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Summary 

Improved methods for extracting intelligence linking one sample of energetic material to another or 

identifying the location and method of manufacture are important. By investigating several analytical 

techniques with chemometric analysis, this research aims to assist in developing methodologies 

which may provide indications of such linkages.  

Samples were prepared utilising methods observed in clandestine manufacturing, to replicate real-

world variability due to differing starting materials or manufacturing procedures. These samples were 

subjected to a wide range of analytical techniques to investigate characteristic signatures within 

improvised energetic materials. The techniques included isotope ratio mass spectrometry (IR-MS), 

inductively coupled plasma mass spectrometry (ICP-MS), Raman and infrared (IR) spectroscopy.  

The spectrometric and spectroscopic data collected was analysed through chemometric means to 

accomplish two goals. Firstly, to establish the quality of data obtained through each analytical 

technique. Secondly, to enhance each dataset by combining them to increase the discriminatory 

power of the data analysis, thereby capturing the unique traits and chemical ‘fingerprint’ or profile 

of the material. Principal component analysis (PCA) was the primary method of analysis used, as it is 

an unsupervised analysis better suited for the real-world application of extracting intelligence from 

sample data where the identity is unknown. 

Combining these goals through the exploratory multivariate data analysis, PCA, there is the potential 

to condense data and extract the maximum value from it. The relative contributions of analysis 

techniques were also assessed, leading to method optimisation. For example, every additional 

element selected for ICP-MS analysis adds a significant amount of time, cost, and resources in regard 

to sample analysis and method validation. Any additional element further complicates the 

multivariate analysis so the number of elements should be optimised for to save time or reduce cost.  

Chemical profiles enable the comparison of newly and previously acquired sample data with high 

fidelity and a measure of confidence that samples, which may have been collected at different 

locations and times, have a common origin. This process can be applied to large databases where 

discrimination between samples is desired. 

This research project investigated each of these aspects and the results confirm the ability for the 

chemometric analysis of spectrometric and spectroscopic datasets to yield discriminatory 
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information from both independent and combined datasets. The analysis also identifies where the 

discriminatory information comes from within each dataset. This allows a more targeted analysis and 

comparison of samples on a greatly reduced number of variables. Clear clustering of related samples 

was identified using an unsupervised multivariate analysis, rather than a supervised discriminatory 

analysis such as LDA, which would favour clustering. This is ideal in a real-world setting where the 

identities and relationships between samples are likely unknown prior to analysis. 
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1. Introduction 

In today’s digital age, information on almost any topic is accessible to the general population through 

the power of the Internet and the plethora of devices that can connect to it. This has allowed for the 

rapid progression of civilisation through the sharing of information at a previously unimaginable 

speed. Though this technological advancement has undoubtably been a net positive for humanity 

there are also negative aspects that are easy to identify but not so simple to mitigate or resolve.  

An example of this is the transmission of potentially dangerous information on the topic of energetic 

materials which enables anyone with the desire for such knowledge to gather it without many, if any, 

barriers at all. The very real concern of such information falling into the wrong hands has been 

realised through the numerous terror attacks across the world as well as countless minor incidents 

involving hobbyists and other curious individuals. Much of this information is not only shared but 

also collaboratively developed through numerous users of web forums effectively developing and 

optimising methods for the production and use of energetic materials from commonly available 

materials. Though many are just curious and pose very little threat there is no stopping bad actors 

with nefarious intentions from participating in these open forums. This widely available information 

is complimented by online marketplaces such as eBay can be used as sources of starting materials, 

the equipment required to produce energetic materials and operational improvised explosive devices 

(IEDs). 

One possible method of preventing the manufacture of explosive devices is through the restriction 

of access to such information and materials. Though in theory this would solve the issue, the 

implementation of such restrictions has been ineffective in most cases. Internet restrictions have 

been applied in certain countries around the world, the most notable case being China where the 

government has strong control over not only what the population has access to but can go so far as 

to suppress online discussions among citizens.1 Even in the case of China however, the use of IEDs 

has not been entirely eradicated. An example being on the 12 June 2016 where a man targeted 

Pudong International Airport, Shanghai, with homemade explosive devices.2   

In most democratic countries, however, Internet censorship is quite a contentious and divisive topic 

with many arguments surrounding protection but also censorship and restricting freedoms, 

particularly of speech. In 2012 a broad survey by The Internet Society of greater than 10,000 people 

from 20 countries were asked about their attitude towards the internet.3 The results identified some 



 

2 

 

conflicting attitudes, with 71% of people agreeing that "censorship should exist in some form on the 

Internet" however 86% supported the stance that "freedom of expression should be guaranteed on 

the Internet". Even if stricter controls were to be implemented on users of the Internet, there are 

many ways to circumvent such efforts and neutralising the effectiveness of the controls. 

One of the more popular methods to evade Internet censorship is the use of a virtual private network 

(VPN). According to GlobalWebIndex 30% of Internet users have used a VPN/proxy server in the last 

month.4 A VPN provides a greater level of anonymity on the Internet by encrypting a user’s data by 

“tunnelling” through a wide area network, in this case the Internet, effectively removing the physical 

location tag of the user. 

With the limitations on Internet restrictions reducing the effectiveness of the strategy, another 

option is to restrict the materials required to produce HMEs and components for effective IEDs. This 

too has been implemented in the past, with many countries having lists of restricted and banned 

chemicals. However, this method is quite difficult to enforce as ill-intentioned groups and individuals 

find ways to smuggle the prohibited chemicals or find new methods to produce a different precursor 

or explosive with what is readily available. As an extreme example, in 2010 the Afghan government 

banned ammonium nitrate (AN) fertilisers due to its prevalent use in IEDs.5 This ban was ineffective, 

however, due to the large stockpiles of AN already within the country and the lack of restrictions in 

neighbouring countries with shared land borders, making smuggling AN into the country a 

rudimentary and lucrative process.6,7 

With neither the restriction on information or chemicals proving to be little more than a deterrent, 

this identifies the need for investigators to collect data from the scene of the crime and extract as 

much intelligence as possible from collected data. 

1.1 Intelligence 

Intelligence as defined by the United States Department of Defense8 is: “the product resulting from 

the collection, processing, integration, evaluation, analysis, and interpretation of available 

information concerning foreign nations, hostile or potentially hostile forces or elements, or areas of 

actual or potential operations.” The document also delves into the various methods of intelligence 

gathering and sources, including commonly utilised methods in police investigations and counter 

terrorism applications. Some of these include:  
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 Human intelligence (HUMINT): information collected and provided by human sources. 

 Measurement and signature intelligence (MASINT): information from quantitative and 

qualitative analysis of physical phenomenon intrinsic to an object or event. 

 Open source intelligence (OSINT): information derived from publicly available information. 

 Scientific and technical intelligence (S&TI): product resulting from the collection, evaluation, 

analysis, and interpretation of foreign scientific and technical information that covers: 

o Foreign developments in basic and applied research. 

o Scientific and technical characteristics, capabilities, and limitations of all foreign 

military systems, weapons, weapons systems, and material; the research and 

development related thereto; and the production methods employed for their 

manufacture.  

 Technological intelligence (TECHINT): intelligence derived from the collection, processing, 

analysis and exploitation of data and information pertaining to foreign equipment and 

material. 

In relation to the aims of this research project the primary types of intelligence being sought after 

are MASINT, S&TI and TECHINT: MASINT and S&TI through the forensic analysis of explosive materials 

via a range of analytical techniques including, infrared spectroscopy, Raman spectroscopy, isotope 

ratio mass spectrometry and inductively coupled plasma mass spectrometry; TECHINT through the 

chemometric analysis of collected data from the previously mentioned analytical techniques. This 

intelligence can then potentially be utilised to aid and assist criminal or terrorism investigations 

involving the use of explosives.  

When an incident involving the use of homemade explosives (HMEs) is investigated it is primarily 

focused on two areas: associative evidence which tries to link an individual or group to the incident; 

and physical/chemical evidence which may be collected from the site of the incident. In the case of 

a one-off attack much of the physical/chemical evidence collected will be restricted to providing 

intelligence to link the IED to the suspect, for example, matching to evidence such as IED components 

(cabling, detonators, etc) or chemicals (same explosive material, precursor materials, etc) found at a 

suspect’s property. 
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However, in the case of organised and coordinated attacks such as designated terrorist organisations 

or wartime conflicts there is a prolonged usage of IEDs. This opens the possibly that the materials 

used in one IED are potentially linked to another. Therefore, if an identifiable source of precursor 

chemicals can be linked to multiple IEDs there is a greater opportunity for data collection to yield 

potentially valuable intelligence. This may be in the form of impurities, common trace elements or 

stable isotope ratios of carbon/nitrogen/oxygen as previously explored in past research projects at 

Flinders University9,10 and internationally11.  

Though this is not a solution to preventing the use of such weapons or the manufacture of HMEs it 

would allow a greater understanding of the networks behind the attacks. 

1.2 Chemometrics 

Chemometrics has many definitions with slight variations. The Chemometrics Society defines12 it as 

“The chemical discipline that uses mathematical and statistical methods to design or select optimal 

procedures and experiments, and to provide maximum chemical information by analysing chemical 

data.” Chemometrics differs from traditional data analysis methods by interrogating the data as a 

collective multivariable dataset rather than analysing observations individually. This allows the 

development of a model to fit the data, contrasting the classical case where the data is investigated 

to test the validity of a theoretical model. 

Advanced multivariate chemometric analysis could potentially be an integral component of forensic 

analysis as it is a powerful way of extracting the maximum amount of information from forensic 

chemical analysis techniques. This is an emerging field of study with research into multivariate 

analysis of individual analytical techniques and data fusion of data collected from spectroscopic and 

spectrometric analyses being undertaken.10,11,13 For this application a technique specifically tailored 

to classification/clustering of samples is required and an added benefit would be the reduction of the 

dimensionality of the original dataset. Multivariate linear regression or multiple linear regression has 

this potential, however there are many different statistical approaches to enable such a result.  

Three commonly discussed and utilised options are linear discriminant analysis (LDA), partial least 

squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Whilst all very similar 

in outcome the process undertaken by each method is very different. The major difference is that 

LDA and PLS-DA are supervised methods, meaning sample identities are considered, whereas PCA is 
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an unsupervised method, meaning that no sample identification is considered. This alone makes PCA 

a strong choice as an unsupervised method of analysis that is well suited to an intelligence gathering 

application. PCA will investigate the variance in a multivariate dataset, enabling data exploration and 

dimensionality reduction through the transformation of the original data into linear orthogonal 

principal components to resolve variance, whereas LDA and PLS-DA investigate the variance between 

sample groups within a multivariate dataset. This unsupervised method allows an analysis to be 

entirely exploratory without any major restraints or restrictions, and in the case where sample 

identities can be entirely unknown this is the only option. A graphical representation of this 

distinction can be seen in Figure 1.1. 

 

Figure 1.1: A) PCA data treatment. B) LDA data treatment. 

As a result, the primary statistical method of analysis utilised in this research project will be principal 

component analysis (PCA). The data set is represented mathematically as an n x p matrix, where n is 

the number of samples and p is the number of variables. PCA is able to reduce this to a maximum n-

1 or p principal components (PCs), depending on which is the lesser value. For example, if 10 samples 

were analysed by ICP-MS for 30 trace elements (10 x 30 matrix) this can be reduced to 9 PCs thus 

transforming the dataset into a 10 x 9 matrix, effectively a third of the original data. 

However, there are drawbacks to PCA. The most important of which is the effect data reduction has 

on the variance of the original data. As the data reduction is a key aspect of any PCA the end user 

must determine when an analysis has successfully compressed the data without losing vital, 

potentially discriminatory information. For example, if only 3 samples were analysed rather than the 

10 in the previous example, the raw data consists of a 3 x 30 matrix and the PCA would reduce this 
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to 2 PCs, which in most cases cannot adequately represent the variance within the original dataset. 

This means that datasets with a small number of samples in comparison to the number of variables 

are not well suited for PCA analysis as the variance will not be well distributed. 

Another important aspect of PCA are PC loadings as these identify the portion of the original dataset 

a PC represents. PCs themselves do not correspond directly to one variable but are a combination of 

multiple original variables and understanding this allows the analyst to determine where 

discriminatory data lies within a dataset. Continuing with the previous example of the 10 samples 

analysed for 30 trace elements, this analysis may conclude that for these 10 samples only 5 of the 

trace elements are required to discriminate the 10 samples from one another and that in analysing 

just those 5 elements 99.9% of the original variance is retained. In doing such an analysis the next 

time the analysis is done there would be no need for a full 30 elements to be measured but only 5. 

This greatly improves the efficiency of the chemical analysis, which is one of the core components of 

chemometrics. 

As these multivariate analyses can be quite computationally demanding, a more basic overview of 

large datasets prior to analysis may be wise to determine if any discriminatory data is present. A well-

suited technique to employ for this brief screening of a dataset is Hierarchical Cluster Analysis (HCA). 

This technique measures every data point to its closest neighbour and this is then displayed in the 

form of a dendrogram. This measurement can be done in multiple ways, however, for this project 

simple Euclidean distance is the selected metric. Euclidean distance is the length of a straight line in 

Euclidean space. A basic dendrogram is depicted in Figure 1.2 and shows two clear groupings (A and 

B) and also some closer relationships between individual samples within those groups such as A1/A2, 

A3/A4, B1/B2 and B3/B4. The vertical line length is the Euclidean distance between points and hence 

the shorter the length the more similar the sample. In the case of screening data this is an example 

of a dataset that would be well suited for PCA analysis to determine the variables leading to this 

separation. If on the other hand Euclidean distances between groupings is minimal this would be a 

distinct red flag of very little discriminatory data within the dataset.  
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Figure 1.2: Dendrogram of 9 samples showing 2 distinct clusters and samples with close 
relationships. 

The other benefit of undertaking an HCA is for the identification of significant outliers. Outliers can 

be identified in a dendrogram when the Euclidean distance between a datapoint or cluster of 

datapoints is far greater than the overall population. This will result in a compression of the 

dendrogram with only the outlier samples being distinguished as a grouping.  

PCA too can identify outliers however, this is through a purely mathematical process rather than a 

simple graphical representation. This is done through the computation of either the Hotelling’s T2-

statistic or the Q-statistic. Both methods assume that the variance in the data follows a normal 

distribution. The difference between the two is that the T2-statistic measures the variation of each 

sample within the PCA model, whereas the Q-statistic measures the difference between a sample 

and its projection into the PCA model. Therefore, a sample with a larger T2 indicates an outlier within 

the model and a larger Q indicates an outlier outside of the model. 

1.3 Energetic Materials 

Energetic materials (EMs) are compounds which store a large amount of chemical potential energy 

which may be released. EMs can then be categorised into a further three subcategories including 

explosives, pyrotechnics and propellants.  

An explosive is a substance or mixture of substances that may be made to undergo a rapid chemical 

change without an external supply of oxygen with the liberation of large quantities of energy, 

generally accompanied by the evolution of hot gases or vapours.14 
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They may then be further categorised into primary and secondary explosives. Primary explosives are 

highly sensitive to heat, friction, impact and electrostatic discharge and will detonate or burn rapidly 

in very small quantities. These types of explosives are commonly used in the manufacture of 

detonators and are normally unimolecular explosives, which are compounds which require no 

additives to detonate.15 Examples of primary explosives are triacetone triperoxide (TATP) and lead 

azide (Pb(N3)2). 

Secondary explosives are much less sensitive and usually require the shockwave produced by a 

primary explosive in order to initiate a detonation. These types of explosives are used in military and 

commercial applications and some examples include 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX) 

and ammonium nitrate-fuel oil (ANFO). RDX is an example of a unimolecular explosive whereas ANFO 

is a fuel/oxidiser explosive involving the mixture of a fuel into the oxidiser in order to improve 

performance. These fuel/oxidiser explosives are commonly found in HMEs as they are easier to 

manufacture in large quantities. 

The chemical energy previously mentioned within these compounds have two possible rapid energy 

release pathways, either deflagration or detonation. Deflagration is a relatively slow explosion, 

generating only subsonic pressure waves. This sort of explosion is usually produced by rapid chemical 

combustion reactions, for instance of gunpowder in a firearm, or fuel in an internal combustion 

engine.16 

Detonation, however, is a much more instantaneous release of the chemical energy stored within 

the compound. In this case, rather than undergoing a combustion reaction the compound 

decomposes through a shock wave phenomenon. This shock wave causes the bulk of the explosive 

to decompose almost instantly releasing a large amount of heat and gas.17 The fast rate of reaction 

and resulting rapid expansion of gases in conjunction with the shock wave itself produces the 

explosive effects. 

The following review covers all energetic materials and ingredients that have been featured within 

this research project. Many are of interest as they are commonly featured in HMEs including: the 

fertiliser-based explosives urea nitrate and ammonium nitrate; erythritol tetranitrate and potassium 

chlorate. RDX and 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX) are less commonly 

associated with HMEs as they are military grade high explosives. However, given their similar 
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molecular structure they were of interest in assessing the effectiveness of an emerging analytical 

method utilising THz/far-infrared spectroscopy. 

1.3.1 Urea Nitrate/ Uronium Nitrate (UN) 

1.3.1.1 Background 

Uronium nitrate (Figure 1.3), commonly referred to as urea nitrate (UN), is a fertiliser-based 

explosive. There have been several incidents where UN has been used in terrorist incidents across 

the world including those perpetrated by the Shining Path (South American terrorist cell). In the case 

of the Shining Path the use of urea nitrate became so prolific that the Peruvian government banned 

sales of urea.18 One high profile incident involving the use of UN was the 1993 World Trade Center 

bombing.19 

 

Figure 1.3: Urea nitrate chemical structure. 

1.3.1.2 Production 

Urea nitrate is a salt comprising of a nitrate anion and an uronium cation and takes the form of a 

white powder. The explosive is often found in improvised explosive devices (IEDs) and can be simply 

created by non-professionals with little to no specialised equipment via the simple combination of 

urea and nitric acid (Figure 1.4).20 

 

Figure 1.4: Reaction scheme for urea nitrate production from urea and nitric acid. 

This synthesis may also involve the production of the nitric acid in situ from a nitrate salt (e.g., 

potassium nitrate) and a mineral acid (e.g., sulfuric acid). 
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1.3.1.3 Forensic Analytical Techniques 

Urea nitrate is an energetic material of high international interest as it has been used in illicit activities 

due to its simplicity when it comes to manufacturing and handling. Due to this many previous studies 

have been undertaken in order to be able to extract as much information out of the analytical 

techniques as possible for both pre and post-blast material. The techniques include isotope ratio 

mass spectrometry (IR-MS)10, 22, inductively coupled plasma mass spectrometry (ICP-MS)10, infrared 

spectroscopy (IR)10, 21 Raman10,23, ultraviolet-visible spectroscopy (UV-Vis)23, thermal analysis17, 21 and 

liquid chromatography mass spectroscopy (LC-MS)19. 

Of these analytical techniques isotope ratio and inductively coupled plasma mass spectroscopy show 

potential discriminatory power between samples of like materials9,10. A major drawback of these 

analyses is that they do not chemically identify the material as they purely focus on isotope ratios 

and trace metal content. Therefore, techniques that provide material identification will be required 

and spectroscopic techniques are well suited for this application. Not only can they chemically 

identify materials but potentially identify additional impurities or additives contributing to the 

discrimination of samples of like material. 

1.3.2 Ammonium Nitrate (AN) 

1.3.2.1 Background 

Ammonium nitrate (Figure 1.5), much like urea nitrate, is common in cases involving the misuse of 

explosives such as terrorist attacks. Once again this is due to fertiliser-based explosives being quite 

easy to manufacture from readily available starting materials due to minimal security checks in some 

countries. An example of ammonium nitrate-based explosives being utilised as a key component of 

an HME is the 1995 Oklahoma City Bombing.24 While ammonium nitrate can be an explosive in its 

pure form, it is more often mixed with fuels for greater sensitivity and reliability of detonation. An 

example of this is ammonium nitrate-fuel oil (ANFO) which in recent years has been found to be used 

in many malicious attacks.25 
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Figure 1.5: Ammonium nitrate chemical structure. 

Though it is not feasible to completely restrict the usage of all AN purchased across the world, many 

countries have begun to monitor its purchase including Australia. The Council of Australian 

Governments (COAG) began this process in 2004 to restrict the widespread availability of AN that 

could potentially be used to create an explosive.26 The class of AN to be restricted was termed 

security sensitive AN (SSAN) and encompasses any mixture containing greater than 45% AN. 

1.3.2.2 Production 

AN is generally formed using the simple neutralisation of nitric acid with ammonia (Figure 1.6) 

resulting in an AN solution27. 

 

Figure 1.6: Reaction Scheme for Ammonium nitrate production from ammonia and nitric 
acid. 

An alternate source of AN is fertiliser-grade AN, generally purchased in solid form consisting of prills 

which may contain a wide range of additional minerals, metals and nutrients designed to feed plants 

or assist in slow release of fertiliser. This gives another avenue for forensic analysis through ICP-MS 

quantification of the trace metals and even the potential of spectroscopic techniques to obtain 

signals from the added nutrients. 

Ammonium nitrate fuel oil (ANFO) is an explosive comprising of fertiliser-grade AN and a fuel. The 

AN can be in the form of a powder or prill and quite a number of fuels may be used, including sugars, 

starches, cellulose and diesel.28 The prills can be used if small enough otherwise porous prills are 

manufactured in order to allow for the fuel to be well incorporated into the mixture which promotes 

the explosive capability of the mixture.29 
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Many other additives may also be used to improve the explosive properties of an AN explosive, each 

having a specific purpose and application. Aluminium powder is commonly added as it results in a 

much greater temperature of explosion, helping to increase the duration of vapour expansion and 

thereby its work capacity.30 On the other hand other high explosives such as TNT or nitroglycerine 

may be added to sensitise the material rather than increase explosive performance.11 

1.3.2.3 Forensic Analytical Techniques 

The widespread misuse of AN has promoted the use of a wide range of analytical techniques for the 

forensic analysis of this material. AN, much like UN, can be effectively analysed via multiple 

techniques such as IR-MS10, 28, 31-35, ICP-MS10, 25, IR10, Raman10, 23, 30, UV-Vis23 and laser induced 

breakdown spectroscopy (LIBS)36. The literature indicates that spectroscopic techniques can 

chemically identify the material analysed, however, they provide limited discrimination capabilities. 

Conversely, IR-MS and ICP-MS have powerful discriminating power however lack the ability to 

identify the material.  

1.3.3 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX) 

1.3.3.1 Background 

1,3,5-Trinitro-1,3,5-triazacyclohexane (Figure 1.7) has been given various titles including 

cyclotrimethylenetrinitramine, hexogen and cyclonite; however, the acronym RDX is how it is most 

commonly known. The origin of this acronym is relatively unknown however two different possible 

explanations for this abbreviation is that it is an acronym of either Royal Demolition Explosive or 

Research Development Explosive where the second is more commonly quoted. It is mainly used in 

munitions as it is fairly stable and cheap to produce in comparison with other explosives with similar 

performance capabilities. 
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Figure 1.7: RDX chemical structure. 

Though being made specifically for military application there have been cases of RDX or its 

formulations, including the plastic explosives Composition C-4 and Semtex, being stolen and/or 

misused, especially in terrorist activities. Some events include: 

 The 2006 Mumbai train bombings37 

 The 2008 Jaipur blasts38 

 The 1999 Moscow blast39 

 A plane attack in Russia in 200440 

1.3.3.2 Production 

There are three main methods of manufacturing RDX, with the Woolwich method being the most 

commonly used.41 Firstly, however, the least commonly used method known as the Schiessler-Ross 

method will be discussed. 

The Schiessler-Ross method reacts a 1:1 ratio of formaldehyde and ammonium nitrate in acetic 

anhydride as depicted below in Reaction Equation 1.1. Other methods are favoured over the 

Schiessler-Ross method in a commercial setting as it commonly utilises a catalyst which requires 

additional steps to be removed from the final product. For Clandestine synthesis however, this is a 

viable method as both formaldehyde and ammonium nitrate can be obtained. 

3 𝐶𝐻2𝑂 + 3 𝑁𝐻4𝑁𝑂3
𝐴𝑐2𝑂
→   𝐶3𝐻6𝑁6𝑂6 + 6 𝐻2𝑂 

Equation 1.1: Reaction equation for the Schiessler-Ross method for manufacture of RDX. 

The other methods of RDX production involve the nitration of hexamine and are known as the 

Woolwich and Bachmann methods.42  
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The most commonly chosen method for RDX specific manufacture is the Woolwich method as it 

produces less than 4% HMX impurity via Reaction Equation 1.2. 

(𝐶𝐻2)6𝑁4 + 3 𝐻𝑁𝑂3
𝐴𝑐𝑂𝐻
→   𝐶3𝐻6𝑁6𝑂6 + 3 𝐶𝐻2𝑂 + 𝑁𝐻3 

Equation 1.2: Woolwich method for the production of RDX. 

The final method known as the Bachmann process. It produces two moles of RDX for every mole of 

hexamine the final product has a larger HMX impurity percentage than that of the Woolwich method.  

The Bachmann process was developed in the 1940s and builds on the Schiessler-Ross and Woolwich 

methods. In essence the Bachmann method forces the by-products of the Woolwich method to 

create an additional RDX molecule via the reaction with a surplus of nitric acid and ammonium 

nitrate. This second stage is, in actuality, the process undertaken in the Schiessler-Ross method, 

however, no catalyst is required as the activation energy of the second stage is overcome by the 

elevated temperature of the overall reaction.  

(𝐶𝐻2)6𝑁4 + 4 𝐻𝑁𝑂3  + 2 𝑁𝐻4𝑁𝑂3 + 6 𝐴𝑐2𝑂
𝐴𝑐𝑂𝐻, 75𝑜𝐶
→        2 𝐶3𝐻6𝑁6𝑂6 + 12 𝐴𝑐𝑂𝐻 

Equation 1.3: Bachmann method for the production of RDX. 

RDX is classified based on its HMX content, where RDX with less than 5% HMX is classed as Type I and 

is generally synthesised using the Woolwich method. Type II is synthesised using the Bachmann 

process and has a 4-17% HMX impurity and if desired can be recrystallised to reduce the amount of 

HMX to below 5% allowing it to be classed as Type I. This is undertaken to reduce the shock sensitivity 

of the RDX and to prevent deterioration through aging.43 

1.3.3.3 Forensic Analytical Techniques 

Though clandestine RDX manufacture is not prevalent as it is not as easy to produce compared to a 

fertiliser-based explosive, there have been cases of material being stolen and misused as mentioned 

earlier. Therefore, there has been little interest in forensically analysing military explosives such as 

RDX other than to identify their presence in post-blast residues. Identification of RDX is possible 

through spectroscopic techniques such as IR44, UV-Vis44, Raman30,44,45. Techniques that have 

identified potential discriminatory power include gas chromatography coupled with IR-MS46,47, 

LIBS44, thermal analysis48 and x-ray diffraction (XRD)49. 
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1.3.4 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX) 

1.3.4.1 Background 

1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX, Figure 1.8)), much like RDX, has been referred 

to by a number of names including Her/His Majesty’s Explosive, High Melting-point Explosive, and 

octogen. HMX has similar properties to RDX; even though its energetic performance is in fact greater 

than that of RDX it is much less commonly used as it is more sensitive and has a much greater cost of 

production.  

 

Figure 1.8: Chemical structure of HMX. 

1.3.4.2 Production 

It is most commonly produced using the Bachmann method (refer to RDX section) with yields of up 

to 60%.41 As HMX is typically a minor impurity a yield of greater than 50% is quite reasonable and is 

achievable through the manipulation of the reaction conditions, with the key being the temperature 

to be restricted to 45oC. This temperature requirement can be explained as a key intermediate is 

dinitropentamethylenetetramine (DPT), which decomposes at 50oC. Also, like RDX, HMX is graded 

into two categories, where Grade A HMX has less than 7% RDX impurity, while Grade B HMX requires 

less than 2% RDX. 

1.3.4.3 Forensic Analytical Techniques 

Though similar to RDX, HMX is mostly used for specific high-performance purposes. However, it is a 

co-product in the production of RDX and hence traces of HMX may be found in RDX samples to be 

forensically analysed. This ultimately means that literature relating to the forensic analysis of HMX 

alone is sparse, but it has been examined by Raman30, LIBS44, XRD49 and ion chromatography (IC)50. 
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Though literature is lacking, the similar structure and properties to RDX should allow for the same 

methodologies employed to forensically analyse RDX to be applicable to HMX. 

1.3.5 Erythritol Tetranitrate (ETN) 

1.3.5.1 Background 

ETN (Figure 1.9) is an explosive that was first created in 184951 and is closely related to 

pentaerythritol tetranitrate (PETN) and nitroglycerine which are commonly used in military and 

commercial applications. It is quite straightforward to prepare and performs comparatively to 

military explosives.52 ETN is also quite sensitive and as a result there have been a number of incidents 

involving accidental initiation. ETN is a nitrate ester53,54 and has a commercial application in the 

pharmaceutical industry where it is used as a vasodilator55,56 for the treatment of high blood 

pressure. 

 

Figure 1.9: Chemical structure of erythritol tetranitrate. 

1.3.5.2 Production 

The generally used synthesis of ETN involves the nitration of erythritol using an acid solution made 

up of nitric and sulfuric acid. The alternative involves the use of a nitrate salt (i.e. ammonium nitrate 

or potassium nitrate) and sulfuric acid and there is literature showing the success of both methods.57 

The general reaction for both cases is summarised in Figure 1.10. 
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Figure 1.10: Reaction Scheme for ETN production from erythritol with either potassium 
nitrate or nitric acid with sulfuric acid. 

1.3.5.3 Forensic Analytical Techniques 

As the mass production of erythritol has increased due to its use as a sugar supplement its use for 

the production of HMEs has emerged. The material is also of interest due to its properties 

surrounding melt casting as this is highly desirable as it enables many more uses of the material.58 As 

a result, studies involving the characterisation of the material have been increasing. This includes the 

study of its general properties such as thermal behaviour57,58-61, eutectics62, decomposition60,61,63, 

explosive performance58,64 and other basic physical properties57,58,65 such as melting point, solubility, 

structure, etc.  

Studies surrounding the forensic analysis and analytical characterisation of ETN have also been 

undertaken with its discovery in the HME setting. This includes studies utilising calorimetry66,67, 

Raman67,68 and infrared67-70 spectroscopy, gas chromatography mass spectrometry (GC-MS)57,71, LC-

MS57, XRD66, nuclear magnetic resonance spectroscopy (NMR)67 and various mass spectrometry 

methods67,72-74. Many of these studies identify the ability to detect and identify ETN however, they 

do not investigate the ability to provenance or discriminate between samples of like material. 

1.3.6 Potassium Chlorate (KClO3) 

1.3.6.1 Background 

Potassium chlorate (KClO3, Figure 1.11) is a strong oxidising agent and once mixed with a fuel, can 

form an effective explosive composition. The high level of oxygen in the molecule has made it 

interesting to propellant designers and has been combined on a molecular level with RDX to design 

a new propellant.75
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Figure 1.11: Chemical structure of potassium chlorate. 

Previously discussed in this review have been fertiliser-based explosives such as ammonium nitrate 

which have been consistently used in terrorist activities. However, in some areas of the world 

potassium chlorate is more readily available and therefore features in HMEs. This gives a reason for 

KClO3 to be added to the list of energetic materials of interest to counter terrorism experts. Some of 

the major events involving the use of KClO3 include the 2004 car bombing of the Australian Embassy 

in Jakarta and the 2002 Bali car bombing.76 

1.3.6.2 Production 

Industry manufacture of KClO3 utilises the Liebig process which is commonly used in the preparation 

of the majority of chlorates.77 In the case of KClO3 the Liebig process involves adding chlorine into a 

calcium hydroxide solution then the final addition of potassium chloride as depicted in Reaction 

Equation 1.4 below. 

6𝐶𝑎(𝑂𝐻)2(𝑎𝑞) + 6𝐶𝑙2(𝑔) + 2𝐾𝐶𝑙(𝑎𝑞) → 2𝐾𝐶𝑙𝑂3(𝑠) + 6𝐶𝑎𝐶𝑙2(𝑎𝑞) + 6𝐻2𝑂(𝑙) 

Equation 1.4: Reaction equation of overall Liebig process for the production of KClO3. 

Though this process is quite straightforward, the chemicals are not highly accessible so other 

clandestine methods have been developed and spread through the Internet.78 The majority of 

clandestine KClO3 is made using chlorine bleach and the salt substitute potassium chloride. This 

method involves boiling the bleach (sodium hypochlorite, NaClO) until crystals form, effectively 

forming sodium chloride and sodium chlorate. The next stage is to simply add a saturated solution of 

potassium chloride which will cause a metathesis reaction and the produced KClO3 precipitates out. 

This process can also be adjusted to utilise pool chlorine rather than household bleach so long as the 

pool chlorine contains calcium hypochlorite (Ca(ClO)2). The overall reaction schemes for these 

methods are summarised in the reaction equations below. 

3𝑁𝑎𝐶𝑙𝑂(𝑎𝑞) → 2𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝑁𝑎𝐶𝑙𝑂3(𝑎𝑞) 

Equation 1.5: Reaction equation for the disproportionation stage of KClO3 synthesis from 
household bleach. 
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𝑁𝑎𝐶𝑙𝑂3(𝑎𝑞) + 𝐾𝐶𝑙(𝑎𝑞) → 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐾𝐶𝑙𝑂3(𝑠) 

Equation 1.6: Reaction equation for the metathesis stage of KClO3 synthesis from household 
bleach. 

