Do dietary induced promutagenic DNA adducts increase risk for colorectal cancer?

Jean Winter B.Med.Sc (Hons)

PhD Candidate

School of Medicine

Faculty of Faculty of Medicine, Nursing and Health Sciences

Flinders University of South Australia

19 December 2014

Table of contents

Table of contents	
Figures	8
Tables	10
Appendices figures and tables	11
Summary	12
Declaration	14
Acknowledgements	15
Abbreviations	16
Published material and presentations arising from this thesis	18
1. <u>Chapter 1: Introduction</u>	20
1.1. Colorectal cancer	20
1.1.1. The process of CRC formation	_22
1.1.2. Risk factors for CRC	25
1.2. Animal models of CRC	28
1.2.1. The chemical carcinogenic model of CRC	28
1.2.2. The Western diet model of spontaneous CRC	31
1.2.3. Genetically modified mice for modelling CRC	32
1.3. DNA adducts	<u>.</u> 34
1.3.1. 8-hydroxy-2'-deoxyguanosine	35
1.3.1.1. Repair and mutagenesis of 8-oxo adduct	36
1.3.1.2. The 8-oxo adduct and CRC	37
1.3.2. O ⁶ methyl-2-deoxyguanosine	38
1.3.2.1. Repair of O ⁶ MeG by methyl-guanine-methyl- transferase	38
1.3.2.2. Consequences of O^6MeG persistence within the cell	l

		after failed MGMT repair	39
	1.3	3.2.3. The O ⁶ MeG adduct and CRC	41
	1.4. Diet	and colorectal cancer	43
	1.4.1.	Red meat	43
	1.4.2.	Resistant starch	50
	1.4.3.	Green tea	
	1.5. Gener	ral aims and hypotheses	54
2.	Chapter 2	2: Materials and methods	
	2.1. Anim	al ethics	
	2.2. Anim	al models of CRC	
	2.2.1.	Western diet model of spontaneous CRC	
	2.2.2.	Msh2 knockout mouse model	
	2.2.3.	MGMT knockout mouse model	
	2.3. Anim	al experimental dietary compositions	59
	2.3.1.	Red meat	
	2.3.2.	Haem	60
	2.3.3.	Resistant starch	61
	2.3.4.	Green tea	61
	2.4. Faeca	l collections and biological assays	
	2.4.1.	Faecal collections	
	2.4.2.	Faecal pH and ammonia assay	
	2.4.3.	Faecal SCFA, phenols and p-cresol assay	
	2.5. Anim	al tissue analyses	<u></u> 65
	2.5.1.	Tissue fixation, processing and embedding	
	2.5.2.	Apoptosis evaluation in Western diet models (Chapter 3 and 4)	<u></u> 66

2.5.3	Apoptosis evaluation in response to AOM	
	(Chapter 7 and 8)	66
2.5.4	Determination of cell proliferation	66
2.5.5	DNA adduct quantification	68
2.5.6	Aberrant crypt foci and tumour analysis	69
2.6. Hum	an randomised cross over trial	70
2.6.1	Study design and participants	70
2.6.2	Sample collection	72
2.6.3	Stool analyses	73
2.6.4	Rectal biopsies	73
2.7. Stati	stical analysis	74
2.7.1	Chapter 3	
2.7.2	Chapter 4	75
2.7.3	Chapter 5	75
2.7.4	Chapter 6	76
2.7.5	Chapter 7	77
2.7.6	Chapter 8	77
<u>mouse c</u> colonic	: 3: Accumulation of pro-mutagenic DNA adducts in the listal colon after consumption of haem does not induce neoplasms in the Western diet model of spontaneous al cancer	_
3.1. Intro	duction	78
3.2. Aim	s and hypotheses	81
3.3. Mate	erials and Methods	82
3.3.1	Animals and diets	
3.3.2	Faecal analysis	83
3.3.3	Tissue sample collection	83

