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ABSTRACT 

The objective of this research is to investigate different fusion models that integrate 

aerial imagery with LiDAR data for landscape object extraction. Pixel- and feature-

level fusions are particularly investigated in data- and user-driven scenarios to 

delineate a range of landscape objects on forest and semi-urban study areas. 

Thematic accuracy is evaluated against field-surveyed data and optimum fusion 

models for each study area is identified.  

The complementary nature of aerial imagery and LiDAR data is the main reason for 

their selection in this research. LiDAR data provides an accurate measurement of 

landscape structure in the vertical plane; however, LiDAR sensors have limited 

coverage in the electromagnetic spectrum. By contrast, aerial imagery provides 

extensive coverage of landscape classes in the electromagnetic spectrum but is 

relatively insensitive to variations in height of objects. As a result, the fusion of 

aerial imagery with LiDAR data has the potential to significantly improve mapping 

of the landscape. Since small footprint LiDAR and aerial imagine systems can 

achieve very high spatial, spectral and textual resolutions and suitable for site-

specific landscape mapping. However, the direct relationship between spatial 

resolution and landscape classification does need to be considered before apply any 

fusion model.  

The forest study area is in the Moira State Forest, which form a part of Barmah and 

Millewa forests near Mathoura, New South Wales on a site 1.25km x 1km consisting 

of native Eucalyptus forest. The semi-urban study area 1.25km x 1km is also in 

Mathoura township itself and contains typical semi-urban landscape objects such as 

residential and commercial buildings, open spaces, roads and gardens. 

Geometric corrections of multi-source data are a prerequisite for any data fusion 

study. Variations in sensor altitude, attitude, and calibration affect the quality of the 

fusion results. A parametric rectification model was implemented to correct these 

influences in high spatial resolution aerial imagery. The aerial triangulation-derived 

RMSE values for colour and multispectral imagery are between 0.70 and 1.17 

microns. These results meet the established standard 1-micron, or one-quarter of a 
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pixel, benchmark and provide a sound geometric basis for multi-source data fusion. 

The original 0.88m spatial-resolution aerial multispectral imagery is resampled into 

0.5m resolution for uniformity with LiDAR data. The processed LiDAR data do not 

require orthorectification, however an nDSM needs to be generated from the LiDAR 

source for use in the fusion process. The nDSM represents mean height of landscape 

objects and is computed as the difference between first and last LiDAR returns. 

LiDAR-derived object heights are compared with the field-surveyed data to check 

height accuracy. The estimates of heights from LiDAR were generally within one 

metre of field measurements, although discrepancies as high as 3m were observed.  

An extensive field survey was conducted to collect training data and gather reference 

data for thematic accuracy assessment. A complex sampling strategy was developed 

combining random and systematic sampling techniques that provide a good balance 

between statistical validity and practical application. For thematic accuracy 

assessment, error matrices were generated using reference pixel data derived from 

field-survey and aerial photo interpretation with corresponding pixels of the fusion 

results. Overall thematic accuracy as well as User’s and Producer’s accuracies were 

computed to measure the success of fusion models. Kappa analysis tested the 

significance of each matrix and determined whether the results presented in the error 

matrix were significantly better than a random result.  

For the forest study area, data-driven pixel-level fusion was implemented using an 

unsupervised model. In feature-level fusion, a watershed transformation algorithm 

was utilised for delineating tree crowns; a masking techniques was used for 

collecting tree feature attributes; and finally an unsupervised model was applied for 

delineating tree species. Thematic accuracies of pixel- and feature-level fusion 

results are assessed through error matrices derived from fusion results and field-

surveyed reference data. In pixel-level fusion results, the overall thematic accuracy 

was 64.67 percent and the Kappa Coefficient value was 0.52. The Kappa Coefficient 

of the pixel-level fusion results indicates moderate agreement between the fusion 

results and the reference data. In feature-level fusion results, the overall thematic 

accuracy was 86.33 percent and the Kappa Coefficient was 0.82, which being close 

to 1, indicated substantial agreement between fusion results and reference 

measurement. Statistical comparison of the pixel- and feature-level fusion results 
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indicated that, at the 95 percent confidence level, the standard normal deviation of 

the Kappa Coefficient was 6.68, the results were significantly better than a random 

result and feature-level fusion achieves better results than the pixel-level fusion. 

Segmentation and subsequent feature classification using a data-driven model 

provided superior results to pixel-level fusion. 

In a user-driven scenario, a hierarchical landscape classification scheme was 

developed for the delineation of semi-urban landscape objects using pixel- and 

feature-level fusions. 4-band multispectral imagery and LiDAR-derived nDSM have 

incompatible statistics and unable to represent into a normal class model as a result 

statistical methods of supervised fusion is not considered. Pixel-level fusion utilises 

the supervised parallelepiped technique to fuse these datasets. In the feature-level 

fusion, the feature delineation is achieved through multi-resolution segmentation and 

subsequently classifies features using knowledge-driven rules. The spectral, spatial 

and contextual properties of the features are utilised to develop these knowledge 

rules.  

For the semi-urban study area, the thematic accuracy of pixel-level fusion results was 

73.25 percent with Kappa Coefficient 0.67. There is thus substantial agreement 

between pixel-level fusion results and reference data. By contrast, feature-level 

fusion of the same datasets gave 88.38 percent overall accuracies and Kappa 

Coefficient 0.86 indicating excellent agreement between fusion results and reference 

data. Comparing fusion results indicated a significant difference between the pixel- 

and feature-level fusions results. At the 95 percent confidence level, the standard 

normal deviation of the Kappa Coefficient for pixel- and feature-level fusions using 

multispectral imagery with LiDAR data was 3.70, well above the standard 1.96 

threshold. This indicates a significantly better than random result and shows that 

feature-level fusion performs better than the pixel-level fusion. Particularly in the 

delineation of Shadow classes, the User’s and Producer’s Accuracies for feature-level 

fusion results were substantially better than pixel-level fusion results. 

With high spatial resolution data the interclass variability within the class was also 

high meaning that the ‘pepper and salt’ effect was widespread in pixel-level fusion 

results for both study areas. In particular, the pixel-level fusion in the forest study 
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area did not clearly delineate individual trees when they were clumped. It also 

suffered from mixed-pixel effect for individual trees as it showed multiple tree 

species within a single canopy. Feature-level fusion overcame this problem by 

defining the tree canopy areas first, then extracting feature attributes from the 

segments, and finally identifying the tree species using unsupervised feature 

classification.  

Replacement of multispectral imagery with colour imagery revealed results were not 

much different in feature-level fusion but for pixel-level fusion of multispectral 

imagery lead to less misclassification for the higher radiometric depth (16-bit) than 

did colour imagery (8-bit). The exclusion of the LiDAR data greatly reduced the 

quality of the fusion results. The results of the fusion accuracy for inclusion and 

exclusion of LiDAR are small in pixel-level fusion but are large in feature-level 

fusion. The same class of objects has conflicting spectral properties but inclusion of 

LiDAR-derived height resolves that conflicts and plays a vital role in landscape 

mapping. The research has lead to the conclusion that feature-level fusions perform 

better in classifying landscape objects than pixel-level fusions in both data- and user-

driven scenarios. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter discusses the concept of remote sensing data fusion as a framework to 

extract different landscape objects. Different data fusion-levels are outlined and their 

comparative advantages and disadvantages are discussed. The objectives of the 

research are stated, as well as the benefit and significance of the research. Lastly, the 

research methods are formulated and the thesis structure is outlined. 

1.1 Data Fusion in Remote Sensing 

Remotely sensed data have been used widely for monitoring and mapping landscapes 

at different spatial and temporal scales. Today, the number of Earth observation 

satellites and airborne sensors has increased substantially, leading to the increased 

availability of data at many spatial, temporal and spectral resolutions. It is now 

possible to have several concurrent images of the same scene providing different 

types of information. Therefore, remotely sensed data fusion has emerged as a new 

and important research area. Data fusion is a process that deals not only with 

combining multi-source images, but also provides improved information for 

decision-making (Hall and McMullen, 1997). The most common case is the fusion of 

two images acquired respectively by a multispectral sensor and by a panchromatic 

sensor having higher spatial resolution. The improvement in spatial resolution of the 

resulting fused image reveals more detail at a larger scale than the original 

multispectral image. This improvement is noteworthy also in respect of the 

panchromatic image given the enhanced spectral content of the new image. 

In the literature a large number of definitions can be found for the term data fusion. 

A comprehensive list of definitions and their sources are found in Wald (1999) and 

Pohl and van-Genderen (1998). Keys et al. (1990) and Franklin and Blodgett (1993) 

described the term fusion in a pixel context. However, according to Wald (1999, p. 

1191) “data fusion is a formal framework in which are expressed means and tools for 

the alliance of data originating from different sources. It aims at obtaining 

information of greater quality; the exact definition of ‘greater quality’ will depend 
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upon the application”. Image merging (Carper et al., 1990) and image integration 

(Wehch and Ehlers, 1988) are equivalently used in the fusion context. Data 

integration (Nandhakumar, 1990) represents a broader view and comprises image 

fusion algorithms as well. In this case, not only are remote sensing images fused, but 

also further ancillary data (such as topographic maps, GPS coordinates and 

geophysical information) contribute to the resulting image (Harris and Murray, 

1989). According to Wald (1998) the term integration implicitly refers more to 

concatenation (i.e. increasing the stack vector) than to the extraction of relevant 

information. According to Richards and Jia (2005), labelling pixels by drawing 

inferences from several available sources of data is referred to as data fusion or 

multi-source classification. As with the treatment of single image datasets, analysis 

of mixed data types can be carried out photo-interpretatively or by using matching 

analyses.    

In this study, the term data fusion is defined to cover the whole aspect of the multi-

source classification (Richards and Jia, 2005) and is not restricted only to pixel 

domain, but is also extended into feature domain. This term also includes the 

geometric fusion of aerial imagery with LiDAR data as well as the extraction of 

landscape information from their complementary properties.  

In general, data fusion techniques can be divided into three categories according to 

the stage at which the fusion is performed: pixel-, feature- and decision-level fusion 

(Schistad-Solberg et al., 1994; Pohl and van-Genderen, 1998). The concept of data 

fusion is visualised in Figure 1.1. 
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Figure 1.1 Processing levels of data fusion, after Pohl and van-Genderen (1998) 

1.1.1 Pixel-level fusion 

At the lowest level, pixel-level fusion uses the registered pixel data from all image 

sets to perform detection and classification functions. This level has the potential to 

achieve the greatest fusion performance only at the highest computational expense 

(Waltz, 2001). Figure 1.1(a), illustrates the concept of pixel-level fusion. In this 

process, registration and subsequent resampling play a vital role in aligning all image 

data into a common pixel spacing and map projection. Misregistration errors cause 

artificial colour of objects in multi-sensor data, which falsifies the interpretation later 

on (Pohl and van-Genderen, 1998).  

1.1.2 Feature-level fusion 

At the intermediate level, feature-level fusion combines features that are detected and 

segmented in the various data sources. Figure 1.1(b), shows a conceptual model of a 

feature-level fusion. Features that correspond to the characteristics of landscape 

objects are extracted from initial data sources dependent on their characteristics such 

as extent, shape and neighbourhood. Features identified from multiple sources create 

a common feature space for further classification.   
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1.1.3 Decision-level fusion 

Fusion at the decision level combines decisions of independent sensor 

detection/classification paths by applying decision rules. The main drawback of this 

process is that decision uncertainty in each sensor chain is maintained and combined 

with a composite measure of uncertainty (Waltz, 2001). Figure 1.1(c) illustrates a 

conceptual framework of the decision-level fusion.  

The above mentioned three-levels of processing are the basic building blocks of 

multi-source data fusion. During a complex process, these levels might be combined. 

In all cases, the aim is the extraction of useful information included in the source 

data while avoiding the introduction of artefacts harmful to human observations or 

matching analyses (Laporterie and Flouzat, 2003). Fusion can also be divided into 

two broad categories: data- and user-driven models. The data-driven model is 

dependent on the data itself and user-driven model is closely controlled by the users. 

Remotely sensed data fusion requires well defined techniques as well as a good 

understanding of the input data (Pohl and van-Genderen, 1998). An introduction to 

fusion of aerial imagery and LiDAR data is presented in the following section.    

1.2 Fusion of Aerial Imagery with LiDAR Data   

LiDAR is a relatively recent development in remote sensing with great potential for 

creating high resolution DSMs.  LiDAR is an active sensor that uses its own laser 

beam for acquiring 3D point clouds of the Earth’s surface. In contrast, multispectral 

aerial imagery systems use passive sensors and utilise the sun’s illumination as a 

source for capturing spectral information about the Earth’s surface. 

LiDAR data allow an accurate assessment of landscape objects in the vertical plane 

(height). However, current LiDAR sensors have limited coverage in the horizontal 

plane or electro-magnetic spectrum. Conversely, multispectral imagery provides 

extensive coverage of landscape classes in the colour spectrum but is relatively 

insensitive to height variation. The complementary nature of these two datasets has 

the potential to significantly improve the extraction and measurement of landscape 

objects. 
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The strong argument in favour of the fusion of aerial imagery with LiDAR data is 

that LiDAR points are not distributed evenly and usually have gaps. As a result, the 

3D structure of objects might not be well defined (Baltsavias, 1999). It thus becomes 

fairly complex to obtain a good 3D model of the Earth’s objects with a low density 

of LiDAR returns. The idea of exploiting the complementary properties of aerial 

imagery and LiDAR data is to extract additional information from the aggregated 

data for a more complete surface description.  

1.3 Problem Statement 

Pixel-level fusion is simply the merging of pixels from images that correspond to the 

same feature space. Although this concept is easy to understand, several issues 

require consideration. 

Firstly, consider the geographic registration and measurement scale of each data 

source. Since different data sources are likely to have different registration and 

different measurement scales, it is required to bring all datasets into the same 

registration and same spatial scale. In passive aerial imagery, data is collected in the 

electro-magnetic spectrum as a ground reflectance unit. In active LiDAR sensors, 

object height is recorded as a phase difference between the transmitted and received 

signal backscattered from the objects. When these two data sources are fused then 

the choice of a data normalisation scheme is conceptually complex. 

A second issue is the determination of the contribution of various data sources in a 

fusion model. Data sources that display a large-scale variation dominate the fusion 

process. For instance, if the first data source in a two-source case has a dynamic 

range of 8 bits, and the second has a dynamic range of 16 bits, then the second data 

source is more likely to dominate the fusion process due to the effects of the 

measurement scale. 

A third issue concerns the uncertainties inherent in different data sources. In pixel-

level fusion, each data source contributes equally to the fusion process in 

determining the location of the decision boundaries in feature space. In practice, it is 

not possible to get equally reliable data, hence reducing the possibility of achieving 

highly accurate fusion results. 
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Finally, fusion applications can be developed through data- and user-driven 

approaches. The data-driven technique is dependant on the data itself and used when 

little is known about the data before fusion. In contrast, user or user-derived rules 

closely control user-driven techniques. Results can vary awing to these different 

approaches so we need to address this for different landscape types.       

Traditionally, data fusion is tackled at the pixel-level, however feature-level fusion 

has gained attention recently due to the availability of robust segmentation 

algorithms and the reduction of computational expense. Feature-level fusion starts 

with the crucial initial step of grouping neighbouring multi-source pixels so that they 

represent meaningful features. In the segmentation and topology generation process, 

the resolution and the scale of the expected features play a vital role (deKok et al., 

1999). Once the overall image has been segmented, measurements are performed on 

each region and adjacency relations between regions can be investigated (Soille, 

2003).  

The major drawback of pixel-level fusions is that they often lack spatial consistency. 

A pixel is fused depending on its spectral values, regardless of its neighbour values. 

Fusions are therefore very sensitive to noise and do not take spatial information into 

account (Soille, 2003), as a result, the spectral information is not sufficient to 

recognize objects in high spatial resolution images, particularly when the GSD is less 

than 5m (Rego and Koch, 2003; Blaschke et al., 2001). In these situations, sun 

illumination angle and shadow can play a vital role in recognizing objects in the 

landscape. In pixel-level spectral analysis, the same objects might be recognized as 

different objects. Although the improvement in spatial resolution can reduce the 

problem of mixed-pixels, the internal variability and the noise within object are 

increased. As a consequence, traditional pixel-level fusions produce too many, or 

poorly defined, classes because their clusters are built upon spectral homogeneities 

only (Schiewe et al., 2001). As an alternative to pixel-level fusion, feature-level 

fusions have an ability to improve accuracy and interpretability in high spatial 

resolution images (Aplin et al., 1999).  

Although feature-level fusions have some promising attributes, there are several 

critical points that need to be considered. Currently, feature-level fusion algorithms 
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are heavily reliant on users’ input for the knowledge rules. A common criticism of 

this user-derived approach is that the user needs to have a significant knowledge of 

the features of interest in order to choose the best parameters for identifying and 

classifying the features from multi-source data (deKok et al., 1999). The user needs 

to be aware of the spatial and spectral behaviour of the features in different data 

sources, understand the underlying processes, and have good ground information to 

define the decision key. Sometimes the ‘ideal user’ does not exist. Another problem 

area is the transferability of an existing protocol of a feature-level fusion to a new 

area. The user must use his or her judgment (Flanders et al., 2003). With respect to 

the degree of automation, the feature-level fusion is time-consuming and requires 

manual interactions (Schiewe et al., 2001). Firstly, during the segmentation process 

the choice of scale parameters, as well as the setting of weights for the input data 

sources, has to be chosen by the user. Secondly, in contrast to human analysis, the 

segmentation and the fusion steps are strictly separated. Lastly, the segmentation and 

subsequent processes that will produce a fusion result need to be evaluated in terms 

of their accuracy before they can be used for their designated purpose.  

Decision-level fusion is not included in this research. It is more complex and has 

more uncertainty than pixel- and feature-level fusions.  

1.4 Research Objectives 

The aim of this research is to investigate data- and user-driven fusion models for 

extracting forest and semi-urban landscape objects by the synergy of active and 

passive sensor-derived data. Pixel- and feature-level approaches are particularly 

investigated in order to evaluate the potential of aerial imagery and LiDAR data 

fusion and also to ascertain the best fusion model. Thematic accuracies of the fusion 

results are evaluated against known landscape objects derived from field-surveyed 

data. The best performing fusion model is selected for landscape object extraction for 

each of the study areas. The fulfilment of these research objectives should enable 

answers to be found to the following research problems identified for the particular 

study area: 

(a) can a robust methodology be developed for fusing aerial imagery with LiDAR 
data? 
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(b) what are the relative merits of pixel- and feature-level fusion methodologies in 
data- and user-driven domains? 

(c) is thematic mapping accuracy improved by fusing aerial imagery with LiDAR 
data? 

1.5 Significance and Benefits of the Research 

The number of active and passive sensing systems has increased substantially in 

recent years and data are available in many spatial, spectral and temporal resolutions. 

Therefore, remotely sensed data fusion has emerged as an important research area. 

The fusion of disparate and complementary data not only enhances the image quality, 

but also increases the reliability of the interpretation and classification. The fused 

data provide robust operational performance, such as increased confidence, reduced 

ambiguity, improved reliability and improved classification (Schistad-Solberg et al., 

1994; Rogers and Wood, 1990). 

Data fusion techniques take advantage of the different physical natures of aerial 

imagery and LiDAR systems and enhance the mapping of various landscape objects. 

The object enhancement capability of fusion is visually apparent in pan-sharpened 

images (fusion of panchromatic and multispectral images) that are superior to both 

original images. The fusion of aerial imagery with LiDAR sensor-derived data 

enhances semantic capability of the images and yields information that is otherwise 

unavailable or hard to obtain from single-source data. Fused images maximise the 

amount of information that can be extracted from remotely sensed data.  

Thematic mapping accuracy is improved when multiple remotely sensed data are 

introduced in the fusion process. The classification of multispectral data relies solely 

on the spectral signature of landscape objects. Some vegetation species cannot be 

separated due to their similar spectral response. LiDAR data can contribute in a 

different way, through difference in height, shape and roughness of the observed 

landscape objects. The use of multi-source data fusion becomes more popular with 

increased availability of sophisticated software and hardware facilities to handle the 

increased volume of data (Pohl and van-Genderen, 1998). A new trend in this respect 

is feature-level fusion or Object Based Image Analysis (OBIA), because the 

conventional pixel-level fusion is less capable of processing multi-source data.  This 
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research is significant for the fusion of aerial imagery with LiDAR data because it 

provides: 

(a) a comprehensive approach to the analysis of landscape structure using multi-

scale and multi-source remote sensing data. Different pixel- and feature-level 

fusions are compared, and the potential to improve thematic mapping accuracy 

is demonstrated 

(b) a better understanding of the performance of data- and user-derived fusion 

models for landscape mapping 

(c) a robust methodology to interpret complex landscape classes, and 

(d) results can be adopted in other environments with similar conditions 

1.6 Research Methodology 

The sources of multi-scale remotely sensed data used for this research are aerial 

imagery and LiDAR data. Broadly the approaches used in this research are to: 

(a) review the use of remotely sensed data fusion techniques for environmental 

information extraction, focusing on different pixel- and feature-level fusion 

techniques. The effect of data scale in relation with the landscape scale is 

reviewed to find an optimum scale for site-specific fusion analysis. Thematic 

accuracy as well as comparative accuracy are assessed 

(b) define a landscape classification scheme suitable for mapping a range of 

landscape objects using the spectral and spatial properties of the multi-source 

remotely sensed data. Select the study areas for implementing fusion models 

and formulate a sample data collection strategy for evaluating the thematic 

accuracy of the fused maps 

(c) compile relevant aerial imagery and LiDAR data for the study areas in a 

format suitable for analysis and fusion. Also collected ancillary data such as 

obtained from topographic maps and satellite images for better understanding 

of the study areas   
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(d) formulate a comprehensive field-surveying strategy for collecting GCP 

positions, validating LiDAR-derived height data and collecting samples for 

training and accuracy assessment. A complex sampling strategy is developed 

to balance statistical validity and practical application.    

(e) orthorectify aerial imagery with collected GCPs using digital planimetric data 

derived from onboard navigation systems. A rigorous geo-referencing system 

is employed to fine-tune the geometric registration of the optical imagery and 

combine all the multi-source data in the same pixel spacing. A normalised 

DSM is prepared from the LiDAR-derived first and last return data for 

representing a landscape object’s height. The LiDAR-derived height data is 

validated using field data 

(f) develop a comprehensive fusion analysis framework to fuse aerial imagery 

with LiDAR data at pixel- and feature-level. Different data- and user-driven 

fusion processes are developed to better delineate landscape-specific objects 

in different study areas 

(g) assess the thematic accuracy of the fusion results using field-derived sample 

data. Evaluate the recognition of different landscape objects, considering 

variations in spectral and spatial properties of the fused data 

(h)  summarise landscape properties through analysis of fused results. Compare 

thematic accuracies of the fusion results and evaluate the suitability of the 

fusion techniques for each of the study areas 

1.7 Thesis Structure 

The thesis comprises of eight chapters. Chapter 1 outlines the research objectives and 

the background of data fusion as a tool to improve landscape mapping.  

Chapter 2 reviews the principles of different data fusion techniques and their 

comparative advantages and disadvantages. Previous research regarding remotely 

sensed data fusion and its application for landscape mapping is discussed. The 

techniques that are available for the fusion of aerial imagery with LiDAR data are 
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reviewed. Accuracy assessments of pixel- and feature-level fusions are discussed and 

compared using statistical, visual and graphical analysis techniques.   

The location and the characteristics of the major landscape classes of the study areas 

are given in Chapter 3. The aerial imagery and the LiDAR data are introduced and 

fusions for extracting different landscape objects are justified. In addition to aerial 

imagery, the topographic maps and extensive field-surveyed data that are used in this 

analysis are presented.  

Chapter 4 presents the geometric correction procedures for the datasets. Geometric 

correction consists of two steps: orthorectification of aerial imagery and nDSM 

derived from LiDAR data. The geometric corrections are an essential precursor to the 

fusion of aerial imagery with LiDAR data. Orthorectification provides a common 

planimetric base for the fusion of multi-source data. LiDAR-generated nDSM 

provides an object’s height, which is later used in the fusion process.  

Chapter 5 focuses on the implementation of data-driven pixel- and feature-level 

fusion models for delineating individual tree attributes in the forest study area. The 

data-driven fusion models are applied to the forest study area for the presence of 

three Eucalyptus species (camaldulensis, largiflorens and microcarpa). Data-driven 

fusion model interpretations solely on the data are used when little is known about 

data before fusion. In pixel-level fusion, an unsupervised algorithm is implemented 

for the fusion of multispectral imagery with LiDAR data. In feature-level fusion, a 

watershed segmentation technique is used for delineating individual tree features 

from the forest study area then masking technique is used for collecting tree feature 

attributes from multi-source data. Finally an unsupervised algorithm is applied to the 

tree features to discriminate different tree species.  

Chapter 6 focuses on the implementation of different user-driven fusion models for 

differentiating between six classes of landscape structures in a semi-urban study area. 

Users closely control user-driven fusion models and knowledge rules are applied in 

the fusion process. In pixel-level fusion, supervised algorithms are implemented for 

the fusion of aerial imagery with LiDAR-derived nDSM data. In feature-level fusion, 

multi-resolution segmentation helps to define landscape features, and subsequently a 

rule-based fuzzy algorithm is applied.  
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Chapter 7 presents the overall findings of this research. The accuracies of pixel- and 

feature-level fusion results are discussed for both the forest and semi-urban study 

areas. Fusion results are compared and performances of the fusion models are 

discussed. In the end, research objectives are re-examined in light of the findings of 

this research.  

Chapter 8 presents the conclusions based on the findings of this research. 

Experimental results are reviewed in the context of overall research and 

recommendations are made for future work. 
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CHAPTER 2 

2 A REVIEW OF REMOTELY SENSED DATA FUSION PROCESSES 

This chapter reviews the principles of remote sensing data fusion for distingushing a 

range of landscape objects. The effect of scale in a hierarchical landscape 

classification scheme is reviewed in the framework of extracting different landscape 

objects from multi-source data. Different fusion techniques are presented and the 

accuracies of results are evaluated to ensure the quality of fusion products. Research 

and development regarding the fusion of aerial imagery with LiDAR data are also 

presented. 

2.1 Introduction 

Fusion techniques for remotely sensed data are used to enhance image interpretation 

in an ever-growing number of cases. Objectives of data fusion, as well as the 

methods used, are various; exhaustive overviews of the arguments can be found in 

Wald (1999), and Pohl and van-Genderen (1998). Among the most important aims of 

data fusion is the production of spatially improved images suitable for classification 

(Teggi et al., 2003). For a classification task, the goal of fusing data from different 

sensors is to reduce the classification error compared to single source classification 

(Schistad-Solberg et al., 1994). A decision on which fusion technique is the most 

suitable is very much driven by its application. Therefore, it is very difficult to make 

a general statement on the comparative efficiency of different fusion techniques 

(Pohl and van-Genderen, 1998).  

Before applying any fusion technique two most fundamental points need to be 

considered: the effect of scale on multi-source remotely sensed data and its relation 

with the objects to be extracted (Quattrochi and Goodchild, 1997). The following 

sections review these issues in the context of fusion applications. 

2.2 Review of Scale Effect in Image Fusion  

Scale is an important factor in the application of remote sensing that directly 

influences analysis. The scale effect was considered as the first challenge of using of 
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remotely sensed data for earth observation (Raffy, 1994). The fundamental reason for 

the continuing interest in scale in remote sensing is that spatial resolution is the 

primary scale of measurement (Atkinson and Aplin, 2004). As the number of sources 

of multispectral remotely sensed data increases and the variety of objects to be 

differentiated becomes greater the selection of appropriate spatial resolution is a 

critical factor identifying these objects.  

In remote sensing, pixel size is considered as a measurement scale (spatial 

resolution), but it takes a number of pixels (operational scale) for a feature (e.g., 

buildings, roads, water bodies) to be recognized, and a much larger number of pixels 

(geographical scale) to understand spatial patterns in landscapes (Cao and Lam, 

1996). To select imagery with appropriate spatial resolution for a study, one should 

examine the characteristics of the scene and how scale and resolution affects the 

determination of objects in that scene (Han et al., 2008). Several methods of study 

the effects of scale and resolution have been suggested. Cao and Lam (1997) 

confirmed Benson and Mackenzie’s (1995) experiment of scale effects on landscape. 

Landsat TM (band 4) data for an area in northeastern Wisconsin was acquired at a 

resolution of 30m per pixel. This area contained numerous lakes of various sizes. 

Application of a pixel aggregation algorithm successively generated 60,120, 240, 480 

and 960m per pixel resolution images. After six images were produced, three basic 

landscape parameters were extracted from each: (a) the percentage of the scene 

covered by water, (b) the number of lakes included, and (c) the mean surface area of 

the lakes. Figure 2.1 graphs the results of this data extraction process. 

As the ground resolution cell size increases from 30 to 960m, the percentage of water 

defined as lake at first increased slightly and then continually decreased (Figure 

2.1a). At the same time, the number of lakes decreased in a non-linear fashion and 

the mean lake surface area increased nearly linearly (Figure 2.1b,c). This study 

examines how landscape parameters change with scale (e.g., the effect of spatial 

resolution). 
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Figure 2.1 Influence of spatial resolution on measurement of selected landscape 
parameters (after Benson and Mackenzie, 1995) 

The spatial resolution of an image has intricate effects on image classification. 

Markham and Townshend (1981) found that image classification accuracy is affected 

by two factors. The first factor is the influence of boundary pixels on classification 

results. As spatial resolution becomes finer, the proportion of pixels falling on the 

boundary of objects in the scene decreases. Boundary pixels have a mix of elements 

so reducing the number of boundary pixels reduces confusion in the classification 

process, resulting in higher classification accuracy. The second factor which 

influences classification accuracy is that the spectral variation of land cover types 

also increases in finer spatial resolution images. Variation within a land cover class 

decreases the spectral separability of classes and results in lower classification 

accuracy. The net effect of finer spatial resolution is a combination of these two 

opposing factors, which may vary in importance as a function of the relative size of 

the object under observation. The number of mixed pixels containing more than one 
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land cover type is a function of both the complexity of the scene and the spatial 

resolution of the sensor (Simonett and Coiner, 1971) 

Woodcock and Strahler (1987) investigated the effect of spatial resolution on the 

local variance observed in remotely sensed imagery for object classes. Woodcock et 

al. (1988) and Atkinson and Aplin (2004) used a variogram to choose an appropriate 

spatial resolution for remote sensing investigations. A method based on statistical 

separability was developed to explore the scale effect on remotely sensed 

classification and to thereby determine optimal resolution (Bo et al., 2005). An 

approach based on entropy was proposed by Han et al.(2008) to select an optimal 

scale in image classification with desirable overall classification accuracy. Entropy 

was used to describe uncertainty in image classification.  

The choice of an appropriate scale, or spatial resolution, for a particular application 

depends on several factors. These include the information desired about the ground 

scene, the analysis methods to be used to extracted the information, and the spatial 

structure of the scene itself (Woodcock and Strahler, 1987). As a result, the objects 

on the ground that are to be mapped play a vital role in the selection of the scale. 

Airborne LiDAR and optical imagining systems can achieve very high spatial, 

spectral and textual resolutions. As a result fusion of these sensor-derived data is 

very effective for site-specific landscape mapping; however, the direct relationship 

between spatial resolution and the landscape classification scheme need to be 

considered before implementing any fusion model. 

2.3 Review of Hierarchical Landscape Classification Schemes 

Standardised landscape classification schemes are required to encourage efficient use 

of the multi-source fusion methods and effective management of resources. 

Consistent and robust landscape data from multiple sources are essential for planning 

for management of the environment. Application of standardised land cover 

classification schemes provides a fundamental framework for the establishment of 

data fusion systems at local, regional and national scales. 

There is no ideal land cover classification scheme and it is unlikely that one could 

ever be developed. There are different perspectives in the classification process and 
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the process itself tends to be subjective, even when an objective numerical approach 

is used (Anderson et al., 1976). Geographic data are imprecise in nature due to 

multidimensionality and inherent fuzziness of many features and their inter-

relationships. Current land cover classification schemes are based on hard boundaries 

between the classes, which are derived from a priori knowledge and are difficult to 

use. Nevertheless, land cover classification schemes are widely used because they are 

scientifically based and individuals using the same classification system can compare 

their results (Jensen, 1996). 

The most widely utilised multi-level land cover classification scheme was developed 

by the USGS (Anderson et al., 1976) to accommodate different sensor-derived data 

at a range of spatial resolutions. The USGS classification scheme comprises four 

levels of land use and land cover classes arranged in a hierarchical manner. 

Relationship among the classification levels, scale and pixel size are presented in 

Table 2.1.   

Table 2.1 Data characteristics equivalent to levels of interpretation for remotely 
sensed data (after Anderson et al., 1976) 

Classification 
level 

Scale Pixel size 
(m) 

Data source 

I Less than 1:100 000 80-30 Medium resolution satellite data 
II Less than 1:80 000 3-2 Moderate resolution satellite 

data and high altitude aerial 
photography 

III 1:80 000 to 1:20 000 2-1 High resolution satellite data 
and medium altitude aerial 
photography 

IV Larger than 1:20 000 1-0.5 Very high resolution satellite 
data and low altitude aerial 
photography 

 

Levels I and II classifications are suitable for employing data on a nationwide, 

interstate, or statewide basis. More detailed land cover data such as those obtained at 

Levels III and IV are used for regional, county or municipal level mapping. Only 

Levels I and II have been defined by Anderson et al (1976), and these are suitable for 

the classification of medium resolution satellite imagery. The USGS classification 



 

 

18 

system was designed primarily for interpretation of analog imagery and does not 

consider the availability of higher spatial resolution data nor the implications of 

multi-source data fusion techniques. 

The USGS classification system can be extended to more detailed levels (Anderson 

et al., 1976). For example, residential sub classes are given in Table 2.2. The 

breakdown of the residential class employs criteria of capacity, type and permanency 

of the residence as the discriminating factors among the sub-classes. Level III 

classification scheme is suitable for classifying images at scales ranging from 

1:20,000 to 1:80,000 and requires use of supplementary information. The categories 

under this level are designed to be adaptable to the local needs of public agencies. 

Level IV classification scheme is most useful for aerial photos at scales larger than 

1:20,000 and is suitable for multi-source data fusion. This level of classification is 

good for site-specific landscape mapping and assessment. As a whole, spatial 

resolution of the data plays a vital role in the selection of categories within 

classification scheme and allows aggregation and transfer between categories. 

Table 2.2 Residential land cover classification subsystem  

Level I Level II Level III 
1 Urban or Built-up area 11 Residential  111 Single-family Units 

112 Multi-family Units 
113 Group Quarters 
114 Residential Hotels 
115 Mobile Home Parks 
116 Transient Lodging 
117 Others 

 

There is a direct relationship between the level of detail in a classification scheme 

and the spatial resolution of remotely sensed data used (Jensen, 1996). Welch (1982) 

summarised the relationship between spatial resolution and the mapping requirement 

for urban land cover at levels I to IV in the United States systems as in Figure 2.2. 

The main finding of his study was that for mapping level II classes the spatial 

resolution is required to increase dramatically over level I. 
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Figure 2.2 Spatial resolutions as a function of the land cover classification level, after 
Welch (1982)  

2.3.1 Urban landscape classification scheme 

Mapping land cover types requires a different perspective than for urban remote 

sensing (Herold et al., 2006). Land cover considers characteristics in addition to 

those of different materials. The surface structure (roughness) affects the spectral 

signature as much as normal variations within the land cover type (e.g. buildings 

having different roof angle or cover area). Two different land cover types (e.g. 

asphalt roads and composite shingle or tar roofs) can be composed of very similar 

materials (hydrocarbons). From a material perspective, these surfaces would map as 

the same. Additional information (e.g. height data) can play a vital role in separating 

them. Thus, analysis of urban land cover would benefit by data fusion that 

contributes different sensor-derived unique information.  

Another issue for urban land cover mapping is the problem of shadowing, where the 

object causing the shadowing shows a dramatically increased elevation across a short 

distance (Dare, 2005; Yuan, 2008; Zhou et al., 2009). With the dominance of 

elevated objects such as buildings, bridges, towers and trees in the landscape, the 

proportion of the imagery that is affected by shadowing can be significant (Yuan and 

Bauer, 2006). Shadows in remotely sensed imagery occur when objects totally or 

partially obstruct the direct light from a source of illumination, casting shadows 
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(shadows cast on the ground by high-rise objects), and self shadows (the side of the 

object not illuminated) (Salvador et al., 2001; Yao and Zhang, 2006). The influence 

of shadows in remote sensing has always been an important issue (Dare, 2005). 

Although shadows have been used to aid in reconstruction of three-dimensional 

geometry, such as measurement of the shape and height of buildings (e.g., Liow and 

Pavlidis, 1990; Shettigara and Sumerling, 1998), in most of the cases, shadows are 

considered a nuisance (Zhou et al., 2009). Great difficulty arises in classification and 

interpretation of shaded objects in an image because of the reduction or total loss of 

spectral information from them (Dare, 2005; Yuan, 2008, Zhou et al., 2009).   

Multisource data fusion is one effective method for minimizing shadow problems in 

high resolution imagery (Zhou et al., 2009; Yuan, 2008). A typical multi-source data 

fusion procedure for shadow restoration is to first identify the shaded pixels in the 

image of interest, and then replace the shaded pixels in the image with non-shaded 

pixels of the same region from another image acquired at a different time (Dare, 

2005). Shackelford and Davis (2003) eliminated shaded areas in  urban land cover 

classification by simply leaving them as unclassified areas, resulting in significant 

loss of land cover information (Zhou et al., 2009). In addition to radiometric 

restoration and multi-source data fusion, spatial information such as adjacency 

relations can be used for classification of shaded areas in high spatial resolution 

imagery (Yuan and Bauer, 2006; Zhou and Troy, 2008). In this case, shadow 

classification refers to classification of the shaded areas into different land cover 

types, rather than classifying shaded areas into different types of shadows such as 

self shadow and cast shadow (Salvador et al., 2001).  

The design of an effective landscape classification scheme relies on the recognition 

of the target and sensor characteristics in conjunction with the interpretation 

approach to be applied. The urban landscape classification scheme is designed to 

utilise remotely sensed data as the primary information source, especially at the more 

detailed levels, and to incorporate multi-source data to assist in the understanding of 

landscape arrangements for more detailed interpretation. The range of data 

characteristics applicable to the derivation of each level of interpretation is given in 

Table 2.1. All low altitude airborne data are useful for interpretation of Level III to 
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IV classes. Higher spatial resolution generally enables more detailed categorisation 

of urban landscape, although in complex scenes the accuracy levels may be variable.  

2.3.2 Forest landscape classification scheme 

Botkin et al. (1984) developed a vegetation classification scheme, which is very 

similar to the USGS land cover classification scheme (Anderson et al., 1976). The 

sensor systems and spatial resolution useful for discriminating between vegetation 

types at a global to in situ scale are summarised in Table 2.3. 

Table 2.3 Relationship between the level of detail required and the spatial resolution 
of various remote sensing systems for vegetation inventories, after Botkin et al., 

(1984).  

Level Geographic Scale Spatial 
Resolution 

Sensor 

I Global 1.1 km AVHRR 
II Continental 1.1km-80m AVHRR, Landsat Multi spectral 

Scanner 
III Biome 80m-30m Landsat Multi spectral Scanner, 

Thematic Mapper, Synthetic 
Aperture Radar 

IV Region 30m-3m+ Landsat Thematic Mapper, High 
Altitude Aircraft, Large Format 
Camera, SPOT 

V Plot 3m-1m+ High and Low Altitude Aircraft, 
Small format Camera 

VI In Situ Sample Site - Surface Measurement and 
Observation 

  

The Botkin et al.(1984) study showed that the level of detail required for the chosen 

classification system dictates what spatial resolution of the remotely sensed data is 

necessary. Spectral resolution is a very important consideration, however, it is not as 

critical a parameter as spatial resolution since most of the optical sensor systems 

record different light energy in approximately the same green, red, and near-infrared 

regions of the electromagnetic spectrum.  

The classification scheme of Botkin et al., (1984)  was not directly relevant to multi-

source data fusion in vegetation mapping. Table 2.3 shows the relationship between 

geographic scales, spatial resolutions and remote sensors. The main consideration in 
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determining tree species at plot level is to identify them in both spatial and spectral 

domains. The former is satisfied by the Level V classification, and the latter by 

maximizing the interclass variance and minimising the intraclass variance. Using 

single source remotely sensed data, these conditions may not be always achieved and 

other data sources are needed to compliment spectral and spatial information. 

2.4 Review of Aerial Imagery and LiDAR Data Fusion 

In landscape mapping, the fusion of aerial imagery with LiDAR data has a promising 

future. LiDAR provides very accurate position and height information, but less direct 

information of an object’s geometrical shape, while aerial imagery offers very 

detailed information on the landscape objects, such as spectral signature, texture and 

shape. Fusing these two complementary datasets is quite promising for landscape 

object extraction and 3D modelling (Tao and Yasuoka, 2002). 

The idea of exploiting the complementary properties of aerial imagery and LiDAR 

was first initiated by Schenk and Csatho (2002) to extract semantically meaningful 

information from the aggregated data for a more complete earth surface description. 

Haala and Brenner (1999) combined a LiDAR-derived DSM with three colour 

spectral bands of aerial imagery. In this context, the most problematic task is to 

separate trees from buildings with low-resolution LiDAR data and in the absence of 

the near-infrared band. Rottensteiner et al. (2004b) used a LiDAR-derived digital 

terrain model and NDVI from a multispectal image to separate buildings in densely 

built-up urban areas. Rottensteiner et al. (2007) showed that only LiDAR data can 

detect 95 percent of all buildings larger than 70 m2: buildings smaller than 30 m2 

could not be detected. Having additional multispectral imagery in the classification 

process improves the correctness of the results for small residential buildings by up 

to 20 percent.  

Sohn and Dowman (2007) presented a building extraction method that automatically 

detects building objects and delineates their boundaries using IKONOS image and 

LiDAR data. The technique consists of a two-step procedure: building detection and 

building description. A building detection method was introduced to reduce a scene 

complexity in urban areas and simplify the building description process. The 
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technique subsequently detected dominant features comprising the urban scene, and 

finally isolated buildings from surrounding features. The results prove that terrain 

information extracted from LiDAR data together with chromatic cues provided by 

multispectral bands of IKONOS imagery can work together to detect buildings. 

Evaluation determined the completeness was 88.3 percent, the correctness was 90.1 

percent and the quality was 80.5 percent. However, a qualitative error analysis 

showed that the extracted building polygons tend to overlook some buildings (false 

negative pixels) and misclassify some objects as buildings (false positive pixels) 

because of poor point density of the LiDAR data. These errors could be reduced if 

high-density LiDAR measurements are used.  

Hofmann (2001) put forward the idea of object-based approach for detecting 

buildings and roads from high resolution satellite imagery using additional elevation 

information. Walter (2005) applied an object-based classification technique to 

multispectral and LiDAR data for detection of change in urban areas. Mutlu et al. 

(2008) fused LiDAR and multispectral data for predicting fire behavior using  

surface fuel models. 