𝟑𝑪𝒂(𝑪𝒍𝑶)𝟐(𝒂𝒒) → 𝟐𝑪𝒂𝑪𝒍𝟐(𝒂𝒒) + 𝑪𝒂(𝑪𝒍𝑶𝟑)𝟐(𝒂𝒒) 

Equation 1.7: Reaction equation for the disproportionation stage of KClO3 synthesis from 
pool chlorine. 

𝐶𝑎(𝐶𝑙𝑂3)2(𝑎𝑞) + 2𝐾𝐶𝑙(𝑎𝑞) → 𝐶𝑎𝐶𝑙2(𝑎𝑞) + 2𝐾𝐶𝑙𝑂3(𝑠) 

Equation 1.8: Reaction equation for the metathesis stage of KClO3 synthesis from pool 
chlorine. 

A second method that is discussed online which is a little less common due to the requirement for 

more equipment is the synthesis of potassium chlorate by the electrolysis of sodium chloride and/or 

potassium chloride solution. This involves the use of an electrochemical cell, electrodes, power 

supply unit, sodium chloride, potassium chloride and water. The general reaction mechanism is 

described in the following reaction equations. 

𝑁𝑎𝐶𝑙(𝑎𝑞) + 3𝐻2𝑂 (𝑙) + 6𝑒
− → 𝑁𝑎𝐶𝑙𝑂3(𝑎𝑞) + 3𝐻2(𝑔) 

Equation 1.9: Reaction equation for the electrolysis stage of KClO3 synthesis from sodium 
chloride. 

𝑁𝑎𝐶𝑙𝑂3(𝑎𝑞) + 𝐾𝐶𝑙(𝑎𝑞) → 𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐾𝐶𝑙𝑂3(𝑠) 

Equation 1.10: Reaction equation for the metathesis stage of KClO3 synthesis from sodium 
chloride. 

𝑲𝑪𝒍(𝒂𝒒) + 𝟑𝑯𝟐𝑶 (𝒍) + 𝟔𝒆
− → 𝑲𝑪𝒍𝑶𝟑(𝒂𝒒) + 𝟑𝑯𝟐(𝒈) 

Equation 1.11: Reaction Equation for the Electrolytic synthesis of KClO3 directly from 
potassium chloride. 

1.3.6.3 Forensic Analytical Techniques 

Potassium chlorate and the related potassium perchlorate (KClO4) have not been extensively studied 

apart from thermal decomposition analysis79-85. There have been general studies including IR and 

Raman spectroscopy57,86, XRD84 and IC87. The use of KClO3 in HMEs tends to be seen in Asian countries 

for two reasons. Firstly, the regulations are less strict and secondly fireworks are abundant and so 

KClO3 is much easier to obtain. 
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1.4 Analytical Techniques 

This project aimed to analyse explosives using a variety of analytical techniques to determine any 

potential for discrimination between samples of like material. Additionally, data from the techniques 

that led to any form of discrimination were combined and a second exploratory multivariate data 

analysis was undertaken to determine if the discriminatory information is retained in a combined 

dataset. The following analytical techniques have been selected based on the results of prior studies 

undertaken.9,10 

1.4.1 Isotope Ratio Mass Spectrometry (IR-MS) 

1.4.1.1 Background 

Isotope ratio mass spectrometry enables the comparison of two or more chemically identical 

compounds (e.g. two AN samples) by comparing the ratio of the stable (i.e. non-radioactive) isotopes. 

Most commonly carbon (13C/12C) and nitrogen (15N/14N) isotopes are utilised, however, hydrogen 

(2H/1H), oxygen (18O/17O/16O) and sulphur (36S/34S/33S/32S) isotopes may also be investigated. 

Isotopes are atoms of an element which vary in the number of neutrons held within the nuclei of the 

atom. Each element tends to have one major isotope (1H, 12C, 14N, 16O and 32S) and one or more minor 

isotopes (2H, 13C, 18O, 17O, 36S, 34S and 33S). For the elements that may be used in IR-MS the relative 

abundances of the naturally occurring isotopes are summarised in Table 1.1. 
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Table 1.1: Relative abundances of isotopes which may be analysed using IR-MS.88 

Element (Chemical Symbol) Isotope Relative Abundance (%) 

Hydrogen (H) 
1H 99.984 

2H 0.0156 

Carbon (C) 
12C 98.892 

13C 1.108 

Nitrogen (N) 
14N 99.635 

15N 0.365 

Oxygen (O) 

16O 99.759 

17O 0.037 

18O 0.204 

Sulphur (S) 

32S 95.02 

33S 0.76 

34S 4.22 

35S 0.014 

The ratio of these stable isotopes has been shown to vary between samples due to differing 

precursors and geographic location.28 Investigating a number of elements, such as nitrogen and 

carbon, allows discrimination between samples89 as the measured isotopic ratios can provide an 

indication of the similarity between the samples. 

This variation is a result of isotopic fractionation during chemical or physical processes. The 

fractionation occurs as the slight difference in intra- or intermolecular bond energies, as a 

consequence of the variance of atomic weight in the different isotopes, causes a difference in rates 

during bond forming and breaking processes. Natural isotopic fractionation involves the removal of 

either the heavier or lighter isotope due to a process, as an example the evaporation of water. The 

lighter water molecules (such as 1H1H16O) require less energy to vaporise and so the bulk body of 

water will become enriched in the heavier isotopes (such as 2H2H18O, 1H2H18O) as the lighter water 

molecules more readily evaporate. This also applies to materials in solution as evaporation may lead 

to artificial fractionation hence samples are to be thoroughly dried and kept dry immediately after 

synthesis. Therefore, the isotopic ratios associated with a sample are a record of the chemical and 

environmental history of that sample and can be exploited to provide discriminatory power. 
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In terms of this project, the explosives and ingredients synthesised using differing starting materials 

could contribute to different isotope ratios in the end products. The method of synthesis may also 

result in a variation in isotopic composition as they are carried out under different environmental 

conditions as well as potentially using different reagents.  

The isotopic ratios are measured by introducing a very small amount (50 μg of carbon or 65 μg of 

nitrogen) of sample into a combustion furnace. The sample undergoes rapid combustion, and/or 

pyrolysis reactions to quantitatively transform the sample from the solid state to its gaseous form.90 

For the commonly investigated elements of carbon and nitrogen the sample is converted to carbon 

dioxide (CO2) and nitrogen gas (N2) respectively through the process of combustion and reduction of 

resultant gases. 

These gas molecules are then ionised prior to travelling through a magnetic field where the ion 

trajectory will be altered depending on the mass of the ion which varies based on the carbon and 

nitrogen isotope ratios of the gaseous ion.91 This allows the separation and hence 

detection/collection of the different mass-to-charge ratio (m/z) ions via a Faraday cup detector. This 

is depicted in the schematic Figure 1.12 below. 

 

Figure 1.12: Schematic diagram of the separation and collection of ions within a magnetic 
field.92 

As the amount of sample is typically on the microgram scale care must be taken during sample 

preparation as the slightest contaminant would throw results significantly. Therefore, the sample is 

placed in tin capsules and crushed into a ball using steel tweezers to avoid contact with fingers or 

rubber/latex gloves.  
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1.4.1.2 Resultant Data 

There are three mass-to-charge ratios for the carbon isotope analysis (CO2) 44, 45 and 46. These are 

made up as follows: 12C16O2= 44 m/z; 13C16O2 and 12C16O17O= 45 m/z; 12C17O2, 12C16O18O and 

13C16O17O= 46 m/z. 

For the analysis of nitrogen isotope analysis (N2) three mass-to-charge ratios are recorded, 28, 29 

and 30. These are made up as follows:14N14N= 28 m/z, 14N15N= 29 m/z and 15N15N= 30 m/z. 

This data is then used to calculate delta (δ) values using Equation 1.13, where the isotope ratio of the 

sample is compared to that of a known standard.5 The units of the delta value are per mil.16 It is 

significant to note that the natural abundance of isotopes summarised in Table 1.1 previously are an 

average and that these values vary depending on the location in the world.93 

𝑅 (𝑟𝑎𝑡𝑖𝑜) =
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑎𝑣𝑦 𝑖𝑠𝑜𝑡𝑜𝑝𝑒

𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑠𝑜𝑡𝑜𝑝𝑒
 

Equation 1.12: Equation for the calculation of isotope ratio values. 

𝛿 =
1000(𝑅𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 

Equation 1.13: Equation for the calculation of delta values. 

These delta values provide a comparison of the isotopic ratio of the respective element in the sample 

to the standard. These standards are internationally recognised zero-point samples, including: 

 Vienna Peedee Belemnite (VPDB) for carbon (13C/12C), 

 Atmospheric nitrogen (Air-N2) for nitrogen (15N/14N), 

 Vienna Standard Mean Ocean Water (VSMOW) for hydrogen (2H/1H) and oxygen (18O/16O). 

All samples are relative to these zero-point values and therefore, measured values may be positive 

or negative. Positive delta values indicate that the sample has more of the heavier isotope than the 

zero-point standard and negative values means there is a greater abundance of the lighter isotope in 

the sample. 

As most of the energetic materials previously discussed are organic molecules containing both carbon 

and nitrogen (excluding AN and KClO3), this can provide useful data when it comes to discriminating 

between samples of like material. One important drawback to keep in mind, however, is that the 
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resultant data cannot identify the chemical being analysed. It purely focusses on the isotope ratio of 

the specified element under investigation and not the chemical structure of the molecule. 

Analysis of the collected data is quite simple as a material may only result in up to five delta values 

(C, N, O, H and S). This is further simplified in the scenario of explosives, as typically only one to three 

elements are investigated of carbon, nitrogen and oxygen, depending on the explosive and its 

elemental or mixture composition. Chemometric analysis on such a dataset requires no additional 

analysis as a simple one to three-dimensional plot can display the entire dataset without losing any 

information. This data, however, when added to a larger database as additional variables then 

undergo chemometric analysis to determine how much it may contribute to the building of a profile 

for a sample of explosive. 

1.4.3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

1.4.3.1 Background 

Inductively coupled plasma mass spectrometry (ICP-MS) allows ultra-trace detection for a range of 

elements. With time instruments are becoming more compact and yet the low detection limit is still 

being improved.94 A typical ICP-MS setup includes an introduction device (depicted in Figure 1.13) 

which vaporises the sample prior to being sent to the mass spectrometer.95 

 

Figure 1.13: Schematic of a general sample introduction device. 

Liquid samples are pumped into the nebuliser at a controlled rate with a peristaltic pump where they 

are transformed into an aerosol. This aerosol is then exposed to an argon plasma with a gas 

temperature of up to 10,000 K. The plasma maintained through the constant introduction of argon 

gas to a magnetic field provided by the radio frequency (RF) coil and depicted around the plasma in 

Figure 1.13. This plasma vaporises and ionises the sample resulting in the atomisation of the majority 
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of the molecules. The minority that are not atomised may be reduced by a flow of helium passed 

through the atom stream post-plasma which either breaks them apart or dislodges them from the 

ion beam. Gas samples are introduced to the plasma at a controlled flow rate and solid samples may 

be dissolved in a solution then introduced in the same manner as liquid samples. Solid samples may 

also be directly transformed into an aerosol via the use of laser ablation (LA-ICP-MS). 

In general, explosive samples are analysed for a wide range of elements as the exact composition of 

trace elements in each sample is unknown and the greater the number of elements the greater the 

resolution of a sample’s elemental profile. This however raises a number of potential issues that must 

be addressed. The limitations of the analysis must be understood starting with the plasma utilised. 

In the case of this project the plasma is argon based and therefore some elements are not very well 

ionised. The first ionisation energy of argon is 15.8 eV and therefore, elements with ionisation 

energies near this energy, such as selenium (9.8 eV), sulphur (10.4 eV) and chlorine (13.0 eV), are not 

well ionised in the plasma resulting in poor sensitivity.95 

As the ICP-MS analysis undertaken in this project quantifies trace elements to low ppt levels potential 

interferences must be understood and minimised. There are three key interferences which must be 

considered. 

The first is isobaric interference. This occurs when two different elements have isotopes which have 

very similar masses and therefore, share the same mass-to-charge ratio if within the resolution of 

the mass spectrometer. This can easily be avoided by selecting isotopes for which this overlap is 

minimal or non-existent, keeping in mind the natural abundance of the isotopes. An example of this 

is 74Ge (35.94% relative abundance) which clashes with 74Se (0.89% relative abundance); however, if 

Ge is a target element selecting 72Ge (27.66% relative abundance) may be a better choice as there is 

no overlap in mass with any other element’s isotope.96 

Doubly charged interference is when a species obtains a double charge rather than ionising to a single 

charged species. This means the mass-to-charge ratio is effectively halved and so is recorded at that 

level far from what is expected. This can be avoided by altering the ionisation conditions in the 

plasma, however, some elements are more prone to this than others.97 An example of a commonly 

doubly charged species includes 140Ce2+ which results in a mass-to-charge ratio of 70 which will cause 

issues for the measurement of 70Ge+ and 70Zn+ species.97 
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The final and most significant form of interference is polyatomic interference, and this is when 

multiple atomic ions combine to form a molecule of high mass-to-charge ratio. This can be broken 

into two key groups, plasma-based and sample-based. Plasma-based interferences have a direct 

correlation with the type of plasma used and its interaction with the aqueous solution such as (in the 

case of argon plasma) 40Ar38Ar or 40Ar16O. These two examples create large interferences at a mass 

of 78 and 56 respectively. Though 78 is not an issue as it does not interfere with any other elemental 

mass, the atomic mass of 56 directly corresponds to 56Fe which is an issue if this is a measured 

element.  

Sample-based interferences are directly linked to sample matrix components, examples of this being 

35Cl16O or 34S32S.8 Though polyatomic interferences are by far the greatest interference issue involved 

in ICP-MS analysis, techniques have been developed to eliminate or mitigate their effects. The helium 

collision mode developed by Agilent Technologies utilises an inert collision gas (He) to remove all 

polyatomic species.98 This same mode is called the KED or Kinetic Energy Discrimination mode in 

Perkin-Elmer ICP-MS systems. As the polyatomic species have a greater cross-sectional area this 

means that they have a much greater collision rate with the He gas, significantly lowering their kinetic 

energy and preventing them from leaving this region of the He gas cell.   

Ultra-trace detection requires that the sample preparation for the ICP-MS analysis must be strictly 

controlled in order to avoid any possible minor impurities as detection limits extend to the ppt level. 

Samples are to be prepared with trace grade digestion acids and ultrapure water in closed vessels to 

avoid any interaction with the surrounding environment. Samples are digested to ensure that the 

target trace elements are free from the sample and stable in solution for analysis.  

Though methodology exists on some of the proposed energetic materials and ingredients such as AN 

and UN, (which involves a nitric acid digest)9,10, other materials require methodologies to be 

developed or altered, such as a change in digestion acid, conditions (temperature) and dilution 

factors. The methodology will have to be modified based on the success of digestion and 

concentration of elements within the samples themselves. For example, calcium content in 

potassium chlorates made from calcium hypochlorite may have greatly elevated levels of calcium and 

therefore, may require further dilutions to reduce this to within the working range of the instrument. 

This will not only lead to a clear method of digestion but also an outline of target elements which 

allow discrimination for the samples. 
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1.4.3.2 Resultant Data 

Data from ICP-MS analysis are collected in the form of concentrations for the target elements of each 

sample which is then processed using the dilution factor of the acid digestion to calculate the total 

concentration of the element in the original sample. This data may then be statistically interrogated 

using principal component analysis which effectively reduces the large multivariate dataset into a 

condensed and more easily manageable and interpretable data set. This simplification of the raw 

data allows for the elements with highest discriminatory power to be clearly identified and hence 

distinguish between samples based on the elemental variation of the key trace elements. An 

additional benefit of such an analysis is that not only will the useful elements be identified but so too 

will the elements that do not contribute to the overall “fingerprint” of the sample. This may allow 

future analysis on the same explosive to become more efficient and streamlined by only routinely 

analysing for the elements regularly found in that explosive saving time and reducing the costs 

associated with analysis. 

1.4.4 Raman Spectroscopy (Raman) 

1.4.4.1 Background 

Raman spectroscopy is an ideal analytical technique for forensic applications as it is non-destructive, 

allowing the same sample to be analysed by more than one technique. It is a non-destructive, rapid 

analysis and samples to be analysed generally require little to no sample preparation prior to analysis. 

The technique also requires no alterations to analyse a variety of sample types and can easily be 

utilised to measure gases, liquids and solids.105 

Over the years the instrumentation required to perform the technique has evolved rapidly and the 

technique now has high portability with a small sacrifice in performance. Compared to many other 

typically used analytical techniques the equipment required to perform a basic analysis for Raman is 

quite small and can be scaled all the way down to a handheld device such as the Thermo Scientific 

FirstDefender RM (depicted below in Figure 1.14). This portability makes Raman spectroscopy an 

ideal technique to transport to any location requiring the analysis with minimal effort rather than 

relocating the sample to a laboratory. The portable systems also allow a “Point-and-Shoot” analysis 

which enables the device to analyse a sample through some sealed containers avoiding any direct 

contact to a potentially harmful/unstable substance, i.e., an energetic material.106 
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Figure 1.14: Thermo Scientific FirstDefender Portable Handheld Raman Spectrometer. 106 

The sample is analysed by firing a monochromatic light source, usually a laser, at the sample and 

measuring the wavelength and intensity of the inelastic scattering (Raman scattering) of the incident 

light from the sample.107,108 The spectrum obtained from the Raman scattering can then be 

investigated to determine the composition of the sample.  This Raman scattering is produced by the 

changes in the induced dipole moment of a molecule or polarisation, which depends on how tightly 

the electrons are bound to the nuclei. As long as the molecule has a change in polarisation due to the 

energy of the incident light, then the molecule is Raman active. As varying functional groups will 

cause different scattering of the light, this information allows the determination of functional groups 

within the sample.   

Raman spectroscopy has been used to forensically analyse a vast array of substances including 

narcotics,109-111 paints,112 alcoholic beverages113 and explosives109 displaying the applicability of the 

technique for sample discrimination. Though it is quite simple and fast for even a weaker portable 

Raman spectrometer to identify different materials it is much more difficult to distinguish between 

samples of like material. The key difficulty in discriminating between samples of like material is that 

this relies on impurities to be present in a concentration great enough to have a statistically 

significant effect on the resultant spectrum. This will vary depending on the material and components 

within the sample as Raman analysis can suffer from fluorescence which will effectively mask any 

Raman signals. However, altering the instrumentation in terms of laser wavelength can reduce this 

fluorescence as longer wavelengths may reduce fluorescence to reveal vital Raman signals. This also 

reduces the intensity of the Raman signals and therefore an optimal middle ground must be 

maintained. 
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1.4.4.2 Resultant Data 

The data collected as a result of Raman analysis will be in the form of spectra identifying Raman shifts 

(cm-1). The Raman shifts and peak intensity ratios may be statistically analysed via PCA. Ideally the 

statistical analysis will be able to reduce the dimensionality of the data set from being “number of 

samples” × “range of wavenumbers” to just a handful of principal components in the form of certain 

Raman shifts. The dataset for the application of statistical methods may also include signal intensities 

at selected key frequencies. 

1.4.5 Infrared (IR) Spectroscopy 

1.4.5.1 Background 

Like Raman spectroscopy, infrared spectroscopy is an optical analysis technique. However, they are 

commonly referred to as complementary techniques as they measure the effects due to differing 

physical processes. IR spectroscopy requires the dipole moment of a molecule to change in order to 

detect vibrational motion. For example, some molecules are not IR active as there is no dipole 

moment; however, they may be Raman active as the stretching of the bonds changes the molecular 

polarizability. Another difference is that IR spectroscopy measures the absorption of light of certain 

energies which correspond to vibrational excitations within the molecule rather than light 

scattering.99 As they are complementary techniques, using both to analyse a single sample will ensure 

the maximum amount of information may be gathered for any given sample. This is particularly 

important in forensic analysis as one technique may be able to highlight an impurity that is 

unresponsive in the other technique. Maximal discriminatory data allows for greater statistical 

significance, which is the basis of forensic analysis. 

IR spectroscopy is highly versatile as it can be used to analyse gases, liquids and solids, although 

sample preparation for IR analysis can sometimes require additional processes. For example, a solid 

may be ground into a fine powder and pressed into a KBr disk rather than analysed directly. 

IR spectroscopy has been used for forensic examination of a variety of sample types similar to the 

Raman spectroscopy, including, but not limited to, narcotics,100 paints101,102 and explosives103,104. 

Though IR has been shown to identify material quite rapidly and with little preparation the ability to 

discriminate between like material samples is more difficult. In order for this higher level of 

discrimination the impurities within the sample would have to affect the resultant spectra on a 
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magnitude that is statistically significant, which may not be possible for every sample depending on 

the resolution power of the instrument utilised. 

1.4.5.2 Resultant Data 

Much the same as Raman, IR analysis results in a spectrum of the sample identifying the frequencies, 

generally expressed in wavenumbers (cm-1), at which the molecule interacts with the incident light. 

Once again this may be investigated statistically using PCA. Ideally this analysis will be able to reduce 

the dimensionality of the data set from being “number of scans” × “range of wavenumbers” to just a 

handful of principal components in the form of certain wavenumber ranges. The dataset for the 

application of statistical methods may also include signal intensities at selected key frequencies. 

1.4.6 Terahertz/Far-Infrared Spectroscopy (THz/Far-IR) 

The terahertz radiation band is located between microwave and infrared radiation. This region is 

typically regarded as the frequencies between 100 GHz and 30 THz or 3-1000 cm-1 and recent 

technological advancements have made research into the field more prominent114. Extending into 

this frequency range beyond the standard fingerprint region of a typical infrared analysis may yield 

additional signature peaks. A key development, terahertz domain spectroscopy (TDS), has allowed 

the analysis of molecules in the condensed phase.115 This has shown potential, especially in 

explosives screening applications as various materials such as paper, leather, cotton and synthetic 

fabrics are transparent in the THz region.115-122 Recently, this technology has been harnessed to 

develop a portable laser device able to perform standoff GHz to mid-infrared analysis making it an 

ideal technique for the screening of explosives.115 This may lead to future far-infrared spectroscopy 

capabilities being added to the toolbox of onsite investigators to identify unknown materials even 

within some wrappings or containers. Other benefits of THz spectroscopy include the non-destructive 

nature of the analysis ensuring the same sample material can be interrogated using other analytical 

techniques. It is also rapid with an instant result that can identify the material being analysed so long 

as the material’s spectrum has been recorded into a library. 

This project explored this fast-developing novel technology to provide additional information 

including extending the region of the infrared spectra currently acquirable with modern technology. 

As the THz radiation harnessed is from a Synchrotron (Australian Synchrotron, ANSTO), the spectra 

acquired are of very high resolution and can be the beginning of an explosives database for THz 
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spectra. With this high level of resolution, a determination on whether or not the technology can also 

provide discriminatory signals between samples of like material may be possible based on the 

detection of impurities within samples. 

 



 

32 

 

2. Method Development 

In this chapter the development of synthesis and analysis methods is discussed.  

This includes the synthesis of potassium chlorate via three methods. These methods included the use 

of household bleach, pool chlorine and the electrolysis of saltwater. Erythritol tetranitrate was 

synthesised by explosives chemists at DST Group and supplied for analysis. 

The analytical methods employed include; isotope ratio mass spectrometry, inductively coupled 

plasma mass spectrometry, infrared spectroscopy, Raman spectroscopy and terahertz/far-infrared 

spectroscopy. All aspects of sample preparation, data collection and data handling/analysis are 

covered. 

2.1 Synthesis 

In today’s world of information technology any individual with access to the Internet may search for 

information on how to synthesise almost any chemical in the world and purchase the precursors 

required. Confronting this issue is a formidable task as forums are too difficult to police due to their 

number, and some precursors cannot be regulated due to their abundance of legitimate uses.  

An alternate approach is to identify signatures which may allow the connection of starting materials 

and synthesis methods to their final products. This would result in being able to collect data that may 

provide vital intelligence in an investigation and, while the information may not be rigorous enough 

to be presented as incontrovertible evidence in a court of law, it may lead to finding more concrete 

evidence through a more targeted investigation. 

To this end, two materials have been selected for examination, KClO3 and ETN. These two materials 

are of particular interest due to the prevalence of their usage in illicit activities including the 

production of homemade IEDs. Both substances may be easily produced using basic household items 

and precursors sourced from either Internet marketplaces or even local supermarkets and hardware 

stores. Information on how to perform the synthesis for both materials can be openly sourced 

through the Internet.  

2.1.1 Potassium Chlorate (KClO3) 

Potassium chlorate is an inorganic oxidiser which can form an explosive when mixed with a fuel and 

is commonly discussed online amongst hobbyists due to its ease of synthesis and availability of 
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precursors. Common methods openly discussed typically involve synthesis from household bleach, 

swimming pool chlorine or through the electrolysis of saltwater. In each case minimal equipment is 

required, with the first two methods only requiring the ability to heat a volume of solution by any 

means, and the electrolysis typically utilising a standard desktop computer power supply. There is 

also no chemistry knowledge required as forums will allow individuals with no knowledge to use 

other people’s experiences and discussions to understand enough to successfully perform a 

synthesis. 

The final procedures utilised in this project have undergone significant alteration and amendment, 

starting with basic instructions from online forums and YouTube videos then developing them further 

to yield the desired product on a consistent basis. Details of the optimised procedures will not be 

given in this publicly available thesis due to security concerns but will be published in a classified 

report. Starting materials were sourced from supermarkets, hardware shops and online marketplaces 

and the exact identities have been redacted and replaced with codes (refer to sample matrix in 

Table2.1). Therefore, the final products therefore should mimic real world samples and their 

variability. 

Care was taken not to inadvertently introduce potential fuels into the potassium chlorate samples 

manufactured to minimise the risk of formation of sensitive explosive mixtures. Potassium chlorate 

is a strong oxidiser with known incompatibilities with combustible materials, ammonium salts and 

acids. Solid potassium chlorate and solutions should be kept at neutral pH and should be stored and 

handled with this in mind. All procedures were undertaken at the minimum scale for practicality and 

consistency. 

2.1.1.1 Potassium Chlorate from Household Bleach 

The synthesis of potassium chlorate from household bleach is easily found in message boards and 

forums online. In theory it is a simple process requiring household bleach containing sodium 

hypochlorite (NaOCl) and potassium chloride (KCl) salt. The reagents can be easily sourced from 

supermarkets, health food shops, hardware stores and online. Equipment requirements are also 

minimal with only the need for a receptacle capable of being heated, a heat source and a basic filter 

such as filter paper. In practice, however, the process is not very efficient or consistent as there are 

many types of bleach products and they can behave very differently due to other ingredients in their 

formulations.  
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The general method utilised was as described below: 

1. Household bleach was placed in a beaker. 

2. This was boiled on a hotplate with magnetic stirring until visible crystals formed and 

precipitated out of solution. 

3. Potassium chloride was added to the solution, stirred and chilled in an ice bath. At this point 

a visible potassium chlorate precipitate was formed. 

4. The solution was then filtered and washed with chilled water. 

5. This solid was then recrystalised with boiling water to remove sodium/potassium chloride. 

6. This final product was then dried in a desiccator for 24 hours and stored in plastic containers.  

Safety points relating to this procedure are: 

 Care must be taken to ensure that the hot and corrosive bleach solution does not bubble 

over or overflow. This bubbling over is due to the presence of detergent in the solution and 

the amount varies depending on the brand of bleach. 

 The vapour released from the heating is also quite corrosive and toxic so the entire procedure 

from start to finish was completed within a fume hood. 

 The entire process was undertaken behind a blast shield for added safety. 

One precursor that did not successfully produce the desired product was a health food supplement 

salt labelled as LITE in the sample matrix (Table 2.1). This was a low sodium alternative to table salt 

and is a mixture of sodium and potassium chloride. Samples KClO3 40-45 have been included, 

however, the yields were very poor and as recrystallisation was not possible the end products were 

essentially a mixture of potassium and sodium chloride with trace amounts of potassium chlorate as 

shown below in Figure 2.1. 
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Figure 2.1: Spectra comparison between commercial KClO3 (blue) to LITE salt precursor 
KClO3 (green). 

2.1.1.2 Potassium Chlorate from Pool Chlorine 

The synthesis of potassium chlorate from pool chlorine is equally as easy to find in message boards 

and forums online as the bleach method previously described; typically, it is mentioned as an 

alternative to the bleach method. The procedure is very similar to the bleach method, with 

substitution of the bleach solution for pool chlorine liquid or granules containing calcium 

hypochlorite (Ca(OCl)2). The reagents can be easily sourced from supermarkets, health food shops, 

hardware stores and online. Equipment requirements are also minimal with only the need for a 

receptacle capable of being heated, a heat source and a basic filter such as filter paper.  

The general method utilised was as described below: 

1. Pool chlorine granules or liquid chlorine (containing calcium hypochlorite) was dissolved in 

water. 

2. The solution is then heated to boiling temperature on a hotplate with stirring until there is a 

substantial volume reduction (approximately 90%). 

3. This solution was then filtered to remove calcium solids, retaining the filtrate. 

4. The filtrate was the reheated to boiling point briefly and potassium chloride was added, and 

the solution stirred. 

5. The solution was then removed from heat and cooled to room temperature then chilled in an 

ice bath. At this point crystals of potassium chlorate will become visible and precipitate out 

of solution. 

6. This solution is then filtered and washed with chilled water. 
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7. The crude product was then recrystalised with boiling water to remove calcium/potassium 

chloride. 

8. The final product was then allowed to dry in a desiccator for 24 hours and stored in a plastic 

container. 

Throughout the procedure the vapours released from the heating are toxic, so the entire process was 

completed within a fume hood. A small blast shield was used for added safety. 

The synthesis of one sample, KClO3 20, was only partially successful. As with samples KClO3 40-45, 

the yield was very poor and as recrystallisation was not possible the end product was essentially 

potassium chloride with trace amounts of potassium chlorate as shown below in Figure 2.2. 

 

Figure 2.2: Spectra comparison between successful pool chlorine KClO3 (blue) to a partially 
successful KClO3 (green). 

2.1.1.3 Potassium Chlorate from the Electrolysis of Sodium Chloride Solution 

This synthesis is commonly described on the Internet by hobbyists; however, many variations are 

found due to differing equipment used. To mimic these improvised methodologies a homemade 

electrochemical cell was produced and connected to a DC power generator that can reach and 

maintain the required voltage and current. This did not directly mimic the method of using computer 

power supplies from desktop computers but provided a greater level of control and safety.  
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Figure 2.3: Schematic of the basic electrochemical cell constructed for the synthesis of 
potassium chlorate from sodium chloride solution (left) and DC power supply used (right). 

The only reagents required for this process are sodium chloride and potassium chloride making the 

method highly consistent and the chemicals required trivial to obtain. The difficulty of this 

manufacturing method is the experimental set up of the electrolytic cell and cell conditions including 

electrodes, salt concentration, temperature, concentration, voltage and current. The specific 

optimised cell conditions and the process of optimising this synthesis have been redacted from this 

document due to its sensitive nature.  

The general method utilised was as described below: 

1. A sodium chloride solution was added into the electrochemical cell. 

2. Electrodes were introduced and the current passed through the solution, topping up the cell 

with water occasionally depending on the rate of evaporation. 

3. The power supply was then turned off after the optimal length of time and the electrodes 

disconnected and removed. 

4. The solution is then filtered to remove and metal particulates from the degradation of the 

electrodes. Resulting in a yellow/brown clear solution as depicted in Figure 2.4. 

 

Figure 2.4: Filtered solution post electrolysis. 

5. The filtrate was then heated, and potassium chloride was added until saturation. 
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6. The solution is brought up to a boil to remove any remaining chlorine gas then allowed to cool 

and chilled in an ice bath. Crystals of crude product will become visible and precipitate. At this 

point crystals of potassium chlorate will become visible and precipitate out of solution. 

7. The crude product was then filtered and washed with chilled water. 

8. This was then recrystalised with boiling water to remove any sodium/potassium chloride 

resulting in the final product as depicted in Figure 2.5. 

9. The final product was then allowed to dry for 24 hours in a desiccator and stored in a plastic 

container. 

 

Figure 2.5: Final filtered product potassium chlorate. 

Though this method seems simple theoretically, in practice discovering the correct set up and 

conditions of the electrochemical cell was quite arduous.  

Aside from the complexities of the electrochemical cell this synthesis also has many other hazards: 

 The procedure involves the application of electricity to saltwater which is highly conductive 

and so general electrocution is a very real hazard.  

 The synthesis produces a significant amount of gas which includes highly toxic chlorine gas 

and so a suitably rated fume hood was used throughout the entirety of the synthesis. The 

gases are also highly corrosive and so any exposed metal surrounding the reaction vessel was 

corroded.  

 This reaction was also conducted behind a blast shield to provide protection against 

unexpected pressure build up. 
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2.1.1.4 Potassium Chlorate Samples 

The following Tables 2.1-2.3, display details on the precursors for all KClO3 samples. 

Table 2.1: Sample matrix for KClO3 samples made using the bleach method. 

Bleach 
Potassium chloride 

KCl1 E508 LITE 

SACB 

KClO3 1 
KClO3 2 
KClO3 3 

KClO3 3_2 
KClO3 4 
KClO3 5 
KClO3 6 

KClO3 28 
KClO3 29 
KClO3 30 

KClO3 43 
KClO3 44 
KClO3 45 

HBL 
KClO3 7 
KClO3 8 
KClO3 9 

  

WKR 
KClO3 10 
KClO3 11 
KClO3 12 

KClO3 37 
KClO3 38 
KClO3 39 

 

WKL 
KClO3 13 
KClO3 14 
KClO3 15 

KClO3 35 
KClO3 36 

KClO3 36_2 
 

FCB 
KClO3 16 
KClO3 17 
KClO3 18 

KClO3 31 
KClO3 32 
KClO3 33 

KClO3 40 
KClO3 41 
KClO3 42 

 

Table 2.2: Sample matrix for KClO3 samples made using the pool chlorine method. 