	3.3.4.	Cell proliferation and apoptosis measurement	
	3.3.5.	DNA adduct quantification	
	3.4. Resul	lts	
	3.4.1.	Body weight and faecal analysis	
	3.4.2.	Short-term effects of haem and RS	
	3.4.3.	Long-term effects of haem and RS	
	3.4.4.	Diet-related changes over time	90
	3.5. Discu	ission	
	Western	lo not affect risk for spontaneous colorectal cance diet mouse model: Implications for red meat and p take	<u>resistant</u>
	4.1. Introd	luction	
	4.2. Aims	and hypotheses	
	4.3. Mater	rials and methods	100
	4.3.1.	Animals and diets	100
	4.3.2.	Faecal analysis	
	4.3.3.	Immunohistochemical analysis	102
	4.3.4.	Tumours analysis	
	4.4. Resul	lts	
	4.4.1.	Bodyweights and faecal analysis	
	4.4.2.	Immunohistochemical analysis	
	4.4.3.	Colorectal tumours	
	4.5. Discu	ission	107
_	T 60 4 5	·	

5.	Effects of red meat and butyrylated resistant starch on rectal	l
	O ⁶ -Methyl-2-deoxyguanasine adducts and cell proliferation:	
	A randomised clinical trial	111

	5.1. Introduction	111
	5.2. Aims and hypotheses	113
	5.3. Materials and methods	114
	5.3.1. Study design and participants	114
	5.3.2. Sample collection and analysis	115
	5.4. Results	116
	5.4.1. Participants	116
	5.4.2. Rectal epithelial measures	118
	5.4.3. Faecal fermentation products	120
	5.5. Discussion	121
6.	<u>Chapter 6: Role of red meat and resistant starch in pro-mutage</u>	
	<u>adduct formation, thymic lymphoma and intestinal tumouriger</u> <u>in Msh2 deficient mice</u>	
	6.1. Introduction	
	6.2. Aims and hypotheses	129
	6.3. Materials and methods	129
	6.3.1. Animals and study design	129
	6.3.2. Specimen collection, storage and tissue preparation	131
	6.3.3. Small intestinal tumour histology	132
	6.3.4. Analysis of colonic aberrant crypt foci (ACF)	132
	6.3.5. Immunohistochemical (IHC) quantification of prolifera O ⁶ MeG adducts and MGMT repair	
	6.4. Results	133
	6.4.1. Bodyweights, Msh2 ^{-/-} survival and tumour analysis	133
	6.4.2. Colonic cellular proliferation	136
	6.4.3. Colonic O ⁶ MeG adducts	136
	6.4.4. MGMT repair	139

	6.5. Discussion	14
•	Chapter 7: The effect of red meat and green tea intake on ep	<u>oithelial</u>
	kinetics and pro-mutagenic DNA adduct formation in the co methyl-guanine-methyl-transferase deficient mice	
	metryi-guanme-metryi-transferase deficient mice	
	7.1. Introduction	14
	7.2. Aims and hypotheses	14
	7.3. Materials and methods	
	7.3.1. Animals and diets	15
	7.3.2. Experimental procedures and specimen collection	15
	7.4. Results	
	7.4.1. General observations	
	7.4.2. Colonic O ⁶ MeG Adducts	15
	7.4.3. The acute apoptotic response to AOM	
	7.4.4. Crypt height and cell proliferation	
	7.5. Discussions	15
	Chapter 8: Cellular responses to azoxymethane in c57Bl6/J	
	and O ⁶ -methylguanine DNA-methyltransferase (<i>MGMT</i>) deficient mice	16
	8.1. Introduction	
	8.2. Aims and hypotheses	
	8.3. Materials and methods	16
	8.3.1. Animals, study design and azoxymethane treatment.	16
	8.3.2. Immunohistochemical analysis of the distal colon	16
	8.4. Results	16
	8.4.1. Wild type versus $MGMT^{-}$ responses to AOM over the time of the term of term	ne16
	8.4.2. Distribution of O^6MeG adducts along the crypt	16
	8.5. Discussion	17

9.	Chapter 9: Discussions and Conclusions	176
	9.1. Haem and resistant starch in the Western diet mouse model	177
	9.2. Red meat and resistant starch in the Western diet mouse model	179
	9.3. Red meat and resistant starch in randomised human trial	182
	9.4. Red meat and resistant starch intake with <i>Msh2</i> deficient mice	184
	9.5. Red meat and green tea in <i>MGMT</i> deficient mice	186
	9.6. Cellular response to AOM in <i>MGMT</i> deficient mice	189
	9.7. Overall Conclusions	192
Ap	opendices	193
	Appendix A: Clinical monitoring sheet for laboratory mice	193
	Appendix B: Standard diet and Western diet components	194
	Appendix C: Fat Extraction method for red meat fat analysis	195
	Appendix D: Solutions and Buffers	196
	Appendix E: Calculation of haem content in red meat sample	198
	Appendix F: Tissue processing and embedding	199
	Appendix G: Tissue staining protocols	200
	Appendix H: Human trial study design	203
	Appendix I: Carry over effect of DNA adducts	204
	Appendix J: Proximal colon O ⁶ MeG adducts in <i>Msh2</i> knockout and wild type mice	205
	Appendix K: Publications arising from this thesis	
Re	ferences	226

