The Rational Design of Diazenyl Amphiphiles for Self-Assembly into Nanotubes within Aqueous Systems

A thesis submitted for the degree of Doctor of Philosophy

Thomas Geoffrey Barclay BSc Nanotechnology (Hons)

School of Chemical and Physical Sciences

Faculty of Science and Engineering

Adelaide, South Australia

August 2011

Abstract

A combinatorial library of amphiphiles were synthesised with amino acid hydrophilic head groups (glutamic acid, serine or aspartic acid) linked by an amide bond to a hydrophobic tail having a diphenyldiazenyl (azo) group incorporated between the proximal alkoxy chain (6, 10, 11, or 12 methylene units long) and the distal alkyl chain (2, 4, 5, 6, 7, 8, 10, 12 or 14 methylene units long). All synthetic products were analysed by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopic methods, while differential scanning calorimetry, elemental analysis, and isotope ratio mass spectrometry were used for selected compounds. These techniques affirmed the identity and purity of the compounds.

The synthesised amphiphiles were specifically designed to self-assemble into nanotubes based on the tight, helical winding of a bilayer ribbon. Transmission Electron Microscopy (TEM), Ultra Violet and Visible light spectroscopy (UV-Vis), scanning electron microscopy, atomic force microscopy and circular dichroism were used to analyse the self-assembled structures. TEM analysis of the entire library of amphiphile final products self-assembled from an aqueous methanolic solution (3:1 v/v) using a heated procedure showed that nanotubes, and chiral ribbon precursors to nanotubes, were commonly produced. The nanotubes observed were of two distinct varieties. The first variety of nanotubes were the result of helical assembly of a partially interdigitated bilayer ribbon driven by chiral symmetry breaking and also influenced by chiral molecular packing. Amphiphiles with a serine head group and an eleven methylene unit proximal chain assembled most efficiently into these helically based tubes, with the conversion to nanotubes increased with increasing distal chain length. There was no evidence that the second variety of nanotubes self-assembled from the synthesised amphiphiles had a helical basis, instead they were predicted to form from flat aggregates that rolled up to create the tubes.

TEM and UV-Vis spectroscopy were conducted on selected amphiphiles self-assembled with a room temperature method that used solvent mixtures that varied in ratios of methanol and water (100:0 – 10:90 v/v). TEM showed that for similar solvent ratios the heated and room temperature methods of self-assembly generated similar self-assembled morphologies, while solvent mixtures lower in water concentration using the room temperature method enabled more organised assembly for some amphiphiles. The UV-Vis spectroscopy results showed that the nanotubes observed in TEM were the result of H- and H*-aggregation azo groups.

The isomerisation of the azo group was investigated for both dissolved and aggregated amphiphiles. An amphiphile dissolved in deuterated dimethyl sulphoxide was isomerised to the *cis* form by UV radiation (λ_{max} 355 nm). The thermal reversion to the *trans* isomer was monitored by NMR spectroscopy and the activation energy for this transformation was 92.8 kJ.mol⁻¹. UV

irradiation (λ_{max} 355 nm) of self-assembled nanotubes led to the destruction of the tubular structure upon isomerisation of the component amphiphiles from the *trans* to *cis* forms. Thermal and photo reversion to the *cis* form did not result in reconstruction of the nanotubes.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Thomas Geoffrey Barclay

Date

Acknowledgments

I would like to thank my supervisory team for their contribution to this research project. Prof. Janis Matisons, my principal supervisor, gave me the freedom to follow research directions of my own choosing, while still providing guidance to assist in steering the project. Nonetheless, occasionally I found that my chosen directions were blocked. In these instances Dr Kristina Constantopoulos provided the necessary advice to find new routes so I could continue my research. Kristina also gave valuable insight into the production of this thesis. I would also like to thank Dr Stephen Clarke and Assoc. Prof. Amanda Ellis, who filled supervisory gaps when Janis was unavailable.

I received specific scientific assistance from several other sources outside of my supervisors. At Flinders University, Kerry Gascoigne provided TEM training and advice. Similarly, Assoc. Prof. Martin Johnston was invaluable in assistance setting up NMR experiments and Dr Jason Gascooke gave technical support for the irradiation experiments. From outside Flinders University, Dr Zhang Wei working under Professor Michiya Fujiki at the Graduate School of Materials Science in Japan conducted the circular dichroism for this research, and I thank them for their help. Finally, elemental analysis and IRMS were conducted by staff in the Department of Chemistry at Otago University in New Zealand.