Pool chlorine 
Potassium chloride 

KCl1 E508 

HCSS 

KClO3 19 
KClO3 20 (partially successful 

synthesis) 
KClO3 21 
KClO3 22 
KClO3 23 
KClO3 24 

PT1 

KClO3 25 
KClO3 25_2 

KClO3 26 
KClO3 27 

Sigald Ca(OCl)2 SIGALD  
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Table 2.3: Sample matrix for KClO3 samples made using the electrolysis method. 

Sample Code Anode 

Cu Copper 

E1 Titanium 

E2 Titanium 

ICPMS1 Titanium 

SS Titanium 

All used the same sodium chloride (Univar), potassium chloride (KCl2) and a titanium Cathode. 

As well as these synthesised samples of potassium chlorate DST Group supplied 3 commercial 

samples labelled DSTG1, DSTG2 and DSTG3. 

2.1.2 Erythritol Tetranitrate (ETN) 

The synthesis of ETN in a clandestine HME setting is relatively new and on the rise since the large-

scale synthetic production and increasing use of erythritol as an artificial sweetener.57 These 

advancements have made erythritol a household staple for many looking at reducing their calorific 

intake. As a result, erythritol can now be purchased at low cost and in large quantities from any 

supermarket or health food store in most countries around the world. 

The most commonly discussed method of ETN production online is through a mixed acid synthesis. 

However, rather than imitating these crude methodologies, adaptations of literature methodologies 

were used to prepare samples by three different methods.57,138 The three methods utilised mixed 

acid, acetyl nitrate and nitrate salt nitration mixtures. 

All samples analysed in this investigation were prepared by experienced staff at the Defence Science 

and Technology Group, Edinburgh, South Australia, in laboratories designed for the synthesis of 

explosives. Samples were prepared using both commercial and laboratory grade erythritols. The 

nitric acids were also made in-house from the same nitrate salts used in the nitrate salt method 

samples in addition to one commercially obtained fuming nitric acid. The specific identities of the 

precursors are once again redacted and are rather denoted by codes, for example, potassium nitrates 

PN1 and PN2 are sourced from two different manufacturers. 

2.1.1.1 ETN Samples 

The following Tables 2.4-2.7, display details on the precursors for all ETN samples. Some nitric acids 

used were also produced by DST Group and the details for these are described in Table 2.4. 
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Table 2.4: Nitric acid precursors 

DST NA1 Manufactured from PN1 + H2SO4. Two batches produced. 

DST NA2 Manufactured from PN2 + H2SO4. 

DST NA3 Manufactured from AN1 + H2SO4. Redistilled during ETN syntheses. 

DST NA4 Manufactured from AN2 + H2SO4. Two batches produced. 

DST NA5 Manufactured from CN + H2SO4. 

 

Table 2.5: Sample matrix for ETN samples produced via the acetyl nitrate nitration method.  

Nitric acid 
Erythritol 

Sigma-Aldrich Unison International (Ausweet) Natvia 

DST NA1 (Batch 2) d-15-4 e-16-4 f-17-4 

DST NA2 g-8-5 h-8-5 i-13-5 

DST NA3 j-13-5 K-14-5 L-14-5 

DST NA4 (Batch 2) DA-95A DA-96A DA-97A 

DST NA5 P-23-5 Q-22-5 R-27-5 

All syntheses used a common acetic anhydride (Ajax). 

 

Table 2.6: Sample matrix for ETN samples produced via the mixed acid nitration method.  

Nitric acid 
Erythritol 

Sigma-Aldrich Unison International (Ausweet) Natvia 

Sigma-Aldrich 100% a-12-6 b-13-6 c-15-6 

DST NA1 (Batch 1) d-18-6 e-19-6 f-20-6 

DST NA2 g-25-6 h-26-6 i-27-6 

DST NA3 j-25-7 K-27-7 L-7-8 

DST NA4 (Batch 1) M-5-12 N-6-12 O-7-12 

DST NA4 (Batch 2) DA-98A DA-99A DA-100A 

DST NA5 P-25-3 Q-27-3 R-1-4 

All syntheses used a common 98% sulfuric acid (APS Specialty Chemicals). 

 

Table 2.7: Sample matrix for ETN samples produced via the nitrate salt nitration method.  

Nitrate salt 
Erythritol 

Sigma-Aldrich Unison International (Ausweet) Natvia 

Potassium Nitrate 1 (PN1) DA-84A BCH-1-27 BCH-1-32 

Potassium Nitrate 2 (PN2) DA-85A BCH-1-37 BCH-1-33 

Ammonium Nitrate 1 (AN1) DA-86A BCH-1-29 BCH-1-34 

Ammonium Nitrate 2 (AN2) BCH-1-25 BCH-1-30 BCH-1-35 

Calcium Nitrate (CN) BCH-1-26 BCH-1-31 BCH-1-36 

All syntheses used a common 98% sulfuric acid (APS Specialty Chemicals). 
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2.2 Analytical Techniques 

Many techniques have been used in the forensic analysis of explosives as well as other materials as 

previously discussed. However, methods of extracting the maximal amount of forensic intelligence 

from gathered data can be improved. In this chapter the methodologies for both the collection and 

analysis of data for each analytical technique employed within the project are outlined.  

2.2.1 Isotope Ratio Mass Spectroscopy (IR-MS) 

2.2.1.1 Sample Analysis 

The IR-MS system was located in Flinders Analytical and consists of an IsoPrime (GV Instruments) 

stable isotope ratio mass spectrometer including an Elementar Vario Isotope elemental analyser 

coupled with an Isoprime diluter. The system utilised Isoprime’s Stable Isotope Ratio Mass 

Spectrometry software, IonVantage for isoprime123, Build 1.6.1.0 and Elementar’s varioISOTOPE cube 

software124. The analysis method was continuous flow, elemental analysis, nitrogen and diluted 

carbon isotope ratio utilising helium as the carrier gas.  

Samples were prepared in tin boats (4 x 4 x 11 mm) manufactured by Elementar Analysensysteme 

GmbH (batch S22137418). Standards were supplied by Flinders Analytical and included the NIST 

reference materials:  

 8573 L-Glutamic Acid USGS40: Light carbon (-26.39 ± 0.09‰) and nitrogen (-4.52 ± 0.12‰) 

isotopes in L-glutamic acid.  

 8574 L-Glutamic Acid USGS41: Heavy carbon (+37.63 ± 0.10‰) and nitrogen (+47.57 ± 0.22‰) 

isotopes in L-glutamic acid. 

These reference materials are internationally recognised, and their values are determined through 

comparison to the zero-point standards previously discussed. These have been used instead due to 

their cost, availability and in order to allow a two-point linear calibration between distant delta 

values. 

Samples were weighed using a Satorius Cubis microbalance with a readability of 0.001 mg, into tin 

boats and these are then carefully sealed and crushed into round balls using tweezers to avoid 

contamination. The final balled sample is then reweighed to confirm no loss of sample during the 

preparation and the mass recorded. 1.2-1.6 mg (1.4 ± 0.2 mg) of both standards and samples were 

weighed out in triplicate. Samples are then loaded into their assigned positions within a 96 welled 
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sample holder and stored within a desiccator until ready for analysis at which point the samples are 

loaded into the autosampler. 

2.2.1.2 Data Analysis 

This is a very small dataset in comparison to all the other analytical methods within this project with 

only 2 variables, carbon and nitrogen delta values, and so, was treated quite differently. The raw data 

was examined by plotting the isotope ratios for both carbon and nitrogen individually and as a two-

dimensional combination. This can highlight similarities and differences within samples based on 

these ratios and can also identify linkages to precursor materials. The second stage of analysis for 

this data was to incorporate it into the ICP-MS dataset.  

2.2.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

2.2.2.1 Sample Analysis 

The ICP-MS instrument used was located at Flinders Analytical and is a Perkin-Elmer NexION 350D 

utilising the Syngistix Version 1.1 (Build 1.1.4624.0) software125. The system is equipped with a PC3 

Peltier Cooler Organics Sample Introduction Kit allowing for the chilling of the nebuliser to reduce 

polyatomic interferences, such as oxides, and nickel cones were used for all analysis. The ion path is 

unique with a schematic shown below in Figure 2.5 below126. The unique features of this system are 

the triple cone interface to focus the ion beam for extra stability and a quadrupole ion deflector to 

redirect positively charged ions 90o rather than the use of lenses as in other systems. 

 

Figure 2.6: Schematic of the Perkin Elmer NexION 350D. 
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All analysis was done in a collision mode using the instrument’s kinetic energy discrimination (KED) 

mode which fills the cell with helium gas to collide with interfering ions with larger cross sections and 

hence remove them prior to detection.   

Before every use the ICP-MS was tuned with a daily tuning solution containing 1 ppb of Be, Ce, Fe, 

In, Mg, Pb and U and a Kinetic Energy Discrimination (KED) mode tuning solution containing 1 ppb Ce 

and 10 ppb Co to within the specifications displayed in Table 2.8. The system was also tested for 

stability by measuring the ion counts for the internal standard solution for an extended period of 

time (6 minutes) prior to analysis. In the case of this project a 100 ppb indium solution was utilised 

as the internal standard and across this period of time the acceptable relative standard deviation 

(%RSD) was below 3%. 

Table 2.8: Nexion ICP-MS tuning specifications. 

Daily tune criteria KED tune criteria 

Be 9 > 2000 cps Co-high 58.93 > 15000 cps 

In 115 > 50000 cps Ar2-high 77.92 ≤ 30 cps 

U 238 > 40000 cps ClO-high 50.96/Co-high 58.93 ≤ 0.005 

Background 220 ≤ 1 cps CeO-high 155.9/Ce-high 139.91 ≤ 0.01 

CeO/Ce ≤ 0.015 ClO-low 50.97/Co-low 58.94 ≤ 0.02 

Ce2+ 70/Ce 140 ≤ 0.03  

Many of the instrument operating conditions were based on these daily tunings including the torch 

position, nebuliser flow rate and standard/KED mode quadrupole ion deflector voltages. Further 

static operating conditions are displayed in Table 2.9. 

Table 2.9: Operating conditions for the ICP-MS instrument. 

RF Power 1600 W 

Nebuliser Meinhard Glass TR-50-C0.5, 0.5 mm I.D.  

Spray chamber Quartz glass cyclonic with Peltier Cooler (PC3) 

Injector 2 mm I.D. Quartz Injector 

Torch Demountable quartz 

Triple cone interface Nickel/Aluminium 

Plasma gas flow 18 L/min 

Nebuliser gas flow 0.87 L/min* 

Sweeps per reading/replicates per sample 10 sweeps/3 replicates 

Helium gas flow 4.7 mL/min 

Detector mode Dual (pulse/analog) 

*may vary as optimised by tunings 
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The sample solution was introduced via a peristaltic pump under the parameters recorded in Table 

2.10. The internal standard moves through a 0.19 mm internal diameter tube while the sample travels 

through a 0.76 mm internal diameter tube to the mixing junction. At the pump rotation of sample 

introduction during measurements (9 rpm), 0.45 mL of sample and 0.03 mL of internal standard are 

introduced per minute.   

Table 2.10: Sample introduction parameters for the peristaltic pump. 

 Time (s) Speed (rpm) 

Sample flush 35 24 

Read delay 45 9 

Wash 45 24 

ICP-MS sample preparation was identical for both the KClO3 and ETN samples. 50 mg of sample 

(weights recorded) were weighed out into 50 mL plastic digestion vessels from Environmental 

Express (Cole-Palmer). Each batch of these vessels are tested for volume graduation lines and trace 

metal contents of 68 elements for quality assurance purposes and the resultant report is delivered 

with each order. This is vital when considering ultra-trace detection research. For example, a 

randomly selected vial not specifically manufactured for trace elemental analysis was tested for the 

same range of elements during the ETN analysis and produced the following results (Table 2.11). 1 

mL of nitric acid was placed in the vial and left overnight then made up to 50 mL and analysed.  

Table 2.11: Results of preparing a blank in a randomly selected 15 mL vial showing its lack of 
suitability for ultra-trace elemental analysis. 

 
Al 

ppb 
Ca 

ppb 
K 

ppb 
Co 

ppb 
Ni 

ppb 
Ru 

ppb 
U 

ppb 
Sr 

ppb 
Fe 

ppb 
Mg 
ppb 

Zn 
ppb 

Vial 15.5 80.8 0 0 0 0 0 0 8.7 3.2 1.0 

The results show that a vial such as this would not be acceptable as the levels in a blank would have 

ppb levels of Al, Ca, Fe, Mg and Zn whilst the measured range in this project is as low as 100 ppt or 

0.1 ppb for these elements. 

To prepare samples for analysis 100 µL of ultrapure water (Milli-Q) followed by 1000 µL of trace grade 

69% nitric acid was added to the digestion vessels. The water was added prior to the introduction of 

the acid purely for the minimisation of any reaction between the nitric acid and the samples which 

may result in the loss of elements. For example, the ETN and KClO3 from pool chlorine starting 

materials tended to react with neat acid and resulted in some bubbling and degassing which could 

potentially affect the retention of trace metals within the solution and so the addition of 100 μL of 
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water was utilised. The vessels were then lightly capped and left in a fume hood overnight to ensure 

a complete digestion and any potential gas production was safely contained and removed. The vials 

were then inspected to confirm the digestion by examining the solutions for any particulates and or 

colour to indicate an incomplete digestion. This is a gentle digestion method requiring no heat or the 

use of a microwave digestion system, however, if desired the process may be accelerated using a 

heating block or water bath at 60oC in which case digestion may be complete typically within an hour. 

Digested samples are then made up to 50 mL with ultrapure water making up the sample solution to 

2% nitric acid, which is the selected matrix for the internal standard as well as all calibration solutions. 

This is an important factor as matrix matching ensures that all the solutions have the same aerosol 

characteristics when being introduced into the plasma by the nebuliser. 

The calibration solutions for KClO3 and ETN differ in their trace elemental contents as differing 

elements were targeted in each material depending on predicted elements that may be contained 

within real world samples. For example, as KClO3 may be created using an electrochemical cell, metals 

that may be used as electrodes (copper, titanium, etc.) were investigated, whereas for ETN elements 

that were reported to be more commonly found in artificial sugars were selected.127A summary of 

the target elements for each material is described in Table 2.12. The elemental standards were 

sourced from either Choice Analytical or Australian Chemical Reagents and were all in 2% nitric acid. 

Table 2.12: Range of elements selected for ICP-MS analysis for both KClO3 and ETN samples. 

KClO3 Target Elements ETN Target Elements 

Choice Analytical 
Australian Chemical 

Reagents 
Choice Analytical 

Australian Chemical 
Reagents 

Al, Ca, Cu, Mg, Ru, U, 
Zn 

Ba, Cr, Fe, Mn, Ni, Pt, 
Sr, Ti 

Al, Ca, K, Mg, Ru, U, 
Zn 

Co, Fe, Ni, Sr 

These were used to make 5-point calibration curves between 100 ppt and 100 ppb (100 ppt, 500 ppt, 

1000 ppt, 10 ppb and 100 ppb) for all elements apart from the rarer elements Ru, Pt and U where a 

range of 10 ppt to 10 ppb (10 ppt, 50 ppt, 100 ppt, 1 ppb and 10 ppb) were used. 

Quality control in trace metal quantification is paramount in producing reliable results. All ICP-MS 

analyses should incorporate a minimum level of quality control procedures including an internal 

standard together with regular blank and check solutions.  

The internal standard ensures that the system is not unknowingly drifting over time by either 

increasing or decreasing counts. If not measured throughout an analysis the samples measured 
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towards the beginning may not be comparable to samples measured towards the end of the batch. 

This is the reason for the internal standard stability test prior to commencing analysis. If a trendline 

is identified it may be used to correct across the batch analysis by accounting for drift, however, it is 

preferable for the system be confirmed to be stable prior to starting an analysis. The secondary 

purpose for the internal standard is to measure any matrix effects present within digested sample 

solutions. This is important as samples must have similar matrix behaviours to the calibration 

standards they are being measured against, otherwise the comparison is unreliable. Differences in 

the matrices of the sample solutions and the internal standard and calibration solutions result in 

dissimilar aerosol characteristics in the nebuliser and spray chamber. This difference in aerosol 

droplet size then leads to a differing ionisation once exposed to the plasma, greatly affecting the 

recovery of internal standard. Examples of a poor matrix matching, and acceptable matrix matching 

are displayed in Figure 2.7. This acceptable matrix range is between 80%-120% internal standard 

recovery. 

 

Figure 2.7: An example of significant matrix effects within a batch (left) and of acceptable 
matrix effects (right). 

The blank solutions ensure that there is no carry over or contamination effects due to samples with 

high concentrations of measured elements. This should be run every 10 samples at a minimum to 

confirm that trace elements are being properly washed out by the rinse solution. The readings for 

blanks should be below the limit of quantification. 

In an ideal situation check solutions should consist of certified reference materials. These are samples 

with known concentrations for the elements being analysed which are chemically and physically 

similar to the samples being analysed. For example, when plant samples are being analysed a certified 
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reference plant material may be used which has known amounts of all the elements being measured. 

The analyses performed in this project did not involve the use of a certified reference material and 

so additional quality control methods were employed. Firstly, a pre-digestion blank was prepared in 

order to guarantee that the handling and digestion of samples did not introduce trace elements to 

the samples. This also ensures that the plasticware and trace grade acids did not contribute to the 

concentration of elements within samples. Secondly, a dilution check is regularly measured 

immediately after the regular blank which is simply a dilution of the stock solution of the standard to 

track any drift in calibration during a run. Thirdly, random duplicates were run alongside samples to 

ensure that the digestion and sample preparation methods result in consistent measurements. This 

is not necessary if all samples are measured in duplicate or triplicate, however, in the analysis of trace 

or residual explosives where only very small amounts of sample may be analysed this may not be 

possible. There may only be the possibility of a single sample solution and so the digestion method 

should be well validated prior to the analysis of these samples.  

If ICP-MS analysis is to be used in the future to create profiles for explosive samples, an in-house 

reference material should be developed for each type of material to ensure reliability and validity of 

the analysis of such materials. Ideal reference materials should be highly stable but have similar 

chemical and physical properties to the samples being analysed. As both KClO3 and ETN are not as 

stable it would be better to select their more stable and less sensitive counterparts. For potassium 

chlorate a reference material of potassium perchlorate and for erythritol tetranitrate PETN could be 

selected.  

2.2.2.2 Data Analysis 

Raw data was first examined to identify variables that provide no information i.e. elements below 

the limit of quantification for all samples. These may be removed prior to commencing the 

multivariate exploratory analysis as each variable included in the analysis requires additional 

computational power and time to perform. Therefore, any reduction of ineffectual data possible prior 

to the pre-processing and multivariate analysis should be undertaken.  

The raw data was then investigated using a combination of HCA for the initial overview of potential 

clustering followed by PCA to explore the level of discrimination possible from the raw dataset. As 

this is a raw data analysis there will always be a high probability of outliers resulting in poor 
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discrimination due to the nature of PCA as previously discussed in the introduction. Therefore, a 

further elimination of these outliers was undertaken, and the analysis repeated.  

A second PCA was then undertaken in a similar fashion to the analysis of spectral data, where prior 

to analysis a pre-processing method was utilised. In the case of elemental data, however, the pre-

processing procedure was quite different. This dataset required pre-processing not to correct for 

physical phenomena effecting the true value of a measurement but rather to somewhat standardise 

the data due to the various elemental mass fractions having varying orders of magnitude across the 

dataset. This can be accomplished by a variety of methods, however, the method selected for this 

analysis is done through the use of a logarithmic transformation for elemental data which has been 

used for elemental data in other studies and seems well suited to this role. This method transforms 

an asymmetrically skewed dataset, such as in the case of trace element analysis, where some 

commonly abundant elements (e.g., K, Na, etc.) may be in far greater levels than other rarer elements 

(such as Ti, Pt, etc.). Taking the logarithm of heavily skewed data shrinks the distribution tail 

centralising the data and making it more symmetrically distributed as is ideal for PCA.128,129  

Prior to a log transformation the values require an initial translation by the scalar addition of a 

constant (in this case 1) as elements below the limit of quantification are reported as 0 ppb and the 

log of zero is undefined. Once the entire dataset is translated by 1 the log transformation can be 

undertaken and results in the null data reverting to zero as log10 1 = 0. This scalar addition is allowed 

as adding a constant value to a variable does not change the variance as the mean increases by the 

same amount130.  

2.2.3 Infrared Spectroscopy (IR) 

2.2.3.1 Sample Analysis 

The IR spectrometer utilised was located at Flinders University and manufactured by Perkin-Elmer in 

the Frontier FTIR range. The system utilises a rotary Michelson interferometer resulting in a 

wavelength accuracy of ± 0.1 cm-1 at 1600 cm-1, spectral resolution of 0.4-64 cm-1 and a spectral range 

of 8300-350 cm-1. The attenuated total reflectance (ATR) sampling accessory was used however it 

must be noted that this may not be the correct procedure for all energetic materials due to the 

pressure and friction involved. The Spectrum Software Package131 was used to export the raw data 

as well as some basic processing including the baseline correction and normalisation of the data.  
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The collection of the data involves cleaning the ATR crystal with an ethanol wipe, allowing to dry and 

collecting a background scan. A small amount of sample was then placed on the crystal (just enough 

to cover it, approximately 1 mg) and pressure carefully applied to an appropriate level. Data was then 

collected, the parameters selected were 32 scans between 600-4000 cm-1 with a resolution of 1 cm-

1 in percent transmittance (%T) output mode. The number of scans was varied between 8, 16, 32, 64, 

128 and 256 scans, however the resulting spectra for 32 scans were indistinguishable from any higher 

number of scans and takes approximately 15 minutes to complete rather than 30 mins or greater for 

no added information, consistency or higher resolution. Post data collection the sample may be 

retrieved from the crystal platform as this is a non-destructive analytical technique and therefore 

may be saved for further analysis. 

2.2.3.2 Data Analysis 

Raw data was initially examined in the standard manner, by visual inspection of the spectra, to 

confirm the identity of the material by comparing it to the spectra of known material. This 

examination also gives an overview of the variance in the dataset and identifies potential 

discriminatory signals within the material. Following this a hierarchical cluster analysis (HCA) is 

undertaken to identify the level of discriminatory variance within the dataset.  

The dataset was then altered using a pre-processing stage prior to further exploratory data analysis 

of the dataset. There are many forms of pre-processing employed for the transformation of spectral 

datasets, with researchers selecting various procedures based on their specific dataset and the issues 

encompassed within it. Potential issues include; distinct outliers which will render PCA unusable as it 

will overshadow the rest of the variance within the dataset and uneven magnitudes of variance across 

variables which will reduce the equal comparison of all variables within a dataset reducing the 

effectiveness of the PCA. Many of the methods only slightly differ, all striving to accomplish the same 

goal and are rarely contrasted and compared to one another. A review article discussing this lack of 

comparison published in 2009 aimed to discuss and evaluate many of the most common pre-

processing methodologies in the case of near-infrared spectral datasets132. 

The goal of the pre-processing is to improve the quality and consistency of the data by minimising or 

removing physical phenomena within the data to enhance further multivariate statistical or 

exploratory analysis. This is not a substitute for collecting the highest quality of data possible, 

however, it can to some extent increase the quality of non-optimal data collection especially when 
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considering the quality of the instrument employed. In the case of spectral datasets, it must be noted 

that no level of pre-processing can correct for specular reflectance (direct scattering) and any spectra 

significantly affected by this phenomenon must be removed as outliers prior to multivariate analysis.  

In the case of this project’s infrared spectra, the pre-processing involves two key steps. Firstly, a 

polynomial baseline correction was performed for all spectra. Secondly, a normalisation of each 

spectrum to the largest common signature peak across all spectra in the dataset. This is a very minor 

pre-processing procedure as one the goals of this project was to investigate the application of a 

standard process to a variety of spectral datasets and a major disadvantage of increasing the pre-

processing model complexity will begin to reduce the robustness of the model for predictions of 

additional datasets. There is also the possibility of valuable variability to be lost the more the data is 

transformed or manipulated prior to multivariate analysis. The initial baseline correction will adjust 

the baseline of each spectrum to mitigate systemic variability due to the device used to collect the 

data. Normalisation is a scatter correction method designed to reduce the physical variability 

between samples due to scatter and adjusts for baseline shifts between samples. This will allow for 

a greater level of consistency between spectra and enable much more suitability for direct 

comparison which is vital when a mathematical approach such as PCA is utilised.  

PCA is performed to interrogate and reduce the dimensionality of the dataset to identify 

discriminatory areas of the spectra and determine any level of clustering within the samples.  

2.2.4 Raman Spectroscopy (Raman) 

2.2.4.1 Sample Analysis 

The bench-top Raman used was located at Flinders University manufactured by DeltaNu in their 

Advantage series. The system utilises a 633 nm 3 mW HeNe laser with a spectral resolution of 5-7 cm-1 

and spectral range of 200-3400 cm-1. Baseline removal was employed through the NuSpec133 program 

then exported in printable file format (.prn) for Microsoft Excel compatibility. 

Minimal sample preparation is required as the explosives are placed in a 5 mm diameter vial and 

inserted into the Raman spectrometer. Depending on the sample, a delay timer may be set allowing 

the user to create some distance between themselves and the analysis if there are concerns for safety 

surrounding potential laser induced initiation.   
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Prior to the data collection of each sample the signal is tuned to maximise the signal to noise ratio by 

setting a survey scan, the sample vial is rotated and its distance from the laser source manipulated. 

Once this optimised position is located the data is collected with a 10 s integration time over the 

range 200-3400 cm-1. 

Due to failure of the DeltaNu spectrometer data collection for ETN samples required the use of a 

different instrument. The Raman spectra were recorded between -199 and 4000 cm-1 on a XploraRA 

Horiba Scientific Confocal Raman microscope using a 50× objective (numerical aperture 0.6) at an 

excitation wavelength of 786 nm and using a grating of 600 gratings min-1. The acquisition was 6 

accumulations of 20 s integration times. The instrument was calibrated to the 520.7 cm-1 line of 

silicon and an additional spectrum was collected at a laser wavelength of 532 nm to confirm the 

spectrum recorded at 786 nm.   

Sample preparation involved placing a very small amount of sample (barely visible) onto a glass 

microscope slide and placing it under the lens of the microscope. The sample platform is then moved 

to place a small indicator light from the microscope on to the sample then further fine translations 

are done using the microscope camera to ensure a good positioning. The focus was then adjusted by 

moving the sample closer or further away from the lens for maximum signal to noise ratio. Once the 

signal was optimised the acquisition was conducted and the sample removed. Though the power 

level of the laser is much greater than in the case of the DeltaNu spectrometer this is still a non-

destructive technique and so the sample may be reclaimed. This may not be the case for all 

energetics, especially mixtures where laser sensitivity may be heightened and therefore caution must 

be used prior to using full power on any sample and slowly increased for greater levels of signal. 

2.2.4.2 Data Analysis 

The analysis of this dataset was be identical to the IR spectroscopy method as the spectral datasets 

are highly similar. 

2.2.5 Terahertz/Far-Infrared Spectroscopy (THz/Far-IR)  

All measurements were taken at the THz/Far-IR Beamline at the Australian Synchrotron with samples 

of explosives provided by Forensic Science Service, Victoria Police. This synchrotron project was also 

in collaboration with the French-German Research Institute of Saint-Louis and conducted in three 

stages.  
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The initial experiments involved developing a method to consistently prepare non-energetic samples 

through the pelletisation of materials into thin film 3 mm diameter pellets of polyethylene (PE) 

and/or wax. These findings were used to prepare explosives and ingredients for analysis and to collect 

high resolution spectra of both explosives and potential packaging materials (various plastics and 

paper). Following this, an investigation utilising the recent additional capability of the THz/Far-IR 

beamline to be able to collect Far-IR spectra using an out-of-vacuum ATR accessory was undertaken. 

The materials investigated throughout included the following: 

 Explosives and ingredients 

o RDX 

o HMX 

o PETN 

o AN 

o KClO3 

o Hexamethylene triperoxide diamine (HMTD) 

o UN 

o Nitrourea (NU) 

 Precursors 

o Hexamine 

o Erythritol 

o Urea 

All these materials were sourced in a powdered form and as the samples for the initial experiments 

prior to the availability of the ATR accessory required mounting onto a sample holder and placed 

under vacuum these powders had to be pelletised. Initially PE pelletising methodology was 

developed by altering the ratio of sample to PE and it was found that the optimal amount of sample 

was 15-25% by weight.  Typically, 1.5 mg of the sample/PE mixture is pelletised using a PIKE 

Technologies hand pelletiser (further details below). Similar methodology was used with paraffin wax 

as the matrix material and the same ratio was selected to provide a strong signal without saturation. 

This was performed with samples of precursor materials only as the first set of experiments did not 

involve the direct use of explosives.  

The developed method was then applied to the pelletising of explosives. However, the previously 

optimised methodology was not robust and applicable to all the explosive materials as there were 

significant absorption differences between materials. For example, RDX and HMX absorb 60% of the 

THz radiation at a 1:1 sample:PE ratio. However, the same ratio of PETN:PE will only absorb 10% of 

the THz radiation producing a far weaker peak intensity in the resultant spectrum. Therefore, the 
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methodology was modified increasing the percentage of sample in PE to between 25-50% depending 

on the material. PE was chosen over paraffin wax due to the difficulties involved with handling wax 

as it tended to have adhesive properties. 

The pellets were pressed with a PIKE Technologies Hand Press using a 3 mm die set. These pellets 

were then mounted into a three-position sample mount and placed onto a Cryostat (Janis Research) 

and mounted to the sample compartment of the Bruker IFS 125HR FTIR spectrometer. Though 

mounted on the cryostat, the heating and cooling functions were not utilised for any of this research; 

it was just used as a sample holder. The compartment was then evacuated to approximately 10-3 

mbar and the beamline from the synchrotron was opened. The system utilises a Michelson 

interferometer with an optical path length of 942 cm and resolves linewidths of <0.0009 cm-1 over a 

broad spectral range of 5 cm-1 (Far-IR) to >50,000 cm-1 (UV). The detector used was a liquid nitrogen 

and helium cooled Si Bolometer with a 6 μm Multilayer Mylar beam splitter and data was processed 

through the Bruker software package OPUS134. The data processing for pelletised samples involved 

the averaging of 10 spectra, subtracting the background and converting these averaged spectra to 

absorbance spectra. The spectra are then cropped to between 30-650 cm-1 as this is the optimum 

window utilising the chosen detector and PE as the pelletising material. This data was exported into 

a data point table (.dpt) format for compatibility in Microsoft Excel. 

The third set of experiments with the beamline involved collecting the spectra of the same materials 

with the new GladiATRTM Single Reflection ATR Accessory mounted onto the sample compartment of 

the Bruker IFS 125HR FTIR spectrometer. For this analysis a very small amount of sample is placed to 

cover the top of the crystal (<1 mg), the anvil is positioned on top and lightly screwed down to ensure 

good contact between the diamond and the sample. After data collection, an extended ATR 

correction was applied through OPUS to account for the difference in refractive indices between 

sample and diamond. Though refractive index is referred to as an optical constant it does vary 

depending on the wavelength of light due to optical dispersion and this has been studied for 

explosives.135 The mean refractive index was used for each material to apply the ATR correction. This 

then allowed the development of a spectrum from the THz/Far-IR region all the way through to the 

near-IR region by combining the THz/Far-IR spectrum with the mid- to near-IR spectrum collected 

using a standard FTIR instrument. To do this the spectra were normalised to a common peak recorded 

in both spectra in the 600-650 cm-1 region. 
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3. Initial Development of Data Analysis and Fusion Methodology 

In this chapter the data from a past project9 was re-examined to develop a suitable data pre-

processing method to combine IR-MS and ICP-MS data. The resultant data was analysed using the 

exploratory multivariate data analysis technique, PCA, to assess the suitability and success of the pre-

processing employed. The PCA results were then used to identify any information that may be 

valuable for intelligence gathering purposes. This includes any information that may indicate a link 

between sample and precursor. 

3.1 Background 

Data collected as part of a past research conducted by Dr Paul McCurry at Flinders University and the 

Centre of Expertise in Energetic Materials in 2015 was re-examined to test and develop the initial 

chemometric analysis utilising principal component analysis. The thesis titled “The use of Advanced 

Analytical Techniques to Enable Batch and Source Matching of Homemade Explosives” aimed to 

highlight the use of IR-MS and ICP-MS for the provision of chemical intelligence in the analysis of 

HME. The materials analysed were ammonium nitrate and calcium ammonium nitrate (CAN) based 

HME samples and ingredients (i.e. without a fuel component). The research successfully identified 

the potential of IR-MS and ICP-MS to contribute chemical intelligence in an investigation showing 

there was discriminatory information within the collected data which may be able to link batches of 

HME to sources. Though successful, one major limitation was identified and that was the way the 

collected data was analysed, specifically surrounding ICP-MS data analysis and the combination of 

IR-MS and ICP-MS datasets. 

3.2 IR-MS Data of AN and CAN Samples 

The IR-MS data collected included both carbon and nitrogen isotope ratios, however, not all 

ammonium nitrate samples contained significant amounts of carbon and therefore the isotopic ratio 

could not be obtained for all samples. The samples that contained sufficient carbon were typically 

CAN, which have enough carbon from the calcium carbonate content, or prilled AN that were coated 

with carbon containing substances in order to mitigate against the high hygroscopicity of AN and 

improve storage life. 
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The data was then displayed by plotting the carbon delta values against the nitrogen delta values 

(Figure 3.1). 

 

Figure 3.1: IR-MS data plotted as carbon delta values vs nitrogen delta values.  