The fusion of high spatial resolution imagery with LiDAR data for determining 

individual tree attributes were reviewed by Baltsavias (1999) and Leckie et al., 

(2003). The strong argument for fusion is that the LiDAR points are not distributed 

evenly and usually have gaps between them. As a result, the 3D structure of objects 

might not be very well defined (Baltsavias, 1999). It thus becomes fairly complex to 

obtain a good 3D model of tree canopy with low-density LiDAR returns. The idea of 

exploiting the complementary properties of aerial imagery and LiDAR data is to 

extract semantically meaningful information from the aggregated data for a more 

complete surface description (Tickle et al., 2006). Sua´reza et al., (2005) propose a 

data fusion technique using aerial photography with LiDAR data to estimate 

individual tree height in forest stands. The tree canopy model is derived from LiDAR 

layers as the difference between the first and last pulse returns. Information about 

individual trees is obtained by object-oriented image segmentation and classification. 

This analysis provides a good method of estimating tree canopies and heights. 

However, segmentation and classification are too user-dependent. The classification 

parameters are not defined automatically and exhibit no clear relationship to 
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allometry factors; instead, they are defined empirically following a trial-error 

process.  

Bork and Su (2007) compared the suitability of LiDAR data, three-band 

multispectral data, and LiDAR data integrated with multispectral information, for 

classifying spatially complex vegetation in rangelands of the Aspen Parkland of 

western Canada. Classifications were performed for both three general vegetation 

classes (deciduous forest, shrub land and grassland) and eight detailed vegetation 

classes. A Digital Elevation Model (DEM) and Surface Elevation Model (SEM) 

developed from LiDAR data incorporated both topographic and biological biases in 

community positioning across the landscape. Using multispectral data, the original 

digital image mosaic, its hybrid colour composite, and an intensity–hue–saturation 

(IHS) image were each tested. Final vegetation classification was done through 

integration of information from both digital images and LiDAR data to evaluate the 

improvement in classification accuracy. Among the land cover schedules with three 

and eight classes of vegetation, classification from the multispectral imagery, 

specifically the hybrid colour composite image, had the highest accuracy, peaking at 

74.6 percent and 59.4 percent, respectively. In contrast, the LiDAR classification 

schedules led to an average classification accuracy of 64.8 percent and 52.3 percent, 

respectively, for the general and detailed vegetation data. Subsequent integration of 

the LiDAR and digital image classification schedules resulted in accuracy 

improvements of 16 to 20 percent, with a superior final accuracy of 91 percent and 

80.3 percent, respectively, for the three and eight classes of vegetation. A final land 

cover map including 8 classes of vegetation, fresh and saline water, as well as bare 

ground, was created for the study area with an overall accuracy of 83.9 percent, 

highlighting the benefit of integrating LiDAR and multispectral imagery for 

enhanced vegetation classification in heterogenous rangeland environments. This 

study comprehensively tested the suitability of LiDAR and multispectral imagery for 

rangeland application employing only a user-driven pixel-based classification 

technique.   
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2.5 Review of Data Fusion Techniques 

In the previous chapter, it has already been mentioned that fusion can be achieved at 

three processing levels. Pixel- and feature-level fusions are the most prominent of 

them. Pixel-level fusion starts at the lowest processing (pixel) level whereas the 

feature-level fusion begins at the intermediate level after grouping the pixels into 

meaningful areas.  

Pixel-level fusion has the potential to achieve the greatest performance with the 

highest computational cost. Feature-level fusion depends on the performance of the 

segmentation process and its computational cost is the lowest due to the number of 

features being much smaller than the number of pixels.  The following sections 

review different pixel- and feature-level fusion techniques.          

2.6 Pixel-level Fusion 

Pixel-level fusion uses data from different sources at the pixel or resolution-cell level 

to perform detection and discrimination functions. One of the most important aspects 

of pixel-level fusion is that it relies heavily on the accuracy of the registration of the 

data sources being fused (Dai and Khorram, 1998). Misregistration errors cause 

artificial colours in pixel-level fusion, which falsify the interpretation later on. There 

are numerous different ways to achieve pixel-level fusion and highlight different 

aspects of the images in the final fused dataset. Some of the pixel-level fusions are 

reviewed in the following. 

2.6.1 Colour related fusion models 

There are a variety of techniques to display multi-source image data in colour. The 

following sections described most of those.  

RGB coding based fusion 

Input data are one high spatial resolution image and three coarse spatial resolution 

ones of higher spectral resolution. This method is mainly useful in the case of fusion 

between multispectral data and another image. After sampling all images at the same 

size, the high spatial resolution image replaces the coarse spatial resolution image 

having the closest spectral content. This is a very primitive way of fusing 
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multispectral image and is not very efficient with high spatial resolution imagery. 

This method is not used anymore due to the availability of more efficient methods 

(Laporterie and Flouzat, 2003). 

RGB to IHS based fusion   

The Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS) colour transformation 

is common in colour image related fusion (i.e. conventional aerial photography). In 

an RGB image, three different images are assigned to red, green and blue channels of 

a colour image, giving a colour composite image. The RGB to IHS colour 

transformation effectively separates spatial (I) and spectral (H, S) information from 

the composite RGB image.  

The IHS coding can be defined in several ways and so, the transform of RGB to IHS 

can be processed in several ways (Schetselaar, 1998). One definition can be as 

follows: 
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The mathematical context is expressed by equation 2.1 to 2.3.  I relates to the 

intensity, while 1v  and 2v  represent intermediate variables that are needed in the 

transformation. H and S stand for Hue and Saturation (Harrison and Jupp, 1990).       

The RGB to IHS technique has become a standard procedure in image analysis (Pohl 

and van-Genderen, 1998). It has undergone several improvements enabling the 

fusion of more or less than three multispectral bands (Bethune et al., 1998) or the 
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adjustment of the high resolution and intensity dynamics and or saturation dynamics 

(Carper et al., 1990). Adjustment can also be done before the RGB to IHS 

transformation (Paradella et al., 1997).    

RGB to IHS transformation enables colour enhancement of highly correlated data 

(Gillespie et al., 1986), the improvement of spatial resolution (Carper et al., 1990; 

Welch and Ehlers, 1987) and the fusion of disparate data sets (Ehlers, 1991; Harris et 

al., 1990).  

The main drawback of the colour related methods is that they only allow for a limited 

number of input bands to be fused. Another issue is that these methods only enhance 

the colour composition therefore fused images are only suitable for visual 

interpretation but not for computer generated classification. 

2.6.2 Numerical fusion models 

Fusion by numerical methods is simply the combination of pixel values from 

multiple input images using some function or formula to give a new output pixel 

value. It comprises summation, subtractions, multiplication, and division (ratios) as 

well as combination of these operations.  

Arithmetic combinations 

The combinations of certain bands of image can lead to image sharpening, i.e., 

higher spatial resolution. Common combinations are the panchromatic and 

multispectral image. However, the fusion of SAR can also improve the spatial 

structure of an image because it introduces the surface roughness to the image (Pohl 

and van-Genderen, 1998). 

Adding and multiplication  

Adding and multiplication of images are useful to enhance the contrast of the fused 

image. An example is the multiplication process expressed by the following 

equations. 

1 2( )f a bDN A w DN w DN B= + +      (2.4) 
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* *f a bDN A DN DN B= +       (2.5) 

A and B are scaling factors and 1w and 2w  weighting parameters. fDN , aDN  and 

bDN refer to digital numbers of the final fused image and the input images a and b, 

respectively. A large number of publications contain suggestions on how to fuse high 

spatial resolution panchromatic images with low spatial resolution multispectral data 

to obtain high spatial resolution multispectral imagery. The choice of weighting and 

scaling factors may improve the resulting images. Details can be found in Welch and 

Ehlers (1987), Carper et al., (1990)  and  Ehlers (1991).   

Difference and ratio       

Difference or ratio images are very suitable for change detection. The ratio method is 

even more useful because of its capability to emphasise the slight signature 

variations (Singh, 1989). In some cases the difference image contains negative 

values, therefore a constant has to be added to produce positive digital numbers.     

The Brovey transform is an example of ratio fusion methods. It is named after its 

author and uses ratios to fuse the multispectral image (Pohl and van-Genderen, 

1998). It is a formula that normalises multispectral bands used for a RGB display, 

then multiplies the results by the panchromatic image to add intensity or brightness 

to the image. The algorithm can be expressed as: 

'
1 2 ...i

bi
fusedMS PAN

b b bn

DNDN DN
DN DN DN

=
+ + +

                                          (2.6) 

where 
ifusedMSDN means the DNb of the resulting fused image produced from the input 

data in n multispectral bands multiplied by the high-resolution panchromatic image 

'PANDN .  

The numerical methods provide excellent contrast in the image domain but affect the 

spectral characteristics a great deal. The fused image derived from the numerical 

method is not suitable for further classification as the pixel values are changed 

drastically.  
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2.6.3 Statistical fusion models 

In this section all operations that deal with statistical combinations of image bands 

are reviewed. They comprise unmixing, principal component analysis, regression and 

Markov Random Field based fusions.  

Unmixing based fusion 

This approach is widely used to improve the quality of information in wide field of 

view images for the joint use of wide field and ground truth data (Laporterie and 

Flouzat, 2003). The unmixing can be performed in two ways: spectral (Van-Der-

Meer, 1999; Hu et al., 2001) and spatial (Minghell-Roman et al., 2001; Cherchali et 

al., 2000).  

Mezneda et al. (2010) developed methodology based on the linear spectral unmixing 

approach which was applied to ETM+ as well as ASTER VNIR and SWIR data for 

the mineral detection. The approach was organised in two steps; a coarse cartography 

based on the Lansat ETM+ spectral unmixing using image derived endmenber and a 

detailed cartography based on a multispectral inter-images fusion using a simplified 

version of Multisensor Multiresolution Technique (MMT). The classification of 

hybrid multispectral data, which was based on the constrained linear spectral 

unmixing generated mineral detailed maps. The results showed that the fusion of 

Landsat ETM+ and ASTER SWIR multispectral image yielded the best mineral 

detection. The unmixing methods are commonly used to retrieve temporal 

reflectance profiles combining high spatial resolution images with high temporal 

frequency ones. 

Principal Component Analysis (PCA)   

The multi-source data can be accommodated by constructing a vector space with as 

many axes or dimensions as the components associated with each pixel. PCA is a 

statistical technique that transforms a multivariate dataset of correlated variables into 

a dataset of new uncorrelated linear combinations of the original variables. The 

approach for the computation of the principal components (PCs) comprises the 

calculation of covariance/correlation matrices and eigenvectors. Shettigara (1992) 

put forward the idea of Principal Component Substitution (PCS) to increase the 
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spatial resolution of a multi-channel image by introducing  an image with higher 

spatial resolution. The channel that replaces the first principal component (PC1) is 

stretched to match the mean and variance of PC1. The higher resolution image 

replaces PC1 since this component contains the information common to all bands 

(Chavez et al., 1991).  

Richards and Jia (2005) used PCA for indetifying bush fire damage areas from multi-

temporal Landsat images. Intitailly coregistrated each dated subscenes of 4-band data 

(total 8-band for two dates) were used for generating PCA. Autoamtic polarisation 

and scaling options were chosen in the transformation process as these gave 

component images with beter visual dynamic range. The first four components were 

selected for further analysis as they contained most of the variances. The first 

component is tantamount to a total brightness image, whereas the later components 

highlight cahnges. It was the second, thrid and fourth components that were most 

striking in relation to the fire feaures of interest. An initial unsupervised classifcation 

of the first four principal components produced substantial confusion between 

water/land and fire burn/vegetation due to the nautre of the first component which 

included all the brightness values. A second test using comopnents 2, 3, and 4 was 

acceptable, although some of the richly revegetated regions were unclassified. 

Consequently, it was decided to use just components 3 and 4 in the classifcation 

since a visual inspection indicated that they contained most of the class/change 

information. The final classfication map showed that there was no confusion between 

burn and revegetating pixels, and water edge regions. The reason for this is that the 

water edge pixels are approximately constant between dates and thus are correlated. 

Their map therefore to the midgrey constrant backgorund region of the higher order 

principal components. The fire burn pixels are vegeted in one data and burned in 

another and thus quite a different range of brightness can be found in transformed 

imagery.        

The disadvantage of PCA approach is that it produces spatial distortion in the fused 

image. Spectral distortion becomes a negative factor for further processing, such as 

classification. Another difficulty of PCA is the interpretation of the colour 

composition from the three principal components, as a result interesting information 

may be lost in the other components (Chavez and Kwarteng, 1989). 
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Markov Random Field (MRF)  

Markov random field theory is a branch of probability theory for analysing the 

spatial or contextual dependencies of physical phenomena. It is used in visual 

labelling to establish probabilistic distribution of interacting labels (Li, 2009). 

Traditionally, MRF models have been used in various fields ranging from statistical 

physics (Winkler, 1995; Bremaud, 1999) to remote sensing. The original work by 

Geman and Geman (1984) on MRF-based statistical methodology, has inspired a 

continuous stream of remote sensing researchers to employ the MRF model for a 

variety of image fusion analysis tasks (Nishii, 2003; Bruzzone and Prieto, 2000; Tso 

and Mather, 1999). 

Solberg et al.(1996) developed MRF-based algorithms for image classification and 

change detection using multi-source data. A significant increase in classification 

accuracy was obtained using a MRF-based classification algorithm over other 

approaches. Kasetkasema et al. (2005) introduced a MRF model-based approach for 

super-resolution land cover mapping from multi-source remotely sensed imagery. 

This approach was based on an optimisation algorithm whereby raw coarse 

resolution images were first used to generate an initial sub-pixel classification that 

was then iteratively refined to accurately characterise the spatial dependence between 

the class proportions of the neighbouring pixels. Thus, spatial relations within and 

between pixels were considered throughout the generation process of the super-

resolution map.  

The drawback of employing MRF model is that it favours a more homogenous super-

resolution map than the isolated pixels. Therefore, it may result in the loss of small 

targets of interest.    

Linear regression 

Multiple-regression derives a variable as a linear function of multi-variable data that 

has maximum correlation with univariate data. In image fusion the regression 

procedure is used to determine a linear combination (replacement vector) of an 

image band that can be replaced by another image band (Pohl and van-Genderen, 

1998). Alternatively, an image is expressed according to another one by linear 

regression (Price, 1987). In this fusion process, the high spatial resolution band is 
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sampled from coarse spatial resolution and then local linear regression is used to 

exact high resolution data from coarse the resolution image (Laporterie and Flouzat, 

2003). Wal and Herman (2007) applied a regression-based synergy of optical, short-

wave infrared and microwave remote sensing for monitoring the grain-size of inter-

tidal sediments.  

A disadvantage of the regression method is that only reflectance from a limited 

number of wavelengths (bands) can be used to obtain significant regression models 

(as many bands are highly correlated with each other), and therefore, not all 

information in multi-source data is used (van-der-Wal and Herman, 2007). 

2.6.4 Signal-processing-based Fusion Models 

In this section, the signal processing related fusion techniques are reviewed. This 

type of fusion includes filtering, wavelet and pyramid algorithms.    

High-pass filter 

The basic principle consists in filtering the high spatial resolution band by a high-

pass filter and then injecting the high frequencies in the coarse spatial resolution 

images. This method was first developed by Schowengert (1980). At first sight, it 

seems very natural. Indeed, the main objective of multi-resolution fusion is to inject 

high spatial frequencies in coarse resolution data. However, in remote sensing, the 

spectral mixing of data induces a decrease in spectral quality. That’s why, Chavez 

(1988) suggests to decrease the content of the high frequencies extracted to limit the 

contribution of the high resolution band. 

Wavelets 

The wavelet transform is a multi-scale (multi-resolution) approach well suited to 

manage different image resolutions. The key step in image fusion based on wavelets 

is that of coefficient combination, namely, the processes of merging the coefficients 

in an appropriate way in order to obtain the best quality in the fused image. This can 

be achieved by a set of strategies. The most simple is to take the average of the 

coefficients to be merged, but there are other merging strategies with better 

performances. Pajares and Cruz (2004) reviewed three different wavelet 
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decomposition techniques: multi-scale decomposition (Zhang and Blum, 1999), the 

ARSIS (Amelioration de la Resolution Spatiale par Injection de Structures) concept 

(Ranchin and Wald, 2000) and a multi-sensor scheme (Li et al., 1995). Zhang and 

Blum (1999) established a categorisation of multi-scale decomposition. The 

objective of this fusion is to achieve a high quality image from several degraded 

images. Ranchin and Wald (2000) introduced the ARSIS concept for making use of a 

multi-scale method for the description and modelling of the missing information 

between images to be fused.  In ARSIS, the goal of the fusion is to achieve high 

spatial resolution together with a high-quality spectral content from two kinds of 

remote sensing images: images with high quality in the spectral content but low 

quality in the spatial resolution, and images with high spatial resolution but with a 

unique spectral band. Li et al.(1995) performed extensive experiments with several 

sets of images from multi-sensors including the fusion of multi-focus images. 

In the Pajares and Cruz (2004) review, it was found that the wavelet-based methods 

achieve similar results compared to the classical methods such as principal 

component analysis (PCA), intensity-hue-saturation (IHS) or Brovey transformation. 

Nevertheless, their worst reported performance was due to the presence of a high 

number of edges in the source images. When the images were smooth, without 

abrupt intensity changes, the wavelets worked appropriately, improving the results 

over classical methods. The main drawback of the wavelet-based method is found in 

the decomposition level for multi-resolution approaches. Indeed, a decomposition of 

6 requires that the source images have sizes greater than 2048 × 2048 pixels, so that 

the merging can be carried out to a resolution of 32 × 32 in wavelets with 

decomposition level of 6, otherwise it is ineffective. In classical approaches, with 

decomposition level of 4, the sizes can be of 512 × 512 pixels. 

A well-known drawback of the wavelet transformation is the shift dependency, such 

as a simple shift of the input signal, may lead to completely different transform 

coefficients. When applying wavelet transformation for the decomposition of images, 

only a certain number of scales (levels) can be accommodated (Muhammad et al., 

2002). To overcome the shift dependency of the wavelet fusion scheme, the input 

images must be decomposed into a shift invariable representation. The main 
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drawback of the wavelet-based fusions is that they are more computationally 

complex and often require the user to determine appropriate values for certain 

parameters such as threshold (Amolins et al., 2007). On another front, during signal 

processing the original data is not preserved; therefore it is hard to quantify the 

accuracy of the fused products (Phen-Lan and Po-Ying, 2008). 

Pyramid algorithms  

Pyramid algorithms utilise decomposition techniques to fuse images into coarse 

resolution and then extract data from recomposed images from the coarse resolution 

sensors. Pyramid algorithms can be divided into two distinct groups: linear 

decomposition (Aiazzi et al., 1999) and non-linear decomposition (Pavel and 

Sharma, 1996). Morphological pyramid is one of the non-linear decomposition 

techniques (Laporterie and Flouzat, 2003). The morphological pyramid concept 

combines theories of multi-resolution analysis and mathematical morphology 

enabling decomposition of any image at several resolutions and recomposing it 

exactly from them (Flouzat et al., 2001). The morphological pyramid is composed of 

two parts: the decomposition and the recomposition and can be considered as moving 

in the spatial domain. 

The morphological pyramid has several advantages. Firstly, all the pyramid process 

can be parameterised. Enabling choice of well-fitted parameters if the user has a 

priori knowledge. Secondly, the decomposition is efficient with regards to the 

structure of natural landscapes, enabling easy extraction of characteristics objects. 

Within this process, multi-resolution fusion is feasible whatever the resolution ratio 

between images. Lastly, this method is particularly efficient for updating landscape 

information by fusing coarse spatial resolution images at high temporal frequency 

with high spatial resolution images at low temporal frequency. In this way, it is 

possible to build a new composite image of great interest when two spatial 

components have two different behaviours (Laporterie and Flouzat, 2003). 

2.6.5 Classification-based fusion models 

The above-described fusions can only give half the answer for aerial imagery with 

LiDAR data fusion for landscape mapping. These algorithms can produce fused 
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images rich in spectral and spatial resolution. However, the classification process 

(manual or automated) is quite separate. Generally, these algorithms are very good 

for fusing high spatial resolution panchromatic imagery with low spatial resolution 

multispectral imagery to produce high spatial and high spectral resolution fused 

images. However, the fusion of multi-sensor data from active and passive sensors 

does not enhance images much through these processes, therefore classification after 

the fusions is difficult. Consequently, an approach considering classification is 

needed to fully (or semi-) automate the mapping process. The classification-based 

fusion techniques fall into this category: they not only enhance the spectral and 

spatial content of the image but also delineate the object of interest from multi-source 

data. 

A simple approach to deal with a pixel-level fusion problem is to extend the 

dimension of the data vectors to include various spectral and non-spectral data in the 

classification process. This approach is known as the stacked vector or augmented 

vector method (Tso and Mather, 2001; Vijayaraj, 2004; Richards and Jia, 2005). The 

stacked vector can be described by the following equation. 

1 2, ,.....
tt t t

SX x x x =         (2.7)  

Where s is the total number of individual data sources with corresponding data 

vectors 1,... sx x , and the superscript t denote a vector transpose operation. The 

stacked vector X can, in principle, be used in standard classification techniques. 

However, some prerequisites need to be fulfilled before applying any classification 

techniques on the stacked vector (Schistad-Solberg et al., 1994). They are: (1) 

various sources must be described by a common spectral model, (2) the sources 

ideally be acquired at the same time, and (3) have no changes in the pattern classes 

between the acquisition dates. This approach is certainly not valid for fusing imagery 

with other types of spatial data, e.g., topographic maps.  

If the prerequisites are fulfilled, the data vector can be used as an input to any 

standard pixel-based classification techniques. Usually, classification is performed 

with a set of target classes in mind. A review of classification schemes has been 

presented in Section 2.2. The best classification scheme includes classes that are both 
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important to this research and discernible from the data sources. Traditionally, the 

classification techniques are divided into two broad categories: data-driven and user-

driven techniques. The data-driven techniques are dependent on the data itself and 

used when less is known about data before classification (Jensen, 1996). 

Unsupervised classification technique is one example of this category. In contrast, 

the users closely control the user-driven techniques or user derived rules.  Supervised 

classification falls into this category. 

Unsupervised ISODATA approach 

Unsupervised classification techniques detect clusters of pixels in feature space and 

categorise the pixels in the clusters based on the statistical patterns inherent in the 

data. Clusters are defined with a clustering algorithm that often uses all or many of 

the pixels in the input data file for its analysis. ISODATA presented by Ball and Hall 

(1965) is the most popular unsupervised classification algorithms.  

An ISODATA algorithm is based on estimating some reasonable assignment of the 

pixel vectors into candidate clusters. They are then reclustered in such as way that 

the sum of squared errors (SSE) is reduced. The ISODATA algorithm is 

implemented by the following set of basic steps (Richards and Jia, 2005; 1993): 

(a) the procedure is initialised by selecting a number of clusters (C) in the multi-

source feature space to serve as candidate cluster centres. Let these be called 

, iim i m
∧

=       (2.8) 

 The selection of the im
∧

at this stage is arbitrary with the exception that no two 

clusters may be the same. To avoid anomalous cluster generation with unusual 

data sets it is generally wise to spread the initial cluster means uniformly over 

the data. This can also serve to enhance convergence. Besides choosing the im
∧

, 

the number of cluster C is specified beforehand by the user    
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(b) the location x of each pixel in the cluster is examined and the pixel is assigned to 

the nearest candidate cluster. This assignment would be made on the basis of the 

Euclidean distance measure between clusters 

(c) The new set of means that result from the grouping in step (b) are computed. Let 

these be denoted 

, 1,... .im i C=        (2.9) 

(d) If , iim i m
∧

=  for all i, the procedure is terminated. Otherwise im
∧

 is redefined as 

the current value of  im  and the procedure return to step (b).  

(e) Once clustering is completed, or at any suitable intervening stage, the clusters 

can be examined to see whether any clusters contain so few points as to be 

meaningless (e.g. they would not allow acceptable statistics estimates), or some 

clusters are so close together that they represent an unnecessary or indeed an 

injudicious division of the data so should be merged.  

Merging and splitting options are employed at the end of the iterations leading 

ultimately to the final clusters. The merging procedure commences by assuming that 

all initial clusters are individual classes, it then systematically merges neighbouring 

clusters by checking statistical attributes and visual interpretation. The clusters’ mean 

separation are checked and merging starts with the shortest mean separations. This 

merging and splitting method starts with a large number of clusters and fuses them 

progressively into a small number of clusters. The agglomeration is continued until 

all clusters are accumulated in background classes as well as object classes.  

Haala and Brenner (1999) applied an unsupervised classification algorithm to fuse 

multispectral imagery with LiDAR data for the extraction of buildings, trees and 

grass-covered areas. The basic idea of the proposed algorithm was to use geometric 

and radiometric information of the multispectral imagery simultaneously with nDSM 

derived from the LiDAR data. In this study, scanned images with near infrared, red 

and green spectral bands were used at a 30cm pixel footprint. For LiDAR data, 

terrain points were measured at approximately one point per square meter with an 

accuracy of 0.2m. The height data and the image were co-registered and brought into 



 

 

38 

the same spatial resolution of 0.5m. The applied unsupervised classification detects 

clusters of pixels in feature space and categorizes the pixels to the clusters based on 

the minimum distance criterion. For that purpose the ISODATA algorithm was 

utilized. With this approach, the optimal number of spectral clusters is automatically 

determined by iteratively applying split and merge operations.  

The most problematic task of the unsupervised classification is to separate different 

classes through an automatic interpretation. Haala and Brenner (1999)  stated that the 

separation of trees from buildings was a difficult task due to the relatively low spatial 

resolution of the LiDAR data. As an alternative of using all bands of multispectral 

images, the NDVI determined from the near infrared and the red portions of the 

spectrum can be used due to its potential in discriminating vegetation (Lu and 

Trinder, 2003). 

An unsupervised approach is dependent upon the data itself for the definition of 

classes. This method is usually used when less is known about the data fusion. It is 

then the User’s responsibility, after fusion, to attach meaning to the resulting classes 

(Jensen, 1996). The unsupervised approach is useful only if the classes can be 

appropriately interpreted.   

Supervised approach 

Supervised classification is the procedure most often used for quantitative analysis of 

multi-source remote sensing data. It is up to the user to define the training classes as 

a priori (before the fact) knowledge and using suitable algorithms to label the pixels 

from multi-source images as representing those classes. A variety of algorithms is 

available for this, ranging from those based on probability distribution models to 

those which partition class-specific regions using optimally located surfaces. 

According to Richards and Jia (2005), irrespective of the particular method chosen, 

the essential practical steps are as follows: 

(a) decide the set of landscape classes into which the multi-source images are to 

be classified. The landscape classification schemes, which were presented in 

Section 2.2, are generally used to derive these classes 
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(b) choose representative or prototype pixels from each of the desired set of 

landscape classes. These pixels are said to form training data. Training sets 

for each class can be established using site visits, maps and aerial 

photographs. Often the training pixels for a given class will lie in a common 

region enclosed by a border. That region is the often called a training field 

(Richards and Jia, 2005) 

(c) using the training data, the parameters of a particular classifier algorithm are 

estimated. These parameters are the properties of the probability model that 

are used to define the partitions in feature space. The set of parameters for a 

given class is sometimes called the signature of that class (Richards and Jia, 

2005) 

(d) using the trained classifier, label or classify every pixel in the multi-source 

images into one of the desired landscape classes. Here the whole scene of the 

multi-source images is typically classified 

(e) produce tabular summaries or thematic maps, which summarise the results of 

the classification 

(f) assess the accuracy of the final product using a labelled testing data set 

A range of algorithms could be used in steps (c) and (d). These algorithms can 

broadly be divided into parametric and nonparametric domains (ERDAS, 2002). A 

parametric decision rule is trained by the parametric signatures. These signatures are 

defined by the mean vector and covariance matrix for the data file values for the 

pixels in the signatures. When a parametric decision rule is used, every pixel is 

assigned to a class since the parametric decision space is continuous. Minimum 

distance and maximum likelihood are the common parametric classifiers. A 

nonparametric decision rule is not based on statistics; therefore, it is independent of 

the properties of the data. If a pixel is located within the boundary of a nonparametric 

signature, then this decision rule assigns the pixel to the signature’s class. Basically, 

a nonparametric decision rule determines whether or not the pixel is located inside 

the nonparametric signature boundary. Parallelepiped classifier is one of the common 

nonparametric decision rules. 
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Parametric decision rule-Minimum distance classifier 

The minimum distance decision rule (also called spectral distance rule) is based on 

spectral distance between the measurement vector for the candidate pixel and the 

mean vector for each signature. The equation for classifying by spectral distance is 

based on the equation for Euclidean distance (Eq. 2.2). 

2

1
( )

n

xyc ci xyi
i

SD Xµ
=

= −∑       (2.10) 

where ‘n’ is the number of bands or diminutions, ‘i’ is a particular band, ‘c’ is a 

particular class, xyiX is the data file value of pixel x, y, in band ‘i’, ciµ  is the mean of 

data file values in band ’i’ for the sample for class ‘c’ and xycSD  is the spectral 

distance from pixel x, y, to the mean of class ‘c’. When spectral distance is computed 

for all possible values of c (all possible classes), the class of the candidate pixel is 

assigned to the class to which SD is the lowest. The main drawback of this classifier 

is that it does not take into account other statistics; as a result, every pixel is 

classified although some should be unclassified due to the large spectral distance to 

the mean of the sample. 

Parametric decision rule-Maximum likelihood classifier 

The maximum likelihood decision rule is based on the probability that a pixel 

belongs to a particular class. The basic equation assumes that these probabilities are 

equal for all classes, and that the input data have normal distributions. If the user has 

a priori knowledge that the probabilities are not equal for all classes, then weighting 

factors can be specified for particular classes. This variation of the maximum 

likelihood decision rule is known as the Bayesian rule (Hord, 1982). The equation for 

the maximum likelihood/Bayesian classifier is as follows:    

( ) [0.5 (| |)] [0.5( ) ( 1)( )]c c c c cD In a In Cov X M T Cov X M= − − − − −   (2.11) 

where D is the likelihood weighted distance, c is a particular class, X is the 

measurement vector of the candidate pixel, cM is the mean vector of the sample of 

class c, ca is the percent probability that any candidate pixel is a member of class c 
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(defaults to 1.0 or is entered from a priori knowledge). cCov  is the covariance matrix 

of the pixels in the sample of class c, | |cCov  is the determinant of cCov , 1cCov −  is 

inverse of cCov , In  is the natural logarithm function and T  is the transposition 

function (matrix algebra).  

The pixel is assigned to the class for which the weighted distance, D, is the lowest. 

This classifier is very popular and more accurate than other classifiers if the training 

datasets have a normal distribution. This is often referred to as a ‘hard’ classification 

because a pixel is assigned to only one class, even though the sensor system records 

radiant flux from a mixture of biophysical materials within the IFOV (Foody et al., 

1992). 

The maximum likelihood classifier has been widely used to fuse multi-source 

images. Mass (1999) applies a supervised maximum likelihood classifier to a 

LiDAR-derived DSM to extract different land cover features. Firstly, the original 

height data was used for discrimination between high objects such as buildings and 

trees on the one hand, and objects like streets and plain ground on the other. 

Secondly, a texture layer was prepared by applying a Laplace filter to the range 

(height) data. This emphasized edges or noise and thus delivered large values for 

vegetation, while flat roof faces had low or zero values. Finally, the slope around 

each pixel was determined from the local slopes in X and Y. The use of a slope 

image was valuable for distinguishing tilted roofs from flat roofs or streets as well as 

from trees. These three generated layers were used as inputs to a maximum 

likelihood classification, which was initialised by sparse training regions containing 

the object classes ‘flat roof’, ‘tilted roof’, ‘vegetation’, ‘flat terrain’, and ‘no data’. 

The author suggested that this process could be altered if a priori knowledge on 

building heights, roof slopes, tree height etc. is available.  

Schistad-Solberg et al.(1994) applied a multi-source data fusion framework based on 

a Bayesian formula (maximum likelihood). They fused Landsat TM images and 

ERS-1 SAR images using a maximum likelihood logic. In this process, they pre-

processed the SAR images in order to reduce noise, and included additional texture 

features that can help classification. The classification model included a priori 

information in various forms. This information was about sensor-specific noise 
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characteristics or information about the weather conditions at the time the images 

were captured. The proposed model gave significant improvement in the 

classification error rates compared to the conventional single-source classifiers. 

Overall classification accuracy of 95 percent for Landsat and 65-70 percent for SAR 

was achieved. The error rates using a non-contextual classifier were typically 3-5 

percent higher. The fusion of Landsat image with the SAR image only reduced the 

error rate by 0.3 - 4.9 percent. The benefits of fusion were more clearly demonstrated 

when fusing the Landsat image with the three SAR images captured at different dates 

and taking into account the changes in the agriculture areas.    

The main criticism of parametric classification, such as maximum likelihood, is that 

this may not be suitable when the various sources cannot be described by a common 

‘spectral’ model especially when spectral and elevation data are fused (Schistad-

Solberg et al., 1994). For instance, neither the relative heights nor the spectral 

characteristics of landscape features can be assumed to be normally distributed. 

Features have different heights and spectral ‘colour’, so that they correspond to more 

than one cluster in feature space.  

Nonparametric decision rule-Parallelepiped classifier 

In parallelepiped decision rules, the data file values of the candidate pixel are 

compared to the upper and lower limits. These limits can be either: (1) the minimum 

and maximum data file values of each band in the signature, (2) the mean of each 

band, plus and minus of a number of standard deviations, or (3) any limits that a user 

specifies, based on knowledge of the data and signatures. 

There are high and low limits for every signature in every band. When training data 

values are between the limits of a signature in every band, then the pixel is assigned 

to that signature’s class. In cases where a pixel may fall into the overlap region, the 

user must define how the pixel should be classified. It may be classified by the order 

of the signatures or by the defined parametric decision rule, or it can be left 

unclassified. This classifier is often useful for a first-pass, broad classification when 

the parallelepiped decision rule quickly narrows down the number of possible classes 

to which each pixel can be assigned before the more time-consuming algorithms 

such as minimum distance and maximum likelihood classifiers are used. 
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Meyer et al. (1996) presented a comparison between parallelepiped and maximum 

likelihood classification techniques for identification of forest species from large-

scale colour-infrared aerial photography. A semi-automated classification procedure 

was introduced and different combinations of the colour-infrared aerial photography 

were used. In all cases, the parallelepiped classification technique gave better results 

than the maximum likelihood classification technique. The accuracy was low for 

both of these classifications of a three-band data set. However, classification results 

were improved for the six new additional features generated from principal 

component transformation of original three-band data set. An average classification 

accuracy of 81 percent was achieved for the class set studied with the parallelepiped 

classification technique. The relative poor performance of the maximum likelihood 

classification technique is mainly due to the similar relationship of the class-related 

density function in the original and transformed data. In addition, the maximum 

likelihood classifier is only conditionally recommended for more than four to five 

band data (Lindenberger, 1973).       

In pixel-level fusion, supervised classification is the procedure most often used for 

fusing multi-source data in stacked vectors. This presents a number of difficulties if 

parametric methods such as maximum likelihood classification are considered. These 

include incompatible statistics of the disparate data types, with some data unable to 

be represented by normal class models, and computational cost increasing with data 

dimensionality. A nonparametric classification such as parallelepiped classification 

technique could be an appropriate algorithm to adopt since it depends only on the 

application of threshold components of the multi-source data vector (Richards and 

Jia, 2005).     

2.7 Feature-level Fusion 

In the previous section, a detailed description of different pixel-level fusion 

procedures was given. Now, feature-level fusion is presented as part of the Object 

Based Image Analysis (OBIA) concept. 

The idea of OBIA has been around since the early 1970s (de-Kok et al., 1999), but 

implementation lagged due to lack of computing power. On a limited basis, 
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specialized object-oriented software packages were employed in the 1980s to extract 

roads and other linear features (McKeown, 1988; Quegan et al., 1988). Since then, 

object-based classification techniques have developed considerably, with three main 

factors instrumental to their growing availability and use. Firstly, the sophistication 

of GIS technology, particularly raster/vector integration capabilities, has increased 

(Cowen et al., 1995). Image pixels combined with vectors provides a relatively 

straightforward approach to object-based classification (Janssen and Molenaar, 

1995). Secondly, a dedicated object-based image analysis system, known as 

eCognition was commercially released in the early 2000s (Flanders et al., 2003; Platt 

and Rapoza, 2008). Finally, high spatial resolution imagery has become common, 

prompting a new emphasis on object-oriented techniques (Franklin et al., 2003).  

The term OBIA has recently been regarded as being too broad, as this term may 

include image analysis in disciplines such as computer vision and biomedical 

imagine (Blaschke, 2010). Hay and Castilla (2008) define Geospatial Object Based 

Image Analysis (GEOBIA) as a sub-discipline of Geographic Information Science, 

devoted to developing automated analysis of remotely sensed data and produced 

GIS-ready spatial information (Johansen et al., 2010). The feature-level fusions in 

this study use the GEOBIA concepts specifically for the synergy of multispectral 

imagery and LiDAR data for landscape object extraction.    

GEOBIA builds on the traditional segmentation, edge-detection, object extraction 

and classification concepts of remote sensing image analysis and the idea of 

incorporating contextual information in classification (Haralick and Shapiro, 1985; 

Kettig and Landgrebe, 1976). These approaches all recognise the hierarchical nature 

of objects in the environment and that context and pattern is critical for effective 

image analysis. Despite the initial foundation for GEOBIA being laid in the 1970s, it 

was not until the evolution of high spatial resolution digital imagery that a significant 

niche for GEOBIA was realised (Johansen et al., 2010). A variety of software 

packages focusing on GEOBIA have been developed since the launch of eCognition 

in 2000 (Marpu et al., 2010). Among them ENVI’s Feature Extraction module (ITT, 

2011) and Feature Analyst (VLS, 2011) are the most popular. 
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GEOBIA for feature-level fusion starts with the grouping of neighbouring pixels into 

meaningful regions, a process known as segmentation (Haralick, 1983; Haralick and 

Shapiro, 1985; Pal and Pal, 1993; Kartikeyan et al., 1998). The elementary picture 

units are no longer the pixels, but connected sets of pixels. Once the image has been 

segmented, fusion of the features are performed using divergent spectral values as 

well as the additional spatial information (Blaschke and Strobl, 2001; Darwish et al., 

2003; Flanders et al., 2003; Benz et al., 2004; van-der-Werf and van-der-Meer, 2008; 

Hay and Castilla, 2008). Image segmentation is the essential pre-cursor to object-

based image analysis for the fusion of multi-source data (Hay and Castilla, 2008; 

Lang, 2008). 

2.7.1 Segmentation 

In mathematical terms, a segmentation of an image f  is a partition of its definition 

domain fD  into n  disjoint nonempty sets 1 2, ,.... nX X X called segments such that the 

union of all segments equals fD . Usually, an image that has been segmented is 

represented as a label image where each segment iX  is given a value different from 

all other segments.  

The design of an algorithm for segmenting an image into meaningful features 

requires some understanding of the image objects and their properties such as shape, 

size, orientation, grey level distribution and texture. Ideally, these properties allow to 

discriminate between different image objects (Soille, 2003). Segmentation accuracy 

determines the eventual success or failure of the further fusion analysis procedures.  

Image segmentation can be achieved using data- or user-driven approaches 

(Wealands et al., 2005). Morphological approaches (Soille, 2003) are gaining 

importance due to their unique characteristics. In the following sections, a review of 

different segmentation techniques is presented. 

Data-driven segmentation 

In data-driven approaches, the image is segmented into regions based on some 

additional information. Some of the common methods used for data-driven 

segmentation are edge detection, thresholding, region growing, and split and merge.     
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Edge detection 

Edge-based segmentation attempts to find segment boundaries by detecting edges 

between image areas with discontinuities in intensity levels. As image objects are 

assumed to show little variation in grey levels, their edges are characterised by high 

grey level variations in their neighbourhood. The task of edge detection is to enhance 

and detect these variations (Soille, 2003). Since edges are local features, they are 

determined based on local information. A large variety of methods are available in 

the literature for edge finding (Gonzalez and Woods, 2002; Rosenfeld and Kak, 

1982; Hall, 1979). Davis (Fu and Mui, 1981; Davis, 1975) classified edge detection 

techniques into two categories: sequential and parallel. In the sequential technique 

the decision whether a pixel is an edge pixel or not is dependent on the result of the 

detector at some previously examined pixels. On the other hand, in the parallel 

method the decision whether a point is an edge or not is made based on the point 

under consideration and some of its neighbouring points. As a result of this the 

operator can be applied to every point in the image simultaneously. The performance 

of a sequential edge detection method is dependent on the choice of an appropriate 

starting point and how the results of previous points influence the selection and result 

of the next point (Pal and Pal, 1993).  

There are different types of parallel differential operators such as Roberts gradient, 

Sobel gradient, Prewitt gradient and the Laplacian operators (Gonzalez and Woods, 

2002; Pal and Pal, 1993). These difference operators respond to changes in grey level 

or average grey level. The gradient operators, not only respond to edges but also to 

isolated points.  

 

 

 

Figure 2.3 Illustration of the gradient operators and their components 

The Sobel edge detector uses the Sobel approximation masks in Figure 2.3(a) to 

approximate the first derivatives. In other words, the Sobel detector computes the 
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gradient at the centre point in a neighbourhood. The Prewitt edge detector uses the 

Prewitt approximation masks in Figure 2.3(b) to approximate digitally the first 

derivatives. The parameters of this function are identical to the Sobel parameters. 

The Prewitt detector is slightly simpler to implement computationally than the Sobel 

detector, but it tends to produce somewhat noisier results. The Roberts edge detector 

uses the Roberts approximation masks in Figure 2.3(c) to approximate digitally the 

first derivatives. The parameters of this function are identical to the Sobel 

parameters. The Roberts detector is one of the oldest edge detectors in digital image 

processing and it is also the simplest (Gonzalez et al., 2004). 

The main drawback of these operators is that the resulting edges are seldom 

connected. Additional processing is then required to obtain closed contours 

corresponding to object boundaries. As an alternative, the Canny detector (Canny, 

1986) links edges by using simple hysteresis during the linking of high-gradient 

ridges. The Canny method finds edges by looking for local maxima of the gradient of 

images. The gradient is calculated using the derivative of a Gaussian filter. The 

method uses two thresholds to detect strong and weak edges, and includes the weak 

edges in the output only if they are connected to strong edges. This method is 

therefore less likely than the others to be ‘fooled’ by noise, and more likely to detect 

true weak edges.  

The disadvantages of all the edge-based segmentations are: 

a.  these operators can only work well on a single layer image. For segmentation, 

they are very good for panchromatic imagery but not useful for colour or 

multispectral images    

b. small terrain objects can be completely obscured by boundary pixel (Geneletti 

and Gorte, 2003)  

c. another challenge in edge-based segmentation is to correctly delineate the 

object of interest from the segmented image. All the edges produced by these 

operators are, normally, not significant (relevant) edges when viewed by 

human beings. Therefore, one needs to find out prominent (valid) edges from 

the output of the edge operators. Kundu and Pal (1986) have suggested a 



 

 

48 

method of  thresholding to extract the prominent edges based on psycho-visual 

phenomena. Haddon (1988) developed a technique to derive a threshold for 

any edge operator, based on the noise statistics of the image   

Thresholding 

Thresholding is one of the old, simple and popular techniques for image 

segmentation. Thresholding involves defining a threshold value that is then used to 

distinguish each individual pixel as high or low values. This process can be done 

based on global information (e.g. the grey level histogram of the entire image) or it 

can be done using local information (e.g. the co-occurrence matrix (Pal and Pal, 

1993)). Taxt et al. (1989) refer to the local and global information-based techniques 

as contextual and non-contextual methods, respectively. Under each of these 

schemes if only one threshold is used for the entire image then it is called global 

thresholding. On the other hand, when the image is partitioned into several 

subregions and a threshold is determined for each of the subregions, it is referred to 

as local thresholding (Taxt et al., 1989). Some authors (Yanowitz and Bruckstein, 

1989; Nakagawa and Rosenfeld, 1979; Chow and Kaneko, 1972) call these local 

thresholding methods adaptive thresholding schemes. Weszka (1978) presents a 

comprehensive review of the thresholding techniques including global, local and 

dynamic methods.      

