dr Paul McCurry at Flinders University and the
Centre of Expertise in Energetic Materials in 2015 was re-examined to test and develop the initial
chemometric analysis utilising principal component analysis. The thesis titled “The use of Advanced
Analytical Techniques to Enable Batch and Source Matching of Homemade Explosives” aimed to
highlight the use of IR-MS and ICP-MS for the provision of chemical intelligence in the analysis of
HME. The materials analysed were ammonium nitrate and calcium ammonium nitrate (CAN) based
HME samples and ingredients (i.e. without a fuel component). The research successfully identified
the potential of IR-MS and ICP-MS to contribute chemical intelligence in an investigation showing
there was discriminatory information within the collected data which may be able to link batches of
HME to sources. Though successful, one major limitation was identified and that was the way the
collected data was analysed, specifically surrounding ICP-MS data analysis and the combination of

IR-MS and ICP-MS datasets.

The IR-MS data collected included both carbon and nitrogen isotope ratios, however, not all
ammonium nitrate samples contained significant amounts of carbon and therefore the isotopic ratio
could not be obtained for all samples. The samples that contained sufficient carbon were typically
CAN, which have enough carbon from the calcium carbonate content, or prilled AN that were coated
with carbon containing substances in order to mitigate against the high hygroscopicity of AN and

improve storage life.
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The data was then displayed by plotting the carbon delta values against the nitrogen delta values

(Figure 3.1).
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Figure 3.1: IR-MS data plotted as carbon delta values vs nitrogen delta values.

These results could identify some minimal groupings and clustering but there is a clear lack of reliable
discrimination between samples of differing origin. The two-dimensional nature of the data means
this is the optimal presentation of such data and a chemometric approach could not provide an
improvement from this dataset alone. There was, however, an opportunity to incorporate this into
the larger ICP-MS dataset also collected from the same samples, effectively combining the

discriminatory power of both datasets.

3.3 ICP-MS Data of AN and CAN Samples

The original dataset collected is from the quantitative trace metal analysis of 66 ammonium nitrates
sampled from numerous countries for 32 elements, as well as, calcium ammonium nitrate, aluminium
powders and mock HME samples from DST Group. These results were then displayed in the form of
radar plots in order to graphically display a multivariate dataset to allow direct visual comparisons

between samples. Though radar plots do allow a visual comparison to some extent, it is clear upon
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examining such a method of display that it is hard to interpret the level of discrimination between
any two given samples. For example, below in Figure 3.2 four of the resultant radar plots are
displayed side by side and though it can be confidently concluded that each sample is different the
level of difference or similarity is hard to determine and impossible to quantify. This issue is
compounded when hundreds of samples are compared to one another as would be the case in a real-

world database.

INC-B2 Al-CEEM-02 PJD-3-010A AN-06-2008 (04)

Figure 3.2: Example of ICP-MS data depicted in the form of radar plots for discriminating
between samples.

This limitation highlights the need for more post collection data analysis and this analysis must be
able to handle large datasets of a multivariate nature. Therefore, a chemometric method was
required. Principal component analysis was selected over linear discriminant analysis and partial least
squares regression due to the exploratory and unsupervised nature of the analysis being fit for
purpose. As the real-world application of this research is intelligence gathering, when a new sample
is being investigated and there is no viable way to assign it to a grouping prior to statistical analysis
an exploratory and unsupervised analysis is ideal. This is particularly the case when identifying
information about the sample has been redacted for security reasons due to the lack of security

clearance possessed by the analyst.

3.4 Chemometric Analysis of AN/CAN Datasets

3.1 Exploratory Multivariate Data Analysis of Raw Data

The first step of any chemometric analysis is determining if any pre-processing of the original data is
required. This requires a sound understanding of both what the data means and how the selected
statistical analysis handles data. In this case the data consists of the quantifiable trace elements
present within each sample as well as carbon and nitrogen isotope ratios. Keeping these raw datasets

in mind, issues can immediately be identified with the application of PCA:
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1.

2.

3.

The trace element analysis included a large number of target elements that were below the
limit of quantification and as PCA will not handle data with non-numerical values this must
be altered.

e This can be mitigated by simply replacing these “not a number” or NaN fields to zero
as this effectively indicates that there was not a significant amount of the element
present.

After the replacement of NaN fields with zero values, various elements can be identified as
undetected in all samples.

e As they contributed nothing to the variance of the dataset they may be removed.
This included the elements: Li, Be, Cr, Mn, Co, Ni, Cu, Se, Y, Mo, Cd, Sb, Tl and U.

i. Though this was the case for all the samples in this dataset, subsequent
analysis of authentic samples of CAN and CAN-based HMEs revealed that
many of these elements were present. Therefore, these elements can still be
valuable forensic markers just not across these specific samples.

The ratios of the stable isotopes of an element are represented as delta values from
universally accepted reference standards and therefore may be negative or positive values,
meaning any value is considered a measurement. Therefore, unlike in the ICP-MS case
unmeasurable samples cannot simply be reduced to zero as that would indicate a
measurement.

e The pre-processing resolution for this is to omit any samples with unrecorded data,
however, as this was the majority of samples the carbon isotope ratios will be omitted
from the PCA analysis to retain sample size over the addition of one potentially

discriminatory variable.

After these pre-treatments the dataset had no clearly identifiable issues and therefore a PCA may be

undertaken.

This initial analysis concluded that out of the original 34 elements and nitrogen delta values, 8 trace

element measurements were responsible for 99.96% of the original dataset’s variance.

This is understood through the latent values of the PCA, by calculating the ratio of the cumulative
sum and sum of latent values for each PC. This ratio reveals the amount of original variance retained

in the transformed data. The latent variable table (Table 3.1) shows that the original data was
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transformed into 19 principal components, however, many are irrelevant as the original dataset’s

variance has been accounted for prior to that point. This may be plotted in the form of a scree plot

(Figure 3.3).

Table 3.1: Latent variable table.

c::,';ﬂﬁ:,t Latent | Percentage
PC1 4223281.96 | 7237
PC2 927654.87 88.27
PC3 337222.11 94.05
PC4 283803.67 98.91
PC5 42996.85 99.65
PC6 10914.96 99.83
PC7 7296.62 99.96
PC8 1719.18 99.99
PC9 348.37 99.99
PC10 239.52 100
PC11 97.39 100
PC12 35.46 100
PC13 3.26 100
PC14 1.68 100
PC15 0.80 100
PC16 0.68 100
PC17 0.23 100
PC18 0.11 100
PC19 0.01 100
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Figure 3.3: Scree plot for the raw data PCA.

An additional consideration to determine the significant number of PCs other than the shape of a

scree plot, is to limit the PCs to the point where measurement variance is incorporated into the

model. In this case, the ICP-MS measurements have an RSD of up to 3% and therefore, PCs could be

taken into account until the cumulative variance retained reaches 97%. The IR-MS data also has an

RSD of up to 5% however, in this current analysis the IR-MS data does not contribute to the early PCs.

The next stage of the analysis is to determine what is accounting for these first 7 principal

components, which may be done through interrogating the coefficient values (Table 3.2). These

coefficient values are commonly referred to loading factors or loadings and identify the variables

contributing to each principal component as well as the magnitude of their respective contributions.

This format is quite difficult to interpret so transforming it to highlight the important elements is

helpful (Table 3.3).

Table 3.2: Raw coefficient values to 1 decimal place.

Element PC1 PC2 PC3 PC4 PC5 PC6 PC7
N IR-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Na 0.0 -0.1 1.0 0.0 0.0 0.0 0.0
Mg 0.0 1.0 0.1 -0.1 0.0 0.0 0.0
Al 0.0 0.0 0.0 0.0 0.1 -0.1 0.0

P 0.0 0.1 0.0 1.0 -0.2 -0.1 -0.1
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cl 0.0 0.0 0.0 0.0 0.1 0.0 0.0
K 0.0 0.0 0.0 0.0 0.0 -0.1 0.0
Ca 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sc 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Vv 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fe 0.0 0.0 0.0 0.0 0.3 -0.3 0.2
Zn 0.0 0.0 0.0 0.0 0.0 0.0 0.0
As 0.0 0.0 0.0 0.1 0.0 0.3 1.0
Sr 1.0 0.0 0.0 0.0 -0.1 0.0 0.0
Zr 0.1 0.0 0.0 0.2 0.7 0.7 -0.2
Ag 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ba 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pb 0.0 0.0 0.0 0.0 0.6 -0.6 0.1
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Table 3.3: Coefficient table colour coded to highlight major contributors.

This colour coded table makes it much easier to understand which elements are contributing to each
PC. To the 7" PC only Na, Mg, P, Fe, As, Sr, Zr and Pb are contributing significantly to the variance of
the PCA. This information can be used to return to the original dataset to identify why these elements
are causing discrimination between samples. To this end, a bar chart of the raw data for these
elements has been plotted in Figure 3.4. This identifies that the reason for the overwhelming
contributions is the large magnitudes of variation due to only a few outlier samples. The sole
dependence of PC1 on Sr content is understandable as two samples, INC-B1 and INC-B2, have high
relative concentrations of Sr in comparison to other samples which have little to none. The same
reasoning applies to all of these elements with many samples having very little to no concentration
of the element and one or more samples containing a very large amount. Outliers like this have a
detrimental impact on the success of a PCA which has a purely mathematical approach and identifies
these magnitude of order differences as the variables containing the most variance. This minimises
any possible discrimination based on minor differences which could highlight trends rather than

distinct outliers.
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This may be validated by calculating correlation coefficient values, to check if the lack of variance in
the other elements is due to lack of data or a correlation in elements. It is quite evident that displaying
the information in the form of Table 3.4 is not easily interpreted and so it may be transformed in a
similar manner to Tables 3.2 and 3.3, as shown in Table 3.5. This involves bracketing the correlation
coefficient values and colour coding from white to black: 0.0-0.25 (white), 0.26-0.50, 0.51-0.75, 0.76-
0.95 and 0.96-1 (black). Only the magnitude of the value is considered in this transformation, as the
sign indicates a positive or negative correlation. These brackets do not necessarily indicate anything

other than forming a greyscale guide to highlight variables with strong relationships.

There are two strong relationships identified in this case with K, Ca and Sr correlating positively and
Ag and Sc also positively correlating. The relationships between K, Ca and Sr are not uncommon as
K-40 undergoes a beta decay to form Ca-40. When potassium levels are high, calcium tends to follow.
The correlation between Ca and Sr is an unfortunate shortcoming of the original ICP-MS analysis
undertaken, as Ca-44 was measured alongside Sr-88. Therefore, as Sr counts increased, so did Ca as
doubly charged ions interfere with the selected Ca-44. This can be avoided by selecting a different
isotope of calcium as doubly charged species cannot be entirely eliminated. This pair of correlations
has then had a follow up effect of linking K to Sr, which again could have been avoided through the

analysis of a different Ca isotope.

The relationship between Ag and Sc is more puzzling but indicates that within these samples, the
concentration of the two elements follow each other. Knowing more about the samples could
identify how it is that Ag and Sc have come to positively correlate. However, there is very little of
either of these elements in the samples and so do not affect the PCA. Where this analysis could
indicate a problem is where elements that do not typically correlate due to their similar properties
have a strong relationship. This can arise for many reasons such as contaminations during sampling,
handling and/or analysis. Another reason specific to trace element analysis is the digestion method
not being suitable for certain elements. For example, gold requires the use of aqua regia as it requires
HCl to remain stable in the digested solution. Whereas for other elements, such as silver, the

presence of chlorine ions can lead to silver chloride precipitating out of solution.
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Table 3.4: Correlation coefficient raw table.

6N B Na Mg Al P cl K Ca Sc \" Fe Zn As Sr Zr Ag Ba Pb
6N | 1.00
B |-0.14 | 1.00
Na | 0.01 | 0.00 | 1.00
Mg | -0.04 | 0.16 | -0.06 | 1.00
Al | 0.02 | -0.07 | -0.05 | -0.14 | 1.00
P | 0.01 |-0.07|-0.01| 0.15 | -0.06 | 1.00
Ccl [-0.10| 0.02 |-0.20 | 0.11 | 0.39 | 0.17 | 1.00
K | 0.04 |-0.04|-0.01|-0.03|-0.05| 0.16 | 0.69 | 1.00
Ca | 0.05 | -0.06 | -0.01 | -0.03 | -0.05 | 0.18 | 0.68 | 1.00 | 1.00
Sc | 0.07 | -0.07 | -0.01 | 0.21 | -0.06 | 0.94 | 0.26 | 0.23 | 0.26 | 1.00
V | 0.04 |-0.09 |-0.04 | -0.05| 0.88 | 0.25 | 0.42 | 0.02 | 0.03 | 0.26 | 1.00
Fe | 0.02 | -0.04 | -0.05| 0.02 | 0.75 | 0.22 | 0.40 | 0.11 | 0.10 | 0.18 | 0.60 | 1.00
Zn | 0.14 | -0.14 | -0.05 | 0.07 | 0.50 | 0.52 | 0.60 | 0.45 | 0.47 | 0.65 | 0.58 | 0.68 | 1.00
As | 0.19 | -0.07 | -0.02 | 0.07 | -0.06 | 0.47 | 0.20 | 0.11 | 0.12 | 0.51 | 0.10 | 0.14 | 0.28 | 1.00
Sr | 0.03 | -0.05|-0.01|-0.05|-0.04| 0.11 | 0.69 | 0.98 | 0.98 | 0.19 | 0.01 | 0.10 | 0.42 | 0.08 | 1.00
Zr | 0.04 | -0.09 | -0.03|-0.03| 0.38 | 037 | 0.72 | 0.63 | 0.61 | 0.43 | 0.44 | 049 | 0.64 | 0.23 | 0.69 | 1.00
Ag | 0.12 | -0.05| 0.00 | 0.26 | -0.05| 0.75 | 0.13 | 0.01 | 0.06 | 0.91 | 0.25 | 0.10 | 0.59 | 0.47 | -0.03 | 0.22 | 1.00
Ba | 0.10 | 0.17 | 0.01 | 0.27 | -0.07 | 0.18 | 0.55 | 0.64 | 0.62 | 0.26 | 0.01 | 0.12 | 0.33 | 0.15 | 0.65 | 0.55 | 0.13 | 1.00
Pb | 0.18 | -0.11 | -0.04 | -0.14 | 0.82 | 0.10 | 0.35 | 0.06 | 0.05 | 0.08 | 0.69 | 0.81 | 0.61 | 0.00 | 0.05 | 0.45 | 0.05 | 0.00 | 1.00
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Table 3.5: Correlation coefficient colour coded table.
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Now that this necessary analysis is completed, the resultant score values may be utilised to produce
plots to examine groupings of elements (Figures 3.5 to 3.10) and judge if the data transformation by
PCA is acceptable. Though many of the PCs may be examined as they cover various elements, this
report will show plots between PC1 through PC3, as these contain almost 95% of the original variance

contained within the dataset.

Plotting the data exposes that the resultant PCA was ineffective highlighting the major drawback of
PCA, as outliers have caused poor separation of the remainder of the samples as shown in Figures
3.5to0 3.7. These outliers have been removed by omitting the data points from the samples in Figures
3.8t0 3.10. However, they have already negatively impacted on the PCA. The removal of the outliers’
post analysis does not remove the variance that these samples accounted for, and hence the variance
between the other samples has been overshadowed due to the order of magnitude of separation
between the outliers and other samples. This can be fixed by removing those outlier samples prior
to a PCA to perform a more effective PCA.
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Figure 3.5: PC1/PC2 score plot for all samples.

67



5000

ROS-3-003
4000
3000
3 2000
o
1000
° AN-06-2008 (06)
(]
!o’ te—@ 'Y s se ® .
-1000 -500 0 500 1000 1500 2000 2500 3000 3500
-1000
PC2
Figure 3.6: PC2/PC3 score plot for all samples.
5000
ROS-3-003
4000
3000
3 2000
o
1000
INC-B1 INC-B2
7 ° ¢
-2000 0 2000 4000 6000 8000 10000 12000 14000
-1000

PC1

Figure 3.7: PC1/PC3 score plot for all samples.
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Figure 3.10: PC1/PC3 score plot after outlier omission.
3.2 Data Analysis Following Removal of Outliers in Raw Data

The same analysis was repeated after the removal of the previously identified outlier samples: ROS-
3-003, QUI-1F-001F, QUI-1G-001G, QUI-2G-002G, INC-B1, INC-B2, AN-06-2008 (04), PJD-3-010B and
PJD-3-010C. These were marked on the bar chat in Figure 3.4 and have been removed for various
reasons. ROS-3-003 had orders of magnitude more sodium than any other sample; QUI-1F-001F, QUI-
1G-001G, QUI-2G-002G, INC-B1 and INC-B2 all had high levels of phosphorus whereas all other
samples did not record any; AN-06-2008 (04) contained a large amount of arsenic only rivalled by the
previous group of outlier samples, whereas all other samples did not contain any arsenic. Lastly both
PJD-3-010B and PJD-3-010C had elevated levels of iron, an order of magnitude greater than other
samples. Some elements as a result no longer have any measured values and so have also been

removed including the elements P, Sc and Ag.

Although these samples have now been removed from the dataset as outliers, this is a valuable piece
of information, as they have been identified as being greatly different from the remaining samples.
This effectively discriminates them and as mentioned, relationships between these samples exist
clustering them and identifying why they cluster. The issue is that the level of discrimination is so

great it minimises the smaller differences between the other samples.
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Prior to discussing the final score plots, it is vital to gain an overview of the process. Examining the
Latent variable table, 99.4% of the original variance is contained within the first 3 principal
components in contrast to the 94.1% of the first analysis. This shows that the few outliers that existed

within the first analysis did greatly affect the results of the PCA.

Table 3.6: Latent variable table.

Latent | Percentage
PC1 771476 97.28
PC2 8908 98.40
PC3 8059 99.41
PC4 2487 99.73
PC5 1826 99.96
PC6 193 99.98
PC7 93 99.99
PC8 20 100.00
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Figure 3.11: Scree plot for the PCA after outlier removal.

The coefficient or loadings Table 3.7 reveals that only 5 elements contribute to the first 3 PCs and it
must be noted that magnesium is the sole contributor to PC1. Such a result indicates that magnesium
has a very large variance within this reduced dataset. Although this is a positive as it indicates that it

does have discriminatory power, it is also a red flag that it is an outlier element.
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This can be confirmed by interrogating the score plots containing PC1 (such as Figures 3.12 and 3.13)
and in doing so, it is apparent that there is a small group of samples that have strongly diverged from
the bulk of the samples, predominantly samples categorised as “ORI” and “QUI” as well as a single
“AN” sample. Although this can lead to the conclusion that these samples are effectively
discriminated using PC1, all the remaining samples are then compressed into an indistinguishable

cluster and 97% of the total variance of the dataset is assigned to just magnesium.

This highlights a clear issue with utilising PCA on raw data as elements are present in unequal
magnitudes, and so more should be done to transform the original data to not strongly favour one
element over the rest, to gain the most out of the data. This is referred to as skewed data in a

multivariate dataset, where variables are not naturally distributed.

Table 3.7: Coefficient table colour coded (figures included for magnitude).

Element PC1
N IR-MS
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Table 3.8: Correlation coefficient colour coded table for outlier removed data analysis.
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Figure 3.12: PC1/PC2 score plot for all samples.
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Figure 3.13: PC1/PC3 score plot for all samples.
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One method of tackling this issue is to simply remove all magnesium data for the samples. However,
this is removing significantly useful information which can contribute to the overall aim of intelligence
gathering. An additional drawback to this method is that there is nothing preventing the next element

with a large magnitude of difference having the same effect as magnesium in this case.

Another option is to further transform the data to somewhat standardise the raw data to minimise
such an effect. This would retain the data rather than remove it and would shift the weighting of the
variables to more equally distribute the magnitude of variance across the dataset. Therefore, further

transformation of the data is preferable.

3.3 Analysis of Logarithmically Transformed Data

The first method of transforming the data was to perform a logarithmic transformation to the entire
dataset. This is a commonly used method when variables are not normally distributed, and as a result

do not fit the assumptions of standard parametric statistical analyses.