These results could identify some minimal groupings and clustering but there is a clear lack of reliable 

discrimination between samples of differing origin. The two-dimensional nature of the data means 

this is the optimal presentation of such data and a chemometric approach could not provide an 

improvement from this dataset alone. There was, however, an opportunity to incorporate this into 

the larger ICP-MS dataset also collected from the same samples, effectively combining the 

discriminatory power of both datasets. 

3.3 ICP-MS Data of AN and CAN Samples 

The original dataset collected is from the quantitative trace metal analysis of 66 ammonium nitrates 

sampled from numerous countries for 32 elements, as well as, calcium ammonium nitrate, aluminium 

powders and mock HME samples from DST Group. These results were then displayed in the form of 

radar plots in order to graphically display a multivariate dataset to allow direct visual comparisons 

between samples. Though radar plots do allow a visual comparison to some extent, it is clear upon 
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examining such a method of display that it is hard to interpret the level of discrimination between 

any two given samples. For example, below in Figure 3.2 four of the resultant radar plots are 

displayed side by side and though it can be confidently concluded that each sample is different the 

level of difference or similarity is hard to determine and impossible to quantify. This issue is 

compounded when hundreds of samples are compared to one another as would be the case in a real-

world database. 

 

Figure 3.2: Example of ICP-MS data depicted in the form of radar plots for discriminating 
between samples. 

This limitation highlights the need for more post collection data analysis and this analysis must be 

able to handle large datasets of a multivariate nature. Therefore, a chemometric method was 

required. Principal component analysis was selected over linear discriminant analysis and partial least 

squares regression due to the exploratory and unsupervised nature of the analysis being fit for 

purpose. As the real-world application of this research is intelligence gathering, when a new sample 

is being investigated and there is no viable way to assign it to a grouping prior to statistical analysis 

an exploratory and unsupervised analysis is ideal. This is particularly the case when identifying 

information about the sample has been redacted for security reasons due to the lack of security 

clearance possessed by the analyst.   

3.4 Chemometric Analysis of AN/CAN Datasets 

3.1 Exploratory Multivariate Data Analysis of Raw Data 

The first step of any chemometric analysis is determining if any pre-processing of the original data is 

required. This requires a sound understanding of both what the data means and how the selected 

statistical analysis handles data. In this case the data consists of the quantifiable trace elements 

present within each sample as well as carbon and nitrogen isotope ratios. Keeping these raw datasets 

in mind, issues can immediately be identified with the application of PCA: 
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1. The trace element analysis included a large number of target elements that were below the 

limit of quantification and as PCA will not handle data with non-numerical values this must 

be altered. 

 This can be mitigated by simply replacing these “not a number” or NaN fields to zero 

as this effectively indicates that there was not a significant amount of the element 

present. 

2. After the replacement of NaN fields with zero values, various elements can be identified as 

undetected in all samples. 

  As they contributed nothing to the variance of the dataset they may be removed. 

This included the elements: Li, Be, Cr, Mn, Co, Ni, Cu, Se, Y, Mo, Cd, Sb, Tl and U. 

i. Though this was the case for all the samples in this dataset, subsequent 

analysis of authentic samples of CAN and CAN-based HMEs revealed that 

many of these elements were present. Therefore, these elements can still be 

valuable forensic markers just not across these specific samples. 

3. The ratios of the stable isotopes of an element are represented as delta values from 

universally accepted reference standards and therefore may be negative or positive values, 

meaning any value is considered a measurement. Therefore, unlike in the ICP-MS case 

unmeasurable samples cannot simply be reduced to zero as that would indicate a 

measurement. 

 The pre-processing resolution for this is to omit any samples with unrecorded data, 

however, as this was the majority of samples the carbon isotope ratios will be omitted 

from the PCA analysis to retain sample size over the addition of one potentially 

discriminatory variable. 

After these pre-treatments the dataset had no clearly identifiable issues and therefore a PCA may be 

undertaken. 

This initial analysis concluded that out of the original 34 elements and nitrogen delta values, 8 trace 

element measurements were responsible for 99.96% of the original dataset’s variance. 

This is understood through the latent values of the PCA, by calculating the ratio of the cumulative 

sum and sum of latent values for each PC. This ratio reveals the amount of original variance retained 

in the transformed data. The latent variable table (Table 3.1) shows that the original data was 
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transformed into 19 principal components, however, many are irrelevant as the original dataset’s 

variance has been accounted for prior to that point. This may be plotted in the form of a scree plot 

(Figure 3.3). 

Table 3.1: Latent variable table. 

Principal 
Component 

Latent Percentage 

PC1 4223281.96 72.37 

PC2 927654.87 88.27 

PC3 337222.11 94.05 

PC4 283803.67 98.91 

PC5 42996.85 99.65 

PC6 10914.96 99.83 

PC7 7296.62 99.96 

PC8 1719.18 99.99 

PC9 348.37 99.99 

PC10 239.52 100 

PC11 97.39 100 

PC12 35.46 100 

PC13 3.26 100 

PC14 1.68 100 

PC15 0.80 100 

PC16 0.68 100 

PC17 0.23 100 

PC18 0.11 100 

PC19 0.01 100 
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Figure 3.3: Scree plot for the raw data PCA. 

 

An additional consideration to determine the significant number of PCs other than the shape of a 

scree plot, is to limit the PCs to the point where measurement variance is incorporated into the 

model. In this case, the ICP-MS measurements have an RSD of up to 3% and therefore, PCs could be 

taken into account until the cumulative variance retained reaches 97%. The IR-MS data also has an 

RSD of up to 5% however, in this current analysis the IR-MS data does not contribute to the early PCs.   

The next stage of the analysis is to determine what is accounting for these first 7 principal 

components, which may be done through interrogating the coefficient values (Table 3.2). These 

coefficient values are commonly referred to loading factors or loadings and identify the variables 

contributing to each principal component as well as the magnitude of their respective contributions. 

This format is quite difficult to interpret so transforming it to highlight the important elements is 

helpful (Table 3.3).  

Table 3.2: Raw coefficient values to 1 decimal place. 

Element PC1 PC2 PC3 PC4 PC5 PC6 PC7 

N IR-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Na 0.0 -0.1 1.0 0.0 0.0 0.0 0.0 

Mg 0.0 1.0 0.1 -0.1 0.0 0.0 0.0 

Al 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 

P 0.0 0.1 0.0 1.0 -0.2 -0.1 -0.1 
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Cl 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

K 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 

Ca 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sc 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fe 0.0 0.0 0.0 0.0 0.3 -0.3 0.2 

Zn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

As 0.0 0.0 0.0 0.1 0.0 0.3 1.0 

Sr 1.0 0.0 0.0 0.0 -0.1 0.0 0.0 

Zr 0.1 0.0 0.0 0.2 0.7 0.7 -0.2 

Ag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ba 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Pb 0.0 0.0 0.0 0.0 0.6 -0.6 0.1 
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Table 3.3: Coefficient table colour coded to highlight major contributors. 

Element PC1 PC2 PC3 PC4 PC5 PC6 PC7 

N IR-MS        

B        

Na   1.0     

Mg  1.0      

Al        

P    1.0    

Cl        

K        

Ca        

Sc        

V        

Fe      -0.3  

Zn        

As      0.3 1.0 

Sr 1.0       

Zr     0.7 0.7  

Ag        

Ba        

Pb     0.6 -0.6  

This colour coded table makes it much easier to understand which elements are contributing to each 

PC. To the 7th PC only Na, Mg, P, Fe, As, Sr, Zr and Pb are contributing significantly to the variance of 

the PCA. This information can be used to return to the original dataset to identify why these elements 

are causing discrimination between samples. To this end, a bar chart of the raw data for these 

elements has been plotted in Figure 3.4. This identifies that the reason for the overwhelming 

contributions is the large magnitudes of variation due to only a few outlier samples. The sole 

dependence of PC1 on Sr content is understandable as two samples, INC-B1 and INC-B2, have high 

relative concentrations of Sr in comparison to other samples which have little to none. The same 

reasoning applies to all of these elements with many samples having very little to no concentration 

of the element and one or more samples containing a very large amount. Outliers like this have a 

detrimental impact on the success of a PCA which has a purely mathematical approach and identifies 

these magnitude of order differences as the variables containing the most variance. This minimises 

any possible discrimination based on minor differences which could highlight trends rather than 

distinct outliers.   
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Figure 3.4: Bar chart of raw data for elements contributing to PC1-7. Red boxes highlighting outlier samples 
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This may be validated by calculating correlation coefficient values, to check if the lack of variance in 

the other elements is due to lack of data or a correlation in elements. It is quite evident that displaying 

the information in the form of Table 3.4 is not easily interpreted and so it may be transformed in a 

similar manner to Tables 3.2 and 3.3, as shown in Table 3.5. This involves bracketing the correlation 

coefficient values and colour coding from white to black: 0.0-0.25 (white), 0.26-0.50, 0.51-0.75, 0.76-

0.95 and 0.96-1 (black). Only the magnitude of the value is considered in this transformation, as the 

sign indicates a positive or negative correlation. These brackets do not necessarily indicate anything 

other than forming a greyscale guide to highlight variables with strong relationships. 

There are two strong relationships identified in this case with K, Ca and Sr correlating positively and 

Ag and Sc also positively correlating. The relationships between K, Ca and Sr are not uncommon as 

K-40 undergoes a beta decay to form Ca-40. When potassium levels are high, calcium tends to follow. 

The correlation between Ca and Sr is an unfortunate shortcoming of the original ICP-MS analysis 

undertaken, as Ca-44 was measured alongside Sr-88. Therefore, as Sr counts increased, so did Ca as 

doubly charged ions interfere with the selected Ca-44. This can be avoided by selecting a different 

isotope of calcium as doubly charged species cannot be entirely eliminated. This pair of correlations 

has then had a follow up effect of linking K to Sr, which again could have been avoided through the 

analysis of a different Ca isotope.  

The relationship between Ag and Sc is more puzzling but indicates that within these samples, the 

concentration of the two elements follow each other. Knowing more about the samples could 

identify how it is that Ag and Sc have come to positively correlate. However, there is very little of 

either of these elements in the samples and so do not affect the PCA.  Where this analysis could 

indicate a problem is where elements that do not typically correlate due to their similar properties 

have a strong relationship. This can arise for many reasons such as contaminations during sampling, 

handling and/or analysis. Another reason specific to trace element analysis is the digestion method 

not being suitable for certain elements. For example, gold requires the use of aqua regia as it requires 

HCl to remain stable in the digested solution. Whereas for other elements, such as silver, the 

presence of chlorine ions can lead to silver chloride precipitating out of solution. 
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Table 3.4: Correlation coefficient raw table. 

 δN B Na Mg Al P Cl K Ca Sc V Fe Zn As Sr Zr Ag Ba Pb 

δN 1.00                   

B -0.14 1.00                  

Na 0.01 0.00 1.00                 

Mg -0.04 0.16 -0.06 1.00                

Al 0.02 -0.07 -0.05 -0.14 1.00               

P 0.01 -0.07 -0.01 0.15 -0.06 1.00              

Cl -0.10 0.02 -0.20 0.11 0.39 0.17 1.00             

K 0.04 -0.04 -0.01 -0.03 -0.05 0.16 0.69 1.00            

Ca 0.05 -0.06 -0.01 -0.03 -0.05 0.18 0.68 1.00 1.00           

Sc 0.07 -0.07 -0.01 0.21 -0.06 0.94 0.26 0.23 0.26 1.00          

V 0.04 -0.09 -0.04 -0.05 0.88 0.25 0.42 0.02 0.03 0.26 1.00         

Fe 0.02 -0.04 -0.05 0.02 0.75 0.22 0.40 0.11 0.10 0.18 0.60 1.00        

Zn 0.14 -0.14 -0.05 0.07 0.50 0.52 0.60 0.45 0.47 0.65 0.58 0.68 1.00       

As 0.19 -0.07 -0.02 0.07 -0.06 0.47 0.20 0.11 0.12 0.51 0.10 0.14 0.28 1.00      

Sr 0.03 -0.05 -0.01 -0.05 -0.04 0.11 0.69 0.98 0.98 0.19 0.01 0.10 0.42 0.08 1.00     

Zr 0.04 -0.09 -0.03 -0.03 0.38 0.37 0.72 0.63 0.61 0.43 0.44 0.49 0.64 0.23 0.69 1.00    

Ag 0.12 -0.05 0.00 0.26 -0.05 0.75 0.13 0.01 0.06 0.91 0.25 0.10 0.59 0.47 -0.03 0.22 1.00   

Ba 0.10 0.17 0.01 0.27 -0.07 0.18 0.55 0.64 0.62 0.26 0.01 0.12 0.33 0.15 0.65 0.55 0.13 1.00  

Pb 0.18 -0.11 -0.04 -0.14 0.82 0.10 0.35 0.06 0.05 0.08 0.69 0.81 0.61 0.00 0.05 0.45 0.05 0.00 1.00 
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Table 3.5: Correlation coefficient colour coded table. 

 δN B Na Mg Al P Cl K Ca Sc V Fe Zn As Sr Zr Ag Ba Pb 

δN               LEGEND   

B                0.00-0.25   

Na                0.26-0.50   

Mg                0.51-0.75   

Al                0.76-0.95   

P                0.96-1.00   

Cl                    

K                    

Ca                    

Sc                    

V                    

Fe                    

Zn                    

As                    

Sr                    

Zr                    

Ag                    

Ba                    

Pb                    
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Now that this necessary analysis is completed, the resultant score values may be utilised to produce 

plots to examine groupings of elements (Figures 3.5 to 3.10) and judge if the data transformation by 

PCA is acceptable. Though many of the PCs may be examined as they cover various elements, this 

report will show plots between PC1 through PC3, as these contain almost 95% of the original variance 

contained within the dataset.  

Plotting the data exposes that the resultant PCA was ineffective highlighting the major drawback of 

PCA, as outliers have caused poor separation of the remainder of the samples as shown in Figures 

3.5 to 3.7. These outliers have been removed by omitting the data points from the samples in Figures 

3.8 to 3.10. However, they have already negatively impacted on the PCA. The removal of the outliers’ 

post analysis does not remove the variance that these samples accounted for, and hence the variance 

between the other samples has been overshadowed due to the order of magnitude of separation 

between the outliers and other samples. This can be fixed by removing those outlier samples prior 

to a PCA to perform a more effective PCA. 

 

Figure 3.5: PC1/PC2 score plot for all samples. 
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Figure 3.6: PC2/PC3 score plot for all samples. 

 

 

Figure 3.7: PC1/PC3 score plot for all samples. 
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Figure 3.8: PC1/PC2 score plot after outlier omission. 

 

 

Figure 3.9: PC2/PC3 score plot after outlier omission. 
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Figure 3.10: PC1/PC3 score plot after outlier omission. 

3.2 Data Analysis Following Removal of Outliers in Raw Data 

The same analysis was repeated after the removal of the previously identified outlier samples: ROS-

3-003, QUI-1F-001F, QUI-1G-001G, QUI-2G-002G, INC-B1, INC-B2, AN-06-2008 (04), PJD-3-010B and 

PJD-3-010C. These were marked on the bar chat in Figure 3.4 and have been removed for various 

reasons. ROS-3-003 had orders of magnitude more sodium than any other sample; QUI-1F-001F, QUI-

1G-001G, QUI-2G-002G, INC-B1 and INC-B2 all had high levels of phosphorus whereas all other 

samples did not record any; AN-06-2008 (04) contained a large amount of arsenic only rivalled by the 

previous group of outlier samples, whereas all other samples did not contain any arsenic. Lastly both 

PJD-3-010B and PJD-3-010C had elevated levels of iron, an order of magnitude greater than other 

samples. Some elements as a result no longer have any measured values and so have also been 

removed including the elements P, Sc and Ag. 

Although these samples have now been removed from the dataset as outliers, this is a valuable piece 

of information, as they have been identified as being greatly different from the remaining samples. 

This effectively discriminates them and as mentioned, relationships between these samples exist 

clustering them and identifying why they cluster. The issue is that the level of discrimination is so 

great it minimises the smaller differences between the other samples. 
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Prior to discussing the final score plots, it is vital to gain an overview of the process. Examining the 

Latent variable table, 99.4% of the original variance is contained within the first 3 principal 

components in contrast to the 94.1% of the first analysis. This shows that the few outliers that existed 

within the first analysis did greatly affect the results of the PCA. 

Table 3.6: Latent variable table. 

 Latent Percentage 

PC1 771476 97.28 

PC2 8908 98.40 

PC3 8059 99.41 

PC4 2487 99.73 

PC5 1826 99.96 

PC6 193 99.98 

PC7 93 99.99 

PC8 20 100.00 

 

 

Figure 3.11: Scree plot for the PCA after outlier removal. 

The coefficient or loadings Table 3.7 reveals that only 5 elements contribute to the first 3 PCs and it 

must be noted that magnesium is the sole contributor to PC1. Such a result indicates that magnesium 

has a very large variance within this reduced dataset. Although this is a positive as it indicates that it 

does have discriminatory power, it is also a red flag that it is an outlier element. 
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This can be confirmed by interrogating the score plots containing PC1 (such as Figures 3.12 and 3.13) 

and in doing so, it is apparent that there is a small group of samples that have strongly diverged from 

the bulk of the samples, predominantly samples categorised as “ORI” and “QUI” as well as a single 

“AN” sample. Although this can lead to the conclusion that these samples are effectively 

discriminated using PC1, all the remaining samples are then compressed into an indistinguishable 

cluster and 97% of the total variance of the dataset is assigned to just magnesium.    

This highlights a clear issue with utilising PCA on raw data as elements are present in unequal 

magnitudes, and so more should be done to transform the original data to not strongly favour one 

element over the rest, to gain the most out of the data. This is referred to as skewed data in a 

multivariate dataset, where variables are not naturally distributed. 

Table 3.7: Coefficient table colour coded (figures included for magnitude). 

Element PC1 PC2 PC3 PC4 PC5 

N IR-MS      

B      

Na    0.98 0.12 

Mg 1.00     

Al     0.26 

Cl     0.24 

K      

Ca      

V      

Fe   0.13  0.23 

Zn      

As  -0.58 0.80   

Sr      

Zr  0.27 0.20 -0.11 0.82 

Ba      

Pb  0.76 0.53  -0.36 
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Table 3.8: Correlation coefficient colour coded table for outlier removed data analysis. 

 δN B Na Mg Al Cl K Ca V Fe Zn As Sr Zr Ba Pb 

δN             LEGEND  

B              0.00-0.25  

Na              0.26-0.50  

Mg              0.51-0.75  

Al              0.76-0.95  

Cl              0.96-1.00  

K                 

Ca                 

V                 

Fe                 

Zn                 

As                 

Sr                 

Zr                 

Ba                 

Pb                 
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Figure 3.12: PC1/PC2 score plot for all samples. 
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Figure 3.13: PC1/PC3 score plot for all samples. 
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Figure 3.14: PC2/PC3 score plot for all samples. 
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One method of tackling this issue is to simply remove all magnesium data for the samples. However, 

this is removing significantly useful information which can contribute to the overall aim of intelligence 

gathering. An additional drawback to this method is that there is nothing preventing the next element 

with a large magnitude of difference having the same effect as magnesium in this case.  

Another option is to further transform the data to somewhat standardise the raw data to minimise 

such an effect. This would retain the data rather than remove it and would shift the weighting of the 

variables to more equally distribute the magnitude of variance across the dataset. Therefore, further 

transformation of the data is preferable. 

3.3 Analysis of Logarithmically Transformed Data 

The first method of transforming the data was to perform a logarithmic transformation to the entire 

dataset. This is a commonly used method when variables are not normally distributed, and as a result 

do not fit the assumptions of standard parametric statistical analyses. 

Prior to any transformation the suitability of the transformation must be considered. In this case, IR-

MS results range from negative values to positive values, which is an issue as the logarithm of a 

negative value cannot be performed. To manage this, the data will need to be translated by the 

addition of a constant to all measurements, to bring the all values above zero. Adding a constant 

value to each measurement of a variable does not influence the variance of a variable as the mean 

increases by the same amount. A similar translation is required for the ICP-MS values, as 

measurements below the limit of quantification are recorded as zero and the logarithm of zero is 

undefined. This can be solved by a simple addition of 1, which will be returned to zero after the 

logarithmic transformation.  

These translations and transformations were performed on the raw dataset prior to the removal of 

identified outliers and the PCA was undertaken. 

The results of the PCA immediately show signs of skew correction. Firstly, the percentage of variance 

becomes far less concentrated in the first three principal components, and 90% of the variance is 

accounted for by the fifth principal component, compared to 99.7% in the initial raw data analysis. 

The scree plot in Figure 3.15 also shows a more gradual and smoother curve, meaning a greater 

number of PCs are required to accurately represent the overall dataset. 
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Table 3.9: Latent variable table. 

 Latent Percentage 

PC1 4.475085 43.4 

PC2 2.550273 68.2 

PC3 1.029427 78.2 

PC4 0.757628 85.5 

PC5 0.452464 89.9 

PC6 0.265109 92.5 

PC7 0.221787 94.7 

PC8 0.196417 96.6 

PC9 0.162675 98.1 

PC10 0.075919 98.9 

 

 

Figure 3.15: Scree plot for PCA of log transformed data. 

The coefficients table (Table 3.10) highlights a dramatic change in the make-up of these principal 

components. Rather than the first few PCs being made up of just one or two variables it is now a 

combination of many. The scree plot confirms that the skewed nature of the dataset has been tamed 

and now more of the data is being incorporated into the development of a “fingerprint” for samples. 

There are still variables that do not contribute to any of the first 7 PCs, however these were elements 

with very little variation and therefore did not contribute to discrimination. 

Now that there are more elements contributing, colour coding the coefficient table overly simplifies 

the information resulting in the loss of important information. To identify contributing elements, the 
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magnitudes of contribution now becomes vital. This information is not easily obtained examining 

Table 3.10, and so a bar chart may be created to depict this data more effectively (Figure 3.16). The 

first 7 PCs have been considered and the loadings charted in Figure 3.16. The correlation coefficients 

were also examined (Table 3.11) and here the effects of the logarithmic transformation continue to 

be evident, as once again the level of correlation has diminished as outlier elements are no longer 

distorting the PCA. 

Table 3.10: Coefficient table for the first 7 PCs. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

N    0.1 0.1 0.2 -0.1 

B    -0.1   -0.1 

Na 0.1 -0.1 0.6 -0.4 0.6 -0.2 -0.1 

Mg 0.5 -0.4 -0.6 -0.1 0.3 -0.1 0.1 

Al 0.2 0.8 -0.2 -0.4 -0.1 -0.2 -0.1 

P 0.3 0.1 0.3 0.3 -0.1 -0.1 0.8 

Cl 0.1   -0.3 -0.2 0.1 0.3 

K 0.2  0.2 0.1  0.4 -0.1 

Ca 0.6 -0.2 0.1  -0.4 -0.4 -0.3 

Sc        

V  0.1   0.1 -0.1 0.1 

Fe 0.3 0.2 -0.1 -0.1 0.2 0.6 0.1 

Zn 0.1 0.1  0.1    

As        

Sr 0.3  0.3 0.1 -0.2 0.4 -0.2 

Zr        

Ag        

Ba 0.1  0.1   0.1 -0.1 

Pb 0.1 0.3 -0.1 0.7 0.4 -0.2 -0.2 
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Figure 3.16: Coefficient/loading breakdown for the first 7 PCs. 
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Table 3.11: Correlation coefficient colour coded table for log transformed raw data analysis. 

 N B Na Mg Al P Cl K Ca Sc V Fe Zn As Sr Zr Ag Ba Pb 

N               LEGEND   

B                0.00-0.25   

Na                0.26-0.50   

Mg                0.51-0.75   

Al                0.76-0.95   

P                0.96-1.00   

Cl                    

K                    

Ca                    

Sc                    

V                    

Fe                    

Zn                    

As                    

Sr                    

Zr                    

Ag                    

Ba                    

Pb                    
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Finally, the results of the analysis (Figures 3.17 to 3.19) have been plotted and examined. There have 

been dramatic improvements to the analysis in comparison to the attempted initial analysis of the 

raw data. The original outliers are present once again, however to a lesser degree and are very well 

clustered. This is an interesting result as this highlights the power of transforming the data in such a 

way to reduce the skew of the data, without dramatically removing the variance, which can be used 

to “fingerprint” or profile these samples.  

 

Figure 3.17: PC2/PC1 score plot for all samples after logarithmic transformation. 

 

Figure 3.18: PC3/PC1 score plot for all samples after logarithmic transformation. 
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Figure 3.19: PC3/PC2 score plot for all samples after logarithmic transformation. 

Although a promising result, a final test with the removal of the same outlier samples from the 

previous analysis (Chapter 3.2) ROS-3-003, QUI-1F-001F, QUI-1G-001G, QUI-2G-002G, INC-B1, INC-

B2, AN-06-2008, PJD-3-010B and PJD-3-010C may help with separating the other samples, just as it 

did in the previous case without the logarithmic transformation. 

3.4 Analysis after Logarithmic Transformation and Outlier Removal 

This final iteration of the analysis followed the same process as the previous, however, with the 

removal of the outlier samples. 

Beginning with the variance retention, it can be seen in Table 3.12 that there is only a minor change 

and the variance is now further spread over the first four PCs. This is understandable as the outliers 

would have represented a large amount of variance in the previous analysis and would concentrate 

more variance in PC1 and PC2. This is displayed in the scree plot (Figure 3.20) as now the inflection 

point has shifted to PC4 rather than PC3 in the previous iteration. 
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Table 3.12: Latent variable table for the log transformed data set PCA. 

 Latent Percentage 

PC1 2.740177 41.12 

PC2 1.591525 65.01 

PC3 0.951969 79.29 

PC4 0.435329 85.83 

PC5 0.323615 90.68 

PC6 0.245889 94.37 

PC7 0.170006 96.93 

 

 

Figure 3.20: Scree plot for the log transformed data set PCA. 

The coefficients table (Table 3.13) has shown little difference with only minor changes in the 

magnitude of contribution of elements to each PC. In PC1 Mg and Ca still dominate the 

discrimination, however, Mg has increased in its importance. PC2 is still mainly determined by Al. The 

major difference can be found in PC3, where Pb was not a major contributor in the past however, is 

a key factor in this analysis. This amounts to Mg, Ca, Al, Na and Pb accounting for nearly 80% of the 

discriminatory variance within the dataset. A final check on the correlation coefficients was 

performed to identify whether there is any correlation affecting a number of factors within the PCA. 

Examining Table 3.14, there is less covariance between any elements with no 1:1 covariance. Two 

moderate covariances are seen in Zr/V and Ba/Sr however, neither pair can be explained through an 

interference of one with another. This partial correlation may be a result of the elements being 

measurable in only a small number of samples, yielding a false correlation.  
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Table 3.13: Coefficients for the log transformed data set PCA. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

N   -0.1 0.1  0.1 -0.1 

B   0.1  0.1  -0.1 

Na 0.1 -0.1 0.7 0.6  -0.2 -0.2 

Mg 0.8  -0.3 0.1 -0.4 -0.3 -0.3 

Al -0.1 0.9 0.2 -0.2  -0.2 -0.2 

Cl 0.1 0.1 0.2 -0.1 -0.2 -0.4 0.8 

K 0.1 0.1 0.1 0.4  0.3 0.2 

Ca 0.5  0.1 -0.3 0.8 0.1 0.1 

V  0.1  0.1   0.0 

Fe 0.2 0.3  0.1 -0.3 0.7 0.2 

Zn    0.1   0.1 

As        

Sr 0.1  0.1 0.1  0.2  

Zr        

Ba 0.1  0.1 0.1  0.1  

Pb -0.1 0.2 -0.6 0.6 0.4 -0.2 0.1 
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Table 3.14: Correlation coefficient colour coded. 

  δN B Na Mg Al Cl K Ca V Fe Zn As Sr Zr Ba Pb 

δN 1.00                     LEGEND     

B                         0.00-0.25     

Na                         0.26-0.50     

Mg                         0.51-0.75     

Al                         0.76-0.95     

Cl                         0.96-1.00     

K                                 

Ca                                 

V                                 

Fe                                 

Zn                                 

As                                 

Sr                                 

Zr                                 

Ba                                 

Pb                                 
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The final results are examined in the form of two-dimensional score plots, as displayed in Figures 

3.21-23. With the removal of the obvious outliers, the score plots are slightly improved. This has less 

to do with the analysis and more to do with the variance within the dataset. Either there is minimal 

variance or further outliers are affecting the PCA. 

 

Figure 3.21: Score plot of PC2 vs PC1 for log transformed ICP-MS data. 

 

Figure 3.22: Score plot of PC3 vs PC1 for log transformed ICP-MS data. 
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Figure 3.23: Score plot of PC3 vs PC2 for log transformed ICP-MS data. 

To test whether the lack of distinct and clear groupings between samples is due to little variance or 

large differences between samples, the primary factors for the early PCs may be examined. As 

previously discussed, Mg, Ca, Al, Na and Pb were the key factors contributing to the first three PCs. 

These elements may therefore be investigated further and a bar chart (Figure 3.24) displays the log 

transformed data for these elements. 

Examining this bar chart, it can be seen that the level of distinct differences is minimal. These 

elements are the few that provide the most discrimination in this dataset. This highlights that there 

is not clearly defined distinct segregation between samples other than the few that have been 

removed as outliers previously. 

 



 

89 

 

 

Figure 3.24: Bar chart for Na, Mg, Al, Ca and Pb  ICP-MS analysis of AN. 
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3.5 Conclusions 

The pre-processing and combination of the IR-MS and ICP-MS datasets was successful. The analysis 

has been able to identify some clear outlying groups, which were then removed from the dataset to 

allow further groupings to be identified. However, even after this removal of outlier samples, further 

groups were not distinctly separated with a large amount of crossover between sample groups. This 

indicates that the discriminatory value of the data was not as strong as originally expected. Delving 

deeper into the details of the sample codes assigned to each sample, the attempted groupings are 

over ambitious. Although the code identifies the supplier, the samples were still sourced from diverse 

locations and so further sub groupings should be employed. 

This is still an improvement on the previous method of data analysis and result presentation in the 

form of radar plots, as samples may be easily compared to each other in a mathematical manner. 

Radar plots did not yield a mathematical value to describe the difference in samples, rather it was up 

to the examiner to determine if the shape of one radar plot was similar to another. This makes it 

incredibly difficult to assess the level of similarity or difference between two radar plots. An 

additional complexity is to do this comparison with hundreds or thousands of samples (and their 

individual radar plots), whereas PCA can graphically represent a large number of samples and 

variables in much simpler plots, allowing a better comparison between samples.  

Another benefit of the PCA was the identification of where discriminatory data was located within 

the dataset. This helps to identify the typical elements worth measuring in an ICP-MS analysis, which 

for future analysis may allow the removal of elements not contributing to the discrimination between 

samples. There is an important drawback to this however, as this may miss vital forensic markers in 

the form of the presence of less commonly found elements in a sample, which would clearly 

discriminate between samples. Therefore, it may still be necessary to analyse for as many elements 

as feasible and allow the multivariate analysis to highlight which elements are or are not 

discriminatory. 

The pre-processing method involving the logarithmic transformation of the original data was much 

better at highlighting any minor amount of discriminatory information contained within the dataset. 

It was also far more robust in terms of the handling of outlier samples, effectively lessening their 

negative impact upon the PCA analysis. Therefore, this pre-processing method will be used for further 

datasets involving the use of ICP-MS and IR-MS data.  
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4. Analysis of Potassium Chlorate Samples 

In this chapter a number of potassium chlorate samples and their precursors were analysed using 

ICP-MS, ATR-FTIR and Raman spectroscopy. Each dataset was interrogated individually to identify 

discriminatory information. The datasets providing to discriminatory information were merged into 

a singular database and re-examined to determine the most successful pre-processing method of 

data integration. The PCA of the combined dataset was undertaken to attempt to retain or enhance 

the original discrimination provided by the individual analytical techniques.  

Minor additional studies were also undertaken, including how electrodes and electrolytes affect trace 

elemental profiles in electrochemically prepared samples, and the consequences of long-term aging 

of digested samples. 

4.1 ICP-MS of Potassium Chlorate 

The ICP-MS of potassium chlorate samples and precursors involved the analysis of the trace metals 

listed previously in Chapter 1.4.1. All samples, standards and controls for this analysis used 2% nitric 

acid as a matrix and prepared gravimetrically for precision. As the aim of the analysis performed was 

quantitation, the following limits of quantification (LOQ) were obtained for each of the elements. 

This LOQ was calculated through the analysis of at least 5 blanks and taking ten times their standard 

deviation (Table 4.1).  

Table 4.1: Typical quantification limits for elements analysed in the ICP-MS of potassium 
chlorate. 

Element Fe Fe Mg Zn Cu Al Ca Ti 

LOQ 
(mg/kg) 

0.41 0.22 0.27 0.54 0.27 1.10 0.41 0.12 
         

Element Cr Mn Ni Ru Pt U Ba Sr 

LOQ 
(mg/kg) 

0.03 0.05 0.05 0.01 0.01 0.02 0.01 0.02 

The calibration of each element requires fitting a line of best fit to the calibration data depending on 

the model of fit selected. This line of best fit was linear, y = mx + c such that y is the intensity (counts 

per second) and x is the concentration of standards (ppb). The model to fit the data varied between 

the elements analysed in KClO3 samples. In Table 4.2, an example of the calibration for this analysis 

is displayed. A simple linear model uses a line of best fit across the entire range of calibration 
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solutions. This calculates the least squared sum of errors using the absolute error of the standards 

(x2). A weighted linear model on the other hand calculates the linear fit from the least squared sum 

of 1/error of the standards (1/x2). This results in the higher concentration standards now having less 

impact on the linear regression, effectively weighting the fit to the lower concentration standards. 