Figures

<u>Figure 1.1:</u> World Health Organisation (WHO) incidence and mortality rates of CRC according to global region	21
Figure 1.2: Overview of CRC cases by subtype	24
Figure 1.3: Synopsis of the colorectal oncogenesis pathway	25
<u>Figure 1.4:</u> Summary of the metabolic pathways for AOM activation in the liver	30
Figure 1.5: Sources of DNA adducts	35
<u>Figure 1.6:</u> Summary of the mutagenic process of O ⁶ MeG adduct after exposure to alkylating agents	40
<u>Figure 1.7</u> : Possible pathways of protein fermentation in the colonic lumen	47
<u>Figure 3.1:</u> Epithelial changes for short term and long term haem consumption	88
<u>Figure 3.2:</u> Epithelial changes for short term and long term RS consumption	89
Figure 3.3: Colonic epithelial changes over time from 4 weeks to 18 months	91
Figure 4.1: Final bodyweights of mice after 18 months	103
Figure 4.2: Colon tumour incidence (%)	107
Figure 5.1 Rectal DNA O ⁶ MeG adduct load per crypt	118
Figure 5.2: O ⁶ MeG DNA adduct immunohistochemical staining in human rectal epithelial tissue	119
Figure 6.1: <i>Msh2</i> ^{-/-} survival curves	134
<u>Figure 6.2:</u> Total tumour burden in <i>Msh2</i> ^{-/-} mice and H&E staining of small intestinal adenocarcinoma and thymic lymphoma	135
Figure 6.3: Cellular proliferation in the distal and proximal colon	137
<u>Figure 6.4</u> : DNA O ⁶ MeG adduct immunohistochemical staining in the distal colon	138
Figure 6.5: MGMT and DNA O ⁶ MeG adduct correlation in the distal colon after red meat consumption	139
Figure 7.1: Interaction analysis of O ⁶ MeG adducts in the distal colon	156
Figure 7.2: Interactions analysis of apoptosis in the distal colon	157

<u>Figure 8.1</u> : Colonic epithelial responses to AOM over time in wild type and <i>MGMT</i> deficient mice	167
<u>Figure 8.2</u> : Distribution of O ⁶ MeG adducts along the length of the colonic crypt at 0, 4 and 8 hours post AOM	<u>169</u>
<u>Figure 8.3:</u> Distribution of O ⁶ MeG adducts along the length of the colonic crypt at 24, 48 and 72 hours post AOM	170
<u>Figure 8.4:</u> Apoptosis rates in the colon at 6-8h post AOM at 10mg/kg bodyweight for 5 different studies in the same laboratory	<u>173</u>

Tables

Table 1.1: Human studies identifying CRC risk associated with red meat consumption	45
Table 3.1: Composition of experimental diets in g/100g8	83
Table 3.2: Short term study measures of body weight and fermentation	86
<u>Table 3.3</u> : Long term study measures of body weight and fermentation8	86
<u>Table 3.4</u> : Effects of dietary interventions on colon tumor incidence8	87
Table 4.1: Composition of experimental diets (g/100g diet)	101
Table 4.2: Faecal analysis of pH, total SCFAs, acetate, propionate and butyrate.	104
Table 4.3: Faecal analysis of phenols, p-cresols and ammonia	104
Table 4.4: Distal colonic crypt height, apoptosis and proliferation	105
Table 4.5: Distal colonic O ⁶ MeG DNA adduct staining	106
Table 4.6: Colon tumour incidence (%) for each dietary treatment	106
<u>Table 5.1:</u> Dietary intake of study participants during each diet period, based on three-day weighed food records	117
<u>Table 5.2</u> : Effect of dietary intervention in first period on rectal biology	119
<u>Table 5.3</u> : Effect of dietary intervention in first period on stool biochemistry	121
Table 6.1: Composition of experimental diets (g/100g of diet)	131
<u>Table 6.2</u> : Incidence (%) of colonic ACF, small intestinal (SI) tumours and lymphoma in <i>Msh2</i> ^{-/-} mice.	135
Table 7.1: Composition of experimental diets (g/100g of diet)	151
<u>Table 7.2</u> : Bodyweight and distal colon epithelial measurements according to AOM treatment, green tea or red meat consumption, gender and <i>MGMT</i> status	154
<u>Table 7.3:</u> Statistical outcomes of 2- way and 3- way interactions for bodyweight, O ⁶ MeG DNA adduct staining intensity and apoptosis according to AOM treatment, green tea or red meat consumption, gender and <i>MGMT</i> status	