Prior to any transformation the suitability of the transformation must be considered. In this case, IR-
MS results range from negative values to positive values, which is an issue as the logarithm of a
negative value cannot be performed. To manage this, the data will need to be translated by the
addition of a constant to all measurements, to bring the all values above zero. Adding a constant
value to each measurement of a variable does not influence the variance of a variable as the mean
increases by the same amount. A similar translation is required for the ICP-MS values, as
measurements below the limit of quantification are recorded as zero and the logarithm of zero is
undefined. This can be solved by a simple addition of 1, which will be returned to zero after the

logarithmic transformation.

These translations and transformations were performed on the raw dataset prior to the removal of

identified outliers and the PCA was undertaken.

The results of the PCA immediately show signs of skew correction. Firstly, the percentage of variance
becomes far less concentrated in the first three principal components, and 90% of the variance is
accounted for by the fifth principal component, compared to 99.7% in the initial raw data analysis.
The scree plot in Figure 3.15 also shows a more gradual and smoother curve, meaning a greater

number of PCs are required to accurately represent the overall dataset.
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Table 3.9: Latent variable table.

Latent | Percentage
PC1 | 4.475085 43.4
PC2 | 2.550273 68.2
PC3 | 1.029427 78.2
PC4 | 0.757628 85.5
PC5 | 0.452464 89.9
PC6 | 0.265109 92.5
PC7 | 0.221787 94.7
PC8 | 0.196417 96.6
PC9 | 0.162675 98.1

PC10 | 0.075919 98.9
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Figure 3.15: Scree plot for PCA of log transformed data.

The coefficients table (Table 3.10) highlights a dramatic change in the make-up of these principal
components. Rather than the first few PCs being made up of just one or two variables it is now a
combination of many. The scree plot confirms that the skewed nature of the dataset has been tamed
and now more of the data is being incorporated into the development of a “fingerprint” for samples.
There are still variables that do not contribute to any of the first 7 PCs, however these were elements

with very little variation and therefore did not contribute to discrimination.

Now that there are more elements contributing, colour coding the coefficient table overly simplifies

the information resulting in the loss of important information. To identify contributing elements, the
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magnitudes of contribution now becomes vital. This information is not easily obtained examining
Table 3.10, and so a bar chart may be created to depict this data more effectively (Figure 3.16). The
first 7 PCs have been considered and the loadings charted in Figure 3.16. The correlation coefficients
were also examined (Table 3.11) and here the effects of the logarithmic transformation continue to
be evident, as once again the level of correlation has diminished as outlier elements are no longer

distorting the PCA.

Table 3.10: Coefficient table for the first 7 PCs.
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Table 3.11: Correlation coefficient colour coded table for log transformed raw data analysis.
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Finally, the results of the analysis (Figures 3.17 to 3.19) have been plotted and examined. There have
been dramatic improvements to the analysis in comparison to the attempted initial analysis of the
raw data. The original outliers are present once again, however to a lesser degree and are very well
clustered. This is an interesting result as this highlights the power of transforming the data in such a
way to reduce the skew of the data, without dramatically removing the variance, which can be used

to “fingerprint” or profile these samples.
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Figure 3.17: PC2/PC1 score plot for all samples after logarithmic transformation.
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Figure 3.18: PC3/PC1 score plot for all samples after logarithmic transformation.
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Figure 3.19: PC3/PC2 score plot for all samples after logarithmic transformation.

Although a promising result, a final test with the removal of the same outlier samples from the
previous analysis (Chapter 3.2) ROS-3-003, QUI-1F-001F, QUI-1G-001G, QUI-2G-002G, INC-B1, INC-
B2, AN-06-2008, PJD-3-010B and PJD-3-010C may help with separating the other samples, just as it

did in the previous case without the logarithmic transformation.

3.4 Analysis after Logarithmic Transformation and Outlier Removal

This final iteration of the analysis followed the same process as the previous, however, with the

removal of the outlier samples.

Beginning with the variance retention, it can be seen in Table 3.12 that there is only a minor change
and the variance is now further spread over the first four PCs. This is understandable as the outliers
would have represented a large amount of variance in the previous analysis and would concentrate
more variance in PC1 and PC2. This is displayed in the scree plot (Figure 3.20) as now the inflection

point has shifted to PC4 rather than PC3 in the previous iteration.
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Table 3.12: Latent variable table for the log transformed data set PCA.

Latent | Percentage
PC1 | 2.740177 41.12
PC2 | 1.591525 65.01
PC3 | 0.951969 79.29
PC4 | 0.435329 85.83
PC5 | 0.323615 90.68
PC6 | 0.245889 94.37
PC7 | 0.170006 96.93

2.5

15

Latent Value

0.5

0 2 - 6 8 10 12 14
Principal Component

Figure 3.20: Scree plot for the log transformed data set PCA.

The coefficients table (Table 3.13) has shown little difference with only minor changes in the
magnitude of contribution of elements to each PC. In PC1 Mg and Ca still dominate the
discrimination, however, Mg has increased in its importance. PC2 is still mainly determined by Al. The
major difference can be found in PC3, where Pb was not a major contributor in the past however, is
a key factor in this analysis. This amounts to Mg, Ca, Al, Na and Pb accounting for nearly 80% of the
discriminatory variance within the dataset. A final check on the correlation coefficients was
performed to identify whether there is any correlation affecting a number of factors within the PCA.
Examining Table 3.14, there is less covariance between any elements with no 1:1 covariance. Two
moderate covariances are seen in Zr/V and Ba/Sr however, neither pair can be explained through an
interference of one with another. This partial correlation may be a result of the elements being

measurable in only a small number of samples, yielding a false correlation.
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Table 3.13: Coefficients for the log transformed data set PCA.
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Table 3.14: Correlation coefficient colour coded.
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The final results are examined in the form of two-dimensional score plots, as displayed in Figures

3.21-23. With the removal of the obvious outliers, the score plots are slightly improved. This has less

to do with the analysis and more to do with the variance within the dataset. Either there is minimal

variance or further outliers are affecting the PCA.
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Figure 3.21: Score plot of PC2 vs PC1 for log transformed ICP-MS data.
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Figure 3.22: Score plot of PC3 vs PC1 for log transformed ICP-MS data.
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Figure 3.23: Score plot of PC3 vs PC2 for log transformed ICP-MS data.

To test whether the lack of distinct and clear groupings between samples is due to little variance or
large differences between samples, the primary factors for the early PCs may be examined. As
previously discussed, Mg, Ca, Al, Na and Pb were the key factors contributing to the first three PCs.
These elements may therefore be investigated further and a bar chart (Figure 3.24) displays the log

transformed data for these elements.

Examining this bar chart, it can be seen that the level of distinct differences is minimal. These
elements are the few that provide the most discrimination in this dataset. This highlights that there
is not clearly defined distinct segregation between samples other than the few that have been

removed as outliers previously.
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The pre-processing and combination of the IR-MS and ICP-MS datasets was successful. The analysis
has been able to identify some clear outlying groups, which were then removed from the dataset to
allow further groupings to be identified. However, even after this removal of outlier samples, further
groups were not distinctly separated with a large amount of crossover between sample groups. This
indicates that the discriminatory value of the data was not as strong as originally expected. Delving
deeper into the details of the sample codes assigned to each sample, the attempted groupings are
over ambitious. Although the code identifies the supplier, the samples were still sourced from diverse

locations and so further sub groupings should be employed.

This is still an improvement on the previous method of data analysis and result presentation in the
form of radar plots, as samples may be easily compared to each other in a mathematical manner.
Radar plots did not yield a mathematical value to describe the difference in samples, rather it was up
to the examiner to determine if the shape of one radar plot was similar to another. This makes it
incredibly difficult to assess the level of similarity or difference between two radar plots. An
additional complexity is to do this comparison with hundreds or thousands of samples (and their
individual radar plots), whereas PCA can graphically represent a large number of samples and

variables in much simpler plots, allowing a better comparison between samples.

Another benefit of the PCA was the identification of where discriminatory data was located within
the dataset. This helps to identify the typical elements worth measuring in an ICP-MS analysis, which
for future analysis may allow the removal of elements not contributing to the discrimination between
samples. There is an important drawback to this however, as this may miss vital forensic markers in
the form of the presence of less commonly found elements in a sample, which would clearly
discriminate between samples. Therefore, it may still be necessary to analyse for as many elements
as feasible and allow the multivariate analysis to highlight which elements are or are not

discriminatory.

The pre-processing method involving the logarithmic transformation of the original data was much
better at highlighting any minor amount of discriminatory information contained within the dataset.
It was also far more robust in terms of the handling of outlier samples, effectively lessening their
negative impact upon the PCA analysis. Therefore, this pre-processing method will be used for further

datasets involving the use of ICP-MS and IR-MS data.
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4. Analysis of Potassium Chlorate Samples

In this chapter a number of potassium chlorate samples and their precursors were analysed using
ICP-MS, ATR-FTIR and Raman spectroscopy. Each dataset was interrogated individually to identify
discriminatory information. The datasets providing to discriminatory information were merged into
a singular database and re-examined to determine the most successful pre-processing method of
data integration. The PCA of the combined dataset was undertaken to attempt to retain or enhance

the original discrimination provided by the individual analytical techniques.

Minor additional studies were also undertaken, including how electrodes and electrolytes affect trace
elemental profiles in electrochemically prepared samples, and the consequences of long-term aging

of digested samples.

The ICP-MS of potassium chlorate samples and precursors involved the analysis of the trace metals
listed previously in Chapter 1.4.1. All samples, standards and controls for this analysis used 2% nitric
acid as a matrix and prepared gravimetrically for precision. As the aim of the analysis performed was
guantitation, the following limits of quantification (LOQ) were obtained for each of the elements.
This LOQ was calculated through the analysis of at least 5 blanks and taking ten times their standard

deviation (Table 4.1).

Table 4.1: Typical quantification limits for elements analysed in the ICP-MS of potassium

chlorate.
Element Fe Fe Mg Zn Cu Al Ca Ti
LOQ
0.41 0.22 0.27 0.54 0.27 1.10 0.41 0.12
(mg/kg)
Element Cr Mn Ni Ru Pt U Ba Sr
LOQ
0.03 0.05 0.05 0.01 0.01 0.02 0.01 0.02
(mg/kg)

The calibration of each element requires fitting a line of best fit to the calibration data depending on
the model of fit selected. This line of best fit was linear, y = mx + ¢ such that y is the intensity (counts
per second) and x is the concentration of standards (ppb). The model to fit the data varied between
the elements analysed in KCIO3 samples. In Table 4.2, an example of the calibration for this analysis

is displayed. A simple linear model uses a line of best fit across the entire range of calibration

91



solutions. This calculates the least squared sum of errors using the absolute error of the standards
(x?). A weighted linear model on the other hand calculates the linear fit from the least squared sum
of 1/error of the standards (1/x?). This results in the higher concentration standards now having less
impact on the linear regression, effectively weighting the fit to the lower concentration standards.
This is advantageous in cases where samples are measured towards the low end of the calibration
curve, as this improves low end accuracy. It should be noted, however, that this can have a negative
impact on the high end of the calibration curve and therefore a simple linear model is better suited
for elements commonly measured at high concentrations. To be certain of the correct model, the
results of each standard calibration curve must be examined and contrasted for each element, and

so the calibration data must be reprocessed with both models.

Alongside this linear model fitting, a working range must be kept in mind. Although the linear model
may predict instrument response down to 1 ppt, this in an unreliable measurement if the lowest
standard in the calibration range was only 100 ppt. Therefore, results outside of an element’s working
range should be treated with caution.

Table 4.2: Example of calibration data for elements selected in the ICP-MS analysis of
potassium chlorate.

Element | Mass Linear Model Coefficient of Correlation (R?) Working Range (ppb)
Mg 24 Weighted Linear 0.996273 0.1-100
Al 27 Simple Linear 0.999869 10-100
Ca 44 Simple Linear 0.999970 1-100
Ti 48 | Weighted Linear 0.999690 0.1-100
Cr 52 Weighted Linear 0.999906 0.1-100
Mn 55 | Weighted Linear 0.999448 0.1-100
Fe 56 Weighted Linear 0.988981 0.1-100
Fe 57 Weighted Linear 0.989050 0.1-100
Ni 60 Weighted Linear 0.999850 0.1-100
Cu 63 Weighted Linear 0.998068 0.1-100
Zn 66 Weighted Linear 0.993199 0.1-100
Sr 88 Weighted Linear 0.999903 0.1-100
Ru 102 | Weighted Linear 0.999878 0.1-100
Ba 138 | Weighted Linear 0.999948 0.1-100
Pt 195 | Weighted Linear 0.999980 0.1-100
U 238 | Weighted Linear 0.999301 0.1-100
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A few samples where larger quantities of material were available were tested in triplicate to assess
the consistency of the sample preparation and validity of the resultant data, to accurately represent
the bulk sample, represented as “SAMPLE (replicate number)”. From this triplicate analysis, the
percent coefficient of variation (%CV) was calculated by taking the standard deviation, dividing it by
the mean and multiplying by 100. These results are displayed in Table 4.3 and highlight a few
important aspects and drawbacks of the analysis. The %CV has been coloured green (0-10%), yellow
(10.01-20%), orange (20.01-40%) and red (>40.01%). These brackets have been designed to indicate
the level of reliability in the measurements with green being ideal, yellow acceptable, orange

guestionable and red being unacceptable.

Using these brackets, the results show that the majority of elements within the replicates are within
acceptable levels of variance. However, some are not, which must be interrogated further. Although
there are many unacceptable results, upon further inspection, many are due to the measurements
being close to the LOQ. Replicates below LOQ were recorded as 0 mg/kg, and this has a major
influence on the calculation of %CV values, as in reality the concentration may have only just been
under the LOQ. This makes the %CV highly sensitive at these ultra-trace levels making the context of
the %CV an important aspect to consider and not just the value alone. For example, the titanium %CV
for replicates Cul-Cu3 was 141.42%, as the replicates measured 0.00, 0.00 and 0.13 mg/kg. The LOQ
for titanium however, was 0.12 mg/kg and therefore the two 0.00 mg/kg measurements could have
been 0.11 mg/kg, which would have resulted in a %CV of 6.38%, which is within the acceptable limit
of 10%.
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Table 4.3: Percent coefficient of variation analysis of random triplicates.

Fe Fe Mg Zn Cu Al Ca Ti Cr Mn Ni Ru Pt U Ba Sr
mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg
30.77 | 3062 | 2745 | 1.10 | 000 | 727 | 502 | 049 | 177 | 0.65 | 075 | 0.00 | 0.00 | 0.00 | 043 | 0.04
DSTG3 | 30.88 | 30.69 | 34.14 | 1.23 | 039 | 1092 | 564 | 1.04 | 191 | 0.77 | 082 | 000 | 0.00 | 000 | 045 | 0.05
31.15 | 31.59 | 29.00 | 393 | 355 | 1019 | 532 | 058 | 179 | 1.15 | 086 | 0.00 | 0.00 | 000 | 031 | 0.04
%CV | 16.65 | | 33.98 | | 25.02 | | | 16.03 |

48.63 | 4896 | 29.19 | 1.80 | 000 | 367 | 813 | 026 | 117 | 075 | 010 | 0.00 | 0.00 | 000 | 1.15 | 0.4
DSTGL 055 | 4120 | 2864 | 210 | 000 | 326 | 823 | 018 | 111 | 062 | 009 | 000 | 000 | 000 | 093 | 046
4330 | 4470 | 3249 | 186 | 000 | 490 | 12.64 | 044 | 126 | 075 | 0.1 | 000 | 000 | 0.00 | 1.28 | 0.51

222 | 175 | 2950 | 259 | 238 | 581 | 422 | 105 | 008 | 0.11 | 0.13 | 0.00 | 0.00 | 0.00 | 022 | 0.07
KCI0s2 =597 396 | 31.96 | 2.76 | 270 | 537 | 547 | 117 | 008 | 013 | 033 | 000 | 000 | 000 | 025 | 0.09
217 | 214 | 2860 | 246 | 233 | 480 | 418 | 101 | 007 | 011 | 020 | 0.00 | 0.00 | 0.00 | 0.21 | 0.08
%CV | 30.04 | 36.75 10.81
072 | 069 | 0.64 | 145 | 000 | 0.00 | 0.61 | 0.00 | 0.00 | 000 | 000 | 000 | 0.00 | 000 | 0.02 | 0.00
El 130 | 1.24 | 054 | 829 | 032 | 000 | 125 | 000 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00
081 | 0.66 | 058 | 1.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 006 | 000 | 000 | 0.00 | 000 | 0.01 | 0.00
%CV | 26.99 | 31.08 | | |
504 | 499 | 000 | 090 | 4531 | 137 | 075 | 000 | 005 | 0.07 | 022 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
sS 785 | 794 | 000 | 232 | 89.14 | 385 | 0.88 | 0.00 | 006 | 0.09 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
578 | 536 | 000 | 157 | 9554 | 1.72 | 100 | 000 | 006 | 0.09 | 024 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
%CV_ | 19.09 | 21.56 | 0:00 | 36.29 | 29.12 1103 | 12.83 | 975 | 0.00 | 0.00 000 | 0.00 | 0.00 |
346 | 364 | 000 | 1.77 |157.32| 000 | 1.28 | 0.00 | 0.07 | 0.05 | 036 | 0.00 | 000 | 0.00 | 0.00 | 0.02
cu 308 | 292 | 000 | 200 |146.25| 219 | 1.00 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 000 | 0.00 | 0.00 | 0.02
422 | 420 | 000 | 1.72 | 16828 | 0.00 | 1.27 | 013 | 0.00 | 0.05 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 0.03

%CV | 13.22 | 14.52 | | | 13.88

Sample
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4.1.1 Exploratory Multivariate Analysis of ICP-MS Data

The raw results of the analysis were transformed in the same manner as previously described in
Chapter 3.3. This includes the values below the LOQ being transformed to zero values and the entire
dataset undergoing a logarithmic transformation. The data then underwent the exploratory data
analysis, including HCA and PCA of the dataset. Firstly, the HCA was performed to allow an
assessment of the potential of a further PCA analysis. The resultant dendrogram and sample identity
correlation table are displayed in Figure 4.1 and Table 4.4. This initial overview of the data shows

great clustering potential, without any further data transformations.

The dendrogram indicates that there are three to four densely packed branches. The other indication
of importance from the HCA are the two samples 78 and 79 that are closely related but separated
from the rest of the samples. This could have been detrimental to PCA, which is greatly affected by
the presence of any outliers. However, these two samples are the two calcium hypochlorite
precursors, rather than potassium chlorate samples and the PCA should identify why these are being
segregated. These samples would also be identified as outliers by other means, such as FTIR analysis

or even by physical examination.

For this first analysis, they were included within the dataset to assess their similarity to the end
products. Even prior to PCA, the samples closest to these outlying precursors were examined more
closely and seen to contain the potassium chlorate made from these two precursors (#34-42 and 61,
i.e. KCIOs 19-27 and PT1). There are, however, additional samples between the pool chlorine
manufactured samples and their precursors (#55-60, i.e. KCIO3 40-45) and these were all the partially
successful syntheses, attempting to use “Lite salt”, a low-sodium alternative to table salt, to
synthesise potassium chlorate. Additional samples of potassium chloride (KCI, KCI2) and sodium
chloride (NaCl2) were added to this analysis to investigate any differences between these, and the

precursors used in material synthesis.

The link between the trace metals from the pool chlorine to the final product suggests that the
elemental profile can carry over to the product from the precursor materials, supporting the aim of
the project to link precursor to product. This could potentially be used to link source materials to the
end product, however, the dendrogram does not delve into the details of why these trends are
apparent. To this end, PCA was run after these positive indications, on both precursors and end

products.
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Figure 4.1: Resultant dendrogram from the hierarchical cluster analysis of potassium chlorate ICP-MS data.
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Table 4.4: Sample correlation to number identifiers in HCA dendrogram in Figure 4.1.

Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample

1 | KCI 13 | DSTG1 (3) 25 | KCIOs 10 37 | KCIOs3 22 49 | KCIOs 35 61 | PT1 73 | Cu(3)
2 | KCI1 14 | KCIO3 1 26 | KCIOs 11 38 | KCIOs 23 50 | KCIOs36_1 62 | E1(1) 74 | FCB
3 | KCI2 15 | KClOs 2 (1) 27 | KCIOs 12 39 | KCIO3 24 51 | KCIO3 36_2 63 | E1(2) 75 | SACB
4 | E508 16 | KCIO3 2 (2) 28 | KCIOs3 13 40 | KCIOs 25 52 | KCIO3 37 64 | E1(3) 76 | WKR
5 | NaCll 17 | KCIO3 2 (3) 29 | KCIO3 14 41 | KCIOs 26 53 | KCIOs 38 65 | E2 77 | WKL
6 | NaCl2 18 | KCIO3 3 30 | KCIOs 15 42 | KClOs 27 54 | KCIOs 39 66 | ICP1 78 iiag(a(;dcl)z
7 | DSTG3 (1) 19 | KCIO3 4 31 | KCIO3 16 43 | KCIOs 28 55 | KCIOs 40 67 | SS (1) 79 | HCSS
8 | DSTG3 (2) 20 | KCIOs 5 32 | KCIOs 17 44 | KCIOs 29 56 | KCIOs 41 68 | SS(2)
9 | DSTG3 (3) 21 | KCIO3 6 33 | KCIO3 18 45 | KCIOs 30 57 | KCIOs 42 69 | SS(3)

10 | DSTG2 22 | KCIOs 7 34 | KCIOs 19 46 | KClOs 31 58 | KCIOs 43 70 | SIGALD

11 | DSTG1 (1) 23 | KCIOs 8 35 | KCIOs 20 47 | KClOs 32 59 | KCIOs 44 71 | Cu (1)

12 | DSTG1 (2) 24 | KCIOs 9 36 | KCIOs 21 48 | KClOs3 33 60 | KCIOs 45 72 | Cu(2)

DSTG3, DSTG1, KCIOs3 2, E1, SS and Cu were analysed in triplicate. Replicate number represented in brackets.
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PCA analysis was undertaken and the quality of the analysis must be scrutinised. This began with the
variance breakdown through the percentage of variance retained by each principal component

(Table 4.5), which may also be graphically displayed in a scree plot (Figure 4.2).

Table 4.5: Variance retention table for the PCA of KCIO3 ICP-MS data.

Component PrinciPaI Component Cumul:s.\tive Percerftage of
Eigenvalues Variance Explained
PC1 1.394769 44%
PC2 0.699795 65%
PC3 0.634484 85%
PC4 0.211191 92%
PC5 0.123422 96%
PC6 0.05054 97%
PC7 0.042824 98%
PC8 0.017902 99%
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Figure 4.2: Scree plot for the PCA of KCIO3 ICP-MS dataset.

This variance distribution is a little unusual as PCs 2 and 3 have similar levels of variance. However,
the percentage of variance indicates a moderately successful PCA, with 85% of the original variance
being represented in the first 3 principal components. The scree plot also shows the desired rapid

decrease in eigenvalue after PC4, indicating a successful PCA.

The coefficient table (Table 4.6) reveals the key contributors of each of the principal components.

There are many elements that do not influence the major PCs, most of which are because of rarity.
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However, one element in particular stands out and that is zinc. This is an element that is present in
significant amounts in the raw data, across every sample, and yet the variance is not significant
enough to provide great insight into the discrimination of samples. This is a good sign that other
elements are providing significant discrimination, so that even elements present in all samples do

not have a significant effect on the early PCs.

Table 4.6: Coefficient table for the first eight PCs of potassium chlorate ICP-MS data.

With so few elements providing variance across the sample set, a real concern is the potential for
covariance relationships between elements to be the cause of this effect. As the samples had been
synthesised with a single set of labware, this could lead to a consistent glassware contamination of
the KCIO3 produced, which would result in a significant covariance relationship forming between
elements present within the glassware. In order to clarify the level of covariance within the dataset,
the correlation coefficients (Table 4.7) were examined. This shows very little correlation between
elements excluding the two isotopes of iron, which was expected unless there is an interference at
the mass of one of the isotopes. Hence, correlation between elements was not a reason for the small
number of elements contributing to the PCs, but rather the elements of significance really are few in

number.
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Table 4.7: Correlation coefficients for the PCA of potassium chlorate ICP-MS data.

Fe (56) | Fe (57) | Mg Zn Cu Al Ca Ti Cr Mn Ni Pt U Ba Sr
Fe (56) LEGEND
Fe (57) 0.00-0.25
Mg 0.26-0.50
Zn 0.51-0.75
Cu - 0.76-0.95
Al 0.96-1.00
Ca
Ti
Pl @
Mn
Ni
Pt
U
Ba
Sr -
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The results of the PCA could now be examined and as the first three PCs account for 85% of the
original variance within the dataset, these are a good representation of the original data. Firstly, they
may be examined individually as in Figures 4.3-4.5. The sample numbers are consistent from the HCA

analysis expect KClOs is denoted as KCIO3 as subscripts could not be used.
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Figure 4.3: Score plot of PC1 from the PCA of ICP-MS data for KCIOz samples and precursors.
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Figure 4.4: Score plot of PC2 from the PCA of ICP-MS data for KCIO3 samples and precursors.
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Figure 4.5: Score plot of PC3 from the PCA of ICP-MS data for KCIO3 samples and precursors.

Examining these score plots, it could be seen immediately that there were clearly datapoints breaking
away from the main body of the dataset in PC1 and PC2.However, by PC3 the clustering is diminished

and from PC4 onwards, there is no longer any consistent discrimination between sample types.

In the results for PC1 (Figure 4.3), nearly all the starting materials break away, including the
potassium chlorides, sodium chlorides and household bleaches. This only leaves the calcium
hypochlorite (pool chlorine) starting materials not being separated from the main grouping of KCIO3

samples.

Samples produced by the electrochemical synthesis method also not only separated from the
majority of samples but remain tightly clustered apart from sample E2. E2 is an electrochemically
produced sample that involved a large spiking of the full range of analysed elements in the
electrolyte, to test the effect of trace metal incorporation from the electrolyte solution (further

examined in subchapter 4.1.2).

There are a number of samples that have separated above the main cluster including KCIO3 25-27
and 40-45. Samples KCIO3 25-27 are just three of the samples using pool chlorine as a starting
material, so not all of the pool chlorine samples were discriminated in this case. Samples KClOs 40-
45 are all the samples created using a low sodium salt supplement. This supplement is a mix of

sodium and potassium chloride sold at supermarkets. Synthesis involving this starting material was
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only partially successful, with very poor yields and a high concentration of the salt remaining, not
allowing recrystallisation without the loss of the final product. There were also two other outlier
samples, including one provided by DST Group, and the first KCIO3 sample produced from bleach. The
DST Group sample (DSTG2) was obtained commercially and therefore the precursors and synthesis
pathway are unknown. There are distinct differences in the elemental profiles of samples within the
dataset, which have been identified by the PCA. KCIOs 1 was prepared with the same precursors as
many of the other samples using bleach, however, this was the first successful synthesis which was
not yet optimised, and further adjustments were made to the procedure. This may have had a

significant impact on the elemental profile of further samples.

The electrochemical samples and starting materials as well as the two outlier samples, DSTG2 and
KCIOs 1, are separated below the main cluster and KCIO3 25-27 and 40-45 are above. Referring to the
coefficients in Table 6 this would suggest that the primary trace elements leading to this
discrimination were Mg, Al and Ca. This could be investigated further by plotting bar charts for each

sample of the elements with this valuable discriminatory information (Figure 4.6).

The charts in Figure 4.6 show that data points below the main group have low or no quantifiable
concentration in at least two or three of the elements. The samples above the main bulk of data
points, however, are more difficult to identify, but the calcium chart does show that they have higher
than average concentration. The correlation between these bar charts and the level of discrimination
in the score plot, especially for the samples with a high score value, is not entirely clear. If calcium
content was the driver for the higher score samples, then samples like sigald and KCIO3 19-24 should
also have been separated but were not. This shows the power of PCA and highlights that the PC1
score also includes minor contributions from other elements. In this study only a relatively small
number of samples have been analysed, as opposed to a real-world database, which could potentially
have thousands of samples. Without the PCA highlighting these elements for further inspection, an
analyst is confronted with the task of examining all elements analysed, which may be dozens, and

using those to discriminate between potentially thousands of samples.

103



3.000

e 550U
— 7(30)EDP RIS
pian

A3jmn

QDMm

PJ

e€no

ho

Tho
pledis
€58

7ss

TSS

Td31

&

€13

[ =]

T 13

Tld

St €012
€010
£F €012
v €03
Tk €012
o €0
6€ €02
8¢ €0/
LE €01
T 9€ €0
T 92 €023
SE €0
€€ £012)
Z€ €01
TE €02
0E €012
62 €012
8¢ €00
LT €013
9z €02
SZ €012
vz €012
€2 €010
72 €01
T2 €012
0Z €012
6T €02
8T €0/
LT €02
9T €02
ST €0
¥T €02
€T €012
ZT €01
TT €0
CT €012
6 €0
€0
€0
€0
€0
€0
£ E0
€ T €0
7T €0
T T €01
T €01
€ 12150
712150
T 15150
291sa

€ €2150
7 €2150
T €150
ZEN
TIDEN
12394
o)
T

123

5 1N O~ 00

(84/3

2.500

£ 2.000

1.500
1.000
0.500
0.000

£
S
i)
@
=
o
@
=

5531
ZiD0)edpedls
P

_v_E—

qaes

P4

£€na

n2

N2
pless
£Ss

7ss

155

Tddl

[£]

£ 11

Z 11

T 14

Tld

S €013
o €012
€7 €0
7 €0
T €023
oF €012
6€ 012
8€ €O
£€ €012
¢ 9E EODI
T 9E €0
SE €012
€€ €012
7€ €012
TE €0
0E €O
62 £OI
87 €012
£2 01
9z €012
52 €0
72 €0
£2 E0II
T E0II
T2 €03
0z €0
6T €012
81 €O
LT €01
9T €0
ST €013
T €013
€1 E0I
Z1 0
TT €0
0T €0
6 €0
€031
€0
€0
€0
€01
£ €0l
€ ¢ €0
7 ¢ eoR
T ¢ €0
T €0
€ 19150
7 19150
T 19150
0150

£ €9150
T €Dl1sa
T €150
zoeN
TI9eN
2304
e}l

T2

[8)]

= O~ ®

4.000
— 3.500

3.000
2.500
2.000

= 1.500

1.000

£

1 5w) winio|

[y}
o

0.500
0.000

853y
Zinojepeds
P

Iojrn

qgaes

Tss

Tdd|

[£]

€13
13

T 13

Tld

S €010
i €012
£ E0ID)
v €0
% €01
o E0I
6€ 01D
8€ €02
L€ EOI
T 9€ €0
T 9€ €0
SE 0D
£€ 01D
7€ £0ID
TE €0
0 €0
62 E0I)
87 €02
£2 E0I
9z 0D
SZ E0I
T €0
£2 £0ID)
T €01
1T €0
02 E0I
6T EOI
8T €012
LT €012
ST E0I
ST E0I)
#T E0I
€T £0ID)
TT €0
TT €0
0T €0
€012
€01
€012
€013
€01
€01
€012
£ T €0
7T €0
T2 €00
T €01
€ 19150
19180
T 19150
9150

£ €9150
¢ €9150
T €150
ZeN
TIDEN
12394
)]

T

123

S N W~ o

[l

, B) aluminium and C) calcium content for KCIO3 samples and precursors.

um

Bar charts for the ICP-MS analysis of A) magnes

Figure 4.6

104



The score plot for PC2 is interesting as it highlights separation between different samples to
PC1. The samples discriminated in this case were all of the KCIO3 samples produced using the
pool chlorine synthesis method, and the calcium hypochlorite which is the active ingredient
of pool chlorine. One sample (sigald) was a pool chlorine sample, however, this was not
created using the same precursor as the others, and instead used a Sigma-Aldrich laboratory
grade calcium hypochlorite. This result suggests the removal of the pool chlorine impurities

greatly affects the elemental profile of the end product.

The pool chlorine samples have higher scores, however, the precursor HCSS has a very low
score value. Referring to the coefficients in Table 4.6 once again, the only difference between
PC1 and PC2, other than the magnitudes of contribution, was the removal of magnesium and
the addition of iron to the list of elements of influence. This immediately suggests that these
samples were discriminated based on their iron concentrations. Interrogating the data further
with a bar chart for iron content of samples (Figure 4.7), this is shown to not entirely be the
case. The chart does show that the calcium hypochlorite precursors have a very large amount
of iron in comparison to the other samples, however, this high iron content was not conferred
into the resulting potassium chlorate products. In fact, two samples provided by DST Group
(DSTG1 and DSTG3) have much higher than average iron concentrations, however, are not
strong outliers in the score plot for PC2. This displays the ability for multivariate analysis to
not only take all the elements into account, but also the amount of discriminatory information

each possesses within a large and complicated database.
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Figure 4.7
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The score plot for PC3 (Figure 4.5) begins to show signs of weakened discrimination however, there
are some interesting takeaways. Firstly, the pool chlorine samples (light blue) and bleach samples
(red) are quite well separated. There is one pool chlorine sample that has become somewhat of an
outlier; however, this is the same sample (SIGALD) previously discussed to be different to the others.
The other key point of interest in this PC is the slight separation of one of the electrochemical sample
triplets (E1). Sample E1 used only titanium electrodes and is the only electrochemical cell to have two
inert electrodes and no additional trace metals within the electrolyte. This highlights the effect
electrodes and electrolytes can have, as the degradation of metal electrodes or presence of trace
metals in the electrolyte affects the elemental profile of the final product. The effect on the elemental

profile is also significant enough to be identified through a multivariate analysis such as PCA.

With each individual PC up to PC3 showing signs of discrimination, two-dimensional plots can be
examined. First PC1 and PC2 were plotted (Figure 4.8). This highlights the discrimination between

samples by combining the discrimination in the individual PCs.
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Figure 4.8: PC1/PC2 score plot for KCIO3; samples and precursors.

This plot has many interesting features, with the bleach samples clustering in a central location with
very little overlap with other types of sample apart from 2 triplicate analyses of commercial samples
(DSTG2). The pool chlorine samples are located above the bleach samples with just the one previously

discussed outlier sample (SIGALD). The partially successful syntheses resulting from using the health
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supplement KCI “LITE” have all been separated to the right of the bleach cluster. The final group of
samples from the electrochemical synthesis method are located to the left of the central cluster quite
distinctly apart from the previously discussed spiked electrolyte sample (E2). Mixed in with this
cluster are many of the precursor materials as expected from the analysis of individual PCs due to
the low concentration of trace elements in comparison to bleach and pool chlorine samples. The pool

chlorine precursors are separated once again due to PC2 as expected.

PC3 will give another perspective to these results and so a plot of PC1/PC3 can be created (Figure

4.9).
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Figure 4.9: PC1/PC3 score plot for KCIO3; samples and precursors.

This has not greatly improved the level of separation between clusters, as PC3 is where the
discrimination between groupings began to greatly diminish. However, as previously noted, the
electrochemical sample E1 (PC3 score of <0) has separated from the other electrochemical samples’

SS and Cu (PC3 score =1).

Through the application of class groupings as the sample precursors are known, clear groupings
relating to the various synthetic routes can be identified. One of the major drawbacks of undertaking
PCA without labelling sample types, as would be common in a real-world database, is the

determination of what constitutes separation or clustering. Without the potential to group samples
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based on knowledge of precursors and/or synthesis pathways in a real world scenario, more research

into mathematically quantifying separation and clustering is required.

4.1.2 Trace Element Profile Retention Using Electrochemical Synthesis

The elemental profiles for potassium chlorates made via the electrolysis method were shown to
contain very little of the trace elements, contributing to the score plot of PC1 (Figure 4.3) compared
to other samples. This allowed the identification of these samples as a clustering group, however, a
closer examination was undertaken to assess the effect of modifying electrodes and spiking the
saltwater solution on the final product. To test the effect of elemental profile retention, an

adulterated sample was prepared and compared to the samples prepared by electrolysis.

The data is shown in Table 4.8, with E2 being the adulterated sample. For this sample, the synthesis
was identical to that of E1, which involved the same NaCl, volume and dual titanium electrodes. The
difference between them was the addition of all the elemental stock solutions to the cell electrolyte,
to give a concentration of 50 ppb prior to applying the current. For further comparison, samples SS
and Cu had stainless steel and copper anodes, respectively, and titanium cathodes, and are also

included within the table.

Table 4.8: ICP-MS data for potassium chlorate samples produced via the electrolysis

method.
Sample | Fe 56 Fe 57 Mg Zn Cu Al Ca Ti
(mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)
E2 5.54 5.58 2.27 3.58 1.88 1.75 6.26 0.32
El 0.95 0.86 0.59 3.60 0.11 0.00 0.62 0.00
SS 6.22 6.10 0.00 1.60 76.66 231 0.87 0.00
Cu 3.58 3.59 0.00 1.83 157.28 | 0.73 1.19 0.04
Sample | Cr Mn Ni Ru Pt U Ba Sr
(mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)
E2 0.10 0.17 0.29 0.00 0.06 0.00 0.19 0.75
E1l 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00
SS 0.05 0.08 0.24 0.00 0.00 0.00 0.00 0.00
Cu 0.02 0.03 0.12 0.00 0.00 0.00 0.00 0.02

Comparing the spiked E2 sample to E1, many of elements had elevated concentrations, however, this
is not consistent across the board. This indicates that the presence of trace metals within the water

used for synthesis can be incorporated into the final material produced. These final products were
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also heavily washed and recrystallised with ultrapure water. The indications are that trace impurities

have not been removed from the KCIOs crystals by these common purification processes.

Examining the SS and Cu samples the level of trace metal released through the degradation of the
electrodes, even while under anodic protection, is significant. This is particularly evident with copper,
whose content in the resulting KCIOs is high when a stainless-steel anode was used, and even greater
when a copper electrode was used. This means that samples produced in an electrochemical cell
could potentially be identified by the electrodes selected for their synthesis. The previous PCA
analysis in sub-chapter 4.1.1 confirms that the electrode degradation trace element contribution
separated the electrochemical samples from the bleach and pool chlorine samples. The SS and Cu
samples were not separated from each other by examining Table 4.8 above. It is clear that the
samples are quite different to each other, especially when comparing copper and iron levels. This
highlights a drawback of PCA when examining individual data as differences may be found between
the Cu and SS samples. In the PCA however, this difference is not significant enough in comparison
to the wider differences within the overall dataset. Further iterations of PCA could be undertaken to
further discriminate within clusters, however this is limited. PCA requires a larger number of samples
in comparison to variables as previously discussed in the introduction. A PCA to examine just 2
samples will result in a singular principal component, as the maximum number of PCs is determined
by the number of samples minus one. This issue may be avoided if there was a larger population of

samples within a cluster and therefore, further iterations may be conducted.

4.1.3 Sample Digest Solution Aging Study

Samples synthesised for ICP-MS studies within this research were produced in very small quantities.
This resulted in sample digestions consuming close to the entire sample, which cannot be recovered.
In a real-world scenario, this could be a significant issue as this destructive analysis would be the last
possible analysis undertaken on a trace amount of explosive. This raises the question of the reliability
of retaining the digestion solution for future testing, for example, against additional elements, as this

is the last of the sample and could be stored.

To investigate this, a selection of 20 digested potassium chlorate samples previously tested were
retained for 9 months and retested. The samples were tightly sealed in plastic trace grade 50 mL
digestion vials, stored in a cupboard out of direct sunlight in 2% nitric acid, and kept at a laboratory

room temperature of 22-25°C. There was no visible change in the solutions after the storage with a
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stable volume, and no change in colour or precipitate formation. Prior to analysis, samples were
vortex mixed for 30 seconds, subsampled into 15 mL vials and loaded onto the autosampler. The
results were then used to calculate the change for each element and these results are recorded in

Table 4.9 which highlights some key trends.

