
Mesodata:

Engineering Domains for Attribute

Evolution and Data Integration

by

Denise Bernadette Angela de Vries, B.Comp.& Inf.Sc., B.Sc.(Hons)

School of Informatics and Engineering,

Faculty of Science and Engineering

21 October 2005

A thesis presented to the

Flinders University of South Australia

in total fulfillment of the requirements for the degree of

Doctor of Philosophy

Adelaide, South Australia, 2006
c© (Denise Bernadette Angela de Vries, 2006)

Contents

Abstract ix

Certification xi

Acknowledgements xii

1 Introduction 1

2 Literature Review 5

2.1 Database Organisation and Evolution 5

2.2 Causes of Change . 6

2.3 Change Management . 7

2.4 Information Capacity . 9

2.5 Techniques for Database Evolution 12

2.6 Schema Integration . 12

2.6.1 Common Data Model . 13

2.6.2 Schema Intension Graphs 14

2.6.3 Hypergraph Data Model 15

2.6.4 Evolutionary ER Diagrams 17

2.6.5 Schematic Conflicts . 17

2.7 Schema Matching . 19

2.8 Semantic Heterogeneity . 20

2.9 Object-Relational Databases . 21

2.10 Data Conversion . 23

2.10.1 Attribute Evolution . 23

2.11 Data and View Integration . 25

i

CONTENTS ii

2.12 Mediation Techniques . 26

2.13 Ontologies . 31

2.14 Concept Graphs . 33

2.15 Knowledge Interchange . 34

2.16 Summary . 35

3 Mesodata in DBMS 38

3.1 Modelling . 38

3.2 Mesodata . 41

3.3 Mesodata Domains . 42

3.3.1 Definition of the Mesodata Domain 43

3.3.2 Extended Querying . 44

3.4 Structured Domains . 45

3.4.1 Filters . 46

3.4.2 Topological Spaces . 46

3.5 Mesodata Operators . 49

3.6 Comparison of Mesodata with User-Defined Types 49

3.7 Conceptual Model Incorporating Mesodata 51

3.8 Summary . 53

4 Reference Data Language 55

4.1 Aims . 55

4.2 Mesodata Definition Language . 56

4.2.1 Create Domain Syntax . 56

4.2.2 Drop Domain Syntax . 57

4.2.3 Alter Domain Syntax . 57

4.2.4 Refresh Domain Syntax 58

4.2.5 Describe Domain Syntax 58

4.2.6 Show Domains Syntax . 58

4.3 Mesodata Extended SQL . 59

4.3.1 Create Table Syntax . 59

4.3.2 Alter Table Syntax . 59

4.3.3 Drop Table Syntax . 60

CONTENTS iii

4.3.4 Describe Mesodata Type Syntax 60

4.3.5 Show Mesodata Types Syntax 61

4.4 Extensions to Manipulation Language 61

4.4.1 Select Syntax . 61

4.5 Summary . 63

5 Application of Mesodata 64

5.1 Domain Evolution . 64

5.2 Change Management . 65

5.3 Attribute Domain Evolution . 66

5.4 Categories of Domain Evolution 68

5.4.1 Attribute Representation Change 69

5.4.2 Domain Constraints Change 69

5.4.3 Domain Perception (meaning) Change 70

5.4.4 Minimise Change . 70

5.5 Data Integration . 71

5.6 Enhanced Queries . 73

5.6.1 Example of a Circular Domain 74

5.7 An Object-Relational Example 75

5.7.1 Hierarchical Domain . 77

5.8 Summary . 77

6 Empirical Study of a Database System 79

6.1 Motivation for the Study . 79

6.2 System Overview and Evolution 80

6.2.1 System Metrics . 81

6.2.2 Stable Characteristics . 85

6.2.3 Deleted Values . 85

6.2.4 Modified Domains . 86

6.3 Data Conversion and Maintenance 88

6.4 Summary . 91

CONTENTS iv

7 Prototype Model 93

7.1 Prototype Evaluation . 93

7.1.1 Evaluation Criteria . 94

7.1.2 Prototype Platform . 94

7.1.3 Prototype Components . 95

7.1.4 Query Parser . 96

7.2 Example Database . 97

7.2.1 Evaluation of Model . 98

7.2.2 Enhanced Querying . 99

7.2.3 Domain Perception Change 101

7.2.4 Domain Constraints Change 103

7.2.5 Data Integration . 104

7.2.6 Attribute Representation Change 104

7.3 Summary of Evaluation . 105

8 Conclusions and Further Research 106

8.1 Database Evolution . 106

8.2 Techniques for Database Evolution 107

8.3 Data Integration . 107

8.4 Mesodata Layer . 108

8.5 Future Research . 108

8.5.1 DB Platform Support for Mesodata 108

8.5.2 XML . 109

8.5.3 Ontologies of Data Structures 109

8.5.4 Mesodata types based on UDTs 109

8.5.5 Modelling Tools . 109

8.5.6 Other Database Technologies 109

Appendices 110

A Publications Resulting From This Thesis 110

B Sample Session 114

CONTENTS v

C Sample Session SQL Files 139

C.1 adjColours.sql . 139

C.2 categories.sql . 140

C.3 shadescolours.sql . 140

C.4 furnitureB.sql . 141

C.5 customers.sql . 142

C.6 suppliers.sql . 143

C.7 sales.sql . 144

C.8 salesitem.sql . 144

C.9 hexColours.sql . 145

C.10 furnitureC.sql . 146

C.11 salesB.sql . 146

C.12 salesitemB.sql . 147

C.13 codelist.sql . 147

D Prototype Functionality 149

E Prototype Domain Querying 152

F Data type Comparisons 160

G Mapping MySQL to Java types 165

Bibliography 167

List of Figures

2.1 Techniques for Database Information Systems 12

2.2 SIG - Schema Intension Graph . 15

2.3 HDM - Two Source Schemas and One Global Schema 16

2.4 Database Evolution and Related Research Areas 35

3.1 A Matrix for Classifying DBMS 40

3.2 Mesodata Layer Between Metadata and Data 41

3.3 Hierarchy of Some Suggested Mesodata Types for Different Do-

main Structures . 42

3.4 A Filter in Metric Space . 47

3.5 ERD An Attribute Referencing a Mesodata Domain 52

3.6 ERD Multiple Attributes Referencing Mesodata Domains 52

3.7 ERD An Attribute Referencing Joined Mesodata Domains 52

3.8 ERD An Attribute Referencing Multiple Mesodata Domains . . . 53

3.9 ERD UML Notation . 53

5.1 Ranges of Year Domains . 67

5.2 Heterogenous but Similar Schemata 71

5.3 Example Colour Chart as Weighted Graph 72

5.4 Attribute ‘Colour’ Referencing Mesodata Type Weighted Graph . 73

5.5 Days of the Week with English and French Terms 75

5.6 Configurations for Telephone Numbers 76

6.1 Schematic of the Database System 81

6.2 Growth of Relations . 82

6.3 Growth of Attributes . 83

6.4 New Relations . 83

vi

LIST OF FIGURES vii

6.5 Attribute Movement . 84

6.6 Unmodified Attributes . 86

6.7 Deleted Attributes . 87

6.8 Modified Attributes . 87

6.9 Modified Relations . 88

7.1 Deployment Diagram . 96

7.2 Activity Diagram for Mesodata Wrapper 97

7.3 Entity-Relationship Model of Test Database 98

List of Tables

2.1 Schematic Conflicts . 18

2.2 Evolutionary Operations in ORDBs 22

2.3 Schematic Changes that Affect Data 36

3.1 Partial List of Mesodata Types with Extended SQL Operators . . 48

3.2 Comparison of User Defined Types (UDT) and Mesodata Types . . . 50

6.1 Analysis Results . 92

D.1 Prototype Functionality . 149

E.1 Prototype Querying . 153

F.1 Comparison of Data Types . 161

G.1 Mapping SQL and Java data types (MySQL 2003) 165

viii

Abstract

The introduction of databases for data storage and handling revolutionised the

way we dealt with records and enabled simple and fast information processing, ag-

gregation and summarisation. Database and information technology systems have

evolved from simple file processing systems to powerful database systems. Data

management technology has progressed from hierarchical and network systems

to relational databases, data modelling tools and indexing and organisational

techniques. The development of Relational Database Management Systems and

automated systems put the layout and form into the unchanging metadata and

gave us record once systems.

Unfortunately, the ‘real world’ upon which databases are modelled constantly

changes. These changes may affect the schema for a variety of reasons including;

• Unanticipated requirements,

• A change in the universe of discourse,

• A change to the interpretation of facts about the universe of discourse,

• Changes in the form of updates to effect upgrades to the functionality or

scope of a system,

• Changes in the form of updates to effect efficiency improvements,

• Changes caused by system operation,

• Error correction.

Different formalisms have been developed to deal with schema changes with

the aim being to preserve information capacity and preserve semantic correctness.

Schematic changes may be the result of evolving one system or may arise due to

the need for merging two or more systems. Schematic conflicts occur which

must be resolved and the schemata unified to produce a new version. To reach

this goal there are graph based schema integration architectures, as well as, semi-

automatic systems applying schema matching and schema translation techniques.

These systems also utilise ontologies, thesauri, and so forth to integrate data from

heterogeneous sources in order to process queries and views.

ix

Abstract x

Data integration or conversion remains a partially resolved issue. Some meta-

data changes are managed by changes to application code and system down time

for conversion procedures. However an attribute change may result in data loss,

changed accuracy, and altered semantics. Whilst the use of ontologies, concept

graphs and other knowledge interchange techniques are alleviating the problems

of data integration, these structures are not yet an integral part of the database

architecture.

This thesis argues a three-level architecture for relational databases with an

interface positioned between data and metadata for complex domains. This in-

termediary level is the mesodata layer. This mesodata layer, separate from the

metadata and data, provides complex structures, such as graphs, queues, and

circular lists, in which to store domain values and their inter-relationships as well

as supplying the ‘intelligence’ required to operate and manipulate them. The

domain structures enable different orderings that form the bases of filters for

enhanced querying and information retrieval. DBMS supplied mesodata types

would allow for the re-usable inclusion of domain information such as in ontolo-

gies, taxonomies and concept graphs that to date have been only application

specific.

Certification

I certify that this thesis does not incorporate without acknowledgement any ma-

terial previously submitted for a degree or diploma in any university; and that to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where due reference is made in the

text.

As requested under Clause 14 of Appendix E of the Flinders University Re-

search Higher Degree Policies and Procedures Manual I hereby agree to waive the

conditions referred to in Clause 13(b) and (c), and thus

• Flinders University may lend this thesis to other institutions or individuals

for the purpose of scholarly research;

• Flinders University may reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Signed Dated

Denise Bernadette Angela de Vries

xi

Acknowledgements

I would like to thank my supervisor Professor John Roddick for his advice, support

and enthusiasm throughout my candidature.

There are many people in the School of Informatics and Engineering at Flinders

University who have helped me in large ways and small, I believe I owe each person

thanks. In particular, the members of the Knowledge Discovery and Intelligent

Systems Group for constructive criticism, rigorous discussions and friendship,

– (in room number order) Darin Chan, Dongqiang Yang, Trent Lewis, Martin

Luerssen, Richard Leibbrandt, Darius Pfitzner, David Powers, Aaron Ceglar, Carl

Mooney, Sally Rice, Anna Shillabeer, Edi Winarko, Ron Porter, Paul Calder,

Amos Omondi, Tiffany Winn, and Lorraine Harker – and Murk Bottema and

Jalina Widjaja for their assistance and comments.

I appreciate too the Flinders Postgraduate Students’ Association for providing

support, advice, resources and the research training courses and workshops that

were so helpful at the beginning of my candidature. Thank you Leonie Randall

and Audrey Nicholson.

I am very grateful for the all the assistance I received from Versatile Solutions

Pty. Ltd, especially to Mr Arthur Verster for his time and effort.

However, none of this work could have been achieved without the unstinting

support of Bart de Vries who must be the most generous, patient and caring

person in the world.

Denise Bernadette Angela de Vries

October 2005

Adelaide.

xii

Chapter 1

Introduction

The way we view, record and deal with information evolves. Traditionally, the

definition of ‘records’ was intrinsically bound to the physical object on which the

information was stored. Stone tablets, scrolls, lists, registers and index cards

are a few physical formats that have been used through the ages. In paper-

based manual systems, evolution of recording information did not present a great

problem – we turned the page and ruled it up differently, renamed columns, used

different terminology and proceeded to store our information. We could always

review what had been stored historically by viewing the information exactly as it

had been recorded. The static nature of this method means that notations that

were recorded retained their semantics in context, that is the headings and layout

of the form/paper imparted the structures and conventions as well as the values

themselves. We, the human, translated and transformed the information when

we retrieved it. It was simple. It was also so time consuming that much of what

we now consider to be basic tasks, such as sorting, aggregating, summarising and

reporting was infeasible.

Databases have been used to store large amounts of information since the

1970s. Database and information technology systems have evolved from simple

file processing systems to powerful database systems. Data management technol-

ogy has progressed from hierarchical and network systems to relational databases,

data modelling tools and indexing and organisational techniques. The develop-

ment of query languages, optimised query processing, transaction management

and processing has resulted in the widespread use of relational databases. In the

last twenty years, further developments in database technology have resulted in

data models such as extended-relational, object oriented, object relational, de-

ductive and temporal data models. Different application-oriented systems have

1

CHAPTER 1. INTRODUCTION 2

arisen, such as spatial, temporal, multimedia and knowledge bases. As data-

base theory developed, the schema, categorisation of data, and concept domains

changed. However, the working life of a database can be a long one and there

are many legacy systems and archived datasets that contain data that are still of

interest to information managers, as well as newly created databases for which

an extended lifetime is predicted.

The development of Relational Database Management Systems (RDBMS) and

automated systems put the layout and form into the unchanging metadata and

gave us record once systems. Database technology has provided the power to

store and manipulate information in a variety of ways, however we still cannot

reproduce the simplicity of dealing with information evolution as we previously

did.

The common view of relational data modelling and relational database struc-

tures (and as a result database languages) is to consider the specification of

attributes, normally defined over a restricted set of data types, as part of table

definition. When the user’s requirements indicate that attributes need only be de-

fined over relatively simple (normally DBMS-supplied) data types this is generally

adequate. However, in more complex applications, domain structure becomes an

important issue and even for some simpler applications, there is often advantage

to be gained from utilising more sophisticated domain structures, such as concept

graphs (Roddick, Hornsby & de Vries 2003), hierarchies (Rice & Roddick 2000),

intervals (Allen 1983), and so on. In practice, this rarely occurs and where it

does, design decisions often mean that implementations are inconsistent and not

transferable.

The definition of an attribute conceptually includes both the data type and its

current set of valid values - its domain. However, in an RDBMS, only the data

type is recorded. A domain may alter without its change being recorded and

thus information is lost. Over the last thirty years, many international/universal

domains have changed and some have come into being. A few examples are;

• Country names and their international country number,

• Telephone numbers and area codes,

• Postal codes/zip codes,

• Animal and plant taxonomies,

• Disease taxonomies,

CHAPTER 1. INTRODUCTION 3

• Astronomical and celestial taxonomies,

• Genome data.

The evolution of domains is inevitable. Database user requirements change

due to a variety of reasons including new and changed laws, organisation mergers

or splits, inventions, discoveries and developments in technology. The success of

relational databases and their large market share means that large quantities of

historical and current information is stored in them and as the database systems

evolve there is loss of information. Domain history is not preserved unless it

is part of the transactional definition. For example, if one were searching for a

particular value in a paper-based system, time consuming though it was, subtle

differences in data values were captured because the searcher understood the do-

main and therefore included or excluded records based on his/her own knowledge

of the domain. For instance, a database query searching through historical med-

ical records for an illness matching ‘rubella’ generally uses a string comparison

only, thus the string ‘German measles’ would not be retrieved even though seman-

tically it matched. The ‘Year 2000’ problem was an example of how important

an attribute domain is. The meaning of two digits caused world-wide concern re-

quiring legislation in many countries, large amounts of money and years of work

to prevent a range of ‘catastrophes’, both real and imagined.