Global thresolding methods can fail when the image is noisy or the background is 

uneven and the illumination is poor. In such cases the objects can still be lighter or 

darker than the background, but any fixed threshold level for the entire image will 

usually fail to separate the objects from the background. This leads one to methods of 

local thresholding or adaptive thresholding (Pal and Pal, 1993). In local thresholding, 

the image is normally partitioned into several non-overlapping blocks of equal area 

and a threshold for each block is computed independently. Chow and Kaneko (1972) 

used the sub-histogram of each block to determine local threshold values for the 

corresponding cell centres. These local thresholds are then interpolated over the 

entire image to yield a threshold surface. The performance of the algorithm is likely 

to depend on the choice of the threshold levels. 
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All of the above thresholding methods have a common drawback; they take into 

account only the histogram information, ignoring the spatial details. As a result, such 

an algorithm may fail to detect threshold levels if these are not properly reflected as 

valleys in the histogram (Pal and Pal, 1993). Dynamic thresholding not only uses 

grey level information but also topological information and some other local 

properties. This method is designed to perform well on low quality images in which a 

single global threshold is inadequate due to contrast differences throughout the image 

(Weszka, 1978). Weszka and Rosenfeld (1978) use a ‘busyness’ measure which is 

dependent on the co-occurrence of adjacent pixels in an image. They minimized the 

busyness measure in order to arrive at the threshold for segmentation. Deravi and Pal 

(1983) applied a co-occurrence matrix containing local information to minimize the 

conditional probability of transition across the boundary between two regions. Since 

all these methods make use of the spatial details, the results are more meaningful 

than methods that use only the histogram information.     

Over- and under-segmentation is the common problem for the thresholding. In both 

cases, segmented image unites are not properly represented the features, as the 

segments are too small or they merging the regions that do not belong to a single 

feature. Since threshold segmentations are very simple to implement they typically 

lead to results of a relatively limited quality (Baatz and Schape, 2000). The good 

control of threshold is the decisive factor for a meaningful segmentation. Local 

contrasts are not considered or not represented in a consistent way and the resulting 

regions can differ widely in size. Thresholding works relatively well in a single layer 

image but thresholding in multispectral image is not easy. Thresholding can only 

fulfil one criterion very well but thresholding multispectral images needs to fulfil 

more than one criterion. Thus visually similar looking segments in a multispectral 

image are not necessarily segmented well using multispectral characteristics. As 

Haralick and Shapiro (1985) point out, this type of segmentation is most likely to 

avoid errors through poor region merges; however, it does not produce spatially 

contiguous regions, and the salt-and-pepper effect can occur. 
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Region growing segmentation 

In region growing segmentation, homogeneous regions are first located. The growth 

of these regions is based on similarity measurements combining spatial and spectral 

attributes (Soille, 2003). Region growing proceeds until all pixels of the image are 

assigned to a region (Chang and Li, 1994). Region boundaries are created when two 

growing regions meet. 

Two factors determine the final segmentation result: the parameters for the region 

growing, and the location of the seed points. The parameters of this algorithm 

basically dictate which pixels can be absorbed into the region being grown, and 

subsequently when the growing must stop. The initial locations of the seed points in 

the image contribute to determining the size, shape and spatial distribution of the 

resulting features. 

The selection of similarity parameters depends not only on the problem under 

consideration, but also on the type of image data available. In case of colour imagery, 

this problem would be significantly more difficult, or even impossible, to handle 

without the inherent information available in colour images (Gonzalez et al., 2004). 

For the monochrome image, region growing can be carried out with a set of 

descriptors based on intensity levels (texture) and spatial properties. Another 

problem in region growing segmentation is the formulation of a stopping rule. 

Basically, growing a region should stop when no more pixels satisfy the parameter 

for inclusion in that region. Parameter such as intensity values, texture, and colour 

utilise the concept of size, likeness between a candidate pixel and the pixels grown so 

far and the shape of the region being grown (Gonzalez and Woods, 2002).     

In order to ensure that useful results can be generated from many different images, 

the region growing segmentation can be repeated with multiple sets of seed points, 

and with multiple region growing parameters. It should be noted that this algorithm 

is not intended to segment the entire image into regions, but just to extract useful 

features. For region growing, a rule needs to be describing a growth mechanism and 

a rule checking the homogeneity of the regions after each growth step.  

The initial step of the region-growing algorithm is to select appropriate seed points. 

Since there is no one method that automatically extracts good seed points for all 
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images, multiple seed point extraction algorithms have to be used. Here three 

different seed point generation algorithms are described.  

Region growing segmentation is the simplest method of segmentation, but most 

prone to unwanted region merge errors (Haralick and Shapiro, 1985). This method 

basically depends on the set of given seed points and often suffers from a lack of 

control in the break off criterion for the growth of a region (Baatz and Schape, 2000). 

This method is sensitive to the choice of seeds and therefore is not widely used 

(Wealands et al., 2005). 

Split and merge segmentation 

The split method for segmentation begins with the entire image as the initial 

segment. Then it successively splits each current segment into quarters if the segment 

is not homogenous enough. Homogeneity can be easily established by determining if 

the difference between the largest and smallest grey tone intensities is small enough 

(Haralick and Shapiro, 1985). Region splitting and merging is an alternative to the 

region growing procedure. Rather than growing regions from seed points, the image 

is progressively split into smaller and smaller regions until it cannot be split any 

more. Subsequently, neighbouring regions are merged with each other until no 

further merging can take place. The result is a segmented image in which the 

segments should ideally represent real world objects. Unlike the region growing 

segmentation, the split and merge algorithm segments the entire image. Algorithms 

of this type were first suggested by Robertson (1973) and Klinger (1973). Kettig and 

Landgrebe (1975) tried to split all non-uniform 2x2 neighbourhoods before 

beginning the region merging. Fukada (1980) suggested successively splitting a 

region into quarters until the sample variance is small. Efficiency of the split and 

merge method can be increased by arbitrarily partitioning the image into square 

regions of a user-selected size and then splitting these further if they are not 

homogeneous (Haralick and Shapiro, 1985).     

The split and merge segmentation algorithm works by successively splitting the 

image into quadrants, and merging those neighbouring quadrants which are similar, 

until no further splitting or merging can take place. Using a square image with 
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dimensions of 2
n 

(n is an integer) means that the image can always be split into 

quadrants, until those quadrants have a size of 1 pixel. After the image is split into 

quadrants, each one of the quadrants must be examined to see if it should be split 

again or not. This decision will be based on the statistics of the grey values of the 

pixels contained within that quadrant. If those pixels are all similar to each other, 

then the quadrant does not require further splitting. However, if the pixels are 

significantly different, then the quadrant must be split into a further four quadrants.  

The measure for deciding whether or not the pixels are similar is a statistical one: if 

all the grey levels fall within m standard deviations, then they are similar. By 

changing the parameter m the user has some control over the results generated by this 

algorithm. When it is clear which quadrants will require further splitting, and which 

ones will not, the merging process can take place. Any neighbouring quadrants that 

do not require further splitting must be compared to see if they can be combined to 

form a single region. The same statistics are used to define the merging process: if all 

the pixels within the two neighbouring regions are within m standard deviations, then 

they are similar, and can be merged.  

Split and merge is the most complex of the above segmentations and requires more 

processing than the other methods, which is disadvantageous when analysing many 

spatial fields (Wealands et al., 2005). Because split and merge segmentations 

successively divide regions into quarters, the boundaries produced by the split 

technique tend to be squarish and slightly artificial. Sometimes adjacent quadrants 

coming from adjacent split segments need to be joined rather than remain separate 

(Haralick and Shapiro, 1985). It is likely that a split and merge strategy could be 

devised to take care of this problem. The suggestion is to merge a pair of adjacent 

regions if their grey tone intensity distributions are similar enough.  

Morphological watershed segmentation 

Other than the above-described data-driven segmentations, a more advanced 

approach is the morphological segmentation, which combines edge detection and 

region growing techniques (Soille, 2003). Watershed transformation is one example 

of morphological segmentations. 
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Watershed transformation is a very powerful image segmentation tool provided by 

mathematical morphology (Soille and Vincent, 1990). Watershed segmentation, first 

proposed by Beucher and Lantuejoul (1979), is a well known image segmentation 

method that incorporates the region growing and edge detection techniques (Soille, 

2003). It groups the image pixels around the regional minima of the image and the 

boundaries of adjacent groupings are precisely located along the crest lines of the 

gradient image. The concept behind the watershed algorithm is the idea that the 

image can be treated as if it were a 3D surface (see Fig 2.4), with lateral dimensions 

representing the image plane, and the vertical dimension representing the grey values 

of the pixels. If that surface were then flooded from below, then the regions where 

the water pools represent individual watersheds. As the water level rises, 

neighbouring watersheds will begin to merge, unless dams are built between them. 

The process of merging regions and building boundaries between regions continues 

until no more growing can take place. The result is a segmented image. 

The watershed algorithm produces best results for images that have regions that are 

homogeneous and low intensity, separated by narrow boundaries of high intensity. 

Not many images have this particular distribution of grey levels, but application of a 

first order edge detection algorithm yields this result. Therefore, the first step in the 

watershed algorithm is to process the image with a first order edge detector to extract 

the edges. Once the edge strength image has been created, the watershed procedure 

can begin. If the watershed algorithm is directly applied on the edge strength image, 

then the result will be over-segmented. In other words, there are too many segments 

in the resulting image. Therefore it is necessary to use markers to guide the 

watershed algorithm. Markers are connected components – groups of connected 

pixels – that belong to an image. There are two types of markers that need to be 

defined: internal markers and external markers. Internal markers are associated with 

the objects of interest, and external markers are associated with the background. 
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(a)      (b) 

Figure 2.4 Flooding of the relief and dam building (a), catchment basins and divide 
lines (b), after Beucher (1991). 

There are two stages to the marker selection process: pre-processing and marker 

definition. The pre-processing stage helps eliminate some of the local minima, whilst 

the marker definition dictates where the internal markers will be located. The pre-

processing stage smooths the image with a smoothing algorithm. This is done by 

passing a mask across the image, averaging all of the values within that mask, and 

assigning the mean value to the image pixel on which the mask is centred. 

A region that is a potential internal marker must satisfy the following criteria: it must 

be surrounded by points of higher grey values; all the points in the region must be 

connected; and all the connected points must have the same grey level. The 

watershed algorithm can now be applied to the image, but region growing can only 

occur from the internal markers. In other words, the internal markers are the only 

allowed local minima.  

Chen et al. (2005) developed a marker-controlled watershed segmentation method 

for isolating trees from discrete-return LiDAR data. The key for the success of tree 

isolation is to find the proper treetops from the canopy height model derived from 

LiDAR data. The treetops were detected by searching local maxima in a canopy 

maxima model (CMM) with variable window sizes. The variable window sizes were 

determined by the lower-limit of the prediction intervals of the regression curve 

between crown size and tree height. The proposed treetop detection method 

minimised both the commission and omission errors simultaneously. However, this 
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study only aimed to isolate individual trees not to extract other forest parameters 

such as tree species, crown size and biomass.  

Watershed transformation can only segment one layer of data at a time; therefore 

segmentation of multi-source data has common features with different shape and 

size. An easy way to fix this problem is to segment one layer and then mask out the 

feature boundaries from other data layers.   

Watershed transformation is an example of a segmentation procedure that can utilise 

a set of complex algorithms. The main disadvantage of data-driven segmentation is 

that the user has less control over the segmentation procedures. A user-driven 

segmentation can incorporate user-defined parameters into the process. In the 

following, different user-driven segmentation procedures are presented. 

User-driven segmentation 

In user-driven approaches, the image is segmented to extract a predetermined type of 

target object using user-defined parameters. In this segmentation, user defined-

parameters initiated the process and user has more control over the segmentation 

process. Multi-resolution segmentation, or FNEA (Baatz and Schape, 2000) is one 

example of user-driven segmentations.  

Multi-resolution segmentation 

Objects of interest typically appear on different scales in an image simultaneously. 

The extraction of meaningful image objects needs to take into account the scale of 

the problem to be solved. Therefore the scale of resulting image objects should be 

free adaptable to fit to the scale of task (Baatz and Schäpe, 1999). Multi-resolution 

segmentation (Baatz and Schape, 2000) utilises user-defined scale and homogeneity 

parameters in combination with local and global optimisation techniques for 

segmenting multi-source data. Segmentation and subsequent object topology 

generation is controlled by the resolution and the scale of the expected objects 

(deKok et al., 1999). In this algorithm, a scale parameter is used to control the 

average image object size and homogeneity criteria are defined by the spectral and 

spatial information. 
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Multi-resolution segmentation is a bottom up region-merging technique starting with 

one-pixel objects. In numerous subsequent steps, smaller image objects are merged 

into bigger ones. Throughout this pair-wise clustering process, the underlying 

optimisation procedure minimizes the weighted heterogeneity n h of resulting image 

objects, where n is the size of a segment and h a parameter of heterogeneity. In each 

step, that pair of adjacent image objects is merged which stands for the smallest 

growth of the defined heterogeneity. If the smallest growth exceeds the threshold 

defined by the scale parameter, the process stops. Consequently, multi-resolution 

segmentation is a local optimisation procedure (Benz et al., 2004).  

Heterogeneity in multi-resolution segmentation is defined by the colour and shape of 

the features in the image. The increase of heterogeneity f has to be less than a certain 

threshold.  
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The weight parameters ( colourw , shapew ) allow the heterogeneity definition to adapt to 

the application. The spectral heterogeneity allows multi-variant segmentation by 

adding a weight cw  to the image channels c. Difference in spectral heterogeneity 

colourh∆  is defined as following: 

, 1 , 1 2 , 2( . ( . . ))colour c merge c merge object c object object c object
c

h w n n nσ σ σ∆ = − +∑  (2.13) 

with mergen  number of pixels within merged object, 1objectn number of pixels in object 

1, 2objectn  number of pixels in object 2, cσ standard deviation within object of band 

(or channel) c. Subscripts merge refer to the merged object, object 1 and object 2 

prior to merge respectively. 

The shape heterogeneity shapeh∆  is a value that describes the improvement of shape 

with regard to smoothness and compactness.  

. .shape compact compact smooth smoothh w h w h∆ = ∆ + ∆      (2.14) 
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where n is the object size, l is the object perimeter and b is the perimeter of object’s 

bounding box.  

Thus, the smoothness heterogeneity equals the ratio of the de facto border length l 

and the border length b given by the bounding box of an image object parallel to the 

raster. The compactness heterogeneity equals the ratio of the de facto border length l 

and the square root of the number of pixels forming the image object.   

The weights cw , colourw , shapew , smoothw , compactw  are parameters that can be selected in 

order to get suitable segmentation results for a certain image data stack and a 

considered application. The scale parameter is the stop criterion for the optimisation 

process. Prior to the fusion of two adjacent objects, the resulting increase of 

heterogeneity f is calculated. If this result increase exceeds a threshold t, determined 

by the scale parameter t ψ=  (scale parameter), then no further fusion takes place 

and the segmentation stops (Benz et al., 2004).  

Flanders et al. (2003) used multi-resolution segmentation to segment and classify a 

Landsat ETM+ image for logged forest block delineation and feature extraction. In 

this process, by adjusting the segmentation scaling parameter to 200 from 25, an 

upper object level was created to delineate the built-up urban area. A lower image 

object level was also created using a scaling parameter of 25 to identify cut blocks 

present outside the urban area. This unit-less scale parameter is not related to the 

number of pixels, but rather to the maximum allowed heterogeneity within an object. 

Equal weight was assigned to each of the input ETM+ spectral bands (1-5 and 7). 

This emphasis was chosen because of the lack of colour homogeneity visually 

observed within some logged forest blocks in the image. For homogeneity, they 

applied the ratio of 0.2:0.8 (the sum must total 1.0) for relative weight of spectral 



 

 

58 

versus shape criteria, emphasizing the importance of logged forest block from over 

colour. Similarly, a ratio of smoothness to compactness weight was specified 0.1:0.9, 

emphasizing the discrete, compact nature of logged forest blocks. A higher 

smoothness emphasis was used to define objects observed to have greater variability 

between blocks. The compactness weight makes it possible to separate objects that 

have quite different shapes but not necessarily a great deal of colour contrast, such as 

logged forest block versus bare patches within forested area. 

Van-der-Sande et al. (2003) applied a multi-resolution segmentation and 

classification approach on IKONOS-2 imagery for land cover mapping to assist in 

flood risk and flood damage assessment. They applied segmentation in four different 

levels to extract optimum classification results. At each level they extracted specific 

thematic classes from the image. They included or excluded the IKONOS spectral 

bands from the segmentation process as a function of their information content. 

Segmentation at highest level (Level 4) was used to classify the larger objects in the 

study area such as agricultural fields and water bodies. The red and near-infrared 

spectral bands were used together with the homogeneity ratio 0.9:0.1 (colour: shape) 

for the classification of vegetation types and crops as well as water bodies. Small 

roads were extracted from segmentation at mid-high level (Level 3) using the green, 

red and near-infrared spectral bands with the scale parameter 30 and the 

homogeneity ratio 0.5:0.5. Buildings were extracted from mid-low level (Level 2), 

where a scale parameter of 10 resulted in objects small enough to differentiate 

individual houses. The lowest level (Level 1) was the aggregation of all levels and it 

was the final thematic land cover layer. An overall classification accuracy of 74 

percent was achieved. In spite of the good results of land cover mapping a number of 

classes such as residential areas and roads were fairly difficult to identify. 

Zhou and Troy (2008) presented an object-oriented approach for analysing and 

characterizing the urban landscape structure at the parcel level using high-resolution 

digital aerial imagery and LIDAR data for the Baltimore area. Additional spatial 

datasets including property parcel boundaries and building footprints were used to 

both facilitate object segmentation and obtain greater classification accuracy. A 

three-level hierarchical network of image objects was generated, and objects were 

classified. At the two lower levels, objects were classified into five classes, building, 
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pavement, bare soil, fine textured vegetation and coarse textured vegetation, 

respectively. The object-oriented classification approach proved to be effective for 

urban land cover classification. The overall accuracy of the classification was 92.3 

percent, and the overall Kappa statistic was 0.899. Land cover proportions as well as 

vegetation characteristics were then summarized by property parcel. This exercise 

resulted in knowledge base rules for urban land cover classification that could 

potentially be applied to other urban areas. 

In feature-level fusion, the defined features need to be classified after segmentation. 

A number of segmentation algorithms have been reviewed in the above sections. 

Now different classification algorithms to fuse the segmented features will be 

reviewed.   

2.8 Classify the Segmented Features 

After segmentation, the features from multi-source images are usually classified (or 

fused) to certain classes according to the class description. A class description is the 

hierarchical classification system (described in Section 2.2) that guides the fusion 

process and has the typical properties or conditions of the desired classes. In terms of 

feature classification, each feature belongs to one definite class or to no class. 

Traditional pixel-based classifiers such as maximum-likelihood, minimum-distance, 

or parallelepiped can be used to classify the features into different classes. However, 

the difference is that they are applied to the features rather than the pixels. A detailed 

review of these traditional classifiers was presented in Section 2.5. The main 

disadvantage of these classifiers is that they express the pixel’s membership of a 

class only in a binary manner. Such classifiers are usually called hard classifiers. In 

contrast, soft classifiers use a degree of membership, or a probability, to express a 

pixel’s assignment to a class. The membership-probability value must lie between 

1.0 and 0.0, where 1.0 expresses full membership-probability to a class and 0.0 

expresses absolute nonmembership-probability. Thereby the degree of membership 

reflects on the degree to which a pixel fulfils the class-description. The main 

advantage of these soft classifiers lies in the possibility to express uncertainties about 

class descriptions. With respect to image understanding, these soft classification 

results are more capable of expressing uncertain human knowledge about the world 
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and thus lead to classification results which are closer to human language, thinking 

and mind (Baatz et al., 2004).  Fuzzy classification is one of the powerful soft 

classifiers and can be used in both pixel and feature domain. The following section 

reviews the fuzzy classifier as a tool to classify segmented features in a feature-level 

fusion.   

2.8.1 Fuzzy classification of segmented features 

In feature-level fusion, the feature classes can be defined as fuzzy sets and the 

features as set elements. Accordingly, each feature is allocated a group of 

membership grades to indicate the extent to which the feature belongs to 

predetermined land covers. The allocation of membership grades is termed 

fuzzification. The notion of fuzzy classification is to generate the fuzzified values 

based on the fuzzy set theory introduced by (Zadeh, 1965). Thus, fuzzification is the 

single most important consideration in fuzzy classification.   

Zadeh (1965) proposed the concept of fuzzy sets, which introduces vagueness by 

eliminating the sharp boundary dividing members from non-members of a class. 

Specifically, it assigns a membership value, as a function of its similarity to the 

individual class, and typically varies between 0 and 1. A membership close to 1 

denotes strong relations to a particular class, whereas a membership close to 0 

represents a weak relationship. 

A fuzzy set can be defined mathematically. Let X denotes a universal set with a 

generic element of X denoted by x, thus X =. 

{ }, ( ) ;AA x x x Xµ= ∈        (2.17) 

A fuzzy set A (land cover class) in X is characterized by a membership function 

( )A xµ which associates with each point in X a real number in the interval [0, 1]. The 

value of ( )A xµ represents the grade of membership of x in A (Zadeh, 1965). There 

are two possible ways of defining these membership functions: Semantic Import and 

Similarity Relation model.  
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The Semantic Import (SI) approach uses an a priori membership function with which 

individuals can be assigned a membership grade. This is useful in situations where 

users have a very good, qualitative idea of how to group data (Burrogh and 

McDonnel, 1998). The SI approach relies on expert knowledge where boundary 

values are chosen by custom, law or external taxonomy to generate the fuzzy 

membership (Burrogh, 1986). The selection of class boundaries and class intervals 

can be an objective or subjective process, depending on the way scientists agree to 

define classes. According to Burrogh and McDonnel (1998), the membership 

function should ensure that the grade of membership is 1.0 at the centre of the set and 

that it falls off in an appropriate way through the boundaries to the region outside the 

set where it takes the value of 0. The location where the fuzzy membership equals 

0.5 is called ‘crossover point’. These conditions need to be considered in defining 

fuzzy membership function. 

The second approach, named by Robinson (1988), is the Similarity Relation Model, 

resembles cluster analysis and numerical taxonomy is that the value of the 

membership function is a function of the classifier used. A common version of this 

model is the fuzzy c-means, also known as fuzzy k-means, model based on cluster 

analysis. 

 

 

 

 

 

Figure 2.5 Example for three fuzzy sets on feature x. The membership functions on 
feature x define the fuzzy set low, medium and high for this feature, after Benz et al., 

(2004).  

A fuzzy rule-base is a combination of fuzzy rules, which combine different fuzzy 

sets. The simplest fuzzy rules are dependent on only one fuzzy set. Fuzzy rules are 

‘if-then’ rules. If a condition is fulfilled, an action takes place. An example is: ‘If’ 
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feature x is low, ‘then’ the image object should be assigned to land cover W. 

According to the example in Figure 2.4, in the case where the feature value x=70, the 

membership to land cover W would be 0.4, in the case where x=200, the membership 

to land cover W would be 0. 

Given two or more fuzzy membership functions for the same set, a variety of 

operators can be employed to combine the membership values together. The logic 

operators are ‘and’, ‘or’ and  ‘not’. There are several possibilities to realize these 

operators. In most cases, ‘and’ operator implements the smallest fuzzy membership 

and ‘or’ operator implements the maximum (Benz et al., 2004). It should be noted 

that, while fuzzy classification gives a possibility for an object to belong to a class, 

classification based on probability provides a probability to belong to a class. A 

possibility gives information on a distinct object, whereas probability relies on 

statistics and provides one value from many objects. Probability of all possible 

events adds up to one, this is not necessarily true for all possibilities. The non-

normalized possibility values provide additional information on the classification 

reliability for each object (Benz et al., 2004).          

De-Kok et al., (1999) demonstrated the usefulness of fuzzy classification in 

discriminating spectrally similar classes in order to improve classification accuracy 

from high resolution panchromatic and multispectral imagery of an alpine forest. 

Fuzzy logic decision rules offer a larger deduction in complexity and a proper aid to 

group the spatial objects into meaningful classes. In this study, the fuzzy logic 

decision rules for class membership are the framework in which the expert 

knowledge has been embedded. The synergy of the spectral properties, the 

neighbourhood object influences, and the expert knowledge lead to powerful ways of 

making object membership decision rules. The fuzzy logic rules guarantee the 

transparency of the decision rules and reduce complexity to a condensed crisp set of 

membership functions.      

It is apparent that fuzzy classification has advantages over conventional classification 

in: 

(a) expressing the vagueness of spatially distributed categories e.g. land covers 

derived from remote sensing images; 
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(b) offering information on continuum of land cover classes; and  

(c) generating fuzzy boundaries, e.g. uncertain zones among the land cover 

classes.  

The arbitrariness of defining the fuzzy membership is a major constraint in 

generating final fuzzy land cover maps and subsequent accuracy assessment analysis. 

Zadeh (1965) proposed the idea of presenting fuzzy membership above a suitable 

threshold as unions of defuzzified areal classes and fuzzy boundaries. The concept of 

a defuzzification based on the maximum membership values obtained for individual 

locations can be applied to generate land cover maps using the outputs of fuzzy 

classification (Zhang and Goodchild, 2002).         

2.9 Evaluation of Fused Results 

Pixel- and feature-level fusions have some distinct characteristics and that should be 

evaluated as a comparative basis for selecting a fusion for a particular application. 

The following section reviews different mechanisms to compare pixel- and feature-

level fusion. 

Fusion of remotely sensed data derived from a range of sensors has led to the 

requirement for increased knowledge of errors and their contribution to the overall 

quality of the fused product. Error accumulation in remote sensing and GIS is 

difficult to monitor, for variations in the target, sensor, sensing geometry and 

ambient environment conditions create specific problems (McGwire and Goodchild, 

1997). Both quantitative and qualitative errors are important in remote sensing data 

fusion. Quantitative errors relate to the positional accuracy of the map data, while 

qualitative errors are concerned with the correctness of thematic classification of 

feature within the data (Maling, 1988). In this research, the latter category of errors is 

explored for the data fusion. 

According to Davis and Simonett (1991), classification differences between remotely 

sensed and reference data arise for a range of reasons: 

(a) misregistration of the sensor-derived data to the cartographic coordinate 

system; 
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(b) misregistration of reference data to the cartographic coordinate system; 

(c) spectral confusion between information classes; 

(d) inappropriate fusion/classification algorithm; 

(e) poor definition of information classes for training and test data; 

(f) information classes containing several classes; and 

(g) sub-pixel variation causing mixed pixel and boundary effects. 

Error assessment is required to quantify the accuracy of fusion results and to guide 

the process of analysis to determine the sources of error. Understanding the above 

factors can lead to refinement of the fusion process and improvements in the fusion 

quality. Accuracy of the fusion results can be assessed through site specific and non-

site specific methods. Non-site specific methods only provide an assessment of the 

total area occupied by a specific landscape without performing any location-by-

location comparison. If all fusion errors between categories in a non-site specific 

assessment balance out, it is possible to achieve very high results for the accuracy 

assessment, however, the results will be misleading. Site-specific approaches make a 

comparison in one-on-one samples of the fused and reference data, providing an 

assessment of the fusion error with regard to the location of the fused and reference 

data. Statistically sound approaches to sample size and sampling design are essential 

to perform valid assessment of fusion accuracy for landscapes of varying spatial 

diversity (McCoy, 2004; Congalton, 1991).       

2.9.1 Accuracy assessment of fusion results  

It is necessary to define precision and accuracy in error assessment perspective. 

Precision is defined as the degree of detail in reporting a measurement, which is 

often determined by the characteristics of the measuring equipment, while accuracy 

is defined as a measure of the difference between a measured value and a known or 

true value (McGwire and Goodchild, 1997). From a thematic mapping perspective, 

precision is related to the level of detail (or generalisation) inherent in the thematic 

mapping classification system (Janssen and van-der Wel, 1994). On the other hand, 
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accuracy relates to the agreement of the classified image with a source of reference 

data giving greater accuracy than the primary remote sensing information. 

Accuracy assessment in this research will be directed towards the assessment of the 

fusion results achieved through pixel- and feature-level fusion of LiDAR and optical 

imagery. The class hierarchy described in Section 2.2 determines the precision of the 

fusion process. As the degree of detail increases from lower level to upper level, the 

possibility of errors also increases, which may lead to more uncertain results and, 

logically, a lower accuracy of fusion results. 

Descriptive techniques 

Application of a robust sampling scheme enables acquisition of representative 

samples of every landscape class, and provides relevant data for population of the 

error matrix. An example of an error matrix (also known as a confusion matrix or 

contingency table) is shown in Figure 2.6. 
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Figure 2.6 A conceptual model of error matrix. 
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The Overall Accuracy (OA) is computed by dividing the sum of the diagonals by the 

total of samples checked in the accuracy assessment, and provides a measure of the 

proportion of all sampled pixels that are classified correctly. Eq. 2.18 illustrates the 

computation procedure to obtain  Overall Accuracy from the confusion matrix. 

1

1

. 1

1

N

kk N
k

kkN
k

ik
i k

a
OA a

na

=

=

=

= =
∑

∑
∑

    (2.18) 

where n is the number of all reference pixels. So OA is the sum of the diagonal 

entries of the confusion table divided by the number of all reference pixels. Overall 

accuracy is a very coarse measure. It gives no information about what classes are 

classified with good accuracy. In fact, a classification with poor overall accuracy 

may have a certain class with high accuracy, thus may confuse other class results and 

will be of interest for certain applications only. Therefore, it is important to use other 

accuracy measures together with Overall Accuracy. 

One such measure is the Producer’s accuracy ( )iPAclass  that estimates the 

percentage of a particular class is correctly classified against ground truth data. 

Mathematical representation of the Producer’s accuracy is shown in Eq. 2.19. For 

each iclass , the proportion of pixels where classified and reference data agree in 

iclass  and the reference pixels are classified as this class. Total number of the pixels 

of iclass  in the reference classification is obtained as the sum of column i in the 

confusion table. 
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Producer’s accuracy is actually a measure for the producer of a classification, which 

indicates how well the classification agrees with the reference classification. 

However, it gives no information about how well the classification predicts a class, 

such as, it gives no information about the probability that a pixel classified as iclass  

is actually of iclass . This is the primary interest of a user of a classification and an 
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estimate of this probability is thus called User’s accuracy ( )iUAclass . The 

estimation of this probability is given by the proportion of pixels for which 

classification and reference classification agree in iclass compared to the number of 

all reference pixels classified as class i by the classification (Eq. 2.20). Now the total 

number of pixels that are classified as iclass  is obtained by the sum of row i of the 

confusion table. 
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According to Janssen and van-der Wel (1994) the User’s and Producer’s accuracy 

relate to errors of omission and commission as follows: 

Error of commission = 100 - User’s Accuracy  (2.21) 

Error of omission = 100 - Producer’s Accuracy  (2.22) 

The User’s Accuracy is a measure of the classification reliability and errors of 

commission express the severity of it (Eq. 2.21). The Producer’s Accuracy gauges 

the proportion of pixels that actually belong to a category but have been classified as 

other features. Errors of omission express the degree to which this type of error 

occurs (Eq. 2.22). The User’s and Producer’s Accuracy also permit a more complete 

understanding of the between-class confusion for the purpose of fusion parameter 

refinements.   

Analytical techniques 

Error matrices form the basis of several analytical statistical techniques developed to 

evaluate classification accuracy of remotely sensed data. Most approaches utilise 

discrete multivariate analysis because remotely sensed data are discrete rather than 

continuous. Most data demonstrate properties of binomial or multinomial 

distributions, therefore many methods based upon normal probability theory are not 

appropriate (Congalton, 1991). 
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Accuracy assessments including all elements of the error matrix may be undertaken 

using the Kappa Coefficient of Agreement (Cohen, 1960). The Kappa Coefficient 

was developed for comparison of data grouped by different observers (or interpreters 

or classification algorithms) according to nominal scales. The overall level of 

agreement for an error matrix (Kappa Coefficient) is based upon the difference 

between the actual agreements of the classification compared with the reference data 

(measured by the matrix diagonal), and the chance agreement, which is indicated by 

the product of the row and column margin values. 

The application of the Kappa Coefficient to the analysis of accuracy of remotely 

sensed data was first proposed by Congalton et al. (1983) and has been widely 

reported since (Smith et al., 2003; Crosetto and Tarantola, 2001; Hyyppa et al., 

2000; Jäger and Benz, 2000; Muller et al., 1998b). The method may be used to 

evaluate an error matrix as a whole or for individual classes, or it may be used to 

statistically compare error matrices derived from different interpreters or using a 

variety of fusion techniques. Equation 2.23 shows the computation of Kappa 

Coefficient ( K
∧

): 
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where r  is the number of rows/columns in the error matrix, iix is the number of 

observations in row i  and column i , ix +  is the total of column i  and N is the total 

number of observations. A pair-wise assessment of the significance of the differences 

between two independent error matrices can be undertaken using the normal curve 

deviate determined from the corresponding Kappa statistics and their variances 

(Cohen, 1960). Equation 2.24 shows the computation of variance of Kappa (Bishop 

et al., 1975): 
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where 
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The test statistic for significance in large samples ( 100N > ) is given by: 
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The Kappa statistic provides statistically valid assessments of the quality of fusion 

and enables tests of significance between fusion processes for determination of 

optimum algorithm performance. The result of performing a Kappa analysis is 

another measure of agreement or accuracy. However, it follows a different idea. 

Whereas Overall Accuracy checks how many of all pixels are classified correctly, 

assuming that the reference classification is true, here it is assumed that both fusion 

and reference data are independent class assignments of equal reliability. The big 

advantage of the Kappa Coefficient over overall accuracy is that Kappa takes chance 

agreement into account and corrects for it. According to Landis and Koch (1977) the 

qualitative descriptors show in Table 2.4 describe the strength of agreement based on 

Kappa statistics. 

Table 2.4 Qualitative descriptions for the strength of agreement for the Kappa 
statistics, after Landis and Koch, (1977)  

Kappa Statistic Strength of Agreement 
<0.00 Poor 
0.00-0.19 Slight 
0.20-0.39 Fair 
0.40-0.59 Moderate 
0.60-0.79 Substantial 
0.80-1.00 Excellent 
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In statistical analysis, the Kappa Coefficient is used to compare the fusion results 

with reference data. Confidence intervals around the Kappa Coefficient can be 

computed using the approximate large sample variance and the fact that the Kappa 

statistic has normal distribution (Congalton and Green, 1999). The Kappa Coefficient 

provides a means for testing the significance of the Kappa statistic for the error 

matrix to determine if the agreement between the fusion results and the reference 

data is significantly greater than 0, i.e. better than a random fusion result. 

2.9.2 Sampling design for accuracy assessment 

In order to measure the quality of fusion processes and to compare and evaluate the 

results with respect to their suitability for a specific application, accuracy measures 

are used. Mostly they are derived on the basis of a comparison of the results in 

question with other reference data. This latter reference is often obtained using 

different methods, e.g., by ground truth measurements. Ground truth data collection 

requires sampling and sampling requires knowledge of the distribution and sampling 

design (McCoy, 2004). The selection of a proper and efficient sample design to 

collect valid reference data is one of the most challenging and important components 

of accuracy assessment because the design will determine both the cost and the 

statistical rigour of the assessment (McCoy, 2004; Congalton, 1991). 

Sampling scheme 

Assessment of the quantitative or qualitative aspects of fusion results rely on a 

sampling scheme with a common set of criteria such that a low accuracy fusion 

product has low probability of acceptance, a high accuracy fusion product has high 

probability of acceptance, and a minimum number of reference data samples is 

required. 

A sampling scheme may be developed to estimate the effectiveness of different 

accuracy parameters, provide information on landscape of limited area extent, and 

evaluate different fusion procedures. According to Stehman (1999), the important 

considerations for sampling design are: satisfies sampling design procedure; simple 

to implement and analyse; low variance for estimates of high priority accuracy 
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measures; permits adequate variance estimation; provides samples which are 

spatially well distributed; and cost effectiveness. 

Fundamental to the design of a suitable sampling scheme is the selection of reference 

data independently of the data used to develop the fusion process. This particularly 

relates to the selection of independent samples selected for image registration and 

assessment of positional accuracy (McCoy, 2004). Sampling schemes generally 

follow simple random or systematic selection procedure and utilise population, strata 

or cluster sampling structures (Congalton, 1991). The most relevant sampling 

structure and procedure are subject to considerable debate and are reviewed in the 

following: 

(i) Simple random sampling: Simple random sampling may be used to sample 

pixels in an image and represents a straightforward approach, although location 

of the sample in the field may be difficult. This method is adaptable to 

augmenting or reducing the sample size if required, and estimation and standard 

error formulae are less complex compared to other approaches. The variance in 

simple random sampling tends to be large where categories have small samples. 

(ii) Systematic sampling: Systematic sampling may be undertaken on a rectangular 

or square grid based on the random location of the starting pixel. The method 

provides good spatial coverage and is easy to implement. Because it is an equal 

probability sampling design it share the same advantages and disadvantages as 

simple random sampling, e.g. small sub-regions will remain under-sampled. 

(iii) Stratified random sampling: Each pixel within the population is assigned to a 

stratum then samples are selected at random within each stratum. Strata may be 

defined on a category or geographic basis, with each random sample derived 

independently for each stratum. Stratified random sampling is used to ensure 

that each stratum is represented within the random sample, but care must be 

taken to ensure the strata remain valid throughout the analysis. Where analysis 

objectives change, such as when landscape classes are combined, a new 

stratified random sample should be extracted in order to retain relevance 

(Stehman, 1999).  
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(iv) Cluster sampling: Cluster sampling uses two sizes of sampling units. The 

primary sampling unit which is the cluster itself, and the secondary sampling 

unit which is represented by the individual pixels within the cluster. The location 

of each cluster may be defined by any of the above sampling schemes, with each 

pixel in a cluster forming part of the sample. Cluster sampling is performed 

mainly for the purposes of convenience and cost, as only the clusters need be 

evaluated rather than individual pixels (Congalton, 1991). 

Concerns regarding the statistical validity of systematic sampling designs have made 

researchers consider stratified random sampling the most suitable approach for 

sampling spatial data for the purpose of accuracy assessment (McCoy, 2004; 

Congalton and Green, 1999; Lo and Watson, 1998). Research indicates that 

systematic sampling in the absence of data periodicity is the most statistically valid 

sampling approaches to employ (Stehman, 1999). This applies especially where 

spatial autocorrelation is present, because it provides for maximum average spatial 

separation of the sample. Systematic sampling designs also provide a uniform spatial 

distribution of samples, a factor that is often used to justify stratified random 

sampling. 

Sample size 

The major objective of selecting a sample of appropriate size is to provide sufficient 

data to enable a reliable estimate of accuracy at the required confidence level. Where 

error matrices are used as part of the evaluation and large numbers of categories are 

sampled, the requirement to adequately sample each becomes important (McCoy, 

2004; Congalton, 1991). 

According to Congalton (1991), the rule of thumb is to select  at least 50 samples per 

category and 75 samples where categories occupy large areas. There is considerable 

variation in the specification of class sample sizes with Richards (1993) suggesting 

values between 30 and 60 for most situations. Limitations on sample sizes are 

usually set in order to economise on fieldwork expenditure. 
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2.10 Comparisons of Pixel- and Feature-level Fusion  

Comparisons between pixel- and feature-level fusion results can be carried out in a 

qualitative or quantitative manner. The qualitative measures mainly depend on visual 

inspection and vary with personal choice, whereas quantitative approaches are 

composed of rigorous sampling that provides some numerical values for the 

application of statistics.  

2.10.1 Qualitative comparisons 

Kamagata et al. (2005) compared pixel- and feature-level fusion of land cover using 

high resolution satellite data available for an urban fringe area. In the pixel-based 

analysis the maximum likelihood method and the ISODATA method were applied. 

The results showed that in both methods misclassification tended to increase in areas 

of shadow. The pixel-level fusion also experienced difficulty due to factors such as 

the varied shapes of the forest canopy and mixing of vegetation. The feature-level 

fusion, in contrast, relied on abstraction of comparatively homogenous areas, and 

proved capable of extracting the boundaries between forest types. This study 

employed a high number of minute patches that proved effective even in regions 

where tree species were mingled together. Some misclassification problems 

remained, which have to be addressed by future trial and error experiments in the 

parameter optimisation. In the Kamagata et al. (2005) study, the comparison was 

made solely on visual inspection and  therefore the results were not quantifiable. 

However, they concluded that the feature-level fusion has a high potential for 

analysing landscape patterns even in highly heterogeneous and rapidly changing 

urban areas.           

2.10.2 Quantitative comparisons 

Statistical analysis can be tested using two independent Kappa Coefficients to 

determine the significance of the two error matrices. With this test it is possible to 

statistically compare two fusion results and see which produces the higher accuracy. 

The test of significance relies on the standard normal derivation as explain below: 
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Let 
^

1K and 
^

2K  denote the estimates of the Kappa statistics for the error matrix of 

fusion result 1 and the error matrix of fusion result 2. The derivation of 
^
K  was 

shown in Equation 2.23. Let 
^ ^

1var( )K  and 
^ ^

2var( )K be the corresponding estimates of 

the variance as computed from Equation 2.24. The test statistic for testing the 

significance of a single error matrix is expressed by 

^

1

^ ^

1var( )

KZ
K

=      (2.26) 

Where Z is standardised and normally distributed (i.e., standard normal derivation). 

Given the null hypothesis 0 1: 0H K =  and the alternative 1 1: 0H K ≠ , 0H  is rejected 

if / 2Z Zα≥ , where / 2α is the confidence level of the two-tailed Z test and the 

degrees of freedom are assumed to be ∞  (infinite). The test statistics for testing of 

two independent error matrices are significantly different from Equation 2.26 and is 

expressed by 
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−
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+
     (2.27) 

Here Z is also standardised and normally distributed. Given the null 

hypothesis 0 1 2: ( ) 0H K K− =  and the alternative 0 1 2: ( ) 0H K K− ≠ , 0H  is rejected if 

/ 2Z Zα≥ . 

The variance of the Kappa statistic and the Z statistic is used for determining if a 

fusion technique is significantly better or worse than one other. At 95 percent 

confidence level, the critical value would be 1.96. Therefore, if the absolute value of 

the test Z statistic is greater than 1.96 the result is significant and we can conclude 

that the first technique is better than the second one. 

Geneletti and Gorte (2003) compared the pixel- and feature-level fusion of high-

resolution panchromatic and multispectral images. In this process, they used a high-
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resolution black and white orthophoto and a sub-scene of a Landsat Thematic 

Mapper (TM) image of a study area in northern Italy. Their method consisted of a 

sequential application of segmentation and classification techniques. First, the TM 

image was classified using a pixel-based maximum likelihood classifier and 

additional empirical rules. Subsequently, the orthophoto was segmented by applying 

a region-based segmentation algorithm.  Finally, the classification of the segmented 

images was performed using as a reference the TM image previously classified. 