It must be noted that in the case of trace analysis, many of the elements were not present at high
levels and so a minor change in concentration can lead to large relative differences. Also, as some
samples originally not containing quantifiable concentrations of an element have gained
concentration, the calculation will result in an undefined value due to the division of zero, and these
will be recorded as “UND”. The final consideration is the %CV of the ICP-MS method for each element
as previously examined in Table 4.3, as this will determine whether a change is within experimental

error

The resultant shift across all elements is not consistent, with some elements being affected by the
passing of time far more than others. The most dramatic of which was the copper measurements, as
this has increased by up to 10,876%. Some samples that originally did not contain copper measured
at 13-25 mg/kg upon the second analysis, which is just above the quantification limit. The previous
measurement may have been just below the limit of quantification and hence recorded as 0 mg/kg.
However, a minor increase in concentration cannot explain the 10,000% differences in other samples,
as these involved much larger increases of up to 294 mg/kg. Therefore, the stability of copper ions
within a 2% nitric acid solution at these levels is highly unreliable on long-term storage under the
conditions described. Although copper shows a distinct increase in concentration, there are elements
that were affected in the opposite direction, reducing their concentrations to below quantifiable
levels. This includes magnesium and barium; magnesium consistently lost 99-100% of the original
concentration, however, barium only lost concentration in samples with very low-level
concentrations to begin with and samples that contained higher levels remained more stable. Iron
and zinc were quite unstable as well, with significant consistent increases in concentration, however,
there were elements that showed some promise for storage under these conditions. These more
stable elements could still be reliable, even after a nine-month storage period even at very low levels;
there are small fluctuations with many measurements resulting in less than a 20% change. Comparing
this to the %CVs of the method from Table 4.3, this is a significant variation as prior to aging, many

random triplicates were shown to vary by a similar amount.
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Table 4.9: Change (in percentage) of ICP-MS results for KCIO3 digestion solutions stored for 9 months.

Fe (56) | Fe (57) Mg Zn Cu Al Ca Ti Cr Mn Ni Ru Pt U Ba Sr
M':;’:E:;kg 1345 | 1361 | 5899 | 277 | 147 | 6210 | 25085 | 121 | 050 | 033 | 032 | 000 | 000 | 000 | 071 | 0.85
KClOs2 (1) 109 184 -99 146 10671 -10 1 7 7 26 4 0 0 0 -100 -6
KClOs2 (2) 189 180 -99 139 10876 4 -3 8 14 23 7 0 0 0 -100 -26
KCl0s2 (3) 203 212 -99 136 10763 2 0 7 8 7 4 0 0 0 -100 -15
KClOs6 66 38 -99 111 10533 -7 -2 -10 0 6 3 0 0 0 -100 0
KCI0310 56 44 -99 160 10666 -3 6 20 0 8 2 0 0 0 -100 15
KCl0s20 30 30 -100 120 10542 | UND 1 -4 3 UND 4 0 0 0 -100 -1
KClOs26 32 38 -99 141 10821 -6 -2 0 3 14 1 0 0 0 -100 -5
KCl0s37 38 38 -99 151 10732 -14 7 2 0 51 32 0 0 0 -100 -11
KCl0342 18 29 -99 111 9569 -28 -12 -3 -10 -11 -8 0 0 0 10 -5
E1(1) 58 45 -100 125 UND UND -32 0 0 0 0 0 0 0 -100 0
E1(2) a7 35 -100 168 10704 | UND 27 0 0 0 0 0 0 0 -100 0
E1(3) 54 67 -100 99 UND UND 0 0 0 16 0 0 0 0 -100 0
E2 38 32 -100 157 10806 101 2 -16 28 10 8 0 28 0 -100 1
dstgl (1) 35 34 -99 128 UND 48 18 -20 3 12 3 0 0 0 11 0
dstgl (2) 13 9 -99 142 UND 41 9 -5 1 11 9 0 0 0 3 -3
dstgl (3) a7 43 -99 106 UND 19 3 -38 3 10 -3 0 0 0 18 -2
dstg2 70 136 -100 189 10852 | UND 22 0 23 0 6 0 0 0 36 -6
dstg3 (1) 34 36 -99 72 UND 15 0 9 7 4 4 0 0 0 -40 -17
dstg3 (2) 53 51 -99 72 10625 -5 11 -38 5 7 2 0 0 0 -35 -16
dstg3 (3) 25 22 -99 151 10421 -1 -4 6 1 20 3 0 0 0 -66 21

*UND=undefined
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Examining these results, storage under these conditions would not be recommended as there is far
too much variance for a forensic investigation. Further research could be done in this area by varying
these storage conditions to attempt to increase the reliability using methods such as freezing samples

or increasing acidity prior to storage to promote stability.

In this chapter potassium chlorate samples were analysed by ATR FTIR, to determine the potential
for the analytical technique to provide discriminatory information on the samples. Initially this was
done through the visual comparison of raw spectra, to identify any possible trends separating
groupings of samples, followed by further exploratory data analysis in the form of PCA. This was
utilised to better examine the entire dataset for less obvious differences between groups of samples,
and to reduce the dimensionality of the dataset to identify the exact areas of the spectra that lead

to discrimination.

Authentic commercial samples of potassium chlorate were sourced through the Defence Science and
Technology Group (DST Group) and below in Figure 4.10 is an example of an infrared spectrum of

potassium chlorate from the analysis of sample DSTG1.
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Figure 4.10: IR spectrum of potassium chlorate sample DSTG1.

Peaks in the infrared spectrum of potassium chlorate include signals at approximately 615 cm™
(sharp), 930 cm™ (sharp, major) and 955 cm™ (shoulder). The area between 1950 and 2300 cm™ is
noisy due to the diamond ATR crystal having multiphonon intrinsic absorption in this range, causing

vibrations within the diamond lattice resulting in reduced transmission.36
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Figure 4.11 presents the spectra of all KCIO3 samples plotted collectively showing that the samples
are quite similar and contain the expected peaks; however, some clear differences are apparent.
Many of the samples display common additional peaks at 610 cm™ (sharp), 930 cm™ (sharp), 1087
cm (broad), 1198 cm™ (shoulder), 1425 cm™ (broad), 1628 cm™ (sharp) and 3383 cm™ (broad). These
indicate the presence of impurities which can be used to discriminate between samples. Figure 4.12
shows the collective spectra of all samples after a normalisation of transmission percentage to the

major peak at 930 cm™ to enable a more suitable comparison between the samples.

As a result, the samples could be separated into two groups; spectra with and without these
additional peaks. This pattern directly correlates between spectra of potassium chlorate samples
made from bleach and electrochemistry, which do not contain the additional peaks, and the pool

chlorine samples, which do contain the additional peaks.

This key identifier was suspected to be due to remnants of the various stabilisers present in pool
chlorines, primarily the UV stabiliser cyanuric acid. Although this is the main common additive,
others exist including pH regulators such as sodium bisulphate. However, this is to a much lower
concentration; much of the time it is not listed in the active ingredients and not as likely to produce

noticeable additional peaks in the final IR spectrum.

114



3550

3050 2550 2050 1550
Wavenumber (cm?)

Figure 4.11: Raw IR spectra of all potassium chlorate samples.
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Figure 4.12: IR spectra of all potassium chlorate samples normalised to the major peak at 930 cm™?.
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To test this hypothesis, a sample of cyanuric acid was obtained from a pool supplies store, sold as

pool chlorine UV stabiliser and its IR spectrum collected as shown in Figure 4.13.
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Figure 4.13: IR spectrum of cyanuric acid.

Though this does have a few signals that are in the correct regions, it is evident that many additional
peaks are present, that are not found in the spectra of the potassium chlorate samples. Therefore,
the conclusion was made that this was not the explanation for the additional signals in the pool

chlorine derived samples.

Predicting the other minor additives in the pool chlorine granules, that are not listed in the active
ingredients would be incredibly difficult and therefore a sample of pure calcium hypochlorite was
obtained from Sigma-Aldrich to repeat the synthesis with just the chemical required to produce
potassium chlorate. This was unexpectedly difficult, as following the same method described in the
synthesis of potassium chlorate from pool chlorine did not yield any potassium chlorate. To resolve
this lack of production the pH of the calcium hypochlorite solution was manipulated via the addition
of hydrochloric acid to reach a pH of between 4 and 6. At this pH, synthesis was successful, however,
only minor amounts were produced and further modifications did not result in greater yields. This
indicates that the additional chemicals within a pool chlorine product stabilise the hypochlorite ions
to enable them to react further to form the desired chlorate ion required to produce potassium
chlorate. Lowering the pH with hydrochloric acid also favours this reaction to occur, however, it does

not stabilise the hypochlorite ions to the same extent.
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A benefit of IR spectroscopy is that even with almost trace amounts of material an analysis may be

performed and so an IR spectrum for a low yield sample could be obtained as in Figure 4.14.
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Figure 4.14: IR spectrum of potassium chlorate made using Sigma-Aldrich calcium
hypochlorite and hydrochloric acid.

This spectrum does show that some of the additional peaks found in samples produced from pool
chlorine are no longer present, however, there are features that still separate this from bleach
derived samples, including the broad peak at 1415 cm™ and small shoulders at 715 cm™ and 890 cm™.
As these features were present in the pure calcium hypochlorite derived sample this leaves just the
origin of the large peaks at 1100 cm™?, 1700 cm™ and 3400 cm™ unassigned. Additionally, the relative

amplitude of the 1415 cm™ peak is lower than that of the pool chlorine samples.

One noticeable difference between the pool chlorine and bleach methods is the production of an
insoluble calcium deposit on all glassware, requiring acid cleaning to remove. This could potentially
be present in the final product and so was isolated by dissolving a large amount of laboratory grade

Sigma-Aldrich calcium hypochlorite in water, filtering the insoluble solids and performing an IR

analysis (Figure 4.15).
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Figure 4.15: IR spectrum of isolated insoluble material from calcium hypochlorite solution.
This unknown solid has many of the unassigned peaks including 715 cm™, 870 cm?, 1400 cm™ and
the broad stretch at 3400 cm™. Based on its low solubility, the unknown product was predicted to be
calcium hydroxide. To confirm this, a sample of calcium hydroxide was prepared for comparison by
combining aqueous sodium hydroxide and calcium chloride. The calcium hydroxide was washed with
a large volume of hot water to remove any possible impurities; hot water was used as calcium
hydroxide has inverse solubility where it is more soluble in cold rather than hot water. This was then

dried in a desiccator for 2 days prior to IR analysis.

The prediction is somewhat confirmed, however, the broad peak at 3400 cm™ has been replaced with
a sharp peak at 3640 cm™ (Figure 4.16). A possible explanation for this lack of broad stretch could be
the formation of a hydrate, rather than in the case of the pool chlorine samples, where free water

may be trapped within the sample.
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Figure 4.16: IR spectrum of prepared calcium hydroxide.

Although both the calcium hydroxide and cyanuric acid can account for many of the peaks present in

the pool chlorine samples, it is not a direct match. This could be due to the presence of an additional
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unidentified impurity in the pool chlorine starting material or the product of an unknown reaction

between the chemicals throughout the synthesis process.

The differing spectral features between potassium chlorate samples is useful, as it allows for some
insight to be gained as to the synthetic pathways and starting materials used in its production.
However, there may be more discriminatory information that is not so obvious and so a chemometric

approach was undertaken.

4.2.1 Exploratory Multivariate Analysis of FT-IR Data

The first step in any chemometric approach is a well-defined pre-processing methodology. As PCA is
a purely mathematical approach, some level of normalisation must be employed to allow the spectra
to be compared to one another. Normalisation was undertaken using the major common signal of
the spectra at 930 cm™ and setting the transmittance to at this point to 1% (Figure 4.12). The
transformed spectra are now comparable to each other. Another aspect of PCA is that all datapoints
will now be treated equally, and so abnormalities must be carefully considered; for example, the
noisy ATR region in the FTIR spectra (1750-2675 cm™). This will have to be removed as it is a large
source of variation between samples, which cannot be attributed to the differences between samples

but rather a limitation of the analytical equipment.

Some samples also had weaker absorbances, which could be a result of sodium/potassium chloride
impurities within the samples, which are transparent in the frequency range being analysed. This
effectively dilutes the potassium chlorate signals and once normalised, will negatively impact the
signal to noise ratio of these spectra. This alone can be valuable information as it indicates a less
efficient method of manufacture, however, outliers such as these will hinder the discriminatory
power of the PCA. When such spectra were examined, the signal to noise ratio is unfavourable, and
if excessive noise exists in regions with characteristic signals, this will cause issues as it introduces
artificial variance in the dataset. Unfortunately, little can be done to negate this other than excluding
the spectra. Excluded samples include KCIO3 20, KCIOs; 40-45, which were all partially successful

syntheses.

This highlights a major drawback of a purely mathematical approach such as PCA used in isolation
increases the importance of high-quality spectra. This high quality and consistency of data may not
be possible in real world scenarios, where different instrumentation is used, producing a variety of
resolutions and quality. This is further compounded if there are additives in an analysed HME such
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as fuels, stabilisers, etc. These real-world complications may make comparisons of samples to a
database more difficult, much like the case for other database matching applications, e.g., poor

quality fingerprints found at crime scenes or low-quality photos for facial recognition.

The final step of the pre-processing is a visual screening of data as there may be clear visual signs of
outlier spectra when examined. After this pre-processing, the spectra were transformed to a more

suitable state as pictured in Figure 4.17 and the exploratory data analysis was undertaken.
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Figure 4.17: IR spectra of KCIO3 samples after initial pre-processing of data.
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Firstly, a hierarchical cluster analysis (HCA) was performed on the normalised data to identify any
clear groupings within the spectra. The results are displayed in Figure 4.18 in the form of a
dendrogram, and the accompanying Table 4.10 displays the corresponding sample identities. This
analysis shows that there are not many clear groupings as the majority of the samples are very similar
to each other. There are, however, several samples that stand out including samples 28, 29, 33, 34,
36 and 35, which correspond to KCIOz 19, KCIO3 21, KCIO3 25, KCIOs 25_2, KCIO3 27 and KCIOs 26.
These are all samples produced through the pool chlorine synthesis method and therefore this is not
an unexpected result. As previously mentioned, their IR spectra looked visibly different with some
clear additional signals within the spectra. This highlights that potential discrimination may exist
within the dataset, however, this is a very basic non-transformative analysis and for more information
PCA needs to be performed as HCA does not identify why some spectra are different to others in any
level of useful detail. While in this exploratory study the HCA is just as useful as the visual inspection,
in a real-world database where thousands of samples may be analysed, a visual inspection would be

difficult and time consuming.

Table 4.10: Sample correlation to number identifiers in HCA dendrogram.

Number | Sample Number | Sample Number | Sample
1|cu 19 | KCIOs 10 37 | KCIO3 28
2 | dstgl 20 | KClO3 11 38 | KCIO3 29
3 | dstg2 21 | KClO3 12 39 | KCIO3 30
4 | dstg3 22 | KClIO3 13 40 | KCIO3 31
5|el 23 | KClO3 14 41 | KCIOs3 32
6| e2 24 | KClO3 15 42 | KCIOs 33
7 | icomsl 25 | KCIO3 16 43 | KCIOs3 35
8 | KCIO3 1 26 | KClIO3 17 44 | KCIOs 36
9 | KCIO3 2 27 | KCIO3 18 45 | KCIO3 36_2

10 | KCIO3 3 28 | KCIO3 19 46 | KCIOs3 37
11 | KCIO33_2 29 | KClO3 21 47 | KCIOs 38
12 | KCIO3 4 30 | KCIOs3 22 48 | KCIOs3 39
13 | KCIO3 5 31 | KClO3 23 49 | ptl

14 | KCIO35_2 32 | KClO3 24 50 | Ss

15 | KCIO3 6 33 | KCIO3 25

16 | KCIO3 7 34 | KCIO3 25_2

17 | KCIO3 8 35 | KCIO3 26

18 | KCIO3 9 36 | KCIO3 27
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Figure 4.18: Resultant dendrogram from the hierarchical cluster analysis of potassium chlorate IR spectra.
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Prior to inspecting the results of the PCA analysis it is important that the quality of the analysis is

reviewed. Firstly, as the data has been completely transformed, it is crucial to determine how much

of the original dataset’s variance has been retained. This can easily be calculated using the cumulative

sum of the principal component eigenvalues divided by the total variance. Tabulated in Table 4.11

below are the results of the variance retention calculations, and the accompanying scree plot in

Figure 4.19.

Eigenvalue

Table 4.11: Variance retention table.

Principal Cumulative
Component Percentage of
Component | Eigenvalues Variance Explained
PC1 124843.5549 57%
PC2 48651.70041 80%
PC3 28343.92219 93%
PC4 7310.307275 96%
PC5 3299.430407 98%
PC6 1378.324004 98%
PC7 1237.631349 99%
140000
120000
100000
80000
60000
40000
20000
0
0 1 2 3 4 5 6 7 8

Principal Component

Figure 4.19: Scree plot for the PCA of pre-processed KCIOs3 IR data.

This variance breakdown illustrates that 96% of the variance is retained within the first 4 principal

components and 99% by the seventh component. A clear elbow in the scree plot curve at component

4 indicates that further components have a dramatic reduction of variance within the data.
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PCA performs a dimensionality reduction and as such, each principal component is made up of many
variables of the original dataset. In the case of IR spectra, these variables consist of the wavenumbers
of the spectra and it is important to understand the make-up of the factors/loadings in each principal
component. These loadings are summarised numerically in Table 4.12 and graphically in Figure 4.20.
The data has been presented differently to the previous ICP-MS analysis due to the large number of
datapoints as each 0.25 cm™ is counted as a variable. As a result, listing individual loadings rather
than ranges would result thousands of data points, rather than a few elements as was the case in

ICP-MS analysis.

Table 4.12: Loading factors for principal components 1-4.

Principal Component | Key Loading Regions (cm™)

PC1 628-726, 1019-1247, 1382-1507, 3308-3474

PC2 1011-1238, 1622-1648, 3165-3585

PC3 600-610, 619-893, 985-1026, 1049-1143

PC4 601-604, 765-863, 1027-1030, 1039-1128, 1245-1537, 3629-3630

The loadings plots identify the regions of the IR spectra that contribute to each of the principal
components and should somewhat resemble a spectrum in that they are smooth curves that
correspond to signals in the original spectrum. Once a loadings plot begins to stop resembling a
spectrum, this is an indication that the component is no longer representing a significant amount of
variance within the original dataset. This can start to be seen in PC4, where the curves form sharper
points, which is understandable as 93% of the dataset’s variance is accounted for prior to PC4, which

then only accounts for an additional 3%.

The representation in Figure 4.20 is quite informative as it shows the location and magnitude of
influence various regions of the spectrum have on each PC. A shortcoming, however, is that without
the direct comparison to the original spectrum, the greater picture of exactly where the contribution
relates to can be lost. Therefore, a loadings breakdown (Figure 4.21) can be created to supplement

these plots to clearly highlight this aspect.
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Figure 4.20: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the KCIO3 FT-IR dataset.
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The initial analysis of the variance retention and loadings of the PCA is incredibly important in
understanding and being able to extract useful information from the results. These results come in
the final form of scores, which can then be used to identify clustering through the use of various

plotting strategies.

The individual components may be plotted to examine the discriminatory power of each principal
component as in Figure 4.22. Examining these plots, PC1 shows that there is no large separation
between any of the groups of samples. There are a few low score samples, most of which are pool
chlorine samples however, there this clear crossover with bleach samples and even four pool chlorine
samples, mixed in with the bulk of the other samples. This indicates that the previously identified
visual differences between the pool chlorine samples and non-pool chlorine samples were not

identified as significantly discriminatory in this analysis.

This suggests that the pre-processing has affected the PCA in a negative manner. When re-examining
the plot of pre-processed spectra in Figure 4.17, it is evident that the baselines of the spectra are
variable, including over the regions with impurity peaks. This minimises the discriminatory variability
across the samples and so a baseline correction will be a required addition to the pre-processing

method.

This information is from just one principal component and more can be examined to see further
discrimination; however, as PC1 accounts for 57% of the dataset’s original variance, the amount of
variance explained by further components does diminish. This is apparent when reviewing PC3
(Figure 4.22C) where there is no clear separation between sample types, as the main cluster of
samples has spread into a disparate cloud of data points. This provides no beneficial information to

help discriminate samples from one another.