Without the financial and emotional support of my family and friends my education, which has culminated in this thesis, would not have been possible. I started university at 27, and my "significant other", Jennifer Miron, has supported me in this from the first day of first year to the completion of this PhD. Perhaps now I will be home early enough to cook dinner more often.

Scope of Thesis

This thesis describes the work conducted in the design of amphiphiles capable of self-assembly into helically based nanotubes, the subsequent synthesis of the amphiphiles, and the analysis of their self-assembled structures. These long, straight, rigid nanotubes are formed by the tight, helical turning of a bilayer ribbon, driven by chiral organisation of the precursor amphiphiles.¹⁻⁴ To induce this chiral organisation molecular components of the amphiphile were selected rationally, and a combinatorial approach to construction provided a range of subtly modified molecular structures so that the optimal structures for self-assembly into nanotubes could be identified.

- In Chapter 1 the thesis begins with a review of the relevant literature for helically based, self-assembled nanotubes. This review has been accepted for consideration by Chemical Reviews on the basis of a topic outline submitted recently, explaining the structure and length of the review. After the discussion of the literature on nanotubes, the literature review chapter briefly discusses the approach to the design of the amphiphiles used in this research. A major molecular component incorporated into the amphiphile design was an azo group. As this chemistry has rarely been used in helically based, self-assembled nanotubes, literature on azo chemistry and azo aggregation is also reviewed.
- **Chapter 2** provides the experimental details for all the work conducted in this research.
- Chapter 3 details the design of the amphiphiles, examining how each component of the molecules contributes to the formation of helically based nanotubes and how the design was tuned by the synthesis of a combinatorial library of compounds based on three molecular variables. Discussion of the synthetic routes follows before moving to the analysis of the synthesised molecules in terms of molecular identity and purity.
- In Chapter 4 the isomerisation of the azo component of both dissolved and aggregated amphiphiles is investigated.
- Chapter 5 is the first of three chapters describing the self-assembly of the synthesised amphiphiles. The focus of the fifth chapter is on evaluating the self-assembly behaviour observed using TEM of the full combinatorial library of amphiphiles self-assembled from methanolic aqueous solution (1:3 v/v) using a heated method. The influence of each of three molecular variables is evaluated to identify the optimal molecular form for the production of helically based nanotubes, and also to provide further understanding of how this type of selfassembly occurs.
- In Chapter 6 further investigation is conducted on selected amphiphiles from the combinatorial library self-assembled from methanolic aqueous solutions varying in solvent ratio at room temperature. UV-Vis spectroscopy is used to probe the environment of the azo

group in self-assembled structures. This analysis is combined with TEM observation of the aggregated structures to provide a better understanding of the forces driving helical self-assembly.

- Chapter 7 investigates the self-assembly of synthesised amphiphiles that vary from those azo based amphiphiles with amino acid head groups that make up the main combinatorial library of compounds. The major component of this chapter is extracted from an article published previously in the Journal of Material Research.⁵
- Chapter 8 concludes the thesis and provides suggestions for future work.

References

- 1 Helfrich, W.; Prost, J., *Physical Review A* **1988**, *38*, 3065.
- 2 Seifert, U.; Shillcock, J.; Nelson, P., *Physical Review Letters* **1996**, 77, 5237.
- **3** Schnur, J. M., *Science* **1993**, *262*, 1669.
- 4 Selinger, J. V.; Spector, M. S.; Schnur, J. M., *The Journal of Physical Chemistry B* 2001, 105, 7157.
- 5 Barclay, T.; Constantopoulos, K.; Matisons, J., *Journal of Materials Research* 2011, 26, 322.

Abbreviations

AFM	Atomic Force Microscopy
ANS	1-Anilino-8-Naphthalene Sulphonate
APTES	Aminopropyltriethoxy Silane
BOP	(Benzotriazol-1-yloxy)-tris-(dimethylamino)phosphonium hexafluorophosphate
CD	Circular Dichroism
	Deuterated Chloroform
CdS	Cadmium Sulphide
COSY	Correlation Spectroscopy
DAP	2,6 diaminopyridine
DC _{8,9} PC	1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine
DC _{8,9} PE	1,2-bis(10,12-tricosadiynoyl)- <i>sn</i> -glycero-3-phosphoethanolamine
DC _{8,9} PEOH	1,2-bis(10,12- tricosadiynoyl)- <i>sn</i> -glycero-3-phosphohydroxyethanol
DIEA	Diisopropylethylamine
DMSO-d ₆	Deuterated Dimethyl Sulphoxide
DRIFT	Diffuse Reflectance Infrared Fourier Transform
DSC	Differential Scanning Calorimetry
FTIR	Fourier Transform Infrared
FWHM	Full-Width Half-Maximum
HATU	O-(7-Azabenzotriazol-1-yl)- <i>N,N,N',N'</i> -tetramethyluronium hexafluorophosphate
НВС	Hexa- <i>peri</i> -hexabenzocoronene