Appendices figures and tables

Figure A: Example of a clinical monitoring sheet used to observe the health of animals in the dietary experiments	<u> 193 </u>
Figure H: Detail of human randomised trial (Chapter 5)	203
Figure I: DNA O ⁶ MeG adducts in human rectal epithelial cells	204
Figure J: O ⁶ MeG adducts in the proximal colon	_205
Table B.1: Vitamin mixes for the standard AIN-76 and the Western diet	_194
Table B.2: Mineral mixes for standard AIN-76 and the Western diet	

Summary 5

Summary

Colorectal cancer (CRC) is a major burden on public health in developed countries with high incidence and mortality rates globally. A major driving force of CRC is related to lifestyle factors, in particular dietary choices. Consumption of red meat has been identified as a risk factor for developing CRC by the World Cancer Research Fund. Increased DNA adducts in the colon via excess endogenous Nnitrosation is one mechanism thought to play a role in colorectal oncogenesis. Haem iron in red meat has also been implicated in development of CRC in humans. A dietary component that can protect against CRC, called resistant starch (RS), is the component of starch undigested in the small intestine and fermented in the colon. It is thought that preferential fermentation of carbohydrate over protein, when RS is incorporated into high protein diets, leads to a reduction in DNA changes that might initiate CRC. Green tea is a common beverage in East Asian countries and evidence from rodent and cell culture studies shows green tea as a preventative agent against CRC, although human studies are somewhat conflicting.

The global aim of this thesis is to determine whether dietary-induced DNA adducts by red meat consumption act as bio-markers for risk of CRC. The studies presented will endeavour to validate and extend previous studies demonstrating that red meat can induce pro-mutagenic adducts. Furthermore, RS and green tea will be employed in combination with red meat to ascertain any protective role they might have against pro-mutagenic formation in the colon. The risk of developing CRC with high red meat consumption will also be explored, and RS will be evaluated as a protective food against CRC formation. The hypotheses are that red meat will increase DNA adducts, but that RS and green tea consumption can reduce red meat-induced DNA adducts. Also, red meat and haem from red meat will increase risk for developing CRC, but RS will reduce the CRC risk posed by red meat. In addition to the mouse experiments, the effects of red meat and red meat in combination with RS will be translated to the human setting, by feeding high red meat and high red

meat with RS diets to healthy human volunteers. It is hypothesised that red meat will significantly increase DNA adducts in the colorectal tissue of humans consuming a high red meat diet, but that co-consumption with RS will ameliorate these adducts.

Red meat and haem increased DNA adducts of the distal colon in all mouse models and in human rectal epithelial tissue. However, there was no clear link between DNA adducts and risk for oncogenesis of the colon in the mouse models tested. RS increased fermentation of beneficial microbial metabolites, but reduced production of potentially toxic fermentation products. RS reduced proliferation rates in the distal colon of wild type and *Msh2* knockout mice, but this did not reduce pre-cancerous lesions in the colon. RS supplementation could reduce formation of pro-mutagenic adducts in wild type mice and in humans after short term consumption, but this did not translate over long term RS consumption in the Western diet mouse model. Green tea did not reduce DNA adducts either alone or in the presence of red meat, either in wild type or *MGMT* knockout mice.

In conclusion, chronic consumption of a high red meat diet can generate DNA lesions in colonic epithelial cells and RS consumption can ameliorate this affect in the short term, but this does not lead to consequent changes in risk after long term consumption in the mouse models tested. Consequently, dietary-induced DNA O⁶MeG and 8-oxo adducts could perhaps be described as a marker for exposure to alkylating and oxidative agents in the diet, including red meat and its associated components such as haem, and not necessarily described as a bio-marker for CRC risk.