The benefit of PCA is that each component is a multitude of dimensions in the original dataset and
hence combining multiple components in a single plot allows the analyst to encompass up to 93% of
the original variance (in this dataset) by performing up to a three-dimensional plot. Figures 4.23 and

4.24 show two-dimensional plots between principal components 1, 2 and 3.
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Figure 4.22: One dimensional score plots for A) PC1, B) PC2, C) PC3 and D) PC4 of the normalised KCIO3 FT-IR dataset
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Figure 4.23: Two-dimensional score plot of PC1/PC2 of the normalised KCIO; FT-IR dataset.
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Figure 4.24: Two-dimensional score plot of PC1/PC3 of the normalised KCIO; FT-IR dataset.
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The plot of PC1/PC2 highlights the slight separation of all the pool chlorine method samples from the
rest. This separation, however, is not very distinct and if sample types were not colour coded only

the distinctly separated samples could be confidently identified as a separate grouping.

The plot of PC1/PC3 shows the lack of discriminatory information contained within PC3, as there is
very minimal separation between sample types other than the cluster of four distinctly separated

samples purely from the PC1 scores.

The ideal representation of PC data is in the form of a three-dimensional plot, as it can display all the
variance within 3 PCs. Unfortunately, this does not present well in a static form as shown in Figure
4.25 but is incredibly informative in an interactive state such as MATLAB, where the plot may be
rotated to examine the clustering from various perspectives. In this way, two-dimensional planes of

separation may be identified to separate groups of samples.
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Figure 4.25: Three-dimensional plot of PC1, PC2 and PC3 of the normalised KCIOs FT-IR
dataset.
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This analysis can identify that there is some minimal level of discriminatory identification within the
infrared spectroscopy dataset through the use of PCA on normalised data. As previously mentioned,
more pre-processing could be undertaken to try and improve the analysis, for example, a baseline
correction. There are complications to such a pre-processing technique, as it must be applied
consistently across all samples and in this case the Spectrum?®3! software package was used to apply

a polynomial correction across all the samples together.

Applying a manual baseline correction to the original dataset using the 6 base points in Table 4.13,
and depicted in Figure 4.26, results in the dataset transforming to Figure 4.27. These points were
selected based on the collected spectra, which indicated that these points were a return to baseline.
The software can also select and apply these positions automatically, however, to record and retain

these positions a manual method was selected, rather than an unknown computer correction.

Table 4.13: Manual baseline correction base points selection.

Base Point | Position (cm™)
647
1308
1558
1730
2995
3678
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Figure 4.26: Manual baseline correction base points marked on KCIO3 1 spectrum.
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Figure 4.27: Spectra of KClIO3; samples after 6 base point baseline correction followed by normalisation to the major peak at 930 cm™ (ATR
region removed).
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The HCA of this dataset as shown in Figure 4.28 very closely resembles that of the original dataset,

with the 6 samples clearly separated from the main body of samples being those of the pool chlorine

synthesis method. The distance between the clusters of samples within the dataset are now greater

and indicate a more discriminatory dataset.
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Figure 4.28: Hierarchical cluster analysis of potassium chlorate IR spectra after 6-point
baseline correction and normalisation.

Table 4.14: Sample correlation to number identifiers in HCA dendrogram.

Number | Sample Number | Sample Number | Sample Number | Sample Number | Sample
1| KClOs 1 12 | KCIOs3 10 23 | KCIOs 22 34 | KCIOs 32 45 | DSTG3
2 | KClOs32 13 | KClO3 11 24 | KCIOs 23 35 | KCIOs 33 46 | PT1
3 | KCIO3 3 14 | KClOs3 12 25 | KCIOs 24 36 | KCIOs 35 47 | E1
4 | KCIO33_2 15 | KClOs3 13 26 | KCIOs 25 37 | KCIOs 36 48 | E2
5 | KClOs 4 16 | KClOs 14 27 gg'_?’ 38 52'_23 49 | ss
6 | KClIO3 5 17 | KClOs3 15 28 | KCIOs 26 39 | KCIOs 37 50 | Cu
7 | KClOs5_2 18 | KCIOs3 16 29 | KCIOs 27 40 | KCIOs 38
8 | KCIOs 6 19 | KClO3 17 30 | KCIOs 28 41 | KCIOs 39
9 | KClOs 7 20 | KCIOs 18 31 | KCIOs 29 42 | ICPMS1

10 | KCIO3 8 21 | KCIOs 19 32 | KCIOs 30 43 | DSTG1
11 | KCIO3 9 22 | KCIOs 21 33 | KCIOs 31 44 | DSTG2
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Following this preliminary analysis, PCA was undertaken to further understand and possibly enhance

the discriminatory data within this dataset. As in the previous analysis, the variance and loadings

were investigated to understand how the exploratory data analysis has performed. The variance has

the same breakdown with 96% of the variance being retained within the first 4 principal components

and 99% by the seventh component. The scree plot is slightly different with the initial slope remaining

almost linear to the third component and has a clear point of inflection in the curve at PC3.
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Table 4.15: Variance retention table.

Principal Cumulative
Component Component Percentage of
Eigenvalues Variance Explained
PC1 102339 55%
PC2 56529 85%
PC3 15337 93%
PC4 5928 96%
PC5 2430 97%
PC6 1758 98%
PC7 906 99%
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Figure 4.29: Scree plot for the PCA of KCIO; IR baseline corrected and normalised data.

The loading plots are displayed in Figure 4.30 and are very similar to the original data loading plots

in Figure 4.20 apart from two details. First, in PC1 the value of the loading in the 600-1000 cm* region
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has been greatly reduced to insignificant levels. Second, the PC2 loadings have reversed in terms of
the direction of the loading factors, with the region between approximately 900 and 1400 cm™* now
being a positive weighting rather than negative, and the region between approximately 2700 and

3800 cm™! switching from a positive loading to a negative loading.

With this understanding of the analysis the results may now be examined. First, the one-dimensional

form was examined for groupings within the first four principal components (Figure 4.31).

PC1 (Figure 4.31A) shows that there is a separation of the pool chlorine samples (orange) from the
rest of the samples, however, that is the extent of the discrimination within this PC. This is a very
similar result to the data prior to baseline correction, with the one difference being that there is less
crossover between the pool chlorine samples and the rest. In this case, KClIO3 36_2 is the only bleach
sample located with the pool chlorine samples, rather than the previous analysis where multiple
bleach samples were. This clearer separation of the pool chlorine samples indicates that the new pre-
processing method is an improvement upon the last method, highlighting the importance of a

baseline correction.

PC2 (Figure 4.31B) shows a similar result with only five pool chlorine samples with higher scores
separating significantly from the bulk of samples. One interesting point, however, is that the samples
separated by the greatest difference were some of the poorly discriminated samples within the
previous PC1 score plot. A combination of these two principal components may therefore yield a
much greater distinct separation of these samples from the bleach and electrolytic cell samples. PC3
and onwards show very poor discriminatory ability, and so scores beyond PC2 provide very little

useful information.
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Figure 4.30: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the KCIO; FT-IR dataset after baseline correction and normalisation.
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With these results, a two-dimensional plot of PC1 and PC2 vyields a good level of discrimination
between the samples as shown in Figure 4.32. The same pool chlorine precursor samples are
discriminated as the previous analysis, however, the separation between them and the others is
stronger. Referring back to the coefficients plot for PC1 and PC2 (Figure 4.30 A/B), we can see that
this separation is due to the additional impurity peaks carried over from the pool chlorine precursor,
as previously discussed. This aligns much better with the initial visual inspection of the spectra

undertaken prior to any chemometric analysis.

This analysis of infrared spectra has resulted in some discrimination of samples through the presence
of impurities due to differing starting materials. The samples produced through the pool chlorine

method are all successfully separated from the remainder of the samples.

There are, however, a large number of samples where no discrimination was possible as the synthesis
methods did not result in any impurities at significant enough levels to perturb the IR spectra from
pure KClOs. As the chemometric methodology used was able to separate samples based on trace
amounts of impurities as a result of the starting material utilised, application of this same procedure
to a database of real-world KCIO3-based HME samples could potentially discriminate samples based
not only on the impurities present in the KCIO3 component but also fuels and their fuel:KCIOs ratio.
These would all affect the signals in the spectra and also their peak ratios. The extent of

discrimination based on fuel type and fuel ratio is a future study that would need to be undertaken.

The analysis of baseline corrected and normalised data provided a greater level of discrimination
than just normalisation. The normalised data did show some level of discrimination based on the
additional peaks identified by basic visual examination but did not fully separate all spectra with these
peaks due to baseline differences. The baseline corrected data, however, had a much greater match
with groupings identified by the preliminary visual inspection of the dataset greatly reducing the

effect of discrimination due to baseline differences.

Figure 4.33 shows an example of a Raman spectrum of a commercially sourced potassium chlorate

sample DSTG1.
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Figure 4.33: Raman spectrum of potassium chlorate sample DSTG1.

Peaks in a typical Raman spectrum of pure potassium chlorate include signals at approximately 280
cm™ (minor, combination of 2 peaks between 270-290 which sometimes become a single peak),
440 cm™ (minor, sharp and sometimes a shoulder), 490 cm™ (sharp), 620 cm™ (sharp), 940 cm™

(major, sharp) and 980 cm™ (sharp).

Raman spectra of all KCIOs samples were pre-processed in the same manner as the previously
discussed methodology used for IR spectra apart from the baseline correction, which was not
required. All spectra were reduced to the range of 250-1100 cm™ as beyond 1100 cm™ no signals
were present within any of the samples. This reduced the amount of data to be analysed by 70%,
without losing any signals of interest. This would not always be possible especially when analysing
KCIOs HMEs with added fuels as additional signals may be present beyond 1100 cm™. Samples with
low signal and excessive fluorescence have been excluded and all remaining spectra were normalised
to the major 940 cm™ peak. The final spectra in this dataset are displayed in Figure 4.34. Examining
these spectra as a collective, visually, there is very little difference between them all. DSTG3 is the
only sample to have an additional peak at 1050 cm™ setting it apart from the rest. The only other
visible variation between spectra exist around the 280 cm™ region which may be enough for some

level of discrimination between samples.
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Figure 4.34: Normalised Raman spectra for all KCIO3 samples (excluding poor quality spectra) between 250 and 1100 cm™
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To validate the preliminary assessment based on visual comparison of the IR spectra, HCA was
performed on the IR dataset. The HCA does not show great potential in identifying clusters of samples
as shown in Figure 4.35. The overall dataset is very similar as indicated by the Euclidean distance of

the majority of samples being very minimal and there is very little distinct clustering.
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Figure 4.35: Resultant dendrogram from the hierarchical cluster analysis of normalised
potassium chlorate Raman spectra.

Table 4.16: Sample correlation to number identifiers in HCA dendrogram in Figure 4.33.

Number | Sample Number | Sample Number | Sample Number | Sample Number | Sample

1| dstgl 9 | KCIOs3 6 17 | KClOs3 15 25 | KCIOs 23 33 | KCIOs 32
2 | dstg2 10 | KClO3 7 18 | KCIOs3 16 26 | KCIOs 24 34 | KCIOs 33
3 | dstg3 11 | KCIO3 8 19 | KClOs3 17 27 | KCIOs3 25 35 | KCIOs 36
4 | E2 12 | KCIO3 9 20 | KCIOs 18 28 | KCIOs 26 36 | KCIOs 39
5 | KCIOs 1 13 | KClO3 11 21 | KCIOs 19 29 | KCIOs 27 37 | KCIOs 41
6 | KCIOs 2 14 | KClOs3 12 22 | KCIOs 20 30 | KCIOs 28 38 | KCIOs 42
7 | KClOs 4 15 | KClO3 13 23 | KCIOs 21 31 | KCIOs 30 39 | KCIOs 43
8 | KClIO3 5 16 | KClO3 14 24 | KCIOs 22 32 | KCIOs 31

Regardless of the low probability of discriminatory value contained within this dataset, PCA was
undertaken to test this hypothesis. In the following table of variance retention and accompanying
scree plot, it is shown that the variance within the dataset was not well condensed by the PCA. The
retention table shows that the variance is spread over many principal components with 95%

accounted for at PC8 and 99% after an extreme 20 principal components. This is represented
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graphically in the scree plot, where there is less of an obvious inflection point and more of a smooth

curve.

Table 4.17: Variance retention of the PCA of normalised KCIO3 Raman data.
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Figure 4.36: Scree plot for the PCA of normalised KCIO3 Raman data.

Cumulative
Component | Eigenvalue | Percentage of
Variance
PC1 0.1576 48%
PC2 0.0598 67%
PC3 0.0327 77%
PC4 0.0255 85%
PC5 0.0133 89%
PC6 0.0112 92%
PC7 0.0061 94%
PC8 0.0041 95%
PC20 0.0004 99%
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Another confirmation of a poor PCA can be seen from the loadings plots in Figure 4.37.
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Figure 4.37: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the normalised
KCIOz Raman dataset.

Though the first and second principal components showed identifiable spectral features, by PC3 this
had devolved into mainly background noise and sharp spikes rather than smooth peaks. This was yet
another red flag that the analysis would provide little discrimination between samples within this

dataset.

The final results were then examined to visualise exactly how little discriminatory value there was
within the Raman spectra. In Figure 4.38 are two plots of PC1/PC2 and PC2/PC3 showing no clear
clusters of samples as expected. Rather than identifiable groups of samples, the plots are just a
nebulous cloud of data points. The only exception is sample KCIO3 13, which was a slight outlier in

PC1 due to an unusual signal at 208 cm™ and above average signal at 290 cm™.

This analysis was an example where further analysis beyond a visual inspection of the original dataset
does not yield any greater level of understanding. It also highlighted the various indicators that a PCA

analysis was not going to achieve a great deal of discrimination. This included:

e alack of separation between clusters in the HCA,

e the lack of successful variance condensation on examining the eigenvalues of the PCA,
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e the lack of quality spectral loadings, and
e the principal component score plots which confirmed the lack of discriminatory value of the

Raman dataset.
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Figure 4.38: Score plots of A) PC2 vs PC1 and B) PC3 vs PC2 of normalised KCIO3 Raman
dataset.

The lack of differences within Raman spectra stems from the lack of Raman active impurities within
samples. This result highlights the complimentary nature or Raman and IR spectroscopy as IR active
impurities were identified. The number of samples that data could be collected for in the Raman case
was also reduced as some samples could not be recorded due to fluorescence and breakdown of

equipment.

4.4 Combined IR and ICP-MS Data for Potassium Chlorate

The previous chapters analysed the FT-IR and ICP-MS datasets, which successfully identified
discriminatory variance within each dataset individually. Here attempts are made to merge these

datasets to interrogate whether, when combined, these datasets will allow better discrimination.

The first attempt involved the direct merging of the log transformed ICP-MS and the baseline
corrected and normalised FT-IR transmittance datasets. In this case, the PCA score plots were first
examined as the data has been previously investigated and shown to contain valuable discriminatory

information.

PC1 (Figure 4.39) identifies two groupings of samples, with the higher score being the potassium
chlorate samples synthesised from bleach and DST Group-obtained commercial samples and the
lower score grouping being all potassium chlorate samples synthesised from pool chlorine. This was

a grouping that could be established by both techniques individually. PC2 and onwards unfortunately
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did not show any signs of discrimination between samples and instead was a single cloud of data

points.
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Figure 4.39: Score plot of PC1 for the combined raw FT-IR and log transformed ICP-MS
datasets of KCIO3 samples.

This is quite a disappointing result as the PCA of the ICP-MS data alone highlighted a few additional
groupings and so this was less successful than analysing each data set separately. One way to identify
why there is a lesser degree of discriminatory variability is to examine the loadings/coefficients
leading to the principal components. There is a difficulty in visualising this, as the FT-IR spectra have
an independent variable (frequency in cm™) and the ICP-MS data merely records the concentration
of elements within a sample. They may be plotted as a scatter plot (Figure 4.40), however, this
requires the ICP-MS data to be assigned arbitrary frequency values (in this case 25 cm™ apart) in

order to plot all in the one chart.

When examining this plot of the coefficients for PC1, the issue becomes evident. The magnitude of
variation within the spectral portion of the dataset is far greater than in the ICP-MS data, where only
the variation in calcium content has any weight in the analysis. Hence a form of scaling needs to be
implemented to even out the magnitudes of variation between the datasets. The optimisation of this
scaling could be quite complicated; one possible method worth attempting is to normalise the largest
variances in both the ICP-MS and FT-IR datasets. The elemental mass fraction which had the largest

magnitude of variance in the ICP-MS data was identified as calcium (3 AU after log transformation)
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and the peak in the FT-IR that had the greatest variation in %T values was at 3400 cm™ (40%). To

equalise the magnitude of the variance at these two maximal positions the %T values of the FT-IR

dataset were divided by 13 (approx. 40 + 3). The resultant coefficient plot for PC1 (Figure 4.41)

following PCA analysis of the transformed data shows a vast level of improvement with the

coefficients between the ICP-MS and FT-IR portions of the data becoming more equal though the

signs of the coefficients have reversed.
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Figure 4.40: PC1 coefficient plot for the combined raw FTIR and log transformed ICP-MS
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Figure 4.41: PC1 coefficient plot for the combined scaled FT-IR and log transformed ICP-MS

datasets of KCIOs samples.

150



The resultant score plots are significantly affected, with PC1 (Figure 4.42) still isolating all pool
chlorine potassium chlorates from the household bleach and DSTG samples within this dataset, but

with a greater score value than previously.
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Figure 4.42: Score plot of PC1 for the combined scaled FT-IR and log transformed ICP-MS
datasets of KClO3 samples.
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Figure 4.43: PC2 coefficient plot for the combined scaled FT-IR and log transformed ICP-MS
datasets of KCIO3 samples.
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Though this was promising, further PC score plots once again yielded no further discrimination.

Examining the loading factors through coefficients (for example, PC2 coefficient plot in Figure 4.43)

shows that this is no longer the issue as the two datasets are once again quite evenly matched in

terms of relative magnitude of maximum contributions to the variance.

The only other point of interest that may be interrogated further is the variation retention (Table

4.18) and the corresponding scree plot (Figure 4.44).

Table 4.18: Variance retention table for the PCA of combined scaled FT-IR and log

transformed ICP-MS datasets of KCIO3; samples.

Principal Component PC Eigenvalues Cumulative % of Variance Explained
PC1 366.9545 62%
PC2 115.0074 81%
PC3 68.41562 93%
PC4 14.59902 95%
PC5 8.135024 97%
PC6 5.689503 98%
PC7 3.256235 98%
PC8 2.257283 99%
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Figure 4.44: Scree plot for the PCA of combined scaled FT-IR and log transformed ICP-MS
datasets of KCIO3 samples.
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In examining the variance retention there are no red flags that would indicate an unsuccessful PCA.
The variance is not solely resolved in PC1 and 93% is contained within the first three PCs resulting in

a distinct inflection point at PC4 in the scree plot.

The PCA score plots were disappointing, with only the first principal component indicating any level
of discrimination between samples. This indicates that the incorporation of multiple datasets in this
case has not resulted in any benefit but has rather diluted the variance across a larger dataset which
has negatively affected the discrimination between samples. Further optimisation of data pre-
processing needs to be undertaken to resolve this issue; however, this could be quite a complex
process requiring more sophisticated methods. One possible method would be to merge the datasets
using a nonparametric regression, such as generalised regression neural network (GRNN). Though a
very complex machine learning technique, which is computationally demanding, the rapid
development of machine learning has made this a realistic technique. However, for this project GRNN
was not possible with the computational equipment at hand, so this or similar nonparametric

regression would be a very worthwhile future pursuit.

The analysis of a representative set of potassium chlorates indicated some clear differences between

samples based on their starting materials and synthetic procedures.