There have been many techniques developed to deal with database evolution

but none can currently deal with all aspects of evolution and few of them deal

specifically with the problem of attribute domain evolution. Middleware, using

various approaches, has been used to alleviate evolution problems by translating,

transforming or coercing data and metadata. However, semantics are lost when

data is converted, coerced or replaced.

This research focuses on the utility of augmenting the information capacity

of the attribute domain in a reusable and systematic manner. This also has the

advantage of reducing the size of ontology definitions and allowing them to focus

on the specific characteristics of the concept. This approach proposes to retain

the overall structure and operations of the relational model and to enhance the

capability of the attribute domain to handle more advanced semantics. This is

achieved by more clearly delineating between domain definition (called mesodata)

and schema definition (metadata). This approach can be considered as falling be-

tween the basic relational (minimalist) approach in which there is only a limited

number of common domains, and the object-relational model in which common-

ality is facilitated through re-use. This middle-ground approach reflects the ap-

CHAPTER 1. INTRODUCTION 4

proach taken in research areas such as temporal, spatial and multi-dimensional

modelling which argue for a flexible but unified way of handling common mod-

elling problems. Indeed, using mesodata may facilitate better accommodation of

such extensions.

In some regards, this work is related to that of schema integration/evolution.

In these fields the provision of mediators or wrappers and the specification of

global schemas are useful solutions where the integration solution is known and

coded in advance. However, many specialised ad-hoc queries cannot be handled

in this way as the data are generalised. There is also a wide variety of other

situations where the sensible handling of commonly occurring domain structures

would be useful, including temporal and spatial applications, schema versioning,

data warehousing, search engines, validation and error correction and data mining

(Mooney, de Vries & Roddick 2005).

Chapter 2

Literature Review

All is flux, nothing stays still.

Heraclitus (540 BC - 480 BC)

2.1 Database Organisation and Evolution

Databases have been implemented and used to store and manipulate large amounts

of data in ever increasing amounts over the past three decades. During this time,

database theory and design has evolved from simple file processing to powerful

information management systems. Database technology has progressed from hier-

archical and network systems to relational databases, data modelling tools and

indexing and organisational techniques. The development of query languages,

optimised query processing, transaction management and processing has resulted

in the widespread use of relational databases. In the last twenty years, fur-

ther developments in database technology have resulted in data models such as

extended-relational, object oriented, object relational and deductive data mod-

els. Different application-oriented systems have arisen, such as spatial, temporal,

multimedia and knowledge bases. Along with these developments, there have

also been significant changes to computer hardware, especially in storage devices,

and in computer languages and operating systems. The development of commu-

nications technologies facilitate the sharing of data, often between heterogeneous

data sources. This progress, in all areas, has culminated in the current situation

where it is economically viable for many businesses and organisations to have

(and rely on) database systems.

This progress has also itself created a major problem: that of creating and

maintaining an up-to-date information system. A database system can be per-

5

CHAPTER 2. LITERATURE REVIEW 6

ceived as being comprised of two elements the extension and the intension. The

database extension is the content or ‘population’ of a database and contains ac-

tual values of table rows or instances. The database intension is a set of type

definitions for the database and describes the format of each database table. This

is also known as its Schema or Metadata (data about data).

This review concerns itself primarily with work related to relational data-

base evolution and its various facets including schema evolution, schema transla-

tion, schema transformation, information capacity, data integration, change man-

agement and implementation. A consensus glossary (Jensen, Clifford, Elmasri,

Gadia, Hayes, Jajodia, Dyreson, Grandi, Kafer, Kline, Lorentzos, Mitsopoulos,

Montanari, Nonen, Peressi, Pernici, Roddick, Sarda, Scalas, Segev, Snodgrass,

Soo, Tansel, Tiberio & Wiederhold 1998) provides the definitions that a database

supports schema evolution if it allows modifications of the schema without loss

of extant data and that no support for previous schemas is required, whereas it

supports schema versioning if it allows the querying of all data, both retrospec-

tively and prospectively, through user-definable version interfaces. The primary

goal for database evolution and versioning is to preserve the integrity of the data.

What will the impact of change be on views, queries and processes?

2.2 Causes of Change

Sjøberg’s (1993) case study, a health management system, revealed that schema

changes were significant both during the six months of development and the twelve

months after the system was operational. In the study, the changes covered the

gamut of evolutionary possibilities including each relation being changed, 139%

increase in the number of relations, 274% increase in the number of fields, and 35%

more additions than deletions. Sjøberg summarised several reasons for evolution,

which include:

• People do not know in advance, or are not able to express, all the desired

functionality of a large-scale application system. Only experience from us-

ing the system will enable the needs and requirements to be properly for-

mulated.

• The application world is continually changing. A viable application system

must be enhanced to accommodate these changes.

CHAPTER 2. LITERATURE REVIEW 7

• Often the scale of the task requires incremental design, construction and

commissioning. This results in requirements to change the installed subsys-

tems.

Comyn-Wattiau et al. (2003), addressing unanticipated changes in database

information systems, noted that ‘the target applications are not fixed and the

requirements are not always clear enough. Some divergence of the data semantics

due to different viewpoints of the business policies may occur. Besides, it remains

difficult to know if a logical schema meets completely business requirements. As

a consequence, numerous unanticipated changes occur during the design process

or even later when the system already exists.’

A workshop on Evolution and Change in Data Management in 1999 (Roddick,

Al-Jadir, Bertossi, Dumas, Estrella, Gregersen, Hornsby, Lufter, Mandreoli, Männistö,

Mayol & Wedemeijer 1999) summarised six causes of change in data management.

• A change in the universe of discourse (UoD).

• A change to the interpretation of facts about the universe of discourse and

the manner in which the task is realised in a system.

• Changes in the form of updates to effect upgrades to the functionality or

scope of a system.

• Changes in the form of updates to effect efficiency improvements.

• Changes caused by system operation. For example, the discovery of new in-

formation which is then fed back into the system or the abnormal behaviour

of a component.

• Error correction.

Furthermore, the cause of the change has an effect on the way in which the

changes are managed. The differences between a planned or scheduled change

and an unexpected, imposed change can cause very different procedures to be

performed.

2.3 Change Management

Shankaranarayanan and Ram (2003) assert that managing core schema evolution

includes identifying and incorporating changes to the schema while preserving

CHAPTER 2. LITERATURE REVIEW 8

the consistent state of the schema as well as propagating the changes to the data

associated with the schema. Their list of issues that need to be addressed for

managing core schema evolution are:

• Understanding all possible changes to the database schema.

• Understanding the implications of each change.

• Incorporating changes to an existing schema while ensuring that the con-

sistent (and correct). state of the schema is maintained.

• Determining how a change (may/may not) affects other parts of that schema.

• Propagating changes to the data associated with the changed schema so

that the data is consistent with the changed schema.

• Performing these changes dynamically without significantly impacting day-

to-day operations of the database.

Evolutionary Operations

Schema evolution, as previously defined, can be viewed as a subset of schema

versioning in which there is only one version maintained and available. Roddick

et al. (1993) present a taxonomy of schema versioning issues with respect to the

Entity-Relationship Model and the effects on the relational database model. The

evolutionary operations are categorised as:

• Domain/Attribute Evolution

? Expanding an attribute domain

? Restricting an attribute domain

? Changing the domain of an attribute

? Adding an attribute to the database

? Renaming an attribute

• Relation Evolution

? Adding a relation

? Deactivating a relation

? Activating a relation

CHAPTER 2. LITERATURE REVIEW 9

• Attribute-Relation Assignment Evolution

? Adding an attribute to a relation

? Deactivating an attribute

? Promoting an attribute

? Demoting an attribute

? Splitting a relation

? Partitioning a relation

? Joining two relations

? Coalescing two relations

• Schema Transaction Support

? Schema commit

? Schema rollback

2.4 Information Capacity

The information capacity of a schema is the set of all possible instances of that

schema. The four relative information capacity measures between database struc-

tures as defined by Hull (1986, 1997) are, in progressively less restrictive order,

calculus dominance, generic dominance, internal dominance and absolute domi-

nance. These measures are used to evaluate the information capacity of two or

more schemata by mathematically mapping between the schemata. An important

point to note is that even when two schemas can be proved to have the same in-

formation capacity, it does not then follow that they are equivalent semantically.

Qian’s (1996) formalisation of Abstract Data Types (ADT) for schema trans-

formations presents a slightly different notion of information preservation which

is strictly less restrictive than calculus dominance, strictly more restrictive than

absolute dominance and incomparable to generic and internal dominance. These

formal approaches are the foundation of later works into schema equivalence and

schema integration.

CHAPTER 2. LITERATURE REVIEW 10

Schema Equivalence

The information capacity of schema Sn is I(Sn), the set of all possible instances of

Sn and the relative information capacity of S1 and S2 is measured by an instance

mapping associating the instances of S1 and S2, f : I(S1) → I(S2)

Miller et al. (1994) describe Equivalence as the requirement that all data

stored in one schema (S1) can be accessed and updated through another schema

(S2).

• for queries the transformation function (f) must be total: q(i2) = q(f(i1)),

• to access all data f must be injective: i1 must correspond to a unique i2, a

1-1 cardinality,

• for updates f must be onto: I(S2),

• for equivalence (S1 ≡ S2) there exists a bijective (1-1 and onto) function:

f : I(S1) → I(S2).

In practice, schema equivalence rarely exists.

Schema Dominance

Dominance S1 � S2 allows all data stored under schema S1 to be queried through

S2

• to access all data, there exists and injective function: f : I(S1) → I(S2), a

1-1 cardinality,

• every instance of S1 can be transformed to an instance of S2 without loss

of information,

• S2 may hold more information.

Davidson et al. (1998), recognising that information capacity preserving trans-

formations do not necessarily preserve the semantics of databases, developed a

declarative language called WOL (Well-founded Object Language) for expressing

database transformations and constraints. They argue that approaches which

allow a fixed set of well-defined transformations to be applied in series (for most

methodologies the outcome is dependent on the order in which the schemas are

CHAPTER 2. LITERATURE REVIEW 11

integrated - they are not associative) are inherently limited in the class of trans-

formations that can be expressed, and that while using a high-level language for

transformations is necessary for general transformations, it is difficult to reason

about, and prove, properties of transformations. This work tackles the difficulty

of correctly transforming complex data structures (sets, records and variants)

and recursive structures. Constraints on the source and target databases are cru-

cial to notions of information preservation, but typically are not, or cannot, be

expressed in the models of the underlying databases.

WOL allows a general class of transformations to be expressed and unifies

the treatment of transformations and constraints. The class of constraints that

can be expressed in WOL encompasses those found in most data models, such as

keys, functional dependencies and inclusion dependencies.

Albert (2000) presents a formalism for schema restructuring in which is in-

cluded the importance of the concepts of soundness and completeness, through

which a set of schema transformations can provide a syntactic characterisation of

the semantic notions of dominance and equivalence of schemas.

Given an information model < S,L, C > where S is a schema, L is a query

language and C is a family of dependencies, a τ transformation is sound if it

always generates a schema that is equivalent to the original schema, that is,

(S, C) ≡L τ(S, C) for every (S, C) in < S,L, C >. The transformation is weakly

sound if it always generates a schema that dominates the original schema, that

is, (S, C) �L τ(S, C) for every (S, C) in < S,L, C >. A set of transformations

is sound if every transformation in the set is sound. A set of transformations is

weakly sound if every transformation in the set is weakly sound or sound.

Let T = {τi|i = 0, 1, 2, . . . , n} be a set of schema transformations for some

information model < S,L, C >. The set T is complete if for any two enriched

schemas (S1, C1) and (S2, C2) in < S,L, C > such that (S1, C1) ≡L (S2, C2), there

exists a finite sequence of transformations, τik for k = 1, 2, . . . , n with each

τik ∈ T , such that (S2, C2) w τin ◦ τin−1 ◦ . . . ◦ τi1 (S1, C1). The set T of transfor-

mations is weakly complete if for any two enriched schemas (S1, C1) and (S2, C2)

in < S,L, C > such that (S1, C1) �L (S2, C2), there exists a finite sequence of

transformations, τjk
for k = 1, 2, . . . ,m with each τjk

∈ T , such that (S2, C2)

w τjm ◦ τjm−1 ◦ . . . ◦ τj1 (S1, C1).

CHAPTER 2. LITERATURE REVIEW 12

2.5 Techniques for Database Evolution

Comyn-Wattiau et al. (2003) present a framework for database systems evolution,

summarised in Figure 2.1, that takes into account three dimensions of change and

propose techniques to be used in cases of a requirement, a conceptual and logical,

or a physical change. Their dimensions of change are the nature of change, the

change time frame, and the significance of change. The subset of techniques

specifically for major changes of the conceptual and logical design during the

‘Maintenance and Evolution Phase’ include schema integration, data integration,

forward engineering, and change implementation.

Figure 2.1. Techniques for Database Information Systems
(Comyn-Wattiau, Akoka & Lammari 2003)

2.6 Schema Integration

The goal of schema integration is to allow data from different sources to be

used together to provide a unified view of the data. An integrated schema has

characteristics that

CHAPTER 2. LITERATURE REVIEW 13

• preserve the autonomy and function of local DBMS, and

• provide a uniform view of data,

Schema integration consists of the following sub-tasks (Elmasri & Navathe

2000):

1. Identifying correspondences and conflicts among the schemas. Correspon-

dences of the same real-world concepts must be identified. Several types of

conflicts among schemas may be discovered.

• Naming Conflicts: synonym (identical entity with different names) and

homonym (different entities with the same name)

• Type conflicts: Same concept represented by different modelling con-

structs.

• Domain (value set) conflicts: Different domains for the same attribute.

• Conflicts among constraints: different primary keys, different cardi-

nalities for the same relationship.

2. Translating schemas by employing translation algorithms between data

models, be they relational, ER, hierarchical or object-oriented.

3. Integrating and transforming schemas, for example merging relations or

classes with common attributes.

Schema integration architectures include the Common Data Model (CDM),

the Schema Intension Graph (SIG), Hypergraph Data Model (HDM) and EVo-

lutionary ER diagrams (EVER).

2.6.1 Common Data Model

Xu and Poulovassilis (1997), when addressing the integration of deductive data-

bases, considered both the extensional and intensional parts of the component

databases for integration. The Common Data Model (CDM) uses a binary re-

lational Entity-Relationship model with subtyping to integrate the extensional

parts. The authors proposed a semi-automatic method which requires only the

declaration of the relationships between schema constructs to perform the in-

tegration. For the purposes of their model, they have generated the following

definitions.

A database is a quintuple of sets <Schema, EDB, IDB, CDB, PDB> where:

CHAPTER 2. LITERATURE REVIEW 14

• Schema (the schema) consists of the type declarations and the subtype

relationships between entity types.

• EDB (the extensional database) consists of the data functions and the type

extent functions.

• IDB (the intensional database) consists of the derived functions.

• CDB (the constraint database) consists of the integrity constraints.

• PDB (the procedural database) consists of all other intensional functions.

Each of these sets is integrated in turn. The Schemas and the EDBs are repre-

sented by directed graphs and from those graphs correspondences between nodes

are declared. These mappings are then used to perform the integration into a

CDM.

• IDB integration is performed by translating the definitions of the derived

functions into the constructs of the integrated database, followed by a com-

parison of the semantics of pairs of derived functions to determine whether

they can be integrated into one function.

• CDB integration is performed by translating their definitions to the con-

structs of Schema, EDB and IDB and then, as with the derived functions,

perform a comparison if the semantics of the constraints. Constraints are

transferred to the integrated DB if every component database contains the

particular constraint or if some database(s) contain a constraint. That is,

all constraints are translated even if a specific constraint is not defined in

each and every component database.