Declaration

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Acknowledgments

Acknowledgments

A big thank you to my supervisor and co-supervisors Richard Le Leu, Ying Hu and Graeme Young. During my PhD, and over the last 8 years, you have been extremely supportive, always encouraging and have taught me everything that I know today without your guidance none of my successes so far would have been achievable. To my laboratory colleagues and technical staff (past and present), in particular Laura Nyskohus, Joanne Wilkins and Roshini Somashekar; together you all created a fun, exciting and team orientated environment, which made my time as a PhD student an enjoyable and memorable experience. Thanks to the clinical research nurses Jane Upton and Libby Bambacas, your help with the human intervention trial was outstanding. Appreciation to the collaborators involved in the projects, including scientists at the CSIRO in Adelaide, Silvia Gratz at University of Aberdeen, Maija Kohonen-Corish at Garvan Institute and Leona Samson at MIT in the USA. A special thanks to the School of Medicine Animal Facility Staff at Flinders University for their assistance with the animals.

To my parents Danny and Sue McShane and my sister Christine McShane for reviewing, proof reading and editing my thesis. To my entire circle of family and friends for your constant support and for always asking me "how's the PhD going?". Finally, the most important people in the world to me: Alex, Orlando and Emanuel - you are the drivers for me to achieve my potential. Without the unwavering support from my husband Alex, undertaking a PhD, writing a thesis and raising two young children would have been near impossible to do. I will forever be grateful to you, thank you.

Abbreviations

8-oxo	8-hydroxy-2'-deoxyguanosine
AAR	Acute apoptotic response
ACF	Aberrant crypt foci
AIHW	Australian Institute of Health and Welfare
AIN	American Institute of Nutrition
AOM	Azoxymethane
ATase	Alkyl-guanine-alkyl-transferase
BER	Base excision repair
BG	O ⁶ benzylguanine
BMI	Body mass index
BCFA	Branched chain fatty acids
CD	Chrohn's disease
CIMP	CpG island methylator phenotype
CIN	Chromosomal instability
CRC	Colorectal cancer
CSIRO	Commonwealth Scientific and Industrial Organisation
DAB	3'-diaminobenzamine
DMH	1,2-dimethylhydrazine
DSS	Dextran sodium sulphate
EGCG	(-)-epicatechin-3-gallate
FAP	Familial adenomatous polyposis
FCC-X	Familial colorectal cancer type X
FIT	Faecal immunochemical test
H_2O_2	Hydrogen peroxide
H&E	Haematoxylin and Eosin
HAMSB	Butyrylated high amylose maize starch
HCA	Heterocyclic amine
HNPCC	Hereditary non-polyposis colorectal cancer
HR	Homologous recombination
HRM	High red meat
HRP	Horse radish peroxidase
IACR	International Agency on Cancer Research

IBD	Inflammatory bowel disease
IHC	Immunohistochemical
IQ	2-amino-3methylimidazo [4,5-f] quinoline
IS	Internal standard
LOH	Loss of heterozygosity
MSS	Microsatellite stable
MSI	Microsatellite unstable
MIN	Microsatellite instability
MMR	Mismatch repair
MAM	Methylazoxymethanol
MeIQ	2-amino-3,8-dimethylimidazo[4,5-f]quinoline
MGMT	Methyl-guanine-methyl-transferase
MNU	Methylnitrosourea
MoM	Mouse-on-mouse
mutSα	Msh2-Msh6 MMR heterodimer complex
NHEJ	Non-homologous end joining
NOCs	N-nitroso compounds
O_2^-	Superoxide anion
O ⁶ CMG	O ⁶ -Carboxymethlyguanosine
O ⁶ meG	O ⁶ methyl-2-deoxyguanasine
PAH	Polyaromatic hydrocarbon
PBS	Phosphate buffered saline
PCNA	Proliferating cell nuclear antigen
PhIP	2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
RoB	Red over blue
ROS	Reactive oxygen species
RS	Resistant starch
RT	Room temperature
SCFA	Short chain fatty acid
TUNEL	Terminal deoxynucleotidyl transferase dUTP nick-end labelling
UC	Ulcerative colitis
WCRF	World Cancer Research Fund