ICP-MS analysis could identify three different groups of potassium chlorate based on the synthetic
procedure utilised i.e. household bleach, pool chlorine and electrochemical cell synthesis routes. This
was primarily based on the trace metal concentrations of aluminium, calcium and magnesium as
identified by PCA and confirmed by examining the raw data. Potentially an increase of the number of
trace elements analysed could improve this level of discrimination. A preliminary investigation into
the effect electrodes and electrolytes have on a final product’s elemental profile showed that there
is an identifiable link. This can help connect a sample of KClIOs to its electrochemical cell make up
including electrode metals and elevated trace elements in starting water. An aging study was
undertaken to determine the potential to store digested samples for an extended period of time
however many elements were too greatly affected over a 6-month period for this to be viable. This

could potentially be investigated further by modifying storage conditions.
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IR spectroscopy could identify two distinct groupings based on the presence of not entirely identified
impurities present within KClIO3 samples produced from pool chlorine. The impurities were suspected
to be as a result of the cyanuric acid, which was present as a chlorine stabiliser, however, not all the
additional peaks in the spectra of these samples could be accounted for by cyanuric acid. Further
investigation showed that other insoluble compound(s) such as calcium hydroxide may be present,

or that the conditions in the electrolysis cell have effected a chemical reaction on the cyanuric acid.

Raman spectroscopy did not offer any discriminatory information between samples; however, this
data was collected using a very basic Raman analyser used for field identification of hazardous

substances which does not have the spectral fidelity of laboratory grade instruments.

ICP-MS and IR datasets for KCIOs samples were quite difficult to merge effectively, in contrast to the
IR-MS and ICP-MS datasets for AN samples investigated in the previous chapter. Multiple methods
of data pre-processing prior to combination and multivariate analysis were attempted, however, all
negatively affected the discriminatory information contained within each dataset individually. This
could potentially be improved with a more complex non-linear multivariate analysis involving
machine learning, such as general regression neural network or similar nonparametric analysis, which

were beyond the data processing capabilities available in this project.
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5. Analysis of Erythritol Tetranitrate Samples

In this chapter erythritol tetranitrate was analysed using IR-MS, ICP-MS, ATR-FTIR and Raman
spectroscopy. Each dataset was interrogated individually to identify discriminatory information. The
datasets proving to highlight discriminatory information were merged into a singular database and
re-examined to determine the most successful pre-processing method of data integration. PCA of the
combined dataset was undertaken to attempt to retain or enhance the original discrimination

provided by the individual analytical techniques.

ETN is a member of the nitrate ester class of explosives and therefore contains significant amounts
of both carbon and nitrogen. This allows for the IR-MS of samples as an additional analysis, in
comparison to the inorganic oxidising agent and HME ingredient KCIOs investigated in the previous
chapter. This dataset is only two dimensional, comprising the carbon and nitrogen delta values for
each sample. Therefore, PCA would not be able to provide any further dimensional reduction and so
is not applied in this case. Instead the carbon and nitrogen values may be interrogated individually,

as well as in combination.

To understand any changes in delta value, the reaction conditions leading to the products must be
understood. The reaction equations are depicted in Equation 5.1, 5.2 and 5.3. Equation 5.1 clearly
identifies that there is only one possible source of carbon (erythritol) and nitrogen (nitric acid) in the
mixed acid method. Equation 5.2 only has one source of nitrogen and three carbon containing
chemicals including the erythritol, acetic acid and acetic anhydride. The nitrate salt method in
Equation 5.3 has only one source of carbon and one source of nitrogen, except in the ammonium
nitrate case where two different nitrogen atoms are present, and one is not incorporated into the
ETN product. This synthesis method produces nitric acid in-situ from a nitrate salt using sulfuric acid

prior to the introduction of erythritol.

HNO3z/H,S0,
C4H1004y — C,HgN, Oy,

Equation 5.1: Mixed acid nitration of erythritol to produce ETN.

HNO3/AcOH/Ac,0
C4H1004 C4HeN, O

Equation 5.2: Acetyl nitrate nitration of erythritol to produce ETN.
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H,S0,
C4H1004 + MNO3 m— C4H6N4012 + MSO4

Equation 5.3: Nitrate salt (potassium/ammonium/calcium nitrate) nitration of erythritol to
produce ETN.

In all graphical representations of the data, each point is the mean value of a triplicate measurement
and has error bars of one standard deviation.
5.1.1 Carbon IR-MS Analysis

The carbon isotope ratios of the various ETN samples and their erythritol precursors were measured

and displayed below in Figure 5.1, where they have been grouped into their methods of synthesis.
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Figure 5.1: Carbon isotope ratios for all ETN samples and erythritol precursors.

The results clearly show that the three erythritol starting materials have very similar carbon isotope
ratios of -12.3%o0 t0 -12.77%o, and that this has carried through to the final ETN product in the majority
of cases. This is expected as the carbon backbone of the erythritol precursor does not take part in
the nitration reactions of any of the three synthetic methods. However, there are a few anomalies,
in particular j-13-5 and K-14-5 are distinctly separated from the rest at a § 13C of +3.5%o. Both samples
were created using two different erythritols, however, they do share a common nitric acid precursor,
DST NA3. This same batch of nitric acid was also used to prepare sample L-14-5 by the same method;
L-14-5 does not follow this trend but rather falls in place with the main bulk of samples. Nitric acid

also contains no carbon, and therefore should not have an effect on the final carbon delta value and
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thus an explanation for the enrichment in the heavier 13C isotope in these samples must be sought
elsewhere. Many possible explanations may exist. Firstly, an incomplete purification of an ETN
sample could result in AcOH and/or Ac;0 being trapped within the ETN crystals. However, there are
no signs of this in the IR spectra for the samples. Secondly, the potential conversion of one or more
nitrate esters to acetate esters under the conditions of the reaction. However, once again the IR
spectra for j-13-5 and K-14-5 do not show any acetate impurity signals. Both of these two possibilities
could also be tested further using GC-MS and/or LC-MS and may be a worthwhile future direction.
Thirdly, fractionation by a side reaction, such as the oxidation of the erythritol carbon backbone by
the nitric acid. This is the least likely to be the cause however, as the shift would require the selective
reaction of a significant amount of the erythritol, which would have a dramatic effect on the product
yield if removed through recrystallisation. If not removed during purification, such a product would
be identified by infrared spectroscopy. IR-MS analysis of AcOH and Ac;0 for their carbon isotope
ratios could also yield further insight, however, were not able to be measured due to instrument

limitations.

There are also three other samples that break away from the main body of samples within the nitrate
salt synthesis method. These are DA84A, DA85A and DA86A which were all created using Sigma-
Aldrich erythritol and three differing nitrate salts. Once again, these samples are not the only samples
to use these precursor materials and therefore it is unusual for these samples to separate from the
others. However, there were some minor differences in the synthesis. Both DA84A and DAS85A
resulted in poor yields, much lower than the average yield using the same synthesis method. DAS6A
also had a minor adjustment during the synthesis with the addition of additional sulfuric acid to assist
in stirring the reaction mixture. The only other difference common across these three samples were
that they were synthesised by a different person to the rest of those produced by the nitrate salt

method.

5.1.2 Nitrogen IR-MS Analysis

The nitrogen isotope ratios of the ETN samples grouped by synthesis method are shown below in

Figure 5.2.
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Figure 5.2: Nitrogen isotope ratio for all ETN samples and potassium nitrates.

The precursor nitrates have very similar nitrogen isotope ratios apart from potassium nitrate 2 (PN2).
The nitrogen isotope ratio for both the nitrate salt and mixed acid methods closely resemble that of
the starting nitrate salts. This suggests that little to no fractionation of nitrogen is occurring
throughout the process of the synthesis, including the manufacture of the nitric acid reagent. This

result means that the nitrogen isotope ratio of ETN produced could be linked to the precursor nitrate.

However, in samples resulting from the acetyl nitrate synthesis method, the nitrogen delta value is
consistently lower, indicating significant fractionation due to the depletion of the heavier isotope,
15N. This suggests that the acetyl nitrate nitration of erythritol has a preferential uptake of the lighter
isotope, *N. Referring back to the reaction equation corresponding to this synthesis (Equation 5.2),
the only source of nitrogen supplied is from the same nitric acid used in other syntheses. This
supports the hypothesis that the action of this nitrating agent results in a differing reaction
mechanism allowing for this preferential reactivity with the lighter isotope. This may be a result of
the reaction proceeding under kinetic control, rather than thermodynamic control. The conditions of
the reaction are not thermodynamically favoured as the solution is kept on ice throughout the
reaction, whereas the other two methods involve a warming of the mixture to room temperature
following the addition of all reagents. This strict restriction of temperature may be favouring the
uptake of the lighter nitrogen isotope. However, more research would need to be undertaken to

confirm this.
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Another important note is although this synthesis is proposed to be an acetyl nitrate nitration, studies
have shown that such a mixture of acetic anhydride and high concentration nitric acid actually forms
nitrating species, including the desired acetyl nitrate (CH3COONO;) but also (CHsCOHONO:)*, N2Os
and NO;*. The latter two are believed to be most present at high concentrations of nitric acid and
therefore the nitration may be much more complicated and involve dinitrogen pentoxide as the
major nitrating agent, rather than acetyl nitrate3°. As the two other synthesis pathways use NO>* as
the nitrating species, this difference in nitrating species within the reaction mixture may lead to
differences in fractionation in the end product. Further investigations utilising isotopically labelled
precursors could lead to the confirmation of such a hypothesis and a greater understanding of the

specific reaction mechanism involved

5.1.3 Combined IR-MS Analysis
The two previous sets of data can be combined to form a two-dimensional plot, represented in Figure
5.3 below.
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Figure 5.3: Mean carbon isotope ratio against mean nitrogen isotope ratio for all ETN
samples.

This representation displays the entire dataset and therefore shows the maximal amount of
discrimination possible. As a result, it is evident that there are differences between samples due to

the starting material and synthesis methods used. Firstly, the samples cluster based on synthesis
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methods with the acetyl nitrate method separating from the mixed acid and nitrate salt methods.

Secondly, each synthesis method splits into two clusters due to samples involving the use of PN2,

either directly in the synthesis, or as a source of nitric acid, having a much higher nitrogen-15 content

than all other nitrogen containing precursors used.

5.2 ICP-MS of ETN

The ICP-MS of ETN involved the analysis of the trace metals listed previously in Section 2.2.2. All

samples, standards and controls for this analysis used 2% nitric acid as a matrix and were prepared

gravimetrically for precision. As the aim of the analysis performed was quantitation, the following

limits of quantification (LOQ) were obtained for each of the elements. This LOQ was calculated

through the analysis of at least 5 blanks and taking ten times their standard deviation.

Table 5.1: Typical quantification limits for elements analysed in the ICP-MS of erythritol
tetranitrate samples.

Element Al Ca Co Fe K Mg
LOQ (ppt) 374.1 821.5 4.3 179.3 3609.9 193.5
Element Ni Ru Sr U Zn

LOQ (ppt) 182.2 3.7 17.9 5.2 431.1

The calibration of each element required fitting a linear line of best fit to the calibration data, using

the best model of fit. This varied between the elements for the reasons discussed previously in the

KCIOs3 case. In Table 5.2, an example of a calibration used during this analysis is displayed.

Table 5.2: Example of calibration data for elements selected in the ICP-MS analysis of

potassium chlorate.

Element | Mass Linear Model Coefficient of Correlation (R?) Working Range (ppb)
Al 27 Simple Linear 0.999909 10-100
Ca 44 Simple Linear 0.999953 10-100
Co 59 | Weighted Linear 0.999962 0.1-100
Fe 56 Simple Linear 0.999996 0.1-100
K 39 Simple Linear 0.999983 0.5-100
Mg 24 | Weighted Linear 0.997829 0.1-100
Ni 60 | Weighted Linear 0.999760 0.1-100
Ru 102 | Weighted Linear 0.999674 0.1-100
Sr 88 | Weighted Linear 0.999893 0.1-100
U 238 | Weighted Linear 0.999861 0.01-10
Zn 66 | Weighted Linear 0.996539 0.1-100
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The amount of sample produced by DST Group was purposely kept minimal and therefore there was
only enough sample for a single digestion for ICP-MS analysis. As a result, no duplicate or triplicate
analysis was possible using ETN. Since the preparation of samples for analysis involved digesting the
entirety of a sample, there is no question as to the accurate representation of the digested portion
to the bulk material, minimising the need for random duplicates. There was, however, enough
precursor material for triplicate analysis to measure the reliability of the sample preparation and
analysis process. A triplicate of one ammonium nitrate and calcium nitrate precursor were analysed
and percent coefficients of variation (%CV) were calculated; these results are displayed in Table 5.3.
The %CV has been coloured green (0-10%), yellow (10.01-20%) and red (>20.01%) as in previous
sections. These brackets have been designed to indicate the level of reliability in the measurements

with green being ideal, yellow acceptable and red unacceptable.

The results show most of the elements are consistent across the triplicates with only two red values.
The 141% coefficient of variation result for calcium was due to a carry-over effect. This was due to
analysing the calcium nitrate replicates, which had a very high concentration of calcium prior to the
first ammonium nitrate sample. This carry-over is due to either calcium not being cleared out of the
sample introduction system or a build-up of calcium on the cones of the ICP-MS. For future analysis
of such a material, a longer wash and/or rinse time should be implemented to minimise this effect.
A blank analysis between samples could also be a reasonable precaution for samples with a high
concentration of a single element. This is difficult to judge however, as sometimes estimated

concentrations are not known.

Table 5.3: Percent coefficient of variation analysis of random triplicates.

s Al Ca K Co Ni Ru U Sr Fe Mg Zn

(ppb) | (ppb) (ppb) | (ppb) | (pPpb) | (Ppb) | (PPb) | (PPb) | (PPb) | (PPb) | (PPb)
CN (1) 0.83 |32690.68 | 5.01 |0.01 |0.00 |0.00 |0.00 |24.36|0.48 |88.03|1.51
CN (2) 0.99 | 26944.51 |5.88 |0.01 |0.00 |0.00 |0.00 |20.41]0.58 |82.00| 1.84
CN (3) 0.80 | 33834.55|6.14 |0.01 |0.00 |0.00 |0.00 |23.20|0.64 |86.02|1.58
%CV 9.67 | 9.68 8.56 |8.66 |0.00 |0.00 |0.00 |7.31 2.94 |8.73
AN (1) 345.62 | 2.68 0.00 | 0.03 |0.00 |0.00 |0.00 |0.00 |0.73 |054 |1.66
AN1 (2) 365.32 | 0.00 0.00 | 0.03 |0.00 |0.00 |0.00 |0.00 |3.41 |042 |2.24
AN1 (3) 323.50 | 0.00 0.00 | 0.02 |0.00 |0.00 |0.00 |0.00 |0.63 |0.42 |1.63
%CV 495 |141.42 |0.00 |9.19 |0.00 |0.00 |0.00 |0.00 |80.87
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5.2.1 Exploratory Multivariate Data Analysis

The raw results of the analysis were transformed in the same manner as previously described in
Chapter 3.3. This includes the NaN values being assigned zero values and the entire dataset
undergoing a translation and logarithmic transformation. Exploratory analysis including HCA and PCA

of the dataset was then undertaken.

HCA was performed to assess the potential of a PCA analysis and the resultant dendrogram and
sample identity correlation table are displayed in Figure 5.4 and Table 5.4. This initial overview of the
data shows potential for the data to be split into two clusters with one large and one smaller
branching of samples within the dendrogram. There are also potentially 3-5 outliers in samples 55,
56 and 58 located to the extreme left and samples 52 and 54 to the extreme right with a large

Euclidean distance between them and the remainder of samples.

Table 5.4: Sample correlation to number identifiers in HCA dendrogram in Figure 5.4.

Number | Sample | Number | Sample | Number | Sample | Number | Sample
1 | BCH25 17 | h85 33 1i276 49 | DA98A
2 | BCH26 18 |i135 34 | j257 50 | DA99A
3 | BCH27 19 | j135 35| K277 51 | DA100A
4 | BCH29 20 | K145 36 |L78 52 | unison
5 | BHC30 21| L145 37 | M512 53 | natvia
6 | BCH31 22 | P235 38 |[N612 54 | Sigald
7 | BCH32 231 Q225 39/ 0712 55 | CN (1)
8 | BCH33 24 | R275 40 | P 253 56 | CN (2)
9 | BCH34 25| al126 41 | Q373 57 | CN (3)

10 | BCH35 26 | b136 42 |R14 58 | AN1 (1)
11 | BCH36 27 | c156 43 | DA8S4A 59 | AN1 (2)
12 | BCH37 28 | d186 44 | DA8S5A 60 | AN1 (3)
13 | d154 29 | e196 45 | DA86GA 61 | AN2

14 | el64 30 | f206 46 | DA95A

15 |f174 31 (g256 47 | DA96A

16 | g85 32 | h266 48 | DA97A
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Figure 5.4: Resultant dendrogram from the hierarchical cluster analysis of erythritol tetranitrate ICP-MS data.
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PCA analysis was undertaken and as always, the quality of the analysis was scrutinised. This began
with breakdown of the percentage of variance retained by each principal component (Table 5.5)

which may also be graphically displayed in a scree plot (Figure 5.5).

Table 5.5: Variance retention table for the PCA of ETN ICP-MS dataset.

Principal Component Cumulative Percentage of
Component . . .
Eigenvalues Variance Explained
PC1 5.939349 44%
PC2 2.24841 65%
PC3 1.64934 85%
PC4 1.155819 92%
PC5 0.652899 96%
PC6 0.319539 97%
PC7 0.258544 98%
PC8 0.196207 99%
;
6
5
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Principal Component

Figure 5.5: Scree plot for the PCA of ETN ICP-MS dataset.

The distribution of variance across the PCs is a little concerning, as the inflection point lies at PC2 and
following this point there is still a significant gradient across PC2-6. This indicates that the variance is
not heavily localised in a fewer number of variables, and typically means that there is little

discriminatory data within the dataset.
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The coefficient table (Table 5.6) reveals the key contributors of each of the principal components.

Unfortunately, the coefficient table also supports the indications given by the scree plot with many

elements contributing to each PC. Particularly concerning is the list of elements contributing to PC3,

being almost identical to that of PC2, with only the minor addition of ruthenium and magnesium.

Magnesium was already a significant variable contributing to PC1 and ruthenium is a very rare

element that was not present in great amounts within the samples. All of this is a further indication

that there is minimal discriminatory data within this ICP-MS dataset.

Table 5.6: Coefficient table for the first 8 PCs of the ETN ICP-MS dataset.

Ca Co Ni Ru Sr Fe Mg Zn
LEGEND

0.00-0.25

K 0.26-0.50

Co 0.51-0.75

Ni 0.76-0.95

Ru 0.96-1.00

U

Sr

Fe

Mg

Zn

The final aspect to consider was correlation between the elements as this can be the reason for a

lack of discriminatory variance. The correlation coefficients have been calculated and the colour
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coded version is displayed in Table 5.7. This does not identify any significant levels of correlation

within the elements, so this was ruled out as an explanation for this lack of variance.
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Figure 5.6: Score plot of PC1 from the PCA of ICP-MS data for ETN samples and precursors.
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Figure 5.7: Score plot of PC2 from the PCA of ICP-MS data for ETN samples and precursors.

The results of the PCA in the form of individual score plots are plotted in Figures 5.6 and 5.7. Only

PC1 showed clear groupings; PC2 indicated two possible groupings, however they are not distinctly
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separated. PC3 and onwards showed no potential clustering of samples and were therefore of no

interest.

PC1 shows that the dataset has some discriminatory information with three distinctly separated
clusters of ETN. Many of the starting materials, however, are not distinctly separated with the three
erythritols being in close proximity. One ammonium nitrate (AN1) is also similar to the erythritols,
however, AN2 is contained within the central bracket of samples. Though 2 of the replicates of AN1
are positioned with the erythritols, the first of the triplicate has a higher score and is more in line
with AN2. Examining the loadings in Figure 5.8, this can be attributed to an unusually high reading of
calcium with the other replicate containing none. This is due to a shortcoming in the ICP-MS analysis,
as the calcium nitrate caused a carryover effect to the first of the AN1 replicates. This could have

been avoided by lengthening the rinse and flush time between these samples.

The final precursor, calcium nitrate, has a much greater score than the other precursors and samples.
This is understandable as PC1 has been shown to include calcium content as a key factor in Table 5.6,
and calcium nitrate contains far more than any other sample. It must be noted that the potassium
nitrates (PN1 and PN2) were not included within this analysis, as potassium was included in the

analysis and these samples contain percent levels of potassium making them very distinct outliers.