• PDB integration is accomplished by translating the function definitions

of the component databases into the database constructs of the thus far

integrated database and incorporating the definitions into the PDB.

2.6.2 Schema Intension Graphs

Miller et al. (1993–1994) point out that whilst equivalent information capacity

is a required condition, it is not sufficient to guarantee a natural correspondence

between schemas and, in practice, database administrators rely on their own in-

tuition when defining transformations between schemas. They define the Schema

CHAPTER 2. LITERATURE REVIEW 15

Figure 2.2. SIG - Schema Intension Graph
(Miller, Ioannidis & Ramakrishnan 1994a)

Translation problem as given two schemas one needs to know with respect to

information capacity if each instance of the first schema can be represented as an

instance in the second schema and whether the translation can be reversed?

Schemas, in practice, contain constraints that define which instances of a

schema are meaningful in a certain context. Their research in this area shows

that deciding information capacity equivalence and dominance of schemas is an

undecidable problem. As a result, they developed tests to evaluate equivalence

and dominance more restrictively. These tests utilise a set of schema transforma-

tions that declare that Schema S1 is dominated by schema S2 if and only if there

is a sequence of transformations that converts S1 to S2. These transformations

use Schema Intension Graphs (SIG) data models, as shown in Figure 2.2, with

algorithms for deciding equivalence of schemas with constraints, to aid in under-

standing the relative information capacity of schemas containing constraints.

The SIG model must be data-centric rather than type-centric in order to rea-

son about constraints on collections of entities rather than the internal structure

of a single entity. This approach ignores data type changes and the conflicts and

problems that type changes present.

2.6.3 Hypergraph Data Model

Schema transformation consists of the tasks of schema conforming, schema merg-

ing and schema restructuring. McBrien et al. (1997–1998) present a formal

framework for ER schema transformation in which they have defined a set of

primitive transformations based on schema equivalence. This is achieved by for-

malising a database as a set of sets, where an ER schema S is a quadruple <Ents,

Incs, Atts, Assocs>

CHAPTER 2. LITERATURE REVIEW 16

Ents ⊆ Names is the set of entity type names.

Incs ⊆ (Ents × Ents) each pair < e1, e2 > ∈ Incs representing that e1 is a

subtype of e2 and Incs is acyclic.

Atts ⊆ Names is the set of attribute names.

Assocs ⊆ (Names × Names × Cards × Cards) is the set of associations.

For each relationship between two entity types e1, e2 ∈ Ents, there is a tuple

(rel name, e1, e2, c1, c2) ∈ Assocs where c1 indicates the lower and upper cardi-

nalities of instances of e2 for each instance of e1, and c2 indicates the lower and

upper cardinalities of instances of e1 for each instance of e2. Note that rel name

may be Null if there is only one relationship between e1 and e2.

Figure 2.3. HDM - Two Source Schemas and One Global Schema
(McBrien & Poulovassilis 2002)

Continuing this work and combining schema integration and schema evolution

activities, the authors (McBrien & Poulovassilis 2002) propose using a Hyper-

graph Data Model (HDM), as illustrated in Figure 2.3, to build a global schema

from heterogeneous source schemata and from this transformations may be used

to translate queries between the global and source schemas.

Schema transformations defined on the HDM are reversible. Every add trans-

formation step is reversed by a delete transformation with the same parameters,

renaming transformations from S1→ S2 are the reverse of S2→ S1.

Contract transformations (i.e. deletions) map to void, queries and sub-queries

over such constructs then translate to void. Extend transformations (i.e. addi-

tions) require domain knowledge, either from a human expert or a domain ontol-

CHAPTER 2. LITERATURE REVIEW 17

ogy and cannot be automated. Higher level modelling only works with names,

tables, relations but not at the attribute data type level.

2.6.4 Evolutionary ER Diagrams

Liu et al. (1994) developed EVER, an EVolutionary ER diagram, for specify-

ing the derivation relationships between schema versions, relationships among

attributes, and the conditions for maintaining consistent views of programs. The

EVER diagram serves as the visualization aid that graphically conveys changes to

a database schema. The diagram is then transformed to an intermediate represen-

tation called version derivation graphs (VDGs) which are subsequently mapped

into the structures of an underlying database.

In order to support the specification of changes to ER diagrams, the basic

graphical constructs of ER diagrams are extended to present the relationships of

schemas before and after a change. The following relationships can be expressed

in an EVER diagram.

• The evolution relationship of the new schema,

• the relationships of attributes between the new schema and the old schema,

• the relationship of a new schema to the other schemas, and

• the invariant views of programs to the database.

The evolution relationship indicates the source of the new schema changes. The

attribute relationships specify the effect of changes to an attribute on the others,

and can be represented by functions. The change to an edge between an entity

and a relationship type implies that the participation of the entity type in the

relationship type needs to be established or dropped.

Consequently, the relationship type needs to be evolved by adding or deleting

the key attribute of the affected entity type from the relationship type. The con-

ditions for maintenance of invariant program views pre-empt changes that would

cause conflicts so that the programs can access the evolved database consistently.

2.6.5 Schematic Conflicts

Schemas are said to be semantically equivalent when they model the same fea-

tures in the universe of discourse (UoD). Conflicts can still occur if semantically

CHAPTER 2. LITERATURE REVIEW 18

different information is stored under the same name or semantically equivalent

information is stored under different names. Table 2.1 summarises the possible

conflicts that can occur between semantically equivalent schemas.

Table 2.1. Schematic Conflicts

Value Attribute Table
Value Domain conflicts

between schema-1
and schema-2:
e.g. expression
conflicts, data unit
conflicts, precision
conflicts

The values in schema-1 are
used as attributes in
schema-2

A value in an attribute in
database schema-1 is
semantically equivalent to
the scope of a table in
database schema-2 or, the
data in one table are the
metadata in another table.

Attribute Different definitions for
semantically equivalent
attributes:
* 1-1 one attribute used to
model the same
information in each
schema e.g. naming
conflict, integrity
constraint conflict, data
representation conflict
* 1-N and N-N different
numbers of attributes used
to model the same
information in each
schema.
The N-N conflict is a
generalisation of the 1-N
conflict.

Data are stored as an
attribute(s) in schema-1
and as table(s) in
schema-2.
(not semantically
equivalent)

Table * The total number of
tables is different between
the schemas but both are
semantically equivalent.
This results from value vs
table and attribute vs table
conflicts
* The set of attributes is
different between schemas,
e.g. after an addition or a
deletion of an attribute.
Results in a ‘missing ’
attribute.
Missing attributes can be
implicit (derived) or
explicit (not derivable).

CHAPTER 2. LITERATURE REVIEW 19

2.7 Schema Matching

Schema matching is the mapping of semantically corresponding elements between

two schemas. Rahm and Bernstein’s (2001a) survey of approaches to automatic

schema matching presents classifications of different ways to perform matching.

Instance vs schema: matching approaches can consider instance data (i.e. data

contents) or only schema-level information.

Element vs structure matching: a match can be performed for individual

schema elements, such as attributes, or for combinations of elements, such

as complex schema structures.

Language vs constraint: a matcher can use a linguistic based approach (e.g.

based on names and textual descriptions of schema elements) or a constraint-

based approach (e.g. based on keys and relationships).

Matching cardinality: the overall match result may relate one or more ele-

ments of one schema to one or more elements of the other, yielding four

cases: 1:1, 1:n, n:1, n:m. In addition, each mapping element may interre-

late one or more elements of the two schemas. Furthermore, there may be

different match cardinalities at the instance level.

Auxiliary information: most matchers rely not only on the input schemas

S1 and S2 but also on auxiliary information, such as dictionaries, global

schemas, previous matching decisions, and user input.

Although a great deal of the work done in schema matching is manual, semi-

automatic schema matching systems have been developed, some of which are

discussed in Section 2.12. Do et al. (2002) compared eight schema matching

prototypes on the criteria of Input, Output, Quality Measures, and Effort. The

results of this comparison are inconclusive due to the variety of evaluation mea-

sures used by the systems, however of the eight systems only two did not require

manual pre-match effort and manual post-match effort was needed for finding

missing matches, removing false positives, and verifying the correct results. The

authors could not quantify the post-match effort, but it seems reasonable to as-

sume that the more complex the schemas the more manual (pre and post) effort

is required. Other work in this field can be found in (Berlin & Motro 2002, He &

Chang 2004, Rosenthal, Seligman & Renner 2004, Bernstein, Melnik, Petropoulos

& Quix 2004, Embley, Xu & Ding 2004).

CHAPTER 2. LITERATURE REVIEW 20

2.8 Semantic Heterogeneity

Domain evolution, that is changes to the ‘real-world’ domain, may lead to se-

mantic heterogeneity within a database. Ventrone and Heiler (1991) described

different forms of domain evolution that introduce shifts in meaning such that

simple or automatic mappings between ‘old’ and ‘new’ values are not tractable.

Forms of evolutionary problems identified in this work were:

1. Heterogeneous Instances : Over time, different occurrences of the same value

in a domain extension may have different meanings.

2. Cardinality Changes : Cardinality relationships between domains may also

change over time.

3. Granularity Changes : Values may be added to a domain extension that

represent a different granularity from the existing population.

4. Encoding Changes : Database values often have encoded meanings. These

may be relics of predecessor manual systems or they may creep into systems

over time, possibly to store information that is not otherwise provided for

in the existing system.

5. Time and Unit Differences : Database values that users wish to compare

may be incompatible due differences in time or units of measurement.

Stored calculations in the same domain may, over time, be the products

of different formulae.

6. Identifier Changes : In response to changing needs, indexing strategies may

change over time, leading to parallel and even overlapping identifier schemes.

7. Field Recycling : In many systems it is difficult or infeasible to alter certain

characteristics of database. Perhaps record sizes cannot be altered because

of application or system software dependencies. Changing the names of

fields may involve reloading the database or recompiling hundreds of soft-

ware modules. The response in many cases to this inflexibility is to recycle

an existing field so that the new use may have different semantics from the

old one.

The key solution strategy proposed by the authors is to make semantic infor-

mation explicit so that it can be read and interpreted by the application code,

thus replacing semantic heterogeneity with syntactic heterogeneity. The latter

CHAPTER 2. LITERATURE REVIEW 21

problem being more tractable. More explicit semantic information is included in

the metadata of the database by specifying constraints, cardinality relationships,

units of measurement, derivation algorithms and formulae, confidence measures

and heuristics. This does not completely solve the problem, nor in particular,

does it solve the problem of the evolving domain for an attribute.

2.9 Object-Relational Databases

Database platforms implementing SQL:1999 or SQL:2003 are not exclusively re-

lational platforms, but are object-relational platforms. A database management

system is an object-relational database system (ORDBMS), if it supports both

the object-oriented data model and the relational database model, and consists

of the following components;

• types, tables, and views,

• subtype and sub-table relationships,

• constraints and assertions,

• functions, stored procedures, and triggers,

• roles and privileges.

The two data models interoperate by allowing the values in the relational

model to be object references. However, the relational model must be designed

specifically to be an object-relational database. All hard-coded type, operator

and function information must be extracted and replaced with a table-driven

scheme with additional parser support added for SQL syntax for complex objects

and inheritance.

Elmasri and Navathe (2004) note that ORDBs compared with RDBs have

additional problems.

• Database design is more complicated because the designer must consider

not only the underlying design considerations of application semantics but

also its object-oriented nature.

• Query processing and optimisation is more difficult because of SQL exten-

sions and user-defined functions and rules.

CHAPTER 2. LITERATURE REVIEW 22

• Interaction of rules with transactions requires deferred execution of triggers

which involves additional processing.

Evolution of ORDBs pertains to all changes that can be made any of the

components of the database schema. Türker (2000) noted that A database schema

is formed by a set of schema element definitions and it evolves by adding, altering,

or removing schema element definitions. It is important to note that some schema

evolution operations may also have an effect on the actual database objects, for

instance, on the rows of a table. The evolutionary operations in an ORDB are

shown in Table 2.2. Refer to Türker’s (ibid) comprehensive survey of schema

evolution in SQL:1999 for a detailed discussion of these operations, which have

not altered in SQL:2003.

Table 2.2. Evolutionary Operations in ORDBs
Create Alter Drop

Domain X X X
Type X X X
Table X X X
View X X
Assertion X X
Procedure X X X
Function X X X
Trigger X X
Role X X
Privilege X X

SQL:2003 introduced extensions to the CREATE TABLE LIKE and CREATE

TABLE AS statements that are useful when evolving tables. The former has

options to enable copying of more information, such as identity column options,

the expressions used for generated columns, and the default values, while the

latter creates a populated table independent of the underlying query with respect

to future updates of the source table(s).(ISO/ANSI 2003, Eisenberg, Melton,

Kulkarni, Michels & Zemke 2004)

Whilst user-defined types and functions provide more flexibility with the pro-

vision of inheritance, when managing evolution in ORDBs one must still apply

the techniques developed for RDBs for the underlying relational tables, as well as

some of the techniques for evolving Object-Oriented databases (OODBs) when

evolving objects, as can be found in (Lemke 1994, Liu, Chang & Chrysanthis 1994,

Baekgaard 1997, Liu, Zicari, Hursch & Lieberherr 1997, Peters & Özsu 1997, Clay-

pool, Natarajan & Rundensteiner 1999, Parsons & Wand 2000, Franconi, Grandi

CHAPTER 2. LITERATURE REVIEW 23

& Mandreoli 2001, Rashid 2002). Shankaranarayanan and Ram’s (2003) re-

port on core schema evolution management in databases reviews the variety of

research for OODBs.

2.10 Data Conversion

Currently when a schema changes two events typically occur - the application is

modified and recompiled to deal with the changes and the data are converted to

the new format, either by strict, lazy or no conversion (Ferrandina, Meyer & Zicari

1994). Lazy conversion performs data conversion only when data are accessed and

they are still recorded with superseded formats (or values), no conversion is done

if the data are not accessed. The advantage of this approach is that only the data

that are used are converted and the whole database does not need to be locked

or taken off-line to perform the conversion. The disadvantages are that a record

of schema changes must be recorded and accessible and that every time data are

accessed they must be checked to see if they conform to the current schema. Until

all data have been accessed there exist some that may be invalid or incomplete.

Strict conversion requires that as soon as there is a modification to the schema

all data are converted to conform with the current definition. The advantage of

this approach are that all data are immediately consistent with the new schema.

The disadvantage is that all applications interacting with the database must be

stopped and the database locked while the conversion takes place. Depending

upon the nature of the modifications this can take a long time. In addition,

information is lost and changes cannot be reversed.

2.10.1 Attribute Evolution

Discussing the problems of schema evolution in OODBMS, Lemke (1994) cites

issues relating to the evolution of attributes with regard to behavioural consis-

tency (including program compatibility) and instance compatibility. These issues

are similar to attribute evolution in RDBMS and manifest themselves as program

compatibility and data consistency.

Program Compatibility

• If an added attribute already exists, all application procedures/functions

accessing the attribute may change their behaviour or become invalid if the

new attribute definition is not a generalisation of the old one.

CHAPTER 2. LITERATURE REVIEW 24

• If a deleted attribute is replaced by one with the same domain, nothing

happens. If the new attribute has a different domain, application proce-

dures/functions using this attribute might change their behaviour. If the

deleted attribute is not replaced, code referencing the attribute becomes

invalid.

• Attribute changes are divided into name and domain changes. For a name

change, access to the attribute under the old name becomes undefined,

therefore all procedures/functions using the old name are also invalid. The

source code becomes invalid, thus disabling further changes and recompi-

lations of the code. If the new name occurs elsewhere in the schema, all

procedures referring to the old definition might become invalid with respect

to the domain of the attribute, or might change their behaviour. Changing

the domain of an attribute may make referencing methods invalid when

recording values into the attribute which are no longer in the domain, or if

values from the new domain do not obey the constraints of the attribute.