This is advantageous in cases where samples are measured towards the low end of the calibration 

curve, as this improves low end accuracy. It should be noted, however, that this can have a negative 

impact on the high end of the calibration curve and therefore a simple linear model is better suited 

for elements commonly measured at high concentrations. To be certain of the correct model, the 

results of each standard calibration curve must be examined and contrasted for each element, and 

so the calibration data must be reprocessed with both models. 

Alongside this linear model fitting, a working range must be kept in mind. Although the linear model 

may predict instrument response down to 1 ppt, this in an unreliable measurement if the lowest 

standard in the calibration range was only 100 ppt. Therefore, results outside of an element’s working 

range should be treated with caution.  

Table 4.2: Example of calibration data for elements selected in the ICP-MS analysis of 
potassium chlorate. 

Element Mass Linear Model Coefficient of Correlation (R2) Working Range (ppb) 

Mg 24 Weighted Linear 0.996273 0.1-100 

Al 27 Simple Linear 0.999869 10-100 

Ca 44 Simple Linear 0.999970 1-100 

Ti 48 Weighted Linear 0.999690 0.1-100 

Cr 52 Weighted Linear 0.999906 0.1-100 

Mn 55 Weighted Linear 0.999448 0.1-100 

Fe 56 Weighted Linear 0.988981 0.1-100 

Fe 57 Weighted Linear 0.989050 0.1-100 

Ni 60 Weighted Linear 0.999850 0.1-100 

Cu 63 Weighted Linear 0.998068 0.1-100 

Zn 66 Weighted Linear 0.993199 0.1-100 

Sr 88 Weighted Linear 0.999903 0.1-100 

Ru 102 Weighted Linear 0.999878 0.1-100 

Ba 138 Weighted Linear 0.999948 0.1-100 

Pt 195 Weighted Linear 0.999980 0.1-100 

U 238 Weighted Linear 0.999301 0.1-100 
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A few samples where larger quantities of material were available were tested in triplicate to assess 

the consistency of the sample preparation and validity of the resultant data, to accurately represent 

the bulk sample, represented as “SAMPLE (replicate number)”. From this triplicate analysis, the 

percent coefficient of variation (%CV) was calculated by taking the standard deviation, dividing it by 

the mean and multiplying by 100. These results are displayed in Table 4.3 and highlight a few 

important aspects and drawbacks of the analysis. The %CV has been coloured green (0-10%), yellow 

(10.01-20%), orange (20.01-40%) and red (>40.01%). These brackets have been designed to indicate 

the level of reliability in the measurements with green being ideal, yellow acceptable, orange 

questionable and red being unacceptable.  

Using these brackets, the results show that the majority of elements within the replicates are within 

acceptable levels of variance. However, some are not, which must be interrogated further. Although 

there are many unacceptable results, upon further inspection, many are due to the measurements 

being close to the LOQ. Replicates below LOQ were recorded as 0 mg/kg, and this has a major 

influence on the calculation of %CV values, as in reality the concentration may have only just been 

under the LOQ. This makes the %CV highly sensitive at these ultra-trace levels making the context of 

the %CV an important aspect to consider and not just the value alone. For example, the titanium %CV 

for replicates Cu1-Cu3 was 141.42%, as the replicates measured 0.00, 0.00 and 0.13 mg/kg. The LOQ 

for titanium however, was 0.12 mg/kg and therefore the two 0.00 mg/kg measurements could have 

been 0.11 mg/kg, which would have resulted in a %CV of 6.38%, which is within the acceptable limit 

of 10%.  
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Table 4.3: Percent coefficient of variation analysis of random triplicates.  

Sample 
Fe 

mg/kg 
Fe 

mg/kg 
Mg 

mg/kg 
Zn 

mg/kg 
Cu 

mg/kg 
Al 

mg/kg 
Ca 

mg/kg 
Ti 

mg/kg 
Cr 

mg/kg 
Mn 

mg/kg 
Ni 

mg/kg 
Ru 

mg/kg 
Pt 

mg/kg 
U 

mg/kg 
Ba 

mg/kg 
Sr 

mg/kg 

DSTG3 

30.77 30.62 27.45 1.10 0.00 7.27 5.02 0.49 1.77 0.65 0.75 0.00 0.00 0.00 0.43 0.04 

30.88 30.69 34.14 1.23 0.39 10.92 5.64 1.04 1.91 0.77 0.82 0.00 0.00 0.00 0.45 0.05 

31.15 31.59 29.00 3.93 3.55 10.19 5.32 0.58 1.79 1.15 0.86 0.00 0.00 0.00 0.31 0.04 

%CV 0.51 1.42 9.47 62.57 121.18 16.65 4.70 33.98 3.49 25.02 5.78 0.00 0.00 0.00 16.03 9.57 

DSTG1 
 

48.63 48.96 29.19 1.80 0.00 3.67 8.13 0.26 1.17 0.75 0.10 0.00 0.00 0.00 1.15 0.44 

40.55 41.20 28.64 2.10 0.00 3.26 8.23 0.18 1.11 0.62 0.09 0.00 0.00 0.00 0.93 0.46 

43.30 44.70 32.49 1.86 0.00 4.90 12.64 0.44 1.26 0.75 0.11 0.00 0.00 0.00 1.28 0.51 

%CV 7.60 7.06 5.65 6.64 0.00 17.64 21.77 37.28 5.34 8.35 7.75 0.00 0.00 0.00 12.60 5.99 

KClO3 2 
 

2.22 1.75 29.50 2.59 2.38 5.81 4.22 1.05 0.08 0.11 0.13 0.00 0.00 0.00 0.22 0.07 

3.97 3.96 31.96 2.76 2.70 5.37 5.47 1.17 0.08 0.13 0.33 0.00 0.00 0.00 0.25 0.09 

2.17 2.14 28.60 2.46 2.33 4.80 4.18 1.01 0.07 0.11 0.20 0.00 0.00 0.00 0.21 0.08 

%CV 30.04 36.75 4.73 4.75 6.66 7.78 12.99 6.48 5.59 6.61 38.94 0.00 0.00 0.00 6.01 10.81 

E1 

0.72 0.69 0.64 1.45 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

1.30 1.24 0.54 8.29 0.32 0.00 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

0.81 0.66 0.58 1.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.01 0.00 

%CV 26.99 31.08 6.79 92.25 141.42 0.00 82.30 0.00 0.00 141.42 0.00 0.00 0.00 0.00 10.73 0.00 

SS 

5.04 4.99 0.00 0.90 45.31 1.37 0.75 0.00 0.05 0.07 0.22 0.00 0.00 0.00 0.00 0.00 

7.85 7.94 0.00 2.32 89.14 3.85 0.88 0.00 0.06 0.09 0.28 0.00 0.00 0.00 0.00 0.00 

5.78 5.36 0.00 1.57 95.54 1.72 1.00 0.00 0.06 0.09 0.24 0.00 0.00 0.00 0.00 0.00 

%CV 19.09 21.56 0.00 36.29 29.12 47.43 11.96 0.00 11.03 12.83 9.75 0.00 0.00 0.00 0.00 0.00 

CU 

3.46 3.64 0.00 1.77 157.32 0.00 1.28 0.00 0.07 0.05 0.36 0.00 0.00 0.00 0.00 0.02 

3.08 2.92 0.00 2.00 146.25 2.19 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

4.22 4.20 0.00 1.72 168.28 0.00 1.27 0.13 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.03 

%CV 13.22 14.52 0.00 6.73 5.72 141.42 10.85 141.42 141.42 70.72 141.42 0.00 0.00 0.00 0.00 13.88 
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4.1.1 Exploratory Multivariate Analysis of ICP-MS Data 

The raw results of the analysis were transformed in the same manner as previously described in 

Chapter 3.3. This includes the values below the LOQ being transformed to zero values and the entire 

dataset undergoing a logarithmic transformation. The data then underwent the exploratory data 

analysis, including HCA and PCA of the dataset. Firstly, the HCA was performed to allow an 

assessment of the potential of a further PCA analysis. The resultant dendrogram and sample identity 

correlation table are displayed in Figure 4.1 and Table 4.4. This initial overview of the data shows 

great clustering potential, without any further data transformations.  

The dendrogram indicates that there are three to four densely packed branches. The other indication 

of importance from the HCA are the two samples 78 and 79 that are closely related but separated 

from the rest of the samples. This could have been detrimental to PCA, which is greatly affected by 

the presence of any outliers. However, these two samples are the two calcium hypochlorite 

precursors, rather than potassium chlorate samples and the PCA should identify why these are being 

segregated. These samples would also be identified as outliers by other means, such as FTIR analysis 

or even by physical examination. 

For this first analysis, they were included within the dataset to assess their similarity to the end 

products. Even prior to PCA, the samples closest to these outlying precursors were examined more 

closely and seen to contain the potassium chlorate made from these two precursors (#34-42 and 61, 

i.e. KClO3 19-27 and PT1). There are, however, additional samples between the pool chlorine 

manufactured samples and their precursors (#55-60, i.e. KClO3 40-45) and these were all the partially 

successful syntheses, attempting to use “Lite salt”, a low-sodium alternative to table salt, to 

synthesise potassium chlorate. Additional samples of potassium chloride (KCl, KCl2) and sodium 

chloride (NaCl2) were added to this analysis to investigate any differences between these, and the 

precursors used in material synthesis.  

The link between the trace metals from the pool chlorine to the final product suggests that the 

elemental profile can carry over to the product from the precursor materials, supporting the aim of 

the project to link precursor to product. This could potentially be used to link source materials to the 

end product, however, the dendrogram does not delve into the details of why these trends are 

apparent. To this end, PCA was run after these positive indications, on both precursors and end 

products. 
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Figure 4.1: Resultant dendrogram from the hierarchical cluster analysis of potassium chlorate ICP-MS data. 

  



 

97 

 

Table 4.4: Sample correlation to number identifiers in HCA dendrogram in Figure 4.1. 

Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample 

1 KCl 13 DSTG1 (3) 25 KClO3 10 37 KClO3 22 49 KClO3 35 61 PT1 73 Cu (3) 

2 KCl1 14 KClO3 1 26 KClO3 11 38 KClO3 23 50 KClO3 36_1 62 E1 (1) 74 FCB 

3 KCl2 15 KClO3 2 (1) 27 KClO3 12 39 KClO3 24 51 KClO3 36_2 63 E1 (2) 75 SACB 

4 E508 16 KClO3 2 (2) 28 KClO3 13 40 KClO3 25 52 KClO3 37 64 E1 (3) 76 WKR 

5 NaCl1 17 KClO3 2 (3) 29 KClO3 14 41 KClO3 26 53 KClO3 38 65 E2 77 WKL 

6 NaCl2 18 KClO3 3 30 KClO3 15 42 KClO3 27 54 KClO3 39 66 ICP1 78 
Sigald 
Ca(OCl)2 

7 DSTG3 (1) 19 KClO3 4 31 KClO3 16 43 KClO3 28 55 KClO3 40 67 SS (1) 79 HCSS 

8 DSTG3 (2) 20 KClO3 5 32 KClO3 17 44 KClO3 29 56 KClO3 41 68 SS (2)   

9 DSTG3 (3) 21 KClO3 6 33 KClO3 18 45 KClO3 30 57 KClO3 42 69 SS (3)   

10 DSTG2 22 KClO3 7 34 KClO3 19 46 KClO3 31 58 KClO3 43 70 SIGALD   

11 DSTG1 (1) 23 KClO3 8 35 KClO3 20 47 KClO3 32 59 KClO3 44 71 Cu (1)   

12 DSTG1 (2) 24 KClO3 9 36 KClO3 21 48 KClO3 33 60 KClO3 45 72 Cu (2)   

DSTG3, DSTG1, KClO3 2, E1, SS and Cu were analysed in triplicate. Replicate number represented in brackets.
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PCA analysis was undertaken and the quality of the analysis must be scrutinised. This began with the 

variance breakdown through the percentage of variance retained by each principal component 

(Table 4.5), which may also be graphically displayed in a scree plot (Figure 4.2).  

Table 4.5: Variance retention table for the PCA of KClO3 ICP-MS data. 

Component 
Principal Component 

Eigenvalues 
Cumulative Percentage of 

Variance Explained 

PC1 1.394769 44% 

PC2 0.699795 65% 

PC3 0.634484 85% 

PC4 0.211191 92% 

PC5 0.123422 96% 

PC6 0.05054 97% 

PC7 0.042824 98% 

PC8 0.017902 99% 

 

 

Figure 4.2: Scree plot for the PCA of KClO3 ICP-MS dataset. 

This variance distribution is a little unusual as PCs 2 and 3 have similar levels of variance. However, 

the percentage of variance indicates a moderately successful PCA, with 85% of the original variance 

being represented in the first 3 principal components. The scree plot also shows the desired rapid 

decrease in eigenvalue after PC4, indicating a successful PCA. 

The coefficient table (Table 4.6) reveals the key contributors of each of the principal components. 

There are many elements that do not influence the major PCs, most of which are because of rarity. 
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However, one element in particular stands out and that is zinc. This is an element that is present in 

significant amounts in the raw data, across every sample, and yet the variance is not significant 

enough to provide great insight into the discrimination of samples. This is a good sign that other 

elements are providing significant discrimination, so that even elements present in all samples do 

not have a significant effect on the early PCs. 

Table 4.6: Coefficient table for the first eight PCs of potassium chlorate ICP-MS data. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Fe (56)  -0.4  -0.3 -0.3    

Fe (57)  -0.4  -0.3 -0.3    

Mg 0.5  -0.5  -0.3 0.4 -0.3  

Zn      0.6 0.8  

Cu   0.5 0.7     

Al 0.5 -0.3  0.4 0.3 -0.5 0.3 -0.2 

Ca 0.6 0.6 0.5      

Ti     0.5 0.4 -0.3 -0.5 

Cr         

Mn        -0.2 

Ni         

Pt         

U         

Ba        0.7 

Sr     0.6   0.5 

With so few elements providing variance across the sample set, a real concern is the potential for 

covariance relationships between elements to be the cause of this effect. As the samples had been 

synthesised with a single set of labware, this could lead to a consistent glassware contamination of 

the KClO3 produced, which would result in a significant covariance relationship forming between 

elements present within the glassware. In order to clarify the level of covariance within the dataset, 

the correlation coefficients (Table 4.7) were examined. This shows very little correlation between 

elements excluding the two isotopes of iron, which was expected unless there is an interference at 

the mass of one of the isotopes. Hence, correlation between elements was not a reason for the small 

number of elements contributing to the PCs, but rather the elements of significance really are few in 

number.  
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Table 4.7: Correlation coefficients for the PCA of potassium chlorate ICP-MS data. 

  Fe (56) Fe (57) Mg Zn Cu Al Ca Ti Cr  Mn Ni Pt U Ba Sr 

Fe (56)                       LEGEND   

Fe (57)                         0.00-0.25    

Mg                         0.26-0.50   

Zn                         0.51-0.75   

Cu                         0.76-0.95   

Al                         0.96-1.00   

Ca                               

Ti                               

Cr                                

Mn                               

Ni                               

Pt                               

U                               

Ba                               

Sr                               
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The results of the PCA could now be examined and as the first three PCs account for 85% of the 

original variance within the dataset, these are a good representation of the original data. Firstly, they 

may be examined individually as in Figures 4.3-4.5. The sample numbers are consistent from the HCA 

analysis expect KClO3 is denoted as KClO3 as subscripts could not be used. 

 

Figure 4.3: Score plot of PC1 from the PCA of ICP-MS data for KClO3 samples and precursors. 

 

Figure 4.4: Score plot of PC2 from the PCA of ICP-MS data for KClO3 samples and precursors. 
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Figure 4.5: Score plot of PC3 from the PCA of ICP-MS data for KClO3 samples and precursors. 

Examining these score plots, it could be seen immediately that there were clearly datapoints breaking 

away from the main body of the dataset in PC1 and PC2.However, by PC3 the clustering is diminished 

and from PC4 onwards, there is no longer any consistent discrimination between sample types.  

In the results for PC1 (Figure 4.3), nearly all the starting materials break away, including the 

potassium chlorides, sodium chlorides and household bleaches. This only leaves the calcium 

hypochlorite (pool chlorine) starting materials not being separated from the main grouping of KClO3 

samples.  

Samples produced by the electrochemical synthesis method also not only separated from the 

majority of samples but remain tightly clustered apart from sample E2. E2 is an electrochemically 

produced sample that involved a large spiking of the full range of analysed elements in the 

electrolyte, to test the effect of trace metal incorporation from the electrolyte solution (further 

examined in subchapter 4.1.2).  

There are a number of samples that have separated above the main cluster including KClO3 25-27 

and 40-45. Samples KClO3 25-27 are just three of the samples using pool chlorine as a starting 

material, so not all of the pool chlorine samples were discriminated in this case. Samples KClO3 40-

45 are all the samples created using a low sodium salt supplement. This supplement is a mix of 

sodium and potassium chloride sold at supermarkets. Synthesis involving this starting material was 
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only partially successful, with very poor yields and a high concentration of the salt remaining, not 

allowing recrystallisation without the loss of the final product. There were also two other outlier 

samples, including one provided by DST Group, and the first KClO3 sample produced from bleach. The 

DST Group sample (DSTG2) was obtained commercially and therefore the precursors and synthesis 

pathway are unknown. There are distinct differences in the elemental profiles of samples within the 

dataset, which have been identified by the PCA. KClO3 1 was prepared with the same precursors as 

many of the other samples using bleach, however, this was the first successful synthesis which was 

not yet optimised, and further adjustments were made to the procedure. This may have had a 

significant impact on the elemental profile of further samples. 

The electrochemical samples and starting materials as well as the two outlier samples, DSTG2 and 

KClO3 1, are separated below the main cluster and KClO3 25-27 and 40-45 are above. Referring to the 

coefficients in Table 6 this would suggest that the primary trace elements leading to this 

discrimination were Mg, Al and Ca. This could be investigated further by plotting bar charts for each 

sample of the elements with this valuable discriminatory information (Figure 4.6).  

The charts in Figure 4.6 show that data points below the main group have low or no quantifiable 

concentration in at least two or three of the elements. The samples above the main bulk of data 

points, however, are more difficult to identify, but the calcium chart does show that they have higher 

than average concentration. The correlation between these bar charts and the level of discrimination 

in the score plot, especially for the samples with a high score value, is not entirely clear. If calcium 

content was the driver for the higher score samples, then samples like sigald and KClO3 19-24 should 

also have been separated but were not. This shows the power of PCA and highlights that the PC1 

score also includes minor contributions from other elements. In this study only a relatively small 

number of samples have been analysed, as opposed to a real-world database, which could potentially 

have thousands of samples. Without the PCA highlighting these elements for further inspection, an 

analyst is confronted with the task of examining all elements analysed, which may be dozens, and 

using those to discriminate between potentially thousands of samples. 
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Figure 4.6: Bar charts for the ICP-MS analysis of A) magnesium, B) aluminium and C) calcium content for KClO3 samples and precursors. 
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The score plot for PC2 is interesting as it highlights separation between different samples to 

PC1. The samples discriminated in this case were all of the KClO3 samples produced using the 

pool chlorine synthesis method, and the calcium hypochlorite which is the active ingredient 

of pool chlorine. One sample (sigald) was a pool chlorine sample, however, this was not 

created using the same precursor as the others, and instead used a Sigma-Aldrich laboratory 

grade calcium hypochlorite. This result suggests the removal of the pool chlorine impurities 

greatly affects the elemental profile of the end product.  

The pool chlorine samples have higher scores, however, the precursor HCSS has a very low 

score value. Referring to the coefficients in Table 4.6 once again, the only difference between 

PC1 and PC2, other than the magnitudes of contribution, was the removal of magnesium and 

the addition of iron to the list of elements of influence. This immediately suggests that these 

samples were discriminated based on their iron concentrations. Interrogating the data further 

with a bar chart for iron content of samples (Figure 4.7), this is shown to not entirely be the 

case. The chart does show that the calcium hypochlorite precursors have a very large amount 

of iron in comparison to the other samples, however, this high iron content was not conferred 

into the resulting potassium chlorate products. In fact, two samples provided by DST Group 

(DSTG1 and DSTG3) have much higher than average iron concentrations, however, are not 

strong outliers in the score plot for PC2. This displays the ability for multivariate analysis to 

not only take all the elements into account, but also the amount of discriminatory information 

each possesses within a large and complicated database. 

 



 

106 

 

 

Figure 4.7: Bar chart for the ICP-MS analysis of iron content for KClO3 samples and precursors. 
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The score plot for PC3 (Figure 4.5) begins to show signs of weakened discrimination however, there 

are some interesting takeaways. Firstly, the pool chlorine samples (light blue) and bleach samples 

(red) are quite well separated. There is one pool chlorine sample that has become somewhat of an 

outlier; however, this is the same sample (SIGALD) previously discussed to be different to the others. 

The other key point of interest in this PC is the slight separation of one of the electrochemical sample 

triplets (E1). Sample E1 used only titanium electrodes and is the only electrochemical cell to have two 

inert electrodes and no additional trace metals within the electrolyte. This highlights the effect 

electrodes and electrolytes can have, as the degradation of metal electrodes or presence of trace 

metals in the electrolyte affects the elemental profile of the final product. The effect on the elemental 

profile is also significant enough to be identified through a multivariate analysis such as PCA. 

With each individual PC up to PC3 showing signs of discrimination, two-dimensional plots can be 

examined. First PC1 and PC2 were plotted (Figure 4.8). This highlights the discrimination between 

samples by combining the discrimination in the individual PCs. 

 

Figure 4.8: PC1/PC2 score plot for KClO3 samples and precursors. 

This plot has many interesting features, with the bleach samples clustering in a central location with 

very little overlap with other types of sample apart from 2 triplicate analyses of commercial samples 

(DSTG2). The pool chlorine samples are located above the bleach samples with just the one previously 

discussed outlier sample (SIGALD). The partially successful syntheses resulting from using the health 
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supplement KCl “LITE” have all been separated to the right of the bleach cluster. The final group of 

samples from the electrochemical synthesis method are located to the left of the central cluster quite 

distinctly apart from the previously discussed spiked electrolyte sample (E2). Mixed in with this 

cluster are many of the precursor materials as expected from the analysis of individual PCs due to 

the low concentration of trace elements in comparison to bleach and pool chlorine samples. The pool 

chlorine precursors are separated once again due to PC2 as expected.    

PC3 will give another perspective to these results and so a plot of PC1/PC3 can be created (Figure 

4.9). 

 

Figure 4.9: PC1/PC3 score plot for KClO3 samples and precursors. 

This has not greatly improved the level of separation between clusters, as PC3 is where the 

discrimination between groupings began to greatly diminish. However, as previously noted, the 

electrochemical sample E1 (PC3 score of <0) has separated from the other electrochemical samples’ 

SS and Cu (PC3 score ≈1). 

Through the application of class groupings as the sample precursors are known, clear groupings 

relating to the various synthetic routes can be identified. One of the major drawbacks of undertaking 

PCA without labelling sample types, as would be common in a real-world database, is the 

determination of what constitutes separation or clustering. Without the potential to group samples 
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based on knowledge of precursors and/or synthesis pathways in a real world scenario, more research 

into mathematically quantifying separation and clustering is required. 

4.1.2 Trace Element Profile Retention Using Electrochemical Synthesis 

The elemental profiles for potassium chlorates made via the electrolysis method were shown to 

contain very little of the trace elements, contributing to the score plot of PC1 (Figure 4.3) compared 

to other samples. This allowed the identification of these samples as a clustering group, however, a 

closer examination was undertaken to assess the effect of modifying electrodes and spiking the 

saltwater solution on the final product. To test the effect of elemental profile retention, an 

adulterated sample was prepared and compared to the samples prepared by electrolysis. 

The data is shown in Table 4.8, with E2 being the adulterated sample. For this sample, the synthesis 

was identical to that of E1, which involved the same NaCl, volume and dual titanium electrodes. The 

difference between them was the addition of all the elemental stock solutions to the cell electrolyte, 

to give a concentration of 50 ppb prior to applying the current. For further comparison, samples SS 

and Cu had stainless steel and copper anodes, respectively, and titanium cathodes, and are also 

included within the table. 

Table 4.8: ICP-MS data for potassium chlorate samples produced via the electrolysis 
method. 

Sample Fe 56 
(mg/kg) 

Fe 57 
(mg/kg) 

Mg 
(mg/kg) 

Zn 
(mg/kg) 

Cu 
(mg/kg) 

Al 
(mg/kg) 

Ca 
(mg/kg) 

Ti 
(mg/kg) 

E2 5.54 5.58 2.27 3.58 1.88 1.75 6.26 0.32 

E1  0.95 0.86 0.59 3.60 0.11 0.00 0.62 0.00 

SS 6.22 6.10 0.00 1.60 76.66 2.31 0.87 0.00 

Cu 3.58 3.59 0.00 1.83 157.28 0.73 1.19 0.04 

Sample Cr 
(mg/kg) 

Mn 
(mg/kg) 

Ni 
(mg/kg) 

Ru 
(mg/kg) 

Pt 
(mg/kg) 

U 
(mg/kg) 

Ba 
(mg/kg) 

Sr 
(mg/kg) 

E2 0.10 0.17 0.29 0.00 0.06 0.00 0.19 0.75 

E1  0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 

SS 0.05 0.08 0.24 0.00 0.00 0.00 0.00 0.00 

Cu 0.02 0.03 0.12 0.00 0.00 0.00 0.00 0.02 

Comparing the spiked E2 sample to E1, many of elements had elevated concentrations, however, this 

is not consistent across the board. This indicates that the presence of trace metals within the water 

used for synthesis can be incorporated into the final material produced. These final products were 
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also heavily washed and recrystallised with ultrapure water. The indications are that trace impurities 

have not been removed from the KClO3 crystals by these common purification processes.  

Examining the SS and Cu samples the level of trace metal released through the degradation of the 

electrodes, even while under anodic protection, is significant. This is particularly evident with copper, 

whose content in the resulting KClO3 is high when a stainless-steel anode was used, and even greater 

when a copper electrode was used. This means that samples produced in an electrochemical cell 

could potentially be identified by the electrodes selected for their synthesis. The previous PCA 

analysis in sub-chapter 4.1.1 confirms that the electrode degradation trace element contribution 

separated the electrochemical samples from the bleach and pool chlorine samples. The SS and Cu 

samples were not separated from each other by examining Table 4.8 above. It is clear that the 

samples are quite different to each other, especially when comparing copper and iron levels. This 

highlights a drawback of PCA when examining individual data as differences may be found between 

the Cu and SS samples. In the PCA however, this difference is not significant enough in comparison 

to the wider differences within the overall dataset. Further iterations of PCA could be undertaken to 

further discriminate within clusters, however this is limited. PCA requires a larger number of samples 

in comparison to variables as previously discussed in the introduction. A PCA to examine just 2 

samples will result in a singular principal component, as the maximum number of PCs is determined 

by the number of samples minus one. This issue may be avoided if there was a larger population of 

samples within a cluster and therefore, further iterations may be conducted.  

4.1.3 Sample Digest Solution Aging Study 

Samples synthesised for ICP-MS studies within this research were produced in very small quantities. 

This resulted in sample digestions consuming close to the entire sample, which cannot be recovered. 

In a real-world scenario, this could be a significant issue as this destructive analysis would be the last 

possible analysis undertaken on a trace amount of explosive. This raises the question of the reliability 

of retaining the digestion solution for future testing, for example, against additional elements, as this 

is the last of the sample and could be stored. 

To investigate this, a selection of 20 digested potassium chlorate samples previously tested were 

retained for 9 months and retested. The samples were tightly sealed in plastic trace grade 50 mL 

digestion vials, stored in a cupboard out of direct sunlight in 2% nitric acid, and kept at a laboratory 

room temperature of 22-25oC. There was no visible change in the solutions after the storage with a 
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stable volume, and no change in colour or precipitate formation. Prior to analysis, samples were 

vortex mixed for 30 seconds, subsampled into 15 mL vials and loaded onto the autosampler. The 

results were then used to calculate the change for each element and these results are recorded in 

Table 4.9 which highlights some key trends.  

It must be noted that in the case of trace analysis, many of the elements were not present at high 

levels and so a minor change in concentration can lead to large relative differences. Also, as some 

samples originally not containing quantifiable concentrations of an element have gained 

concentration, the calculation will result in an undefined value due to the division of zero, and these 

will be recorded as “UND”. The final consideration is the %CV of the ICP-MS method for each element 

as previously examined in Table 4.3, as this will determine whether a change is within experimental 

error 

The resultant shift across all elements is not consistent, with some elements being affected by the 

passing of time far more than others. The most dramatic of which was the copper measurements, as 

this has increased by up to 10,876%. Some samples that originally did not contain copper measured 

at 13-25 mg/kg upon the second analysis, which is just above the quantification limit. The previous 

measurement may have been just below the limit of quantification and hence recorded as 0 mg/kg. 

However, a minor increase in concentration cannot explain the 10,000% differences in other samples, 

as these involved much larger increases of up to 294 mg/kg. Therefore, the stability of copper ions 

within a 2% nitric acid solution at these levels is highly unreliable on long-term storage under the 

conditions described. Although copper shows a distinct increase in concentration, there are elements 

that were affected in the opposite direction, reducing their concentrations to below quantifiable 

levels. This includes magnesium and barium; magnesium consistently lost 99-100% of the original 

concentration, however, barium only lost concentration in samples with very low-level 

concentrations to begin with and samples that contained higher levels remained more stable. Iron 

and zinc were quite unstable as well, with significant consistent increases in concentration, however, 

there were elements that showed some promise for storage under these conditions. These more 

stable elements could still be reliable, even after a nine-month storage period even at very low levels; 

there are small fluctuations with many measurements resulting in less than a 20% change. Comparing 

this to the %CVs of the method from Table 4.3, this is a significant variation as prior to aging, many 

random triplicates were shown to vary by a similar amount.  
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Table 4.9: Change (in percentage) of ICP-MS results for KClO3 digestion solutions stored for 9 months. 

 Fe (56) Fe (57)  Mg  Zn  Cu  Al  Ca  Ti  Cr Mn Ni  Ru  Pt  U Ba  Sr  

Average 
Mass mg/kg 

13.45 13.61 58.99 2.77 1.47 62.10 250.85 1.21 0.50 0.33 0.32 0.00 0.00 0.00 0.71 0.85 

KClO32 (1) 109 184 -99 146 10671 -10 1 7 7 26 4 0 0 0 -100 -6 

KClO32 (2) 189 180 -99 139 10876 4 -3 8 14 23 7 0 0 0 -100 -26 

KClO32 (3) 203 212 -99 136 10763 2 0 7 8 7 4 0 0 0 -100 -15 

KClO36 66 38 -99 111 10533 -7 -2 -10 0 6 3 0 0 0 -100 0 

KClO310 56 44 -99 160 10666 -3 6 20 0 8 2 0 0 0 -100 15 

KClO320 30 30 -100 120 10542 UND 1 -4 3 UND 4 0 0 0 -100 -1 

KClO326 32 38 -99 141 10821 -6 -2 0 3 14 1 0 0 0 -100 -5 

KClO337 38 38 -99 151 10732 -14 7 2 0 51 32 0 0 0 -100 -11 

KClO342 18 29 -99 111 9569 -28 -12 -3 -10 -11 -8 0 0 0 10 -5 

E1 (1) 58 45 -100 125 UND UND -32 0 0 0 0 0 0 0 -100 0 

E1 (2) 47 35 -100 168 10704 UND -27 0 0 0 0 0 0 0 -100 0 

E1 (3) 54 67 -100 99 UND UND 0 0 0 16 0 0 0 0 -100 0 

E2 38 32 -100 157 10806 101 2 -16 28 10 8 0 28 0 -100 1 

dstg1 (1) 35 34 -99 128 UND 48 18 -20 3 12 3 0 0 0 11 0 

dstg1 (2) 13 9 -99 142 UND 41 9 -5 1 11 9 0 0 0 3 -3 

dstg1 (3) 47 43 -99 106 UND 19 3 -38 3 10 -3 0 0 0 18 -2 

dstg2 70 136 -100 189 10852 UND -22 0 23 0 6 0 0 0 36 -6 

dstg3 (1) 34 36 -99 72 UND 15 0 -9 7 4 4 0 0 0 -40 -17 

dstg3 (2) 53 51 -99 72 10625 -5 11 -38 5 7 2 0 0 0 -35 -16 

dstg3 (3) 25 22 -99 151 10421 -1 -4 6 1 20 3 0 0 0 -66 -21 

*UND=undefined
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Examining these results, storage under these conditions would not be recommended as there is far 

too much variance for a forensic investigation. Further research could be done in this area by varying 

these storage conditions to attempt to increase the reliability using methods such as freezing samples 

or increasing acidity prior to storage to promote stability.   

4.2 IR Spectroscopy of Potassium Chlorate 

In this chapter potassium chlorate samples were analysed by ATR FTIR, to determine the potential 

for the analytical technique to provide discriminatory information on the samples. Initially this was 

done through the visual comparison of raw spectra, to identify any possible trends separating 

groupings of samples, followed by further exploratory data analysis in the form of PCA. This was 

utilised to better examine the entire dataset for less obvious differences between groups of samples, 

and to reduce the dimensionality of the dataset to identify the exact areas of the spectra that lead 

to discrimination. 

Authentic commercial samples of potassium chlorate were sourced through the Defence Science and 

Technology Group (DST Group) and below in Figure 4.10 is an example of an infrared spectrum of 

potassium chlorate from the analysis of sample DSTG1. 

 

Figure 4.10: IR spectrum of potassium chlorate sample DSTG1. 