Using the test data, accuracy assessments were performed both on the results of 

pixel- and feature-level fusions and classifications. According to the confusion 

matrices, the accuracy and reliability of pixel-level classification was 83.80 percent 

and feature-level was 86.26 percent. The accuracy results revealed that the feature-

level classification performed better in distinguishing practically all the cover 

classes, improving both average accuracy and average reliability by about 2 percent. 

According to Geneletti and Gorte (2003), unlike pixel-level fusion, the feature-level 

approach produces as output a thematic map composed of geographic entities 

labelled with land cover classes and, as such, can be directly stored on to GIS 

databases, creating or updating usable geo-information.  

The main criticism of the Geneletti and Gorte (2003) approach was of the 

segmentation process. They used knowledge-based segmentation, which 

incorporated knowledge derived from training areas or other sources into the 

segmentation process. This segmentation is mostly specific, not necessarily robust, 

and does not necessarily deliver homogeneous areas (Baatz and Schape, 2000).  

Wang et al. (2004) fused IKONOS 1-m panchromatic and 4-m multispectral images 

to map mangroves in a study site located at Punta Galeta on the Caribbean coast of 

Panama. They hypothesised that spectral separability among mangrove species 

would be enhanced by taking the object (feature) as the basic spatial unit as opposed 

to the pixel. Three different classification methods were investigated: maximum 

likelihood classification (MLC) at the pixel-level, nearest neighbour (NN) 

classification at the feature-level, and a hybrid classification that fuses the pixel- and 

feature-level methods (MLCNN). Specifically for object segmentation, which is the 

key step in feature-level classification, they developed a new method to choose the 

optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known 
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index of class separability in traditional pixel-level classification. A comparison of 

BD values at the pixel level and a series of scale parameters not only supported the 

initial hypothesis, but also helped to determine an optimal scale at which the 

segmented objects have the potential to achieve the best classification accuracy. 

Among the three classification methods, MLCNN achieved the best average 

accuracy of 91.4 percent. Wang et al. (2004b) also compared the performance of 

IKONOS and QuickBird images in the classification of mangrove stand composition. 

In pixel-level classification, multispectral bands were employed to classify seven 

land cover types. Classification based on the IKONOS image was slightly, but 

significantly, more accurate than classification based on the multispectral QuickBird 

image (Kappa Z statistic 1.98). The addition of the panchromatic band to the 

classification did not significantly change the accuracy of classification for either 

image type. However, the K
∧

 value (7.75) from IKONOS classification was still 

significantly higher than that from the equivalent QuickBird bands (Kappa Z 

statistics 1.98). When texture information in both panchromatic and multispectral 

bands was used to aid feature-level classification of mangrove species, IKONOS and 

QuickBird demonstrated almost equal classification effectiveness (73 percent) with 

K
∧

values of 0.69. In general, both IKONOS and QuickBird images presented 

promising results in classifying mangrove species. Spectral information played a 

more important role in classifying mangrove species than spatial information did.  

Walter (2004) investigated change detection based on both pixel- and feature-level 

classification. In the pixel-level classification airborne four band (RGB & NIR) 

multispectral imagery was used, whereas in the feature-level 14 bands were included: 

mean grey value of the 4 spectral bands, vegetation index, texture from blue band, 

variance of the 4 spectral bands, and percent of forest, green land, settlement and 

water pixels. All features of the test areas were used as training objects for the 

classification. In a manual revision, the GIS data were compared with the images. 

The number of features that were either not collected correctly, or for which it was 

not possible to decide if they were collected correctly without further information 

sources constituted more than 6 percent of all features. Walter (2004) proposed 

refining the process by including LiDAR data. The suggestion was that the results of 

a pixel-level classification could be improved significantly by the combined use of 
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multispectral and LiDAR data. LiDAR data can improve the classification result 

because they have behaviour complementary to multispectral data. Walter (2004) 

predicted that feature-level classification should also be improved by the combined 

use of multispectral and LiDAR data. Yan et al. (2006) compared pixel-based and 

object-oriented classifications for land-cover mapping in a coal fire area. Using the 

object-oriented classification, the overall accuracy was higher than the accuracy 

obtained using the pixel-based classification by 36.77 percent and the User’s and 

Producer’s accuracy of almost all the classes were also improved.  

Platt and Rapoza (2008) compared a traditional pixel-based classification using 

maximum likelihood classification with results from OBIA for a mixed urban-

suburban-agricultural landscape surrounding Gettysburg, Pennsylvania. They used 

4m spatial resolution and a four spectral bands IKONOS satellite image. They noted 

that OBIA has at least four components not typically used in per-pixel classification: 

(1) the segmentation procedure, (2) the nearest neighbour classifier, (3) the 

integration of expert knowledge, and (4) feature space optimisation. They evaluated 

each of these components individually and found that the combination of 

segmentation into image objects, use of the nearest neighbour classifier, and the 

integration of expert knowledge yielded substantially improved classification 

accuracy for the scene, compared to a per-pixel method. Specifically, OBIA-derived 

classification accuracy was 78 percent compared to the pixel-based accuracy of 64 

percent.  

Zhou et al. (2009) presented a comparative study of three methods using high spatial 

resolution imagery for land cover classification of shaded areas in an urban 

environment. Method 1 combined spectral information in shaded areas with spatial 

information for shadow classification. Method 2 applied a shadow restoration 

technique - the linear-correlation correction method - to create a “shadow-free” 

image before classification. Method 3 used multi-source data fusion to aid in 

classification of shadows. The results indicated that Method 3 achieved the best 

accuracy, with overall accuracy of 88 percent. It provides a significantly better 

means for shadow classification than the other two methods. The overall accuracy for 

Method 1 was 81.5 percent, slightly but not significantly higher than the 80.5 percent 

using Method 2. All three methods applied an object-based classification procedure, 
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which was critical as it provides an effective way to address the problems of 

radiometric difference and spatial misregistration associated with multi-source data 

fusion (Method 3), and to incorporate thematic spatial information (Method 1). 

Application of the shadow detection and restoration methods help to eliminate the 

shadow problem in land cover classification when using high spatial resolution 

images in urban settings. 

Riggan and Weih (2009) compared an object-based classification procedure utilising 

Feature Analyst software (VLS, 2011) with a traditional pixel-based methodology 

(supervised classification). Medium-spatial resolution multispectral SPOT-5 satellite 

images were merged with high-spatial resolution colour infrared aerial images. A 

training-set was produced by selecting and identifying specific land cover class-types 

using 30cm spatial resolution aerial photos. This training set was used by both of the 

classification methods (supervised and object-based) to identify the various cover 

types within the study area. An accuracy assessment was performed on each image 

utilising error matrices, the Kappa coefficient, and a two-tailed Z-test. Results 

indicate that the overall accuracy of the object-based classification was 82.0 percent, 

while the pixel-based classification was 66.9 percent accurate. A Kappa co-efficient 

and a two-tailed Z test were calculated. These values indicated a significant 

difference in the overall accuracies of the two classifications. 

2.11 Concerns about Per-pixel Based Thematic Accuracy Assessment 

Although the basic approaches to accuracy assessment seem relatively 

straightforward, many problems are often encountered when evaluating an image 

classification. These range from issues associated with a failure to satisfy basic 

underpinning assumptions through to the limited amount of information on map 

quality that is actually conveyed by a basic accuracy assessment (Foody, 2002). A 

variety of errors are encountered in fusing images. Typically, interest focuses on 

thematic accuracy, which is the correspondence between the class label assigned by 

the fusion and that observed in reality. The confusion matrix appears to provide an 

excellent summary of the two types of thematic error that can occur, namely, 

omission and commission. However, other sources of error that contribute to the 

pattern of misclassification are not depicted in the confusion matrix (Husak et al., 
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1999; Canters, 1997; Congalton and Green, 1993). Non-thematic errors may result in 

misrepresentation and underestimate the actual accuracy (Congalton and Green, 

1993). Unfortunately, non-thematic errors can be large and particular concern 

focuses on errors due to misregistration of the image classification with the ground 

data (Muller et al., 1998a; Canters, 1997). This positional uncertainty can have a 

major detrimental effect on thematic mapping. Significant misregistration problems 

have often been observed in the mapping of large areas where the problems of 

obtaining a high positional accuracy have been noted to be a major source of 

classification error and they are sometimes larger than the actual thematic error 

(Muller et al., 1998a). It has been assumed that the ground, or reference data, used in 

the assessment of classification accuracy are themselves an accurate representation 

of reality. In fact, the ground data are just another classification, which may contain 

error (Congalton and Green, 1999). These may be thematic errors in which the class 

labels are erroneous but may also include other errors such as those due to 

mislocation. Problems with ground data accuracy may be particularly severe if a 

remotely sensed data set is used as the reference data. Unfortunately, the use of 

remotely sensed data as reference data is common in the ‘validation’ of coarse spatial 

resolution map products depicting very large areas (Justice et al., 2000). A further 

problem arises as a consequence of the sampling strategy adopted in some 

ground/reference data collection programs. The size of the sampling units used in 

ground data collection is often different to the units mapped from the imagery (e.g., 

pixels or parcels) leading to difficulties in analysing the data sets (Atkinson et al., 

2000). The comparison of ground and thematic map labels may, therefore, be based 

upon differently sized units, which can result in different estimates of classification 

accuracy (Biging et al., 1999). Irrespective of the misregistration and the problem of 

mixed pixels, the spatial variability of error can be a major concern, particularly in 

terms of error propagation. The confusion matrix and the accuracy metrics derived 

from it provide no information on the spatial distribution of error (Canters, 1997). In 

classical accuracy assessments all misallocations are equally weighted. Some errors 

are often more important or damaging than others (Forbes, 1995). In many instances, 

the errors observed in a classification are between relatively similar classes and so 

relatively unimportant, while other errors might much more serious (Zhu et al., 

2000). An additional source of error associated with the use of a standard (hard) 
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classifier that allocates each pixel to a single class is the implicit assumption that the 

image is composed of pure pixels. Unfortunately, remotely sensed data are often 

dominated by pixels that represent areas containing more than one class and these are 

a major problem in accuracy assessment (Foody, 1996). In some cases, mixed pixels 

have been identified as the most important cause of misclassification and a major 

contributor to the misrepresenting of land cover change (Skole and Tucker, 1993). 

Quantitative methods compare reference data (ground-truth) and the fusion results 

from which error matrices and related measures such as overall, Producer’s and 

User’s accuracy, and Kappa coefficient are derived. However, in the case of using 

high spatial resolution data, some of the general problems related to this procedure 

are amplified and need even more attention compared with the use of lower 

resolution data. The underlying reasons are discussed in context of geometric and 

semantic aspects of the high spatial resolution data (Schiewe and Gahler, 2008). 

From a geometric point of view, the smaller pixel sizes may lead to a suitable 

reference with appropriate positional accuracy being difficult to achieve. 

Furthermore, an adaptation of the number and size of sample units has to take place. 

In particular, the conventional acquisition on a per pixel basis is not suitable anymore 

due to excessively small elements and neglect of the neighbouring environment. In 

analogy to the object-based interpretation approach, a per-object sampling seems to 

be necessary in order to define training and test elements; however, due to lack of 

suitable methodology, such an approach is hardly ever applied in practice. 

From a semantic point of view, high-resolution data allow for the extraction of more 

thematic details and object classes so that a more complex classification scheme 

becomes necessary, and that inherits a greater chance of overlapping definitions of 

attribute value ranges. As a consequence, this may lead to errors or ambiguous 

assignments during the visual or automatic interpretation process. The greater 

number of possible classes also makes more sampling units necessary. As with 

geometric properties, it is also difficult to find a suitable reference with appropriate 

thematic details and semantic accuracy. It has to be kept in mind that very often a 

reference data set is nothing other than another classification result based on another, 

essentially lower resolution, data set. 
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Finally, the spatial variance within regions containing a topographical object is 

increased in high-resolution imagery, which leads to more objects, more mixed 

objects (e.g., forest consists of trees, bare soil and other land covers) and more 

boundaries. Pertaining to the latter, the number of indeterminate boundaries, in other 

words the fuzziness effect, is again increased. 

Due to the increasing importance of remotely sensed data with high spatial resolution 

on one hand, and the problems discussed above on the other hand, there is a great 

necessity to develop uncertainty measures for classification that consider 

uncertainties in reference data as well as indeterminate boundaries (Schiewe and 

Gahler, 2008). Most of the studies use site-specific (i.e. point based) accuracy 

assessment as the appropriate means to judge the classification quality of the 

outcome (Lang et al., 2010). However, when working with OBIA, point-based 

method cannot assess the spatial dimension of object delineation (Lang, 2008; 

Albrecht, 2008). OBIA enables more complex representations of the world but is 

challenged to evaluate the validity of objects, especially in operational settings. In 

fact, evaluating the resulting objects with a binary assessment and judging whether 

these objects are ‘correct’ or ‘incorrect’ will fail in terms of capturing the full 

dimension of object validity (Albrecht, 2008). In this context, Lucieer and Stein 

(2002) distinguish between existential and extensional uncertainty of delineated 

objects. Moller et al. (2007) developed validation algorithm which quantified 

localised segmentation inaccuracies and allowed the assessment of segmentation 

results as a whole. The problem with this process is that it only concentrated on 

geometric accuracy assessment not the thematic accuracy of the object-based 

classification results.  

2.12 Summary of Reviews 

This chapter has reviewed the principles of different data fusion techniques in remote 

sensing, which provide a basis for selecting an appropriate fusion technique for 

mapping major landscapes such as urban and forest landscapes. The choice of a 

particular fusion depends on the appropriate scale or spatial resolution of the data, we 

desire information extracted from the scene and the spatial structure of the scene 

itself. A hierarchical landscape classification scheme not only retains the typical 
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properties or conditions of the desired classes but also guides the overall fusion 

process. A summary of the literature review is presented in Table 2. 5 highlight the 

different components of current fusion research. 
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Table 2.5 A summary review of the literature presenting major components of the current research. 

Description Reference Characteristics Limitations 

Pixel-level 

General Pohl and van-Genderen (1998) Comprehensive review of pixel-level fusion Does not include other fusion levels  

D
ata-driven 

Unmixing fusion 
 

Mezneda et al. (2010) Linear spectral unmixing approach using ETM+, ASTER VNIR and SWIR data for mineral 
detection. 

Only deals with fusion of spectral imagery  

Principal Component 
Analysis (PCA) 

Richards and Jia (2005) PCA for indentifying bush fire-damaged areas from multi-temporal Landsat images No accuracy assessment 

Unsupervised 
classification 
 

Haala and Brenner (1999) Unsupervised classification of multispectral imagery with LiDAR data for the extraction of 
buildings, trees and grass-covered areas. 

Used low spatial resolution of the LiDAR data and had no 
quantitative accuracy measure 

U
ser- driven 

Maximum likelihood Schistad-Solberg et al.(1994) Landsat TM images and ERS-1 SAR images Various sources cannot be described by a common ‘spectral’ model  
Comparison  Meyer et al. (1996) Compare parallelepiped and maximum likelihood classification techniques for identification 

of forest species 
Manually separated the tree cover area 

Feature –level 

OBIA general Blaschke (2010). Comprehensive review of the OBIA literature Limited discussion on fusion context  

D
ata-

driven 
Segm

entati
 

Region-based  Geneletti and Gorte (2003) Applied a region-based segmentation  Segmentation does not deliver homogeneous areas 
Watershed Soille (2003) Theory of the morphological watershed segmentation  Not much discussion in fusion context 

Chen et al. (2005) Applied marker-controlled watershed segmentation method for isolating trees from LiDAR 
data 

LiDAR data only, no fusion related discussion 

U
ser-driven 

Segmentation Baatz and Schape (2000) Multi-resolution segmentation  Only theoretical aspects presented 
OBIA Classification Flanders et al. (2003) Classify Landsat ETM+ image for logged forest block delineation Narrow focus on cur block delineation 

De-Kok et al., (1999) First demonstrated the usefulness of OBIA-based fuzzy classification No comparison was made with pixel-based one  
Van-der-Sande et al. (2003) Applied IKONOS-2 imagery for flood damage assessment No comparison with pixel-based fusion 

Fusion Zhou and Troy (2008) Object-oriented approach for characterising urban landscape structure using high-resolution 
digital aerial imagery and LIDAR data 

Only applied knowledge base rules no data-driven approach  

C
om

parison of pixel- and feature-
 

Classification Geneletti and Gorte (2003) High-resolution panchromatic and Landsat TM imagery The segmentation did not deliver homogeneous areas 
Kamagata et al. (2005) Land cover mapping using high resolution satellite data Comparison made solely on visual inspection 
Walter (2004) Investigated a change detection approach based on both pixel- and feature-level classification 

using airborne multispectral imagery  
Did not use LiDAR but mentioned it would improve results 

Platt and Rapoza (2008) Used four spectral bands from IKONOS satellite image for mixed urban- landscape 
classification 

Did not included any data-driven component of the classification 

Fusion Zhou et al. (2009) Used multi-sourced data fusion for shadow classification No broad landscape classification 
Riggan and Weih (2009) Multispectral SPOT-5 satellite images with high-spatial resolution aerial imagery using 

Feature Analyst software for object-based classification 
Not much discussion of the segmentation process 

Wang et al. (2004) Used pixel-, feature- and hybrid- methods using IKONOS 1-m panchromatic and 4-m 
multispectral images to map mangroves 

Concentrated on forest classification 

A
ccuracy assessm

ent 

General Foody (2002) Overview of the error matrix-based accuracy assessment Discussion paper only 
Congalton and Green (1999) Detailed discussion of sample design, sample size and overall accuracy assessment Discussion limited to error matrix-based assessment 

Point or pixel-based accuracy 
using error matrix 

Zhou et al. (2009) Used a total 200 random points for assessment with 30 points per class Very low sample size per class 
Platt and Rapoza (2008) 300 random points were generated then 249 points were supplemented by stratified samples Inconsistent sample size-highest 138 and lowest 31 

Object-based only Albrecht, 2008 Object boundary validation using Object Fate Analysis (OFA) Interpretation of the accuracy was difficult 
Moller et al. (2007) Validated localised segmentation inaccuracies Concentrated on geometric accuracy assessment did not cover 

thematic accuracy 
Schiewe and Gahler, 2008 Considered uncertainties in reference data as well as indeterminate boundaries Did not include sensitivity to uncertainties 
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The investigation of the fusion process included pixel-level fusion, like colour-

related methods, numerical methods, statistical methods, signal processing-based 

methods and classification methods, as well as the feature-level fusions including 

different segmentation and feature classifications methods. 

Colour-related fusion methods only enhance the colour composition therefore fusion 

results are only suitable for visual interpretation. Red-Green-Blue (RGB) and 

Intensity-Hue-Saturation (IHS) colour transformations are the most common colour-

related fusion techniques. Numerical methods produce fused images by combining 

pixel values from multiple input images using some function or formula to give a 

new output pixel value. Statistical methods such as principal component analysis 

(PCA) can maximise the effect of the high-resolution data in the fused image. Signal-

processing based fusion includes different high-pass filters and wavelets techniques 

that utilise different multi-scale approaches in pixel fusion.  

Classification is one of the pixel-level fusion techniques that uses the multi-

dimensional data vector to include different data sources. Some pre-processing is 

required to implement this stacked-vector approach. Standard pixel-level classifiers 

can be divided into two groups: data- and user-driven approaches. The data-driven 

approach includes unsupervised technique, which detects clusters of pixels in feature 

space and categorise the pixels into the clusters based on the statistical patterns 

inherent in the data. The most problematic task when using this technique is to 

separate different classes for which a priori knowledge is required. Supervised 

approaches fall into the user-driven category and overcome this problem by using a 

priori knowledge from training information for classifying multi-source images. A 

set of reliable signatures is created using the training data to analyse each pixel 

independently. There are many classifiers found in the literature to carry out the 

remainder of the classification process. The maximum likelihood classifier is one of 

the most popular classifiers. However, some data are unable to be represented by 

normal class models, and computational cost may increase with data dimensionality 

in maximum likelihood classifier. A nonparametric classification technique such as 

parallelepiped classifier could overcome these problems, since it depends only on the 

application of threshold components of the multi-source data vector. 
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Feature-level fusion is gaining attention due to the availability of robust 

segmentation algorithms and the reduction of computational expense. Feature-level 

fusion starts with the crucial initial step of grouping neighbouring multi-source pixels 

into meaningful areas or segments. A huge number of segmentation algorithms can 

be found in the literature but not all of them are robust and operational enough to use 

in feature-level fusion. Edge-based segmentation algorithms are easy to apply on 

grey images but struggle to delineate objects of interest from segmented images. 

Although thresholding is a very old, simple and popular segmentation technique, 

typically it leads to results of a relatively limited quality. Region growing 

segmentation is a method of feature extraction in which regions (features) in an 

image are grown from seed points. Two factors determine the final result: the 

parameters for region growing, and the location of the seed points. This method 

basically depends on the set of given seed points and often suffers from a lack of 

control in the break off criterion for the growth of a region. Region splitting and 

merging is an alternative to the region growing procedure. The split and merge 

segmentation algorithm works by successively splitting the image into quadrants, and 

merging those neighbouring quadrants which are similar, until no further splitting or 

merging can take place.  

The watershed transformation is a segmentation tool provided by mathematical 

morphology. It is a combination of region growing and edge detection techniques. It 

groups the pixels around regional minima, and their location are along the crest lines 

of the gradient image. Marker-controlled segmentation is one of the most convenient, 

fast and powerful techniques in watershed transformation. However, noise and strong 

contrasts can lead this method to achieve inappropriate results.  

Multi-resolution segmentation is a bottom up region-merging technique starting with 

one-pixel objects. In numerous subsequent steps, smaller image objects are merged 

into bigger ones. In this algorithm, a scale parameter is used to control the average 

image object size and homogeneity criteria are defined by the spectral and spatial 

information. Heterogeneity in multi-resolution segmentation is defined by the colour 

and shape of the features in the image.  
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Fuzzy set theory provides useful concepts and tools for classifying the features from 

multi-source segmented images.  It also deals with the uncertainty of derived land 

cover maps from remotely sensed data. The key to the derivation of fuzzy land cover 

maps relies on defining appropriate fuzzy membership functions. Two broad 

approaches, namely the semantic import (SI) model and the similarity relation model, 

can be employed to define the fuzzy membership. For classifying the segmented 

features, a typical method of defining fuzzy memberships is the SI model. In this 

algorithm, fuzzy membership values for each feature belonging to all candidate 

classes are generated by expert knowledge. The selection of class boundaries and 

class intervals can be an objective or subjective process, depending on the way 

classes are defined. 

Pixel- and feature-level approaches can be compared in a qualitative or quantitative 

manner. The qualitative measures are mainly depended on the visual inspection and 

vary with personal choice. Quantitative approaches are composed of rigorous 

sampling and statistical methods that provide and utilise numerical values by which 

to make comparisons. The concerns of the pixel-based accuracy assessment are 

reviewed as a precaution for further improvement in the implementation phase.   

2.13 Chapter Conclusions 

The purpose of this chapter was to introduce the subject of image fusion in order to 

highlight some of the aspects of LiDAR and optical image fusion. It is accepted that 

a knowledge of image fusion should lead to a better understanding of how to select 

and apply appropriate fusion technique specifically to fuse passive and active 

imageries. A full description of pixel-level image fusion can be found in Pohl and 

van-Genderen (1998), but unfortunately there is no similar single reference which 

fully describes the feature-level fusion. However, a comprehensive review of the 

OBIA development can be found in Blaschke (2010). After considering different 

fusion models, it was decided that this study would concentrate on the data- and user-

driven models using aerial imagery with LiDAR data. This study also includes a 

comparison of pixel- and feature-level fusion techniques in order to select an 

appropriate fusion technique for mapping a range of landscape features. The error 
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matrix derived from field and fused data helps to evaluate the accuracy of fusion 

results in a quantitative manner.  

The following chapter of this thesis introduces the study area and the datasets that are 

used to implement different pixel- and feature-level fusions. 

 

 

 

 



 

 

88 

CHAPTER 3 

3 STUDY AREA AND DATASETS 

This chapter describes the location and characteristics of the major landscape types 

in the study region. The reasoning behind fusing aerial imagery with LiDAR data is 

discussed, then the datasets of LiDAR, colour and multispectral imagery are 

introduced. In addition to imagery, the use of topographic maps and field survey data 

are discussed.  

3.1 Introduction  

It is very difficult to make general statements on the suitability of fusion techniques. 

The decision on which fusion technique to use is very much driven by the application 

proposed. The choice of datasets is also application dependent, as is the technique 

used to fuse data (Pohl and van-Genderen, 1998). In this research, the study area and 

the selected landscape features to delineate govern the selection of both datasets and 

fusion techniques. The review of scale effect and standardised landscape 

classification schemes in Section 2.2 and 2.3 revealed that there is a direct 

relationship between the spatial resolution of the data and the identification of the 

landscape objects. In this context, a hierarchical landscape classification scheme was 

selected to guide the fusion process for extracting landscape objects from multi-

source data. The following sections describe the study area and the datasets required 

for delineating a range of landscape objects using different fusion techniques.  

3.2 Selection of the Study Area and Fusion Model 

A range of landscape objects was investigated when fusing aerial imagery with 

LiDAR data for mapping landscape. Not all landscape objects were found in the 

same location and some fusion techniques were not suitable for mapping some 

landscapes. In this context, the most dominant landscape types - forest and semi-

urban areas - were selected from the study region. The selected study areas were 

situated in and around Mathoura, a country town in southern New South Wales. The 
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forest study area was a part of Moira State Forest and semi-urban study area was in 

Mathoura township. The location of the study areas is shown in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location of the study areas 

The forest study area is predominantly red gum (Eucalyptus camaldulensis) forest 

but it is also wetland because of the mosaic of open water bodies, swamps, meadows, 

and marshes that occur within it. The study area covers 1.25km x 1km or 1.25 square 
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kilometres of the forest comprising: river red gum (Eucalyptus camaldulensis ssp. 

obtusa Dehnh), black box (Eucalyptus largiflorens), and grey box (Eucalyptus 

microcarpa). A detailed review of the forest species identifying from field surveying 

and remotely sensed data is presented in Section 3.7. 

The 1.25 km x 1 km semi-urban study area is the representative a typical Australian 

regional town with buildings ranging from very large to small. The area has a 

mixture of vegetation cover, open space, and road networks. A comprehensive 

description is given in Section 3.8.  

Selection of representative landscape domains to be identified through image fusion 

in any study area requires consideration of a range of factors, including: 

(i) access to an archive of multi-source remotely sensed data for analysing  

attributes of different fusion processes, 

(ii) convenient access to the study area for compilation of field reference data for 

verification of fusion results, 

(iii) preferably a rich history of study by previous researchers in order to compare 

results, 

(iv) availability of ancillary data such as analogue and digital maps, and high 

quality aerial photographs for compilation of additional reference data. 

A data-driven fusion model is dependent on data itself and used when little else is 

known about an area before attempting classification. This model was suitable in the 

forest study area because there were only three dominant Eucalyptus species for use 

to classify with high spatial resolution spectral, texture, and height data. On the other 

hand, users closely control a user-driven fusion model by inputting knowledge rules 

into the process. This model was suitable for the semi-urban study area that 

contained a large number of classes (six classes) with complex landscape structures 

therefore; only data is not sufficient enough to separate semi-urban classes.  

Compatible field reference data are essential for comprehensive analysis of primary 

remote sensor information. The extent of the study areas and the selected landscape 
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classes were sufficient for testing different fusion models using multi-source 

remotely sensed data. High spatial resolution digital aerial imagery and field survey 

data provided detailed reference data for assessing thematic accuracy of the imagery-

LiDAR fusion results. 

3.3 Geography of the Study Region 

Mathoura is located in the Riverina region 768 km southwest of Sydney, 34 km south 

of Deniliquin and 97 m above sea level. The area depicted in Figure 3.1.lies between 

35° 48’ 11” and 35° 59’ 52” and 144° 46’ 52” and 144° 47’ 12”. Mathoura's main 

claim to fame is that it is the gateway to the world's largest red gum forest (The 

Barmah-Millewa forest). The major landscape types within the town are open spaces, 

native vegetation, residential, commercial and industrial properties and surrounded 

mainly by agricultural and forest lands.    

3.4 Major Landforms of the Study Region 

Approximately 25,000 years ago, an uplift of land in the southern Murray-Darling 

Basin created what is now known as the Cadell Tilt (Cadell Fault). The edge of the 

12m high block runs north/south near Deniliquin and Echuca (Chong, 2003). The 

Tilt is visible on the eastern side of the Cobb Highway where the ground slopes 

down to the forest. It influenced the course, pattern and character of about 500km of 

the River Murray.  

Following the uplift, a large shallow lake was created by the dammed Murray and 

Goulburn rivers. The Murray took a new course around the northern side of the Fault 

(now referred to as Wakool channel), the bed of which is today occupied by the 

Edwards River. For thousands of years the Goulburn River continued to feed the lake 

but it eventually also broke out to the west. 

Around 8000 years ago, the Murray turned south, breaking through the section 

between Picnic Point and Barmah (taking over the Goulburn channel downstream of 

Echuca). This section is today known as the Barmah Choke. During major floods, 

large volumes of water bank up behind the Barmah Choke, flooding the former lake 

area. This flooding has created a wetland surrounding the Barmah-Millewa Forests, 
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which contains flora and fauna that are typical of a region which receives three times 

more rainfall than the region actually does (MDBC, 2006). 

3.5 Climate of the Study Region 

According to DCE (1992), the climate of the Barmah-Millewa Forest region is 

‘temperate hot summer’. Rainfall across the central Murray Valley decreases from 

southeast to northwest as the influence of the eastern highlands diminishes. Winter 

rainfall is typically of low intensity, whilst summer falls are usually the result of 

heavy thunderstorms. Mean annual rainfall is about 400-450mm (Chong, 2003). 

Average rainfall statistics for Echuca, Barmah and Tocumwal for the past 10 years 

are presented in Figure 3.2. 

Annual evaporation for the region is approximately 1400mm, almost half of which 

occurs between December and February, and two thirds between November and 

March (DCE, 1992). The hot season commences in November and extends until 

March, with mean maxima and minima 31°C and 15°C in the hottest month of 

January and mean maximum and minimum temperatures in the coldest month of July 

13°C and 4°C (BOMa, 2006; BOMb, 2006; BOMc, 2006). The average frost-free 

period lasts about 7 months from late October to mid May. Severe frosts are limited 

to a period of eight weeks in June, July and August (DCE, 1992). 
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Figure 3.2 Rainfall statistics in the study region, Source: BOM (2006) 

3.6 Characterisation of the Landscape Types 

As explained in Section 3.2, two landscape types (forest and semi-urban areas) were 

selected for the analysis due to their dominant characteristics being representative of 

the whole Mathoura landscape. According to the geological landforms (see Section 

3.4), the semi-urban study area in Mathoura is on the high land of the Cadell Tilt 

while the forest study area is on the down slope of this Tilt. The natural landscape 

has been extensively cleared particularly the native vegetation of the high land and 

replaced by agricultural and semi-urban land uses. However, scattered pine 

plantations, grazing, horticulture and significant conservation reserves also exist in 

this landscape. The down slope of the Cadell Tilt retains the bushland, which is 

dominated by native forest. In addition to bushland and water catchment reserves, 

some cleared corridors to the Barmah-Millewa forest exist in this landform.               
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Table 3.1 Major landscape types in the study region  

Study area Major landscape types Description 
Forest area black box (BB) a slow growing tree with rough bark 

on trunk and branches 
 grey box (GB) a tree with fine, pale, fibrous bark on 

trunk and large branches 
 river red gum (RRG) a large fast growing, spreading tree 

with pale grey to white smooth bark 
Semi-urban area open space/road open yards, sealed and unsealed roads 
 grey/colour roofs commercial and Residential buildings 
 tree/grass recreational areas characterised by 

grasses, shrubs and occasional native 
plants 

 shadows building and tree shadows 
 

Secondary data source (topographic maps, land use maps) are employed and random 

field visits are made to the study areas to characterise the dominant landscapes before 

selecting part of Moira State Forest and Mathoura Township to represent the forest 

and semi-urban landscapes. A summary of the major landscape types of the study 

areas is presented in Table 3.1 and discussed in detail in the following sections. 

3.7 The Forest Study Area   

In Australia’s southeast riverine native vegetation survives only in remnant patches. 

River red gum (Eucalyptus camaldulensis), black box (Eucalyptus largiflorens), and 

grey box (Eucalyptus microcarpa) are common tree species found in the Moira State 

Forest. Figure 3.3, presents a composite view of these tree species using aerial and 

terrestrial photographs. The RGB composite of the aerial photographs was derived 

from infrared, red and green channel of the multispectral aerial photographs and the 

terrestrial photographs were taken with a digital camera. A detailed description of the 

aerial data source is given in the later sections. The characteristics of these three tree 

species from the taxonomic perspective are given below though aerial and terrestrial 

photographs captured the tree species on a macro-scale comparatively on a 

continental scale.  
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3.7.1 River red gum (RRG), Eucalyptus camaldulensis  

River red gum is the most widely distributed of all eucalypts being found in all 

Australian mainland States along watercourses and on flood plains. Figure 3.2 Plate: 

3, shows a typical RRG tree in the forest study area. RRG is a fast-growing tree, 

commonly 20m tall and occasionally reaching 45 m, with a diameter of 1-2 m or 

more (Wilson, 1995). It has smooth bark, ranging in colour from white and grey to 

red-brown, shed in long ribbons (Plantnet, 2009a). In adult trees, the leaves are 

lanceolate (length 4 times its width and broadest towards the tip), 8-30 cm long, 7-20 

mm wide, green or grey green; with a leaf stalk 12-15 mm long. The buds are 4-6 

mm long, 3-6 mm wide, with a hemispherical, pointed or conical cap (operculum). 

The 7-11 flower buds form an umbel (individual flower stalks of similar length 

forming a cluster) (Holliday, 1969). 

RRG grows in warm to hot, sub-humid to semi-arid climates. Up to 20 frosts 

annually may occur in southern and inland areas. Mean annual rainfall is mainly in 

the range 250-600 mm. In low rainfall areas it relies on seasonal flooding and/or a 

high watertable. Rainfall has a winter maximum in the south and is monsoonal in 

northern Australia. Eucalyptus camaldulensis occurs mainly on heavy clays in 

southern Australia and sandy alluvial soils in the north. It is found on salt lake 

margins but is not adapted to calcareous soils. RRG is typically a riverine species and 

in arid areas has a ribbon-like distribution across the landscape. It also occurs on 

flood plains in open-forest or woodlands dominated by other eucalypts (Wilson, 

1995). 
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Figure 3.3 Characterisation of the dominant trees in forest study area 
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3.7.2 Black box (BB), Eucalyptus largiflorens 

Black box is a slow growing tree with rough bark on the trunk and branches. An 

example of a black box (Eucalyptus largiflorens) tree in the forest study area is 

shown in Figure 3.3, Plate 1. The adult leaves of Black box (Eucalyptus largiflorens) 

are lanceolate, petiolate, and more or less symmetric with size of 18 cm x 18 mm, 

alternate, and dull green. The juvenile leaves are linear, petiolate, to 15 x 1 cm, dull 

blue-green, alternate. The buds are club-shaped, to 5 x 3 mm, pedicellate, in groups 

of 7-11, on a slim peduncle. The operculum is rounded and conical shape. The fruits 

are wineglass-shaped with size of 6 x 5 mm, pedicellate. The natural habitat is in 

river flats that are dry in summer and inundated in the winter (Ewart, 1931). Usually 

on clay or clay loams and found in poor drainage areas with low rainfall and high 

summer temperatures (Holliday and Hill, 1974). Mature height is normally 18 metres 

and is considered a low-branched tree. Diameter at breast height is up to 1 metre 

(Muell, 2007).  

3.7.3 Grey box (GB), Eucalyptus microcarpa 

A medium sized grey box tree attains height of 20 to 30 metres and 1 m in stem 

diameter. The trunk is generally straight and has good form.  A finely tessellated 

grey coloured box-type bark is persistent to the base of the branches, where it 

changes to a smooth light grey bark which is often shed in ribbons. An example of a 

grey box (Eucalyptus microcarpa) tree is shown in Figure 3.3, Plate 2. 

GB has a fine, pale, fibrous bark on the trunk and large branches. In adult trees, the 

leaves are lanceolate, petiolate, slightly asymmetric, 13 cm long, 25 mm wide. In 

juvenile trees, the leaves are ovate to broadly lanceolate, petiolate, to 15 x 5 cm, dull 

green. Buds are narrowly ovoid, to 9 x 4 mm, pedicellate, in groups of 7, on a slim 

peduncle; operculum rounded, conical. The fruits are narrow wineglass-shaped, to 7 

x 5 mm, pedicellate; valves 3-4, at level of rim (Plantnet, 2009b). 

GB occurs throughout the central and northern coastal areas of New South Wales and 

Eastern Queensland, from Jervis Bay in the south to the Atherton Tablelands in the 

north. It is common in the wheat belt areas of Victoria, New South Wales and 

Queensland.  It also has a limited occurrence in the Flinders and Mt. Lofty Ranges of 
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South Australia. This tree is normally found in sheltered sites near rivers or in open, 

poorly drained, relatively flat country (Holliday and Hill, 1974).  

3.8 The Semi-urban Study Area 

The semi-urban study area is within the regional town of Mathoura, gateway to the 

world's largest red gum forest. It covers an area of approximately 1 square kilometre, 

which includes the town centre and its mainly commercial and residential buildings. 

As shown in Figure 3.4 the dominant landscape types of Mathoura township are 

characterised by semi-urban areas, which includes commercial buildings with large 

corrugated iron roofs (Fig 3.4 Plate 1); office buildings with tile roofs surrounded by 

asphalt/concrete road (Fig 3.4 Plate 2); and residential buildings surrounded by trees 

and grass land (Fig 3.4 Plate 3 & 4). The western part of the study area is comprised 

of open space and large commercial buildings while residential areas dominate the 

eastern part of the study area. Vegetated landscapes (trees and grass) exist in several 

locations within the study area. These landscape objects were identified during field 

visits and correlated with their spatial patterns in aerial photographs before collecting 

the reference data for the  evaluating of thematic accuracies derived from different 

fusions. Brief descriptions of the semi-urban landscape objects are presented in the 

following sections. 

3.8.1 Open space/road 

Open space and roads are characterised by their own spatial pattern. Large 

commercial buildings mainly surround the open space. These spaces are bare ground 

due to the heavy use by commercial vehicles. Open spaces also include unsealed 

parking areas and yards. The main roads are sealed but minor roads and lanes are 

unsealed. An example of sealed road and open space is shown in Figure 3.4, Plate 3. 

3.8.2 Roofs 

The roofs of the study area such as those on commercial, office and residential 

buildings were identified and further categorised by their colour. The commercial 

buildings are built with corrugated iron sheets, which are normally grey in colour. An 

example of a grey colour roof in the semi-urban study area is shown in Figure 3.4, 
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Plate 1. Residential building roofs are made of varieties of material including 

corrugated iron and tiles. The colours of these roofs vary with the different roofing 

materials. However, the majority of residential roofs are grey and there are a few of 

red ones.      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Dominant landscapes in the semi-urban area 

3.8.3 Tree/grass 

Vegetation in the semi-urban study area is dominated by grass, shrub and tree cover 

in that order, mainly in recreational areas such as playgrounds and front and 

backyards of residential houses. Plate 4 in Figure 3.4, shows the vegetation 

composition on part of the semi-urban study area. 
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3.8.4 Shadows 

In Section 2.2.1, the inclusion of Shadow classes into urban landscape classification 

scheme was described. The delineation of shadows is critical for interpreting high 

spatial resolution imagery. Shadows normally obscure the natural illumination of 

areas and create darker areas surrounding elevated objects. Creation of shadow is 

dependent on an object’s position relative to the sun angle and sun rotation. As a 

result, acquisition time of the aerial photography is crucial to minimise the shadow 

effects. In this research, shadows were delineated as part of the semi-urban landscape 

description. Shadows were not only detected using spectral signature but also 

identified using their association with the object. Buildings and trees can create large 

shadows due to their elevated position in the landscape.  

The review of selected landscape features reveals that a single source data will not be 

able to delineate all landscape features. There is need to consider multi-source data 

fusion methods due to the complex nature and geometry of selected landscape 

objects. The following sections describe the justification for data selection 

procedures and later introduce the data properties for better understanding of their 

role in fusion processes. 

3.9 Data Selection for the Fusion Models 

The complementary nature of aerial imagery and LiDAR data was the reason for 

their selection in this data fusion study. LiDAR data provides an accurate 

measurement of landscape structure in the vertical plane. However, LiDAR sensors 

have limited coverage in the colour spectrum. By contrast, aerial imagery provides 

extensive coverage of landscape classes in the colour spectrum but is relatively 

insensitive to variation in object height. As a result, the fusion of aerial imagery with 

LiDAR data has the potential to significantly improve the identification and 

measurement of landscape objects. The strong argument in favour of fusion is that 

the LiDAR measurements are not distributed homogeneously and usually have gaps 

between them. As a result, the three-dimensional structure of the objects might not be 

very well defined (Baltsavias, 1999). It thus becomes fairly complex to obtain a good 

3D model of the landscape objects with a low density of LiDAR returns. The idea of 

exploiting the complementary properties of LiDAR and aerial imagery is to extract 
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semantically meaningful information from the aggregated data for a more complete 

surface description. The following sections introduce the LiDAR and aerial sensors 

and describe their properties.    

3.10 Acquisition and Properties of LiDAR Data 

LiDAR is a relatively recent development in remote sensing with great potential 

when used to measure range (distance) to and reflectance from objects on the earth 

surface. Like radar it is an active remote sensing technique, which means the sensor 

provides its own source of energy or illumination. This leads to a number of 

advantages over conventional passive remote sensing systems, the main advantage 

being the ability of the sensor to acquire images at any time of the day or night.    

LiDAR system development goes back to the 1970s and 1980s, with an early NASA 

system and other attempts in USA and Canada. Then, the GPS solution of the critical 

positioning problem made high accuracy performance feasible. Thorough 

investigations at Stuttgart University from 1988-1993 with a laser profiler proved the 

high geometric accuracy potential, especially for DTM generation, and clarified the 

essential system parameters (Ackermann, 1999). The way was clear for new 

scanning systems, which then followed in quick succession. The method has 

successfully established itself in the last few years, and quickly spread into various 

practical applications.   

3.10.1 Principles of LiDAR remote sensing  

In contrast to microwave radar techniques, lasers have two principal advantages for 

range measurements. Firstly, high-energy pulses can be realised in short intervals and 

secondly, at their comparatively short wavelength electromagnetic pulse can be 

highly collimated using a small aperture. For these reasons, shortly after the advent 

of lasers, very precise ranging was carried out with this new tool. As soon as lasers 

with high pulse repetition rates were available on the market, laser scanning systems 

could be realised with the ability to obtain range images (Wehr and Lohr, 1999).  
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Figure 3.5 A typical laser scanner system producing three dimensional data (XYZ 
coordinates), based on Wehr and Lohr (1999) 

The development of LiDAR remote sensing has been technology driven. It becomes 

initially possible by pulse lasers operating in the near infrared, which give clearly 

recordable return signals after diffusion and reflection from the ground. The travel 

times are recorded to nearly 10-10 second and converted to distance. Recently, 

continuous wave (CW) lasers have emerged, which obtain range by phase 

measurements. Precise kinematic positioning of the platform by differential GPS and 

inertial attitude determination by an IMU (Inertial Measurement Unit) or an INS 

(Inertial Navigation System) provide the accurate reference to an external co-

ordinate system. Laser scanning systems furnish geometric results in terms of 

distance, position and attitude and coordinates. For each pulse, the spatial vector 

from the laser platform to the point of reflection is established, thus providing the 

XYZ coordinates of the laser footprint. 