Data Consistency

• If an added attribute replaces an existing attribute definition, this is equiv-

alent to a change of the attribute definition. Otherwise, the new attribute

logically has to be added to relations and to the application. For existing

relations, the new attribute should be populated with a default value.

• If an attribute is deleted without any replacement, all tuples in the relation

logically lose this attribute.

• Changing the name of an attribute does not have an impact on existing

values as the metadata is separate from the data.

• If the domain of the attribute is generalised, existing tuples are not affected

because all existing values still belong to the domain. If the domain is

specialised, only those tuples are affected whose attribute value is no longer

within the domain. For a general change of the domain, the attribute value

of all tuples logically has to be converted to a value of the new domain.

CHAPTER 2. LITERATURE REVIEW 25

2.11 Data and View Integration

Research on data integration specifically for database evolution has not been

found, however there is research regarding data integration for heterogeneous

systems, data warehousing and information sharing.

Embury and Gray (1998) surveyed the use of active rules to support data-

base application development and provided guidelines for the kind of behaviour

to which they can be most successfully applied. They focused on three classes

of database functionality to which the rules have been applied: integrity mainte-

nance; support for database views and data integration; and the implementation

of advanced transaction models.

An active database supports Event-Condition-Action (ECA) rules. The oc-

currence of various types of events (e.g. database transitions, time events, and

external signals) triggers the evaluation of a condition, which when true causes

the action to be carried out. With regard to ECA rules for views and data in-

tegration, the authors noted that the implementer of a view mechanism must

consider two issues: how to provide efficient retrieval of data and how to deal

with attempts to update the view classes or relations. Active rules can be used

to trap accesses to view data and rules can be generated automatically from the

original high-level view definition.

Reference is made to the earlier work done by Stonebraker et al. (1990)

showing how active rules can be used to solve the view-update problem. This

solution requires a specific update policy to be associated with each view. A

rule is created for each possible update to each virtual class, relation, or attribute

whose action describes the update that must be made to the base data in order to

create the effect of the required update to view. This methodology requires that,

at the time the view is defined, a policy for updates is also defined. This is not

always possible as there exist many situations where the decision must be made

within the context of the actual update based on the data values which are not

known a priori.

Cited also is the later work by Ceri and Widom (1991) who proposed that

four active rules are generated for each concrete table in a view definition. One

rule triggered on inserts to a table, one on delete events, and two on update

events. Thus, for an update on base table T, they generate incremental versions

of the view definition expression by replacing references to T with the special

transition tables inserted T, deleted T, old-updated T and new-updated T, giving

CHAPTER 2. LITERATURE REVIEW 26

a set of expressions that computes only those tuples that have been added to (or

deleted from) the view relation. These generated rules are either those that cater

for insertions or for deletions, rules for deletions are given a higher priority so

that they are triggered before the insertion rules. Embury and Gray point out

that while the ECA rules can be used to allow updates to views (both virtual

and materialised) there can be conflicts of update policies generated from view

definitions leading to violations of integrity constraints. In this situation, the

Database Administrator must intervene in the process.

2.12 Mediation Techniques

Mediation techniques provide access to heterogeneous data sources by translating

application queries into source specific commands or queries. These approaches

are known as mediators, data wrappers, translators or middleware.

Generally, mediators are either Global-As-View (GAV) or Local-As-View (LAV)

based. In GAV mediators, relations are written in terms of the source relations.

Consequently addition or removal of a source requires modification of the media-

tor schema. In a LAV mediator every source relation is defined over the relations

and schema of the mediator and it is therefore easier to add or remove relations

but complicates query reformulation. Lenzerini (2002) presents a comprehensive

tutorial on the theoretical issues of data integration. When sources are stable,

GAV is the preferred approach. An evolved database implies a global schema (the

new schema) with multiple sources (the old schema(s) and the new), hence this

section focuses on GAV approaches. Parent and Spaccapietra (1998) summarised

the steps to database integration as follows;

1. Pre-integration, where input schemas are transformed to make them more

homogeneous (both syntactically and semantically),

2. Correspondence Identification, devoted to the identification and description

of inter-schema relationships, and

3. Integration, the final step which solves inter-schema conflicts and unifies

corresponding items into an integrated schema.

CHAPTER 2. LITERATURE REVIEW 27

TSIMMIS

The Standford-IBM Manager of Multiple Information Sources (TSIMMIS) (Chawathe,

Garcia-Molina, Hammer, Ireland, Papakonstantinou, Ullman & Widom 1994,

Garcia-Molina, Papakonstantinou, Quass, Rajaraman, Sagiv, Ullman, Vassalos

& Widom 1997, Li, Yerneni, Vassalos, Garcia-Molina, Papakonstantinou, Ullman

& Valiveti 1998) offers a data model and a common query language to support

the integration of information from multiple different sources. The components

of TSIMMIS are:

• The Object-Exchange Model (OEM) to convey information among compo-

nents.

• Mediators, to answer queries about different entities, are specified with

a logic-based object-oriented language called Mediator Specification Lan-

guage (MSL). This is a view definition language for the OEM and includes

the necessary functions for data integration.

• Wrappers, specified with the Wrapper Specification Language (WSL), an

extension to MSL, to allow for the description of source contents and query-

ing capabilities. These convert user queries to source specific queries.

• A common query language to link components.

• Wrapper and mediator generators - wrappers may be generated using a

template-based tool or user-written functions to connect the wrapper to

the source and generate the queries on that source. At run-time, the Me-

diator Specification Interpreter (MSI) collects and integrates the necessary

information from the sources, according to the specification. A mediator

uses the raw sources, interfaced by a wrapper, or other mediators.

Garlic

The Clio and Garlic systems (Haas, Miller, Niswonger, Tork Roth, Schwarz &

Wimmers 1999, Miller, Hernandez, Haas, Yan, Ho, Fagin & Popa 2001) provide an

integrated view of a variety of heterogenous data sources. Clio’s components are

schema, correspondence, and mapping management. These components utilise

metadata, query workloads, view definitions and mine the data to produce a

global schema. The Garlic wrapper is an interface which describes the data and

provides mechanisms for data retrieval. The data are described using a variant

CHAPTER 2. LITERATURE REVIEW 28

of Object Database Management Group (ODMG) Object Description Language

(ODL) named Garlic Definition Language (GDL) which enables the wrapper to

rename objects and attributes, change types and define relationships.

As more information was becoming available on the internet, research in data

integration moved to include semi-structured data sources and integrate these

dependent on their context and semantics. These later models utilise common

vocabularies and ontologies.

MIX

Bornhövd and Buchmann (2000) present a framework for semantically meaning-

ful data exchange. To allow meaningful exchange in heterogeneous databases

there needs to be commonly agreed upon vocabularies or ontologies to describe

the data and metadata. Implicit assumptions about the meaning of data are

mapped, using data wrappers, to a common representation model ‘Metadata-

based Integration mode for data eXchange’ or MIX. Domain specific ontologies

are structured and organised in a MIX Based Integrated Architecture (MIBIA).

They propose an approach to represent additional information at the extensional

level using data wrappers as Java classes to represent these ontology concepts

and their relationships.

IBIS

IBIS (Internet Based Information System) (Cali, Calvanese, De Giacomo, Lenz-

erini, Naggar & Vernacotola 2002), is a system for the semantic integration of

heterogeneous data sources that allows the specification of integrity constraints

in the global schema derived from the domain of interest. The system has four

main components: Wrapping, Configuration, Core, and User Interface. The Core

implements the data integration algorithms and performs evaluation of a query

by extracting data from the sources and executing the query those data.

IBIS adapts the information extracted from sources that are typically au-

tonomous and incomplete using a data extraction strategy based on a concept of

proximity of values to the tuples constituting the answer to the query.

IBIS takes into account the integrity constraints over the global schema, which

reflect the semantics of the application domain, and allows for the retrieval of data

that were not usually retrieved in earlier data integration systems. This is done

CHAPTER 2. LITERATURE REVIEW 29

by encoding information about integrity constraints in an expanded query, so

that the answers provided by evaluating the pre-processed queries are the best

possible ones that can be obtained, given the available information.

SCROL

Ram and Park (2004) propose a common ontology called Semantic Conflict Res-

olution Ontology (SCROL) to capture context knowledge, that may be used to

identify and resolve semantic conflicts among heterogeneous databases. SCROL is

a domain independent ontology, that encodes commonly found semantic conflicts,

which subsequently provides an automatic way of comparing and manipulating

contextual knowledge of each information source.

This approach is similar to using a federated schema but has the advantage

that the common ontology can be reused by a range of application domains. The

limitation of this approach is that there needs to be a direct mapping for each

schema or data component. The authors note that it is not possible to resolve

conflicts such as ‘known data value reliability’ and ‘spatial domain’ that occur at

the data value level.

MOMIS

MOMIS, developed by the DBGroup at the University of Modena and Reggio

Emilia (Beneventano & Bergamaschi 2004), is a framework for information ex-

traction and integration of heterogeneous information sources, which implements

a semi-automatic methodology for data integration. The result of the integration

process is a global schema, which provides a reconciled, integrated and a virtual

view of the underlying sources, GVV (Global Virtual View). The GVV is com-

posed of a set of (global) classes that represent the information contained in the

sources, and it is the result of the integration process, i.e. a conceptualisation of

the underlying domain (domain ontology) for the integrated sources. The GVV

is then semi-automatically annotated according to a lexical ontology. This ap-

proach differs from others in that it constructs a domain ontology as the synthesis

of the integration process, as opposed to using an a priori constructed ontology.

CHAPTER 2. LITERATURE REVIEW 30

Multiplex, Fusionplex, Autoplex

Three generations of data integration systems have been developed at George

Mason University (USA) (Motro, Berlin & Anokhin 2004), called Multiplex, Fu-

sionplex and Autoplex. Multiplex, the basis for the latter two systems, provides

the formal model of integration which distinguishes between schema consistency

and instance consistency. The former assuming that schema differences are rec-

oncilable, the latter assuming that instance differences are not reconcilable. In

addition, it also provides approximate answers to queries for situations where

there is either too much or too little information. Fusionplex utilises data quality

features and user preferences to resolve instance differences and rank inconsistent

answers to provide query responses. Autoplex uses machine learning techniques

and user effort to discover member schemas and incorporate those into the global

schema.

Yacob

Using domain knowledge in the form of concepts and their relationships for for-

mulating and processing queries, the Yacob mediator (Sattler, Geist & Schallehn

2005) model is based on a resource description framework schema (RDFS) meta-

model, combining the representation of concepts as terminological anchors for in-

tegration with information describing the mapping between global concepts and

local schemas using a GLAV approach, combined with a query language CQuery

(a derivative of XQuery) for formulating the queries.

MADS

In a similar approach, but specifically tackling the more complex issues of spatio-

temporal data, are the MADS conceptual data model and MADS spatial and tem-

poral domain ontologies (Sotnykova, Monties & Spaccapietra 2000). Spatial and

temporal aspects include not only spatial and temporal entities but also space-

related and time-related relationships between these entities which are managed

within this model through the use of the ontologies.

CHAPTER 2. LITERATURE REVIEW 31

2.13 Ontologies

An ontology is a formal, explicit description of concepts in an area of interest

(domain of discourse). It is a vocabulary of such terms (names of relations, func-

tions, individuals), defined in a form that is both human and machine readable.

(Gruber 1993). The three categories, identified by Jasper and Uschold (1999),

of benefit from using ontologies are: Communication - by providing consistency,

lack of ambiguity, and integration of different perspectives; Inter-operability - by

providing computer systems with an interchange format for translation between

languages, representations and paradigms; and Software Engineering - by pro-

viding a shared understanding for specification, resulting in re-use and improved

reliability.

The main components of an ontology are: (1) concepts or classes of the do-

main of discourse or tasks, which are often organised in taxonomies; (2) relations

describing the types of interaction between concepts of the domain, e.g. is-a,

subclass-of; (3) functions specifying a special type of relation such as definitions

of calculated attributes; (4) axioms specifying rules that constrain the interpre-

tation and use of these terms; (5) instances to represent specific elements. These

components are then defined in an ontology as:

• Concept a.k.a. class, category, type, term, entity, set and thing.

• Slots a.k.a. roles, properties, relation, relationship, association, function

and attribute.

• Facets a.k.a. role restrictions, criterion, constraint of, feature and predicate.

As can be inferred from the alternative labels and terms for the constituent parts

of an ontology, there is no single standard for the structure and design of an ontol-

ogy. Ontology representations are broadly categorised by Wache et al. (Wache,

Vogele, Stuckenschmidt, Schuster, Neumann & Hubner 2002) in the following

ways:

• Frame-Based systems, providing a structure for representing a concept

or situation, such as OKBC (Open Knowledge Base Connectivity), On-

tolingua, F-Logic (Frame Logic), XOL (XML-based ontology-exchange lan-

guage), RDF (Resource Description Framework). Frames consist of slots

for which values have to be specified. Properties and restrictions can be

provided for these values.

CHAPTER 2. LITERATURE REVIEW 32

• Description Logics, providing formal semantics and reasoning support, such

as CLASSIC, GRAIL and LOOM. Knowledge is described in terms of con-

cepts and role restrictions. Starting with atomic concepts and roles, an on-

tology is built by adding definitions of new concepts and their relationships

in terms of existing concepts and roles. Description Logics are descendants

of frame-based systems.

• Formal Concept Analysis, providing a mathematical model to integrate

information from different sources into a common concept hierarchy.

• Object Languages are ontology languages designed for specific purposes

within domains of interest. These languages are developed so that the

ontologies can represent accurately the entities, concepts and detail required

in the domain.

• Annotated Logics are use to resolve conflicts, by which the values of confi-

dence or belief calculate the most promising fact to include in the common

model.

The strength of ontologies lies in them being shared computer-based resources,

and as Meersman and Jarrar point out (2002) an ontology needs to be even more

generic, across tasks and even task types, than a data model is for a number of

given applications. Just adding a mere ‘is a’- taxonomy of terms is not sufficient,

as the literature sometimes seems to suggest. An ontology needs to include (the

meaning of) a much richer set of relationships, such as instance of, part of, ...,

which depending on the domain all might deserve a ‘generic semantics’. Thus,

Vocabulary + Structure ⇒ Taxonomy

and

Taxonomy + Relationships, Rules and Constraints ⇒ Ontology

Although it may seem desirable to have a single ontology to simplify sharing

and integration of concepts, this is not always possible. Kashyap and Sheth (1996)

discuss issues of reconciling semantic and schematic perspectives with domain

specific ontologies. An ontology may serve multiple users’ perspectives and their

applications, and striving to be all things to all users can produce an ontology

that is difficult to build, maintain and use. Wache et al. (Wache, Vogele, Stuck-

enschmidt, Schuster, Neumann & Hubner 2001) identify three directions taken in

ontology architecture, 1) the Single Ontology approach that uses one global on-

tology to provide a shared vocabulary; 2) Multiple Ontologies approach in which

each information source is described by its own ontology and an inter-ontology

CHAPTER 2. LITERATURE REVIEW 33

mapping identifies semantically corresponding terms in the different source on-

tologies; 3) Hybrid Ontology approach in which the semantics of each source is

described by its own ontology that are built from a global shared vocabulary.

There has been a significant amount of work done in recent years in the

research and development of techniques for utilising ontologies for the Semantic

Web. The aim being for computers to share, relate and combine information over

the World Wide Web. See (Vianu 2001, Motik, Maedche & Volz 2002, Horrocks

2000, Horrocks 2002a, Horrocks 2002b, Doan 2002).

Schema evolution and ontology evolution share many of the same problems

and solutions which are discussed by Roddick (1995) and Klein et al. (Klein &

Fensel 2001, Klein 2001, Klein 2002, Klein, Fensel, Kiryakov & Ognyanov 2002,

Noy & Klein 2002, Spyns, Meersman & Jarrar 2002) respectively. Extending

the relational model to utilise these methods adds a powerful new dimension to

database information systems.