Peaks in the infrared spectrum of potassium chlorate include signals at approximately 615 cm-1 

(sharp), 930 cm-1 (sharp, major) and 955 cm-1 (shoulder). The area between 1950 and 2300 cm-1 is 

noisy due to the diamond ATR crystal having multiphonon intrinsic absorption in this range, causing 

vibrations within the diamond lattice resulting in reduced transmission.136  
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Figure 4.11 presents the spectra of all KClO3 samples plotted collectively showing that the samples 

are quite similar and contain the expected peaks; however, some clear differences are apparent. 

Many of the samples display common additional peaks at 610 cm-1 (sharp), 930 cm-1 (sharp), 1087 

cm-1 (broad), 1198 cm-1 (shoulder), 1425 cm-1 (broad), 1628 cm-1 (sharp) and 3383 cm-1 (broad). These 

indicate the presence of impurities which can be used to discriminate between samples. Figure 4.12 

shows the collective spectra of all samples after a normalisation of transmission percentage to the 

major peak at 930 cm-1 to enable a more suitable comparison between the samples. 

As a result, the samples could be separated into two groups; spectra with and without these 

additional peaks. This pattern directly correlates between spectra of potassium chlorate samples 

made from bleach and electrochemistry, which do not contain the additional peaks, and the pool 

chlorine samples, which do contain the additional peaks. 

This key identifier was suspected to be due to remnants of the various stabilisers present in pool 

chlorines, primarily the UV stabiliser cyanuric acid.  Although this is the main common additive, 

others exist including pH regulators such as sodium bisulphate. However, this is to a much lower 

concentration; much of the time it is not listed in the active ingredients and not as likely to produce 

noticeable additional peaks in the final IR spectrum. 
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Figure 4.11: Raw IR spectra of all potassium chlorate samples. 
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Figure 4.12: IR spectra of all potassium chlorate samples normalised to the major peak at 930 cm-1. 
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To test this hypothesis, a sample of cyanuric acid was obtained from a pool supplies store, sold as 

pool chlorine UV stabiliser and its IR spectrum collected as shown in Figure 4.13. 

 

Figure 4.13: IR spectrum of cyanuric acid. 

Though this does have a few signals that are in the correct regions, it is evident that many additional 

peaks are present, that are not found in the spectra of the potassium chlorate samples. Therefore, 

the conclusion was made that this was not the explanation for the additional signals in the pool 

chlorine derived samples.  

Predicting the other minor additives in the pool chlorine granules, that are not listed in the active 

ingredients would be incredibly difficult and therefore a sample of pure calcium hypochlorite was 

obtained from Sigma-Aldrich to repeat the synthesis with just the chemical required to produce 

potassium chlorate. This was unexpectedly difficult, as following the same method described in the 

synthesis of potassium chlorate from pool chlorine did not yield any potassium chlorate. To resolve 

this lack of production the pH of the calcium hypochlorite solution was manipulated via the addition 

of hydrochloric acid to reach a pH of between 4 and 6. At this pH, synthesis was successful, however, 

only minor amounts were produced and further modifications did not result in greater yields. This 

indicates that the additional chemicals within a pool chlorine product stabilise the hypochlorite ions 

to enable them to react further to form the desired chlorate ion required to produce potassium 

chlorate. Lowering the pH with hydrochloric acid also favours this reaction to occur, however, it does 

not stabilise the hypochlorite ions to the same extent.  
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A benefit of IR spectroscopy is that even with almost trace amounts of material an analysis may be 

performed and so an IR spectrum for a low yield sample could be obtained as in Figure 4.14. 

 

Figure 4.14: IR spectrum of potassium chlorate made using Sigma-Aldrich calcium 
hypochlorite and hydrochloric acid. 

This spectrum does show that some of the additional peaks found in samples produced from pool 

chlorine are no longer present, however, there are features that still separate this from bleach 

derived samples, including the broad peak at 1415 cm-1 and small shoulders at 715 cm-1 and 890 cm-1. 

As these features were present in the pure calcium hypochlorite derived sample this leaves just the 

origin of the large peaks at 1100 cm-1, 1700 cm-1 and 3400 cm-1 unassigned. Additionally, the relative 

amplitude of the 1415 cm-1 peak is lower than that of the pool chlorine samples. 

One noticeable difference between the pool chlorine and bleach methods is the production of an 

insoluble calcium deposit on all glassware, requiring acid cleaning to remove. This could potentially 

be present in the final product and so was isolated by dissolving a large amount of laboratory grade 

Sigma-Aldrich calcium hypochlorite in water, filtering the insoluble solids and performing an IR 

analysis (Figure 4.15).  
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Figure 4.15: IR spectrum of isolated insoluble material from calcium hypochlorite solution. 

This unknown solid has many of the unassigned peaks including 715 cm-1, 870 cm-1, 1400 cm-1 and 

the broad stretch at 3400 cm-1. Based on its low solubility, the unknown product was predicted to be 

calcium hydroxide. To confirm this, a sample of calcium hydroxide was prepared for comparison by 

combining aqueous sodium hydroxide and calcium chloride. The calcium hydroxide was washed with 

a large volume of hot water to remove any possible impurities; hot water was used as calcium 

hydroxide has inverse solubility where it is more soluble in cold rather than hot water. This was then 

dried in a desiccator for 2 days prior to IR analysis.  

The prediction is somewhat confirmed, however, the broad peak at 3400 cm-1 has been replaced with 

a sharp peak at 3640 cm-1 (Figure 4.16). A possible explanation for this lack of broad stretch could be 

the formation of a hydrate, rather than in the case of the pool chlorine samples, where free water 

may be trapped within the sample.  

 

Figure 4.16: IR spectrum of prepared calcium hydroxide. 

Although both the calcium hydroxide and cyanuric acid can account for many of the peaks present in 

the pool chlorine samples, it is not a direct match. This could be due to the presence of an additional 
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unidentified impurity in the pool chlorine starting material or the product of an unknown reaction 

between the chemicals throughout the synthesis process. 

The differing spectral features between potassium chlorate samples is useful, as it allows for some 

insight to be gained as to the synthetic pathways and starting materials used in its production. 

However, there may be more discriminatory information that is not so obvious and so a chemometric 

approach was undertaken.  

4.2.1 Exploratory Multivariate Analysis of FT-IR Data 

The first step in any chemometric approach is a well-defined pre-processing methodology. As PCA is 

a purely mathematical approach, some level of normalisation must be employed to allow the spectra 

to be compared to one another. Normalisation was undertaken using the major common signal of 

the spectra at 930 cm-1 and setting the transmittance to at this point to 1% (Figure 4.12). The 

transformed spectra are now comparable to each other. Another aspect of PCA is that all datapoints 

will now be treated equally, and so abnormalities must be carefully considered; for example, the 

noisy ATR region in the FTIR spectra (1750-2675 cm-1). This will have to be removed as it is a large 

source of variation between samples, which cannot be attributed to the differences between samples 

but rather a limitation of the analytical equipment.  

Some samples also had weaker absorbances, which could be a result of sodium/potassium chloride 

impurities within the samples, which are transparent in the frequency range being analysed. This 

effectively dilutes the potassium chlorate signals and once normalised, will negatively impact the 

signal to noise ratio of these spectra. This alone can be valuable information as it indicates a less 

efficient method of manufacture, however, outliers such as these will hinder the discriminatory 

power of the PCA. When such spectra were examined, the signal to noise ratio is unfavourable, and 

if excessive noise exists in regions with characteristic signals, this will cause issues as it introduces 

artificial variance in the dataset. Unfortunately, little can be done to negate this other than excluding 

the spectra. Excluded samples include KClO3 20, KClO3 40-45, which were all partially successful 

syntheses. 

This highlights a major drawback of a purely mathematical approach such as PCA used in isolation 

increases the importance of high-quality spectra. This high quality and consistency of data may not 

be possible in real world scenarios, where different instrumentation is used, producing a variety of 

resolutions and quality. This is further compounded if there are additives in an analysed HME such 
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as fuels, stabilisers, etc. These real-world complications may make comparisons of samples to a 

database more difficult, much like the case for other database matching applications, e.g., poor 

quality fingerprints found at crime scenes or low-quality photos for facial recognition. 

The final step of the pre-processing is a visual screening of data as there may be clear visual signs of 

outlier spectra when examined. After this pre-processing, the spectra were transformed to a more 

suitable state as pictured in Figure 4.17 and the exploratory data analysis was undertaken.  
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Figure 4.17: IR spectra of KClO3 samples after initial pre-processing of data. 
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Firstly, a hierarchical cluster analysis (HCA) was performed on the normalised data to identify any 

clear groupings within the spectra. The results are displayed in Figure 4.18 in the form of a 

dendrogram, and the accompanying Table 4.10 displays the corresponding sample identities. This 

analysis shows that there are not many clear groupings as the majority of the samples are very similar 

to each other. There are, however, several samples that stand out including samples 28, 29, 33, 34, 

36 and 35, which correspond to KClO3 19, KClO3 21, KClO3 25, KClO3 25_2, KClO3 27 and KClO3 26. 

These are all samples produced through the pool chlorine synthesis method and therefore this is not 

an unexpected result. As previously mentioned, their IR spectra looked visibly different with some 

clear additional signals within the spectra. This highlights that potential discrimination may exist 

within the dataset, however, this is a very basic non-transformative analysis and for more information 

PCA needs to be performed as HCA does not identify why some spectra are different to others in any 

level of useful detail. While in this exploratory study the HCA is just as useful as the visual inspection, 

in a real-world database where thousands of samples may be analysed, a visual inspection would be 

difficult and time consuming. 

Table 4.10: Sample correlation to number identifiers in HCA dendrogram. 

Number Sample Number Sample Number Sample 

1 cu 19 KClO3 10 37 KClO3 28 

2 dstg1 20 KClO3 11 38 KClO3 29 

3 dstg2 21 KClO3 12 39 KClO3 30 

4 dstg3 22 KClO3 13 40 KClO3 31 

5 e1 23 KClO3 14 41 KClO3 32 

6 e2 24 KClO3 15 42 KClO3 33 

7 icpms1 25 KClO3 16 43 KClO3 35 

8 KClO3 1 26 KClO3 17 44 KClO3 36 

9 KClO3 2 27 KClO3 18 45 KClO3 36_2 

10 KClO3 3 28 KClO3 19 46 KClO3 37 

11 KClO3 3_2 29 KClO3 21 47 KClO3 38 

12 KClO3 4 30 KClO3 22 48 KClO3 39 

13 KClO3 5 31 KClO3 23 49 pt1 

14 KClO3 5_2 32 KClO3 24 50 Ss 

15 KClO3 6 33 KClO3 25   

16 KClO3 7 34 KClO3 25_2   

17 KClO3 8 35 KClO3 26   

18 KClO3 9 36 KClO3 27   
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Figure 4.18: Resultant dendrogram from the hierarchical cluster analysis of potassium chlorate IR spectra.  
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Prior to inspecting the results of the PCA analysis it is important that the quality of the analysis is 

reviewed. Firstly, as the data has been completely transformed, it is crucial to determine how much 

of the original dataset’s variance has been retained. This can easily be calculated using the cumulative 

sum of the principal component eigenvalues divided by the total variance. Tabulated in Table 4.11 

below are the results of the variance retention calculations, and the accompanying scree plot in 

Figure 4.19.  

Table 4.11: Variance retention table. 

Component 

Principal 
Component 
Eigenvalues 

Cumulative 
Percentage of 
Variance Explained 

PC1 124843.5549 57% 

PC2 48651.70041 80% 

PC3 28343.92219 93% 

PC4 7310.307275 96% 

PC5 3299.430407 98% 

PC6 1378.324004 98% 

PC7 1237.631349 99% 

 

Figure 4.19: Scree plot for the PCA of pre-processed KClO3 IR data. 

This variance breakdown illustrates that 96% of the variance is retained within the first 4 principal 

components and 99% by the seventh component. A clear elbow in the scree plot curve at component 

4 indicates that further components have a dramatic reduction of variance within the data.  
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PCA performs a dimensionality reduction and as such, each principal component is made up of many 

variables of the original dataset. In the case of IR spectra, these variables consist of the wavenumbers 

of the spectra and it is important to understand the make-up of the factors/loadings in each principal 

component. These loadings are summarised numerically in Table 4.12 and graphically in Figure 4.20. 

The data has been presented differently to the previous ICP-MS analysis due to the large number of 

datapoints as each 0.25 cm-1 is counted as a variable. As a result, listing individual loadings rather 

than ranges would result thousands of data points, rather than a few elements as was the case in 

ICP-MS analysis. 

Table 4.12: Loading factors for principal components 1-4. 

Principal Component Key Loading Regions (cm-1) 

PC1 628-726, 1019-1247, 1382-1507, 3308-3474 

PC2 1011-1238, 1622-1648, 3165-3585 

PC3 600-610, 619-893, 985-1026, 1049-1143 

PC4 601-604, 765-863, 1027-1030, 1039-1128, 1245-1537, 3629-3630 

The loadings plots identify the regions of the IR spectra that contribute to each of the principal 

components and should somewhat resemble a spectrum in that they are smooth curves that 

correspond to signals in the original spectrum. Once a loadings plot begins to stop resembling a 

spectrum, this is an indication that the component is no longer representing a significant amount of 

variance within the original dataset. This can start to be seen in PC4, where the curves form sharper 

points, which is understandable as 93% of the dataset’s variance is accounted for prior to PC4, which 

then only accounts for an additional 3%. 

The representation in Figure 4.20 is quite informative as it shows the location and magnitude of 

influence various regions of the spectrum have on each PC. A shortcoming, however, is that without 

the direct comparison to the original spectrum, the greater picture of exactly where the contribution 

relates to can be lost. Therefore, a loadings breakdown (Figure 4.21) can be created to supplement 

these plots to clearly highlight this aspect. 
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Figure 4.20: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the KClO3 FT-IR dataset. 
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Figure 4.21: Loadings breakdown for first 4 PCs (20% offset between each) highlighting the focus regions of each PC against a 
representative IR spectrum of KClO3. 
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The initial analysis of the variance retention and loadings of the PCA is incredibly important in 

understanding and being able to extract useful information from the results. These results come in 

the final form of scores, which can then be used to identify clustering through the use of various 

plotting strategies.  

The individual components may be plotted to examine the discriminatory power of each principal 

component as in Figure 4.22. Examining these plots, PC1 shows that there is no large separation 

between any of the groups of samples. There are a few low score samples, most of which are pool 

chlorine samples however, there this clear crossover with bleach samples and even four pool chlorine 

samples, mixed in with the bulk of the other samples. This indicates that the previously identified 

visual differences between the pool chlorine samples and non-pool chlorine samples were not 

identified as significantly discriminatory in this analysis. 

This suggests that the pre-processing has affected the PCA in a negative manner. When re-examining 

the plot of pre-processed spectra in Figure 4.17, it is evident that the baselines of the spectra are 

variable, including over the regions with impurity peaks. This minimises the discriminatory variability 

across the samples and so a baseline correction will be a required addition to the pre-processing 

method. 

This information is from just one principal component and more can be examined to see further 

discrimination; however, as PC1 accounts for 57% of the dataset’s original variance, the amount of 

variance explained by further components does diminish. This is apparent when reviewing PC3 

(Figure 4.22C) where there is no clear separation between sample types, as the main cluster of 

samples has spread into a disparate cloud of data points. This provides no beneficial information to 

help discriminate samples from one another.  

The benefit of PCA is that each component is a multitude of dimensions in the original dataset and 

hence combining multiple components in a single plot allows the analyst to encompass up to 93% of 

the original variance (in this dataset) by performing up to a three-dimensional plot. Figures 4.23 and 

4.24 show two-dimensional plots between principal components 1, 2 and 3.  
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Figure 4.22: One dimensional score plots for A) PC1, B) PC2, C) PC3 and D) PC4 of the normalised KClO3 FT-IR dataset 
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Figure 4.23: Two-dimensional score plot of PC1/PC2 of the normalised KClO3 FT-IR dataset. 
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Figure 4.24: Two-dimensional score plot of PC1/PC3 of the normalised KClO3 FT-IR dataset. 
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The plot of PC1/PC2 highlights the slight separation of all the pool chlorine method samples from the 

rest. This separation, however, is not very distinct and if sample types were not colour coded only 

the distinctly separated samples could be confidently identified as a separate grouping.  

The plot of PC1/PC3 shows the lack of discriminatory information contained within PC3, as there is 

very minimal separation between sample types other than the cluster of four distinctly separated 

samples purely from the PC1 scores. 

The ideal representation of PC data is in the form of a three-dimensional plot, as it can display all the 

variance within 3 PCs. Unfortunately, this does not present well in a static form as shown in Figure 

4.25 but is incredibly informative in an interactive state such as MATLAB, where the plot may be 

rotated to examine the clustering from various perspectives. In this way, two-dimensional planes of 

separation may be identified to separate groups of samples. 

 

Figure 4.25: Three-dimensional plot of PC1, PC2 and PC3 of the normalised KClO3 FT-IR 
dataset. 
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This analysis can identify that there is some minimal level of discriminatory identification within the 

infrared spectroscopy dataset through the use of PCA on normalised data. As previously mentioned, 

more pre-processing could be undertaken to try and improve the analysis, for example, a baseline 

correction. There are complications to such a pre-processing technique, as it must be applied 

consistently across all samples and in this case the Spectrum131 software package was used to apply 

a polynomial correction across all the samples together.  

Applying a manual baseline correction to the original dataset using the 6 base points in Table 4.13, 

and depicted in Figure 4.26, results in the dataset transforming to Figure 4.27. These points were 

selected based on the collected spectra, which indicated that these points were a return to baseline. 

The software can also select and apply these positions automatically, however, to record and retain 

these positions a manual method was selected, rather than an unknown computer correction. 

Table 4.13: Manual baseline correction base points selection. 

Base Point Position (cm-1) 

1 647 

2 1308 

3 1558 

4 1730 

5 2995 

6 3678 

 

Figure 4.26: Manual baseline correction base points marked on KClO3 1 spectrum. 
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Figure 4.27: Spectra of KClO3 samples after 6 base point baseline correction followed by normalisation to the major peak at 930 cm-1 (ATR 
region removed). 
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The HCA of this dataset as shown in Figure 4.28 very closely resembles that of the original dataset, 

with the 6 samples clearly separated from the main body of samples being those of the pool chlorine 

synthesis method. The distance between the clusters of samples within the dataset are now greater 

and indicate a more discriminatory dataset.  

 

Figure 4.28: Hierarchical cluster analysis of potassium chlorate IR spectra after 6-point 
baseline correction and normalisation. 

 

Table 4.14: Sample correlation to number identifiers in HCA dendrogram. 

Number Sample Number Sample Number Sample Number Sample Number Sample 

1 KClO3 1 12 KClO3 10 23 KClO3 22 34 KClO3 32 45 DSTG3 

2 KClO3 2 13 KClO3 11 24 KClO3 23 35 KClO3 33 46 PT1 

3 KClO3 3 14 KClO3 12 25 KClO3 24 36 KClO3 35 47 E1 

4 KClO3 3_2 15 KClO3 13 26 KClO3 25 37 KClO3 36 48 E2 

5 KClO3 4 16 KClO3 14 27 
KClO3 
25_2 

38 
KClO3 
36_2 

49 SS 

6 KClO3 5 17 KClO3 15 28 KClO3 26 39 KClO3 37 50 Cu 

7 KClO3 5_2 18 KClO3 16 29 KClO3 27 40 KClO3 38   

8 KClO3 6 19 KClO3 17 30 KClO3 28 41 KClO3 39   

9 KClO3 7 20 KClO3 18 31 KClO3 29 42 ICPMS1   

10 KClO3 8 21 KClO3 19 32 KClO3 30 43 DSTG1   

11 KClO3 9 22 KClO3 21 33 KClO3 31 44 DSTG2   
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Following this preliminary analysis, PCA was undertaken to further understand and possibly enhance 

the discriminatory data within this dataset. As in the previous analysis, the variance and loadings 

were investigated to understand how the exploratory data analysis has performed. The variance has 

the same breakdown with 96% of the variance being retained within the first 4 principal components 

and 99% by the seventh component. The scree plot is slightly different with the initial slope remaining 

almost linear to the third component and has a clear point of inflection in the curve at PC3. 

Table 4.15: Variance retention table. 

Component 
Principal 

Component 
Eigenvalues 

Cumulative 
Percentage of 

Variance Explained 

PC1 102339 55% 

PC2 56529 85% 

PC3 15337 93% 

PC4 5928 96% 

PC5 2430 97% 

PC6 1758 98% 

PC7 906 99% 

 

 

Figure 4.29: Scree plot for the PCA of KClO3 IR baseline corrected and normalised data. 

The loading plots are displayed in Figure 4.30 and are very similar to the original data loading plots 

in Figure 4.20 apart from two details. First, in PC1 the value of the loading in the 600-1000 cm-1 region 
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has been greatly reduced to insignificant levels. Second, the PC2 loadings have reversed in terms of 

the direction of the loading factors, with the region between approximately 900 and 1400 cm-1 now 

being a positive weighting rather than negative, and the region between approximately 2700 and 

3800 cm-1 switching from a positive loading to a negative loading.  

With this understanding of the analysis the results may now be examined. First, the one-dimensional 

form was examined for groupings within the first four principal components (Figure 4.31).  

PC1 (Figure 4.31A) shows that there is a separation of the pool chlorine samples (orange) from the 

rest of the samples, however, that is the extent of the discrimination within this PC. This is a very 

similar result to the data prior to baseline correction, with the one difference being that there is less 

crossover between the pool chlorine samples and the rest. In this case, KClO3 36_2 is the only bleach 

sample located with the pool chlorine samples, rather than the previous analysis where multiple 

bleach samples were. This clearer separation of the pool chlorine samples indicates that the new pre-

processing method is an improvement upon the last method, highlighting the importance of a 

baseline correction. 

PC2 (Figure 4.31B) shows a similar result with only five pool chlorine samples with higher scores 

separating significantly from the bulk of samples. One interesting point, however, is that the samples 

separated by the greatest difference were some of the poorly discriminated samples within the 

previous PC1 score plot. A combination of these two principal components may therefore yield a 

much greater distinct separation of these samples from the bleach and electrolytic cell samples. PC3 

and onwards show very poor discriminatory ability, and so scores beyond PC2 provide very little 

useful information.  
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Figure 4.30: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the KClO3 FT-IR dataset after baseline correction and normalisation. 



 

140 

 

 

Figure 4.31: One dimensional score plots for A) PC1, B) PC2, C) PC3 and D) PC4 of the baseline corrected and normalised KClO3 FT-IR 
dataset.  
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Figure 4.32: Two dimensional plot of PC1/PC2 of the baseline corrected and normalised KClO3 FT-IR dataset. 
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With these results, a two-dimensional plot of PC1 and PC2 yields a good level of discrimination 

between the samples as shown in Figure 4.32. The same pool chlorine precursor samples are 

discriminated as the previous analysis, however, the separation between them and the others is 

stronger. Referring back to the coefficients plot for PC1 and PC2 (Figure 4.30 A/B), we can see that 

this separation is due to the additional impurity peaks carried over from the pool chlorine precursor, 

as previously discussed. This aligns much better with the initial visual inspection of the spectra 

undertaken prior to any chemometric analysis.  

This analysis of infrared spectra has resulted in some discrimination of samples through the presence 

of impurities due to differing starting materials. The samples produced through the pool chlorine 

method are all successfully separated from the remainder of the samples.  

There are, however, a large number of samples where no discrimination was possible as the synthesis 

methods did not result in any impurities at significant enough levels to perturb the IR spectra from 

pure KClO3. As the chemometric methodology used was able to separate samples based on trace 

amounts of impurities as a result of the starting material utilised, application of this same procedure 

to a database of real-world KClO3-based HME samples could potentially discriminate samples based 

not only on the impurities present in the KClO3 component but also fuels and their fuel:KClO3 ratio. 

These would all affect the signals in the spectra and also their peak ratios. The extent of 

discrimination based on fuel type and fuel ratio is a future study that would need to be undertaken.  

The analysis of baseline corrected and normalised data provided a greater level of discrimination 

than just normalisation. The normalised data did show some level of discrimination based on the 

additional peaks identified by basic visual examination but did not fully separate all spectra with these 

peaks due to baseline differences. The baseline corrected data, however, had a much greater match 

with groupings identified by the preliminary visual inspection of the dataset greatly reducing the 

effect of discrimination due to baseline differences. 

4.3 Raman Spectroscopy of Potassium Chlorate 

Figure 4.33 shows an example of a Raman spectrum of a commercially sourced potassium chlorate 

sample DSTG1. 
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Figure 4.33: Raman spectrum of potassium chlorate sample DSTG1. 

Peaks in a typical Raman spectrum of pure potassium chlorate include signals at approximately 280 

cm-1 (minor, combination of 2 peaks between 270-290 which sometimes become a single peak), 

440 cm-1 (minor, sharp and sometimes a shoulder), 490 cm-1 (sharp), 620 cm-1 (sharp), 940 cm-1 

(major, sharp) and 980 cm-1 (sharp). 

Raman spectra of all KClO3 samples were pre-processed in the same manner as the previously 

discussed methodology used for IR spectra apart from the baseline correction, which was not 

required. All spectra were reduced to the range of 250-1100 cm-1 as beyond 1100 cm-1 no signals 

were present within any of the samples. This reduced the amount of data to be analysed by 70%, 

without losing any signals of interest. This would not always be possible especially when analysing 

KClO3 HMEs with added fuels as additional signals may be present beyond 1100 cm-1. Samples with 

low signal and excessive fluorescence have been excluded and all remaining spectra were normalised 

to the major 940 cm-1 peak. The final spectra in this dataset are displayed in Figure 4.34. Examining 

these spectra as a collective, visually, there is very little difference between them all. DSTG3 is the 

only sample to have an additional peak at 1050 cm-1 setting it apart from the rest. The only other 

visible variation between spectra exist around the 280 cm-1 region which may be enough for some 

level of discrimination between samples. 
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Figure 4.34: Normalised Raman spectra for all KClO3 samples (excluding poor quality spectra) between 250 and 1100 cm-1. 
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To validate the preliminary assessment based on visual comparison of the IR spectra, HCA was 

performed on the IR dataset. The HCA does not show great potential in identifying clusters of samples 

as shown in Figure 4.35. The overall dataset is very similar as indicated by the Euclidean distance of 

the majority of samples being very minimal and there is very little distinct clustering.  

 

Figure 4.35: Resultant dendrogram from the hierarchical cluster analysis of normalised 
potassium chlorate Raman spectra. 

 

Table 4.16: Sample correlation to number identifiers in HCA dendrogram in Figure 4.33. 

Number Sample Number Sample Number Sample Number Sample Number Sample 

1 dstg1 9 KClO3 6 17 KClO3 15 25 KClO3 23 33 KClO3 32 

2 dstg2 10 KClO3 7 18 KClO3 16 26 KClO3 24 34 KClO3 33 

3 dstg3 11 KClO3 8 19 KClO3 17 27 KClO3 25 35 KClO3 36 

4 E2 12 KClO3 9 20 KClO3 18 28 KClO3 26 36 KClO3 39 

5 KClO3 1 13 KClO3 11 21 KClO3 19 29 KClO3 27 37 KClO3 41 

6 KClO3 2 14 KClO3 12 22 KClO3 20 30 KClO3 28 38 KClO3 42 

7 KClO3 4 15 KClO3 13 23 KClO3 21 31 KClO3 30 39 KClO3 43 

8 KClO3 5 16 KClO3 14 24 KClO3 22 32 KClO3 31   

Regardless of the low probability of discriminatory value contained within this dataset, PCA was 

undertaken to test this hypothesis. In the following table of variance retention and accompanying 

scree plot, it is shown that the variance within the dataset was not well condensed by the PCA. The 

retention table shows that the variance is spread over many principal components with 95% 

accounted for at PC8 and 99% after an extreme 20 principal components. This is represented 
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graphically in the scree plot, where there is less of an obvious inflection point and more of a smooth 

curve. 

Table 4.17: Variance retention of the PCA of normalised KClO3 Raman data. 

Component Eigenvalue 
Cumulative 

Percentage of 
Variance 

PC1 0.1576 48% 

PC2 0.0598 67% 

PC3 0.0327 77% 

PC4 0.0255 85% 

PC5 0.0133 89% 

PC6 0.0112 92% 

PC7 0.0061 94% 

PC8 0.0041 95% 

… … … 

PC20 0.0004 99% 

 

 

Figure 4.36: Scree plot for the PCA of normalised KClO3 Raman data. 
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Another confirmation of a poor PCA can be seen from the loadings plots in Figure 4.37. 

 

Figure 4.37: Spectrum loadings for A) PC1, B) PC2, C) PC3 and D) PC4 of the normalised 
KClO3 Raman dataset. 

Though the first and second principal components showed identifiable spectral features, by PC3 this 

had devolved into mainly background noise and sharp spikes rather than smooth peaks. This was yet 

another red flag that the analysis would provide little discrimination between samples within this 

dataset. 

The final results were then examined to visualise exactly how little discriminatory value there was 

within the Raman spectra. In Figure 4.38 are two plots of PC1/PC2 and PC2/PC3 showing no clear 

clusters of samples as expected. Rather than identifiable groups of samples, the plots are just a 

nebulous cloud of data points. The only exception is sample KClO3 13, which was a slight outlier in 

PC1 due to an unusual signal at 208 cm-1 and above average signal at 290 cm-1. 

This analysis was an example where further analysis beyond a visual inspection of the original dataset 

does not yield any greater level of understanding. It also highlighted the various indicators that a PCA 

analysis was not going to achieve a great deal of discrimination. This included: 

 a lack of separation between clusters in the HCA, 

 the lack of successful variance condensation on examining the eigenvalues of the PCA, 
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 the lack of quality spectral loadings, and 

 the principal component score plots which confirmed the lack of discriminatory value of the 

Raman dataset. 

 

Figure 4.38: Score plots of A) PC2 vs PC1 and B) PC3 vs PC2 of normalised KClO3 Raman 
dataset. 

The lack of differences within Raman spectra stems from the lack of Raman active impurities within 

samples. This result highlights the complimentary nature or Raman and IR spectroscopy as IR active 

impurities were identified. The number of samples that data could be collected for in the Raman case 

was also reduced as some samples could not be recorded due to fluorescence and breakdown of 

equipment. 

4.4 Combined IR and ICP-MS Data for Potassium Chlorate 

The previous chapters analysed the FT-IR and ICP-MS datasets, which successfully identified 

discriminatory variance within each dataset individually. Here attempts are made to merge these 

datasets to interrogate whether, when combined, these datasets will allow better discrimination. 

The first attempt involved the direct merging of the log transformed ICP-MS and the baseline 

corrected and normalised FT-IR transmittance datasets. In this case, the PCA score plots were first 

examined as the data has been previously investigated and shown to contain valuable discriminatory 

information. 

PC1 (Figure 4.39) identifies two groupings of samples, with the higher score being the potassium 

chlorate samples synthesised from bleach and DST Group-obtained commercial samples and the 

lower score grouping being all potassium chlorate samples synthesised from pool chlorine. This was 

a grouping that could be established by both techniques individually. PC2 and onwards unfortunately 
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did not show any signs of discrimination between samples and instead was a single cloud of data 

points. 

 

Figure 4.39: Score plot of PC1 for the combined raw FT-IR and log transformed ICP-MS 
datasets of KClO3 samples. 

This is quite a disappointing result as the PCA of the ICP-MS data alone highlighted a few additional 

groupings and so this was less successful than analysing each data set separately. One way to identify 

why there is a lesser degree of discriminatory variability is to examine the loadings/coefficients 

leading to the principal components. There is a difficulty in visualising this, as the FT-IR spectra have 

an independent variable (frequency in cm-1) and the ICP-MS data merely records the concentration 

of elements within a sample. They may be plotted as a scatter plot (Figure 4.40), however, this 

requires the ICP-MS data to be assigned arbitrary frequency values (in this case 25 cm-1 apart) in 

order to plot all in the one chart.  

When examining this plot of the coefficients for PC1, the issue becomes evident. The magnitude of 

variation within the spectral portion of the dataset is far greater than in the ICP-MS data, where only 

the variation in calcium content has any weight in the analysis. Hence a form of scaling needs to be 

implemented to even out the magnitudes of variation between the datasets. The optimisation of this 

scaling could be quite complicated; one possible method worth attempting is to normalise the largest 

variances in both the ICP-MS and FT-IR datasets. The elemental mass fraction which had the largest 

magnitude of variance in the ICP-MS data was identified as calcium (3 AU after log transformation) 
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and the peak in the FT-IR that had the greatest variation in %T values was at 3400 cm-1 (40%). To 

equalise the magnitude of the variance at these two maximal positions the %T values of the FT-IR 

dataset were divided by 13 (approx. 40 ÷ 3). The resultant coefficient plot for PC1 (Figure 4.41) 

following PCA analysis of the transformed data shows a vast level of improvement with the 

coefficients between the ICP-MS and FT-IR portions of the data becoming more equal though the 

signs of the coefficients have reversed. 

 

Figure 4.40: PC1 coefficient plot for the combined raw FTIR and log transformed ICP-MS 
datasets of KClO3 samples. 

 

Figure 4.41: PC1 coefficient plot for the combined scaled FT-IR and log transformed ICP-MS 
datasets of KClO3 samples. 
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The resultant score plots are significantly affected, with PC1 (Figure 4.42) still isolating all pool 

chlorine potassium chlorates from the household bleach and DSTG samples within this dataset, but 

with a greater score value than previously.  

 

Figure 4.42: Score plot of PC1 for the combined scaled FT-IR and log transformed ICP-MS 
datasets of KClO3 samples. 

 

 

Figure 4.43: PC2 coefficient plot for the combined scaled FT-IR and log transformed ICP-MS 
datasets of KClO3 samples. 
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Though this was promising, further PC score plots once again yielded no further discrimination. 