The laser scanning system is a combination of the positioning and orientation system, 

the scanner, and the Laser Range Finder (LRF) units (Figure 3.5). The LRF measures 

the distance from the laser scanner aperture to the refection surface. The pulse 

direction relative to the scanner (scan angle) is known for each laser measurement. 

The position and orientation of the laser scanner system are known at any time 

during the mission and are determined by combining a Differential GPS and an INS. 

Data from all units are time marked and stored in the control-, monitoring-, and 

recording-unit. The data from the different sources are linked using the time mark 

during the post-processing, and XYZ coordinates are produced. 
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3.10.2 LiDAR range measurement 

The time history of the reflected energy pulse is fully digitised and converted to units 

of distance through knowing the speed of light in the atmosphere. The first pulse 

return above a threshold is used to derive the distance to the object top and the last 

pulse return is used to find the range to ground: subtraction then yields the laser-

derived object height. 

The return waveform pulse gives a record of the vertical distribution of nadir-

intercepted surface. At any particular height, the amplitude of the waveform 

measures the strength of the return. Thus, for surfaces with similar reflectance and 

geometry within a footprint, a larger amplitude indicates more object material and a 

smaller amplitude less (Drake et al., 2002). The waveform provides only an apparent 

object profile because of attenuation of the pulse through the object so it must be 

adjusted to approximate the true object profile (Lefsky et al., 1999). 

      

 

 

 

 

 

Figure 3.6 Conceptual basis of LiDAR range measurement.  

The conceptual basis for LiDAR range measurement is illustrated in figure 3.6. The 

incident Gaussian-distributed pulse of laser energy from airborne instruments reflects 

off various portions of the objects, resulting in a return waveform where the 

amplitude of the pulse is a function of the area reflecting surfaces at that height. The 

entire waveform gives the vertical distribution of surfaces intercepted by the incident 

pulse. Some of the incident laser penetrates all the way through the canopy to 

produce the last amplitude Gaussian-shaped spike in the waveform known as the 

ground return. LiDAR systems do not measure canopy height, but rather a target 
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range determined by measuring the travel time of the pulse. The object height is 

determined by subtracting the range to the ground from that to the first detectable 

return or some threshold above that return (Drake et al., 2002). 

A laser pulse that is fired over an object usually has multiple reflections. Some of the 

laser pulse may be reflected by the top of the object, resulting in the returned signal 

being registered by the sensor as the first pulse. The remainder is likely to penetrate 

the object and eventually be reflected by the ground. The last pulse registered by the 

sensor corresponds to the lowest point from where the signal was reflected. In certain 

cases, the difference in elevation between the first and last pulses can be assumed to 

be a measure of the height of the object.  

Along with the time of transmission of the signal from the sensor to the object and 

back to the sensor, the intensity of the returned laser pulse may also registered by 

LiDAR systems. Since LiDAR systems typically operate in the near infrared (NIR) 

part of the electromagnetic spectrum, the intensity can be interpreted as an NIR 

image. However, the quality of the intensity image depends on the sensor 

specification and the flying height. Generally intensity image is under-sampled and 

thus very noisy, because the footprint is of the order of 0.2m, while the average 

sampling point distance is typically 1-2m.      

3.10.3 The properties of a LiDAR system  

The LiDAR data used for this research was acquired by AAMGeoScan (now 

AAMHatch) in July 2001. The LiDAR system was the ALTM 1225, which operates 

with a sampling intensity of 11 000 Hz at a wavelength of 1.047 µm. Approximate 

flying height of this sensor was 1100m and the laser swath width was 800m. Vertical 

accuracy was 0.15m (1σ), the internal precision was 0.05m, and the original laser 

footprint was 22cm in diameter and point spacing in the order of 16 points per m2.  

The original LiDAR dataset was processed by AAMHatch and provided to the 

Victorian Department of Sustainability and Environment (DSE). In the processing 

phase, the data was thinned to remove superfluous points not adding to the terrain 

definition. It also included the conversion of the original LiDAR point heights into a 

regular 1m grid. The data was provided as ASCII format with two separate files 
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representing the first (non-ground) and last (ground) return point data. The data 

format consisted of Easting, Northing, Elevation and Intensity fields. The data was 

provided in 2km by 2km tiles and each tile had approximately 11million points. The 

supplied LiDAR data was compliant with the GDA (Geocentric Datum of Australia) 

system. The horizontal datum was GDA94 and projection was MGA (Map Grid of 

Australia) Zone 55. The vertical datum was AHD (Australia Height Datum) and 

geoid model was Ausgeoid98. This research-specific LiDAR processing is further 

described in the Chapter 4.      

3.11 Acquisition and Properties of Colour Imagery 

In this research, different fusion techniques were developed and tested for the fusion 

of aerial imagery with LiDAR data for landscape mapping. The aerial colour and 

multispectral images were collected with different sensors and platform. The colour 

imagery was acquired with a Zeiss LMK152 aerial camera system by AEROmetrex 

(www.aerometrex.com.au). The focal length for the colour imagery was 152.261mm. 

The platform was flying at ~1000m above ground level with a heading of ~188º. 

These images were accompanied with camera calibration certificate and the exterior 

orientation parameters (Xo, Yo, Zo, ω,φ,κ), captured using onboard GPS and IMU 

sensors for each photo. The analogue colour images were scanned with a flatbed 

scanner at 15μm to provide a pixel size of ~8.25cm. The radiometric resolution of the 

colour image was 8-bit. The orthorectification process of the colour imagery is 

presented in Chapter 4.  

3.12 Acquisition and Properties of Multispectral Imagery 

Digital multispectral imagery was captured by IFMS Germany (www.arcforest.com) 

over the study area using an Ultracam-D with a calibrated focal length of 101.4mm.  

Ultracam uses a set of 8 optical cones to assemble a large format digital image in 

natural colour (red, green and blue) with false colour infrared (IR). The panchromatic 

images were collected with a 9.00μm pixel size and multispectral images were 

collected with a 28.125μm pixel size. The multispectral images were collected as a 

medium format image and they were later upscale to panchromatic image format. 

The radiometric resolution of the digital images was 16-bit. This increased 

http://www.aerometrex.com.au/�
http://www.arcforest.com/�
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radiometric range of digital image relative to analogue captures more detailed 

information of the landscape features. As a result, in extreme bright and dark areas 

we still mange to get redundant information beyond what is visible in images with 

lower radiometric resolution (Leberl and Gruber, 2005). 

Table 3.2 Summary descriptions of the datasets 

Image Type Year of 
Acquisition 

Bands Spatial 
resolution  

Radiometric 
resolution 

LiDAR data 2001 First & last 
return 

16 
point/m2 

8-bit 

Colour image 
(Scanned) 

2001 3 (R, G, B) 0.08m 8-bit 

Multispectral image 2004 4 (R, G, B, IR) 0.88m 16-bit 
 

The UltracamD datasets also came with camera calibration certificate and the 

exterior orientation parameters (Xo, Yo, Zo, ω,φ,κ), captured using onboard GPS and 

IMU sensors. The geometric correction procedure of the multispectral imagery is 

presented Chapter 4. Table 3.2 lists the acquired datasets.  

3.13 Other Data Sources 

In addition to aerial remote sensing data, digital orthophotographs and topographic 

maps were used to select the reference data for fusions themselves and were later 

used to evaluate the thematic accuracies derived from different fusions.  The 

ancillary data were used for generating descriptive statistics of the multi-source data 

fusion. Extensive field data was also collected to validate the accuracy of the fused 

dataset.    

3.13.1 Supporting digital aerial photography collections 

In April 2006, small format aerial photography was collected throughout the study 

region to enhance the datasets for fusion process. The RedLake MS4100 high-

resolution 3CCD multispectral camera was used with a calibrated focal length of 

13.20mm. The aerial photographs were collected at three different scales by varying 

the flight heights according to the spatial resolution of the images. The flight height 
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was ~650m for the 50cm pixel images. Four band (CIR) digital aerial photographs 

were used as an additional source to improve the orthorectification of the colour and 

multispectral imagery.  

3.13.2 Field data collection 

Field visits were undertaken during July 2005 and April 2006. The training sample 

sites were surveyed in 2005 and sample data for assessing the accuracy of fusion 

results were collected in 2006. In addition to these surveys, in July 2003, a group of 

experts from RMIT University and NSW National Parks and Wildlife visited this 

region to assess the tree condition. The 2003 study spanned 6km x 4km area and 

forty test sites were initially selected using a stratified random sampling method and 

subdivided into trips and points.  The location of individual trees was identified using 

handheld GPS. In areas where the identification or singling out of individual trees 

was not possible stem density was attributed in a plot size of ~50m2. This study 

recorded detailed descriptions of the individual tree structures as well as vertical 

strata attributes at each sample site. Out of these forty sample sites seven sites were 

located in the forest study area (Figure 3.9).  

In April 2006, an extensive field survey was conducted to measure the position of the 

GCPs for orthorectification of the aerial imagery. Twenty temporary GCPs were 

erected in the forest study area and their positions using DGPS were recorded. 

Thirty-two GCPs locations were recorded for the semi-urban study area. Detail 

description of the GCPs location and orthorectification of the aerial imagery are 

presented in the following Chapter. 

During the 2005 survey, an additional seven sample sites were selected from the 

forest study area using a stratified random sampling technique. Detailed landscape 

surveys were conducted at each of the sites for selecting training data and assessing 

the thematic accuracy of the fusion results. Each site consisted of a 50m x 50m (2500 

m2) plot. Within each sites all individual tree position, height, and species were 

recorded into a structured survey form. A copy of the forest study area survey form is 

shown in Appendix 1. A total of 76-tree was photographed and their heights were 

measured using a clinometer for LiDAR-derived height validation purpose. 
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Figure 3.7 Sample locations for the forest site   

Location of the trees was recorded using a GPS receiver (Pathfinder Pro XRS, 

Trimble Navigation). The GPS receiver was configured using Universal Transverse 

Mercator (UTM) coordinates system with GDA94 datum and three-dimensional (3D) 

mode of operation. In 3D operational mode, the Pathfinder GPS triangulates a 

position when four or more satellites are connected. Positional accuracy was checked 

using the Position Dilution of Precision (PDoP). It provides the possible errors 

related to the geometry of the satellites that are used to triangulate a position on the 

Earth. Good accuracy is obtained when the PDoP ranges between 1 and 4, implying 

field error location between 1 to 10m (Kennedy, 2002). Accuracy lower than ±2m 

was found for the Pathfinder GPS in an accuracy assessment between the measured 

easting and northing of four survey marks in the surrounding study area. NSW Land 

Survey provided true locations of the survey marks. Average PDoP values ranging 

between 2 and 4 were obtained, which was considered acceptable.  

A field data collection form was designed which included site identification number, 

calendar date, X, Y, Z coordinates, feature height and landscape type. A copy of the 
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semi-urban study area survey form is shown in Appendix 2. An optimal number of 

high quality natural colour terrestrial images were acquired using the digital camera 

for each sample site in addition to documentation of the visual identification of the 

landscape composition using the field data collection form.       

3.14 Summary 

A study region was chosen, which contained a variety of landscape objects 

particularly the forest and semi-urban landscapes. The active and passive airborne 

sensor-derived data were acquired and fused for delineating these landscape objects 

from different fusion models. The complementary nature of aerial imagery and 

LiDAR data was the main reason for the selection of these two remote sensing 

devices. 

Detailed descriptions of the study region including physical attributes, geographic 

location and climate conditions were collected. The study region consisted of two 

main landscape types: forest and semi-urban. The forest landscape consists mainly of 

natural objects, river red gum, grey box (Eucalyptus microcarpa), and black box 

(Eucalyptus largiflorens) trees. The semi-urban study area consists of different 

natural and man-made objects. Open spaces, vegetation, different types building 

roofs and their shadows were the main objects in this landscape.  

Airborne colour and multispectral images are to be fused with LiDAR data using 

different fusion models. LiDAR data was acquired by AAMHatch with the 

ALTM1225 system. This LiDAR system collects first and last returns data with 

intensity values. The initial processed LiDAR data was provided, as ASCII format 

with a 1m spatial resolution. Three-band colour (RGB) aerial imagery was collected 

by AEROmetrex with Zeiss LMK152 camera. The four-band (RGB &IR) aerial 

multispectral imagery was collected by IFMS with the UltracamD system.  Other 

data sources, such as small format aerial photograph and field survey data were also 

collected as a reference for fusion validation purposes. 

Geometric alignment is a prerequisite for any fusion model using multi-source data. 

Geometric corrections of the aerial imagery and LiDAR data are presented into the 

following Chapter. 
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CHAPTER 4 

4 GEOMETRIC CORRECTION OF THE MULTI-SOURCE DATA 

In the previous chapter the selected study areas and the datasets were introduced; 

now the geometric correction procedures are reviewed and the best-suited procedure 

used with these datasets. Geometric processing consists of two steps: 

orthorectification of the aerial imagery and derivation of a normalised digital surface 

model (nDSM) from the LiDAR data.  These stages are essential precursors for the 

fusion of aerial imagery with LiDAR data. Orthorectification provides a common 

planimetric base for the fusion of different remote sensing data (Zitova and Jan, 

2003). The orthorectification technique is directly affected by the quality and the 

selection of GCPs (Yastikli and Jacobsen, 2005). Image resampling is critical to the 

maintenance of the spectral and spatial quality of the datasets (Ehlers, 1997). The 

quality of the orthorectification and resampling processes underpin the subsequent 

data fusion. Although the LiDAR data for this study did not require 

orthorectification, it needed further processing for generating absolute height of the 

landscape objects.   

4.1 Introduction  

Analysis of multiple sources of remotely sensed data is dependent on the ability to 

accurately relate corresponding locations in each image through spatial referencing. 

The basic requirement is for a geometric match to be established between data 

sources and for relevant pixel values to be transferred according to the derived 

geometric relationships. Where data sources comprise multiple images, the geometric 

process is termed registration or, alternatively, the process for combining image and 

planimetric data utilising a reference coordinate system and DTM is termed 

orthorectification. Transferring individual pixel values to the registered or rectified 

image is called image resampling (Ehlers, 1997). 

A comprehensive survey of image registration methods was published in 1992 by 

Brown (1992). According to the database of the Institute of Scientific Information 

(ISI), in the last 10 years more than 1000 papers have been published on the topic of 

image registration (Zitova and Jan, 2003). Brown (1992) covered all the registration 
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related classic or introductory key ideas that are still in use. Zitova and Jan (2003) 

cover relevant approaches introduced later and give a complete  view of research in 

image registration.  

The requirement for orthorectification arises for a number of reasons such as multi-

source data fusion, change detection, and integration of remotely sensed data with 

GIS (Buiten and van Putten, 1997; Fonseca and Manjunath, 1996; Kardoulas et al., 

1996; Dowman and Dare, 1999). Refinements in orthorectification accuracy also 

have potential for improving results achieved from some standard information 

extraction approaches (Wolter et al., 1995). 

The influence of orthorectification accuracy on data fusion is well documented. 

Ehlers (1991) indicates that improving rectification accuracy allows depiction of 

cartographic detail and enhances spatial resolution in multi-sensor image datasets. In 

vegetation monitoring, only a 0.2 pixel rectification error causes a 10 percent change 

in Normalised Difference Vegetation Index (NDVI) between epochs (Townshend et 

al., 1992). Martin (1989) indicates that displacements between images of only 0.5 

pixel can introduce unacceptable levels of error. A focus on rectification methods 

and quality is therefore significant in the development of appropriate multi-source 

fusion process. The following sections review different image rectification and 

resampling methods and later sections present the implementation of these processes 

for the multi-source datasets.       

4.2 Review of the Image Rectification Methods 

Image rectification models may be categorised as either parametric or non-

parametric methods (Richards and Jia, 2005). Parametric methods are designed to 

model the nature and magnitude of distortions inherent within the image and to 

devise specific correction formulae. In contrast, non-parametric approaches rely on 

establishing an analytical relationship between the image pixels and the 

corresponding coordinates on the ground (Richards, 1993).  
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4.2.1 Non-parametric rectification methods 

Non-parametric approaches to geometric correction, such as polynomial 

transformations, are based on generic functions not directly related to specific 

distortions or error sources. They can be successful when dealing with low 

resolution, narrow field of view imagery, such as some satellite imagery (Yang, 

1997). Non-parametric functions are very simple to implement and provide a 

reasonable alternative to geometric modelling when little is known about the 

geometric nature of the image. However, non-parametric techniques generally 

process images one at a time. They cannot provide an integrated solution for multiple 

images. It is very difficult for non-parametric techniques to achieve reasonable 

accuracy without a great number of GCPs. Misalignment is more likely to occur 

when mosaicking separately rectified images. 

4.2.2 Parametric rectification  

Parametric models overcome all the problems mentioned above by using least 

squares bundle block adjustment, and create the most reliable ortho-images from the 

raw imagery. They are unique in terms of considering the image-forming geometry, 

utilising information between overlapping images, and explicitly dealing with the 

elevation dimension. Parametric models can process multiple images with very few 

GCPs, while at the same time eliminating the misalignment problem associated with 

image mosaics.  

The processes of parametric rectification are based upon a thorough knowledge of 

the physical characteristics and magnitude of the errors and distortions inherent in 

the remotely sensed data. Sources of error comprise elements of the sensing system 

(interior orientation), platform parameters (exterior orientation) and target 

(representation of the ground). Some satellite systems cannot provide the detailed 

data required for implementation of the parametric approach, however aerial 

photogrammetry systems can provide the required data by combining global 

positioning system (GPS) and internal navigation system (INS) onboard the platform 

(Ehlers, 1997). The main advantage of the parametric approach is high precision and 

robust rectification (Pala and Pons, 1995). 
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Well-known obstacles in digital photogrammetry include defining the interior and 

exterior orientation parameters for each image using a minimum number of GCPs. 

Due to the costs and labour intensive procedures associated with collecting ground 

control points, a limited number of GCPs should be used. Additionally, airborne GPS 

and INS techniques provide an initial approximation to exterior orientation, but the 

final values for these parameters need to be adjusted to attain higher accuracies.  

Interior orientation defines the internal geometry of a camera or sensor, as it existed 

at the time of data capture. The variables associated with image space are defined 

during the process of interior orientation. Interior orientation is primarily used to 

transform the image pixel coordinate system to the image space coordinate system. 

The internal geometry of a camera is defined by the principal point, principal 

distance and lens distortions. The principal point is mathematically defined as the 

intersection of the perpendicular line through the perspective centre of the image 

plane. The distance from the principle point to the perspective centre is called the 

principal distance (Wang, 1990). Lens distortion deteriorates the positional accuracy 

of image points located on the image plane. Two types of lens distortion exist: radial 

and tangential lens distortion. Radial lens distortion causes imaged points to distort 

along radial lines from principle point. Tangential lens distortion occurs at right 

angles to the radial lines from the principal point. Since tangential lens distortion is 

much smaller in magnitude than radial lens distortion, it is considered negligible. The 

principal distance of a camera and the effects of lens distortion are commonly 

determined in a laboratory during the camera calibration procedure. 

Exterior orientation defines the position and angular orientation associated with an 

image at the time of exposure or capture. Figure 4.1 illustrates the elements of 

exterior orientation. The positional elements of exterior orientation include Xo, Yo, 

and Zo. They define the position of the perspective centre (O) with respect to the 

ground space coordinate system (X, Y and Z). Zo is commonly referred to as the 

height of the camera above sea level, which is commonly defined by a datum.  

The angular or rotational elements of exterior orientation describe the relationship 

between the ground space coordinate system (X, Y and Z) and the image space 

coordinate system (x, y and z). Three rotation angles omega (ω), phi (φ), and (κ) are 
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commonly used to define angular orientation. Omega is a rotation about the 

photographic x-axis, phi is a rotation about the photographic y-axis, and kappa is a 

rotation about the photographic z-axis, which are defined as being positive if they are 

counter clockwise when viewed from the positive end of their respective axis. The 

photographic z-axis is equivalent to the optical axis (f, principal distance). The x’, y’ 

and z’ coordinates are parallel to the ground space coordinate system.   

       

   

      

 

 

 

 

 

 

 

Figure 4.1 Elements of exterior orientation, after Mikhail et al., (2001)   

Using the three rotation angles, the relationship between the image space coordinate 

system (x, y and z) and ground space coordinate system (X, Y and Z or x’, y’ and z’) 

can be determined. A 3x3 rotation matrix is used to define the relationship between 

the two systems. The rotation matrix, M is denoted as: 

11 12 13

21 22 23

31 32 33

m m m
M m m m

m m m

 
 =  
  

      (4.1) 
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The rotation matrix is derived by applying a sequential rotation of omega about the 

x-axis, phi about the y-axis, and kappa about the z-axis.       

Using the collinearity equation, the relationship between the camera/sensor, the 

image, and the ground can be defined. With reference to Figure 4.1, an image vector 

a can be defined as the vector from the exposure station o to the image point p. A 

ground space or object vector A can be defined as the vector from the exposure 

station O to the ground point P. The collinearity defines the relationship between 

image vector and ground vector if a line extending from the exposure station to the 

image point and to the ground is linear. The image vector and ground vector are only 

collinear if one is a scalar multiple of the other. The equation is as follows: 

p o p o

p o p o

p o

x x X X
y y kM Y Y

f Z Z

 − − 
  − = −  
  − −   

     (4.2) 

where k is a scalar multiple. The image and ground vectors must be within the same 

coordinate system. As a result, image vector a is comprised of the following 

components: 

p o

p o

x x
a y y

f

− 
 = − 
 − 

       (4.3) 

Where ox  and oy  represent the principal point and px and py  represent the point p in 

the image coordinates. Similarly, the ground vector can be formulated as follows: 

p o

p o

p o

X X
A Y Y

Z Z

 −
 = − 
 − 

      (4.4) 

The ground vector is multiplied by the rotation matrix M, in order to bring the image 

and ground vector in the same coordinate system. The following equation can be 

formulated:  

a kMA=        (4.5) 



 

 

116 

where: 

p o p o

p o p o

p o

x x X X
y y kM Y Y

f Z Z

 − − 
  − = −  
  − −   

     (4.6) 

The above equation defines the relationship between the perspective centre of the 

camera exposure station and ground point P appearing on an image with an image 

point location of p. This equation forms the basis of the collinearity condition that is 

used in the photogrammetric project. The collinearity condition specifies that the 

exposure station, ground point, and its corresponding image point location must all 

lie along a straight line, thereby being collinear. Two equations represent the 

collinearity condition. 

11 12 131 1 1

31 32 331 1 1

( ) ( ) ( )
( ) ( ) ( )

p o p o p o

p o p o p o

m X X m Y Y m Z Z
p o m X X m Y Y m Z Zx x f − + − + −

− + − + −
 − = −      (4.7) 

21 22 231 1 1

31 32 331 1 1

( ) ( ) ( )
( ) ( ) ( )

p o p o p o

p o p o p o

m X X m Y Y m Z Z
p o m X X m Y Y m Z Zy y f − + − + −

− + − + −
 − = −      (4.8) 

One set of equations can be formulated for each ground point appearing on an image. 

Therefore, the collinearity condition defines the relationship between the camera, the 

image and the ground. 

It has already been mentioned that airborne GPS and INS techniques only provide 

initial approximations of the exterior orientation. The final values of these 

parameters need to be adjusted to attain higher accuracy. Using the GCPs, it can be 

achieved, but the cost associated with the collection of GCPs is high. To minimise 

the costs fewer GCPs are used in conjunction with a bundle block adjustment. A 

bundle solution computes exterior orientation parameters of each image in a block 

and the X, Y, and Z coordinates of tie points and adjusted GCPs. In this approach, a 

block of images is simultaneously processed in one solution. A least squares 

adjustment is used to estimate the bundle solution for the entire block while 

minimizing and distributing the error. For each of the GCPs two collinearity 

equations can be formulated as shown in Equation 4.7 and 4.8. If a GCP has been 

measured on the overlapping area of two images, four equations can be written. The 
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overall quality of a bundle block adjustment is largely a function of the quality and 

redundancy in the input data. The redundancy can be computed by subtracting the 

number of unknown from the number of known. The resulting redundancy is 

commonly referred to as the degree of freedom in a solution. Once each observation 

equation is formulated, the least squares adjustment can be used to solve collinearity 

condition in a bundle block adjustment. 

4.3 Review of Image Resampling Methods 

Image resampling is a process which is used to determine the pixel values for the 

output image after registration (Lillesand and Kiefer, 1994). This process is based on 

the rectification parameters, extent of the image and the output pixel dimension. 

Each new pixel is defined by real number coordinates, which do not necessarily 

coincide with the pixel locations of the input image. Consequently, an interpolation 

procedure is required to allocate brightness values for each of the output pixels. 

Ehlers (1997) refers to this as a pixel-filling approach that ensures every output pixel 

is addressed only once during the process, and that no gaps occur in the output 

image.  

The selection of the resampling algorithm and the specification of the output pixel 

resolution are the most important components of the rectification process. Selection 

of an inappropriate resampling algorithm can have a deleterious effect on the 

intensity values of the output pixels of the rectified image, and specification of an 

inappropriate pixel resolution can lead to degradation of the spatial quality of the 

data. The following sections review the issues related to the resampling process. 

4.3.1 Resampling methods 

Resampling techniques that can be applied for intensity interpolation include the 

nearest neighbour, bilinear and cubic convolution interpolation algorithms. In the 

following, these three different resampling techniques are reviewed.  

Nearest neighbour resampling assigns the brightness value of the nearest input pixel 

to the output pixel located in the image. This pixel value is then transferred to the 

corresponding display grid location. This procedure is computationally simple, 
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however it introduces pixel level geometric discontinuities (up to a maximum of 

2 / 2  pixel), making the image appear visually disjointed or blocky. Dikshit and 

Roy (1996) indicate that nearest neighbour resampling has the significant effect on 

the extraction of texture (spatial) features. However, others (Ehlers, 1997; Richards, 

1993) argue that retention of the original values is advantageous for subsequent 

classification or other spectral-based processing. Both points of view need to be 

considered when choosing a resampling algorithm for a specific application.   

In bilinear interpolation the brightness value of the output pixel is interpolated using 

three linear interpolations over the four pixels surrounding the input pixel. The 

bilinear interpolator also acts as a spatial filter that subdues extreme brightness 

values throughout the output image. It may provide a much more visually appealing 

result, but may also degrade some image detail (Ehlers, 1997).  

The cubic convolution interpolation uses the nine (3x3) neighbouring pixels to 

interpolate the output pixels location. Interpolation is first undertaken in the y-

direction for each of the four vertical lines in the matrix to determine the brightness 

value equivalent to the x coordinate of the output pixel. Interpolation is then 

undertaken in the x direction to determine the equivalent brightness value of the 

output pixel.      

4.3.2 Resampling interval  

The final dimension of pixels in the rectified image is determined by the resampling 

interval, which has an impact on subsequent processing. The spatial resolution at the 

time of image acquisition is independent of the resampling interval, and resampling 

to a finer pixel size does not improve the spatial resolution compared to the original 

data. However, there may be implications for the spatial distribution of pixels in the 

resampled image when the resampling interval is significantly different to that of the 

original data. 

For comparison of the different levels of fusion processes and subsequent 

classification it is necessary to resample all the multi source data to a common 

geometric datum and pixel dimension. A suitable resampling interval must be 

determined, but at the same time any detrimental spatial or radiometric effects on the 
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data must be minimised. The following knowledge is important for the investigation 

of the resampling interval of the datasets in this study: 

(a) the information content of remotely sensed images is dependent on the 

measurement scale determined by the spatial resolution of the sensor 

(b) neglecting the resolution and aggregation level, the fusion of imagery can 

produce unpredictable results having little correspondence in the scene 

(c) there is no unique spatial resolution for the detection and discrimination of all 

targets comprised of multi-scale data. 

These comments are particularly applicable to the relationship between the scene and 

the original pixel dimension of all data sources. However, large resampling intervals 

potentially aggregates and reduces the spatial resolution, which will degrade the 

radiometric and spatial information content of the data. The resolution of remotely 

sensed data should be a balance between a pixel size sufficiently large to acquire the 

desired information with the minimum possible data, but be fine enough to capture 

the variations of interest within the target (Atkinson and Curran, 1997). Spatial 

resolution of the sensor should be much finer than the resolution at which the 

maximum local variance in the target occurs because, if it is not, the spatial variation 

of interest in the target may be lost. In order to retain the radiometric and spatial 

qualities of each image it is necessary to resample at least to the same spatial 

resolution as the original data. The question whether the spatial distribution of the 

pixel values is retained during the resampling process is nevertheless important, and 

a pixel resolution finer than that of the original data should be selected. Conversely, 

resampling to large pixel size will degrade the spatial resolution and certainly alter 

the radiometric distribution of the pixels in the image. 

4.4 Selection of the Image Rectification Method 

The selection of an appropriate rectification technique is somewhat dependent on 

spatial resolution, where the objective is to achieve residual rectification errors less 

than 0.5 pixel (Labovits and Marvin, 1986). Data from aircraft and satellite platforms 

are subject to similar geometric distortions, however their magnitude and 
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significance varies (Ehlers, 1997), affecting the selection of the rectification 

technique. Satellite sensors are affected by the systematic effects of earth rotation 

and earth curvature, but are generally very stable in their altitude, attitude and 

velocity. In contrast, aircraft sensors suffer very little or no systematic effects from 

earth rotation and earth curvature, but are generally unstable in their altitude, attitude 

and velocity.  

Limitations of the non-parametric approaches are evident due to the requirement for 

extensive GCPs and the lack of a physical interpretation model. In this context, the 

current research therefore relies on the application of the parametric model, which is 

suitable for the rectification of airborne datasets. While the parametric model was 

established as a routine approach for analog aerial photography, its application to the 

rectification of digital aerial photography also enables the rectification of high spatial 

resolution aerial data.  

4.5 Selection of the Image Resampling Method 

In this research, all resampling techniques are evaluated and the best-performing one 

selected. Since multi-source images are to be used for fusion and subsequent 

classification, maintenance of the original brightness values of the pixels is 

important. With both bilinear interpolation and cubic convolution the output 

brightness value of the single pixels are interpolated to different values from the 

original data. In addition, the nearest neighbour resampling often causes the 

distortion of straight edges in images and makes the image look coarser than an 

image which is resampled using bilinear and cubic convolution interpolation 

(Gonzalez and Woods, 2002). Forester and Trinder (1984) indicate that the specific 

resampling algorithm applied does not appear to affect subsequent percentage 

classification accuracy, however boundary pixels were seen to move between 

spatially adjacent classes as a result of change in the resampling strategy. From the 

computational and quality perspective, nearest neighbour resampling is the quickest 

to perform but generally gives the coarsest result. Cubic convolution usually gives 

the smoothest result, but is computationally most expensive. In the past, bilinear 

interpolation was seen as a good balance between quality of result and computing 

time; however, rapidly increasing computer power means that CPU time is not really 
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a major processing problem, so cubic convolution can be seen as the best resampling 

method. Cubic convolution resampling works well when there is a requirement for 

high visual quality, such as for photo interpretation, or when the image is to be 

viewed under magnification. This method was utilised in this research to accurately 

fuse the multi-source high spatial resolution data for landscape mapping. This 

enabled the proper integration of reference data with fused data for further thematic 

accuracy assessment, but at the same time minimised radiometric distortion of the 

data. 

4.6 Orthorectification of the Aerial Imagery  

The earlier sections reviewed different image rectification and resampling methods. 

Now, the implementation of the orthorectification process is presented. The review 

presented in Section 4.2 showed that parametric methods are suitable for the aerial 

imagery as they are designed to model the nature and magnitude of distortions 

inherent within the image and to devise specific correction formulae. LiDAR-derived 

DEM used also as a source to remove any terrain distortions.  

Figure 4.2 illustrates the orthorectification process that is used for rectification of the 

airborne optical images for each study area. The major steps of the implemented 

rectification process are described in the following sections. 
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Figure 4.2 Flowchart showing the orthorectification of the aerial imagery 

4.6.1 Extraction of interior and exterior orientation parameters  

The interior orientation of the aerial imagery sensors came with the camera 

calibration certificate. Table 4.1 presents the summary of the information, which was 

used for this research.   

Table 4.1 Summary of the camera models 

Camera Name Company Focal length (mm) Flying height (m) 
Zeiss LMK 152 AEROmetrex 152.261 ~1000 
Ultracam-D IFMS Germany 101.400 ~3000 

 

The exterior orientation parameters of the images were collected using on-flight GPS 

and IMU systems. The initial approximation of the exterior orientation parameters (x, 

y, z, omega, phi, kappa) of each image was supplied by the acquisition companies. 
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However, the positional (x, y, z) accuracy was within 5 meters and the attitude 

parameters (omega, phi, kappa) were within 0.2 degree. With this positional 

accuracy, the orthorectified aerial images were not properly aligned with the LiDAR 

layers. An optimal number of GCPs were collected to improve the positional 

accuracy of the images and they were incorporated into the orthorectification 

process.  

4.6.2 Selection of GCPs and checkpoints 

The critical component in establishing an accurate transformation relationship 

between the camera/sensor and the ground is the GCPs. GCPs are identifiable objects 

located on the Earth’s surface that have known ground coordinates in X, Y and Z. 

Horizontal control only specifies the X, Y, while vertical control only specifies the Z. 

Normally, intersection of roads, utility infrastructure (e.g. fire hydrants and manhole 

covers), intersection of agriculture plots and survey benchmarks are used as GCPs. 

The coordinates of the GCPs are collected using ground GPS, total station survey, 

and orthorectified images. 

In this study, OmniSTAR differential GPS was used to collect GCP coordinates. This 

is a single-frequency, L1 DGPS that was particularly useful to achieve sub-meter 

precision for the position (X, Y) but for elevation measurement (Z value) was not as 

precise. In the GPS survey PDoP (Percent Dilution of Position) is used as an 

indicator for precision. 

GCP requirements 

The minimum GCP requirements for an accurate mapping project vary with respect 

to the size of the project. With respect to establishing a relationship between image 

space and ground space, the theoretical minimum number of GCPs is two GCPs 

having X, Y, and Z coordinates and one GCP having a Z coordinate associated with 

it. According to Fonseca and Manjunath (1996) the most difficult step in image 

rectification is the establishment of the transformation relationship between objects 

on the ground and in the image, whereas the computation of the mapping function is 

relatively straightforward. The need for careful selection of GCPs of adequate 

precision is highlighted by enumerating sources of GCP-related errors that can affect 
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the quality of image rectification as well as fusion. Important sources of error include 

the spatial resolution of the image, and the number and distribution of GCPs 

(Kardoulas et al., 1996; Labovits and Marvin, 1986; Welch et al., 1985). The spatial 

resolution of the image influences the ability to discern objects that are used as 

GCPs, and affects image qualities such as shape and tone. For identification 

purposes, control points must be bigger than the dimension of a pixel and have 

sufficient contrast with the background. 

GCPs should be well distributed around the edges and generally over the extent of 

the image to ensure adequate control of the interpolation throughout the image 

(Richards, 1993). The success of interpolation also varies with the resampling 

techniques and the number of control points. These two issues were discussed in 

Section 4.3. According to Labovits and Marvin (1986), the orthorectification result 

does not vary when the spatial location of the GCPs and their cluster of pixels is not 

even. It is common practice for GCPs to be evenly spread throughout the image and 

this approach is followed in this research. 

Collection of GCPs for forest area 

Figure 4.3 shows the distribution of the GCPs for the forest study area. All these 

GCPs had to be properly located due to the lack of man-made identifiable landmarks.  

Their good distribution within the forest study area insured good quality 

orthorectification of the images. A total of 20 GCPs were collected for the forest 

study area.  
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Figure 4.3 GCPs location for the forest area orthorectified images 

Collection of GCPs for semi-urban area 

Figure 4.4 illustrates the distribution of the GCPs for the semi-urban study area. A 

total of 32 GCPs were collected for the semi-urban study area. An adequate 

distribution of GCPs was provided in the vicinity of the study area indicated on the 

diagram, although the distribution was not uniform throughout the whole area. While 

the quality of the orthorectification cannot be guaranteed in areas not covered by 

GCPs, analysis shows that the number and distribution of GCPs did not affect the 

quality of the orthorectification.  

 

 

 

 

 

 

Figure 4.4 Distribution of GCPs for orthorectification of the semi-urban area images 
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4.6.3 Evaluating GCPs location precision 

The positional accuracy of collected GCPs using different instruments is related to 

the data collection and compilation standard, map scale, and the instruments’ internal 

accuracy. Using differential or real-time kinematic GPS, one metre to centimetre 

level positional accuracy can be achieved whereas locating GCPs from maps depends 

on map accuracy as well as the digitising accuracy. In GPS survey, PDoP (Positional 

Dilution of Precision) is a good indicator of positional accuracy. It is a unitless figure 

of merit expressing the relationship between the error in user position and the error in 

satellite position, which is a function of the configuration of satellites from which 

signals are derived for positioning. Generally a PDoP value less than 4 indicates sub-

meter accuracy. After collecting all GCP coordinates for each of the study areas, data 

were processed and the GCP precisions were measured.    

 

 

 

 

 

 

 

 

Figure 4.5 Positional precisions compared with the PDoP for the GCPs in the forest 
study area 

A total of 20 GCPs were collected for the forest study area with 2 of them is being 

eliminated due to poor signal reception in the hight density forest. The average PDoP 

value was 2.9, with the highest being 7.1 and the lowest 1.5. Figure 4.5 illustrates 

results of the accuracy analysis of the GCPs in the forest study area. The regression 

analysis utilises the positional precision and PDoP. The R2-test indicates the 
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agreement between the positional precision and the PDoP. When R2 is close to 1, this 

indicates perfect agreement and close to 0 indicates disagreement. For the forest 

study area, the overall R2 value was 0.497, which indicated the positional precision 

and PDoP had reasonable agreement and therefore GCPs had moderate positional 

accuracy. 

 

 

 

 

   

 

 

 

Figure 4.6 Positional precisions compared with the PDoP for the GCPs in the semi-
urban study area 

For the semi-urban area, a total of 32 GCPs were collected with the differential GPS.  

Figure 4.6 shows the scatter plot of the PDoP and the positional precision of the 

GCPs. The R2 value was 0.672, which implies these two accuracy indicators had 

good agreement and the precision of the GCPs were higher than expected. 

The comparative GCPs positional accuracy for both of the study areas indicated that 

GCPs in semi-urban areas were more stable than the GCPs in forest study area. This 

result was expected due to the GCPs physical condition and the availability of the 

GPS signal. The GCPs in the semi-urban study area were permanent structures and 

clearly visible in the collected aerial imagery, whereas GCPs in the forest study area 

were temporarily erected and not all of them were clearly visible in images. In 

addition, GPS signal was consistently strong in the semi-urban area and had less 

signal-to-noise ratio and multi-path problem due to the absence of high structures 
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within the GCPs location. In the forest study area, finding a clean opening for a GCP 

was the big challenge. Most of the GCPs location had some sort of multi-path 

problem due to the close proximity of forest trees. As a result, the signal-to-noise 

ratio and multi-path problem were high in the forest study area. 

4.6.4 Performing aerial triangulation 

Aerial triangulation starts with the initial approximation of the supplied exterior 

orientation parameters (x, y, z, omega, phi, kappa) of each of the aerial images. Then 

using GCPs with underline DEM the aerial triangulation was refined and finally 

performed. The Root Mean Square Error (RMSE) value in the triangulation report 

should be reviewed as a global quality indicator. Any GCPs that had large residual 

values would be deactivated and generated new triangulation report for refinement. 

The RMSE value should be around 1 micron or less than one-fourth of a pixel.  After 

successful triangulation the exterior orientation was updated. Finally, the resampling 

method and the output pixel size were defined and the final orthorectification was 

executed. Aerial triangulation of the images from each study area was thus 

performed and an independent evaluation of the quality of the orthorectification 

undertaken.  

Table 4.2 Summary of the orthorectification results with quality evaluation (RMSE 
in microns) 

 
Study area 

Colour image Multispectral image 

GCPs Checkpoints RMSE GCPs Check points RMSE 
Forest  13 5 1.1124 11 9 1.1728 
Semi-urban  19 13 0.7965 22 10 0.8825 

 

Table 4.2 summarised the RMSE values of the GCPs used to derive aerial 

triangulation. The RMSE values in this table indicated that images of the semi-urban 

study area had more positional accuracy than the images of the forest study area. 

However, the accuracies of the orthorectified images were within the one-quarter of 

the pixel limit and had good alignment with the LiDAR data for further fusion 

analysis. 
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Sufficient GCPs must be selected in order to provide some for aerial triangulation 

and others as checkpoints for a posteriori consideration of the quality of the aerial 

triangulation (Kardoulas et al., 1996). This permits not only evaluation of the 

interpolating techniques, but also assessment of the complete aerial triangulation 

including any effects of relief displacement and other error sources which are not 

considered. The major disadvantage of this assessment is that it is not possible to 

isolate specific sources of error contributing to the overall RMSE. In this research, 

RMSE from the independent checkpoints is calculated for each study area to evaluate 

the aerial triangulation processes. Note that some of the surveyed points were used as 

GCPs while others were used as checkpoints. Colour images in the semi-urban site 

used 19 GCPs and 13 checkpoints for aerial triangulation. 

Table 4.3 Summary of residuals of exterior orientation parameters for the 
multispectral images of forest study area 

Image ID rXs rYs rZs rOMEGA rPHI rKAPPA 
0059 0.1862 -0.3361 -1.1197 0.0082 0.0223 -0.0039 
0060 -0.4750 0.0498 0.1884 0.0063 0.0269 -0.0103 
0061 0.2888 0.2863 0.9314 0.0040 0.0545 -0.0154 

 

Tables 4.3 and 4.4 list details of the residuals of the exterior orientation parameters 

for the multispectral and colour images of both study sites.  The residual ground 

coordinates (rXs, rYs and rZs) are in metres and orientation residuals (rOMEGA, 

rPHI and rKAPPA) are in degrees. After each iteration of the least squares 

adjustment, the exterior orientation parameters of each camera station are estimated. 

The   newly estimated exterior orientation parameters are then subtracted from the 

original exterior orientation parameters values. The differences are the residuals of 

the exterior orientation parameters. 

Table 4.4 Summary of residuals of exterior orientation parameters for the colour 
image of the semi-urban study area  

Image ID rXs rYs rZs rOMEGA rPHI rKAPPA 
1-164 0.1562 0.3368 0.1197 0.0052 0.0469 -0.0143 
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All the residuals shown in the tables are derived from aerial triangulation by bundle 

block adjustment. The objective of this residual calculation is to indicate any 

systematic pattern in the magnitude and distribution of residual values. Consistently 

large values indicate a poor fit to control or insufficient GCPs in the triangulation. 

4.6.5 Performance of the resampling 

In this study, the spatial resolution of aerial colour imagery was 0.08m and 0.88m for 

the multispectral imagery. The 16 points per square metre LiDAR return was 

resampled into 1.0m LiDAR imagery. It is a critical task to bring all these disparate 

datasets into the same pixel spacing without changing much of the thematic contents. 