Published material and presentations arising from this thesis

Peer reviewed publications

- *Karen J Humphreys, Michael A Conlon, Graeme P Young, David L Topping, Ying Hu, <u>Jean Winter</u>, Anthony R Bird, Lynne Cobiac, Nicholas A Kennedy, Michael Z Michael and Richard K Le Leu. (2014) Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomised trial. *Can. Prev. Res.* 7(8); 786–95
- Jean Winter, Graeme P Young, Ying Hu, Silvia W Gratz, Michael A Conlon and Richard K Le Leu (2013) Accumulation of promutagenic DNA adducts in the mouse distal colon after consumption of heme does not induce colonic neoplasms in the western diet model of spontaneous colorectal cancer. *Mol. Nut. Food. Res.* 58(3):550-8.
- Jean M Winter, Ying Hu, Graeme P Young, Maija RJ Kohonen-Corish, Richard K Le Leu, Role of red meat and resistant starch in promutagenic adduct formation, thymic lymphoma and intestinal tumourigenesis in *Msh2* deficient mice. *Jrnl. Nutrigenetics and Nutrigenomics*, In press 2015

Abstract publications

- Jean M. Winter, Ying Hu, Graeme P Young, Maija RJ Kohonen-Corish, Richard K Le Leu. Diverse effects of resistant starch and red meat on proliferation and O⁶Methyl-2-deoxyguanasine adduct formation in the distal colon of Msh2 deficient mice: Consequences for colorectal carcinogenesis. 38th Congress of the International Society of Nutrigenetics/Nutrigenomics (ISNN). May 2-3, 2014 Gold Coast, Australia: Abstracts. J Nutrigenetics Nutrigenomics 2014;7:1-38 (DOI:10.1159/000362615) (Abstract Only)
- Richard K Le Leu, <u>Jean M Winter</u>, Ying Hu, Laura S Nyskohus, Michael Conlon, Anthony R Bird, David L Topping, Graeme P Young. M1181 Red Meat Diets Increase the Formation of O⁶Methyl2Deoxyguanosine Adducts in the Mouse Colon: Attenuation by Resistant Starch. Gastroenterology. 2010; 138(5). DOI:10.1016/S0016-5085(10)61607-1 (Abstract Only)

Publications currently under peer review

 Richard K Le Leu, <u>Jean M Winter</u>, Karen J Humphreys, Graeme P Young, Claus T Christophersen, Ying Hu, Silvia W Gratz, Rosalind B Miller, David L Topping, Anthony R Bird, Michael A Conlon, Butyrylated starch intake can prevent red meat induced O⁶-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. *British J. Nut*.

18

National conference presentations

- 1. <u>Poster Presentation</u>: **Australian Health and Medical Research Congress**, Melbourne, November 2014, Methyl-guanine-methy-transferase repairs promutagenic adducts and influences the acute apoptotic response to alkylating agents: Interactions of dietary red meat, green tea and gender.
- Oral Presentation: Australian Society for Medical Research SA Annual Scientific Meeting, Adelaide, June 2014, Diverse effects of resistant starch and red meat on proliferation and O⁶Methyl-2-deoxyguanasine adduct formation in the distal colon of Msh2 deficient mice: Consequences for colorectal carcinogenesis.
- 3. <u>Oral Presentation</u>: **Australian Society for Medical Research SA Annual Scientific Meeting**, Adelaide, June 2013, Accumulation of pro-mutagenic and oxidative DNA adducts in the distal colon after consumption of dietary haem does not increase colorectal cancer in the mouse.
- 4. <u>Oral Presentation</u>: Australian Society for Medical Research SA Annual Scientific Meeting, Adelaide, June 2012, Induction of Pro-mutagenic Adducts in the Colon and Risk for Colorectal Cancer: Regulation by Resistant Starch.

International conference presentations

- Oral Presentation (Registration waived): 8th Congress of International Society of Nutrigenetics/Nutrigenomics (ISNN), Gold Coast, QLD, Australia, May 2014 Diverse effects of resistant starch and red meat on proliferation and O⁶Methyl-2-deoxyguanasine adduct formation in the distal colon of Msh2 deficient mice: Consequences for colorectal carcinogenesis.
- 2. <u>Oral and Poster Presentation:</u> **Environmental Mutagen Society Annual Meeting**, Seattle, Washington, USA, September 2012, High Dietary Protein and DNA Damage in the Mouse Colon and Human Rectal Epithelium: Regulation by Resistant Starch.