2.14 Concept Graphs

The Conceptual Graph Standard edited by Sowa (2001) provides a guide for the

implementation of conceptual graphs in systems. The conceptual graph is an ab-

stract representation for logic with nodes called concepts and conceptual relations

linked together by arcs. These provide an abstract model which can be used at

different levels. At a conceptual level, it can be the basis for a specialised commu-

nication language between experts of different disciplines involved in a common

project. At an implementation level, it can be the basis for a common represen-

tation tool used by several modules of a complex system, integrating knowledge

and databases, inference engines, sophisticated human-computer interfaces, and

learning modules. The standard defines a conceptual graph thus:

A conceptual graph g is a bipartite graph, which consists of two kinds of nodes

called concepts and conceptual relations.

• Every arc a of g is a pair (r, c) consisting of a conceptual relation r and a

concept c in g. The arc a is said to belong to r; it is said to link r to c; but

it does not belong to c.

• A conceptual graph g may have concepts that are not linked to any con-

ceptual relation; but every arc that belongs to any conceptual relation r in

g must link r to exactly one concept c in g.

CHAPTER 2. LITERATURE REVIEW 34

• Three kinds of conceptual graphs have distinguished names:

1. The blank is an empty conceptual graph with no concepts, conceptual

relations, or arcs.

2. A singleton is a conceptual graph that consists of a single concept, but

no conceptual relations or arcs.

3. A star is a conceptual graph that consists of a single conceptual rela-

tion r, every arc that belongs to r, and every concept c that is linked

by some arc (r, c) that belongs to r.

Conceptual graphs (CG) were developed for the representation of natural lan-

guage semantics and are designed for communication with humans or between

humans and machines. Sowa (2000) contends that CGs ... can help form a

bridge between computer languages and the natural languages that everyone reads,

writes, and speaks. The conceptual graph is generally in a visual format and is

represented in machine-readable text format using CGIF (Conceptual Graph In-

terchange Format) syntax. The CGIF syntax is specified in terms of the Extended

BNF (EBNF) rules and metalevel conventions. Chein and Mugnier (1992, 1995)

expound that CGs are not only graphical representations of knowledge but also,

based firmly on labelled graph theory, enable the use of combinatorial algorithms

for operations and manipulation. Corbett (2004) examines techniques for com-

paring and filtering CGs to allow interoperability of ontologies for knowledge

interchange.

2.15 Knowledge Interchange

Common Logic (CL) is currently being proposed as a new language standard

for knowledge interchange. It aims in providing a superset for other interchange

formats, such as KIF (Knowledge Interchange Format), CGIF, CLML (Common

Logic Markup Language), and DL (Description Logics) so that content exchanged

between Common Logic conformant languages has the same semantics in each

language. World Wide Web Consortium (W3C) is developing standards for two

logic-based content languages for the ‘semantic web’: RDF (Resource Definition

Facility), a language for expressing relationships and OWL (Web Ontology Lan-

guage), a language for expressing constraints. People involved in the W3C project

are also involved in CL development ensuring that the Common Logic semantics

are inherited by RDF and OWL. An RDF graph, for example, is represented in

an N-triple format which translated readily to a relation in a relational database.

CHAPTER 2. LITERATURE REVIEW 35

2.16 Summary

Database evolution is inevitable. An RDBMS, to remain useful and informative,

must change to adapt to new database technology, changes in the UoD, new

interpretations of data, new or changed user requirements and so forth.

The goals of good database evolution are to preserve the integrity of the

data and minimise the impact of modifications on views, queries and processes.

These goals require many different methods and techniques to reach them and

have motivated work in various areas of related research as can be seen in Figure

2.4. There are techniques for relation evolution and attribute-relation assignment

evolution which include schema translation, transformation and matching. Me-

diation techniques provide ways to integrate heterogeneous data for queries and

views.

Figure 2.4. Database Evolution and Related Research Areas

There are however few techniques to manage schematic changes that affect

the data that are in the source database(s). These changes are summarised in

Table 2.3. Of particular interest to this research are attribute changes: expand-

ing or restricting the attribute specification, as well as changing the data type.

The research on ontologies and conceptual graphs has also highlighted that an

attribute’s valid values, its domain, can change over time without schema changes

but requiring application modification.

Ontology structures reflect the complexity of and relationships within a con-

cept domain. It is envisaged that the techniques used for knowledge interchange

CHAPTER 2. LITERATURE REVIEW 36

Table 2.3. Schematic Changes that Affect Data
Evolutionary
Operation

Effect on Data Effect on
Application

Comment

Expand an
attribute
specification

Existing values
whilst being valid
may no longer be
accurate.

Application may
change to manage
new constraints

Expansion changes the
precision of values
stored. E.g. 42.00
implies a precision that
the integer 42 does not.

Restrict an
attribute
specification

Values outside the
range of valid
values are lost.

Application may
change to manage
new constraints

Values outside the range
must be converted or
deleted. Existing values
may be abbreviated,
truncated or rounded.
These values are no
longer an exact copy of
the original.

Change an
attribute data
type

Data loss can
occur where there
is no 1:1 mapping
of old to new
values.

Application may
change to manage
new data type.

The semantics have
changed, manual
verification may be
required.

Delete an
attribute

Existing values are
lost

References to the
attribute must be
removed.

Add an attribute Application is
changed to refer
to new attribute

Data may not be
complete or correct if
the attribute is
populated with a default
value.

Delete a relation Existing values are
lost

References to the
relation must be
removed.

Cardinality
Change

If the cardinality
changes from m:n
to 1:n, there is
data loss.

Application may
change to manage
the relationship
change.

This may also be a
change in semantics.

CHAPTER 2. LITERATURE REVIEW 37

are also applicable to relational database development as well. Currently on-

tologies are viewed as resources that are positioned outside a user’s information

system and are used as an aid for the design of metadata, for translation of con-

cepts or for transformation of related concepts. However, ontologies and concept

graphs could be an integral part of an RDBMS. This thesis argues a three-level ar-

chitecture for relational databases with an interface positioned between data and

metadata for complex domains. This intermediary level is the mesodata layer.

Chapter 3

Mesodata in DBMS

This chapter presents the reasoning for a three level architecture for relational

databases, introducing a layer between metadata and data - mesodata - to ac-

commodate more complex domain definitions.§

3.1 Modelling

The first steps recommended for database modelling usually advise the modeller

to analyse the Universe of Discourse (UoD) to determine significant features and

their relationships so that the data model represents the ‘real world’. This require-

ments analysis should elicit the data requirements in terms of primitive objects

(entities or attributes), the classification and description of information about

the objects, the identification and classification of the relationships between the

objects, the rules governing the integrity of the data and the types of transactions

that will be processed, as well as the interactions between the transactions and

the data.

The data model usually has two components. A diagram which represents the

data structures in a pictorial form, e.g. an entity-relationship diagram, and a data

document. The data document describes in detail the data objects, relationships

and rules required by the database, with a dictionary that provides the detail

required to construct the physical database. In the physical model, the attributes

are then formatted to a selected data type from the data formats provided by the

DBMS platform.

§The contents of this chapter are an extended version of de Vries & Roddick (2004).

38

CHAPTER 3. MESODATA IN DBMS 39

Relational database platforms offer a limited number of data formats for sim-

ple structures that can be created and manipulated with Structured Query Lan-

guage (SQL) using the subset languages of Data Definition Language (DDL) and

Data Manipulation Language (DML). Each database platform provides ‘core’

features of the SQL standard plus other SQL and proprietary features result-

ing in different ‘flavours’ of SQL. Even the data types, whilst sharing the same

labels, do not necessarily share the same byte representation resulting in dif-

ferences in valid ranges of values and storage requirements. For example, the

data type FLOAT may be either a 4-byte floating point number, with a range of

-3.402823E38 to -1.401298E-45 (negative) and 1.401298E-45 to 3.402823E38 (pos-

itive), or an 8-byte floating point number, with a range of -1.79769313486231E308

to -4.94065645841247E-324 (negative) and 4.94065645841247E-324 to

1.79769313486231E308 (positive). Refer to Table F.1 for a comparison of data

types on different DBMS platforms.

The modeller must, therefore, be aware of both the attribute domain1 values

to be modelled as well as the range of values the data type can store. Generally

this modelling method has been used to great effect for the past three decades.

However, there are some obvious problems that arise as a consequence which

include:

• The model is based upon a snapshot of the world as it is and is not always

flexible enough to manage changes in the UoD.

• The semantics of the UoD are stored separately from the metadata in the

data document.

• The modeller and the end-user do not know what future processing and

reporting requirements may be. Some current features in the UoD that are

not deemed significant enough to be incorporated into the model are later

realised to be significant.

• The data types provided are simple data types that do not capture the

structure of the attribute domain.

Stonebraker’s matrix for classifying DBMS, Figure 3.1, classes RDBMS with

SQL for simple data with queries and ORDBMS with SQL and user defined

1Confusingly, the term domain can refer to the Universe of Discourse (UoD), for which the
database system was created, the range of valid values for an attribute within the database,
or a data type. In this work a domain is defined as the range of valid values that a specific
attribute may store.

CHAPTER 3. MESODATA IN DBMS 40

functions for complex data with queries, however neither of these approaches

captures the structure of the data domains nor the relationships between the

domain values themselves.

Figure 3.1. A Matrix for Classifying DBMS
(Stonebraker & Moore 1996)

Currently, when defining an attribute within a schema, elementary types, such

as integer, string and so on, are available together with operators for comparison

and manipulation. For example, it is not necessary to create, within the applica-

tion, code for arithmetic operations on numeric data types. These are known and

available on declaration of the type. Such types are supplied as they are both

common and useful. However, there are many other instances of domain struc-

tures, such as graphs (Roddick et al. 2003), hierarchies (Rice & Roddick 2000) and

intervals (Allen 1983), for which standardised and supplied definitions would be

a practical enhancement, particularly to facilitate schema and domain evolution

processes, and data integration (Rice, Roddick & de Vries 2006).

The usual practice when using, for instance, graphs is to include code in the

application for depth-first or breadth-first traversal, topological ordering, finding

the shortest path between selected nodes, calculating nearest and furthest nodes,

and so on. This thesis proposes that those operations which relate to the data

type domain, rather than the data value or the application, should reside closer to

the structure of the database than to the population values of the database. Early

in this project (Roddick et al. 2003), it was envisaged that complex types such

as graphs and trees could reside alongside other relations with their metadata

and data. However, it is difficult to position them into the metadata. It became

apparent when developing manipulation techniques and operators that their ‘true

place’ was in a level of their own, as domain values are neither data instances

nor metadata. This thesis therefore contends that there should be a mesodata

CHAPTER 3. MESODATA IN DBMS 41

layer between the metadata and the data, as shown in Figure 3.2. The mesodata

holds the ‘intelligence’ for the data type and provides the link between the base

data type, the domain structure with its valid range of values, and the database

application.

3.2 Mesodata

Figure 3.2. Mesodata Layer Between Metadata and Data

An important distinction must be made between the provision of, say, a graph

as a mesodata type and the provision of a graph as a user-defined abstract data

type (ADT). In the former, an attribute in a relation would take as its value an

instance of an elementary type that exists within a graph whereas in the latter

the value of the attribute exists in the relation. The presence or absence of

the mesodata graph does not have any effect on the relation, standard SQL nor

existing application code. Additionally, unlike the provision of libraries of user

defined ADTs, the graph itself is not directly accessible or manipulable through

the attribute.

A partial hierarchy of mesodata types for different domain structures is given

in Figure 3.3. However, any candidate mesodata type would be a commonly used

CHAPTER 3. MESODATA IN DBMS 42

structure and have generally agreed and stable semantics.Mesodata Hierarchy

Unweighted Graph Weighted Graph
Operations - Proximity

 Directed Graph Directed Weighted Graph
Operations - Proximity

Graph
Operations - Adjacency

Tree Weighted Tree
Operations - Proximity

Lattice

Directed Acyclic Graph
Operations - Ancestor, Parent,

Descendent, Child, Sibling

List
Operations - First, Last

Circular List

Ordered Linear
Operations - Next, Previous, Between

Synonym
Operations - Primary Term

Set
Operations - In Set

Mesodata Types

Figure 3.3: Hierarchy of Some Suggested Mesodata Types for Different
Domain Structures

The semantics of information held in a database can be considered as a map-

ping function of the data value. That is,

S ↔ F (v) (3.1)

where F is a mapping external to the database which maps the data value (eg. 1)

to the understood concept (eg. Monday). The introduction of a mesodata layer

allows regularly used mappings to be accommodated in the database, ie.

S ↔ F (M1(M2(. . . Mk(v) . . .)) (3.2)

where Mi are mesodata layer mappings.

3.3 Mesodata Domains

Formally, a mesodata domain D is a set of identically typed instances {v1, . . . , vj}
taken from either a simple domain or another mesodata domain such that Mi(v1, . . . , vj)

CHAPTER 3. MESODATA IN DBMS 43

is a mapping that provides a relationship based on the semantics of the structure

between the instances. An instance d of D is either one of the enumerated values

{v1, . . . , vj} or, if permitted, another value of the same type. Implicit in this is

that a domain defined over a mesodata type, as for base types such as CHAR,

INT etc., is:

• a DBMS-supplied structure consisting of a uniformly agreed data structure

consisting of either other mesodata types or elementary data types.

• a set of common and uniformly agreed operators over the structure.

An attribute defined over such a domain would take an instance of an elementary

value which would exist within the mesodata structure.

3.3.1 Definition of the Mesodata Domain

The mesodata layer extracts the domain to a separate level such that the Meso-

data Domain (Mdom) is the domain of the mesodata type of the base type, for

example a weighted graph of strings or a list of graphs of strings. Mdom is defined

as:

Mdom :: dom(attribute) | dom(mesodata)

dom(mesodata) :: dom(mesodatatype(dom(mesodata)) |

dom(mesodatatype(dom(attribute))

dom(mesodatatype) :: dom(wgraph)|dom(wdgraph)|

dom(list)|dom(clist)|...

any mesodata structure

dom(attribute) :: dom(basetype)

basetype :: all valid database base types.

A traditional relational database can be viewed as consisting of relations that

are a subset of the Cartesian product of their attributes’ domains (Elmasri &

Navathe 2004).

R ⊆ {dom(A1)× dom(A2)× . . .× dom(An)} (3.3)

where R is the relation

A is an attribute

dom is the domain of the attribute A.

CHAPTER 3. MESODATA IN DBMS 44

Following Maier’s (1983) definition, a relation scheme R is a finite set of

attribute names {A1, A2, . . . , An}. Corresponding to each attribute name Ai is

a set Di, 1 ≤ i ≤ n, called the domain of Ai, also denoted as dom(Ai). Let

D = D1 ∪ D2 ∪ . . . ∪ Dn. A relation r on relation scheme R is a finite set of

mappings {t1, t2, . . . , tn} from R to D with the restriction that for each mapping

t ∈ r, t(Ai) must be in Di, 1 ≤ i ≤ n.

The domain of an attribute Ai defined over a mesodata domain Mj{v1, v2, . . . , vn}
retains the mapping from R to D and adds a mapping via a function f from Ai

to Mj such that

f(Ai) → Mj

∀a ∈ dom(Ai) : a ∈ Fi(Mj)

dom(Ai) ⊆ Fi(Mj)

t(Ai) ∈ Fi(Mj)

Let Mdom(Ai) = Fi(MAi
)

The redefinition of the relation R thus becomes

R ⊆ {Mdom(A1)×Mdom(A2)× . . .×Mdom(An)} (3.4)

that is, the cartesian product of the mesodata defined domains.