The multispectral and the LiDAR images were coarser than the colour image; 

therefore, the optimal pixel size should be in the middle of these two extremes. 

Resampling of the multispectral and LiDAR images into a finer pixel size does not 

affect the original spatial details but pixel size degradation of the colour image has 

some impacts on radiometric and thematic properties. Reviewing the scaled-down 

colour image, it was found that degraded images still retained similar spatial and 

radiometric properties of landscape objects of interest. The cubic convolution 

resampling technique had been applied on the colour images to reduce the spatial 

resolution from 0.08m to 0.5m.  Multispectral and LiDAR images had been scaled-

up and also resampled into 0.50m since bringing all images into a common spatial 

resolution is an essential prerequisite for further fusion applications. Any changes of 

the spatial and radiometric quality of the data are most likely to occur when changing 

pixel dimension during the resampling process. In this case, colour imagery was 

severely affected as it was resampled from 0.08m to 0.50m.  

The images under consideration contain a range of targets (see Section 3.4), which 

all contain unique radiometric and spatial characteristics. According to Marceau et 

al. (1994), these characteristics may be visible at different spatial resolutions. In 

order to maintain the maximum radiometric content and spatial integrity of the 

observed data from all sensors, a uniform resampling interval of 0.50m was selected. 

This sampling interval was smaller than that of the original multispectral image and 

LiDAR data but larger than that of the original colour image.      
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4.7 LiDAR data Processing 

The processing of LiDAR data often aims at removing unwanted erroneous 

measurements or modelling data to fit into a specific model (Axelsson, 1999). The 

unwanted measurements are characterised as noise, outliers or gross errors. The most 

common processing of LiDAR data is removal of these unwanted measurements to 

find the ground surface (such as DTM) from a mixture of ground and vegetation 

measurements. DTM not only represents terrain but also includes other terrain 

parameters such as slope and aspects, terrain features such as ridges and valleys and 

other geographical/environmental characteristics (Qiming et al., 2008). In LiDAR 

processing, these terrain features need to be considered for better delineation of the 

landscape objets and can also utilise these characteristics for further objects 

classification (Dragut and Blaschke, 2008). The object isolation from LiDAR data is 

typically based on the object height model, which is the difference between object 

height and a digital elevation model (DEM) of the earth surface. Chen et al.  (2006) 

applied a method for filtering LiDAR data into terrain and non-train return and the 

extracted terrain pulses are used to generate a DEM by interpolation (Hyyppa et al., 

2001; Brandtberg et al., 2003).              

It has already been mentioned that AMMGeoScan, the supplier of the LiDAR data, 

processed and provided data in two separate files representing the first and last return 

point clouds. The last return of the LiDAR normally represents the digital terrain 

model (DTM) and the first return the digital surface model (DSM). In this research, 

the LiDAR data was further processed to generate a normalised DSM from these two 

data sets. This processing determined the mean height information of the landscape 

objects, which is later used in the fusion process as an additional information layer.      

4.7.1 Normalised DSM Generation from LiDAR Data 

It was inevitable that the frequency of ground or last returns were low compared to 

the first returns, meaning the DTM might degrade the accuracy of the object heights 

(Popescu et al., 2002). Additionally, the ellipsoid height accuracy of differentially 

corrected and processed Optech ALTM 1225 data is about 15cm. These two error 

sources need to be considered when measuring the mean object height. Næsset 

(1997)  determined mean tree height as the difference between tree canopy hits and 
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the corresponding DTM values, though details of the algorithm used to compute the 

DTM were not provided. In this research, the same approach was adopted to 

determine the mean height of the landscape objects. A height threshold was applied 

to remove any outliers close to the terrain surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Mean tree height derived by subtracting the last return from first return of 
the LiDAR data 

For the forest study area, the mean tree canopy height was computed by subtracting 

the last LiDAR return from the first LiDAR return. Observations with a height value 

of less than 1.5m were excluded from the dataset in order to eliminate the effect of 

high slope and shrubs in the forest study area. Figure 4.7 illustrates the processing of 

the datasets. The interpolated first and last LiDAR returns are shown in figures 4.7(a) 

and (b). Figure 4.7(c) shows the subtracted image giving mean tree height. 

(a) First return LiDAR 

 

(b) Last return LiDAR 

 

(c) Mean tree height 
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The DSM of the semi-urban area was obtained by interpolating the first LiDAR 

return to a regular grid. In a similar way, a DTM was generated with last LiDAR 

return. Figure 4.8(a) and (b) show the 3D views of the interpolated first and last 

return LiDAR data. The mean feature heights were computed as the difference 

between the first and last LiDAR return layers. A height threshold less than 1.5m 

was used to eliminate the effect of low-lying objects such as fences and shrubs. 

Figure 4.8(c) shows the final mean height layer for the semi-urban area.  

 

 

 

 

 

 

  

 

 

 

Figure 4.8 Mean semi-urban objects height derived by subtracting the last return 
from first return of the LiDAR data 

4.7.2 Normalised DSM accuracy analysis 

The mean of the LiDAR heights were compared to the ground collected height for 

nDSM accuracy analysis. A description of the samples and their height derivation 

was presented in Section 3.13.2. Regression analysis was used to assess height 

accuracy in the normalised DSM.  

 

 (a) First LiDAR return (b) Last LiDAR return  

 (c) Mean tree height 
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Figure 4.9 Relationship between tree heights as estimated in the field and from 
LiDAR data for the forest study area 

In the forest study area, LiDAR-derived tree heights are compared with the field-

surveyed data to validate LiDAR-derived tree heights accuracy. Figure 4.9 shows the 

comparison of mean tree heights derived from LiDAR data and from field 

measurements derived from 76 trees in the 7 plots. This analysis confirmed close 

correspondence (r2 = 0.87, 95 percent confidence level, standard error = 0.67m). 

Mean height was more reliably estimated for trees with large and relatively flat 

crowns than for those with small and pointed crowns. The estimates of height from 

LiDAR and field measurement, were within ±1 m of each other, although 

discrepancies as high as 3m were observed. 

Similarly, a linear regression was derived for the semi-urban area using 32 randomly 

selected field-measured heights and corresponding with LiDAR-derived mean 

heights (Figure 4.10). The R2 value of 0.91 (close to 1) indicates that for these feature 

heights there was very good correlation between field-measured height and LiDAR 

estimates.   
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Figure 4.10 Relationship between field- measured and LiDAR-measured heights for 
the semi-urban study area  

4.8 Discussion 

Previous research indicates that for image rectification RMSE values should be less 

than 0.5 pixels. Table 4.2 indicates these values had been achieved in this study with 

all RMSE values substantially less than 0.5 pixels. From an operational viewpoint, 

the RMSE is of more interest because it provides a global estimate of rectification 

quality. The RMSE values for the semi-urban study area were particularly low at 

0.7965 microns for the colour images and 0.8825 microns for the multispectral 

images. However, the RMSEs for forest study area were high for both colour and 

multispectral images. RMSEs close to 1 micron indicated that rectification accuracy 

was higher than one-quarter of a pixel, which was better than the standard 0.5 pixel 

accuracy.     

The multispectral residual results of the forest study area (Table 4.3) indicated that 

no gross errors in GCP identification or exterior orientation determination were 

present. These results indicate the transformation process was geometrically sound. 

The relatively high RMSE for the forest study area was therefore due to the 

limitations inherent in the identification and positioning of GCPs in forest study area.                

It has already been mentioned that all the GCPs for orthorectification were derived 

with the aid of differential GPS. Estimation of coordinates with a GPS depends on 

the precision level of the GPS receiver as well as the satellites, but identification of 
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GCPs on the imagery is much more difficult compared to the other data sources. 

Additionally, fewer GCPs were located for the forest study area; therefore higher 

residuals could be expected compared to other sites. GCPs were selected with a 

uniform distribution across the images and were based upon well-defined points 

identifiable in both the images and the planimetric reference data. GCPs positional 

accuracy was derived from GPS positional precision and PDoP attributes. The 

regression analysis of the positional precision and PDoP attributes indicated 

positional accuracy. The R2 value for the forest and semi-urban study areas were 

0.497 and 0.672 respectively. The lower R2 value for the forest area indicated that its 

GCPs were less accurate than the semi-urban area. This was expected because of the 

lack of identifiable GCPs in the forest study area and the GPS reading had low 

signal-to-noise ratio.        

The relatively high RMSE values for the forest study area were due to lower 

geometric consistency of the data and the availability of fewer GCPs for 

determination of the aerial triangulation. The forest site had very limited well-

established GCPs and the existing maps had only provided generalised detail. As a 

result, these maps gave limited opportunity for selecting GCPs. To overcome this, 

during the data collection period, a number of temporary GCPs were built. However, 

these were not sufficient to cover the whole study area adequately, a compromise 

necessary to reduce the project cost. In the semi-urban study area hundreds of 

potential GCP locations could be identified in the high spatial resolution imagery. 

However, for the same reason not all of them were surveyed. Only handful of GCPs 

were collected with high signal-to-noise ratio of GPS receiver. 

The accuracy analysis of the normalised DSM revealed that the object height of the 

semi-urban study area was more accurate than the object height in forest study area. 

The R2 value for the forest and semi-urban study areas were 0.87 and 0.96 

respectively. This result also suggested that the forest tree height measurement was 

more error prone than for semi-urban objects. Because of the random nature of tree 

heights, it is difficult to accurately measure them. Particularly in the forest areas, it is 

very difficult to find the tops of individual trees both in field survey and in LiDAR 

data. However, the sampled tree heights were still close to the LiDAR-derived tree 

heights and maintained consistent agreement with LiDAR measurements. It can be 



 

 

137 

said that normalised DSMs derived from LiDAR data truly represent the height of 

the landscape objects in both of these study areas.          

4.9 Summary 

Fusion of multi-sensor data requires geometrically coherent datasets derived through 

rectification and pixel resampling. With the development of digital aerial 

photography, orthorectification of the high spatial resolution imagery with sub-pixel 

precision required investigation of appropriate algorithms. All data, including the 

high spatial resolution multispectral and colour imagery, were orthorectified using 

bundle block adjustment. Investigation of this technique applied to high spatial 

resolution imagery indicated that a suitable precision and acceptable 

orthorectification results could be achieved with a minimum number of GCPs. 

Bundle block adjustment uses interior and exterior orientation parameters to rectify 

the images. Airborne GPS and IMU systems normally provide initial approximations 

to the exterior orientation, but the final values for these parameters need to be 

adjusted using GCPs. An optimum number of GCPs were surveyed with differential 

GPS. For all images, aerial triangulation produced RMSE values close to 1 micron, 

which can be interpreted as an error equal to, or less than, one-quarter of a pixel, and 

in all cases, orthorectification achieved RMSE values of less than 0.5 pixel without 

the application of specialised processing approaches. In this research, the bundle 

block adjustment had produced geometrically consistent data that were suitable for 

fusion.  

Maintenance of pixel brightness values during orthorectification and resampling is 

vital where spectral analysis is to be undertaken following geometric correction of 

the data. Nearest neighbour and bilinear interpolation were considered, but cubic 

convolution resampling was utilized to achieve the highest pixel quality.  

Multi-sensor fusion was facilitated through resampling all data to a common pixel 

dimension. To minimise the loss of radiometric information and to facilitate multi-

sensor fusion, a 0.5m pixel grid was selected so that the spatial integrity of the 

observed data from all the sensors could be maintained. This sampling interval is 
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smaller than the multispectral image and LiDAR data but larger than the colour 

image. 

It has already been mentioned that 18 GCPs for the forest study area and 32 GCPs 

for the semi-urban study area were collected with the aid of differential GPS. Each 

set of images for each area was treated independently due to the wide range of spatial 

resolutions and the orthorectification results. LiDAR-derived DEM was introduced 

to remove terrain distortions and kept accuracy levels within the desirable limit. The 

cubic convolution resampling technique was used for final orthorectification with a 

spatial resolution of 0.5 m. 

The processing of the LiDAR data was different from the processing of the aerial 

imagery. LiDAR data did not require orthorectification, however a normalised DSM 

needed to be generated from the LiDAR source for use in the fusion process. 

Normalised DSMs represent the mean top surface of objects whose height can be 

computed as the difference between the first and last LiDAR returns. A height 

threshold was used in order to eliminate the effect of low-lying objects such as 

shrubs and fences. Regression analysis of object mean height measured in the field 

suggested that the mean heights generated by the normalised DSM were as nearly 

accurate as real mean heights.  

The following chapters present the implementation procedures and the results of 

aerial imagery and LiDAR data fusion for the forest and semi-urban study areas. 
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CHAPTER 5 

5 IMPLEMENTATION OF DATA-DRIVEN FUSION MODELS FOR 
TREE ATTRIBUTE DELINEATION*1

This chapter focuses on implementation of the data-driven pixel- and feature-level 

fusion models for the delineation of individual tree attributes from the forest study 

area. Detailed descriptions of the forest study area, and the characteristics of the tree 

structures, were presented in Chapter 3. The geometric-correction of the datasets was 

presented in Chapter 4. Data-driven fusion models are implemented at pixel- and 

feature-level using geometrically corrected aerial imagery and LiDAR data. In pixel-

level fusion, an unsupervised classification scheme is implemented for the fusion of 

multispectral imagery with LiDAR data. In feature-level fusion, a watershed 

algorithm is used for delineating individual tree crowns, a masking technique is used 

for collecting tree feature attributes, and finally an unsupervised classification 

scheme is incorporated for fusing tree features for tree species discrimination.    

 

5.1 Introduction 

A forest ecosystem not only functions as a biological production and environmental 

services but also considers as a research object to understand inner structure of the 

forest landscape (Hsiaofei et al., 2006). Individual tree components (both in the 

                                                 
*The contents of this chapter have been published in the following peer reviewed publications:  

-  Ali, S., Dare, P. and S. Jones (2009). A new object-based fusion model using LIDAR and 

multispectral imagery for forest structure assessment at the tree level. In: Ostendorf, B., 

Baldock, P., Bruce, D., Burdett, M. and P. Corcoran (eds.), Proceedings of the Surveying & 

Spatial Sciences Institute Biennial International Conference, Adelaide 2009, Surveying & Spatial 

Sciences Institute, pp. 943-952. ISBN: 978-0-9581366-8-6. 

- Ali, S., Dare, P. and Jones, S. (2008) Fusion of remotely sensed multispectral imagery and 

LiDAR data for forest structure assessment at the tree level, The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, part B7, 

Beijing 2008, pp.1089-1094.  
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horizontal and vertical plane) are part of the inner forest landscape and need close 

attention to understand the forest ecosystem as a whole. LiDAR data provide 

accurate measurements of forest structure in the vertical plane; however, current 

LiDAR sensors have limited coverage in the horizontal plane. Conversely, high 

spatial resolution multispectral imagery provides extensive coverage of forest 

structure in the horizontal plane, but is relatively insensitive to variation in the 

vertical plane. Therefore, it is desirable to synergistically use both sensors for 

mapping forest parameters at the tree level. Delineating individual trees and 

extracting relevant tree structure information from fused remotely sensed data has 

significant implication in a variety of applications such as reducing fieldwork 

required for forest inventory (Gong et al., 1999), assessing forest damage (Kelly et 

al., 2004) and monitoring forest regeneration (Clark et al., 2004). 

In this research, data-driven pixel- and feature-fusions are implemented for 

delineating individual tree attributes from the forest study area. In these processes, 

users play no part until the computational aspects are completed. An unsupervised 

classification scheme is implemented for pixel-level fusion of multispectral imagery 

with LiDAR data. The feature-level fusion incorporates a data-driven watershed 

algorithm for delineating individual tree features and uses an unsupervised 

classification for final fusion. 

5.2 Tree Property Analysis 

The primary objective of this research is to investigate the data-driven fusion models 

for delineating tree species from the forest study area. Tree species have to be 

identified both in spatial and spectral domains. The former may be satisfied by a 

well-structured generic classification scheme, such as was introduced in Section 

2.2.2. The latter is satisfied by maximising the inter-class variance and minimising 

the intra-class variance. In this research, inter- and intra-class variances are 

considered part of attributes derived from multispectral imagery and LiDAR data. 

Fusion of multispectral imagery with LiDAR data uses the spatial and spectral 

properties to separate tree species. The location of the forest study area was given in 

Section 3.5 together with the description of the dominant tree species.  
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Figure 5.1 Tree species spectral profile of the forest site  

Common tree species in the forest study area are the river red gum (Eucalyptus 

camaldulensis), black box (Eucalyptus largiflorens) and grey box (Eucalyptus 

microcarpa). Different Eucalyptus species can be differentiated by visual inspection 

of their vertical profiles, such as their bark, leaf shape, and branch arrangement. 

However, these characteristics cannot be used in the interpretation of aerial imagery, 

only spectral differences in different trees can be picked by multispectral imagery. 

Spectral profile of the tree species in Figure 5.1 supports that argument. The different 

tree species exhibit some separation in the blue and green bands; however, they are 

inseparable in red and near infrared bands. These are the most critical bands to 

distinguish tree species according to their spectral response. The inclusion of 

LiDAR-derived tree height and texture data along with multispectral imagery is 

critical for tree species identification process. 

5.3 Methodology for tree delineation 

In a data-driven scenario, the fusion of multispectral imagery with LiDAR data is 

illustrated through Figure 5.2. 

The methodology started with the data processing stage, where geometric corrected 

multispectral imagery and LiDAR data were prepared as the input of the fusion 
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processes. A detailed description of the geometric corrections of the multispectral 

imagery and the normalised DSM generation from LiDAR data was presented in 

Chapter 4. The pixel- and feature-level fusions are independently implemented using 

these processed data. Finally, comparison of the pixel- and feature-level fusions is 

made for delineating individual tree species and evaluating their accuracies. Detailed 

descriptions of the steps are given in the following sections. 

 

      

 

 

 

 

 

 

 

 

Figure 5.2 A conceptual model for comparing different data-driven fusion levels for 
tree species delineation  

5.4 Data processing   

The geometric corrected 4-band multispectral imagery and LiDAR-derived height 

and texture data are used in this study as the input layers. A description of these 

layers is given in Table 5.1. Different filtering techniques are applied to these 

datasets to enhance the spectral and spatial properties of the tree objects. A simple 

3x3 mean filter is used on the multispectral imagery to impose a degree of 

homogeneity among the brightness values of adjacent pixels thereby increasing the 
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chance that neighbouring pixels may be given the same label. This filtering 

procedure also led to the suppression of shadow effects within the sunlit area of the 

tree crown. The coefficient and the dimensionality of the filter are primarily 

dependent on the solar direction at the time of over flight, the tree size, and the 

illumination conditions within the tree crown. 

Table 5.1 Original and derived layers used in the proposed fusion procedures 

Layer/Band Description 
1 Blue layer of original image 
2 Green layer of original image 
3 Red layer of original image 
4 Infrared layer of original image 
5 Height layer: LiDAR-derived nDSM 
6 Texture layer: LiDAR first  return intensity 

 

A 3x3 mean filter was applied to the LiDAR-derived nDSM layer to reduce the 

dynamic range of tree heights. A 3x3 median filter was applied to the texture layer 

that is derived from LiDAR first return intensity. A median filter helps in reducing 

salt and pepper noise that would lead to inconsistent class labelling. 

5.5 Pixel-level Fusion Model for Tree Species Delineation 

An ISODATA unsupervised classification procedure is implemented for fusing 

multispectral imagery with LiDAR-derived height and texture data for the forest 

study area. A detailed review of the ISODATA fusion technique was presented in 

Section 2.5.5.1. 

Figure 5.3(a) shows the study region where trees are highlighted in green and 

background soils are shown with blue to purple colours. Figure 5.3(b) shows a scatter 

diagram of the image in feature space. The red band versus infrared band brightness 

has been plotted. This is a subspace of the full six dimensional feature spaces of the 

data sources and illustrates how the tree species are distributed over this particular 

spectral space. The close mean distribution of the river red gum (Eucalyptus 

camaldulensis), black box (Eucalyptus largiflorens) and grey box (Eucalyptus 

microcarpa) on the scatter plot confirm that using only red and infrared bands 
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Eucalyptus species cannot be separated. The mean points are somewhat bit spread 

over the infrared band but they are very close together in red band. This 

interoperation very much supports the analysis in Section 5.2. 

 

 

 

 

 

 

 

Figure 5.3 (a) A RGB composite image of the forest study area (R: IR, G: nDSM and 
B: texture); (b) Red band versus IR band scatter diagram with the tree species cluster 

centre 

The ISODATA algorithm is implemented with 24 iterations and is required to 

determine 10 classes. The convergence threshold is set at 0.95 to prevent the 

ISODATA utility from running indefinitely. Appendix 3 shows the summary 

statistics of the initial 10 clusters. Merging and splitting options are employed at the 

end of the iterations, leading ultimately to the backgrounds and tree species clusters. 

In this process, the summary statistics and the covariance matrix of the clusters play 

a vital role. Generally, the trees and backgrounds are discriminated because the 

LiDAR-derived nDSM layer has a lower height for background clusters than for 

individual tree clusters. The availability of a cluster map allows a tree classification 

to be made through overlaying aerial photographs and field survey data. If some 

pixels with a given label are identified with particular tree species then all pixels with 

the same label are associated with that class. This method of fusion depends on a 

posterior recognition of tree species since the user plays no part until the 

computational aspects are completed.  
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Visual interpretation of the clusters with the help of aerial photographs is used for 

final tree species separation. The statistical details for the tree species are presented 

in Table 5.2. These statistics represent the final properties for each tree species. The 

mean and standard deviation for each shows the tree clusters are separable using both 

spectral and spatial properties derived from combined multispectral imagery and 

LiDAR data. 

Table 5.2 Mean values and standard deviation for each of the tree species generated 
from pixel-level fusion 

Tree type Layer Mean St. Dev. 
Black box (BB) Blue layer of original image 854.39 65.27 
 Green layer of original image 431.19 26.54 
 Red layer of original image 388.44 20.70 
 Infrared layer of original image 1501.17 64.19 
 Height layer: LiDAR-derived nDSM 8.18 3.80 
 Texture layer: LiDAR 1st return 

intensity 
79.02 39.02 

Grey box (GB) Blue layer of original image 908.05 81.03 
 Green layer of original image 453.59 32.47 
 Red layer of original image 391.15 27.50 
 Infrared layer of original image 1750.81 94.26 
 Height layer: LiDAR-derived nDSM 8.24 4.12 
 Texture layer: LiDAR 1st return 

intensity 
88.20 39.93 

River Red Gum 
(RRG) 

Blue layer of original image 734.28 56.69 

 Green layer of original image 383.10 23.97 
 Red layer of original image 363.39 17.70 
 Infrared layer of original image 1297.91 74.43 
 Height layer: LiDAR-derived nDSM 8.42 3.90 
 Texture layer: LiDAR 1st return 

intensity 
78.05 40.10 

 

An important aspect of this approach is that the whole process of fusion is data-

driven and the user has very little influence. The visual interpretation largely comes 

after the processing, and is used for quality control purposes. Thus an unsupervised 

classification employing a pixel-level fusion of multispectral imagery with LiDAR 

data can successfully map tree species.   
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5.6 Feature-level Fusion Model for Tree Species Delineation 

In the previous section, the data-driven pixel-level fusion model was implemented 

for tree species delineation. Now, the implementation of the data-driven feature-level 

fusion is presented.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Feature-level fusion of multispectral imagery with LiDAR data for tree 
species delineation  

The proposed feature-level fusion model consists of four parts: (1) watershed 

segmentation, (2) tree feature delineation, (3) tree feature fusion, and (4) accuracy 

assessment. The flowchart in Figure 5.4 illustrates the major steps performed within 

this feature-level fusion model. 

Segmentation 

Accuracy 
assessment 

Filled tree 
polygon 

Watershed 
segmentation 

LiDAR 
nDSM 

Canopy 
vector 

Classified tree 
types 

LiDAR 
intensity 
(Texture) 

Masked 
MS image 

MS image 
(4 band) 

Masked 
texture 

 

 

Masked 
nDSM  

Unsupervised 
classification 

Crown delineation 

Fusion 

MS feature 
(4 layer) 

nDSM 
feature layer  

Texture 
feature layer  

Filled tree 
polygon 

Filled tree 
polygon  



 

 

147 

5.6.1 Watershed segmentation for tree feature delineation 

The LiDAR-derived nDSM represents the tree canopies of the forest study area in 

vertical as well as horizontal extents. Single and disjoint tree canopies can easily be 

delineated in this dataset. However, a segmentation procedure is needed to isolate 

individual trees in a group. This feature-level fusion model aims to use the watershed 

segmentation in tree feature isolation. A theoretical background of the watershed 

segmentation was given in the review of data-driven segmentation section (Section 

2.6.1.1.5). This section describes implementation of watershed segmentation for tree 

feature delineation. 

The review of the watershed segmentation algorithms concluded that the direct 

application of watershed transformation on the raw image generally leads to over-

segmentation due to noise and other local irregularities. The literature suggests  that 

over-segmentation can be serious enough to render the result of the algorithm 

virtually useless. To avoid this problem, Meyer and Beucher (1990) introduced 

marker-controlled watershed segmentation. The idea is to perform watershed 

segmentation around a specified marker. A marker is a connected component 

belonging to an image.  The internal markers are associated with the object of 

interest, and external markers are associated with the background. 

 

 

 

 

Figure 5.5 An illustration of watershed segmentation. (a) A canopy model derived 
from nDSM, (b) 3D view of the canopies, and (c) Segmentation results with dams 

built at the divide line 

In the marker-controlled watershed segmentation process, the image is treated as a 

three-dimensional surface, with lateral dimensions representing the image plane, and 

the vertical dimension representing the grey values (Figure 5.5a). The watershed 

transform finds catchment basins and water ridgelines in the image by treating it as a 
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surface where high pixels are light grey values and low pixels are dark grey values. 

Internal markers are used to locate the local minima, which are associated with high 

grey values (such as selected tree crowns), and external markers are pointed to the 

local maxima, which are associated with the background. The watershed 

segmentation is performed through flooding from the local minima. Neighbouring 

watersheds are merged unless boundaries are built to isolate individual features 

(Figure 5.5c). The process of merging regions and building boundaries continues 

until no more region growing can take place. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Flow chart of marker-controlled watershed transformation for tree feature 
delineation 

Figure 5.6 illustrates the implementation procedure of the marker-controlled 

watershed algorithm using a LiDAR-derived nDSM for tree crown delineation. 

Marker-controlled watershed segmentation produces the best results for images, 

which have regions that are homogeneous and low intensity, separated by narrow 

boundaries of high intensity. The LiDAR-derived nDSM image does not have the 

low intensity with high frequency grey levels, but application of a first order edge 
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detection algorithm can yield this result. So, this is the first step in the watershed 

algorithm to use the 3x3 Sobel edge detector operation to compute the edge strength 

image. The gradient is high at the borders of the trees and low inside the tree canopy. 

Definition of internal markers 

Once the edge strength image has been created, the watershed procedure is begun 

with a variety of procedures to find the internal markers, which connect cluster of 

pixels inside each of the tree foregrounds. In this process, morphological techniques 

called opening-by-reconstruction and closing-by-reconstruction are used to pre-

process the image (Gonzalez et al., 2004; Soille, 2003). A regular morphological 

opening is an erosion followed by a dilation, while opening-by-reconstruction is an 

erosion followed by a morphological reconstruction. First, the opening-by-

reconstruction is computed for a morphological reconstruction. Then closing-by-

reconstruction is computed for removing dark spots. The reconstruction-based 

opening and closing are more effective than the standard opening and closing for 

removing small blemishes without affecting the overall shapes of the objects (Soille, 

2003). The region maxima are calculated to obtain good internal markers. This 

procedure tends to leave some isolated pixels that must be removed. This is done by 

removing all clusters that have fewer than 10 pixels.  

Definition of external markers  

After defining the internal markers, it is necessary to define the external markers, 

which represent the background. In the nDSM image, the dark pixels or low height 

objects belong to the background, so initially a thresholding operation is used to 

separate them. The background pixels are close to the ground, however, preventing 

the external marker having too close to the edges of the trees. The background is 

thinned by computing the skeleton by influence zone. This operation is done by 

computing the watershed transform of the distance transform and then looking for 

the watershed ridgelines (Soille, 2003). Subsequently the nDSM image needs 

modification so that it has regional minima only in certain desired locations. The 

gradient magnitude image of nDSM is modified so that it only has regional minima 

occurring at internal and external marker pixels. 
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Application of watershed transformation 

The external markers effectively partition the image into regions, with each region 

containing a single internal marker and part of the background. After that the 

watershed segmentation algorithm is applied each of the individual regions. In other 

words, the algorithm simply takes the gradient of the smoothed image and then 

restricts the operation to a single watershed that contains the marker in that particular 

region.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Tree crown map in the forest study area 

After segmentation, the raster segments are converted into vector polygons for 

proper delineation of the tree crown features. The vector segments are post-processed 

to eliminate dead trunks and electric pylons present in the study site. All segments 

with a diameter less than 2m are removed so juvenile trees are ignored. Figure 5.7 

shows the initial tree crown map derived from watershed segmentation using LiDAR 

nDSM data. 
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5.6.2 Attributes delineation for tree features 

After segmentation, the resulting tree feature polygons are overlayed on the 

multispectral imagery and LiDAR data to mask out the spectral signatures and 

texture information of the tree crown features. Masked 4-band multispectral imagery 

provides the spectral contents of the tree features. Masked LiDAR intensity provides 

the texture information of the tree features and masked LiDAR nDSM provides 

height information of the tree features. These six masked layers are the basis for the 

feature-level fusion.  

5.6.3 Filling tree features with attributes 

In high spatial resolution data fusion, the class variability within the tree crown is 

caused mainly by the variability in crown structure (shadow effects), crown density 

(background material) and different tree components (bark and leaves) (Meyer et al., 

1996). In order to increase the significance of the fusion results, the entire tree 

polygon feature is filled with average digital number (DN) of each of the masked 

layers. This is achieved by extracting zonal statistics from six masked layers and 

saving them as the polygon attributes for each tree crown. Then, tree polygons are 

converted into raster layers and the mean value is used as the DN for each tree 

feature. In this way, only one DN of each masked layer occupied the entire polygon 

feature despite the initial tree feature having multiple DN. The six layers of tree 

features are created and they are ready for the input in the fusion process.  

5.6.4 Unsupervised classification of tree features 

The tree crown features derived from six masked layers are fused using the 

ISODATA unsupervised classifier. In this process, only three groups of tree species 

are determined using six iterations with convergence threshold of 0.95, since the 

main task is to delineate the three most prominent tree species. The same pixel-level 

ISODATA classifier is implemented for feature-level fusion. However the main 

difference is that it is used for delineating tree features rather than the single pixels. 

A detailed review of this algorithm was presented in Section 2.5.5.1 and pixel-level 

implementation was presented in Section 5.5. 
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Table 5.3 presents the summary statistics of the tree species derived from feature-

level fusion using multispectral imagery with LiDAR data. Each tree species has its 

own set of mean values with their standard deviations, which helps to delineate the 

tree features of the different species.  

Table 5.3 Mean value and standard deviation for each of the tree species generated 
from feature-level fusion 

Tree types Layer Mean St. Dev. 
Black box (BB) Blue layer of original image 922.79 66.86 
 Green layer of original image 455.11 26.13 
 Red layer of original image 401.85 21.35 
 Infrared layer of original image 1505.95 87.25 
 Height layer: LiDAR-derived 

nDSM 
8.48 1.97 

 Texture layer: LiDAR 1st return 
intensity 

81.29 17.69 

Grey box (GB) Blue layer of original image 1126.72 124.59 
 Green layer of original image 532.49 46.24 
 Red layer of original image 450.16 34.96 
 Infrared layer of original image 1663.60 101.70 
 Height layer: LiDAR-derived 

nDSM 
7.26 1.85 

 Texture layer: LiDAR 1st return 
intensity 

84.47 20.76 

River Red Gum 
(RRG) 

Blue layer of original image 798.79 76.185 

 Green layer of original image 406.18 31.22 
 Red layer of original image 376.05 20.00 
 Infrared layer of original image 1333.24 100.09 
 Height layer: LiDAR-derived 

nDSM 
8.88 1.89 

 Texture layer: LiDAR 1st return 
intensity 

74.86 16.66 

 

5.7 Summary 

This chapter presents the implementation of the pixel- and feature-level fusion 

models for forest species identification at an individual tree level using high spatial 

resolution multispectral imagery and LiDAR data. In data-driven pixel-level fusion 

the unsupervised classification is employed for the fusion of multispectral imagery 

with LiDAR-derived nDSM data. A total 10 classes were determined after 24 
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iterations in ISODATA algorithm. Then, merging and splitting options were 

employed to separate the backgrounds and tree species clusters. This method of 

pixel-level fusion depends on a posterior recognition of tree species, since the user 

plays no part until the computational aspects are completed.   

The data-driven feature-level fusion consists of four steps: watershed segmentation, 

tree feature delineation, tree feature fusion, and accuracy assessment. Individual tree 

features were isolated using marker-control watershed segmentation on LiDAR-

derived nDSM data. Spectral signatures and texture information of the tree crown 

features were masked out from multispectral imagery and LiDAR intensity layer. 

Then, the individual tree polygon feature was filled with average digital number of 

each masked layer. Finally, fusion of tree features was carried out using same pixel-

level ISODATA unsupervised classifier. The main difference was that it was used to 

delineate tree features rather than the single pixels. 

The following chapter is going to present the implementation of user-driven fusion 

models for identifying landscape objects from semi-urban study area. 
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CHAPTER 6 

6 IMPLEMENTATION OF USER-DRIVEN FUSION MODELS FOR 
SEMI-URBAN LANDSCAPE MAPPING*2

This chapter focuses on the implementation of user-driven fusion models for 

mapping a range of landscape features within a semi-urban study area. A detailed 

description of the semi-urban study area was presented in Chapter 3 and the 

geometric correction of the datasets was described in Chapter 4. Successful fusion of 

aerial imagery with LiDAR data is dependent on the clear recognition of landscape 

objects from analysis of spectral and spatial characteristics. A review of the urban 

landscape classification scheme was presented in Section 2.2.1. In pixel-level fusion, 

supervised classification algorithms are implemented for the fusion of the aerial 

imagery with LiDAR-derived nDSM data. In feature-level fusion, multi-resolution 

segmentation is used to define landscape features and subsequently utilise rule-based 

fuzzy classification for features fusion. 

  

6.1 Introduction 

Successful fusion and subsequent identification of landscape features is dependent on 

the image enhancement and information extraction procedures applied to the 

                                                 
*The research presented in this chapter has been published in the following peer reviewed 

publications:  

-  Ali, S. S., Dare, P. and Jones, S. (2009) A comparison of pixel- and object-level data fusion using 

LiDAR and high-resolution imagery for improved classification, In: Jones, Simon, Reinke, Karin 

(Eds.), Lecture notes in Geoinformation and Cartography, Springer, pp. 3-18. 

- Ali, S. S., Dare, P. and Jones, S. (2006) A comparison of pixel- and object-level data fusion using 

LiDAR and high-resolution imagery for improved classification, Proceedings of the 13th 

Australasian Remote Sensing and Photogrammetry Conference, November 2006, Canberra. 

- Ali, S. S., Dare, P. and Jones, S. (2005) Automatic classification of land cover features with high 

resolution imagery and LiDAR data: an object-oriented approach, Proceedings of SSC2005 

Spatial Intelligence, Innovation and Praxis: The national biennial Conference of the Spatial 

Sciences Institute, September 2005, Melbourne, pp. 512-522. 
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remotely sensed data. In this research, image enhancement techniques need only be 

investigated to the extent necessary to provide data of consistent quality suitable for 

fusion. Data that occupies relatively small sites with minimal topographic variation 

are assumed to exhibit consistent atmospheric and topographic effects (Gong and 

Howarth, 1990). The fusion algorithms utilised in this research are applied to 

independent multi-source datasets and are statistically invariant to linear 

transformations, consequently no radiometric corrections are made to the data. 

Contrast stretching and formation of colour composite images are performed as an 

aid in the delineation of training samples for pixel-level fusion. 

The overall objective of this research is to evaluate whether the fusion of high spatial 

resolution aerial imagery with LiDAR data can be used as a tool for semi-urban 

landscape mapping. The research aims specifically to evaluate the results of the 

pixel- and object-level fusions used to integrate the information content of 

multispectral imagery with LiDAR-derived DSM data.  

6.2 Properties of the Semi-urban Landscape Objects 

The design of an effective landscape classification system relies on the recognition of 

the target and sensor characteristics in conjunction with the interpretation approach 

to be applied. A review of the standardised landscape classification system was 

presented in the Section 2.2. For this research, the landscape classification system is 

developed as part of the semi-urban area mapping using a range of low altitude aerial 

imagery. Consequently, semi-urban landscape classes are defined in terms of spectral 

separability, minimal interclass variability and contextual information. The 

characteristics of the objects in the semi-urban study area were presented in Section 

3.6. 

 

 

 

 



156 

Table 6.1 Landscape classification system developed for the semi-urban study area  

Level I Level II Level III 
1 Natural objects 11 Vegetation 111 Tree 

112 Grass 
2 Manmade objects 21 House 

22 Infrastructure 
211 Roof 
212 Road/open area 

3 Obscured objects 31 Shadow 311 Roof shadow 
312 Tree shadow 

 

Table 6.1 illustrates the landscape classification system develops for the semi-urban 

study area. This is a hierarchical system and the class level expands from Level I to 

III.  The class level accommodates the detail of the objects identified from various 

airborne data sources. Level I and Level II consist of the most generic classes and 

can be identified from a single data source. However, Level III needs to utilise multi-

source data fusion for delineating semi-urban landscape objects. 

 

 

 

 

 

 

 

 

Figure 6.1 Spectral profiles of semi-urban landscape objects 

In Section 2.3.1, it had been stated that shadow was a significant problem for 

classifying urban landscape from high spatial resolution imagery. Most of the cases, 

shadows are identified as an unclassified class therefore, a significant urban land 

cover information is lost (Zhou et al., 2009). In this study, Obscured objects (Level I) 
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are identified as Shadows (Level II) then classified them into different land cover 

types (Level III). 

The degree of interclass spectral variability for each of the semi-urban landscape 

objects has been assessed through analysing the spectral profiles (Figure 6.1). Scatter 

plots of the object signatures reveal that the spectral characteristics of the objects are 

complex and only a handful of objects are spectrally separable. In 4-band 

multispectral imagery, the mean values of the semi-urban objects indicates that some 

objects, such as different types of roofs, can be delineated, however other landscape 

objects cannot be recognised using only spectral signatures. 

This research investigates the usefulness of fusion of multi-source data to overcome 

the difficulties described above. A hierarchical landscape classification system is 

developed to utilise an object’s spectral and spatial properties, which can be 

recognised in multi-source data. For example, built-up areas may be isolated from 

vegetated areas in moderate spatial resolution optical imagery. However, without 

enough spectral and spatial information, an individual rooftop cannot be delineated. 

A high-resolution height data is needed to automatically separate concrete rooftops 

from parking lots. The landscape classification scheme must compatible with the 

various levels of interpretation possible in the fusion model. A meaningful 

comparison of different fusion models is necessary to exploit the full potential of 

data collection and analysis techniques.   
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6.3 Methodology for Semi-urban Mapping 

In a user-driven scenario, the fusions of aerial imagery with LiDAR data are 

illustrated in Figure 6.2.  

 

 

 

 

 

Figure 6.2 A conceptual model for comparing different user-driven fusion levels for 
semi-urban landscape mapping  

The methodology uses 4-band multispectral imagery and LiDAR-derived nDSM 

data. A detailed description of the geometric corrections of these datasets was 

presented in Chapter 4. The pixel- and feature-level fusions are implemented and the 

accuracies are assessed. Detailed descriptions of these steps are given in the 

following sections. 

6.4 Pixel-level Fusion for the Semi-urban Study Area 

A wide range of pixel-level supervised classification algorithms was reviewed in 

Section 2.5.5.2 and they were applied in a variety of multi-source data fusion 

applications. In this research, a supervised classification algorithm is employed for 

the pixel-level fusion of aerial imagery with LiDAR data. In particular the 

parallelepiped classification algorithm is considered, since it depends only on the 

application of thresholding components of the datasets. Other algorithms such as 

maximum likelihood and minimum distance classification are commonly available; 

however the maximum likelihood classifier presents a number of difficulties in 

multi-source data fusion. These include incompatible statistics of disparate data 

types, with some data unable to be represented by normal class models (Richards and 

Jia, 2005).  
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The pixel-level supervised fusion starts with a stacked-vector dataset of 4-band 

multispectral imagery and LiDAR-derived nDSM data. A supervised parallelepiped 

classification procedure is then applied on it. The essential practical steps for the 

implementation of the supervised classification procedure were presented in Section 

2.5.5.2. The flowchart in Figure 6.3 illustrates the implementation of the user-driven 

pixel-level fusion in this research. 

 

 

 

 

 

 

 

 

 

Figure 6.3 Flowchart for pixel-level fusion of aerial imagery with LiDAR-derived 
nDSM. 

6.4.1 Selection of the training landscape objects 

Much attention has been directed towards the collection of training samples from 

multi-source data for pixel-level supervised classification. The semi-urban landscape 

classification scheme is used to determine the landscape classes corresponding to 

training samples. Training samples are chosen by their reflectance characteristics and 

they are also used for spectral separability measure. Improved definition of training 

parameters for landscape classes leads to enhanced fusion performance. Critical 

parameters, including optimum training size, adequately measured class variances, 

and class separability, are selected to ensure that semi-urban landscape objects can be 

separated spectrally. 
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Training landscape objects are usually established according to a number of 

conflicting objectives. Firstly, they are selected to incorporate areas containing a 

uniform landscape of interest. This is rarely satisfied, as most landscapes comprise a 

mixture of components, therefore it is far more useful to select areas representative 

of the landscapes present. Secondly, spectral signatures should be unique, and to 

maximise separability between classes, class variance must be minimised which 

again suggests that training samples should be collected from areas of uniform 

landscape. However, if representative training data are to be obtained, sufficiently 

large areas must be sampled in order to assess the natural within-class variance. A 

measure of sufficient size of training samples is therefore required. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 The training objects distribution on the subset of multispectral imagery of 
the semi-urban study area  

The relevant semi-urban landscape objects have already been taxonomically 

identified using the semi-urban landscape classification system as present in Section 

6.2. A description of individual semi-urban objects was presented in Section 3.6. 
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Figure 6.4 illustrates the spatial location of the training landscape objects used as the 

signatures of the semi-urban landscape objects. Total semi-urban study area covers 

1.25km x 1km area or 2500 x 2000 pixels from their 51,302 pixels (or 10 percent) 

are selected as the training pixels. The breakdown of training pixels for each 

landscape classes is provided in Table 6.2. This number of the training pixels helps 

to accurately estimate the lower and upper threshold of the parallelepiped classifier 

and improve the overall accuracy of fusion results. 

Spectral stratification of targets of this research has been applied to the derivation of 

training statistics for the Vegetation and House classes. In both cases, subclasses are 

identified. Tree and Grass are the subclass of Vegetation, and Roof is the subclass of 

House. Delineation of Shadow classes is the most challenging task in the pixel-level 

classification process. They cannot be separable in spectral domain as their formation 

is due to the suppression of obstacles. However, without any contextual information 

further classifications of Shadow are rarely achievable (Dare, 2005). Shadow training 

objects are carefully selected and later they are refined to produce results of an 

acceptable standard.     