Examining the loading factors through coefficients (for example, PC2 coefficient plot in Figure 4.43) 

shows that this is no longer the issue as the two datasets are once again quite evenly matched in 

terms of relative magnitude of maximum contributions to the variance. 

The only other point of interest that may be interrogated further is the variation retention (Table 

4.18) and the corresponding scree plot (Figure 4.44). 

Table 4.18: Variance retention table for the PCA of combined scaled FT-IR and log 
transformed ICP-MS datasets of KClO3 samples. 

Principal Component PC Eigenvalues Cumulative % of Variance Explained 

PC1 366.9545 62% 

PC2 115.0074 81% 

PC3 68.41562 93% 

PC4 14.59902 95% 

PC5 8.135024 97% 

PC6 5.689503 98% 

PC7 3.256235 98% 

PC8 2.257283 99% 

 

 

Figure 4.44: Scree plot for the PCA of combined scaled FT-IR and log transformed ICP-MS 
datasets of KClO3 samples. 
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In examining the variance retention there are no red flags that would indicate an unsuccessful PCA. 

The variance is not solely resolved in PC1 and 93% is contained within the first three PCs resulting in 

a distinct inflection point at PC4 in the scree plot.  

The PCA score plots were disappointing, with only the first principal component indicating any level 

of discrimination between samples. This indicates that the incorporation of multiple datasets in this 

case has not resulted in any benefit but has rather diluted the variance across a larger dataset which 

has negatively affected the discrimination between samples. Further optimisation of data pre-

processing needs to be undertaken to resolve this issue; however, this could be quite a complex 

process requiring more sophisticated methods. One possible method would be to merge the datasets 

using a nonparametric regression, such as generalised regression neural network (GRNN). Though a 

very complex machine learning technique, which is computationally demanding, the rapid 

development of machine learning has made this a realistic technique. However, for this project GRNN 

was not possible with the computational equipment at hand, so this or similar nonparametric 

regression would be a very worthwhile future pursuit.  

4.5 Conclusions 

The analysis of a representative set of potassium chlorates indicated some clear differences between 

samples based on their starting materials and synthetic procedures. 

ICP-MS analysis could identify three different groups of potassium chlorate based on the synthetic 

procedure utilised i.e. household bleach, pool chlorine and electrochemical cell synthesis routes. This 

was primarily based on the trace metal concentrations of aluminium, calcium and magnesium as 

identified by PCA and confirmed by examining the raw data. Potentially an increase of the number of 

trace elements analysed could improve this level of discrimination. A preliminary investigation into 

the effect electrodes and electrolytes have on a final product’s elemental profile showed that there 

is an identifiable link. This can help connect a sample of KClO3
 to its electrochemical cell make up 

including electrode metals and elevated trace elements in starting water. An aging study was 

undertaken to determine the potential to store digested samples for an extended period of time 

however many elements were too greatly affected over a 6-month period for this to be viable. This 

could potentially be investigated further by modifying storage conditions. 
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IR spectroscopy could identify two distinct groupings based on the presence of not entirely identified 

impurities present within KClO3 samples produced from pool chlorine. The impurities were suspected 

to be as a result of the cyanuric acid, which was present as a chlorine stabiliser, however, not all the 

additional peaks in the spectra of these samples could be accounted for by cyanuric acid. Further 

investigation showed that other insoluble compound(s) such as calcium hydroxide may be present, 

or that the conditions in the electrolysis cell have effected a chemical reaction on the cyanuric acid. 

Raman spectroscopy did not offer any discriminatory information between samples; however, this 

data was collected using a very basic Raman analyser used for field identification of hazardous 

substances which does not have the spectral fidelity of laboratory grade instruments. 

ICP-MS and IR datasets for KClO3 samples were quite difficult to merge effectively, in contrast to the 

IR-MS and ICP-MS datasets for AN samples investigated in the previous chapter. Multiple methods 

of data pre-processing prior to combination and multivariate analysis were attempted, however, all 

negatively affected the discriminatory information contained within each dataset individually. This 

could potentially be improved with a more complex non-linear multivariate analysis involving 

machine learning, such as general regression neural network or similar nonparametric analysis, which 

were beyond the data processing capabilities available in this project.
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5. Analysis of Erythritol Tetranitrate Samples  

In this chapter erythritol tetranitrate was analysed using IR-MS, ICP-MS, ATR-FTIR and Raman 

spectroscopy. Each dataset was interrogated individually to identify discriminatory information. The 

datasets proving to highlight discriminatory information were merged into a singular database and 

re-examined to determine the most successful pre-processing method of data integration. PCA of the 

combined dataset was undertaken to attempt to retain or enhance the original discrimination 

provided by the individual analytical techniques. 

5.1 IR-MS of ETN 

ETN is a member of the nitrate ester class of explosives and therefore contains significant amounts 

of both carbon and nitrogen. This allows for the IR-MS of samples as an additional analysis, in 

comparison to the inorganic oxidising agent and HME ingredient KClO3 investigated in the previous 

chapter. This dataset is only two dimensional, comprising the carbon and nitrogen delta values for 

each sample. Therefore, PCA would not be able to provide any further dimensional reduction and so 

is not applied in this case. Instead the carbon and nitrogen values may be interrogated individually, 

as well as in combination. 

To understand any changes in delta value, the reaction conditions leading to the products must be 

understood. The reaction equations are depicted in Equation 5.1, 5.2 and 5.3. Equation 5.1 clearly 

identifies that there is only one possible source of carbon (erythritol) and nitrogen (nitric acid) in the 

mixed acid method. Equation 5.2 only has one source of nitrogen and three carbon containing 

chemicals including the erythritol, acetic acid and acetic anhydride. The nitrate salt method in 

Equation 5.3 has only one source of carbon and one source of nitrogen, except in the ammonium 

nitrate case where two different nitrogen atoms are present, and one is not incorporated into the 

ETN product. This synthesis method produces nitric acid in-situ from a nitrate salt using sulfuric acid 

prior to the introduction of erythritol. 

𝐶4𝐻10𝑂4
𝐻𝑁𝑂3/𝐻2𝑆𝑂4
→         𝐶4𝐻6𝑁4𝑂12 

Equation 5.1: Mixed acid nitration of erythritol to produce ETN. 

𝐶4𝐻10𝑂4
𝐻𝑁𝑂3/𝐴𝑐𝑂𝐻/𝐴𝑐2𝑂 
→             𝐶4𝐻6𝑁4𝑂12 

Equation 5.2: Acetyl nitrate nitration of erythritol to produce ETN. 
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𝐶4𝐻10𝑂4 +𝑀𝑁𝑂3
𝐻2𝑆𝑂4 
→    𝐶4𝐻6𝑁4𝑂12 +𝑀𝑆𝑂4 

Equation 5.3: Nitrate salt (potassium/ammonium/calcium nitrate) nitration of erythritol to 
produce ETN. 

In all graphical representations of the data, each point is the mean value of a triplicate measurement 

and has error bars of one standard deviation. 

5.1.1 Carbon IR-MS Analysis 

The carbon isotope ratios of the various ETN samples and their erythritol precursors were measured 

and displayed below in Figure 5.1, where they have been grouped into their methods of synthesis. 

 

Figure 5.1: Carbon isotope ratios for all ETN samples and erythritol precursors. 

The results clearly show that the three erythritol starting materials have very similar carbon isotope 

ratios of -12.3‰ to -12.77‰, and that this has carried through to the final ETN product in the majority 

of cases. This is expected as the carbon backbone of the erythritol precursor does not take part in 

the nitration reactions of any of the three synthetic methods. However, there are a few anomalies, 

in particular j-13-5 and K-14-5 are distinctly separated from the rest at a δ 13C of +3.5‰. Both samples 

were created using two different erythritols, however, they do share a common nitric acid precursor, 

DST NA3. This same batch of nitric acid was also used to prepare sample L-14-5 by the same method; 

L-14-5 does not follow this trend but rather falls in place with the main bulk of samples. Nitric acid 

also contains no carbon, and therefore should not have an effect on the final carbon delta value and 
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thus an explanation for the enrichment in the heavier 13C isotope in these samples must be sought 

elsewhere. Many possible explanations may exist. Firstly, an incomplete purification of an ETN 

sample could result in AcOH and/or Ac2O being trapped within the ETN crystals. However, there are 

no signs of this in the IR spectra for the samples. Secondly, the potential conversion of one or more 

nitrate esters to acetate esters under the conditions of the reaction. However, once again the IR 

spectra for j-13-5 and K-14-5 do not show any acetate impurity signals. Both of these two possibilities 

could also be tested further using GC-MS and/or LC-MS and may be a worthwhile future direction. 

Thirdly, fractionation by a side reaction, such as the oxidation of the erythritol carbon backbone by 

the nitric acid. This is the least likely to be the cause however, as the shift would require the selective 

reaction of a significant amount of the erythritol, which would have a dramatic effect on the product 

yield if removed through recrystallisation. If not removed during purification, such a product would 

be identified by infrared spectroscopy. IR-MS analysis of AcOH and Ac2O for their carbon isotope 

ratios could also yield further insight, however, were not able to be measured due to instrument 

limitations. 

There are also three other samples that break away from the main body of samples within the nitrate 

salt synthesis method. These are DA84A, DA85A and DA86A which were all created using Sigma-

Aldrich erythritol and three differing nitrate salts. Once again, these samples are not the only samples 

to use these precursor materials and therefore it is unusual for these samples to separate from the 

others. However, there were some minor differences in the synthesis. Both DA84A and DA85A 

resulted in poor yields, much lower than the average yield using the same synthesis method. DA86A 

also had a minor adjustment during the synthesis with the addition of additional sulfuric acid to assist 

in stirring the reaction mixture. The only other difference common across these three samples were 

that they were synthesised by a different person to the rest of those produced by the nitrate salt 

method.  

5.1.2 Nitrogen IR-MS Analysis 

The nitrogen isotope ratios of the ETN samples grouped by synthesis method are shown below in 

Figure 5.2. 
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Figure 5.2: Nitrogen isotope ratio for all ETN samples and potassium nitrates. 

The precursor nitrates have very similar nitrogen isotope ratios apart from potassium nitrate 2 (PN2). 

The nitrogen isotope ratio for both the nitrate salt and mixed acid methods closely resemble that of 

the starting nitrate salts. This suggests that little to no fractionation of nitrogen is occurring 

throughout the process of the synthesis, including the manufacture of the nitric acid reagent. This 

result means that the nitrogen isotope ratio of ETN produced could be linked to the precursor nitrate.  

However, in samples resulting from the acetyl nitrate synthesis method, the nitrogen delta value is 

consistently lower, indicating significant fractionation due to the depletion of the heavier isotope, 

15N. This suggests that the acetyl nitrate nitration of erythritol has a preferential uptake of the lighter 

isotope, 14N. Referring back to the reaction equation corresponding to this synthesis (Equation 5.2), 

the only source of nitrogen supplied is from the same nitric acid used in other syntheses. This 

supports the hypothesis that the action of this nitrating agent results in a differing reaction 

mechanism allowing for this preferential reactivity with the lighter isotope.  This may be a result of 

the reaction proceeding under kinetic control, rather than thermodynamic control. The conditions of 

the reaction are not thermodynamically favoured as the solution is kept on ice throughout the 

reaction, whereas the other two methods involve a warming of the mixture to room temperature 

following the addition of all reagents. This strict restriction of temperature may be favouring the 

uptake of the lighter nitrogen isotope. However, more research would need to be undertaken to 

confirm this.  
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Another important note is although this synthesis is proposed to be an acetyl nitrate nitration, studies 

have shown that such a mixture of acetic anhydride and high concentration nitric acid actually forms 

nitrating species, including the desired acetyl nitrate (CH3COONO2) but also (CH3COHONO2)+, N2O5 

and NO2
+. The latter two are believed to be most present at high concentrations of nitric acid and 

therefore the nitration may be much more complicated and involve dinitrogen pentoxide as the 

major nitrating agent, rather than acetyl nitrate139. As the two other synthesis pathways use NO2
+ as 

the nitrating species, this difference in nitrating species within the reaction mixture may lead to 

differences in fractionation in the end product. Further investigations utilising isotopically labelled 

precursors could lead to the confirmation of such a hypothesis and a greater understanding of the 

specific reaction mechanism involved  

5.1.3 Combined IR-MS Analysis 

The two previous sets of data can be combined to form a two-dimensional plot, represented in Figure 

5.3 below. 

 

Figure 5.3: Mean carbon isotope ratio against mean nitrogen isotope ratio for all ETN 
samples. 

This representation displays the entire dataset and therefore shows the maximal amount of 

discrimination possible. As a result, it is evident that there are differences between samples due to 

the starting material and synthesis methods used. Firstly, the samples cluster based on synthesis 



 

160 

 

methods with the acetyl nitrate method separating from the mixed acid and nitrate salt methods. 

Secondly, each synthesis method splits into two clusters due to samples involving the use of PN2, 

either directly in the synthesis, or as a source of nitric acid, having a much higher nitrogen-15 content 

than all other nitrogen containing precursors used.   

5.2 ICP-MS of ETN 

The ICP-MS of ETN involved the analysis of the trace metals listed previously in Section 2.2.2. All 

samples, standards and controls for this analysis used 2% nitric acid as a matrix and were prepared 

gravimetrically for precision. As the aim of the analysis performed was quantitation, the following 

limits of quantification (LOQ) were obtained for each of the elements. This LOQ was calculated 

through the analysis of at least 5 blanks and taking ten times their standard deviation. 

Table 5.1: Typical quantification limits for elements analysed in the ICP-MS of erythritol 
tetranitrate samples. 

Element Al Ca Co Fe K Mg 

LOQ (ppt) 374.1 821.5 4.3 179.3 3609.9 193.5 
       

Element Ni Ru Sr U Zn  

LOQ (ppt) 182.2 3.7 17.9 5.2 431.1  

The calibration of each element required fitting a linear line of best fit to the calibration data, using 

the best model of fit. This varied between the elements for the reasons discussed previously in the 

KClO3 case. In Table 5.2, an example of a calibration used during this analysis is displayed.  

Table 5.2: Example of calibration data for elements selected in the ICP-MS analysis of 
potassium chlorate. 

Element Mass Linear Model Coefficient of Correlation (R2) Working Range (ppb) 

Al 27 Simple Linear 0.999909 10-100 

Ca 44 Simple Linear 0.999953 10-100 

Co 59 Weighted Linear 0.999962 0.1-100 

Fe 56 Simple Linear 0.999996 0.1-100 

K 39 Simple Linear 0.999983 0.5-100 

Mg 24 Weighted Linear 0.997829 0.1-100 

Ni 60 Weighted Linear 0.999760 0.1-100 

Ru 102 Weighted Linear 0.999674 0.1-100 

Sr 88 Weighted Linear 0.999893 0.1-100 

U 238 Weighted Linear 0.999861 0.01-10 

Zn 66 Weighted Linear 0.996539 0.1-100 
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The amount of sample produced by DST Group was purposely kept minimal and therefore there was 

only enough sample for a single digestion for ICP-MS analysis. As a result, no duplicate or triplicate 

analysis was possible using ETN. Since the preparation of samples for analysis involved digesting the 

entirety of a sample, there is no question as to the accurate representation of the digested portion 

to the bulk material, minimising the need for random duplicates. There was, however, enough 

precursor material for triplicate analysis to measure the reliability of the sample preparation and 

analysis process. A triplicate of one ammonium nitrate and calcium nitrate precursor were analysed 

and percent coefficients of variation (%CV) were calculated; these results are displayed in Table 5.3. 

The %CV has been coloured green (0-10%), yellow (10.01-20%) and red (>20.01%) as in previous 

sections. These brackets have been designed to indicate the level of reliability in the measurements 

with green being ideal, yellow acceptable and red unacceptable.  

The results show most of the elements are consistent across the triplicates with only two red values. 

The 141% coefficient of variation result for calcium was due to a carry-over effect. This was due to 

analysing the calcium nitrate replicates, which had a very high concentration of calcium prior to the 

first ammonium nitrate sample. This carry-over is due to either calcium not being cleared out of the 

sample introduction system or a build-up of calcium on the cones of the ICP-MS. For future analysis 

of such a material, a longer wash and/or rinse time should be implemented to minimise this effect. 

A blank analysis between samples could also be a reasonable precaution for samples with a high 

concentration of a single element. This is difficult to judge however, as sometimes estimated 

concentrations are not known.  

Table 5.3: Percent coefficient of variation analysis of random triplicates.  

Samples 
Al 
(ppb) 

Ca 
(ppb) 

K 
(ppb) 

Co 
(ppb) 

Ni 
(ppb) 

Ru 
(ppb) 

U 
(ppb) 

Sr 
(ppb) 

Fe 
(ppb) 

Mg 
(ppb) 

Zn 
(ppb) 

CN (1) 0.83 32690.68 5.01 0.01 0.00 0.00 0.00 24.36 0.48 88.03 1.51 

CN (2) 0.99 26944.51 5.88 0.01 0.00 0.00 0.00 20.41 0.58 82.00 1.84 

CN (3) 0.80 33834.55 6.14 0.01 0.00 0.00 0.00 23.20 0.64 86.02 1.58 

%CV 9.67 9.68 8.56 8.66 0.00 0.00 0.00 7.31 11.90 2.94 8.73 

AN (1) 345.62 2.68 0.00 0.03 0.00 0.00 0.00 0.00 0.73 0.54 1.66 

AN1 (2) 365.32 0.00 0.00 0.03 0.00 0.00 0.00 0.00 3.41 0.42 2.24 

AN1 (3) 323.50 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.63 0.42 1.63 

%CV 4.95 141.42 0.00 9.19 0.00 0.00 0.00 0.00 80.87 12.52 15.29 
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5.2.1 Exploratory Multivariate Data Analysis 

The raw results of the analysis were transformed in the same manner as previously described in 

Chapter 3.3. This includes the NaN values being assigned zero values and the entire dataset 

undergoing a translation and logarithmic transformation. Exploratory analysis including HCA and PCA 

of the dataset was then undertaken. 

HCA was performed to assess the potential of a PCA analysis and the resultant dendrogram and 

sample identity correlation table are displayed in Figure 5.4 and Table 5.4. This initial overview of the 

data shows potential for the data to be split into two clusters with one large and one smaller 

branching of samples within the dendrogram. There are also potentially 3-5 outliers in samples 55, 

56 and 58 located to the extreme left and samples 52 and 54 to the extreme right with a large 

Euclidean distance between them and the remainder of samples. 

Table 5.4: Sample correlation to number identifiers in HCA dendrogram in Figure 5.4. 

Number Sample Number Sample Number Sample Number Sample 

1 BCH25 17 h 8 5 33 i 27 6 49 DA98A 

2 BCH26 18 i 13 5 34 j 25 7 50 DA99A 

3 BCH27 19 j 13 5 35 K 27 7 51 DA100A 

4 BCH29 20 K 14 5 36 L 7 8 52 unison 

5 BHC30 21 L 14 5 37 M 5 12 53 natvia 

6 BCH31 22 P 23 5 38 N 6 12 54 Sigald 

7 BCH32 23 Q 22 5 39 O 7 12 55 CN (1) 

8 BCH33 24 R 27 5 40 P 25 3 56 CN (2) 

9 BCH34 25 a 12 6 41 Q 37 3 57 CN (3) 

10 BCH35 26 b 13 6 42 R 1 4 58 AN1 (1) 

11 BCH36 27 c 15 6 43 DA84A 59 AN1 (2) 

12 BCH37 28 d 18 6 44 DA85A 60 AN1 (3) 

13 d 15 4 29 e 19 6 45 DA86A 61 AN2 

14 e 16 4 30 f 20 6 46 DA95A   

15 f 17 4 31 g 25 6 47 DA96A   

16 g 8 5 32 h 26 6 48 DA97A   
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Figure 5.4: Resultant dendrogram from the hierarchical cluster analysis of erythritol tetranitrate ICP -MS data. 
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PCA analysis was undertaken and as always, the quality of the analysis was scrutinised. This began 

with breakdown of the percentage of variance retained by each principal component (Table 5.5) 

which may also be graphically displayed in a scree plot (Figure 5.5).  

Table 5.5: Variance retention table for the PCA of ETN ICP-MS dataset. 

Component 
Principal Component 

Eigenvalues 
Cumulative Percentage of 

Variance Explained 

PC1 5.939349 44% 

PC2 2.24841 65% 

PC3 1.64934 85% 

PC4 1.155819 92% 

PC5 0.652899 96% 

PC6 0.319539 97% 

PC7 0.258544 98% 

PC8 0.196207 99% 

 

 

Figure 5.5: Scree plot for the PCA of ETN ICP-MS dataset. 

The distribution of variance across the PCs is a little concerning, as the inflection point lies at PC2 and 

following this point there is still a significant gradient across PC2-6. This indicates that the variance is 

not heavily localised in a fewer number of variables, and typically means that there is little 

discriminatory data within the dataset.  
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The coefficient table (Table 5.6) reveals the key contributors of each of the principal components. 

Unfortunately, the coefficient table also supports the indications given by the scree plot with many 

elements contributing to each PC. Particularly concerning is the list of elements contributing to PC3, 

being almost identical to that of PC2, with only the minor addition of ruthenium and magnesium. 

Magnesium was already a significant variable contributing to PC1 and ruthenium is a very rare 

element that was not present in great amounts within the samples. All of this is a further indication 

that there is minimal discriminatory data within this ICP-MS dataset.  

Table 5.6: Coefficient table for the first 8 PCs of the ETN ICP-MS dataset. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Al 0.1 -0.3 -0.3 0.7 -0.1 0.1 0.3 -0.2 

Ca 0.6 0.6 -0.3 -0.1 -0.4  0.2  

K 0.6 -0.5 0.6 -0.1  -0.1 0.1 0.0 

Co 0.1 -0.1 -0.1 0.2 0.1 0.6 0.1 0.5 

Ni 0.1 -0.5 -0.5 -0.5 -0.2 0.3 -0.1  

Ru -0.1 -0.1 -0.2 -0.3 0.3 -0.2 0.8 0.3 

U         

Sr 0.3 0.2 -0.2 -0.1 0.7 0.2  -0.5 

Fe 0.1 -0.3 -0.3 0.1 0.0 -0.5  -0.3 

Mg 0.3  -0.3 0.2 0.3 -0.4 -0.4 0.6 

Zn  -0.1  -0.1     

 

Table 5.7: Correlation coefficients for the PCA of the ETN ICP-MS dataset. 

 Al Ca K Co Ni Ru U Sr Fe Mg Zn 

Al 1.00       LEGEND  

Ca  1.00       0.00-0.25  

K   1.00      0.26-0.50  

Co    1.00     0.51-0.75  

Ni     1.00    0.76-0.95  

Ru      1.00   0.96-1.00  

U       1.00     

Sr        1.00    

Fe         1.00   

Mg          1.00  

Zn           1.00 

The final aspect to consider was correlation between the elements as this can be the reason for a 

lack of discriminatory variance. The correlation coefficients have been calculated and the colour 
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coded version is displayed in Table 5.7. This does not identify any significant levels of correlation 

within the elements, so this was ruled out as an explanation for this lack of variance. 

 

Figure 5.6: Score plot of PC1 from the PCA of ICP-MS data for ETN samples and precursors. 

 

Figure 5.7: Score plot of PC2 from the PCA of ICP-MS data for ETN samples and precursors. 

The results of the PCA in the form of individual score plots are plotted in Figures 5.6 and 5.7. Only 

PC1 showed clear groupings; PC2 indicated two possible groupings, however they are not distinctly 
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separated. PC3 and onwards showed no potential clustering of samples and were therefore of no 

interest.  

PC1 shows that the dataset has some discriminatory information with three distinctly separated 

clusters of ETN. Many of the starting materials, however, are not distinctly separated with the three 

erythritols being in close proximity. One ammonium nitrate (AN1) is also similar to the erythritols, 

however, AN2 is contained within the central bracket of samples. Though 2 of the replicates of AN1 

are positioned with the erythritols, the first of the triplicate has a higher score and is more in line 

with AN2. Examining the loadings in Figure 5.8, this can be attributed to an unusually high reading of 

calcium with the other replicate containing none. This is due to a shortcoming in the ICP-MS analysis, 

as the calcium nitrate caused a carryover effect to the first of the AN1 replicates. This could have 

been avoided by lengthening the rinse and flush time between these samples. 

The final precursor, calcium nitrate, has a much greater score than the other precursors and samples. 

This is understandable as PC1 has been shown to include calcium content as a key factor in Table 5.6, 

and calcium nitrate contains far more than any other sample. It must be noted that the potassium 

nitrates (PN1 and PN2) were not included within this analysis, as potassium was included in the 

analysis and these samples contain percent levels of potassium making them very distinct outliers.  

Interrogating the ETN samples initially revealed no pattern to explain the clustering as the scores 

relating to the synthesis method, erythritol and nitrate precursors are completely mixed. Initially 

these were the only variables that were considered during the synthesis of the ETN samples, 

however, there was one other factor that was overlooked and that was the person synthesising the 

material. This was the only factor that indicated a trend across the samples as detailed in Table 5.8. 

This result was different to the ICP-MS results in the previous KClO3 analysis, where the precursors 

and synthesis methods utilised in the production of the samples could be linked to sample providing 

discriminatory data. 



 

168 

 

Table 5.8: Summary of variables for the high and low PC1 score clusters of ETN samples in 
Figure 5.6. 

High PC1 Score Group 

Sample Synthesis Method Erythritol Nitrate Scientist 

BCH 29 Nitrate Salt Unison Ammonium nitrate 1 A 

BCH 30 Nitrate Salt Unison Ammonium nitrate 2 A 

BCH 32 Nitrate Salt Natvia Potassium nitrate 1 A 

BCH 33 Nitrate Salt Natvia Potassium nitrate 2 A 

BCH 36 Nitrate Salt Natvia Calcium nitrate A 

BCH 37 Nitrate Salt Unison Potassium nitrate 2 A 

R 25 7 Acetyl Nitrate Natvia Calcium nitrate B 

DA 84A Nitrate Salt Sigma-Aldrich Potassium nitrate 1 C 

DA 85A Nitrate Salt Sigma-Aldrich Potassium nitrate 2 C 

DA 95A Acetyl Nitrate Sigma-Aldrich Ammonium nitrate 2 C 

DA 97A Acetyl Nitrate Natvia Ammonium nitrate 2 C 

DA 98A Mixed Acid Sigma-Aldrich Ammonium nitrate 2 C 

DA 99A Mixed Acid Unison Ammonium nitrate 2 C 

DA 100A Mixed Acid Natvia Ammonium nitrate 2 C 

Low PC1 Score Group 

Sample Synthesis Method Erythritol Nitrate Scientist 

BCH 25 Nitrate Salt Sigma-Aldrich Ammonium nitrate 2 A 

g 8 5 Acetyl Nitrate Sigma-Aldrich Potassium nitrate 2 B 

i 13 5 Acetyl Nitrate Natvia Potassium nitrate 2 B 

L 14 5 Acetyl Nitrate Natvia Ammonium nitrate 1 B 

e 19 6 Mixed Acid Unison Potassium nitrate 1 B 

L 7 8 Mixed Acid Natvia Ammonium nitrate 1 B 

M 5 12 Mixed Acid Sigma-Aldrich Ammonium nitrate 2 B 

O 7 12 Mixed Acid Natvia Ammonium nitrate 2 B 

P 25 3 Mixed Acid Sigma-Aldrich Calcium nitrate B 

DA 86A Nitrate Salt Sigma-Aldrich Ammonium nitrate 1 C 

To better understand these results, the components having the greatest effect on PC1 were 

examined. In this case it is primarily the calcium and potassium (Figure 5.8), and to a lesser extent 

strontium and magnesium (Figure 5.9) content across the sample set.  

Examining Figures 5.8 and 5.9, the low PC1 score samples can be identified as consisting of lower 

concentrations in up to three of the four elements, whereas the higher score grouping can be almost 

entirely explained by the concentration of potassium within a sample, with all samples apart from h-

8-5 belonging to the high score group. This then raises the question of why it is that two of the three 
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chemists tended to introduce significant levels of potassium to the sample. Further information on 

the details of the synthesis revealed that the samples with elevated potassium concentrations were 

undertaken in a separate lab, and with different glassware and fume hood. This has potentially led 

to this level of discrimination between the samples, rather than any differing precursor or synthesis 

method. This would require further research, eliminating equipment and environmental factors 

before being certain of a link between sample and precursor or synthetic route, like in the previous 

KClO3 research. A link between sample and synthetic environment or equipment could be useful in a 

real-world setting, as differences could lead to valuable information when gathering intelligence to 

focus an investigation or confirm linkages between a sample and manufacturer. 

The score plot for PC2 (Figure 5.7) had far less distinct clustering with only the potential of two 

overlapping groups. PC2 incorporates the elemental mass fractions of aluminium, iron and nickel, 

however, calcium and potassium are still heavily factored into this principal component. Though this 

score plot does not permit an identification of clear groupings by itself, it may still be of use when a 

two-dimensional plot is formed from both PC1 and PC2 (Figure 5.10). This two-dimensional score plot 

with the sample manufacturer identified shows the extent of the trend with three identifiable 

groupings. Although this is the most identifiable trend across the variables, there is still a lot of cross 

over, with each grouping containing at least one sample made by each individual. This suggests that 

there is some level of discrimination, however, the reasoning for this discrimination is not easily 

explained. This requires further investigation before a confident conclusion could be drawn. 
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Figure 5.8: Bar charts for the ICP-MS analysis of A) calcium and B) potassium content for ETN samples and precursors. 
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Figure 5.9: Bar charts for the ICP-MS analysis of A) strontium and B) magnesium content for ETN samples and precursors. 
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The synthesis of all samples involved a purification stage, including recrystallisation to remove 

residual acid to improve stability and to ensure small crystals were formed for safety reasons. This 

may also result in reduced levels of trace elemental content being present in the products, however, 

similar steps would be taken in clandestine labs for production of stable products.    

 

Figure 5.10: Two-dimensional score plot of PC1 and PC2 for the PCA of ICP-MS data for ETN 
samples. 

In conclusion, unlike the case with potassium chlorate where the trace elemental profile revealed 

discriminatory information based on the synthesis pathways and precursors, the profiles of erythritol 

tetranitrate samples were more likely to have been influenced by environmental and human 

contamination. Though the trend was quite strong, there is a lot of crossover between clusters with 

at least one sample from each of the three chemists being present within each cluster. This 

information could be used to attribute a sample to an individual, especially if more unusual trace 

elements are found within the sample, which can be linked to either a location or synthesis 

equipment associated with that person. For example, someone synthesising samples in a corrugated 

iron shed could be found to introduce far more trace metals such as iron and tin, than someone 

performing a synthesis in the spare room of a house. An example of equipment differences could be 

the change in trace element profiles between plastic/glass/metal containers used for synthesis. 

This study highlights the need to understand how the synthesis methods can affect a final product, 

and the factors that can influence the results obtained through various analytical techniques. It also 

stresses the importance of fusing various datasets from differing analytical techniques, as the 

additional data may provide the necessary variance to enable discrimination between samples of the 
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same substance. Data fusion can also identify different links between samples and increase 

confidence when matching precursors, synthetic methodologies and/or environments to a sample.  

5.3 IR Spectrometry of ETN Samples 

ETN samples were all created by DST Group and below in Figure 5.11 is an example of an infrared 

spectrum of a representative sample.  

 

Figure 5.11: ATR IR spectrum of ETN sample BCH1-25. 

There are many peaks in a typical infrared spectrum for ETN within the regions 600-1700 cm-1 and 

2900-3000 cm-1 and this has been modelled and described in detail in other publications137. The area 

between 1950 and 2300 cm-1 is once again noisy due to the diamond ATR crystal as described 

previously in the KClO3 case. 

Figure 5.12 plots the spectra of all samples together and highlights the similarity between all but one 

of the samples. All spectra have been pre-processed using the Spectrum software131 to apply a 

polynomial baseline correction and normalisation. The baseline correction selected the points listed 

in Table 5.9 and the normalisation was done to 1 %T for the largest signal at 831 cm-1. 

Figure 5.13 shows the spectra of all samples following both baseline correction and with the noisy 

ATR region removed, as for the KClO3 FT-IR spectra. 
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Figure 5.12: Baseline corrected and normalised infrared spectra of all erythritol tetranitrate samples.  

 

Table 5.9: Polynomial baseline correction points for ETN FT-IR spectra. 

Base Point Position (cm-1) Base Point Position (cm-1) Base Point Position (cm-1) 

1 4000 4 3000 7 1500 

2 3700 5 2300 8 1146 

3 3500 6 1829 9 620 
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Figure 5.13: Baseline corrected and normalised IR spectra of ETN samples with outlier sample and ATR region removed. 
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In the outlier case of sample L-7-8 there is a distinct additional signal at 1743 cm-1 and many of the 

other peak ratios are inconsistent with the rest of the samples after baseline correction and 

normalisation. This sample was unusual as there was a visible brown vapour forming within the 

headspace of the sample vial. Even when blown out with nitrogen gas, within 2 hours the vapour 

would once again fill the headspace of the vial. This indicates NO2 gas formation due to the 

breakdown of the material and as a 1743 cm-1 peak is detected, the possible formation of an aldehyde 

group within the molecule. This is most likely from the oxidation of a free primary hydroxyl group by 

the NO2 gas suggesting that the synthesis of this sample was possibly only partially successful. 

Another possibility is that the purification process did not remove all residual acid or impurities 

leading to the additional 1743 cm-1 signal and subsequent breakdown of the sample. From the 

laboratory notes there are no clear indicators of the synthesis not proceeding as per usual and 

resulted in a typical yield. 