HBTU *N*-(Benzotriazol-1-yl)-1,1,3,3-tetramethylguanidinium hexafluorophosphate

- HMBC Heteronuclear Multiple Bond Coherence
- **HMQC** Heteronuclear Multiple Quantum Coherence
- HOAt 1-hydroxy-7-azabenzotriazole
- HOBt 1-Hydroxybenzotriazole
- IRMS Isotope Ratio Mass Spectrometry
- **NMR** Nuclear Magnetic Resonance
- **NOESY** Nuclear Overhauser Effect Spectroscopy
- **PyBOP** (Benzotriazol-1-yloxy)-tris-(pyrrolidino)phosphonium hexafluorophosphate
- SANS Small Angle Neutron Scattering
- SAXS Small Angle X-Ray Scattering
- **SDS** Sodium Dodecyl Sulfate
- **SEM** Scanning Electron Microscopy
- **TEM** Transmission Electron Microscopy
- **TEOG** Germanium Tetraethoxide
- **TEOS** Tetraethyl Orthosilicate
- **TGA** Thermal Gravimetric Analysis
- UV Ultraviolet light
- UV-Vis Ultraviolet and Visible light
- WAXS Wide Angle X-Ray Scattering
- XRD X-Ray Diffraction

Table of Contents

Abstract	ii
Declaration	iv
Acknowledgments	V
Scope of Thesis	vi
Abbreviations	viii
Table of Contents	Х
1. LITERATURE REVIEW	1
1.1. The Theory Behind the Self-Assembly of Amphiphiles into Helically-Based Nanotubes	1
1.1.1. Introduction	1
1.1.1.1. Previous Reviews	3
1.1.1.2. The Benefits of Helical Construction	3
1.1.1.3. Descriptive Terms	4
1.1.2. Basic ideas in the Self-Assembly of Amphiphiles	4
1.1.3. The Lyouopic and Thermolopic Phases of Amphiphiles in Bilayers	0
1.1.4. Theolies on the Formation of Helically-Dased Tubes	9 16
1.1.6. Relating the Hand of Helices to the Molecular Structure of the Amphiphile	10
1.1.7 The Stability of Ribbon Edges in Helically-Based Tubes	20
1.1.8 Supramolecular Chiral Ordering by Low Quantities of Chiral Species	20
1.1.9. Molecular Eactors in Helical Self-Assembly	23
1.2. Self-Assembled Helically-Based Tubes Found in Nature	25
1.2.1 Holical and Tubular Structures of Cholesteral Isolated from Bile Mixtures	25
1.2.1. Helical Structures from Galactosylceramides	23
1.2.3 (S)-Nonacosan-10-ol Tubes	31
1.3. Helices and Tubes from Isolated Natural Compounds	32
1.2.1 12 Undrawy Stearin Asid and Derivatives	20
1.3.1. 12-Hydroxy Steand Add and Derivatives	3Z 35
1.3.3 Oleic Acid	13
1.4 Phospholinid Tubules	45
1.4.1. Characteristics of Tubes Formed from DC8,9PC	45
1.4.2. Tubule Stabilisation via Polymensation of Diacetylenic Groups	53
1.4.4. Modification of Supramolocular Structure by External Additives/Ecross	54
1.4.4. Initiation of Supramolecular Structure by External Additives/Forces	65
1.4.6 Template Directed Deposition	68
1.5. Glycolipid Nanotubes:	75
1.5.1 NAlkyleldenemide Aggregates	75
1.5.1. N-Aikylaidonainide Aggregales	70 70
1.5.2. Diacetylenic Aldonamides	70 80
1.5.4 Mesogenic Glycolinids	81
1.5.5 Cardanol Based Glycolipid Nanotubes	82
1.5.6. Vaccenic Acid Based Glycolipid Nanotubes	88
1.5.6.1. Encapsulation of Substances	91
1.5.6.2. Template Directed Synthesis	92
1.5.6.3. Control of Nanotube Dimensions	97
1.5.6.4. Manipulation and Alignment of Nanotubes	98
1.5.7. D-Alliyyulli neau yioup 1.5.8. Chicoamphinhiles with Eluorocathon Hydrophohio Moiotics	99 100
1.5.9 Diacetylenic Glyconentidolinide	100
1.5.0. Ternhenvl Glucoside	102
1.6. Amphiphiles Constructed with Amino Acid Head Groups & Backbones	105

