
 

 

 

 

 

The Rational Design of Diazenyl Amphiphiles for  
Self-Assembly into Nanotubes within Aqueous Systems 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

 

 

Thomas Geoffrey Barclay 

BSc Nanotechnology (Hons) 

 

 

School of Chemical and Physical Sciences 

Faculty of Science and Engineering 

 

Adelaide, South Australia 

 

 

August 2011 

  



 ii 

Abstract 

A combinatorial library of amphiphiles were synthesised with amino acid hydrophilic head groups 

(glutamic acid, serine or aspartic acid) linked by an amide bond to a hydrophobic tail having a 

diphenyldiazenyl (azo) group incorporated between the proximal alkoxy chain (6, 10, 11, or 12 

methylene units long) and the distal alkyl chain (2, 4, 5, 6, 7, 8, 10, 12 or 14 methylene units 

long). All synthetic products were analysed by nuclear magnetic resonance (NMR) and Fourier 

transform infrared spectroscopic methods, while differential scanning calorimetry, elemental 

analysis, and isotope ratio mass spectrometry were used for selected compounds. These 

techniques affirmed the identity and purity of the compounds.  

The synthesised amphiphiles were specifically designed to self-assemble into nanotubes based 

on the tight, helical winding of a bilayer ribbon. Transmission Electron Microscopy (TEM), Ultra 

Violet and Visible light spectroscopy (UV-Vis), scanning electron microscopy, atomic force 

microscopy and circular dichroism were used to analyse the self-assembled structures. TEM 

analysis of the entire library of amphiphile final products self-assembled from an aqueous 

methanolic solution (3:1 v/v) using a heated procedure showed that nanotubes, and chiral ribbon 

precursors to nanotubes, were commonly produced. The nanotubes observed were of two 

distinct varieties. The first variety of nanotubes were the result of helical assembly of a partially 

interdigitated bilayer ribbon driven by chiral symmetry breaking and also influenced by chiral 

molecular packing. Amphiphiles with a serine head group and an eleven methylene unit proximal 

chain assembled most efficiently into these helically based tubes, with the conversion to 

nanotubes increased with increasing distal chain length. There was no evidence that the second 

variety of nanotubes self-assembled from the synthesised amphiphiles had a helical basis, 

instead they were predicted to form from flat aggregates that rolled up to create the tubes.  

TEM and UV-Vis spectroscopy were conducted on selected amphiphiles self-assembled with a 

room temperature method that used solvent mixtures that varied in ratios of methanol and water 

(100:0 – 10:90 v/v). TEM showed that for similar solvent ratios the heated and room temperature 

methods of self-assembly generated similar self-assembled morphologies, while solvent mixtures 

lower in water concentration using the room temperature method enabled more organised 

assembly for some amphiphiles. The UV-Vis spectroscopy results showed that the nanotubes 

observed in TEM were the result of H- and H*-aggregation azo groups. 

The isomerisation of the azo group was investigated for both dissolved and aggregated 

amphiphiles. An amphiphile dissolved in deuterated dimethyl sulphoxide was isomerised to the 

cis form by UV radiation (λmax 355 nm). The thermal reversion to the trans isomer was monitored 

by NMR spectroscopy and the activation energy for this transformation was 92.8 kJ.mol-1. UV 
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irradiation (λmax 355 nm) of self-assembled nanotubes led to the destruction of the tubular 

structure upon isomerisation of the component amphiphiles from the trans to cis forms. Thermal 

and photo reversion to the cis form did not result in reconstruction of the nanotubes.    
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Scope of Thesis 

This thesis describes the work conducted in the design of amphiphiles capable of self-assembly 

into helically based nanotubes, the subsequent synthesis of the amphiphiles, and the analysis of 

their self-assembled structures. These long, straight, rigid nanotubes are formed by the tight, 

helical turning of a bilayer ribbon, driven by chiral organisation of the precursor amphiphiles.1-4 To 

induce this chiral organisation molecular components of the amphiphile were selected rationally, 

and a combinatorial approach to construction provided a range of subtly modified molecular 

structures so that the optimal structures for self-assembly into nanotubes could be identified.    