Interrogating the ETN samples initially revealed no pattern to explain the clustering as the scores
relating to the synthesis method, erythritol and nitrate precursors are completely mixed. Initially
these were the only variables that were considered during the synthesis of the ETN samples,
however, there was one other factor that was overlooked and that was the person synthesising the
material. This was the only factor that indicated a trend across the samples as detailed in Table 5.8.
This result was different to the ICP-MS results in the previous KClIO3 analysis, where the precursors
and synthesis methods utilised in the production of the samples could be linked to sample providing

discriminatory data.
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Table 5.8: Summary of variables for the high and low PC1 score clusters of ETN samples in

Figure 5.6.
High PC1 Score Group

Sample Synthesis Method Erythritol Nitrate Scientist
BCH 29 Nitrate Salt Unison Ammonium nitrate 1 A
BCH 30 Nitrate Salt Unison Ammonium nitrate 2 A
BCH 32 Nitrate Salt Natvia Potassium nitrate 1 A
BCH 33 Nitrate Salt Natvia Potassium nitrate 2 A
BCH 36 Nitrate Salt Natvia Calcium nitrate A
BCH 37 Nitrate Salt Unison Potassium nitrate 2 A
R257 Acetyl Nitrate Natvia Calcium nitrate B
DA 84A Nitrate Salt Sigma-Aldrich Potassium nitrate 1 C
DA 85A Nitrate Salt Sigma-Aldrich Potassium nitrate 2 C
DA 95A Acetyl Nitrate Sigma-Aldrich Ammonium nitrate 2 C
DA 97A Acetyl Nitrate Natvia Ammonium nitrate 2 C
DA 98A Mixed Acid Sigma-Aldrich Ammonium nitrate 2 C
DA 99A Mixed Acid Unison Ammonium nitrate 2 C
DA 100A Mixed Acid Natvia Ammonium nitrate 2 C

Low PC1 Score Group

Sample Synthesis Method Erythritol Nitrate Scientist
BCH 25 Nitrate Salt Sigma-Aldrich Ammonium nitrate 2 A
g85 Acetyl Nitrate Sigma-Aldrich Potassium nitrate 2 B
il35 Acetyl Nitrate Natvia Potassium nitrate 2 B
L145 Acetyl Nitrate Natvia Ammonium nitrate 1 B
e196 Mixed Acid Unison Potassium nitrate 1 B
L78 Mixed Acid Natvia Ammonium nitrate 1 B
M512 Mixed Acid Sigma-Aldrich Ammonium nitrate 2 B
0712 Mixed Acid Natvia Ammonium nitrate 2 B
P253 Mixed Acid Sigma-Aldrich Calcium nitrate B
DA 86A Nitrate Salt Sigma-Aldrich Ammonium nitrate 1 C

To better understand these results, the components having the greatest effect on PC1 were
examined. In this case it is primarily the calcium and potassium (Figure 5.8), and to a lesser extent

strontium and magnesium (Figure 5.9) content across the sample set.

Examining Figures 5.8 and 5.9, the low PC1 score samples can be identified as consisting of lower
concentrations in up to three of the four elements, whereas the higher score grouping can be almost
entirely explained by the concentration of potassium within a sample, with all samples apart from h-

8-5 belonging to the high score group. This then raises the question of why it is that two of the three
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chemists tended to introduce significant levels of potassium to the sample. Further information on
the details of the synthesis revealed that the samples with elevated potassium concentrations were
undertaken in a separate lab, and with different glassware and fume hood. This has potentially led
to this level of discrimination between the samples, rather than any differing precursor or synthesis
method. This would require further research, eliminating equipment and environmental factors
before being certain of a link between sample and precursor or synthetic route, like in the previous
KCIOs research. A link between sample and synthetic environment or equipment could be useful in a
real-world setting, as differences could lead to valuable information when gathering intelligence to

focus an investigation or confirm linkages between a sample and manufacturer.

The score plot for PC2 (Figure 5.7) had far less distinct clustering with only the potential of two
overlapping groups. PC2 incorporates the elemental mass fractions of aluminium, iron and nickel,
however, calcium and potassium are still heavily factored into this principal component. Though this
score plot does not permit an identification of clear groupings by itself, it may still be of use when a
two-dimensional plot is formed from both PC1 and PC2 (Figure 5.10). This two-dimensional score plot
with the sample manufacturer identified shows the extent of the trend with three identifiable
groupings. Although this is the most identifiable trend across the variables, there is still a lot of cross
over, with each grouping containing at least one sample made by each individual. This suggests that
there is some level of discrimination, however, the reasoning for this discrimination is not easily

explained. This requires further investigation before a confident conclusion could be drawn.
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Bar charts for the ICP-MS analysis of A) calcium and B) potassium content for ETN samples and precursors.

Figure 5.8
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The synthesis of all samples involved a purification stage, including recrystallisation to remove
residual acid to improve stability and to ensure small crystals were formed for safety reasons. This
may also result in reduced levels of trace elemental content being present in the products, however,

similar steps would be taken in clandestine labs for production of stable products.
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Figure 5.10: Two-dimensional score plot of PC1 and PC2 for the PCA of ICP-MS data for ETN
samples.

In conclusion, unlike the case with potassium chlorate where the trace elemental profile revealed
discriminatory information based on the synthesis pathways and precursors, the profiles of erythritol
tetranitrate samples were more likely to have been influenced by environmental and human
contamination. Though the trend was quite strong, there is a lot of crossover between clusters with
at least one sample from each of the three chemists being present within each cluster. This
information could be used to attribute a sample to an individual, especially if more unusual trace
elements are found within the sample, which can be linked to either a location or synthesis
equipment associated with that person. For example, someone synthesising samples in a corrugated
iron shed could be found to introduce far more trace metals such as iron and tin, than someone
performing a synthesis in the spare room of a house. An example of equipment differences could be

the change in trace element profiles between plastic/glass/metal containers used for synthesis.

This study highlights the need to understand how the synthesis methods can affect a final product,
and the factors that can influence the results obtained through various analytical techniques. It also
stresses the importance of fusing various datasets from differing analytical techniques, as the

additional data may provide the necessary variance to enable discrimination between samples of the
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same substance. Data fusion can also identify different links between samples and increase

confidence when matching precursors, synthetic methodologies and/or environments to a sample.

5.3 IR Spectrometry of ETN Samples

ETN samples were all created by DST Group and below in Figure 5.11 is an example of an infrared

spectrum of a representative sample.
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Figure 5.11: ATR IR spectrum of ETN sample BCH1-25.

There are many peaks in a typical infrared spectrum for ETN within the regions 600-1700 cm™ and
2900-3000 cm™ and this has been modelled and described in detail in other publications'3’. The area

between 1950 and 2300 cm™ is once again noisy due to the diamond ATR crystal as described

previously in the KCIOs case.

Figure 5.12 plots the spectra of all samples together and highlights the similarity between all but one
of the samples. All spectra have been pre-processed using the Spectrum software®3! to apply a
polynomial baseline correction and normalisation. The baseline correction selected the points listed
in Table 5.9 and the normalisation was done to 1 %T for the largest signal at 831 cm™.

Figure 5.13 shows the spectra of all samples following both baseline correction and with the noisy
ATR region removed, as for the KCIO3 FT-IR spectra.
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Figure 5.12: Baseline corrected and normalised infrared spectra of all erythritol tetranitrate samples.

Table 5.9: Polynomial baseline correction points for ETN FT-IR spectra.

Base Point

Position (cm™)

Base Point

Position (cm™)

Base Point

Position (cm™)

1

4000 4 3000 7 1500
2 3700 5 2300 8 1146
3 3500 6 1829 9 620

174



120

100

80

60

Transmittance (%)

40

20

4500 4000 3500 3000 2500 2000 1500 1000 500 0

Wavenumber (cm™)

Figure 5.13: Baseline corrected and normalised IR spectra of ETN samples with outlier sample and ATR region removed.
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In the outlier case of sample L-7-8 there is a distinct additional signal at 1743 cm™ and many of the
other peak ratios are inconsistent with the rest of the samples after baseline correction and
normalisation. This sample was unusual as there was a visible brown vapour forming within the
headspace of the sample vial. Even when blown out with nitrogen gas, within 2 hours the vapour
would once again fill the headspace of the vial. This indicates NO, gas formation due to the
breakdown of the material and as a 1743 cm™ peak is detected, the possible formation of an aldehyde
group within the molecule. This is most likely from the oxidation of a free primary hydroxyl group by
the NO, gas suggesting that the synthesis of this sample was possibly only partially successful.
Another possibility is that the purification process did not remove all residual acid or impurities
leading to the additional 1743 cm signal and subsequent breakdown of the sample. From the
laboratory notes there are no clear indicators of the synthesis not proceeding as per usual and

resulted in a typical yield.

5.3.1 Exploratory Multivariate Data Analysis

Prior to PCA this dataset requires the removal of the ATR intrinsic absorption region, which in this
case was between 1850 and 2300 cm™, and the previously mentioned outlier L-7-8 was removed as
this would significantly hinder the effectiveness of the analysis. Examining the transformed dataset
in Figure 5.13 there are no obvious identifiable signals separating samples as was the case in the

potassium chlorate dataset. However, the exploratory data analysis can be used to confirm this.

First HCA was performed to identify any clear groupings within the dataset. This analysis is displayed

in the dendrogram in Figure 5.14 with the sample identities presented in Table 5.10.

Table 5.10: Sample correlation to number identifiers in HCA dendrogram.

Number | Sample Number | Sample Number | Sample Number | Sample Number | Sample
1] a-12-6 11 | BCH1-34 21 | DA-95A 31| g-8-5 41 | L-14-5
2 | b-13-6 12 | BCH1-35 22 | DA-96A 32 | g-25-6 42 | M-5-12
3 | BCH1-25 13 | BCH1-36 23 | DA-97A 33 | h-8-5 43 | N-6-12
4 | BCH1-26 14 | BCH1-37 24 | DA-98A 34 | h-26-6 44 | 0-7-12
5 | BCH1-27 15 | c-15-6 25 | DA-99A 35 | i-13-5 45 | P-23-5
6 | BCH1-29 16 | d-15-4 26 | DA-100A 36 | i-27-6 46 | P-25-3
7 | BCH1-30 17 | d-18-6 27 | e-16-4 37 | j-13-27 47 | Q-22-5
8 | BCH1-31 18 | DA-84A 28 | e-19-6 38 | j-25-7 48 | Q-27-3
9 | BCH1-32 19 | DA-85A 29 | f-17-4 39 | K-14-5 49 | R-1-4

10 | BCH1-33 20 | DA-86A 30 | f-20-6 40 | K-27-7 50 | R-27-5
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Figure 5.14: Resultant dendrogram from the hierarchical cluster analysis of IR data from
erythritol tetranitrate samples.

This analysis indicates that there is very little clustering across the dataset with the Euclidean
distances between samples being very low. The easiest way to visualise this is by comparing the most
distant samples, i.e. BCH1-30 (#7) and DA-99A (#25). In Figure 5.15 the baseline corrected, and
normalised spectra of both samples are plotted and there is very little difference between them. The
peak signals are very close to identical apart from some minor differences in peak ratios. The baseline
of DA-99A is also visually less stable, which is a result of the strength of absorption being weaker

prior to normalisation.

——BCH1-30
——DA-99A

Transmittance (%)

3100 2600 2100 1600 1100 600
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Figure 5.15: Comparative plotting of the pre-processed IR spectra of the most different ETN
samples according to HCA.

177



With the lack of distinct differences within the dataset, the level of discrimination possible by PCA is
very limited. However, this analysis was undertaken regardless. Firstly, the variance breakdown in
Table 5.11 and scree plot in Figure 5.16 show that there is a much greater spread of variance over

principal components than in the previous KCIOs analysis.

Table 5.11: Variance retention table for the PCA of the pre-processed ETN IR dataset.

Component | PC Eigenvalues | Cumulative Percentage of Variance Explained

PC1 20475.49 51%
PC2 8922.3 74%
PC3 3062.754 81%
PC4 2495.883 87%
PC5 1061.96 90%
PC6 701.5402 91%
PC7 593.5788 93%
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Figure 5.16: Scree plot for the PCA of the pre-processed ETN IR dataset.

This spread is an indication that the level of variance is quite minimal and distributed over a large
number of variables, rather than there being clear regions of concentrated variance. PC1 contains
51% of the variance, however not until PC5 is 90% accounted. In contrast, 93% was accounted for by
PC3 in the potassium chlorate case. The scree plot has an inflection point at PC3; however, the curve
continues to significantly decrease when ideally there should be minimal variance contained in PCs
after this inflection point. This lack of inflection point definition reiterates that the variance within

the dataset is not significantly concentrated enough for highly successful PCA clustering.
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Figure 5.17: Spectrum loadings for A) PC1 B) PC2 C) PC3 and D) PC4 for the pre-processed ETN IR dataset.
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This may be examined further by considering the loading factors of the dataset in Figure 5.17, which
will help visualise this lack of variance. From examining these loadings, it is evident that after PC1,
the loadings immediately lack the features from the original spectra such, as smooth curves and peak
shapes but rather, become sharply jagged and ill-defined, noisy signals. This indicates that the level
of variance is greatly uninformative; even in PC1, there are artefacts of background contribution in

the 2300-4000 cm™ region.

With the variance between samples confirmed to be very minimal through both the variance
breakdown, and loading factor plots, the PCA cannot be expected to identify distinct differences
between samples. These expectations are realised when examining the principal component scores

for PC1-PC4 in Figure 5.18.

- sample number
C D

Figure 5.18: One dimensional score plots for A) PC1 B) PC2 C) PC3 and D) PC4 for the pre-
processed ETN IR dataset.

The one-dimensional plots show very little distinguishable discriminatory clusters of samples other
than a few samples in PC2 which slightly break away from the bulk. These samples are DA-96A, DA-
97A, DA-98A, DA-99A and DA-100A and are separated only due to a minor difference in the shape of
the baseline between 3000 and 3500 cm™, which could be removed with a higher order polynomial
correction, showing the lack of spectral differences between the spectra of this dataset. Combining
any two or three of these plots to produce higher order two/three-dimension plots of principal
components against one another is futile, as each on their own do not provide any substantial

discriminatory power.
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In the case of ETN, the ATR IR analysis and subsequent chemometric investigation has not resulted
in discrimination between any of the samples. These samples did not contain any significant
impurities from the precursor materials or synthetic method identifiable within the IR dataset. This
may be a result of the ETN preparations being carried out by professionals using laboratory grade
equipment and recrystallisation of the crude products. Both of these factors would reduce the chance
of any impurities remaining in the final product. There was one outlier sample identified by ATR IR

analysis, however this was due to deterioration of the sample.

Originally this experimentation would have directly replicated the Raman analysis of potassium
chlorate samples, using the DeltaNu Raman spectrometer. However, due to equipment failure this
was not a possibility. Instead, a much higher resolution Raman spectrometer was used. A XploraRA
Horiba Scientific Confocal Raman microscope was used. However, as the analysis of over 50 samples
would require a large amount of time and cost, combined with the past lack of discriminatory power
found for Raman spectra of KCIO3 samples, a scoping data collection was first taken of three different
ETN samples produced by three different synthesis pathways and sets of starting material. These
three samples are a good representation of the greatest possible amount of variation within the
samples and if the results indicated some possible level of discrimination between samples, further

investigations would be undertaken.

Although the spectra were collected over the range of -199 to 4000 cm™, below 170 cm™ Rayleigh
scattering artefacts dominate the spectrum and no signals exist over 3050 cm™. Therefore, the results
were plotted over the range of 170 to 3050 cm™ as depicted in Figure 5.19. These spectra do not
reveal any clear signs of impurity or side product signals making the technique once again ineffective
in discriminating between samples of like material. The same peaks are all present across each
sample with the only difference being minor variances in peak ratio between some signals. This was
determined not to be a significant enough difference to justify the testing of all samples, although it

may be of interest for a future study.
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Figure 5.19: Raman spectra of three ETN samples made via differing synthesis methods (offset for clarity) showing all peaks are common.
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Hence, the Raman spectra, even at this higher quality, did not yield any level of discrimination
between the three samples of erythritol tetranitrate made by three different synthesis methods and
from different precursors. This was, however, a very brief scoping investigation and there may be
value for a future project to revisit higher resolution Raman spectroscopy to differentiate between
ETN samples. This may be possible through the analysis of peak ratios, after ensuring that this is not
simply an artefact of inconsistencies within a sample due to morphology, as this investigation did not
collect spectra at numerous points on the surface of the sample. Taking survey scans at various
locations on the sample was seen to change the spectrum, as the distance of the sample can change
as the sample surface is not perfectly flat and even. For further analysis, various locations on each

sample should be analysed and the spectra obtained averaged.

Previous sections presented the analysis of the IR-MS and ICP-MS datasets from the ETN samples and
identified that discriminatory information was contained within the data. Not only did these datasets
demonstrate a level of profiling between samples, but they did so based on different aspects of the
data. IR-MS was able to discriminate between samples based on differences in precursors and
synthesis routes, whereas ICP-MS identified trends based on the individuals synthesising the samples.
Therefore, a combination of both datasets may bring together all three aspects and provide a greater

level of discrimination for the samples.

A direct combination of the datasets resulted in very poor results, as was the case when merging FT-
IR and ICP-MS datasets from the potassium chlorate samples. The first two principal components,
rather than combining the datasets, simply used the nitrogen isotope ratio for PC1 and the carbon
isotope ratio for PC2, then began using the ICP-MS data from PC3 onwards. This was easily
identifiable using the coefficients (Table 5.12) and so steps were taken to allow a better merging of

the datasets.
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Table 5.12: Coefficient table of the first 4 PCs for the direct combination of the ETN IR-MS
and ICP-MS datasets.

In Section 3.4, a similar combined dataset of AN and CAN samples was analysed, and a simple
logarithmic transformation of both translated datasets allowed for a better merge. When the same
process was applied to the combination of ETN datasets, however, the results were far from ideal.
Rather than the IR-MS data heavily outweighing the ICP-MS data the opposite has occurred and now
IR-MS data has not been incorporated into the early PCs (Table 5.13). In fact, the carbon IR-MS data

is not accounted for until PC6 and even then, it is only a minor loading factor.

Table 5.13: Coefficient table of the first 6 PCs for the log transformed combined ETN IR-MS
and ICP-MS datasets.

pct | pc2 [ pc3 | Pca | pcs | pce
Al 02 | 01 [ 01 0.5 0.6
Ca 03 | 09 [ 02 | 02 | -01 | 02
K 09 | -04 | 02 | 01 | 01 [ 01
Co i N o> 0.4 0.1 0.4
Ni 01 | 01 | 07 | 03 | -06 | 01
Ru | -01 | 01 | 03 | -05 | 03 0.7

C ratio

-
|01 02 | 03 | 01
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The final option was to calculate the greatest level of variance within the ICP-MS dataset and scale
the IR-MS data to fit the same magnitude range, as previously used to merge the ICP-MS and IR data
of the KCIO3 samples. The log transformed potassium mass fraction is the variable with the largest
level of variance in the ETN ICP-MS data, with a maximum range of 5 AU, and so the translated
nitrogen and carbon delta values were divided by 14 and 4, respectively, to also have a variance range
of approximately 5%o. This resulted in a much better merging of the data as can be seen in Table
5.14. This method of pre-processing has many elements contributing to the PCs, though potassium

is still dominant in PC1, and the IR-MS data is featured from the very first principal component.

Table 5.14: Coefficient table of the first 5 PCs for the combination of the ETN IR-MS (scaled)
and log transformed ICP-MS datasets.

PC1 PC2 PC3 PC4 PC5

Al 0.1 0.1 0.1 0.2 0.2
Ca 0.3 0.4 0.7 o+ N
K 0.9 01 | 05 | 01 0.1
Co 0.1 0.3 0.1
Ni 0.1 0.3

-0.1

Sr

Fe 0.1
Mg 0.1
Zn 0.1
N ratio 0.2
C ratio -0.1

With so many variables contributing variance within the dataset, variance retention has been spread
across a larger number of principal components as depicted in the scree plot (Figure 5.20). This means
that more principal components must be examined to ensure that valuable information is not lost as

there are still significant amounts of variance contained within later PCs.
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Figure 5.20: Scree plot for the PCA of the combined IR-MS and ICP-MS dataset for ETN.