1.6.1. Amino Acid Backbones Linking Ammonium Head Groups and Hydrophobic Tails	105
1.6.2. Amino Acid Backbones Linking Amino Acid Head Groups and Dual Hydrophobic Tails	107
1.6.3. Amino Acid Backbone/Head Group and Dual Hydrophobic Tails	111
1.6.4. Amino Acid Head Groups with Single Hydrophobic Tails	112
1.6.5. Tris-based Head Groups and Amino Acid Linkers and Backbones	120
1.6.6. Tube Forming Amphiphiles Comprised Entirely of Amino Acids	122
1.7. Helically-Based Nanotubes Self-Assembled from Amphiphiles with Ammonium and Amino Head Groups	123
1.7.1. Ammonium Head Groups	123
1.7.2. Amino Head Groups	125
1.8. Gemini Surfactants	127
1.8.1 Quaternary Ammonium Gemini Surfactants	127
1.8.2 Other Gemini Surfactants	132
1.9. Helically-Based Tubes Self-Assembled from Synthetic Amphiphiles Based on Extended	136
Aromatic Stacking	
1.9.1. Graphitic Nanotubes	136
1.9.2. Helical Assembly of Macrocyclic Amphiphiles	142
1.10. Helically-Based Tubes Self-Assembled from Synthetic Multi-Piece Amphiphiles	145
1.11. Applications for Self-assembled Helices and Tubes	151
1.11.1. Drug Delivery and Controlled Release	152
1.11.2. Helical crystallisation of proteins	157
1.11.3. Helical and Tubular Organic Templates for the Production of Inorganic Replicas	158
1.12. Rational Design of Amphiphiles for Helical Assembly into Nanotubes	160
1.13. Properties of the Azo Group and its Aggregation Behaviour in Amphiphilic Systems	163
1.13.1. An Introduction to Azobenzene and Derivatives	163
1.13.2. Classes of Azo Compounds	163
1.13.3. Photochromism and The Isomeric Forms of Azo Compounds	164
1.13.4. Explanation of Absorption Characteristics	166
1.13.5. Amphiphiles with Azobenzene Groups	171
1.13.5.1. Molecular Packing in Azo Amphiphiles	171
1.13.5.2. Photoisomerisation in Aggregates of Azo Amphiphiles 1.13.6. Evaluation of the General Litility of Azo Compounds	174
1.14. References	177
	187
	407
2.1. Materials	187
	107
2.2.1. Spectroscopy	187
2.2.1.1. Nuclear Magnetic Resonance Spectroscopy	187
2.2.1.2. Found Transform Infrated Spectroscopy	187
2.2.1.4. Circular Dichroism	188
2.2.1.5. Elemental Analysis	188
2.2.2. Thermal Analysis	188
2.2.2.1. Differential Scanning Calorimetry	188
2.2.2.2. I hermogravimetric Analysis	188 100
2.2.J. MIGUSUUPY 2.2.3.1 Transmission Electron Microscopy	109
2.2.3.2. Scanning Electron Microscopy	189
2.2.3.3. Atomic Force Microscopy	189
2.3. Irradiation Experiments	189
2.3.1. UV Irradiation of Dissolved Amphiphile	189
2.3.2. UV Irradiation of Self-Assembled Aggregates	190