• In Chapter 1 the thesis begins with a review of the relevant literature for helically based, 

self-assembled nanotubes. This review has been accepted for consideration by Chemical 

Reviews on the basis of a topic outline submitted recently, explaining the structure and 

length of the review. After the discussion of the literature on nanotubes, the literature review 

chapter briefly discusses the approach to the design of the amphiphiles used in this 

research. A major molecular component incorporated into the amphiphile design was an azo 

group. As this chemistry has rarely been used in helically based, self-assembled nanotubes, 

literature on azo chemistry and azo aggregation is also reviewed.  

• Chapter 2 provides the experimental details for all the work conducted in this research. 

• Chapter 3 details the design of the amphiphiles, examining how each component of the 

molecules contributes to the formation of helically based nanotubes and how the design was 

tuned by the synthesis of a combinatorial library of compounds based on three molecular 

variables. Discussion of the synthetic routes follows before moving to the analysis of the 

synthesised molecules in terms of molecular identity and purity. 

• In Chapter 4 the isomerisation of the azo component of both dissolved and aggregated 

amphiphiles is investigated. 

• Chapter 5 is the first of three chapters describing the self-assembly of the synthesised 

amphiphiles. The focus of the fifth chapter is on evaluating the self-assembly behaviour 

observed using TEM of the full combinatorial library of amphiphiles self-assembled from 

methanolic aqueous solution (1:3 v/v) using a heated method. The influence of each of three 

molecular variables is evaluated to identify the optimal molecular form for the production of 

helically based nanotubes, and also to provide further understanding of how this type of self-

assembly occurs.  

• In Chapter 6 further investigation is conducted on selected amphiphiles from the 

combinatorial library self-assembled from methanolic aqueous solutions varying in solvent 

ratio at room temperature. UV-Vis spectroscopy is used to probe the environment of the azo 
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group in self-assembled structures. This analysis is combined with TEM observation of the 

aggregated structures to provide a better understanding of the forces driving helical self-

assembly. 

• Chapter 7 investigates the self-assembly of synthesised amphiphiles that vary from those 

azo based amphiphiles with amino acid head groups that make up the main combinatorial 

library of compounds. The major component of this chapter is extracted from an article 

published previously in the Journal of Material Research.5 

• Chapter 8 concludes the thesis and provides suggestions for future work. 
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Abbreviations 

AFM Atomic Force Microscopy 

ANS 1-Anilino-8-Naphthalene Sulphonate 

APTES Aminopropyltriethoxy Silane 

BOP (Benzotriazol-1-yloxy)-tris-(dimethylamino)phosphonium hexafluorophosphate 

CD Circular Dichroism 

CDCl3 Deuterated Chloroform 

CdS Cadmium Sulphide 

COSY Correlation Spectroscopy 
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DC8,9PEOH 1,2-bis(10,12- tricosadiynoyl)-sn-glycero-3-phosphohydroxyethanol 

DIEA Diisopropylethylamine 

DMSO-d6 Deuterated Dimethyl Sulphoxide 

DRIFT Diffuse Reflectance Infrared Fourier Transform 

DSC Differential Scanning Calorimetry 

FTIR Fourier Transform Infrared 

FWHM Full-Width Half-Maximum 

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate 

HBC Hexa-peri-hexabenzocoronene 

HBTU N-(Benzotriazol-1-yl)-1,1,3,3-tetramethylguanidinium hexafluorophosphate 



 ix 

HMBC Heteronuclear Multiple Bond Coherence 

HMQC Heteronuclear Multiple Quantum Coherence 

HOAt 1-hydroxy-7-azabenzotriazole 

HOBt 1-Hydroxybenzotriazole 

IRMS Isotope Ratio Mass Spectrometry 

NMR  Nuclear Magnetic Resonance 

NOESY Nuclear Overhauser Effect Spectroscopy 

PyBOP (Benzotriazol-1-yloxy)-tris-(pyrrolidino)phosphonium hexafluorophosphate 

SANS Small Angle Neutron Scattering 

SAXS Small Angle X-Ray Scattering 

SDS Sodium Dodecyl Sulfate 

SEM Scanning Electron Microscopy 

TEM Transmission Electron Microscopy 

TEOG Germanium Tetraethoxide 

TEOS Tetraethyl Orthosilicate 

TGA Thermal Gravimetric Analysis 

UV Ultraviolet light 

UV-Vis Ultraviolet and Visible light 

WAXS Wide Angle X-Ray Scattering 

XRD X-Ray Diffraction 
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