3.3.2 Extended Querying

The mesodata domain extends the SQL WHERE definition to include operators

specific to the domain structure. These mesodata operators return a set of values

{v1, v2, . . . , vn}.

Let {a, b, c, d | R(a, b, c, d)}
With currently available comparison operators represented by Θ

Select * FROM R WHERE a Θ value is

{a, b, c, d | (∃a, b, c, d)

(R(a, b, c, d)∧
a Θ value)}

Let the domain of a be defined over mesodata domain M(v1, . . . , vn) with

operators
⊗

.

Select * FROM R WHERE a
⊗

value becomes

{a, b, c, d | (∃a, b, c, d)

CHAPTER 3. MESODATA IN DBMS 45

(R(a, b, c, d)∧
a IN {value

⊗
M})}

As this is an extension of SQL, also valid is

Select * FROM R WHERE a
⊗

value1 AND b Θ value2

{a, b, c, d | (∃a,∃b, c, d)

(R(a, b, c, d)∧
a IN {value1

⊗
M}∧

b Θ value2)}

3.4 Structured Domains

Consequent to the structure and operations over that structure, there is orderli-

ness in mesodata domains. Often, within the data, there is an assumed order,

either numeric, alphabetic, spatial or temporal. Ng (1998, 2001) also describes

user declared semantic ordering in domains. Mesodata types such as graphs, store

relationships and paths between the nodes providing the metrics for adjacency

and proximity, whereas mesodata types such as lists and trees, are by their struc-

ture ordered. Thus these mesodata domains are, at minimum, partially ordered

sets.

A partial order on a set S is a relation v with the following properties:

(Abramsky & Jung 1994)

1. v is reflexive : x v x for all x ∈ S.

2. v is transitive : (x v y and y v z) implies x v z for all x, y, z ∈ S.

3. v is antisymmetric : (x v y and y v x) implies x = y for all x, y ∈ S

Thus, for (M,v) and element m ∃ M ,

↓m is the set of all elements of M that are below m, and

↑m is the set of elements of M that are above m.

a ∈ ↓m ⇐⇒ a v m

a ∈ ↑m ⇐⇒ a w m

With these properties, a mesodata type’s operators are employed to return subsets

of the domain, that is the operators create filters for a domain.

CHAPTER 3. MESODATA IN DBMS 46

3.4.1 Filters

A filter on a set S is a collection F of subsets of S where (Moshier 2000)

1. F is directed with respect to ⊇
i.e. if X,Y ∈ F , then there is some Z ∈ F so that X ⊇ Z and Y ⊇ Z

2. F is downward closed with respect to ⊇
i.e. if X ∈ F and Y ⊇ X (and Y ⊆ S) then Y ∈ F

therefore X, Y ∈ F implies X ∩ Y ∈ F

If D = (D,v) then v determines the filter F v, there is an element d in D

where the set of all elements above d exists in X.

X ∈ F v ⇐⇒ ∃d ∈ D, ↑d ⊆ X

If ↑x ⊆ X and ↑y ⊆ Y then there exists z so that ↑z ⊆ ↑x ∩ ↑y ⊆ X ∩ Y .

A filter when applied to an ordered mesodata type returns a set of domain

values, for example, with a mesodata domain structure of TREE, the operator

DESCENDENT returns the set of values in the subtree of a specified node.

3.4.2 Topological Spaces

Data structures such as graphs do not appear, initially, to possess the properties

needed to implement filters as defined above. These structures are, however,

built with operators for adjacency and proximity. Using these operators, a metric

space topology can be generated, thus providing the order required. The following

definitions are from Munkres (1975).

Definition: A topology on a set X is a collection τ of subsets of X having

the following properties:

1. ∅ and X are in τ .

2. The union of the elements of any sub-collection of τ is in τ .

3. The intersection of the elements of any finite sub-collection of τ is in τ .

A set X for which a topology τ has been specified is called a topological space

Definition: If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

CHAPTER 3. MESODATA IN DBMS 47

1. For each x ∈ X, there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis elements B1 and B2, then there

is a basis element B3 containing x such that B3 ⊂ B1 ∩ B2.

A metric space topology is generated by sets of the form

Vε(p) = (x ∈ X | d(x, p) < ε) for some ε > 0

where d is a metric having the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X : d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z ∈ X (triangular inequality)

Let N (p) = {Vε(p) : ε > 0} then

1. p ∈ Vε(p) ∀ε

2. the elements of N (p) are directed with respect to ⊇ and can therefore form

the basis for a filter. See Figure 3.4

Figure 3.4. A Filter in Metric Space

For example, with mesodata domain structure of WGRAPH, the operator

CLOSETO returns a set of values within a defined threshhold value (ε) of a

specified node.

CHAPTER 3. MESODATA IN DBMS 48

T
a
b
le

3
.1

.
P
a
rt

ia
l
L
is

t
o
f
M

e
so

d
a
ta

T
y
p
e
s

w
it

h
E
x
te

n
d
e
d

S
Q

L
O

p
e
ra

to
rs

D
o
m

a
in

S
tr

u
ct

u
re

M
es

o
d
a
ta

T
yp

e
O

p
er

a
ti
o
n
s

(E
xt

en
d
ed

S
Q

L
O

p
.)

S
o
u
rc

e
R
el

a
ti
o
n
(s

)

U
n
w
ei

gh
te

d
G

ra
p
h

G
R
A

P
H

A
d
ja

ce
n
cy

(N
E
X

T
T

O
)

B
in

ar
y

re
la

ti
on

(F
R
O

M
,
T

O
)

W
ei

gh
te

d
G

ra
p
h

W
G

R
A

P
H

A
d
ja

ce
n
cy

,
P
ro

xi
m

it
y

(C
L
O

S
E
T

O
)

(E
Q

U
A

LT
O

)
T
er

n
ar

y
re

la
ti
on

(F
R
O

M
,
T

O
,
W

E
IG

H
T

)

D
ir
ec

te
d

G
ra

p
h

D
G

R
A

P
H

A
d
ja

ce
n
cy

B
in

ar
y

re
la

ti
on

(F
R
O

M
,
T

O
)

D
ir
ec

te
d

W
ei

gh
te

d
G

ra
p
h

D
W

G
R
A

P
H

A
d
ja

ce
n
cy

,
P
ro

xi
m

it
y

T
er

n
ar

y
re

la
ti
on

(F
R
O

M
,
T

O
,
W

E
IG

H
T

)

T
re

e
T

R
E
E

In
S
u
b
tr

ee
(D

E
S
C
E
N

D
E
N

T
),

P
ar

en
t(

P
A

R
E
N

T
),

A
n
ce

st
or

(A
N

C
E
S
T

O
R
),

C
h
ild

(C
H

IL
D

),
S
ib

lin
g(

S
IB

L
IN

G
)

B
in

ar
y

R
el

at
io

n
(P

A
R
E
N

T
,
C
H

IL
D

)

W
ei

gh
te

d
T
re

e
W

T
R
E
E

In
su

b
tr

ee
,
P
ar

en
t,

A
n
ce

st
or

,
S
ib

lin
g,

P
ro

xi
m

it
y

T
er

n
ar

y
R
el

at
io

n
(P

A
R
E
N

T
,
C
H

IL
D

,
W

E
IG

H
T

)

L
is
t

L
IS

T
N

ex
t

(N
E
X

T
),

P
re

vi
ou

s
(P

R
E
V

),
F
ir
st

(F
IR

S
T

),
L
as

t(
L
A

S
T

),
B

et
w
ee

n
(I

N
B

E
T

W
E
E
N

)
B

in
ar

y
R
el

at
io

n
(S

E
Q

U
E
N

C
E
,
IT

E
M

)

C
ir
cu

la
r

L
is
t

C
L
IS

T
N

ex
t,

P
re

vi
ou

s,
B

et
w
ee

n
B

in
ar

y
R
el

at
io

n
(S

E
Q

U
E
N

C
E
,
IT

E
M

)

S
et

S
E
T

In
S
et

(I
N

S
E
T

)
U

n
ar

y
R
el

at
io

n
(I

T
E
M

)

S
yn

on
ym

S
Y

N
O

N
Y

M
P
ri
m

ar
y

T
er

m
(S

Y
N

O
N

Y
M

)
n
-a

ry
(n

>
1)

R
el

at
io

n
(P

R
IM

A
R
Y

,
S
E
C
O

N
D

A
R
Y

,
..
.,

n
A

R
Y

)

CHAPTER 3. MESODATA IN DBMS 49

3.5 Mesodata Operators

A partial list of mesodata types in Table 3.1 presents new operators that can

be performed over different domain structures. These operations extend the cur-

rently available SQL operators and enhance querying power by providing not only

the structure of the domain but also the ‘intelligence’ with which to manipulate

the specific type of structure. Note also that mesodata types are populated by

values that are stored in n-ary relations and therefore remain mathematically

equivalent to a multi-set - the building block of a relational database.

3.6 Comparison of Mesodata with User-Defined

Types

A user-defined type (UDT) is a named data type that is created in a database by

the user. A UDT can be a distinct type which shares a common representation

with a built-in data type or a structured type which has a sequence of named

attributes each of which have a type. A structured type can be a subtype of

another structured type thus defining a type hierarchy. The values of a specific

UDT are considered to be compatible only with values of the same UDT or UDTs

in the same type hierarchy.

A UDT with its methods and domain is consistent throughout a database,

it affects ALL columns that are specified as that type. A mesodata domain can

be referenced by any number (including zero) of columns without it altering any

other column or data type. A column may have its mesodata domain changed

without altering the column’s data. The mesodata domain’s values may be up-

dated without affecting a column’s data as mesodata are stored in a separate

layer in the system.

A mesodata structure can be based on any base data type within the DBMS.

The mesodata layer represents the structure of the domain whereas the UDT

represents structure of the data value. Table 3.2 presents comparisons between

the properties and uses of UDTs and mesodata types.

CHAPTER 3. MESODATA IN DBMS 50

Table 3.2: Comparison of User Defined Types (UDT) and Mesodata Types

UDT Mesodata Comments

Type

Unique Name X X Must have a unique name within the schema

Reusable X X Can be re-used within the database and in other

databases

In-built

operators

7 X UDTs require user defined methods to be written

for each type. Mesodata types have built in oper-

ators with SQL commands.

Alter affects

column spec

X 7 UDT changes are inherited by all columns specified

by the type. Mesodata type changes are indepen-

dent of column specification.

Drop affects

column spec

X 7 UDT deletions affect all columns specified by the

type. Mesodata type deletions are independent of

column specifications

Stores data

instance

X 7 Data values are stored in the table according to

the rules and constraints of the UDT. Mesodata

types store domain data in a separate layer from

the data layer.

Uses base

types

X X UDTs are constructed from base types. Mesodata

types are complex structures in which components

are base types, eg a graph in which the nodes are

character strings.

Uses UDTs X 7 UDTs may be based on other UDTs. Mesodata

types are only constructed from base types or from

other Mesodata types.

Uses mesodata

types

7 X UDTs are defined on types that are stored in meta-

data,Mesodata are in a separate layer. Mesodata

can be constructed from other Mesodata types eg.

A tree of graphs of character strings.

continued next page

CHAPTER 3. MESODATA IN DBMS 51

UDT Mesodata Comments

Type

Allows

complex data

storage

X 7 UDTs enable storage of complex data within the

database. Mesodata does not.

Capture

domain

structure

7 X UDTs capture complex data structures. Mesodata

types capture complex domain structures.

Must exist

before column

spec

X 7 A UDT must exist before a column is specified.

Mesodata types are independent of column speci-

fications and can be created after a table is created

and populated.

Backwards

compatible

7 X As Mesodata are separate from the relational

schema, the addition of a Mesodata layer is com-

patible with currently existing schemata. UDTs

reside in the relational schema and thus require

modifications to the existing schemata before they

can be utilised.

3.7 Conceptual Model Incorporating Mesodata

When modelling a database, entity-relationship (E-R) diagrams are often used to

capture the semantic information about the ‘real world’. Chen’s (1976) widely

used symbols for ER modelling were intentionally designed to omit information

that was not considered relevant A complete description of an entity or relation-

ship may not be recorded in the database of an enterprise. It is impossible (and,

perhaps, unnecessary) to record every potentially available piece of information

about entities and relationships. From now on, we shall consider only the entities

and relationships (and the information concerning them) which are to enter into

the design of a database.

This thesis argues that attribute domain information should be included in

the modelling process. In order to represent, at the conceptual level, the inclusion

of mesodata in the ER diagram, the hexagon is suggested as the symbol for the

domain and labelled with the domain name, as in the examples shown in Figures

3.5 to 3.9.

CHAPTER 3. MESODATA IN DBMS 52

The hexagon represents an attribute ref-
erencing a mesodata domain. In this ex-
ample the attribute Telephone is defined
over the mesodata domain Exchanges

Figure 3.5. ERD An Attribute Referencing a Mesodata Domain

The hexagons represent the domains for
the attributes Item Type and Colour,
the mesodata domains are Categories
and Colours. Any number of attributes,
can reference mesodata domains.

Figure 3.6. ERD Multiple Attributes Referencing Mesodata Domains

In the ‘Days of the Week’ example (Fig-
ure 5.5 page 75), two domains are used to-
gether. The joining of the domains, Day
of Week Ontology and Multilingual
Terms, is represented by ‘stacking’ the
hexagons and connecting the attribute to
the mesodata domains with a single con-
nector line.

Figure 3.7: ERD An Attribute Referencing Joined Mesodata Domains

CHAPTER 3. MESODATA IN DBMS 53

A single attribute can reference multiple
mesodata domains in order to utilise dif-
ferent contexts for querying. In this ex-
ample, the domains of Population and
Ecology are referenced by the attribute
Postcode. Each domain symbol is joined
to the attribute with a separate connector
line.

Figure 3.8: ERD An Attribute Referencing Multiple Mesodata Do-
mains

The hexagon may also be rotated, as well
as used in ER diagrams using different no-
tations, as in this UML ER diagram.

Figure 3.9. ERD UML Notation

A complete set of modelling tools for mesodata components is not within the

scope of this research. The entity-relationship diagrams are a suggestion for their

inclusion in the conceptual modelling of a database.

3.8 Summary

Traditionally RDBs are modelled to capture selected features in a snapshot of

the UoD. The model stores the form and layout in the metadata separately from

the full description in the data document. There are only a few simple base types

from which to choose and though UDTs, in object relational platforms, model

complex data there is no platform supplied provision for complex domains.

A mesodata layer, separate from the metadata and data, provides complex

structures in which to store domain values and their inter-relationships as well as

supplying the ‘intelligence’ required to operate and manipulate them. Mesodata

types are populated by values that are stored in n-ary relations and therefore

remain mathematically equivalent to a multi-set, the foundation of a relational

database. The domain structures enable different orderings that form the bases

CHAPTER 3. MESODATA IN DBMS 54

of filters for enhanced querying and information retrieval. DBMS supplied meso-

data types would allow for the re-usable inclusion of domain information such

as in ontologies, taxonomies and concept graphs that to date have been only

application specific.

Chapter 4

Reference Data Language

Chapter 3 presented the conceptual model and underlying rationale for the meso-

data layer in RDBMS. This chapter presents the development of the Mesodata

Definition Language and Query Language extensions to SQL necessary to imple-

ment the integration of complex domains in the relational database architecture.

4.1 Aims

In order to incorporate mesodata types into an RDBMS, the main goals and

features of the new architecture were identified as:

• A separate layer to store domain values.

• Platform supplied complex structures.

• Intelligence built into these structures by way of comparison and manipu-

lation operators.

• The domain layer to be backwards compatible with existing systems.

• The domains to be reusable within the database.

During the conceptual modelling phase of this research, various data structures

were identified as being both useful and common for data storage and processing.