2.3.3. Visible Light Irradiation of Amorphous Aggregates	190
2.4. Titration Experiments	190
2.5. Self-Assembly	190
2.5.1. Heated Self-Assembly Procedure	190
2.5.2. Room Temperature Self-Assembly Procedure	191
2.6. Synthesis	191
2.6.1. Diazonium Coupling of Alkyl Anilines and Phenol	191
2.6.2. Protective Esterification of Bromoalkyl Carboxylic Acids	195
2.6.3. Coupling Hydroxy Azobenzenes with Bromoalkyl Esters via Nucleophilic Substitution	197
2.6.4. Deprotection of R-Azo-R'-ME to form Carboxylic Acids	213
2.6.5. Esterification of Amino Acids	229
2.6.6. Amino Acid Ester Addition to R-Azo-R'-OOH Compounds via Amide Coupling	231
2.6.6.1. Addition of GluDME to R-Azo-R'-OOH and Other Acid Compounds	231
2.6.6.2. Addition of AspDME to R-Azo-R'-OOH Compounds	250
2.6.7. Deprotection of Amino Acid Functionalised Lipids	254
2.6.7.1. Deprotection for Amino Acid Diacid Functionalized Compounds	275
2.6.7.2. Deprotection for Serine Functionalized Compounds	296
3 AMPHIPHILE DESIGN, SYNTHESIS AND ANALYSIS	314
3.1. Introduction	314
3.2. Amphiphile Design	315
3.2.1. Practical Influences on Amphiphile Design	316
3.2.2. Amphiphile Library and Nomenclature	317
3.3. Synthesis of Azo Compounds	321
3.3.1. In-situ Synthesis of Azo Compounds via Diazonium Salts	322
3.4. Functionalisation of Azo Compounds	328
3.4.1. Functionalisation Through Ether Linkages at Both Ends of the Azo Compound	328
3.4.2. Functionalisation of the Phenolic Intermediates (4-({4-Alkylphenyl}diazenyl)phenols)	329
3.5. Functionalisation of the Azo Acid Intermediates (N-[-4-({4-alkylphenyl}diazenyl)phenoxy]alkyl carboxylic acids)	330
3.5.1. Head Group Strategies	330
3.5.1.1. Using -D-Glucopyranosylamine	330
3.5.1.2. Amino Acid Head Groups	334
3.5.2. Amide Coupling Strategies	331
3.5.2.1. Amide Coupling using Acid Fluoride Produced by Deoxo-Fluor	339
3.5.2.3. Amide Coupling using HOBt & PyBOP	340
3.5.2.4. Amide Coupling using HATU and HOAt	342
3.6. Synthetic Analysis	347
3.6.1. Chemical Analysis for R-Azo-OH Molecules (4-({4-alkylphenyl}diazenyl)phenols)	347
3.6.2. Chemical Analysis for Br-R'-ME Molecules (Methyl R'-Bromoalkanoate)	358
3.6.3. Chemical Analysis for Amino Acid Methyl Esters	362
3.6.4. Chemical Analysis for R-Azo-R'-ME Molecules	367
(Methyl R'-[-4-({4-alkylphenyl}diazenyl)phenoxy] alkanoate)	
3.6.5. Chemical Analysis for R-Azo-R'-OOH Molecules	373
(R'-[-4-({4-alkylphenyl}diazenyl)phenoxy] alkanoic acid)	
3.6.6. Chemical Analysis for Azo-Amino Methyl Esters	376
3.6.7. Chemical Analysis for Azo-Amino Acid Amphiphiles	386
3.6.8. Chemical Analysis for Other Miscellaneous Amphiphiles	400
3.0.9. Elemental Analysis	410
3.6.11. Titration of Azabanzana	411
	41/