5.3.1 Exploratory Multivariate Data Analysis 

Prior to PCA this dataset requires the removal of the ATR intrinsic absorption region, which in this 

case was between 1850 and 2300 cm-1, and the previously mentioned outlier L-7-8 was removed as 

this would significantly hinder the effectiveness of the analysis. Examining the transformed dataset 

in Figure 5.13 there are no obvious identifiable signals separating samples as was the case in the 

potassium chlorate dataset. However, the exploratory data analysis can be used to confirm this. 

First HCA was performed to identify any clear groupings within the dataset. This analysis is displayed 

in the dendrogram in Figure 5.14 with the sample identities presented in Table 5.10. 

Table 5.10: Sample correlation to number identifiers in HCA dendrogram. 

Number Sample Number Sample Number Sample Number Sample Number Sample 

1 a-12-6 11 BCH1-34 21 DA-95A 31 g-8-5 41 L-14-5 

2 b-13-6 12 BCH1-35 22 DA-96A 32 g-25-6 42 M-5-12 

3 BCH1-25 13 BCH1-36 23 DA-97A 33 h-8-5 43 N-6-12 

4 BCH1-26 14 BCH1-37 24 DA-98A 34 h-26-6 44 O-7-12 

5 BCH1-27 15 c-15-6 25 DA-99A 35 i-13-5 45 P-23-5 

6 BCH1-29 16 d-15-4 26 DA-100A 36 i-27-6 46 P-25-3 

7 BCH1-30 17 d-18-6 27 e-16-4 37 j-13-27 47 Q-22-5 

8 BCH1-31 18 DA-84A 28 e-19-6 38 j-25-7 48 Q-27-3 

9 BCH1-32 19 DA-85A 29 f-17-4 39 K-14-5 49 R-1-4 

10 BCH1-33 20 DA-86A 30 f-20-6 40 K-27-7 50 R-27-5 
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Figure 5.14: Resultant dendrogram from the hierarchical cluster analysis of IR data from 

erythritol tetranitrate samples. 

This analysis indicates that there is very little clustering across the dataset with the Euclidean 

distances between samples being very low. The easiest way to visualise this is by comparing the most 

distant samples, i.e. BCH1-30 (#7) and DA-99A (#25). In Figure 5.15 the baseline corrected, and 

normalised spectra of both samples are plotted and there is very little difference between them. The 

peak signals are very close to identical apart from some minor differences in peak ratios. The baseline 

of DA-99A is also visually less stable, which is a result of the strength of absorption being weaker 

prior to normalisation.  

 

Figure 5.15: Comparative plotting of the pre-processed IR spectra of the most different ETN 
samples according to HCA. 
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With the lack of distinct differences within the dataset, the level of discrimination possible by PCA is 

very limited. However, this analysis was undertaken regardless. Firstly, the variance breakdown in 

Table 5.11 and scree plot in Figure 5.16 show that there is a much greater spread of variance over 

principal components than in the previous KClO3 analysis.  

Table 5.11: Variance retention table for the PCA of the pre-processed ETN IR dataset. 

Component PC Eigenvalues Cumulative Percentage of Variance Explained 

PC1 20475.49 51% 

PC2 8922.3 74% 

PC3 3062.754 81% 

PC4 2495.883 87% 

PC5 1061.96 90% 

PC6 701.5402 91% 

PC7 593.5788 93% 

 

Figure 5.16: Scree plot for the PCA of the pre-processed ETN IR dataset. 

This spread is an indication that the level of variance is quite minimal and distributed over a large 

number of variables, rather than there being clear regions of concentrated variance. PC1 contains 

51% of the variance, however not until PC5 is 90% accounted. In contrast, 93% was accounted for by 

PC3 in the potassium chlorate case. The scree plot has an inflection point at PC3; however, the curve 

continues to significantly decrease when ideally there should be minimal variance contained in PCs 

after this inflection point. This lack of inflection point definition reiterates that the variance within 

the dataset is not significantly concentrated enough for highly successful PCA clustering. 
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Figure 5.17: Spectrum loadings for A) PC1 B) PC2 C) PC3 and D) PC4 for the pre-processed ETN IR dataset. 
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This may be examined further by considering the loading factors of the dataset in Figure 5.17, which 

will help visualise this lack of variance. From examining these loadings, it is evident that after PC1, 

the loadings immediately lack the features from the original spectra such, as smooth curves and peak 

shapes but rather, become sharply jagged and ill-defined, noisy signals. This indicates that the level 

of variance is greatly uninformative; even in PC1, there are artefacts of background contribution in 

the 2300-4000 cm-1 region. 

With the variance between samples confirmed to be very minimal through both the variance 

breakdown, and loading factor plots, the PCA cannot be expected to identify distinct differences 

between samples. These expectations are realised when examining the principal component scores 

for PC1-PC4 in Figure 5.18.  

 

 

Figure 5.18: One dimensional score plots for A) PC1 B) PC2 C) PC3 and D) PC4 for the pre-
processed ETN IR dataset. 

The one-dimensional plots show very little distinguishable discriminatory clusters of samples other 

than a few samples in PC2 which slightly break away from the bulk.  These samples are DA-96A, DA-

97A, DA-98A, DA-99A and DA-100A and are separated only due to a minor difference in the shape of 

the baseline between 3000 and 3500 cm-1 , which could be removed with a higher order polynomial 

correction, showing the lack of spectral differences between the spectra of this dataset. Combining 

any two or three of these plots to produce higher order two/three-dimension plots of principal 

components against one another is futile, as each on their own do not provide any substantial 

discriminatory power. 
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In the case of ETN, the ATR IR analysis and subsequent chemometric investigation has not resulted 

in discrimination between any of the samples. These samples did not contain any significant 

impurities from the precursor materials or synthetic method identifiable within the IR dataset. This 

may be a result of the ETN preparations being carried out by professionals using laboratory grade 

equipment and recrystallisation of the crude products. Both of these factors would reduce the chance 

of any impurities remaining in the final product. There was one outlier sample identified by ATR IR 

analysis, however this was due to deterioration of the sample.  

5.4 Raman Spectroscopy of ETN 

Originally this experimentation would have directly replicated the Raman analysis of potassium 

chlorate samples, using the DeltaNu Raman spectrometer. However, due to equipment failure this 

was not a possibility. Instead, a much higher resolution Raman spectrometer was used. A XploraRA 

Horiba Scientific Confocal Raman microscope was used. However, as the analysis of over 50 samples 

would require a large amount of time and cost, combined with the past lack of discriminatory power 

found for Raman spectra of KClO3 samples, a scoping data collection was first taken of three different 

ETN samples produced by three different synthesis pathways and sets of starting material. These 

three samples are a good representation of the greatest possible amount of variation within the 

samples and if the results indicated some possible level of discrimination between samples, further 

investigations would be undertaken.  

Although the spectra were collected over the range of -199 to 4000 cm-1, below 170 cm-1 Rayleigh 

scattering artefacts dominate the spectrum and no signals exist over 3050 cm-1. Therefore, the results 

were plotted over the range of 170 to 3050 cm-1 as depicted in Figure 5.19. These spectra do not 

reveal any clear signs of impurity or side product signals making the technique once again ineffective 

in discriminating between samples of like material. The same peaks are all present across each 

sample with the only difference being minor variances in peak ratio between some signals. This was 

determined not to be a significant enough difference to justify the testing of all samples, although it 

may be of interest for a future study. 

 



 

182 

 

 

Figure 5.19:  Raman spectra of three ETN samples made via differing synthesis methods (offset for clarity) showing all peaks are common. 
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Hence, the Raman spectra, even at this higher quality, did not yield any level of discrimination 

between the three samples of erythritol tetranitrate made by three different synthesis methods and 

from different precursors. This was, however, a very brief scoping investigation and there may be 

value for a future project to revisit higher resolution Raman spectroscopy to differentiate between 

ETN samples. This may be possible through the analysis of peak ratios, after ensuring that this is not 

simply an artefact of inconsistencies within a sample due to morphology, as this investigation did not 

collect spectra at numerous points on the surface of the sample. Taking survey scans at various 

locations on the sample was seen to change the spectrum, as the distance of the sample can change 

as the sample surface is not perfectly flat and even. For further analysis, various locations on each 

sample should be analysed and the spectra obtained averaged. 

5.5 Combined IR-MS and ICP-MS data for ETN 

Previous sections presented the analysis of the IR-MS and ICP-MS datasets from the ETN samples and 

identified that discriminatory information was contained within the data. Not only did these datasets 

demonstrate a level of profiling between samples, but they did so based on different aspects of the 

data. IR-MS was able to discriminate between samples based on differences in precursors and 

synthesis routes, whereas ICP-MS identified trends based on the individuals synthesising the samples. 

Therefore, a combination of both datasets may bring together all three aspects and provide a greater 

level of discrimination for the samples.  

A direct combination of the datasets resulted in very poor results, as was the case when merging FT-

IR and ICP-MS datasets from the potassium chlorate samples. The first two principal components, 

rather than combining the datasets, simply used the nitrogen isotope ratio for PC1 and the carbon 

isotope ratio for PC2, then began using the ICP-MS data from PC3 onwards. This was easily 

identifiable using the coefficients (Table 5.12) and so steps were taken to allow a better merging of 

the datasets. 
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Table 5.12: Coefficient table of the first 4 PCs for the direct combination of the ETN IR-MS 
and ICP-MS datasets. 

 PC1 PC2 PC3 PC4 

Al 0.0 0.0 0.2 0.1 

Ca 0.0 0.0 0.4 0.8 

K 0.0 -0.1 0.9 -0.5 

Co 0.0 0.0 0.1 0.0 

Ni 0.0 0.0 0.1 0.1 

Ru 0.0 0.0 -0.1 0.0 

U 0.0 0.0 0.0 0.0 

Sr 0.0 0.0 0.2 0.2 

Fe 0.0 0.0 0.1 0.1 

Mg 0.0 0.0 0.1 0.1 

Zn 0.0 0.0 0.1 0.0 

N ratio 1.0 0.0 0.0 0.0 

C ratio 0.0 1.0 0.1 -0.1 

In Section 3.4, a similar combined dataset of AN and CAN samples was analysed, and a simple 

logarithmic transformation of both translated datasets allowed for a better merge. When the same 

process was applied to the combination of ETN datasets, however, the results were far from ideal. 

Rather than the IR-MS data heavily outweighing the ICP-MS data the opposite has occurred and now 

IR-MS data has not been incorporated into the early PCs (Table 5.13). In fact, the carbon IR-MS data 

is not accounted for until PC6 and even then, it is only a minor loading factor.  

Table 5.13: Coefficient table of the first 6 PCs for the log transformed combined ETN IR-MS 
and ICP-MS datasets. 

 PC1 PC2 PC3 PC4 PC5 PC6 

Al 0.2 0.1 0.1 0.5 0.6 0.0 

Ca 0.3 0.9 -0.2 -0.2 -0.1 0.2 

K 0.9 -0.4 -0.2 -0.1 -0.1 0.1 

Co 0.1 0.0 0.2 0.4 0.1 0.4 

Ni 0.1 0.1 0.7 0.3 -0.6 0.1 

Ru -0.1 -0.1 0.3 -0.5 0.3 0.7 

U 0.0 0.0 0.0 0.0 0.0 0.0 

Sr 0.2 0.2 0.5 -0.4 0.3 -0.4 

Fe 0.1 0.1 0.1 0.0 0.1 -0.1 

Mg 0.1 0.0 0.2 0.0 0.2 -0.2 

Zn 0.1 0.0 0.1 0.0 -0.1 0.0 

N ratio 0.0 -0.1 0.2 -0.3 -0.1 -0.3 

C ratio 0.0 0.0 0.0 0.0 0.0 0.1 
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The final option was to calculate the greatest level of variance within the ICP-MS dataset and scale 

the IR-MS data to fit the same magnitude range, as previously used to merge the ICP-MS and IR data 

of the KClO3 samples. The log transformed potassium mass fraction is the variable with the largest 

level of variance in the ETN ICP-MS data, with a maximum range of 5 AU, and so the translated 

nitrogen and carbon delta values were divided by 14 and 4, respectively, to also have a variance range 

of approximately 5‰. This resulted in a much better merging of the data as can be seen in Table 

5.14. This method of pre-processing has many elements contributing to the PCs, though potassium 

is still dominant in PC1, and the IR-MS data is featured from the very first principal component.   

Table 5.14: Coefficient table of the first 5 PCs for the combination of the ETN IR-MS (scaled) 
and log transformed ICP-MS datasets. 

 PC1 PC2 PC3 PC4 PC5 

Al 0.1 -0.1 0.1 0.2 -0.2 

Ca 0.3 -0.4 0.7 -0.4 0.0 

K 0.9 -0.1 -0.5 -0.1 0.1 

Co 0.1 0.0 0.0 0.3 -0.1 

Ni 0.1 0.1 0.2 0.6 0.3 

Ru -0.1 0.1 0.0 0.2 0.0 

U 0.0 0.0 0.0 0.0 0.0 

Sr 0.2 0.1 0.3 0.4 -0.2 

Fe 0.1 0.0 0.1 0.1 0.0 

Mg 0.1 0.0 0.1 0.1 0.0 

Zn 0.1 0.0 0.0 0.0 0.1 

N ratio 0.2 0.9 0.3 -0.3 0.2 

C ratio -0.1 -0.2 0.0 0.0 0.9 

With so many variables contributing variance within the dataset, variance retention has been spread 

across a larger number of principal components as depicted in the scree plot (Figure 5.20). This means 

that more principal components must be examined to ensure that valuable information is not lost as 

there are still significant amounts of variance contained within later PCs.  
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Figure 5.20: Scree plot for the PCA of the combined IR-MS and ICP-MS dataset for ETN. 

Examining the score plots for individual PCs, however, reveal this not to be the case, with PC1 and 

PC2 being the only plots to reveal any separation between samples. Therefore, a two-dimensional 

plot of PC1 and PC2 (Figure 5.21) provided the best overview of this PCA. The samples have been 

plotted with colour coding based on the chemist it was synthesised by, as this was a key trend that 

cannot be mathematically represented. 

 

Figure 5.21: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS 
dataset for ETN (with chemist identity tag). 
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The plot still highlights the link between samples and the individual who made them, however, there 

is a lot of crossover and there are clearly more than three clusters within the resultant score plot. 

Another way to represent the data is by synthetic method, as this was a determining factor of 

discrimination within the IR-MS data alone. Figure 5.22 represents this visualisation and provides 

another perspective to the same plot. This perspective also shows successful clustering especially for 

the acetyl nitrate method, however, there is still significant crossover especially between the nitrate 

salt and mixed acid methods.   

 

Figure 5.22: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS 
dataset for ETN (with synthesis method tag). 

Both perspectives show clear clustering of like samples, with the chemist tag providing separation 

mainly across PC1 and the synthesis method tag separating more across PC2. Both plots also contain 

a significant number of outliers and so a representation containing both the method and chemist 

tags could improve cluster identification. This has been displayed in Figure 5.23, where points are 

coloured based on the synthesis method and shapes represent the chemist who synthesised the 

sample. 

The plot now displays both the synthesis route and the creator’s identity and how they affect the 

score of each of the samples. The PN2 samples are also labelled as these were also easily identifiable 

from the nitrogen isotope ratios originally and this is still the case after combining with the ICP-MS 

dataset. This combined tagging highlights the separation between chemist B and chemists A and C. 
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It also clearly depicts that the method of synthesis is not a great predictor on the clustering of 

samples. 

 

Figure 5.23: Two-dimensional score plot of PC1 and PC2 for the combined IR-MS and ICP-MS 
dataset for ETN (with chemist and synthesis method tags).  

5.6 Chapter Conclusions 

The analysis of erythritol tetranitrate identified some discriminatory data based on the synthesis 

method used and the chemist synthesising the material. 

IR-MS could discriminate samples based on the nitrogen delta value, however, not via carbon delta 

value. The erythritol precursors had similar carbon isotope ratios and the nitration reaction 

conditions did not have an effect on these ratios. Nitrogen isotopic ratio, however, could be used to 

discriminate one nitrate salt (PN2) from the rest, due to its delta value and this carried through to 

the resultant material, even when first converted to nitric acid. This allows the nitrogen isotope ratio 

of the precursor to be directly linked to the final product, even after multiple synthesis stages. The 

acetyl nitrate nitration method also influenced the isotope ratio of the nitrate salt, consistently 

lowering the delta value and thus distinguishing samples synthesised by this method. 

ICP-MS identified that samples could be discriminated, not due to the starting material but rather 

the chemist producing the material. Further investigation into the possible causes for this variation 

suggested it may have been due to the use of a different set of equipment used in the synthesis. The 
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samples produced by one chemist resulted in differing levels of calcium, potassium and strontium 

from two other chemists following the same procedures and using the same precursors. 

Unfortunately, both IR and Raman spectroscopy could not identify any discriminatory information 

within the spectra due to the lack of identifiable impurities. 

Analysis of a combined dataset of IR-MS and ICP-MS data was undertaken and successful in retaining 

the information identified by each dataset individually. The combination required the normalisation 

of the magnitudes of variance across the two datasets prior to combination, in order to prevent one 

set of data overriding the other. Without this additional normalisation, effectively the weighting of 

the datasets becomes highly uneven favouring one dramatically. This highlights the importance of 

developing a suitable preparation of the data, especially when combining two different datasets such 

as a spectrum and an elemental profile. The validation of any dataset merging methodology can only 

be accomplished through the understanding of the multivariate data analysis. In the case of PCA, this 

comes through the interrogation of the loading factors and principal component variance retention.    
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6. THz/Far-IR Spectroscopic Analysis of Explosives 

In this chapter research into the rapidly developing analytical technique THz/Far-IR spectroscopy was 

undertaken, to assess its potential for identifying a range of energetic materials. This technique 

extends the fingerprint region of a standard IR spectrum to yield more signals, which may be used to 

detect and identify explosives and potentially impurities if present. This could potentially allow for 

the discrimination of samples of like material, based on impurities and additives, like fuels or 

stabilisers. 

The potential for the use of the technique to identify materials within different packaging was also 

investigated. A wide range of plastics and paper were investigated to determine the level of 

transparency across these materials. 

6.1 Analysis of Pelletised Explosives 

Initial investigations involved collecting the spectra of pelletised materials in either polyethylene (PE) 

or paraffin wax matrices. Both materials produced pellets of great transparency in the THz/Far-IR 

wavelengths through to a typical IR region as shown in Figures 6.1 and 6.2. 

 

Figure 6.1: THz/Far-IR spectrum of a polyethylene pellet showing great transparency in the 
frequency range of 30-1000 cm-1. 
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Figure 6.2: THz/Far-IR spectrum of a paraffin wax pellet showing great transparency in the 
frequency range of 30-1000 cm-1. 

Although similar transparencies could be obtained using either matrix, there were preparation 

differences. The PE method involved mixing the sample with the PE at a desired ratio in a mortar and 

pestle, then pressing this using a hand press. The wax method on the other hand, required the sample 

to be coated on the wax through the shaking of wax and sample in an Eppendorf tube and then lightly 

pressed by hand as the hand press applied too much pressure to generate acceptable pellets. This 

method was much more difficult than expected as the coating of materials was only effective when 

the wax was softened through heating. This could easily be done within a warm oven at 30oC, 

however, upon pressing the wax would then become slightly adhesive to the die set, making the 

removal of a pellet difficult. An additional issue with the wax was that the pellet would commonly 

break under the vacuum of the sample compartment when loaded into the cryostat, whereas the PE 

pellets would not. For these reasons, PE was favoured for the analysis of all samples, even though its 

transparency was slightly less than the wax below 40 cm-1. 

The samples of explosives studied throughout this THz/Far-IR research were provided by Victoria 

Police from their storage of samples collected from old explosives factories, seized, salvaged from 

detonation cords or manufactured by the Victoria Police Forensic Services Department. This included 

samples of RDX, HMX, PETN, AN, KClO3, HMTD, UN and NU. 

Pellets of sample mixed with PE were prepared, and their spectra collected as depicted in the 

following Figures 6.3-6.7. The spectra range between 30-650 cm-1 as both the pelletising material and 

detector did not allow recording of wavenumbers below 30 cm-1. 
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Figure 6.3: THz/Far-IR spectrum of potassium chlorate (25% in PE) in the frequency range of 
30-650 cm-1. 

 

 

Figure 6.4: THz/Far-IR spectrum of nitrourea (25% in PE) in the frequency range of 30-650 
cm-1. 
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Figure 6.5: THz/Far-IR spectrum of RDX (50% in PE) in the frequency range of 30-650 cm-1. 

 

Figure 6.6: THz/Far-IR spectrum of HMX (50% in PE) in the frequency range of 30-650 cm-1. 

 

Figure 6.7: THz/Far-IR spectrum of PETN (50% in PE) in the frequency range of 30-650 cm-1. 
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These materials contain distinct signature peaks in the THz/Far-IR region, highlighting the potential 

for such a technique to be utilised in the identification of materials. This also indicates that if any 

impurity signals were present within this region, the analysis would be able to identify them so long 

as concentrations of the impurities were high enough. If this could identify impurities, there is a 

possibility of linking samples to precursors, as was the case in the FTIR studies on KClO3. 

6.2 Analysis of Samples Through Packaging Materials 

Though the identification ability of the THz/Far-IR is a useful result, standard IR can already clearly 

determine the identification of many materials, including explosives, and is also portable. Where the 

true potential lies in this technique is in the ability to see through packaging materials. To investigate 

this, a range of materials, including plastics and paper, were cut into 1 cm2 squares loaded onto the 

cryostat in the same way as the pellets. A summary of the results are as follows in Table 6.1 broken 

down into 3 categories. 

Table 6.1: Summary of THz/Far-IR absorbance results for various materials. 

Little/no significant 
absorbance 

Significant absorbance 
peaks 

Significant areas of non-
transparency 

 Cling film/wrap 

 Zip-lock clear bag 

 Zip-lock red bag 

 Paraffin wax paper 

 Black garbage bag 

 Bubble wrap 

 Bubble wrap 
(popped) 

 Plastic folder 
sleeve 

 Packaging plastic 

 Non-transparent 
purple postage bag 

 Overhead projector 
slide 

 Target shopping bag 
 

 Soft drink bottle 

 McDonalds cup lid 

 Kimwipe 

 Paper towel 

 Lens wipes 

 Post-It note 

 Printer paper 

 Paper Envelope 

The materials listed in the “little/no significant absorbance” category were highly transparent, similar 

to the polyethylene used to pelletise materials. One difference was that some of the spectra 

contained an oscillation across the spectrum. An example spectrum showing an extreme version of 

this oscillation is shown in Figure 6.8. This is proposed to be a result of the materials boundaries 

causing the partial reflection of the light at each boundary. 
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Figure 6.8: THz/Far-IR spectrum of a red Zip-Lock bag between the frequency range of 30-
650 cm-1 showing very little absorbance and clear oscillation. 

In the second category of material significant absorbance peaks are found within the wavelength 

range restricting the transparency to smaller windows. This can hamper the identification of some 

chemicals with signature peaks, coinciding with those in the packaging material. As an example, the 

spectrum of an overhead projector slide is shown in Figure 6.9 below. Small oscillation artefacts are 

also seen with these samples due to the same reflection of light at material boundaries.  

 

Figure 6.9: THz/Far-IR spectrum of an overhead projector slide between the frequency range 
of 30-650 cm-1 showing strong absorbances at 380, 438 and 507 cm -1. 

The spectra of materials in the final category have significant regions of non-transparency within the 

wavelength range making chemicals contained within these packaging materials difficult to identify. 

These materials include papers and higher density plastics. As an example, the spectrum of a Post-It 

note is shown in Figure 6.10 below. 
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Figure 6.10: THz/Far-IR spectrum of a Post-It note between the frequency range of 30-650 
cm-1 showing a sloping absorption, peaks at 104, 173 and 234 cm -1 and saturation beyond 

300 cm-1. 

These results are very interesting as it highlights the potential for THz/Far-IR analysis to identify 

chemicals within some packaging materials. A study was then conducted to mimic a real-world 

scenario with an explosive sample placed within a postage bag. The measurement was taken using 

two configurations, one where the explosive is in direct contact with the bag as would be the case of 

a heavily packed parcel.  The second where there is an air gap between the postage bag and the 

explosive as would be the case when the parcel is not packed to its full potential. The results are 

summarised in Figure 6.11 with a normalisation at the 458 cm-1 peak and an offset of +2 AU between 

each spectrum. 

 

Figure 6.11: THz/Far-IR spectra of a PETN sample, purple postage bag and a combination of 
the two with and without air between them. 



 

197 

 

The results show that the packaging material is quite transparent within the THz/Far-IR region. The 

difference between the PETN alone, and that of the bag and sample, is quite minimal. The intensity 

of the peaks has been diminished slightly and some features are less prevalent. The double peak at 

around 270 cm-1 has become more of a shoulder, however, the opposite effect has occurred for the 

620 cm-1 peak where a shoulder has become more prominent. The addition of an air gap between 

sample and packaging has had even less effect, simply introducing a minor amount of oscillation to 

the signal, more so towards the lower wavenumbers.   

6.3 ATR THz/Far-IR Spectroscopy 

The THz/Far-IR beamline recently acquired an ATR accessory allowing for materials to be directly 

analysed and so the same explosives were investigated. The resultant spectra (Figures 6.12-6.17) are 

not greatly different to the transmission spectra previously recorded in Figures 6.3-6.7. Many do have 

sharper signals and a lower, more stable baseline; however, the primary benefit of the analysis is the 

removal of the sample preparation steps. A small amount of sample can be placed directly on to the 

ATR diamond and analysed, instead of the previous sample preparation, saving approximately 30 

minutes per sample. 

 

Figure 6.12: ATR THz/Far-IR spectrum of KClO3 (bleach precursor) in the frequency range of 
0-650 cm-1. 
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Figure 6.13: ATR THz/Far-IR spectrum of KClO3 (pool chlorine precursor) in the frequency 
range of 0-650 cm-1. 

 

Figure 6.14: ATR THz/Far-IR spectrum of PETN in the frequency range of 0-650 cm-1. 

 

Figure 6.15: ATR THz/Far-IR spectrum of HMX in the frequency range of 0-650 cm-1. 
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Figure 6.16: ATR THz/Far-IR spectrum of RDX (Type I) in the frequency range of 0-650 cm-1. 

 

Figure 6.17: ATR THz/Far-IR spectrum of RDX (Type II) in the frequency range of 0-650 cm-1. 

All of the spectra identify clear signature peaks for each of the materials making them all easily 

identifiable. The spectra have lower baselines with sharper signals in comparison to their pelletised 

counterparts, however, the number and position of signals is the same. The peak shapes of the two 

KClO3 samples (Figures 6.12 and 6.13) are slightly different especially the shouldering on the 100 cm-

1 peak. The ratios are also different between the signature peaks leading to the potential to 

discriminate between the two synthesis methods; however, more research is required to confirm 

this. The spectra obtained are of high enough quality to be highly useful in developing a library of 

these types of materials. 

6.4 Full Range Infrared Spectra 

With the successful collection of THz/Far-IR ATR spectra, four of the materials were then analysed in 

the Mid-Near-IR region using a Perkin-Elmer Frontier FTIR with an ATR accessory. The two sets of 

data were then combined to make a single Far to Near-IR spectrum for each material. The largest 
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peak in the overlapping 600-650 cm-1 region between the two spectra was normalised, enabling the 

two halves of the spectrum to be comparable. 

 

Figure 6.18: Combined THz/Far-IR and FTIR ATR spectrum of KClO3 (bleach precursor). 

 

Figure 6.19: Combined THz/Far-IR and FTIR ATR spectrum of PETN. 

 

Figure 6.20: Combined THz/Far-IR and FTIR ATR spectrum of HMX. 
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Figure 6.21: Combined THz/Far-IR and FTIR ATR spectrum of RDX (type I). 

These combined spectra (Figures 6.18-6.21) show that there are more signals that may be used to 

identify material. This extra region could potentially be used to detect additional peaks from 

impurities, which would allow discrimination between samples of like material. Future work should 

be undertaken, investigating the potential for this technology to detect impurities by analysing 

multiple samples of an energetic material or ingredient, as for the other analytical techniques in this 

research. This data could then be processed using the exploratory data analysis methodologies 

employed for other spectral data in this research to reveal any potential discrimination as was the 

case for the infrared spectroscopy of potassium chlorate.  

6.5 Chapter Conclusions 

The field of THz/Far-IR spectroscopy is rapidly advancing and the potential of the technology to be 

used as a standoff detection method is of great interest for the identification of explosives. Here it 

has been shown to clearly identify a range of explosives and even identify materials through some 

packaging materials. This technique also extends the fingerprint region of an infrared spectrum, 

allowing for a greater level of identification and potentially highlighting additional impurities within 

this region. All of the THz/Far-IR research within this project was undertaken at the ANSTO Australian 

Synchrotron facility resulting in high resolution spectra. The current portable systems do not yield 

the same quality of data without further developments. This may result in poorer levels of impurity 

detection; more research is required to assess this source attribution and sample discrimination 

potential. Firstly, the detection of discriminatory impurities due to differing starting materials with 

the high-resolution THz/Far-IR beamline should be investigated. Secondly, similar testing would then 
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be undertaken with the current portable system in development at the French-German Research 

Institute of Saint-Louis.   
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7. Conclusions and Future Directions 

This project has successfully investigated the potential of multiple analytical techniques to 

discriminate between samples of like material for the two explosives related materials studied, 

potassium chlorate and erythritol tetranitrate.  

Erythritol tetranitrate samples were provided by DST Group however, clandestine methods from 

various online sources were successfully modified and optimised to safely and reliably produce 

potassium chlorate samples. 

In the analysis of potassium chlorate, ICP-MS and IR spectroscopy proved useful in discriminating 

between samples based on their synthesis method and differences in precursor materials. ICP-MS 

identified links between product and precursor through trace elemental profiles and FT-IR found 

impurities originating from precursors. Principal component analysis managed to condense the 

discriminatory information within not only each dataset individually, but also a combination of both 

datasets. The analysis not only condenses the discriminatory data but also identifies exactly what 

parts of the dataset contribute to the discrimination, including the elements and ranges of 

wavenumbers that provide the valuable data. These results highlight the potential of such an analysis 

to link a material to a precursor based on differences in trace elemental profile or the presence of 

impurities. There is potential to improve the level of discrimination obtained through the inclusion 

of additional elements. Further analytical techniques could be used to investigate differences 

between samples to increase the amount of discriminatory data. Examples include chromatographic 

techniques such as liquid chromatography or an electrokinetic separation method like capillary 

electrophoresis. Both would provide another perspective on differences between samples. 

Erythritol tetranitrate was found to be at least partially discriminated through IR-MS and ICP-MS 

analysis. The IR-MS data was shown to discriminate between samples based on differences in nitrate 

salt precursors that carried through to the final product, including via a nitric acid intermediary, and 

fractionation based on differing synthesis pathways. More research into the reaction mechanism 

could identify the exact reasoning for the fractionation identified using the acetyl nitrate synthesis 

pathway. ICP-MS resulted in discrimination, not due to differences in trace metal concentrations in 

precursors but from the difference in laboratory environment and equipment used in the synthesis 

of the ETN samples. This result indicates that in some cases, different equipment or locations used 

for synthesis could be identified as they may introduce different levels of trace elements into the 
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product. This could lead to highly valuable information useful in directing investigations, to find more 

concrete evidence of a link. Further studies surrounding the effects of equipment and environmental 

effects on synthesis should be undertaken to validate this hypothesis. PCA once again assisted in 

distilling the dataset and highlighting the discriminatory information within the dataset using the 

same data pre-processing as the KClO3 datasets. This suggests that the pre-processing of elemental 

and spectral datasets is quite robust. As in the case of potassium chlorate, an increase in the number 

of measured trace elements and additional analytical techniques including liquid chromatography 

and capillary electrophoresis could provide further discriminatory data. This additional perspective 

on the differences between samples could magnify the separation leading to more concrete 

discrimination. 

Although discriminatory data could be identified within both materials datasets, the merging of data 

collected from different analytical techniques proved to be a significant issue. This was a major 

limitation of the use of PCA as an exploratory data analysis tool. The purely mathematical approach 

highlights issues surrounding the differences in the magnitudes of variation of different variables.  

This results in the weighting of the variables with a greater magnitude of variation and more work 

needs to be done into solving this issue. A suggested direction for future work to resolve this would 

be to employ the use of a non-parametric regression, such as generalised regression neural network. 

This is a machine learning technique that can be used for the classification and prediction of samples. 

Though quite advanced and computationally demanding, with modern technology and advances in 

machine learning, this technique is becoming much more achievable. 

The investigation into the potential of THz/Far-IR to identify materials using only the extended 

fingerprint region of standard IR spectroscopy was also highly successful. A range of materials were 

clearly identified with many signals outside the standard range of FT-IR analysis, which could also be 

effective at identifying impurities within this region. The technique also showed the potential to 

identify materials through a range of non-transparent plastic-based packaging materials including 

postage bags and black garbage bags. With the current development of a portable THz/Far-IR system 

capable of standoff analysis, much more research can be undertaken in future to investigate the 

discriminatory ability of the technique. 

The aim of this project was to analyse samples via multiple analytical techniques then use a 

subsequent chemometric analysis to both individual and combined datasets to identify linkages 

between samples of like material. The analysis of the material was successful with methods 
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developed for the safe acid digestion of materials for elemental analysis. The methodologies 

developed for the chemometric analysis of individual datasets was successful however, more 

research should be taken into the merging of data from various analytical techniques. Specifically, 

harnessing more modern data analysis techniques in the field of machine learning could prove very 

effective in analysing such a nonparametric dataset. The PCA analysis of collected data was successful 

in discriminating between samples of like material providing links between samples, precursor 

materials, synthetic pathways and possibly equipment. 
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