These structures as listed in Table 3.1 in the previous chapter have been well

researched, with known algorithms for their creation and traversal. To date,

however, each use of such a complex structure has been specifically written for a

database and, in general, not reused. The problem faced was not the design of

55

CHAPTER 4. REFERENCE DATA LANGUAGE 56

the domain structures but, rather, how to have these positioned in a database so

that they are as straight-forward to use as other platform supplied base types.

The realisation that a mesodata layer was required, formed the foundation

for definition commands that are necessary to create, alter and drop domains,

in addition to those that are needed to connect attributes with the domains and

enable querying over them.

4.2 Mesodata Definition Language

4.2.1 Create Domain Syntax

The CREATE DOMAIN command, present in SQL2 and later versions, defines a

domain in a schema and is identified by a <domain name>. The purpose of a

domain is to constrain the set of valid values that can be stored in a column of

a base table by various operations. A domain definition specifies a data type. It

may also specify a <domain constraint> that further restricts the valid values

of the domain and a <default clause> that specifies the value to be used in

the absence of an explicitly specified value or column default (ISO/ANSI 2003).

However, Melton (2002) comments that ‘.. they have proved to be less useful than

originally hoped, and future editions of the SQL standard may actually delete the

facility entirely ’.

As the characteristics of a mesodata domain are in keeping with those defined

in the SQL standard, and the existing command is rarely used, existing domain

commands have been redefined (and extended) to specify also the domain struc-

ture - the <mesodatatype>.

CREATE DOMAIN <domain_name>

AS <mesodatatype>

OF <basetype>

OVER <relation_name>

or

CREATE DOMAIN <domain_name>

AS <mesodatatype>

DOM <existing_domain_name>

mesodatatype:

GRAPH or WGRAPH or DGRAPH or DWGRAPH or TREE

CHAPTER 4. REFERENCE DATA LANGUAGE 57

or WTREE or LIST or CLIST or SET or SYNONYM

basetype:

any valid basetype in database platform

relation_name:

existing table name populated with the domain values

CREATE DOMAIN creates a structure in the mesodata layer populated with the

values stored in the specified relation name.The domain can be referenced by

any relation’s attribute that has the same basetype definition. The domain

name, its basetype and source relation are stored in a system file in the mesodata

layer so that relational table attributes can be defined using the domain name. If

the specified source relation’s structure is incompatible with the mesodata type,

the domain is not created and an error message is displayed.

Example:

CREATE DOMAIN COLOURS AS WGRAPH OF CHAR(30) OVER tblCOLOURS;

4.2.2 Drop Domain Syntax

DROP DOMAIN <domain_name>

DROP DOMAIN deletes the domain structure and its contents from the meso-

data layer. An existing reference between a table’s attribute and the mesodata

domain prevents the deletion of the domain and an error message is displayed.

4.2.3 Alter Domain Syntax

ALTER DOMAIN <domain_name> <alter_specification>

alter_specification:

RENAME <new domain_name>

CHANGE MESODATATYPE <old mesodatatype> <new mesodatatype>

CHANGE BASETYPE <old basetype> <new basetype>

CHANGE OVER <old relation_name> <new relation_name>

Example:

ALTER DOMAIN COLOURS RENAME COLOR;

ALTER DOMAIN COLOURS CHANGE MESODATATYPE WGRAPH WTREE;

ALTER DOMAIN COLOURS CHANGE BASETYPE CHAR(30) CHAR(40);

CHAPTER 4. REFERENCE DATA LANGUAGE 58

ALTER DOMAIN COLOURS CHANGE OVER tblCOLOURS tblCOLCHART;

ALTER DOMAIN allows changes to an existing mesodata domain.

RENAME changes all entries referring to the previous domain name to the newly

specified name without deleting domain values or references to the domain.

CHANGE MESODATATYPE and CHANGE BASETYPE erase the current values from

the mesodata domain then re-populate it from the source relation. An existing

reference between a table’s attribute and the mesodata domain prevents these

changes to the domain and an error message is displayed.

CHANGE OVER deletes the domain’s current values and re-populates the do-

main with values from the specified new source relation and updates the system

file in the mesodata layer with the relation name. If the specified new source

relation’s structure is incompatible with the mesodata type, the domain’s values

are not changed and an error message is displayed.

4.2.4 Refresh Domain Syntax

REFRESH DOMAIN <domain_name>

REFRESH DOMAIN re-populates the mesodata structure with values from the rela-

tion specified when it was created (or altered). If the specified source relation’s

structure is incompatible with the mesodata type, the system file and the do-

main’s values are not changed and an error message is displayed.

4.2.5 Describe Domain Syntax

DESC[RIBE] DOMAIN <domain_name>

DESCRIBE DOMAIN displays the structure, its basetype and source relation of the

specified domain.

4.2.6 Show Domains Syntax

SHOW DOMAINS

SHOW DOMAINS displays all current domains in the mesodata system file with

details of the domain names with the tables and attributes referencing them.

CHAPTER 4. REFERENCE DATA LANGUAGE 59

4.3 Mesodata Extended SQL

In order to utilise mesodata types with existing relational databases, command

phrases were developed that extend current SQL commands. These extensions

allow attribute specifications to refer to the mesodata domains for the create,

alter and drop operations of schema definition. Thus, all valid SQL statements

can be used with the following extensions.

4.3.1 Create Table Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]

table_name [(create_definition,...)]

create_definition:

column_name type [NOT NULL | NULL] [DEFAULT default_value]

type:

any platform provided type (length)

or existing Domain name

Example:

CREATE TABLE tblPRODUCTS (

ProdID int(5) NOT NULL,

Description char(20),

Colour COLOURS,

PRIMARY KEY (ProdID)

);

CREATE TABLE with an attribute specified by an existing domain name, cre-

ates the attribute in the table with the same basetype specification as the domain.

A system file, in the mesodata layer, records the domain name, table name and

attribute. Executing a DESCRIBE TABLE will display the attribute’s (inherited)

basetype specification.

4.3.2 Alter Table Syntax

ALTER [IGNORE] TABLE table_name alter_spec [, alter_spec ...]

alter_specification:

ADD COLUMN (create_definition, create_definition,...)

CHAPTER 4. REFERENCE DATA LANGUAGE 60

CHANGE COLUMN old_column_name (create_definition)

MODIFY COLUMN column_name (create_definition)

DROP COLUMN column_name

create_definition:

same as for CREATE TABLE

ALTER TABLE statements referring to a column that is, or has been, defined with

an existing domain name will update both the metadata for the table and the

system table in the mesodata layer.

Examples:

ALTER TABLE tblPRODUCTS

ADD COLUMN(Category CATEGORIES);

ALTER TABLE tblPRODUCTS

CHANGE COLUMN Colour (ProdColour CHAR(30));

ALTER TABLE tblPRODUCTS

MODIFY COLUMN ProdColour (Colour COLOURS);

ALTER TABLE tblPRODUCTS DROP COLUMN Colour;

4.3.3 Drop Table Syntax

DROP TABLE table_name

A DROP TABLE command updates the system files in the mesodata layer if any

of the table’s attributes were specified by a mesodata domain. A source relation

for a mesodata domain may be dropped, after its creation, as the values are now

stored in the mesodata layer.

4.3.4 Describe Mesodata Type Syntax

DESC[RIBE] MESODATATYPE mesodatatype_name

DESCRIBE MESODATATYPE displays the metadata required for the source relation

of the mesodata domain values.

CHAPTER 4. REFERENCE DATA LANGUAGE 61

4.3.5 Show Mesodata Types Syntax

SHOW MESODATATYPES

SHOW MESODATATYPES accesses the system files in the mesodata layer to display

the attribute names, and the relations to which they belong, that reference meso-

data domains.

4.4 Extensions to Manipulation Language

The addition of mesodata domains enables querying over data instances present

in the relations as well as over domain values in the mesodata layer. The SELECT

statement retains the standard SQL syntax with new operators for the WHERE

search-condition .

4.4.1 Select Syntax

SELECT [query-specification] select-list

FROM table-reference-list

[WHERE search-condition]

[GROUP BY column-name [, column-name]...]

[HAVING search-condition]

[[UNION | UNION ALL |INTERSECT | MINUS]

select-statement]...

[ORDER BY {unsigned integer | column-name}

[ASC|DESC]]

The new comparison operators are built into the domain structures and, con-

sequently, are dependent upon the features of that structure. These opera-

tions return a set of domain values that are then processed as WHERE value IN

{v1, v2, . . . , vn}.

CLOSETO: column-name CLOSETO value

Domain Structure: Weighted graph, Weighted tree, Directed weighted

graph.

FAR: column-name FAR value

Domain Structure: Weighted graph, Weighted tree, Directed weighted

graph.

CHAPTER 4. REFERENCE DATA LANGUAGE 62

THRESHOLD: column-name CLOSETO value THRESHOLD distance

column-name FAR value THRESHOLD distance

Domain Structure: Weighted graph, Weighted tree, Directed weighted

graph.

NEXTTO: column-name NEXTTO value

Domain Structure: Graph, Weighted graph, Weighted tree, Di-

rected weighted graph.

PARENT: column-name PARENT value

Domain Structure: Tree, Weighted Tree, Lattice.

ANCESTOR: column-name ANCESTOR value

Domain Structure: Tree, Weighted Tree, Lattice.

CHILD: column-name CHILD value

Domain Structure: Tree, Weighted Tree, Lattice.

SIBLING: column-name SIBLING value

Domain Structure: Tree, Weighted Tree, Lattice.

DESCENDANT: column-name DESCENDANT value

Domain Structure: Tree, Weighted Tree, Lattice.

NEXTITEM: column-name NEXTITEM value

Domain Structure: List, Circular list.

PREVITEM: column-name PREVITEM value

Domain Structure: List, Circular list.

INBETWEEN: column-name INBETWEEN value1 AND value2

Domain Structure: List, Circular list.

FIRST: column-name FIRST

Domain Structure: List.

LAST: column-name LAST

Domain Structure: List.

IN-SET: column-name IN-SET

Domain Structure: Set.

CHAPTER 4. REFERENCE DATA LANGUAGE 63

4.5 Summary

The mesodata layer is positioned between the data and metadata and is accessible

only through the data definition and manipulation commands presented in this

chapter. These commands have been developed to be self-evident in meaning and

follow standard SQL syntax. All extensions suggested are designed to co-exist

with core SQL functionality. These extensions to SQL enable the integration of

mesodata domains into a relational database and remove the need for specially

written application code to manage complex domain structures.

Chapter 5

Application of Mesodata

Who controls the past controls the future.
Who controls the present controls the past.

George Orwell,
Nineteen Eighty-Four

This chapter, initially published in de Vries & Roddick (2004), describes the

nature and use of mesodata with particular regard to its effect on domain evolu-

tion, data integration and querying. Examples of the applications of mesodata are

presented to illustrate the advantages the mesodata layer brings to the relational

database.

5.1 Domain Evolution

Domain Evolution refers to changes to ‘real world’ features that have been mod-

elled in databases. The evolution of domains is inescapable. Database user re-

quirements change due to a variety of reasons including new and changed laws,

organisation mergers or splits, inventions, discoveries and developments in tech-

nology. The success of relational databases and their large market share means

that masses of historical and current information is stored in them and as the

database systems evolve there is loss of information. Domain history is not pre-

served unless it is part of the transactional definition.

A domain’s values may alter without its changing being recorded within the

DBMS and thus information is lost. Over the last thirty years, many international

and universal domains have changed and some have come into being. A few

examples are;

64

CHAPTER 5. APPLICATION OF MESODATA 65

• Country names and their international country number

(there are three different codes - alpha-2, alpha-3 and numeric-3 code - in

ISO 3166),

• Telephone numbers and area codes,

• Postal codes/zip codes,

• Animal taxonomies,

• Disease taxonomies,

• Astronomical and celestial taxonomies,

• Genome data.

5.2 Change Management

General business principles for ‘Change Management’ can be applied to deal with

system evolution. Interestingly, most concur with Shankaranarayanan and Ram

(2003) core issues in schema evolution (q.v. page 8). These principles being:

Pro-activity The earlier that required changes can be identified and imple-

mented, the lower the overall cost of the change will be, both in time and

money.

Analyses Impact and Planning.

• Impact Analysis Impact and risk analysis allows the DBA to examine

the involved risk to determine the best course of action. The goal being

to understand all possible changes to the database schema, as well as

to understand the implications of each change. There are often several

ways to implement a single change. However, the impact of each type

of change may be different. It should be determined how a change may

or may not affect other parts of the schema, the data and applications.

Some present higher risks: the risk of failure, the risk associated with

a more difficult change, the risk of additional change(s) being needed,

the risk of extended down-time, and so forth.

• Planning Analysis A well-planned change is cost and time effective. It

is, of course, preferable to do it correctly the first time than to roll-back

and start again.

CHAPTER 5. APPLICATION OF MESODATA 66

Predictability/Reliability An organisation must know that the cost of effort

is worth it. A high level of predictability is required for continued success

and functionality. Changes must be incorporated into the existing schema

while maintaining the consistent and correct state of the schema, as well as

ensuring that data are consistent with the changed schema.

Availability Most changes require down-time to implement the change. Reduc-

ing the amount of down-time required to implement change will increase

application availability and the organisation’s productivity.

The most difficult of these is pro-activity. Analysis during the developmental

stage of a system attempts to capture future needs though one cannot predict

changes with any confidence. There will always be unanticipated internal and

external organisational factors to accommodate and the evolution of a domain

may occur so gradually that it is not noticed until incompatibility problems arise.

Several of these factors are discussed in the empirical study of a commercial

database system in Chapter 6.

Mesodata allows domains to be engineered so that attributes can be defined

to possess additional intelligence and structure and thus reflect more accurately

ontological considerations, including changes in the domain itself. The mesodata

layer facilitates attribute domain evolution, integration of heterogeneous data

and enables enhanced querying over existing data by the inclusion of the domain

structure.

5.3 Attribute Domain Evolution

Attribute domain evolution is the evolution of the valid range of values that a

database attribute (field) may store and the semantics they infer. For exam-

ple, an integer field of 4 bytes can store values in the range of -2,147,483,648

to 2,147,483,647 whereas a float field of 4 bytes has a range of negative values

from -3.402823E+38 to -1.401298E-45 and positive values from 1.401298E-45 to

3.402823E+38. The domain has changed even though the storage requirement

has not altered. The domain of an attribute within a specific database, however,

does not always coincide with the whole range of valid values a data type can

store. The rules and constraints of the attribute’s domain are either encoded

within the attribute specification or verified and validated within the applica-

tion code, to ensure that the recorded data are within the range of values that

CHAPTER 5. APPLICATION OF MESODATA 67

captures the semantics required within the Universe of Discourse (UoD). For ex-

ample, whilst the DATE data type has a valid range over several millennia, within

an application the valid range may be much narrower such as for birth dates in a

Genealogical table, where the valid range may be several hundred to a thousand

years, or within an Employee table where the attribute for birth dates would have

a far more limited range of values (Figure 5.1).

Figure 5.1. Ranges of Year Domains

Domain evolution may necessitate a schema change to an attribute, expanding

or contracting the data type or changing from one data type to another. Currently

when a schema changes, two events typically occur - the application is modified

and recompiled to deal with the changes and the data are converted to the new

format, either by strict, lazy or no conversion (Ferrandina et al. 1994).

Lazy conversion performs data conversion only when data are accessed and

they are still recorded with superseded formats (or values), no conversion is done

if the data are not accessed. Until all data have been accessed there exist some

that are invalid, incomplete or uncertain.

Strict conversion requires that as soon as there is a modification to the schema

all data are converted to conform with the current definition. During conversion

all applications interacting with the database must be stopped and the database

locked. Moreover, information is lost and changes cannot be reversed.

Adding a mesodata layer to the database structure, alleviates evolutionary

factors. Mesodata types can store semantics as well as operators and operations

in data structures other than base types, reducing the impact of not identifying

changes early in the development cycle. A mesodata domain allows some changes

to be made without the need for data to be converted or integrated and the

application itself may not need to change, thus reducing the risks of failure and

down-time while maintaining the reliability of the database system.