3.7. Conclusions	419
3.8. References	420
4. ISOMERISATION OF THE SYNTHESISED AZO-BASED AMPHIPHILES AND THEIR SELF-ASSEMBLED STRUCTURES	425
4.1. Introduction 425	
4.2. Investigation of the Thermal Reversion of the Dissolved Amphiphile by NMR Spectroscopy	425
4.3. Investigation of Photoisomerisation within Self-Assembled Aggregates by UV Irradiation	430
4.3.1. Overview of the Isomerisation of the Self-Assembled Aggregates	433
4.4. Conclusion	434
4.5. References	435
5. SELF-ASSEMBLY OF AZO AMPHIPHILES WITH AMINO ACID HEAD GROUPS USING THE HEATED PROCEDURE	436
5.1. Introduction	436
5.2. The Self-Assembly Procedure	437
5.2.1. Heated Self-Assembly Procedure	437
5.3. TEM Analysis of Structures Self-Assembled from R-Azo-R'-Glu Compounds using the Heated Procedure	439
5.3.1. Morphology of Structures Self-Assembled from R-Azo-6-Glu	439
5.3.2. Morphology of Structures Self-Assembled from R-Azo-10-Glu	444
5.3.3. Morphology of Structures Self-Assembled from R-Azo-11-Glu	451
5.3.4. Morphology of Structures Self-Assembled from R-Azo-12-Glu	458
5.3.5. Overview of the Characteristics of Structures Self-Assembled from R-Azo-R'-Glu Compound	s 463
5.4. TEM Analysis of Structures Self-Assembled from R-Azo-R -Ser Compounds	407
5.4.1. Morphology of Structures Self-Assembled from R-Azo-6-Ser	467
5.4.2. Morphology of Structures Self Assembled from P. Azo 11 Ser	474
5.4.4. Morphology of Structures Self-Assembled from R-Azo-12-Ser	493
5.4.5. Overview of the Characteristics of Structures Self-Assembled from R-Azo-R'-Ser Compound	3 496
5.5. TEM Analysis of Structures Self-Assembled from R-Azo-R'-Asp Compounds	500
5.5.1. Morphology of Structures Self-Assembled from R-Azo-6-Asp	500
5.5.2. Morphology of Structures Self-Assembled from R-Azo-10-Asp	502
5.5.3. Morphology of Structures Self-Assembled from R-Azo-11-Asp	507
5.5.4. Overview of the Characteristics of Structures Self-Assembled from R-Azo-R'-Asp Compound	s 511
5.6. TEM Analysis of Structures Self-Assembled from D-Amino Acid Azo Amphiphiles and Racemic Mixtures using the Heated Procedure	513
5.6.1. Comparison of Morphologies Self-Assembled from D- and L-10-Azo-11-Glu	513
5.6.2. Comparison of Morphologies Self-Assembled from D- and L-10-Azo-11-Ser	518
5.6.3. Comparison of Morphologies Self-Assembled from D- and L-14-Azo-11-Ser	520
5.7. Overview of the Analysis of the Characteristics of Structures Self-Assembled from Azo Amphiphiles with Amino Acid Head Groups	524
5.8. Conclusions from the Analysis of Structures Self-Assembled from Azo Amphiphiles with Amino Acid Head Groups	527
5.9. References	528
6. SELF-ASSEMBLY OF SELECTED AZO-BASED AMPHIPHILES WITH AMINO ACID HEAD GROU USING THE ROOM TEMPERATURE PROCEDURE	PS 531
6.1. Introduction	531
6.2. The Room Temperature Self-Assembly Procedure and Sample Selection for UV-Vis and TEM Analysis using this Procedure	531

6.3. General Analysis of Structures Self-Assembled from Azo Amphiphiles by UV-Vis Spectrosco	ру 532
6.3.1. Affects of Self-Assembly on the Main - * Transition	533
6.3.2. Affects of Self-Assembly on the n- * Transition	536
6.4. UV-Vis and TEM Analysis of Structures Self-Assembled from 14-Azo-11-Glu using the Room Temperature Procedure	537
6.5. UV-Vis and TEM analysis of Structures Self-Assembled from R-Azo-R'-Ser Compounds (Groups 1 and 2) using the Room Temperature Procedure	541
6.5.1. Group 1	541
6.5.1.4. Overall Discussion of Group 1 Results	549
6.5.2. Group 2	550
6.5.2.3. Overall Discussion of Group 2 Results 6.6. UV-Vis and TEM analysis of Structures Self-Assembled from R-Azo-R'-Asp (Group 3) using the Room Temperature Procedure	555 555
6.6.1. 4-Azo-10-Asp	555
6.6.2. 7-Azo-10-Asp	560
6.6.3. 10-Azo-10-Asp	563
6.6.4. Overall Discussion of Group 3 Results	564
6.7.Conclusion	564
6.8.References	565
7. SELF-ASSEMBLY OF ALTERNATE AMPHIPHILES	567
7.1. Introduction 567	
7.2. Self-Assembly of Diacetylenic and Vaccenic Amphiphiles with Amino Acid Head Groups	567
7.3. Comparison of the Self-Assembly of Azo and Non-Azo Amphiphiles with Amino Acid Head G	roups 575
7.4. Self-Assembly of 4-Azo-6-GPA	576
7.5. Self-Assembly of Intermediate Species from the Synthesis of Azo Amphiphiles	577
7.6. Conclusions from the Analysis of the Structures Self-Assembled from Alternate Amphiphiles	\$ 579
7.7. References	579
8. CONCLUSIONS AND FUTURE DIRECTIONS	580
8.1. Amphiphile Design, Synthesis and Analysis	580
8.1.1. Conclusions	580
8.1.1.1. Amphiphile Design	580
8.1.1.2. Synthesis and Analysis	581
8.1.2. Future Directions	581
8.1.2.2. Analysis	583
8.2. Amphiphile Self-Assembly	583
8.2.1. Conclusions	583
8.2.2. Future Directions	
8.2.3 Overall Summary of Characteristics of the Self-Assembly of the Diazenyl Amphiphiles	586
8.3. References	588