6.4.2 Signature extraction of semi-urban landscape objects  

The spectral signatures of the semi-urban landscape objects are extracted from the 

training objects and listed in a library of signatures (Table 6.2). Later, in the fusion 

process, unknown pixels are compared with them and allocated to appropriate 

landscape object classes.  
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Table 6.2 Training statistics derived from 4-band multispectral image with nDSM 
data 

Classes Pixels Band 1 Band 2 Band 3 Band 4 nDSM 

Mean Std. D. Mean Std. D. Mean Std. D. Mean Std. D. Mean Std. D. 

Open-space 20342 2752.04 881.67 1246.64 348.01 814.21 168.07 2014.15 603.148 0.00 0.03 

Roof 9556 4152.68 1480.46 2057.57 727.89 1335.24 457.12 2664.80 842.61 3.96 2.07 

Roof shadow 2428 763.47 190.82 429.80 91.344 415.99 54.06 933.23 181.14 0.32 1.10 

Grass  10456 1325.68 294.51 653.87 86.18 444.59 38.44 2335.29 276.35 0.07 0.78 

Tree  3273 868.21 170.65 476.46 74.01 364.22 31.24 2314.90 322.05 5.36 3.27 

Tree shadow 2559 478.23 140.97 286.70 60.97 312.06 32.87 806.84 191.04 0.15 0.86 

 

Training signatures contain an adequate number of pixels and most of the major 

classes are separable in spectral and nDSM layers. This is important in a supervised 

classification to avoid misinterpretation of objects with similar spectral signatures. 

The most confusing landscape classes are the shadows. The mean of their spectral 

signatures for each band is very close (see Table 6.2). As a result, it is hard to 

distinguish them solely by their spectral signatures. Shadow signatures derived from 

the nDSM layer as not show any particular height attributes for each shadow class, 

making their classification in pixel-level fusion very difficult or impossible. 

6.4.3 Fusion using parallelepiped classifier 

Histograms of the individual spectral components of the available training data are 

inspected to train the parallelepiped classifier. The upper and lower significant 

boundaries on the histograms are identified and used to describe the range of the 

value for each layer of data for that landscape class. The range of the object’s 

signature values in all layers described as a multi-dimensional box or parallelepiped. 

In the fusion process, pixels found to lie in such parallelepiped are labelled as 

belonging to that class. Spectral parallelepiped for each of the eight classes is derived 

from all the layers using the training statistics shown in Table 6.2  
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Fusion at Level II  (Table 6.1) represented an aggregation of individual objects 

derived from Level III classes. Through post-fusion sorting the unique spectral 

characteristics of the objects at Level II are delineated. Aggregation of spectrally 

diverse signatures prior to fusion would have decreased the scope for discrimination 

between classes and reduced the accuracy of fusion results.  

Small areas of training classes affect the ability to define reliable spectral signatures. 

Individual shadow classes occupied small areas so they were difficult in defining 

training sites. These classes particularly have mixed boundary pixels and have 

heterogeneous spectral pixels. Additionally, all shadows contain similar spectral 

signatures for each data layers therefore, pixel-based analysis gave unsatisfactory 

results (Dare, 2005).  

6.5 Feature-level Fusion for the Semi-urban Study Area   

Feature-level fusion starts with the identification of meaningful features over the area 

covered by multi-source data and then making a classification from these. The 

procedure thus consists of segmentation then classification. Feature-level fusion is 

implemented in this research using 4-band multispectral imagery with nDSM data. 

The flowchart in Figure 6.5 illustrates this implementation. 
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Figure 6.5 Flowchart for the user-driven feature-level fusion of multispectral imagery 
with LiDAR-derived nDSM for semi-urban landscape mapping 

6.5.1 Multi-resolution segmentation 

The basic processing units of feature-level fusion are segments or features, not single 

pixels. In the segmentation process, for each image feature a meaningful statistic is 

calculated in an uncorrelated feature space using shape, texture and topological 

features. This information improves the value of the final fusion and cannot be 

fulfilled by common, pixel-level approaches (Benz et al., 2004). In this research, 

feature primitives are created through multi-resolution segmentation. These features 

are polygons of roughly equal size exhibiting internal homogeneity. The theoretical 

background of this segmentation process was presented in Section 2.6.1.2. In this 

segmentation process, the scale parameter determines the maximum allowed 
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heterogeneity for the resulting image objects. The size of the image objects can be 

varied by modifying the value of the scale parameter. For homogeneity, the relative 

weight applies to spectral versus shape criteria to reduce heterogeneity. Here shape, 

smoothness and compactness criterion are applied in a mixed form to define 

homogeneity for the image objects. 

 

 

 

 

 

 

 

Figure 6.6 Scale-parameter for the multi-resolution segmentation: (a) coarse size 
features with large scale-parameter of 40, (b) medium size features with moderate 
scale-parameter of 25 and (c) small size features with small scale-parameter of 10 

Figure 6.6 illustrates the effect of scale-parameters on the definition of feature size. 

The shape, smoothness, and compactness criteria are assigned the same values 

(0.275: 0.3: 0.7) for different scale parameters in order to compare effect of scale on 

feature definition. The large scale-parameter in Figure 6.7a has coarse segment size 

roughly equal to 40 pixels per feature. The large segment incorporates variability 

within a feature and dilutes separability among the features. Appropriate feature 

extraction is not achieved with this segmentation. The same problem arises for the 

small scale-parameters (segment size 10 pixels), as illustrated in Figure 6.7c. Small 

segments only include part of a feature and highlight noise within a feature. This 

segmentation behaves like a pixel-level approach and is not suitable for further 

fusion. However, the medium scale-parameter of 25 pixels segmented the features 

appropriately (see Figure 6.7b). By visually comparing different segmentation 

results, the scale parameter of 25 was chosen to create local homogeneity and to keep 

global heterogeneity. 

(a) (b) (c) 
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For the fusion of multispectral imagery with nDSM data, equal weight is assigned to 

each of the multispectral bands. This emphasis is chosen because of the lack of 

colour homogeneity visually observed within the same features in the image. On the 

other hand, the LiDAR-derived nDSM has more homogeneity in grey levels; 

therefore more weight is given to this layer (see Table 6.3). 

Table 6.3 Segmentation parameters for the aerial imagery with LiDAR-derived 
nDSM data fusion for level III landscape classification scheme  

Parameters MS & nDSM fusion 
Weight 1 MS & 30 nDSM 
Scale factor 25 
Shape Factor 0.75 
Compactness 0.3 
Smoothness 0.7 

 

A ratio of smoothness to compactness weight is specified as 3:7 for multispectral 

imagery with LiDAR-derived nDSM data (Table 6.3), emphasising the discrete, 

compact nature of House Roofs. A higher smoothness emphasis would be used to 

define objects observed to have greater variability between features (Baatz et al., 

2004). The compactness weight makes it possible to separate features that have quite 

different shapes but not necessarily a great deal of colour contrast, such as House 

roofs versus Roads within the semi-urban study area. 

6.5.2 Class hierarchy  

The class hierarchy is the framework of feature-level classification used to create the 

knowledge base for the fusion task. It contains all classes and is organised in a 

hierarchical structure (Baatz et al., 2004). The class hierarchy passes down class 

descriptions from parent classes to their child classes. It reduces the redundancy and 

complexity in the class descriptions and creates a meaningful grouping of classes.  
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Figure 6.7 The class hierarchy for the feature-level fusion of semi-urban study area 

In this research, the class hierarchy in feature-level fusion is developed through 

utilising a similar landscape classification scheme as was applied in pixel-level 

fusion (see Section 6.2). This class hierarchy is developed with the help of the urban 

classification scheme reviewed in Section 2.2.1. The landscape classification is 

defined as an inheritance hierarchy referring to the physical relations between the 

classes. In Level I, Natural, Manmade and Obscure features are the parent classes. In 

Level II, Vegetation is the child class of Natural feature, Infrastructure and House 

are the child classes of Manmade feature, and Shadow classes are the children of 

Obscure feature. In Level III, Grass and Tree classes became child of the Vegetation 

class (Figure 6.7). 

Within this class hierarchy each class is described either by one or more fuzzy-

membership functions, a nearest neighbour classifier, or by a combination of both. 

Fuzzy membership functions are determined by the semantic import (SI) model, 

which is based on expert knowledge of the features. A detailed review of the SI 

model and fuzzy membership functions was presented in Section 2.7.1. In a 

membership function the definition of a class requires more knowledge of the reality 

than in the nearest neighbour classifier. The membership process begins with a 

certain scale, then a search for the segments with similar statistical values. However, 

caution should be taken with the segments that represent extremes of a class 
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especially when high internal variance is indicated. A stepwise refinement of the 

class hierarchy is achieved using the inheritance mechanism. The membership 

functions utilise spectral, spatial, and contextual information to fuse segments for 

feature extraction. The following sections describe the details of the fusion 

procedures. 

Fusion based on spectral properties 

Since the generated segments hold more spectral information than the individual 

pixels, feature-level fusion offers a huge variety of derivative spectral features 

(Hofmann, 2001). Brightness and spectral ratios of the features are calculated using 

all image layers. Textural features are determined using standard deviations of layer 

values, spectral mean values, and average spectral differences. Contrast information 

is generated through spectral differences from neighbouring features. Context-related 

features are generated using mean spectral differences within a given class.  

 

 

 

 

 

 

Figure 6.8 Fuzzy membership functions for the discrimination of Manmade and 
Obscure/Shadow  

At Level I for fusion of 4-band multispectral imagery with nDSM data, the Manmade 

and Obscure/Shadow classes are discriminated using brightness values of the 

features. A feature is described as Manmade if its brightness value is more than or 

equal to 70, and a feature is Obscure/Shadow if it was less than 70.  
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Figure 6.9 Fuzzy membership functions for the discriminating Grass and Tree 
classes in multispectral imagery 

At Level II for fusion of multispectral imagery with nDSM data, the Vegetation class 

is separated from others by a fuzzy membership description of the mean and the ratio 

of the green spectral band. A segment is represented as a Vegetation feature if the 

mean of the green band is larger or equal to 30 and also the ratio is larger or equal to 

0.37. 

At Level III for fusion of multispectral imagery with nDSM data, Vegetation is 

further subdivided into Tree and Grass classes. Figure 6.10 illustrates the fuzzy 

membership functions for discriminating Grass and Tree classes. Using fuzzy 

membership function a Vegetation feature is represented as Grass if its standard 

deviation of the green band is smaller or equal to 18 (see Figure 6.9a). On the other 

hand, for a Tree the standard deviation is larger or equal to 18 (see Figure 6.9b).  

Fusion based on LiDAR-derived nDSM properties 

In feature-level fusion, the LiDAR-derived nDSM can be used to define feature class 

as the difference in elevation to neighbouring features. At Level II for fusion of 

multispectral imagery with nDSM data, House and Infrastructure/Road classes are 

discriminated through the mean height differences in the nDSM layer. A feature is 

represented as Infrastructure/Road class if the mean height difference in the nDSM 

is less than or equal to 1.2m (see Figure 6.10a). The House class has mean height 

greater than 1.2m (see Figure 6.10b). 

 

(a) (b) 
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Figure 6.10 Fuzzy membership function for the discrimination of Roof and Open 
space using nDSM values  

At Level III for fusion of multispectral imagery with LiDAR-derived nDSM data, the 

Tree and Grass classes are discriminated on their height difference. Vegetation is 

defined as Tree if its height is greater than or equal to 1.8m below that it is Grass.      

Fusion using contextual information 

Normally elevated objects create shadows so most of the Shadow features can be 

detected and described by their source features. Additionally, Shadow areas can be 

classified according to their spectral properties. Pixel-based classification using these 

properties gave unsatisfactory results (Dare, 2005). Thus it is helpful to classify 

Shadows by describing contextual criteria in addition to any differences in spectral 

properties. Depending on the type, Shadows may inherit their spectral properties 

from an appropriate super-class and then be identified by their surroundings. The 

applied logic is: if a feature classified as Shadow is surrounded mainly by features 

classified as Tree, it should be classified as Tree Shadow (Zhou et al., 2009). At 

Level III classification, Roof and Tree Shadows are subclasses of Shadow. The 

different Shadow classes are discriminated by using the inherency and neighbour-

object relationship. A Shadow is classified as a Roof Shadow if its border-to-

neighbour relation for Roof is larger or equal to 0.025m. The same logic is applied 

for Tree Shadow. A Shadow object is classed as Tree Shadow if its border-to-

neighbour for Tree is larger or equal to 0.02m. 

(a) (b) 
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6.6 Summary 

This chapter has described the implementation of the pixel- and feature-level fusions 

employing user-driven algorithms for the delineation of a range of landscape features 

within the semi-urban study area. A hierarchical landscape classification system was 

developed for successful fusion and subsequent mapping of the landscape objects. It 

was necessary for the classification scheme to be hierarchical in structure such that 

information extracted from multi-source remotely sensed data could be incorporated 

into the fusion process. Traditional pixel-level fusion relies on all the facets of 

spectral characteristics only, whereas feature-level fusion is reliant on automated 

interpretation utilising spectral, spatial and contextual information. 

4-band multispectral imagery with LiDAR-derived nDSM data was used for 

implementing pixel- and feature-level fusions. In pixel-level fusion, training data 

were obtained for the eight landscape classes that were subsequently used in a 

supervised classification. Analysis of training data, as part of the supervised 

classification process, indicated that most of the landscape classes were separable in 

spectral, height and textual space. The least amount of spectral separation among the 

Shadow classes is evident, with progressively greater separation in Natural and 

Manmade classes.  

Feature-level fusion utilised multi-resolution segmentation for identification of 

meaningful features from multi-source data and subsequently fused the features 

according to their attributes. A class hierarchy similar to the classification scheme in 

pixel-level fusion was created for the feature-level fusion task. Spectral properties of 

the segmented features are used to identify Vegetation and Roof classes. The LiDAR-

derived nDSM properties are used to distinguish Roads and Houses classes for their 

distinctive height difference. In addition, contextual attribute such as the border-to-

neighbour relationship is utilised to discriminate different classes of Shadows (Roof 

and Tree Shadows) according to their source feature. A characteristic of this feature-

level fusion is that all Shadow classes are well delineated due largely to utilising 

border-to-neighbour relationships. 
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CHAPTER 7 

7 RESULTS AND DISCUSSION 

In this chapter, the results of applying fusion models to landscape mapping are 

presented for two study areas. Thematic accuracy of the fusion results is assessed 

using field-surveyed reference data. Comparative thematic accuracies of pixel- and 

feature-level fusions are also presented. For each study area, the practical 

implications of pixel- and feature-level fusions are discussed for extracting a range of 

landscape details derived from remotely sensed data. Finally, research objectives are 

re-evaluated. 

7.1 Data-driven Fusions for the Forest Study Area 

The implementation of data-driven fusion models for the forest study area was 

presented in Chapter 5. Now the results and accuracy assessments of pixel- and 

feature-level fusion models are separately discussed. 

For thematic accuracy assessment, an error matrix is generated by comparison of 

reference data derived from field-survey and aerial photo interpretation with 

corresponding samples of the fusion results. Overall thematic accuracy and the 

Kappa Coefficient are computed to measure the success of object interpretation using 

the fusion process. The User’s and Producer’s Accuracies, and elements of the error 

matrix are evaluated to assess thematic error patterns within each fusion result. 

Theoretical aspects of these evaluation processes were reviewed in Section 2.8.  

Seven plots (marked in Figures 7.1 and 7.2) were selected for assessing the thematic 

accuracies of the fusion results. A total of 76 points were directly field surveyed 

within the 7 plots and the rest of the samples were collected from aerial photo 

interpretation. Descriptions of the sampling and field data collection procedures were 

given in Section 3.13.2. For preparing the reference dataset, from each plot (50m x 

50m or 100 x 100 pixels) 43 points were selected using a stratified random sampling 

technique. This ensured that each of the four classes in the each plot contained at 

least ten validation points. In some cases, when all the classes were not present in a 

plot, additional samples were collected from other plots. Finally, a total of 300 points 
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(roughly 43 x 7) were identified for validation purposes, which equates with 60 

samples per class on average. The thematic content of these points was determined 

by field survey as well as aerial photo interpretation and used as a reference dataset. 

Fusion results corresponding to the reference points were collected for accuracy 

assessment. 

7.1.1 Pixel-level fusion results 

The final pixel-level fusion map (Figure 7.1) shows that the tree classes have been 

well clustered and background materials are well separated. Nevertheless the tree 

cluster map displays minimum spatial homogeneity among tree species. The problem 

of mixed-pixel, or the ‘salt and pepper’ effect, is very prominent as the pixel-level 

fusion only uses the pixel spectral values of the multi-source data rather than the size 

and shape of the trees.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Tree species identification using pixel-level fusion of multispectral 
imagery with LiDAR-derived height and texture data 

Legend 
Black Box 
Grey Box 
River Red Gum 
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The main disadvantage of using this pixel-level fusion is that it does not clearly 

delineate individual trees when they are in a group. It delineates individual trees in an 

open area but suffers from the mixed-pixel problem as multiple tree species are 

shown within a singletree canopy. Most of the mixed-pixel problem is due to the 

presence of understorey and the variation of brightness in the tree canopy areas. The 

filtering procedures that are used to suppress shadow effects have very little 

influence on the fusion process as neighbouring pixels still have high spectral 

contrast. 

Much of the success of the pixel-level fusion model depends on separability of tree 

clusters in the feature space. The statistical definition of separability is quite difficult 

with respect to the lack of homogeneity in spectral intensity within a tree crown. The 

heterogeneity is caused mainly by variation in crown structure (shadow effect), but 

also by other factors such as low crown density exposing background materials and 

different tree components (bark, stem). These are the major source of class 

variability even though most sunlit pixels are clustered according to tree species. 

These difficulties are expected from high spatial resolution datasets that allow 

analysis at the individual tree level.  

7.1.2 Thematic accuracy of pixel-level fusion results   

Table 7.1 shows the error matrix for tree species identification using pixel-level 

unsupervised fusion of multispectral imagery with LiDAR-derived nDSM data. The 

high User’s (84.91 percent) and Producer’s (75.47) accuracies for bare ground 

indicate that background materials are well separated from tree clusters. The User’s 

Accuracy (68.57 percent) and Producer’s Accuracy (74.90 percent) are relatively 

high for the river red gum (Eucalyptus camaldulensis) class indicating moderately 

good agreement between fusion results and reference data thus expressing moderate 

confidence in identification of this species using the pixel-level fused data. Grey box 

(Eucalyptus microcarpa) had the lowest User’s (40.98 percent) and Producer’s 

(42.62 percent) accuracies. This result indicated that only 40 percent of the grey box 

(Eucalyptus microcarpa) had been correctly identified by the pixel-level fusion and 

60 percent incorrectly identified. Black box (Eucalyptus largiflorens) had also not 

been reliably separated from other species (User’s accuracy 49.32 percent and 

Producer’s accuracy 57.14 percent).  
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Table 7.1 Error matrix for pixel-level fusion using multispectral imagery with 
LiDAR-derived nDSM data  

Fused data 
Reference data 

Black 
box  

Grey 
box 

River red 
gum  

Bare 
ground Total User’s 

Acc. % 
Black box 31 21 4 7 63 49.21 
Grey box 14 25 13 9 61 40.98 
River red gum 8 6 48 8 70 68.57 
Bare ground 9 3 4 90 106 84.91 
Total 63 61 70 106 300  
Prod Acc % 57.14 42.62 74.90 75.47  194 

Overall Accuracy (Percent) 64.67 

Kappa Coefficient ( K
∧

) (Percent) 51.69 
 

The overall thematic accuracy is 64.67 percent and the Kappa Coefficient is 51.69 

percent. The Kappa Coefficient indicates moderate agreement (see Table 2.4 for 

qualitative interpretation of the Kappa Coefficient) between the fusion results and the 

reference data. There is too much noise within the datasets in the pixel-level fusion to 

properly identify the tree species. However, the result indicates that forest and bare 

grounds can be separated using this method (high User’s and Producer’s accuracies).     

Similar spectral properties and a high degree of within-target spectral variation of the 

tree species were the contributing factors for low accuracy. Pixel-level fusion of the 

spectral and height information created a mixed-pixel problem and substantially 

reduced the accuracy of tree species identification.  

7.1.3 Feature-level fusion results 

The results of the pixel-level fusion approach showed that the mixed-pixel problem 

complicated the fusion process and potentially hampered the recognition of tree 

species. Employing feature-level fusion overcame this problem by defining the tree 

canopy area first, then extracting the features from the segmentation and finally 

deriving the tree species map using unsupervised classification of the tree crown 

features. 

 

 



176 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Tree species identification using feature-level fusion of multispectral 
imagery with LiDAR-derived height and texture data 

Figure 7.2 illustrates that individual tree crowns were delineated properly and the 

background materials were well separated from the tree crown areas when feature-

level fusion was employed. The tree cluster map displayed higher spatial 

homogeneity among tree species than did the pixel-level approach.  

The advantage of the feature-level fusion was that it classified the whole tree crown 

area (tree feature) rather than the single pixels. As a result, it reduced the mixed-pixel 

problem and classified the tree more realistically than pixel-level fusion. The 

application of the unsupervised classification technique involved in the pixel-level 

fusion led to poor tree species mapping (accuracy only 64.67 percent) main because 

of the difficulty in defining the cluster centres and the critical distance parameter to 

enable individual tree crown recognition. Another reason for poor classification was 

the confusion within classes due to the noise effects such as shadows, background 

vegetation and lack of species spectral information. 

Legend 
Black Box 
Grey Box 

River Red Gum 
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7.1.4 Thematic accuracy of feature-level fusion results  

Data-driven segmentation and subsequent classification were the decisive factors for 

improvement of the feature-level fusion result over pixel-level fusion. The 

enhancement can be seen in Figure 7.2 as well as in the error matrix (Table 7.2).  

Table 7.2 Error matrix for feature-level fusion using multispectral imagery with 
LiDAR-derived nDSM data  

Fused data 
Reference data 

Black 
box  

Grey 
box 

River red 
gum  

Bare 
ground Total User’s 

Acc. % 
Black box 55 4 3 1 63 87.30 
Grey box 4 53 1 3 61 86.89 
River red gum 0 4 66 0 70 94.29 
Bare ground 8 7 6 85 106 80.19 
Total 63 61 70 106 300  
Prod Acc % 77.78 77.05 87.14 96.23  259 

Overall Accuracy (Percent) 86.33 

Kappa Coefficient ( K
∧

) (Percent) 81.61 
 

Bare ground delineation has the highest Producer’s accuracy (96.23 percent) and 

river red gum (Eucalyptus camaldulensis) has the highest User’s accuracy (94.29 

percent). Grey box (Eucalyptus microcarpa) and Black Box (Eucalyptus 

largiflorens) have lower Producer’s and User’s accuracies but identification of all 

three-tree species was considerably better using feature-level fusion than by using 

pixel-level fusion (Compare Table 7.2 with Table 7.1). The accuracy of feature-level 

fusion results outperforms the pixel-level fusion results by around 20 percent.  

The overall thematic accuracy was 86.33 percent and the Kappa Coefficient was 

81.61 percent. A Kappa Coefficient close to 1 indicates substantial agreement (see 

Table 2.4 for qualitative interpretation of The Kappa Coefficient) between fusion 

results and reference measurements, meaning that feature-level fusion produced a 

stable tree species map for the forest study area.  

A semi-automated procedure similar to the feature-level fusion methodology was 

used by Meyer et al. (1996), where tree crowns were digitised from colour-infrared 

imagery, then identified tree species by classifying the pixels within crowns. The use 

of texture layers and a parallelepiped classifier achieved 80 percent accuracy and 
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outperformed on average 23 percent of maximum-likelihood classifier using original 

three-band imagery. Results of this study align with Meyer et al. (1996) results 

confirm that prior segmentation of tree crowns improves species classification. 

Overall accuracy of the current study (86.33 percent) is better than in Meyer et al.’s 

(1996) study (80 percent) where they used manual digitisation for delineating tree 

crowns. 

Segmentation and subsequent tree feature extraction from all data layers are essential 

for achieving good results and for a more standardised feature-level fusion. Data-

driven feature-level fusion can be used as a model for fusing high spatial resolution 

multispectral imagery with LiDAR data to assess forest attributes at an individual 

tree level. This fusion procedure has potential for minimising human involvement by 

automating interpretation of forest attributes. A similar study conducted by 

Koukoulas and Blackburn (2005) in broadleaved deciduous forest using airborne 

LiDAR and multispectral imagery achieved 91 percent accuracy. However, their 

method did not aim to delineate the whole tree crown but to extract top of the trees 

with information of their height, location and species type.   

The following section presents a statistical comparison of the pixel- and feature-level 

fusion results. 

7.1.5 Comparative accuracy of data-driven fusion results 

The accuracy of tree species identification by different fusion models can be 

compared through visual interpretation. In some cases, map scatter plots from 

LiDAR combined with multispectral imagery and field data enabled identification of 

individual black box and grey box trees (see Figure 3.3). However, this is not always 

possible due to the variable datasets so identification is at the stand level only. Sites 

dominated by black box generally exhibits a lower proportion of single LiDAR 

returns compared to sites dominated by grey box. River red gum (Eucalyptus 

camaldulensis) can easily be separated for their unique habitat. This species is 

largely found on riverine wetland areas subject to periodic inundation. 

Figure 7.3 shows the accuracy of tree species based on pixel- and feature-level 

fusions in the forest study area. Feature-level fusion delineates tree crowns more 

accurately than the pixel-level fusion.  
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Figure 7.3 Visual comparisons of the pixel- and feature-level fusion results for tree 
species delineation  

A detailed review of comparative accuracy assessment procedure of fusion results 

was presented in Section 2.9.2. Table 7.3 summarises thematic accuracy results and 

Feature-level 
fusion 

Pixel-level 
fusion 

Legend: Grey 
 

Black Box River Red Gum 

Multispectral 
image 
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provides a comparative Kappa Coefficient values for results derived from pixel- and 

feature-level fusions. The standard normal derivative of the Kappa Coefficient was 

used to evaluate whether a significant difference exists between the two results.   

Table 7.3 Comparison of accuracy of tree species identification at the 95 percent 
confidence level using pixel- and feature-level fusions  

Fusion Pixel-level Feature-level 
Overall Accuracy 
(percent) 

64.67 86.33 

K
∧

 (percent) 51.69 81.61 
^ ^

( )v a r K  
0.001188 0.000700 

z  15.00 30.84 
^ ^

1 2K K
z

−
 6.68 

Significance* S 
  *NS = not significant, S = significant 

Feature-level fusion greatly out-performed the pixel-level fusion in accuracy (86.33 

vs 64.67). This was mainly due to the segmentation and subsequent tree feature 

definition. The Kappa Coefficients of the pixel- and feature-level fusions were 52.56 

and 81.21 respectively, which indicated moderate and substantial agreement with 

reference measurements (see Table 2.4). Variance of Kappa and the Z test statistics 

point to thematic accuracies derived from the different fusions being significantly 

different from random results.    

Tree species delineation results from pixel- and feature-level fusion (Table 7.3) 

indicated that, at the 95 percent confidence level, all computed values of the standard 

normal deviation of the Kappa Coefficient (Equation 2.25) were far greater than 1.96 

(actual value 6.68) confirming that tree species delineation using feature-level fusion 

was significantly more accurate than pixel-level fusion result.  

7.2 User-driven Fusions for the Semi-urban Study Area 

The implementation of user-driven fusion models for identifying landscape objects 

of the semi-urban study area was presented in Chapter 6. Now the results and their 

thematic accuracy are discussed.  
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To evaluate thematic accuracy of the user-driven fusion results, a random sample of 

200 points was generated across the semi-urban (1.25km x 1km) study areas that 

were not training sites. This random sample was used to determine the relative 

proportion of each landscape class within the image. Following Congalton and Green 

(1999), the random sample was supplemented by a stratified random sample of 256 

point. This ensured that each class in the fusion results contained at least seventy 

validation points. The reference data for the 256 points were collected from the field 

and for the 200 points from aerial photos. Descriptions of the sampling techniques 

and the field data collection procedures are given in Section 3.13.2. Fusion results 

corresponding to the reference samples were assessed for thematic accuracy using an 

error matrix. Theoretical aspects of these evaluation processes were reviewed in 

Section 2.8. 

7.2.1 Pixel-level fusion results 

Pixel-level supervised fusion of multispectral imagery with LiDAR-derived nDSM 

data using the parallelepiped classifier is presented in Figure 7.4. The Road/Open 

space and Grass classes are relatively uniform and the boundaries compare 

favourably with the reference data shown in Figure 6.4. The Roof class is distributed 

all over Road/Open space classes, but their locations are not well matched with the 

reference data. The sealed Road appears to have been replaced by the Roof class. 

This effect is visible throughout the semi-urban study area indicating spectral 

confusion between these classes. 
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Figure 7.4 The results of the pixel-level fusion of multispectral imagery with 
LiDAR-derived nDSM data 

However, the shadow and non-shadow areas were well delineated in pixel-level 

fusion and was consistent with the Zhou et al. (2009) and Dare (2005) studies. The 

most challenging part of shadow detection is to separate different types of shadows 

(such as Roof and Tree Shadows) as they almost have identical radiometric 

responses. In this study, Roof shadow class occupies most of the shadow areas and 

yet few Tree shadow areas are properly delineated. This study had proven that 

different types of shadows could not be distinguished solely from the radiometric 

responses. 

Road/Open space 
Roof 
Roof shadow 
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Tree 
Tree shadow 
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7.2.2 Thematic accuracy of pixel-level fusion results 

Thematic accuracy assessment with the Kappa Coefficient provides a measurement 

of the success of the application of different fusion models. A framework for 

thematic accuracy assessment was presented in Section 2.8. User’s and Producer’s 

Accuracies, and elements of the error matrix are a gauge of the accuracy of fusion 

results. Thematic accuracy of pixel-level fusion results for the semi-urban study area 

can be assessed from Table 7.4. 

Table 7.4 Error matrix for pixel-level fusion results using multispectral imagery with 
LiDAR data 

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 58 5 4 2 1 8 78 74.36 

Roof 
shadow 2 54 7 11  2 76 71.05 

Tree 4  58 8 5 3 78 74.36 
Tree 

shadow 5 9 4 49 2 3 72 68.06 

Grass  4 7 1 56 6 74 75.68 
Open 
space 5 2 3 2 7 59 78 75.64 

Total 74 74 83 73 71 81 456  
Prod Acc 

% 78.38 72.97 69.88 67.12 78.87 72.84  334 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

73.25 

67.89 

 

The overall thematic accuracy is 73.25 percent and the Kappa Coefficient is 67.89 

percent. The Kappa Coefficient indicates moderate agreement (see Table 2.4 for 

qualitative interpretation of The Kappa Coefficient) between the fusion results and 

the reference data. In pixel-level fusion results, ‘pepper and salt’ effects are 

prominent due to the heterogeneous spectral response within the objects. Inclusion of 

nDSM data has very little influence in reducing the ‘pepper and salt’ effects. The 

Roof and Open space classes have higher User’s and Producer’s accuracies however 

in many cases, the Roof class is mis-identified as Open space. LiDAR height data is 

apparently not sufficiently well matched with multispectral imagery. This mis-

identification is visible at the edges of Roofs in Figure 7.4. The identification of 
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Grass class has achieved the highest User’s accuracy (75.68 percent) and Producer’s 

accuracy (78.87 percent). The high User’s accuracy (74.36 percent) of the Tree class 

indicates that spectral properties and LiDAR-derived height data play a significant 

role in separating Tree from Grass. 

The Shadow classes are poorly separated as the low User’s and Producer’s accuracies 

show; this is also revealed visually (see Figure 7.4). Roof Shadow and Tree Shadow 

classes are particularly difficult to distinguish using only spectral signatures since 

they have very little spectral information and have a high degree of within-class 

variation in the multispectral image owing to high spatial resolution of multispectral 

imagery resulting in mixed-pixels (Zhou et al., 2009; Dare, 2005). 

7.2.3 Feature-level fusion results 

Variation in spatial, spectral and radiometric resolution of the sensors is important 

because of the influence of these on discrimination of spectral, radiometric and 

spatial properties of the objects to be extracted. Different radiometric resolution such 

as 16-bit multispectral imagery and 8-bit LiDAR data provided rich datasets for 

fusion. Pixel-level fusion does not consider relative size, shape and distribution of 

landscape objects as a result; relation between objects cannot be used in this fusion 

process. Therefore, an alternative fusion technique needs to be considering for 

extracting landscape information. Figure 7.5 shows feature-level fusion results for 

delineating Level III landscape objects from multispectral imagery with LiDAR-

derived nDSM data. Roads/Open space and Grass classes form the largest 

components of the scene; however, the Tree class also occupying significant areas. 

All main classes, especially Roof class, have smooth shapes compared to the roof 

shapes in the pixel-level fusion result. 
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Figure 7.5 Results of the feature-level fusion of multispectral imagery with LiDAR-
derived nDSM data 

An emerging characteristic of this feature-level fusion process is that all Shadow 

classes are well delineated due largely to each Shadow classes being explicitly 

defined through the radiometric responses and border-to-neighbour relationships. 

Roof and Tree Shadow objects are delineated using spectral signature from 

multispectral imagery and contextual information border-to-neighbour relationships 

derived from spatial analysis. Zhou (2009) used the same technique for delineating 

shadow sub-classes and his results were consistent with those of the current study.  

7.2.4 Thematic accuracy of feature-level fusion results 

The feature-level fusion of data for the semi-urban study area utilised user provided 

guidelines for segmentation and subsequent features classification employing 
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knowledge rules derived from colour, height and contextual properties. The visual 

depiction of the resulting classification indicated that feature-level fusion gave a 

superior result to pixel-level fusion (see Figure 7.5). Thematic accuracy of the 

feature-level fusion is assessed using an error matrix in Table 7.5.  

Table 7.5 Error matrix for feature-level fusion using multispectral imagery with 
LiDAR data results  

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 73  2   3 78 93.59 

Roof 
shadow  70 1 14  1 76 92.11 

Tree 3 4 67 1 3  78 85.90 
Tree 

shadow  10  60 2  72 83.33 

Grass   5 2 64 3 74 86.49 
Open 
space 5  1  3 69 78 88.46 

Total 81 84 76 67 72 76 456  
Prod Acc 

% 90.12 83.33 88.16 89.55 88.89 90.79  403 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

88.38 

86.05 
 

The overall thematic accuracy for the feature-level fusion is 88.38 percent and the 

Kappa Coefficient is 86.05 percent. The Kappa Coefficient indicates excellent 

agreement (see Table 2.4 for qualitative interpretation of The Kappa Coefficient) 

between the fusion results and the reference data.  

Delineation of Roof class has the highest User’s Accuracy (93.59 percent) and 

Producer’s Accuracy (90.12 percent). Delineation of Tree and Roof shadow classes 

has improved dramatically using feature-level fusion as the contextual attribute 

border-to-neighbour relation is applied for defining a specific Shadow class 

Producer’s Accuracy 88.16 percent and 85.90 percent respectively, and User’s 

Accuracy 83.33 percent and 92.11 percent respectively. In pixel-level fusion, only 

spectral properties are used to separate Shadow classes and since shadows have the 

same or very similar spectral properties this approach fails to adequately separate 

Tree Shadow from Roof Shadow (Dare, 2005 and this study). On the other hand, 
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feature-level fusion uses contextual properties as well allowing accurate delineation 

of different Shadows. Zhou et al. (2009) used similar methodology for separating of 

shadows with overall accuracy of 81.5 percent, which is closed to the accuracy of  

current study average 88.40 percent. Interestingly, Zhou et al. (2009) achieved 83.1 

percent User’s accuracy for the Tree Shadow class; compared with this study’s  

83.33 percent. The Roof Shadow of Zhou et al.’s (2009) study had a low User’s 

accuracy (66.7 percent) and a very high Producer’s accuracy (95.2 percent), which 

indicated user’s had difficulties to delineate Roof Shadows. 

7.2.5 Comparative accuracy of results for user-driven fusions 

Visual comparison between pixel- and feature-level fusion results (Figure 7.4 and 

7.5) shows some substantial differences. Error matrices for thematic accuracy of the 

fusion results (Table 7.4 and 7.5) statistically confirm these differences. Overall 

accuracies of the pixel- and feature-level fusion results are 73.25 and 88.38 percent, 

respectively. The 15.13 percent difference between these values indicates that these 

two fusion processes produce very different results. A similar type of study by Platt 

and Rapoza (2008) also revealed that the accuracy of feature-level classification of 

multispectral imagery for urban area was considerably better than pixel-level 

classification (overall accuracy greater by 14 percent).   

Feature-level fusion results landscape objects being better distinguished than by 

pixel-level fusion is well delineated due to contextual properties of the landscape 

features being taken into account. The pixel-level fusion results show considerable 

fragmentation of landscape objects.  

The greatest improvement through using feature-level fusion is in the delineation of 

the Shadow classes. The User’s and Producer’s Accuracies are substantially better 

than pixel-level fusion results. In feature-level fusion, Roof Shadow’s User’s and 

Producer’s accuracies are 92.11 and 83.33 percent respectively. Compare to 71.05 

and 72.97 percent in pixel-level fusion results. The Tree Shadow results are the same 

as Roof Shadow results for both fusion cases. The incorporation of contextual 

properties into the feature-level fusion is what leads to better results. Other studies 

done by Zhou et al. (2009), Yuan (2008) and Dare (2005) support this.   
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Kappa Coefficients derived from the same error matrices can be utilised to measure 

the level of agreements between pixel- and feature-level fusion results. Kappa 

Coefficients compares the degree of interclass confusion for better understanding of 

the thematic error patterns. This measurement helps to select appropriate fusion 

algorithm for achieving better thematic accuracy that is suitable for a particular 

study. A theoretical background and the process of statistical comparison were 

presented in Section 2.9.2.   

Table 7.6 Comparison of accuracy of pixel- and feature-level fusion results at the 95 
percent confidence level  

 Multispectral imagery and LiDAR 
fusion 

Fusion Pixel-level Feature-level 
Overall Accuracy (percent) 73.25 88.38 

K
∧

 (Percent) 67.89 86.71 
^ ^

( )v a r K  
0.001269 0.001140 

z  19.05 25.48 
^ ^

1 2K K
z

−
 3.70 

Significance* S 
*NS = not significant, S = significant 

Table 7.6 shows the z statistics for both fusion results, 19.05 for pixel-level fusion 

and 25.48 for feature-level fusion. At the 95 percent confidence level, the standard 

normal deviation of the Kappa Coefficient is 3.70, well above the 1.96 threshold 

showing that feature-level fusion of multispectral imagery with LiDAR data leads to 

significantly more accurate mapping of a semi-urban landscape than pixel-level 

fusion.  

Both for forest and semi-urban study area the overall accuracy, User’s and 

Producer’s accuracies and pair-wise comparison of Kappa Coefficients revealed that 

feature-level fusion results were superior to the pixel-level fusion. The feature 

delineation using segmentation techniques and classification of features rather than 

pixels were the decisive factors for improvement over pixel-level fusions. 
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7.3 Discussion  

The main goal of this research was to investigate different fusion models using aerial 

imagery with LiDAR-derived height data for a range of mapping applications 

particularly for forest and semi-urban landscape mapping. Pixel- and feature-level 

fusions were particularly investigated in order to evaluate their potential. Thematic 

accuracies for the fusion-driven objects were evaluated against ground truth 

reference data to identify optimum fusion models for two study areas. The following 

sections discuss findings in light of the original research objectives laid out in 

Section 1.4.     

7.3.1 Methodologies for the fusion of aerial imagery with LiDAR data 

The underling objective of this research was to explore data- and user-driven models 

using pixel- and feature-level fusions for mapping forest and semi-urban areas. Data-

driven models were applied to the forest study area to detect tree species. User-

driven models were used for the semi-urban area because data only was not enough 

to separate the complex landscape classes. In the literature, pixel-level fusions using 

data- and user-driven models are well understood and have been tested widely 

(Richards and Jia, 2005; Rottensteiner et al., 2004a; Stein, 2004; Teggi et al., 2003; 

Laporterie and Flouzat, 2003; Pohl and van-Genderen, 1998; Schistad-Solberg et al., 

1994). In recent years, OBIA, or feature-level fusions, have been widely used 

(Blaschke, 2010; Johansen et al., 2010; Hay and Castilla, 2008; Lang, 2008; Platt 

and Rapoza, 2008; Zhou and Troy, 2008; Yuan and Bauer, 2006); however their 

applications is still based on user-driven models. This research comprehensively 

reviewed and implemented the data- and user-driven models in pixel-and feature-

level fusions for landscape mapping using aerial imagery and LiDAR data. A major 

contribution of this research was the introduction of data-driven fusion models in a 

forest study area. In a feature-level fusion scenario, this model used a watershed 

segmentation method to delineate tree crowns and then automatically identify tree 

species using an unsupervised classification algorithm. Another major contribution is 

the comprehensive review of different fusion techniques and their application for 

different landscape object extraction. 

This study determined efficacy by comparing accuracy of the fusion results with 

field-surveyed reference data in error matrices. Comparative statistical analysis was 
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also conducted to find the best possible fusion model for identifying landscape 

objects for each study areas. The performance of feature-level fusions was, on 

average, 15 percent more accurate than pixel-level fusions for both forest and semi-

urban study areas. A review of the literature (Geneletti and Gorte, 2003; Walter, 

2004; Wang et al., 2004; Kamagata et al., 2005; Platt and Rapoza, 2008; Riggan and 

Weih, 2009; Zhou et al., 2009) also support this assertion. 

Figure 7.6 Final tree species map for the forest study area derived from feature-level 
fusion of multi spectral imagery and LiDAR data 

Data-driven segmentation and subsequent feature-level fusion substantially improved 

tree species identification compared with pixel-level fusion. Figure 7.6 shows the 

tree species distribution within the forest study area using the data-driven feature-

level fusion model. Feature-level fusion of multispectral imagery with LiDAR data 

not only delineated individual tree species but also extracted different tree attributes 

such as the individual tree crown diameters and tree heights without user interaction. 

Another advantage of this fusion process is that the derived tree attributes are readily 

available for use by GIS applications for forest management and forest ecological 

studies. 
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For the semi-urban study, user-driven fusion models were found more appropriate 

than data-derived models for number of reasons. Firstly, data-driven watershed 

segmentation uses only simple grey-scale imagery with limited measurement space 

on which to base segmentation. The process does not use all the data layers (4-band 

multispectral imagery with LiDAR-derived height and texture data) together in a 

segmentation process. Large number of semi-urban classes could not be delineated 

using this technique and produced highly unsuitable segmented features (Wealands 

et al., 2005). User-driven segmentation such as multi-resolution segmentation on the 

other hand uses all the data layers and utilises scale, shape, texture and spectral 

properties to segment semi-urban features. Secondly, the number of semi-urban 

landscape classes was large (six) compared to the number of forest landscape classes 

(only three main classes). As a result, without a priori knowledge of the objects, 

which had complex spectral and spatial signatures, could not be extracted using data-

driven fusion alone. Even user-derived pixel-level fusion did not produce satisfactory 

results so data-driven fusion model would not produce good results either. 

Contextual properties can only be utilised in fusion as knowledge rules, therefore 

without User’s intervention the data-driven fusion model is required to allow feature-

level fusion. 