Examining the score plots for individual PCs, however, reveal this not to be the case, with PC1 and
PC2 being the only plots to reveal any separation between samples. Therefore, a two-dimensional
plot of PC1 and PC2 (Figure 5.21) provided the best overview of this PCA. The samples have been
plotted with colour coding based on the chemist it was synthesised by, as this was a key trend that

cannot be mathematically represented.
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Figure 5.21: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS
dataset for ETN (with chemist identity tag).
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The plot still highlights the link between samples and the individual who made them, however, there
is a lot of crossover and there are clearly more than three clusters within the resultant score plot.
Another way to represent the data is by synthetic method, as this was a determining factor of
discrimination within the IR-MS data alone. Figure 5.22 represents this visualisation and provides
another perspective to the same plot. This perspective also shows successful clustering especially for
the acetyl nitrate method, however, there is still significant crossover especially between the nitrate

salt and mixed acid methods.
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Figure 5.22: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS
dataset for ETN (with synthesis method tag).

Both perspectives show clear clustering of like samples, with the chemist tag providing separation
mainly across PC1 and the synthesis method tag separating more across PC2. Both plots also contain
a significant number of outliers and so a representation containing both the method and chemist
tags could improve cluster identification. This has been displayed in Figure 5.23, where points are
coloured based on the synthesis method and shapes represent the chemist who synthesised the

sample.

The plot now displays both the synthesis route and the creator’s identity and how they affect the
score of each of the samples. The PN2 samples are also labelled as these were also easily identifiable
from the nitrogen isotope ratios originally and this is still the case after combining with the ICP-MS

dataset. This combined tagging highlights the separation between chemist B and chemists A and C.
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It also clearly depicts that the method of synthesis is not a great predictor on the clustering of

samples.
3
* X X | .
X P Potassium
X nitrate 2
2 [ ]
n
% @ Nitrate Salt
* XX Method A
% [ ] 1
M Nitrate Salt
Method C
o~
e % >>-<< a (S X Acetyl Nitrate
a &« ® hod
-3 2 X 0 1 2 3 4 5  Method B
X ° L]
¥ A Acetyl Nitrate
1 A A Method C
A
X . .
x X X Mixed Acid
X % Method B
a -2 A A Mixed Acid
A Method C
X
-3
PC1

Figure 5.23: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS
dataset for ETN (with chemist and synthesis method tags).

5.6 Chapter Conclusions

The analysis of erythritol tetranitrate identified some discriminatory data based on the synthesis

method used and the chemist synthesising the material.

IR-MS could discriminate samples based on the nitrogen delta value, however, not via carbon delta
value. The erythritol precursors had similar carbon isotope ratios and the nitration reaction
conditions did not have an effect on these ratios. Nitrogen isotopic ratio, however, could be used to
discriminate one nitrate salt (PN2) from the rest, due to its delta value and this carried through to
the resultant material, even when first converted to nitric acid. This allows the nitrogen isotope ratio
of the precursor to be directly linked to the final product, even after multiple synthesis stages. The
acetyl nitrate nitration method also influenced the isotope ratio of the nitrate salt, consistently

lowering the delta value and thus distinguishing samples synthesised by this method.

ICP-MS identified that samples could be discriminated, not due to the starting material but rather
the chemist producing the material. Further investigation into the possible causes for this variation

suggested it may have been due to the use of a different set of equipment used in the synthesis. The
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samples produced by one chemist resulted in differing levels of calcium, potassium and strontium

from two other chemists following the same procedures and using the same precursors.

Unfortunately, both IR and Raman spectroscopy could not identify any discriminatory information

within the spectra due to the lack of identifiable impurities.

Analysis of a combined dataset of IR-MS and ICP-MS data was undertaken and successful in retaining
the information identified by each dataset individually. The combination required the normalisation
of the magnitudes of variance across the two datasets prior to combination, in order to prevent one
set of data overriding the other. Without this additional normalisation, effectively the weighting of
the datasets becomes highly uneven favouring one dramatically. This highlights the importance of
developing a suitable preparation of the data, especially when combining two different datasets such
as a spectrum and an elemental profile. The validation of any dataset merging methodology can only
be accomplished through the understanding of the multivariate data analysis. In the case of PCA, this

comes through the interrogation of the loading factors and principal component variance retention.
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6. THz/Far-IR Spectroscopic Analysis of Explosives

In this chapter research into the rapidly developing analytical technique THz/Far-IR spectroscopy was
undertaken, to assess its potential for identifying a range of energetic materials. This technique
extends the fingerprint region of a standard IR spectrum to yield more signals, which may be used to
detect and identify explosives and potentially impurities if present. This could potentially allow for
the discrimination of samples of like material, based on impurities and additives, like fuels or

stabilisers.

The potential for the use of the technique to identify materials within different packaging was also
investigated. A wide range of plastics and paper were investigated to determine the level of

transparency across these materials.

6.1 Analysis of Pelletised Explosives

Initial investigations involved collecting the spectra of pelletised materials in either polyethylene (PE)
or paraffin wax matrices. Both materials produced pellets of great transparency in the THz/Far-IR

wavelengths through to a typical IR region as shown in Figures 6.1 and 6.2.

Absorbance (AU)

Wavenumber (cm)

Figure 6.1: THz/Far-IR spectrum of a polyethylene pellet showing great transparency in the
frequency range of 30-1000 cm™.
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Absorbance (AU)

Wavenumber (cm™)

Figure 6.2: THz/Far-IR spectrum of a paraffin wax pellet showing great transparency in the
frequency range of 30-1000 cm™.

Although similar transparencies could be obtained using either matrix, there were preparation
differences. The PE method involved mixing the sample with the PE at a desired ratio in a mortar and
pestle, then pressing this using a hand press. The wax method on the other hand, required the sample
to be coated on the wax through the shaking of wax and sample in an Eppendorf tube and then lightly
pressed by hand as the hand press applied too much pressure to generate acceptable pellets. This
method was much more difficult than expected as the coating of materials was only effective when
the wax was softened through heating. This could easily be done within a warm oven at 30°C,
however, upon pressing the wax would then become slightly adhesive to the die set, making the
removal of a pellet difficult. An additional issue with the wax was that the pellet would commonly
break under the vacuum of the sample compartment when loaded into the cryostat, whereas the PE
pellets would not. For these reasons, PE was favoured for the analysis of all samples, even though its

transparency was slightly less than the wax below 40 cm™.

The samples of explosives studied throughout this THz/Far-IR research were provided by Victoria
Police from their storage of samples collected from old explosives factories, seized, salvaged from
detonation cords or manufactured by the Victoria Police Forensic Services Department. This included

samples of RDX, HMX, PETN, AN, KCIO3, HMTD, UN and NU.

Pellets of sample mixed with PE were prepared, and their spectra collected as depicted in the
following Figures 6.3-6.7. The spectra range between 30-650 cm™ as both the pelletising material and

detector did not allow recording of wavenumbers below 30 cm™.
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Figure 6.3: THz/Far-IR spectrum of potassium chlorate (25% in PE) in the frequency range of
30-650 cm™.
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Figure 6.4: THz/Far-IR spectrum of nitrourea (25% in PE) in the frequency range of 30-650
cml,
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Figure 6.5: THz/Far-IR spectrum of RDX (50% in PE) in the frequency range of 30-650 cm™.
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Figure 6.6: THz/Far-IR spectrum of HMX (50% in PE) in the frequency range of 30-650 cm™.
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Figure 6.7: THz/Far-IR spectrum of PETN (50% in PE) in the frequency range of 30-650 cm™.
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These materials contain distinct signature peaks in the THz/Far-IR region, highlighting the potential
for such a technique to be utilised in the identification of materials. This also indicates that if any
impurity signals were present within this region, the analysis would be able to identify them so long
as concentrations of the impurities were high enough. If this could identify impurities, there is a

possibility of linking samples to precursors, as was the case in the FTIR studies on KCIOs.

Though the identification ability of the THz/Far-IR is a useful result, standard IR can already clearly
determine the identification of many materials, including explosives, and is also portable. Where the
true potential lies in this technique is in the ability to see through packaging materials. To investigate
this, a range of materials, including plastics and paper, were cut into 1 cm? squares loaded onto the
cryostat in the same way as the pellets. A summary of the results are as follows in Table 6.1 broken

down into 3 categories.

Table 6.1: Summary of THz/Far-IR absorbance results for various materials.

Little/no significant Significant absorbance Significant areas of non-
absorbance peaks transparency
e Cling film/wrap e Overhead projector e Soft drink bottle
e Zip-lock clear bag slide e McDonalds cup lid
e Zip-lock red bag e Target shopping bag e Kimwipe
e Paraffin wax paper e Paper towel
e Black garbage bag e Lens wipes
e Bubble wrap e Post-It note
e Bubble wrap e Printer paper
(popped) e Paper Envelope
e Plastic folder
sleeve
e Packaging plastic
e Non-transparent
purple postage bag

The materials listed in the “little/no significant absorbance” category were highly transparent, similar
to the polyethylene used to pelletise materials. One difference was that some of the spectra
contained an oscillation across the spectrum. An example spectrum showing an extreme version of
this oscillation is shown in Figure 6.8. This is proposed to be a result of the materials boundaries

causing the partial reflection of the light at each boundary.
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Figure 6.8: THz/Far-IR spectrum of a red Zip-Lock bag between the frequency range of 30-
650 cm™ showing very little absorbance and clear oscillation.

In the second category of material significant absorbance peaks are found within the wavelength
range restricting the transparency to smaller windows. This can hamper the identification of some
chemicals with signature peaks, coinciding with those in the packaging material. As an example, the
spectrum of an overhead projector slide is shown in Figure 6.9 below. Small oscillation artefacts are

also seen with these samples due to the same reflection of light at material boundaries.

Absorbance (AU)

30 130 230 330 430 530 630
Wavenumber (cm™)

Figure 6.9: THz/Far-IR spectrum of an overhead projector slide between the frequency range
of 30-650 cm™® showing strong absorbances at 380, 438 and 507 cm™.

The spectra of materials in the final category have significant regions of non-transparency within the
wavelength range making chemicals contained within these packaging materials difficult to identify.
These materials include papers and higher density plastics. As an example, the spectrum of a Post-It

note is shown in Figure 6.10 below.
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Figure 6.10: THz/Far-IR spectrum of a Post-It note between the frequency range of 30-650
cm! showing a sloping absorption, peaks at 104, 173 and 234 cm! and saturation beyond
300 cm®.

These results are very interesting as it highlights the potential for THz/Far-IR analysis to identify
chemicals within some packaging materials. A study was then conducted to mimic a real-world
scenario with an explosive sample placed within a postage bag. The measurement was taken using
two configurations, one where the explosive is in direct contact with the bag as would be the case of
a heavily packed parcel. The second where there is an air gap between the postage bag and the
explosive as would be the case when the parcel is not packed to its full potential. The results are

summarised in Figure 6.11 with a normalisation at the 458 cm™ peak and an offset of +2 AU between

each spectrum.
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Figure 6.11: THz/Far-IR spectra of a PETN sample, purple postage bag and a combination of
the two with and without air between them.
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The results show that the packaging material is quite transparent within the THz/Far-IR region. The
difference between the PETN alone, and that of the bag and sample, is quite minimal. The intensity
of the peaks has been diminished slightly and some features are less prevalent. The double peak at
around 270 cm™ has become more of a shoulder, however, the opposite effect has occurred for the
620 cm™ peak where a shoulder has become more prominent. The addition of an air gap between
sample and packaging has had even less effect, simply introducing a minor amount of oscillation to

the signal, more so towards the lower wavenumbers.

6.3 ATR THz/Far-IR Spectroscopy

The THz/Far-IR beamline recently acquired an ATR accessory allowing for materials to be directly
analysed and so the same explosives were investigated. The resultant spectra (Figures 6.12-6.17) are
not greatly different to the transmission spectra previously recorded in Figures 6.3-6.7. Many do have
sharper signals and a lower, more stable baseline; however, the primary benefit of the analysis is the
removal of the sample preparation steps. A small amount of sample can be placed directly on to the
ATR diamond and analysed, instead of the previous sample preparation, saving approximately 30

minutes per sample.

Absorbance (AU)
AN

Wavenumber (cm™)

Figure 6.12: ATR THz/Far-IR spectrum of KCIO3 (bleach precursor) in the frequency range of
0-650 cm™2.
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Figure 6.13: ATR THz/Far-IR spectrum of KCIOs (pool chlorine precursor) in the frequency
range of 0-650 cm™.
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Figure 6.14: ATR THz/Far-IR spectrum of PETN in the frequency range of 0-650 cm™.
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Figure 6.15: ATR THz/Far-IR spectrum of HMX in the frequency range of 0-650 cm™*.
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Figure 6.17: ATR THz/Far-IR spectrum of RDX (Type Il) in the frequency range of 0-650 cm™.

All of the spectra identify clear signature peaks for each of the materials making them all easily
identifiable. The spectra have lower baselines with sharper signals in comparison to their pelletised
counterparts, however, the number and position of signals is the same. The peak shapes of the two
KCIOs samples (Figures 6.12 and 6.13) are slightly different especially the shouldering on the 100 cm"
1 peak. The ratios are also different between the signature peaks leading to the potential to
discriminate between the two synthesis methods; however, more research is required to confirm

this. The spectra obtained are of high enough quality to be highly useful in developing a library of
these types of materials.

6.4 Full Range Infrared Spectra

With the successful collection of THz/Far-IR ATR spectra, four of the materials were then analysed in
the Mid-Near-IR region using a Perkin-Elmer Frontier FTIR with an ATR accessory. The two sets of

data were then combined to make a single Far to Near-IR spectrum for each material. The largest
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peak in the overlapping 600-650 cm™ region between the two spectra was normalised, enabling the

two halves of the spectrum to be comparable.
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Figure 6.18: Combined THz/Far-IR and FTIR ATR spectrum of KCIOs (bleach precursor).
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Figure 6.19: Combined THz/Far-IR and FTIR ATR spectrum of PETN.
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Figure 6.20: Combined THz/Far-IR and FTIR ATR spectrum of HMX.
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Figure 6.21: Combined THz/Far-IR and FTIR ATR spectrum of RDX (type I).

These combined spectra (Figures 6.18-6.21) show that there are more signals that may be used to
identify material. This extra region could potentially be used to detect additional peaks from
impurities, which would allow discrimination between samples of like material. Future work should
be undertaken, investigating the potential for this technology to detect impurities by analysing
multiple samples of an energetic material or ingredient, as for the other analytical techniques in this
research. This data could then be processed using the exploratory data analysis methodologies
employed for other spectral data in this research to reveal any potential discrimination as was the

case for the infrared spectroscopy of potassium chlorate.

The field of THz/Far-IR spectroscopy is rapidly advancing and the potential of the technology to be
used as a standoff detection method is of great interest for the identification of explosives. Here it
has been shown to clearly identify a range of explosives and even identify materials through some
packaging materials. This technique also extends the fingerprint region of an infrared spectrum,
allowing for a greater level of identification and potentially highlighting additional impurities within
this region. All of the THz/Far-IR research within this project was undertaken at the ANSTO Australian
Synchrotron facility resulting in high resolution spectra. The current portable systems do not yield
the same quality of data without further developments. This may result in poorer levels of impurity
detection; more research is required to assess this source attribution and sample discrimination
potential. Firstly, the detection of discriminatory impurities due to differing starting materials with

the high-resolution THz/Far-IR beamline should be investigated. Secondly, similar testing would then
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be undertaken with the current portable system in development at the French-German Research

Institute of Saint-Louis.
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7. Conclusions and Future Directions

This project has successfully investigated the potential of multiple analytical techniques to
discriminate between samples of like material for the two explosives related materials studied,

potassium chlorate and erythritol tetranitrate.

Erythritol tetranitrate samples were provided by DST Group however, clandestine methods from
various online sources were successfully modified and optimised to safely and reliably produce

potassium chlorate samples.

In the analysis of potassium chlorate, ICP-MS and IR spectroscopy proved useful in discriminating
between samples based on their synthesis method and differences in precursor materials. ICP-MS
identified links between product and precursor through trace elemental profiles and FT-IR found
impurities originating from precursors. Principal component analysis managed to condense the
discriminatory information within not only each dataset individually, but also a combination of both
datasets. The analysis not only condenses the discriminatory data but also identifies exactly what
parts of the dataset contribute to the discrimination, including the elements and ranges of
wavenumbers that provide the valuable data. These results highlight the potential of such an analysis
to link a material to a precursor based on differences in trace elemental profile or the presence of
impurities. There is potential to improve the level of discrimination obtained through the inclusion
of additional elements. Further analytical techniques could be used to investigate differences
between samples to increase the amount of discriminatory data. Examples include chromatographic
techniques such as liquid chromatography or an electrokinetic separation method like capillary

electrophoresis. Both would provide another perspective on differences between samples.

Erythritol tetranitrate was found to be at least partially discriminated through IR-MS and ICP-MS
analysis. The IR-MS data was shown to discriminate between samples based on differences in nitrate
salt precursors that carried through to the final product, including via a nitric acid intermediary, and
fractionation based on differing synthesis pathways. More research into the reaction mechanism
could identify the exact reasoning for the fractionation identified using the acetyl nitrate synthesis
pathway. ICP-MS resulted in discrimination, not due to differences in trace metal concentrations in
precursors but from the difference in laboratory environment and equipment used in the synthesis
of the ETN samples. This result indicates that in some cases, different equipment or locations used

for synthesis could be identified as they may introduce different levels of trace elements into the
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product. This could lead to highly valuable information useful in directing investigations, to find more
concrete evidence of a link. Further studies surrounding the effects of equipment and environmental
effects on synthesis should be undertaken to validate this hypothesis. PCA once again assisted in
distilling the dataset and highlighting the discriminatory information within the dataset using the
same data pre-processing as the KClO3 datasets. This suggests that the pre-processing of elemental
and spectral datasets is quite robust. As in the case of potassium chlorate, an increase in the number
of measured trace elements and additional analytical techniques including liquid chromatography
and capillary electrophoresis could provide further discriminatory data. This additional perspective
on the differences between samples could magnify the separation leading to more concrete

discrimination.

Although discriminatory data could be identified within both materials datasets, the merging of data
collected from different analytical techniques proved to be a significant issue. This was a major
limitation of the use of PCA as an exploratory data analysis tool. The purely mathematical approach
highlights issues surrounding the differences in the magnitudes of variation of different variables.
This results in the weighting of the variables with a greater magnitude of variation and more work
needs to be done into solving this issue. A suggested direction for future work to resolve this would
be to employ the use of a non-parametric regression, such as generalised regression neural network.
This is a machine learning technique that can be used for the classification and prediction of samples.
Though quite advanced and computationally demanding, with modern technology and advances in

machine learning, this technique is becoming much more achievable.

The investigation into the potential of THz/Far-IR to identify materials using only the extended
fingerprint region of standard IR spectroscopy was also highly successful. A range of materials were
clearly identified with many signals outside the standard range of FT-IR analysis, which could also be
effective at identifying impurities within this region. The technique also showed the potential to
identify materials through a range of non-transparent plastic-based packaging materials including
postage bags and black garbage bags. With the current development of a portable THz/Far-IR system
capable of standoff analysis, much more research can be undertaken in future to investigate the

discriminatory ability of the technique.

The aim of this project was to analyse samples via multiple analytical techniques then use a
subsequent chemometric analysis to both individual and combined datasets to identify linkages
between samples of like material. The analysis of the material was successful with methods
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developed for the safe acid digestion of materials for elemental analysis. The methodologies
developed for the chemometric analysis of individual datasets was successful however, more
research should be taken into the merging of data from various analytical techniques. Specifically,
harnessing more modern data analysis techniques in the field of machine learning could prove very
effective in analysing such a nonparametric dataset. The PCA analysis of collected data was successful
in discriminating between samples of like material providing links between samples, precursor

materials, synthetic pathways and possibly equipment.
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