For the semi-urban study area, feature-level fusion utilised user-driven multi-

resolution segmentation for identification of meaningful features from 4-band 

multispectral imagery with LiDAR data. A class hierarchy was created for the 

feature-level fusion using spectral, spatial and contextual properties to classify the 

features. Feature-level fusion overcomes the within-feature variation, whereas pixel-

level fusion misclassifies them. For a given classification scheme, the finer the 

spatial resolution, the greater the chances of within-feature variation (Aplin et al., 

1999; Carleer et al., 2005). This study reveals that the delineation of small semi-

urban objects (such as Roof and Trees) is achieved with considerably greater 

accuracy using feature-level fusion than by pixel-level fusion. 

The overall accuracy of feature-level fusion results was 88 percent, which was 15 

percent higher than the results using pixel-level fusion. In both data- and user-driven 

models, feature-level fusions significantly improved results compared to pixel-level 

fusions owing to the use of segmentation and classification of features rather than 

just pixels. 
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7.3.2 The use of colour imagery as an alternative multispectral imagery in data 
fusions 

4-band multispectral imagery was fused with LiDAR data for delineation of semi-

urban objects. The recent availability of high spatial resolution colour imagery from 

satellite sensors such as IKONOS and QuickBird, as well as from digital aerial 

platforms, provides new opportunities for detailed urban land cover mapping at very 

fine scale (Zhou and Troy, 2008). On an experimental basis, 4-band multi spectral 

imagery was replaced by 3-band colour imagery fused with LiDAR-derived nDSM 

data. Subset data for the semi-urban study area were selected and similar pixel- and 

feature-level fusion models were applied. The thematic accuracies of these fusion 

results were compared with multispectral and LiDAR data fusion results. Detailed 

implementation and analysis are presented in Appendix 4. 

 

 

 

 

 

 

 

 

 

Figure 7.7 3-band colour imagery with nDSM data fusion results (a) pixel-level 
fusion and (b) feature-level fusions 

The main contributing factor of colour imagery to the poor performance of the pixel-

level fusion is the failure of the clustering process to recognize some classes. This 

problem was acute for the Shadow classes, as it could not distinguish different 

shadow classes on the basis of pixel’s spectral content alone. The feature-level 

approach overcomes this problem by incorporating contextual information in the 
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fusion process. The replacement of multispectral imagery with colour imagery made 

the tiniest accuracy difference in classification by both pixel- and feature-level 

fusions. Multispectral imagery made Shadow extracting more accurate in pixel-level 

fusion with higher User’s and Producer’s accuracies than when using colour imagery 

(Table 7.4 and Table A4a). This was largely due to the variation of radiometric depth 

between the colour and multispectral imagery. The 16-bit multispectral imagery has 

more radiometric depth than 8-bit colour imagery: as a result, multispectral imagery 

with LiDAR data fusion had less misclassification than colour imagery with LiDAR 

data fusions. This findings agrees with Leberl and Gruber (2005) conclusions when 

they noticed that using imagery with high spectral depth (such as 16-bit) gave a 

significant improvement in classification compared to using imagery with low 

spectral depth (such as 8-bit). 

Table 7.7 Comparison of pixel- and feature-level fusion results using colour imagery 
and LiDAR data (summary of Table A4 a & c) 

 Colour imagery and LiDAR fusion 
Fusion Pixel-level Feature-level 
Overall Accuracy (percent) 75.24 91.32 

K
∧

 (Percent) 70.29 89.93 
^ ^

( )v a r K  
0.002594 0.001282 

z  13.80 25.11 
^ ^

1 2K K
z

−
 3.15 

Significance* S 
At the 95 percent confidence level *NS = difference not significant, S = difference 

significant  

Shadow classification of this study can be compare to Zhou et al. (2009) study where 

object-based multisource data fusion achieved 88 percent overall accuracy. This 

study concluded that feature-level fusion provides an effective way to delineate 

shadow classes when multi-source data has radiometric difference and spatial 

misregistration. Application of the shadow detection and restoration methods helps to 

eliminate the shadow problem in land cover classification of high spatial resolution 

images in urban settings. 



194 

7.3.3 The effect of height data in fusion models 

In this study, optical imagery and LiDAR-derived height data were fused in pixel- 

and feature-level models. The complementary nature of these two sources of data 

was the main reason for fusing them, however for argument’s sake, the LiDAR-

derived height data was excluded from fusion presented in Appendix 5 and 

accuracies of resulting classification compared with the classification obtained with 

colour imagery and LiDAR-derived height data fusion presented in Appendix 4. 

 

 

 

 

 

 

 

 

 

Figure 7.8 (a) Pixel-level classification of colour image, (b) Pixel-level fusion of 
colour image with LiDAR-derived nDSM data 

Visually inspection of the results (Figure 7.8a and 7.9a) showed that object 

identification was severely disadvantaged by the exclusion of nDSM data.  The 

inclusion of nDSM data improved the sharpness of object images (Figure 7.8b and 

7.9b). This is particularly evident when observing open space and roof classes in 

pixel-level fusion of colour imagery with nDSM data. Exclusion of nDSM data gave 

a ‘pepper and salt’ effect due to the multiple misclassifications (see Figure 7.8a). 

Inclusion of LiDAR-derived nDSM results reduced the ‘pepper and salt’ effect and 

improved landscape mapping. However, misclassification of shadow classes still 

occurred (see Figure 7.8b) due to the limitation of the pixel-level fusion process. This 
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was addressed in feature-level fusion by incorporating contextual information. 

Obviously height data enhances object definition and so improves the capacity of 

both pixel- and feature-level fusions to correctly identify them. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 (a) Feature-level classification of colour image, (b) Feature-level fusion of 
colour image with LiDAR-derived nDSM data 

Object-based classification of colour imagery exhibited poor delineation results (see 

Figure 7.9a) as abrupt spectral changes occurred within the same classes due to the 

sun illumination angle. Again, inclusion of height data in the fusion process 

substantially improved object extraction (see Figure 7.9b). Comparative visual 

analysis of feature-level fusions showed that additional height data also improved the 

recognition of objects. 
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Figure 7.10 Summary of the overall object delineation accuracy of pixel- and feature-
level fusions for the semi-urban study area   

Classification accuracy when excluding or including nDSM data with colour imagery 

is presented in Figure 7.10. Implementation to classify a semi-urban area is presented 

in Appendix 4 and 5. Feature-level fusion of colour with nDSM data achieved the 

highest object delineation accuracy (91.32 percent), whereas using only colour 

imagery gave the worst accuracy result (66.56 percent). Abrupt spectral changes 

within the same classes, specifically in the Roof class, were the main reason for 

misclassification in feature-level fusion. In pixel-level approaches inclusion of 

nDSM data had less impact, whilst in feature-level approaches this had a significant 

effect. Both visual and statistical analyses (Appendix 4 and 5) show that inclusion of 

nDSM improves delineation of landscape objects.  

7.3.4 Landscape object height derived from different DSM sources   

Digital Terrain Model (DTM) not only represents terrain but also includes other 

derivatives such as elevation, slope, gradient, aspect, profile curvature, plane 

curvatures, and other geographical/environmental characteristics (Qiming et al., 

2008). These derivatives can be important for object classification (Dragut and 

Blaschke, 2008). For an example, we know that River red gum (Eucalyptus 

camaldulensis) only grows in riverine flood plains, therefore, if we can derive flood 

plains from DTM then we can use this attribute to assist with tree species grouping. 

Feature-level fusion using OBIA can use this sort of derivative as contextual 

information - i.e. as knowledge rules but such terrain derivatives can not be utilised 

by data-driven feature-level fusion due to the inability of this model to handle 
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knowledge rules. Pixel-level fusion cannot utilise terrain parameters either because 

only the values within pixels can be used in the classification. 

Both aerial photography and LiDAR-derived DSMs have been used extensively for 

generating landscape object heights. Aerial photography has a long history of 

producing DSMs through analogue, analytical and digital methods (Mikhail et al., 

2001). The fundamental difference between LiDAR and photogrammetry is that 

LiDAR is based on a range measurement to a point from a single airborne position. 

Photogrammetry however, is based on stereo matching of images from two airborne 

positions. The stereo matching process requires the matching of a ‘patch’ of pixels 

covering a small area rather than a discrete point (footprint) as with LiDAR. In 

addition, often the algorithms used in the photogrammetric solution have been 

designed for smooth landscape modelling rather than the rapidly changing elevations 

of buildings in an urban environment (Smith et al., 2004). According to Baltsavias 

(1999), LiDAR has some strengths compared to the photogrammetrically-derived 

DSM. The following sections discussed these issues in forest and semi-urban 

contexts.  

DSM for forest study areas 

For the conventional photogrammetric technique, creating automated Digital Surface 

Model (DSM) over a dense forest is prone to error because of the difficulty of 

matching pixels in the tree canopy between two stereo photos taken at different 

viewing angles. LiDAR is a good alternative tool to create better DSMs (Kato et al., 

2010). Leckie et al. (2003) compared LiDAR-derived Canopy Height Model (CHM) 

with the results from digital aerial photos. They found that digital aerial photos were 

better for delineating tree crowns, while the LiDAR-derived CHM was better for 

open canopy areas. The LiDAR-derived CHM was better suited in clearly distinct 

area among neighbouring pixels between trees and shrub (or ground). LiDAR was 

well suited to measure tree height and large tree crown delineation.  

LiDAR provides ground and tree height information simultaneously. The penetration 

rate mainly depends on types of trees (deciduous or coniferous), season and the 

terrain roughness. Large-footprint LiDAR sensors can achieve results in dense 

tropical forests where 95 percent of the ground may be obstructed. The 
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photogrammetric method of image matching delivers very poor results due to 

shadow, less texture and the significant geometric and radiometric differences 

between images (Baltsavias, 1999). Automated photogrammetric matching process 

may provide high-density DSMs but matching results include locally significant 

errors that require manual editing. By contrast, LiDAR records first and last returns 

that normally represent the top and bottom of the objects. From these two returns 

high-density object height data can be derived. The height estimates derived from 

LiDAR are considered to be more reliable for the reasons that the highest point of the 

crown is located objectively. The apparently the highest point of a tree from the 

ground varies with observer’s position lead into errors in field measurements. Note 

that wind effects on the crown might lead to minor errors in LiDAR-derived 

measurements too. 

Results from previous studies had shown that separating northern hemisphere 

deciduous tree species using LiDAR data was difficult due to their complex structure 

(Chen et al., 2006). However, use of the watershed segmentation algorithm with the 

LiDAR data achieved a satisfactory result for eucalypt trees. The success of the tree 

crown extraction algorithm was higher for old growth than for more juvenile trees 

where the crowns were more numerous and more scattered. It was also observed that 

large crowns were better delineated than small ones. 

There were several reasons for measuring tree height and crown size from the 

LiDAR-derived DSMs rather than the stereo photogrammetrically-derived DSMs: 

(1) it is easier to identify individual trees from LiDAR-derived DSM due to the 

high pulse density of the LiDAR dataset, 

(2) additional texture information can be extracted from LiDAR intensity data, and 

(3) sampling in a LiDAR-derived canopy model can greatly reduce the workload 

and is not limited by the factors such as accessibility in the field. 

Aerial photogrammetric techniques cannot reconstruct the objects accurately in 

three-dimensional spaces if they are not clearly visible on the photos (Helt et al., 

2006). On the other hand, LiDAR provides tree crown structure in a three-
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dimensional space. Therefore, LiDAR-derived DSM can only be used in conjunction 

with optical imagery for tree delineation. 

DSM for urban study areas 

DSMs support the classification of urban structures beyond two-dimensional 

classifications. Wurmab et al. (2011) presented a hierarchical, object-based 

transferable framework to extract the urban structure at a high level of geometric 

detail for two test sites in Germany. Results showed accuracies above 90 percent for 

the land-use/land-cover classification for both test sites applying the same routines. 

DSMs from LiDAR and stereo-photo sources have been utilised for the extraction of 

individual building structures with accuracies of 90 percent and 80 percent, 

respectively. The LiDAR-derived methodology was suited to extract the urban 

structure at the level of individual buildings. 

In urban environments, DSM-derived from LiDAR provide very dense and accurate 

3D measurements of objects with sharp discontinuities, especially buildings. On the 

other hand, photogrammetric- derived DSMs are less detailed and smooth 

discontinuities. In addition photogrammetric image-matching include locally 

significant errors that require manual editing such as, low texture, shadows, multiple 

solutions, geometric and radiometric differences between the images, and poor 

approximate values, which are not applicable for LiDAR-derived DSM. 

 

 

 

 

 

 

Figure 7.11 3D models of the same semi-urban area created from (a) a LiDAR-
derived DSM, and (b) stereo photogrammetry  

(a) (b) 
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As an example, LiDAR-derived DSMs and stereo photogrammetry-derived DSMs 

were generated from the same semi-urban study area. Figure 7.11a represent the 

LiDAR-derived DSM and Figure 7.11b is the stereo photogrammetry-derived DSM. 

Without extensive manual editing, only a 4m spatial resolution DSM was generated 

from the photogrammetric technique, whereas from the LiDAR data a 1m spatial 

resolution DSM was generated. The latest LiDAR technology can produce a 

centimetre scale DSM using multi-return LiDAR data. Visual examination showed 

that the digital photogrammetric technique tends to smooth the surface models. As a 

result, landscape feature identification was much harder. LiDAR-derived DSMs 

generally produce superior three-dimensional models of landscape objects also. 

7.3.5 Issues with comparative accuracy assessment using error matrices  

Conventional accuracy assessments are based on a per-pixel approach and only 

consider the thematic or positional accuracy. However, feature-level fusion using 

OBIA produces results that have both thematic and geometric properties, therefore 

the traditional per-pixel error-matrix approach for accuracy assessment may be 

inadequate (Schiewe and Gahler, 2008). Concerns about pixel-based accuracy 

assessment were presented in Section 2.11. Review of comparative pixel- and object-

based classification accuracy assessment (Riggan and Weih, 2009; Zhou et al., 2009; 

Platt and Rapoza, 2008; Walter, 2004; Wang et al., 2004; Geneletti and Gorte, 2003) 

reveal that error matrix-based cross validation was most popular as it summarizes the 

nature of the thematic accuracy and is also the basis for many further comparative 

statistical accuracy analyses. The overall accuracy derived from an error matrix only 

incorporates the major diagonal and excludes omission and commission errors. On 

the other hand, normalised accuracy includes the off-diagonal elements and 

represents the accuracy better (Congalton, 1991). However, normalisation can lead to 

a bias and have the effect of equalising the User’s and Producer’s accuracies where 

in fact they differ significantly (Stehman and Czaplewski, 1998). The user might 

benefit from normalization of the matrix (Smits et al., 1999) but it would be 

impossible to work the other way and derive the original matrix from the normalized 

version (Foody, 2002). As a result, it is preferable to derive more than one measure 

of accuracy and provide an error matrix as a full description of classification 

accuracy (Arbia et al., 1998; Muller et al., 1998a; Stehman, 1997). This is important 
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as the use of different accuracy measures may result in different, possibly 

conflicting, interpretations and conclusions (Stehman, 1997).  

KHAT accuracy is another error-matrix related measurement that indirectly 

incorporates the off-diagonal elements as products of the row and column margins. 

Depending on the amount of error included in the matrix, the overall, normalised and 

KHAT measures may not agree. In addition to these measures, Kappa is also a 

powerful technique for its ability to provide information about a single matrix as well 

as to statistically compare matrices. Kappa analysis tests the significance of each 

matrix alone and determines whether the results presented in the error matrix are 

significantly better than a random result.  

The error matrix is therefore used to summarize the nature of the class allocations 

made by a fusion method and is the basis of many quantitative accuracy analyses. It 

is used to provide a site-specific assessment of the correspondence between the 

image fusion results and ground conditions. Given the range of viewpoints and 

problems surrounding the error matrix (see Section 2.11), it seems unlikely that a 

single universally acceptable standard for accuracy assessment and reporting can be 

specified. The error matrix lies at the core of much work on accuracy assessment and 

is frequently used without questioning its suitability (Foody, 2002).   

Pixel- and feature-level fusion results were compared in order to evaluate the 

suitability of the two fusion techniques. The comparison was undertaken in a 

statistically rigorous way to provide an objective basis for comment and 

interpretation. Considering consistency, the same set of ground data was used for 

accuracy assessment for both fusion results (detail presented in Section 7.1 and 7.2). 

In the forest study area, feature-level fusion accuracy derived from error matrix was 

greater than the pixel-level fusion accuracy (86.33 percent vs 64.67 percent). The 

Kappa Coefficients of the pixel- and feature-level fusions (52.56 and 81.21 

respectively) also indicated that feature-level fusion had substantial agreement 

compared to moderate agreement for pixel-level fusion. Variance of Kappa and the z 

test for each fusion result also indicated that thematic accuracies of the different 

fusion results were significantly different from random results and that feature-level 

fusion performed well above the pixel level fusion. 



202 

In the semi-urban study area, error-matrix based overall thematic accuracy results of 

pixel- and feature-level fusions were 73.25 percent and 88.38 percent respectively. 

The results from the fusion models are compared and the degree of interclass 

confusion is evaluated with a view to understanding the thematic error patterns. Pair-

wise comparison of pixel- and feature-level fusion results indicated that, at the 95 

percent confidence level, the standard normal deviation of the Kappa Coefficient is 

3.15, well above the maximum 1.96 threshold; therefore, the feature-level fusion 

significantly improved the thematic accuracy as compared to the pixel-level fusion. 

Cross validation techniques using unified samples indicate that error matrices play an 

important role in quantifying fusion accuracies and providing comparisons between 

different fusion models. Object-based accuracy assessment can be used with feature-

level fusion but not with pixel-level fusion alone or for comparing results derived 

from pixel- and feature-level fusions. 

7.4 Summary 

This chapter had presented data- and user-derived fusion results for both of the study 

areas. Landscape object delineation from pixel- and feature-level fusions were 

presented and their comparative accuracies evaluated. This chapter also discussed 

different issues, which arose during the implementation phases. 

For the forest study area, pixel-level fusion did not clearly delineate individual trees. 

The lack of homogeneity in the intensity distribution was the main reasons for the 

difficulty in spectrally separating the tree crowns. The advantage of feature-level 

fusion was that it classified the whole tree feature rather than the single pixel 

reducing the mixed-pixel problem and delineated trees more realistically. A thematic 

accuracy of 86.33 percent was achieved in feature-level fusion result outperforming 

the pixel-level fusion result by 22 percent. The Kappa Coefficients of the pixel- and 

feature-level fusions were 51.69 and 81.61 respectively, which indicated moderate 

compared to substantial agreement with field-surveyed data. Comparative deviation 

of the Kappa Coefficients indicated that significant difference was detected between 

pixel- and feature-level fusion results. Segmentation and subsequent feature 

classification substantially improved the tree species identification in feature-level 

fusion. 
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For the semi-urban study area, the results revealed that feature-level fusion exhibited 

higher thematic accuracy than pixel-level fusion. Pixel-level fusion of multispectral 

imagery with DSM data achieved 88.38 percent accuracy however, with kappa value 

86.71 percent. The z statistics of the multispectral imagery with LiDAR data fusion 

at pixel- and feature-level were 19.95 and 3253 respectively. Comparative deviation 

of the Kappa Coefficient (3.12) revealed that feature-level fusion of multispectral 

imagery with LiDAR data was better than the pixel-level fusion results.  

Pixel- and feature-level fusion models were carefully evaluated and their 

performance in landscape object delineation discussed. Comparative results for both 

the study areas revealed that feature-level fusion delineated objects better than pixel-

level fusion. Data-driven feature-level fusion model was employed in the forest study 

area as datasets were rich with spectral, spatial, and textural information. Data-driven 

fusion models were found inappropriate for application of the semi-urban study area 

owning to the long list of landscape objects and the complex nature of the landscape 

classification scheme.    

In the two different fusion processes, it was evident that inclusion of LiDAR-derived 

height data improved the correct delineation of landscape objects. In pixel-level 

fusion, this was particularly evident when observing different semi-urban landscape 

objects. Excluding DSM results gave a ‘pepper and salt’ effect due to serious 

misclassification of objects. Inclusion of LiDAR-derived DSM information reduced 

‘pepper and salt’ effect and improved landscape delineation. Landscape object 

delineation using feature-level fusion of colour imagery with DSM data achieved an 

accuracy of 91 percent, whereas using only colour imagery achieved 66 percent 

accuracy. 

Both aerial photography and LiDAR have been used extensively for generating 

DSMs of landscape objects; however, current stereo photogrammetric solutions have 

limitations in production high resolution DSMs without manual editing. Use of 

LiDAR, on the other hand, can produce very high-resolution 3D landscape models 

that can easily be incorporated into different fusion models. 
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CHAPTER 8 

8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The opening chapters of this thesis introduced the subject of data fusion in a multi-

source classification context and explained how it consisted of two models: data- and 

user-driven. It was shown that the fusion of aerial imagery and LiDAR data is very 

important in landscape object extraction from remotely sensed data, deserving 

detailed research. This research set out to investigate the feasibility of using pixel- 

and feature-level fusions in a data- and user-driven context to identify a range of 

landscape objects. Data-driven fusion models were used for a forest study area for 

the presence of a handful of Eucalyptus species, and user-driven models for a semi-

urban area for the presence of large number of classes with complex landscape 

structures.  

This research reveals that a number of points need to be considered before one even 

begins to formulate a fusion project. The effects of scale and correct registration of 

multi-source data are overridingly important. The scale issue was addressed through 

the use of very high spatial resolution multi-source data in a hierarchical landscape 

classification schemes for specific sites. The complementary nature of optical 

imagery and LiDAR data was the main reason for deploying them in the fusion 

models for identifying a range of landscape objects. A parametric registration model 

was applied to bring optical imagery into the same geographic coordinate system as 

the LiDAR data. LiDAR data were processed to derive absolute height of the 

landscape objects. These heights were validated using field-surveyed data. Some 

temporal changes were expected in both study areas as the multi-source aerial data 

were collected over the 4-year period 2001-2004. The study areas were in a slow-

growing region that had not seen many changes in that period, nevertheless some 

temporal effects were found due mainly to object movement - a common challenge 

with high spatial resolution data fusion.  
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8.1.1 Tree species identification in a forest area 

Understanding the composition of tree species in a forest environment is an import 

task for managing our forest resources. Field survey is still considered the main 

source for collecting this information. However, the application of very high spatial 

resolution, remotely sensed data makes data collection a more timely and cheaper 

option. This study shows that data-driven fusion of aerial imagery and LiDAR data 

automatically identifies tree species without user intervention. Data-driven pixel-

level fusion uses an unsupervised algorithm to fuse spectral, height and texture pixels 

for species identification. Data-driven feature-level fusion, on the other hand, 

employed watershed segmentation for delineating tree features first then used an 

unsupervised algorithm to classify trees into different species.   

Pixel-level unsupervised fusion correctly separated tree and non-tree areas, however 

it could not delineate individual tree crowns. Misclassification of pixels was high 

within individual tree crown areas indicating that unsupervised pixel-level fusion is 

not efficient in separating tree species.  

On the other hand, feature-level fusion could quite accurately identify tree species. 

The use of tree features (polygons) derived from watershed segmentation decisively 

improves fusion results through the assignment of the most frequent pixel of the 

layer to a particular tree polygon. Assigning a single digital number for each tree 

feature derived from multi-source data substantially reduces interclass confusion 

compared to using the original pixel values. 

Thematic accuracies of data-driven fusion results as derived from error matrices 

achieved better overall accuracy (86 percent) for feature-level fusion compared to 

pixel-level fusion (65 percent). A Kappa Coefficient of 82 percent when employing 

feature-level fusion indicated substantial agreement with reference data whereas, for 

pixel-level fusion a value of 52 percent that indicated only moderate agreement with 

reference data. A comparison Kappa analysis statistically proved that feature-level 

fusion leads to a better result than pixel-level fusion. Thus feature-level fusion can be 

recommended over pixel-level fusion when attempting to identify the tree species.  
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8.1.2 Identifying objects in a semi-urban area 

Using just multisepctral imagery or LiDAR-derived data is not sufficient to recognise 

semi-urban landscape objects. The combine use of these two datasets improves 

object recognition. This study also reveals that data only is not sufficient to identify 

semi-urban objects for their complex nature and structure. The user plays a vital role 

in guiding the fusion process by providing inputs as knowledge-rules. Employing a 

supervised parallelepiped classifier for pixel-level fusion and multi-resolution 

segmentation for feature-level fusion greatly improves object identification. 

It appears that the mixed-pixel problem, or ‘pepper and salt’ effect, is inevitable in 

pixel-level fusion, whereas objects appear sharper in feature-level fusion. Landscape 

features were well delineated in the segmentation stage of feature-level fusion and 

later these features were successfully classified using knowledge-driven spectral, 

spatial and contextual attributes. 

Significant differences between pixel- and feature-level fusion results for the semi-

urban study area were evident visually. Feature-level fusion significantly improved 

thematic quality as compared to pixel-level fusion, findings very similar to the results 

published by Kamagata et al. (2005). 

Calculation of the Kappa Coefficients for results based on pixel-level fusion showed 

there was substantial agreement with reference data. On the other hand, the Kappa 

Coefficients for results from feature-level fusion was close to 1 indicating excellent 

agreement with reference data. Statistical comparison of pixel- and feature-level 

fusion results also revealed that object identification was better in feature-level 

fusion.  

The greatest improvement in results using feature-level fusion over pixel-level 

fusion was in the delineation of Shadow classes. The User’s and Producer’s 

Accuracies are substantially better than for pixel-level fusion results. It is the 

incorporation of contextual properties into the feature-level fusion that leads to these 

better results.   

It is interesting to note that replacement of multispectral imagery with colour 

imagery, did not making much difference to feature-level fusion results. However, in 

pixel-level fusion of multispectral imagery (16-bit) there was less misclassification   
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compared to fusion results derived from colour imagery (8-bit). This result reveals 

that radiometric depth of the imagery influences pixel-level fusion results.  

Excluding LiDAR-derived height data from fusion models degrade results. In 

feature-level fusion, the degradation was massive and in pixel-level fusion the 

difference was substantial. So, it must be concluded that LiDAR-derived height data 

plays a huge role in differentiating objects when they have similar spectral 

properties. 

Landscape object height can of course be derived by stereo matching aerial 

photographs but experiments during this study showed that height density data is not 

as accurate as LiDAR-derived data. Stereo matching aerial photographs cannot 

generate automatic high-density height data due to the shadow effect, less texture 

detail and the often significant geometric and radiometric differences between 

images. Thus, aerial photography-derived height data is not as suitable as LiDAR for 

use in the fusion process.  

This research has provided a means for extracting landscape information for forest 

and semi-urban areas by fusing aerial imagery with LiDAR data. Feature-level fusion 

approach is useful for a wide variety of applications such as automated object 

extraction and for rapid mapping. Analysis of thematic accuracy detailed in this 

research provides an understanding of data quality issues associated with object 

recognition in different fusion models that should prove useful for designing future 

landscape mapping models.     

8.2 Recommendations for Future Research 

During this research some limitations of data fusion approaches were identified. The 

following recommendations are proposed for future work. 

8.2.1 New data sources 

Recent developments in satellite sensing systems have resulted in commercially 

available remotely sensed optical imagery with spatial resolution less than one metre. 

However, satellite-based high spatial resolution LiDAR has not yet been developed. 

LiDAR systems for landscape level mapping are still restricted to the aerial platform. 
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Currently the LiDAR system can generate and acquire multi-pulse returns so that it 

does not only record first and last returns but also intermediate returns such as 

second and third returns. A wide range of datasets are therefore available for fusion, 

each with their own enhanced spectral and spatial qualities. 

Data from new sensors should be investigated to establish the information content 

and relevance to assessment of a wide range of landscape objects. These sensors are 

capable of expanding the number of spectral bands, level of detail (scale) and 

temporal information. Serious consideration should be given to the fusion of radar-

derived high spatial resolution imagery with DEM data for automated landscape 

feature extraction. Constant evaluation of new data sources is needed to ensure 

continuity of landscape monitoring.  

8.2.2 Automatic registration of multi-source data 

The time lag between the collection of aerial imagery and LiDAR was not considered 

as a serious issue as the best available datasets were used in this research. Improved 

results may be achieved if the data sources do not have any time lag and 

phenological cycles of the landscape objects, such as tree flowering, are considered. 

This will presumably enable superior separation of landscape objects. 

Geometric quality of the data needs to be investigated and assessments made of 

automatic image orthorectifications. A coherent well-rectified dataset can be 

produced when the optical and LiDAR sensors are on the same aerial platform and 

orthorectification is done automatically. Such a technique may be useful for 

minimising spatial errors in multi-source data and reducing the processing time for 

large data sets. 

8.2.3 Virtual field data collection 

The ability to accurately identify landscape objects from multi-source fused data is 

presently dependent on timely acquisition and accurate field data. However, field 

data collection is always time consuming and costly. Future research needs to be 

directed at minimising time spent collecting data in the field. An alternative is the 

creation of a virtual field scenario in a digital environment where the user can 

interact directly with the sample objects and derive measurements from them.   
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8.2.4 Automatic fusion models 

Terrestrial photographs show the vertical structures of trees and sometimes tree 

species can be identified from their component facts. However, this sort of 

composition is unseen in remotely sensed data. For the forest study area, data-driven 

pixel-level unsupervised fusion results indicated that some tree species were not 

separable using the multi-source data even though they were identifiable in terrestrial 

photographs. Detailed examination of tree species’ attributes needs to be undertaken 

prior to final design of any pixel-level fusion scheme. More sophisticated pixel-level 

approaches that include hierarchical clustering algorithms should be investigated in 

future. In a data-driven feature-level fusion approach, a high-end segmentation 

technique called watershed segmentation was successfully employed for feature 

definition. Further research should be performed using different segmentation 

algorithms and their accuracy for tree feature delineation compared. 

For the semi-urban study area, the user-driven pixel-level fusion models gave only a 

moderate level of certainty in the allocation of pixels to classes when the 

parallelepiped decision rule was implemented. Many pixels exhibited multiple class 

membership due to conflict in class definition, or because of spatial complexity of 

landscape objects. More sophisticated pixel-level fusion approaches are needed that 

can handle multiple class memberships as well as use of more advanced and complex 

fusion schemes (such as a support vector machine) to take advantage of modern 

computing power.  

The future of data fusion for landscape object extraction lies in the development of 

machine learning or artificial intelligence where a large numbers of scenes can be 

automatically processed and provide consistent results. This can be achieved by 

incorporating multiple complex fusion algorithms into a single machine process, 

which can deploy algorithms as necessary using artificial intelligence.  

8.2.5 Machine-generated accuracy assessment 

Accuracy assessment is essential for the evaluation of the quality and appropriateness 

of products. Consideration of the spatial and thematic components of analysis is 

required for a complete understanding of the accuracy of object delineation. This 

research evaluated the accuracy using point-based sampling and calculated an error 
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matrix with Kappa statistics as an indicator of accuracy of object delineation. 

Research should be directed in future to more sophisticate accuracy assessment, 

which not only assesses point-based thematic accuracy but also includes other 

mechanisms to assess accuracies such as positional accuracy and fuzziness of 

objects’ boundaries.     

In landscape mapping, an integrated machine-generated spatial and thematic 

accuracy approach is required to ensure fused data leads to proper interpretation of 

object classes. Accuracy issues that relate to the geo-referencing, boundary location, 

and thematic fusion need to be addressed in a comprehensive manner. It is clear that 

standard error matrices are inadequate for the task, and further research is required 

on more effective techniques. 
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APPENDIX 

Appendix 1. The forest study area field data collection form  

Trip:    Site:     Date: 

Photo reference/s: 

Category Attribute Tree 1 Tree 2 Tree 3 Tree 4 
Location Coordinates 

(GDA94) 
Easting     
Northing     

Foliage 
& 
Canopy 

Overall Height (m)     
Canopy Area (sq. m)     
Foliage Density (%)     

DBH Bole Diameter (m)     
Tree 
Species 

RRG, GB or BB     

 
 
Vertical 
Strata 

Distance from Transect origin 
(m) 

    

Transect Bearing (degree)     
Transect point of origin     
Bare Ground (%)     
Canopy cover (%)     
Ground vegetation cover (%)     

Other  
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Appendix 2. The semi-urban study area field data collection form  

Trip:    Site:     Date: 

Photo reference/s: 

Category Attribute Object 1 Object 2 Object 3 Object 4 
Location Coordinates 

(GDA94) 
Easting     
Northing     

Class Roofs/Road/Trees/..etc     
 Overall Height (m)     

Area cover (sq. m)     
 
 
Vertical 
Strata 

Distance from Transect 
origin (m) 

    

Transect Bearing 
(degree) 

    

Transect point of origin     
Mixed class (%)     

Other  
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Appendix 3. Summary statistics of the initial 10 clusters of data-driven pixel-
level fusion  

Cluster Layers DN Mean  DN St. Dev. 
1 Blue layer of original image 608.76 119.45 
 Green layer of original image 329.51 48.48 
 Red layer of original image 342.85 28.78 
 Infrared layer of original image 887.97 164.05 
 Height layer: LiDAR-derived nDSM 3.45 4.44 
 Texture layer: LiDAR 1st return intensity 134.84 49.26 
2 Blue layer of original image 777.92 77.81 
 Green layer of original image 400.65 31.91 
 Red layer of original image 373.97 21.82 
 Infrared layer of original image 1353.78 109.88 
 Height layer: LiDAR-derived nDSM 8.058 4.162 
 Texture layer: LiDAR 1st return intensity 81.08 43.13 
3 Blue layer of original image 899.85 68.26 
 Green layer of original image 447.70 29.74 
 Red layer of original image 406.20 18.73 
 Infrared layer of original image 1174.03 85.19 
 Height layer: LiDAR-derived nDSM 1.51 3.139 
 Texture layer: LiDAR 1st return intensity 153.32 41.86 
4 Blue layer of original image 1066.50 56.74 
 Green layer of original image 517.44 24.04 
 Red layer of original image 445.11 19.08 
 Infrared layer of original image 1274.63 53.29 
 Height layer: LiDAR-derived nDSM 0.29 1.42 
 Texture layer: LiDAR 1st return intensity 172.64 29.24 
5 Blue layer of original image 1072.53 59.79 
 Green layer of original image 522.82 25.95 
 Red layer of original image 443.79 17.95 
 Infrared layer of original image 1420.30 53.15 
 Height layer: LiDAR-derived nDSM 1.15 2.83 
 Texture layer: LiDAR 1st return intensity 166.04 43.68 
6 Blue layer of original image 1224.71 62.77 
 Green layer of original image 574.76 24.29 
 Red layer of original image 474.62 18.65 
 Infrared layer of original image 1482.48 73.53 
 Height layer: LiDAR-derived nDSM 0.71 2.14 
 Texture layer: LiDAR 1st return intensity 164.96 37.01 
7 Blue layer of original image 987.20 106.56 
 Green layer of original image 483.75 42.25 
 Red layer of original image 415.55 29.97 
 Infrared layer of original image 1684.53 128.26 
 Height layer: LiDAR-derived nDSM 6.73 4.34 
 Texture layer: LiDAR 1st return intensity 94.49 47.85 
8 Blue layer of original image 1365.51 94.34 
 Green layer of original image 621.62 36.46 
 Red layer of original image 498.14 26.71 
 Infrared layer of original image 1688.86 110.51 
 Height layer: LiDAR-derived nDSM 1.88 3.16 
 Texture layer: LiDAR 1st return intensity 142.64 46.51 
9 Blue layer of original image 1677.09 116.80 
 Green layer of original image 734.52 48.13 
 Red layer of original image 563.25 34.83 
 Infrared layer of original image 1827.54 111.74 
 Height layer: LiDAR-derived nDSM 1.13 2.34 
 Texture layer: LiDAR 1st return intensity 147.448 38.71 
10 Blue layer of original image 2160.23 241.90 
 Green layer of original image 903.15 80.88 
 Red layer of original image 651.26 50.79 
 Infrared layer of original image 2102.31 157.64 
 Height layer: LiDAR-derived nDSM 0.63 1.66 
 Texture layer: LiDAR 1st return intensity 156.65 34.78 
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Appendix 4. 3-band colour imagery and LiDAR data fusion 

The analysis of this Appendix was presented in section 7.3.2. Implementation of this 

experiment was described in this Appendix. A subset of semi-urban study area data 

was used for the experiment. The area covered 0.5km x 0.5km of semi-urban 

Mathoura. A total of 311 sample points were collected with a stratified random 

sampling technique to insure a balanced representation from all semi-urban 

landscape classes.     

Pixel-level fusion 

3-band colour imagery and LiDAR-derived nDSM data was used for the pixel-level 

fusion. An independent, supervised parallelepiped classification procedure was 

applied to them. The essential practical steps for the implementation of the 

supervised classification procedure were presented in Section 2.5.5.2. Landscape 

training signatures were also generated from 3-band colour imagery with LiDAR-

derived nDSM data. The distance between signatures was assessed through both tests 

on their statistical separability and spectral profiling. The pixel-level fusion results 

were presented in the Section 7.5: accuracy assessment is presented in Table A4a. 

Table A4a Error matrix using pixel-level fusion of colour imagery with LiDAR data 
in a semi-urban area    

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 38 5  1 3 6 53 71.70 

Roof 
shadow 4 33  13  1 51 64.71 

Tree   44 3 4  51 86.27 
Tree 

shadow 2 8 7 34   51 66.67 

Grass 1 1 4 2 43 1 52 82.69 
Open 
space 6 2   3 42 53 79.25 

Total 51 49 55 53 53 50 311  
Prod Acc 

% 74.51 67.35 80.00 64.15 81.13 84.00  234 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

75.24 

70.29 
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Visual inspection of the pixel- and object-level fusions of colour imagery with 

LiDAR data reveals the sharpness of the classes is dramatically changed (Compare 

Figure 7.7a and 7.7b). This is particularly evident when Grass and Roof results are 

examined. In pixel-level fusion, the ‘pepper and salt’ effect is prominent resulting in 

misclassification. Visual comparison by Kamagata et al. (2005) also revealed that 

pixel-level fusion failed to recognised shape variation within forest canopy and 

mixed vegetation. Feature-level fusion, on the other hand, did extract the boundaries 

between forest types. Similarly, this study concludes that feature-level fusion has a 

great potential for analysing landscape patterns even in highly heterogeneous and 

rapidly-changing urban areas.  

The pixel-level error matrix (see Table A4a) reveals that Roof shadow class is poorly 

delineated, with User’s Accuracy 64.71 percent and Producer’s Accuracy 67.35 

percent. The delineation of the Tree Shadow class is also relatively poor, with User’s 

Accuracy 66.67 percent and Producer’s Accuracy 64.15 percent. Feature-level fusion 

improves the Roof Shadow classification (User’s Accuracy 90.20 percent and 

Producer’s Accuracy 88.46 percent) by incorporating contextual information. 

Improvement is also noticed in classifying Tree Shadow by feature-level fusion 

(User’s accuracy 86.27 percent and Producer’s accuracy 91.67 percent compared to 

pixel-level fusions. 

Feature-level fusion 

For colour imagery with nDSM fusion, equal weight was given to both colour 

imagery and LiDAR data sources due to their equal radiometric depth (8-bit). The 

given scale factor was 25, which delineated feature with sufficient sizes. Smoothness 

and compactness weights were specified as 0.3 and 0.7 respectively (Table A4b), 

emphasising the discrete, compact nature of House Roofs. 

 

 

 

 



240 

Table A4b Segmentation parameters for the colour imagery with LiDAR-derived 
nDSM data fusion for level III landscape classification scheme  

Parameters Colour & nDSM fusion 
Weight 1 Colour & 1 nDSM 
Scale factor 25 
Shape Factor 0.15 
Compactness 0.3 
Smoothness 0.7 

 

The methodology for multispectral imagery and LiDAR data fusion was given in 

section 6.5. At Level I for fusion of colour imagery with nDSM data, the Manmade 

and Obscure/Shadow classes are discriminated using brightness values of the 

features. At Level II for fusion of colour imagery with nDSM data, the Vegetation 

class is separated from others by a fuzzy membership description of the mean and the 

ratio of the green spectral band. At Level III for fusion of colour imagery with nDSM 

data, Vegetation is further subdivided into Tree and Grass classes. The accuracy 

assessment of the feature-level fusion is presented Table A4c. 

Table A4c Error matrix for feature-level fusion results for a semi-urban area using 
colour imagery with LiDAR data 

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 50 1    2 53 94.34 

Roof 
shadow 2 46  1 1 1 51 90.20 

Tree 1  47 1 2  51 92.16 
Tree 

shadow  4 1 44 2  51 86.27 

Grass 1  2 1 48  52 92.31 
Open 
space  1 1 1 1 49 53 92.45 

Total 54 52 51 48 54 52 311  
Prod Acc 

% 92.59 88.46 92.16 91.67 88.89 94.23  284 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

91.32 

89.93 
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Feature-level results compared with those of pixel-level fusion confirm a significant 

improvement in identification of classes throughout the scene (error matrices 

presented in Appendix 4). The summary of fusion results accuracy in Table 7.7 

shows the Kappa Coefficient calculated for the summary accuracy is 3.15 confirming 

the feature-level fusion result is better than the pixel-level fusion result irrespective 

of whether colour or multispectral data is used in the fusion.  
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Appendix 5. Accuracy assessment of pixel- and feature-level classification using 
colour imagery only  

The analysis of this Appendix was presented in section 7.3.3. Here the 

implementation part was presented. Semi-urban landscape object delineation 

resulting from the exclusion or inclusion of nDSM data with colour imagery is 

evaluated through statistical analysis. Pixel- and feature-level classification accuracy 

assessments are performed here to compare results obtained from excluding height of 

objects derived from LiDAR data. The steps of pixel- and feature-level classification 

were given in section 6.4 and 6.5 respectively. To ensure consistency, the same 

sampling technique was adopted for each of the fusion processes and compared with 

results in Appendix 4. A total of 311 sample points were collected with a stratified 

random sampling technique, which insured a balanced representation from all the 

classes. The object delineation accuracies were assessed independently to reduce 

systematic bias and to counter the temporal effect on overall accuracy. 

Table A5a Error matrix for pixel-level classification using colour imagery only for a 
semi-urban area   

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 36 4 1 3 2 7 53 67.92 

Roof 
shadow 2 37  8 1 3 51 72.55 

Tree   41 4 3 3 51 80.39 
Tree 

shadow 1 10 5 33 2  51 64.71 

Grass 1 2 7 4 34 4 52 65.38 
Open 
space 12 3   4 34 53 64.15 

Total 52 56 54 52 46 51 311  
Prod Acc 

% 69.23 66.07 75.93 63.46 73.91 66.67  215 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

69.13 

62.96 
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Table A5b Error matrix for feature-level classification using colour imagery only  

Fused 
data 

Reference data 

Roof Roof 
shadow Tree Tree 

shadow Grass Open 
space Total User’s Acc. % 

 Roof 35 7 1  1 9 53 66.04 

Roof 
shadow 6 35  8 2  51 68.63 

Tree   34 9 5 1 51 66.67 
Tree 

shadow  8  35 4 1 51 68.63 

Grass 2 1 7 1 39 2 52 75.00 
Open 
space 15 3 1 1 4 29 53 54.72 

Total 58 56 46 54 55 42 311  
Prod Acc 

% 60.34 62.50 73.91 64.81 70.91 69.05  207 

Overall Accuracy (Percent) 

Kappa Coefficient ( K
∧

) (Percent) 

66.56 

60.95 
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