CHAPTER 5. APPLICATION OF MESODATA 68

5.4 Categories of Domain Evolution

Domain evolution can be broadly categorised into three types:

Attribute Representation Change: expansion or contraction of field, for ex-

ample, CHAR(15) to CHAR(20) or vice versa, change of base type: integer

to float, numeric to character, character to enumerated list.

Domain Constraint Change: the possible range of values that may be recorded

has changed without the metadata changing or the currently stored data

changing, for example, the minima and/or maxima change. The new con-

straints may, or may not, be applied retrospectively.

Perception (meaning) Change: the semantics of the data change, for exam-

ple, Reference 116Q15 no longer is interpreted as ‘Burbridge Road’ and is

now ‘Sir Donald Bradman Drive’, however, both interpretations are required

for historical purposes.

Ventrone and Heiler (1991) described seven forms of domain evolution that lead

to semantic heterogeneity within databases which fall into the above three cate-

gories as follows:

Attribute Representation Change
{

Identifier Changes

Domain Constraint Change
{

Cardinality Changes

Encoding Change

Field recycling

Perception (meaning) Change Granularity Change

Heterogeneous instances

Time and Unit Difference

To date all domain changes require manual effort for their successful incorpo-

ration into a DBMS, however using a mesodata layer in the database can reduce

these problems, as illustrated in the following examples. The mesodata types

selected for the examples are neither prescriptive nor proscriptive: just as the

Database Administrator (DBA) judges which attribute data type to use, so too

must the decision of which mesodata type to employ lie with the DBA.

CHAPTER 5. APPLICATION OF MESODATA 69

5.4.1 Attribute Representation Change

Example: A character code is replaced by a number code. The specification

CHAR(20) is altered to an INTEGER.

Current Typical Solution: Multiple steps are required to change an at-

tribute’s specification. These are:

• add a new attribute of type INTEGER to relation,

• write conversion procedures to convert the old data values to new

values and populate the new attribute,

• delete the old attribute,

• rename the new attribute to the old name,

• update application to handle different type.

Mesodata Solution: Use the mesodata type, LIST, that maps the existing

CHAR(20) values to the new INTEGER values. The attribute in the rela-

tion remains unchanged as does the application, as the operators to access

the changed attribute type are built into the mesodata type.

For example:

old AppCode = ‘widgetA’

new AppCode = 2131

using the mesodata domain layer, we have,

AppCode = Mdom(‘widgetA’) = 2131

Both code values 2131 and widgetA are accessible and valid. Information ca-

pacity holds as both equivalence and dominance requirements are met.

It is recognised that not all attribute type changes can be handled using

mesodata, for example from BLOB to INT, however there are many instances

where the evolutionary process can be alleviated.

5.4.2 Domain Constraints Change

Example: ‘Country of birth’ is an attribute contained in a number of data-

bases, the allowable values of which have changed significantly during the

twentieth century. When a country name changes, it may be a one-to-one

change, such as Rhodesia to Zimbabwe, a many-to-one change, for example

{West Germany , East Germany} to Germany or one-to-many change, as

CHAPTER 5. APPLICATION OF MESODATA 70

in Yugoslavia to {Bosnia Herzegovina, Croatia, Macedonia, Serbia, FYR

Montenegro, Slovenia.}

Current Typical Solution: Convert all old values and replace them with new

values. Not only is this an ongoing task, it also results in loss of information.

Mesodata Solution: Utilise the mesodata types WGRAPH or TREE to map

old values to the new values. The domain of ‘countries’ includes All country

names, current and superseded, which are then accessible to the DBMS with

the extended SQL operators and original values are not lost.

5.4.3 Domain Perception (meaning) Change

Example: A perception change may entail an absolute change where there

is new interpretation of values in a domain or it may be the addition of

synonyms. The days of the week stored numerically from 1 to 7 inclusive

may interpret the value ‘1’ as ‘Monday’, equally valid are the interpretations

‘lunes’, ‘lundi’, ‘maandag’, ‘Montag’, ‘segunda-feira’ and so forth.

Current Typical Solution: The application may be parameter driven to select

a single preferred interpretation (such as language setting) or the users must

learn the dominant term.

Mesodata Solution: A mesodata layer of SYNONYMS allows regularly used

mappings to be accommodated in a database. Therefore we have

1 = ‘Monday’ = ‘lundi’ etc.

5.4.4 Minimise Change

Mesodata helps to reduce potential systems changes to one of two simpler solu-

tions

1. A change to the schema definition that requires no change to either the

application or data.

2. A change to the mesodata reference relation with or without a change to

the schema but again, without the need to change either the application or

the data.

CHAPTER 5. APPLICATION OF MESODATA 71

Schema integration and transformation is not required as the mesodata type

has the operators and ‘intelligence’ to replace these tasks. Information capacity

is not only maintained, as both requirements of equivalence and dominance are

met, but also in many cases expanded as the cartesian product of the mesodata

domains is greater than the original domain of the relation.

5.5 Data Integration

A key problem is raised by semantic heterogeneity, as occurs within a data-

base through domain evolution, as well as when data duplicated across multiple

databases are represented differently in the underlying database schemas. So-

lutions need to be developed to manage this diversity. Being able to identify

and specify the relationships between two or more items of replicated data and

constructing a mapping to store those relationships, provides a tool to create an

integrated view of overlapping datasets from multiple databases. As well as this,

the mesodata mappings provide for semantic similarity to be measured so that

conceptually near records can be included in views and queries. This project has

investigated the utility of different complex data structures (Roddick, Hornsby &

de Vries 2003, Rice, Roddick & de Vries 2006) for domains from synonym lists to

mappings that include conceptual distance and methods by which similarity or

dissimilarity can be measured.

As an example, consider the problems resulting from the logical integration

of data from two databases defined over different schemata for the purposes of

executing database queries, as shown in Figure 5.2.

RelA RelB
PartId CHAR(5) PartId CHAR(5)
Description CHAR(20) ItemDesc CHAR(20)
Colour CHAR(8) ItemCol CHAR(6)
Category CHAR(10) ItemType CHAR(12)
SupplierCategory NUM(5)

Figure 5.2. Heterogenous but Similar Schemata

While Description and ItemDesc may be semantically equivalent (and thus

simply merged), Category may exist within a product hierarchy in which ItemType

is a non-leaf node, Colour and ItemCol may take their values from nodes of a colour

graph (such as that in Figure 5.3) and SupplierCategory may have no equivalent

CHAPTER 5. APPLICATION OF MESODATA 72

Blue Green Yellow

Navy
Turquoise Olive Lemon

.2 .15 .3

.3.2
.25 .2 .4 .2 .3.15

White

Apple Orange

.3

.4

Red

.
3

.4

.4

Purple

.3

#0000ff

#005d00 #ffff00

#00005d
#5d5d00

.7

#ffffff #5d5d5d #000000

.7

Grey Black

0

0

0

0

0

00

0

Figure 5.3. Example Colour Chart as Weighted Graph

attribute. Consider now the following query executed over the combined data

and using a hybrid schema RelAB:

SELECT PartId, Colour

FROM RelAB

WHERE Category = ‘Seat’

AND Colour = ‘Green’

The mesodata response to this is to utilise the colour graph to translate Item-

Col to the closest defined Colour and to use the product hierarchy to convert

instances of ItemType to Category. In addition, this could be achieved fairly

automatically if the DBMS had access to appropriate domain definitions. Un-

fortunately, in many cases, the overhead of creating these definitions is too large

and other options, such as coercing data to the most general common format,

is adopted. Indeed, in practice, the constraints imposed by DBMS often have a

large impact on design decisions.

In addition to the simplifications inherent for design and implementation is-

sues, by adopting the accommodation of intelligent domains they can also be

CHAPTER 5. APPLICATION OF MESODATA 73

utilised to provide richer querying capability. For example, if an attribute is

defined over a hierarchy or a graph, there is access to advanced semantic con-

cepts such as descendant, closeness and so on (Kedad & Métais 1999, Roddick

et al. 2003). In the example below, the operators DESCENDANT and CLOSETO

are defined to operate over specific mesodata types.

Seat005D00Industrial ChairIC002

Seat5D5D00Industrial ChairIC001

SeatjadeDining ChairDC023

SeatgreenDining ChairDC001

CategoryColourDescriptionPartId

Each datum value matches
a domain value

Figure 5.4: Attribute ‘Colour’ Referencing Mesodata Type Weighted
Graph

SELECT PartId, Colour

FROM RelAB

WHERE Category DESCENDANT ‘Seat’

AND Colour CLOSETO ‘Green’

Thus, in our example for the attribute ‘Colour’ (Figure 5.4), the base type

would remain unchanged (eg. CHAR(8)) as would the data values. However, the

values of both Relation A and Relation B exist within a weighted graph of colours

and operations such as Find all parts with a colour close to green would not then

require specific code within the application but would be handled by the DBMS

through reference to the mesodata type.

5.6 Enhanced Queries

Stonebraker & Moore’s (1996) classification of database management systems cat-

egorises relational database systems using SQL as ‘simple data with queries’ and

object-relational database systems using SQL and user-defined functions as ‘com-

plex data with queries’. This thesis proposes an additional category of ‘complex

domains with queries’ into which both relational and object-relational database

systems can fit.

CHAPTER 5. APPLICATION OF MESODATA 74

Capturing the inherent organisation of a domain within a database system is

only done when the importance of the relationships between attribute values are

specified in the system requirements. For example, accounting systems not only

record the accounts’ transactions but also record the hierarchy of the chart of

accounts so that various reports may be generated within the hierarchy. There

are, however, many domain structures that are overlooked when specifying a

relational schema as their intrinsic value is not recognised or the complexity of

the domain’s structure has been managed within the application code.

5.6.1 Example of a Circular Domain

Time is one such domain where many of its aspects are usually managed within

the application and not the metadata. Days of week in Stanford KSL’s simple

time ontology are hard coded with their English names. Specifically dated holi-

days may be defined by the user, such as 1 January, but weekends and weekdays

are not defined. The simple time ontology has been designed primarily to look

at time in a linear way and it awkwardly deals with some recurring time events

but not with all. There are two ways we deal with time events: one is the linear

time as in the simple time ontology, the other is circular time where we only deal

with recurring events. Weeks, months, and seasons are not linear concepts but

circular, as are clock time and astrological phases. A clock face is circular with

good reason.

The domain days of the week is commonly used in applications for scheduling

events. One is not so interested in the date upon which an event occurs but

rather which day it takes place, such as every Wednesday or Friday. A week is

conceptualised as seven consecutive days, as well as, a weekend and five weekdays.

Days of the week are cyclic; Monday to Wednesday is different from Wednesday

to Monday.

A circular list mesodata type supplies operations for traversal, comparison,

addition and subtraction. This mesodata type populated from an ontology for

‘Days of Week’ provides the context and semantics of the circular list and thus

we have operations such as PREVITEM and NEXTITEM, ‘Wednesday’ + n,

INBETWEEN ‘Monday’ AND ‘Friday’ and also the ability to query for ‘weekday’

or ‘weekend’. As illustrated in Figure 5.5, the mesodata domain stores the values

from the ontology, which in this example utilises a circular list of synonyms

that has terms both in English and French, enabling querying in either language

without the need for further code to translate.

CHAPTER 5. APPLICATION OF MESODATA 75

Figure 5.5. Days of the Week with English and French Terms

5.7 An Object-Relational Example

The following example illustrates the use of mesodata in both an object-relational

and relational system to highlight the difference between a user-defined data type

and a mesodata type.

An object is required to store information about a person including a tele-

phone number. A person’s telephone number (Figure 5.6) may be seen as (A) an

attribute of the entity PERSON if it is assumed that there will be only one num-

ber per person, or (B) as a related entity with a one-to-many cardinality. Either

way the value of the number is regarded as a simple data type. In a relational

database the definition for PERSON may be

Option A

create table PERSON(

PID INTEGER not null,

FAMILY_NAME CHAR(30) null ,

GIVEN_NAME CHAR(30) null ,

TELEPHONE CHAR(30) null ,

constraint PK_PERSON primary key (PID))

CHAPTER 5. APPLICATION OF MESODATA 76

Figure 5.6. Configurations for Telephone Numbers

Option B

create table PERSON(

PID INTEGER not null,

FAMILY_NAME CHAR(30) null ,

GIVEN_NAME CHAR(30) null ,

constraint PK_PERSON primary key (PID))

create table TELEPHONE(

PID NUMBER(5) not null,

TELEPHONE CHAR(30) not null,

constraint PK_TELEPHONE primary key (PID, TELEPHONE)

constraint FK_TELEPHON__PERSON foreign key (PID)

references PERSON (PID))

whereas in an object-relational database the relation definition covering both

option A and B may be

CREATE TYPE PHONE_ARRAY IS VARRAY (10) OF CHAR(30)

create table PERSON(

PID INTEGER not null,

CHAPTER 5. APPLICATION OF MESODATA 77

FAMILY_NAME CHAR(30) null ,

GIVEN_NAME CHAR(30) null ,

TELEPHONE phone_array ,

constraint PK_PERSON primary key (PID))

in addition to which a user-defined function must be written to retrieve the indi-

vidual telephone numbers.

5.7.1 Hierarchical Domain

Even though the more complex data type of variable array has been created in the

latter example, the values themselves are still being stored in the same format, i.e.

CHAR(30). Neither format retains information about the domain of telephone

numbers.

In Australia these numbers are not random. Land line telephone numbers

belong to a state, a region and an exchange. There is a hierarchical structure to

their allocation and from a number one can retrieve the exchange name, state, lat-

itude, longitude and adjoining exchanges. The additional information contained

in this domain is not often captured as only the values of telephone numbers are

stored.

In order undertake an analysis of business activity according to geographic

location, in either of the above constructs, would currently require schema mod-

ification and data integration to accommodate the additional tables, attributes

and foreign keys for the domain data values as well as specifically written appli-

cation code to traverse the domain structure in order to produce analysis reports.

These modifications produce a new version of the database.

Creating a mesodata TREE containing the hierarchy of the telephone domain

and referring the attribute of the telephone number to it, in either the object-

relational or relational platform, enables the analysis reports to be generated

without modifications to the application code or the schema of the database.

5.8 Summary

Though an attribute change in itself may not be a complex process it is not a

trivial task. Database evolution and maintenance consists of many such simple

CHAPTER 5. APPLICATION OF MESODATA 78

steps as shown in (Sjøberg 1993) most of which also necessitate changes to appli-

cation code and system down time. The mesodata layer, an additional domain

definition layer containing domain structure and intelligence, provides the means

to manage some aspects of attribute domain evolution. Its use when a domain

changes, when the semantics of a domain alter or when the attribute’s specifica-

tion is modified can reduce or remove the necessity of schema conversion, schema

integration, data conversion and application change as well as maintain or expand

the schema’s information capacity.

Semantic heterogeneity problems are alleviated by populating mesodata struc-

tures with data from ontologies, taxonomies, concept graphs and so forth due to

the ‘intelligence’ of the structures that manage the inter-relationships of the do-

main values. Incorporating domain information also enhances querying power

by adding advanced semantic concepts to comparison operators used to retrieve

information from the database.

Although the mesodata layer has been developed with relational databases in

mind, their incorporation into object relational databases is not only feasible but

would provide the same benefits as argued for RDBs.

Chapter 6

Empirical Study of a Database

System

This chapter reports on the study of the evolution of a commercial database

system. It includes an overview of the system investigated, a description of its

evolution and discussion of how the mesodata approach would benefit an evolving

system.

6.1 Motivation for the Study

Modelling data in traditional relational databases requires specifying attributes

over a restricted set of data types. These modelling techniques, in general, capture

the ‘nature’ of the data value but do not capture information about the attribute

domain or how a specific value may be related to other values within that do-

main. A number can be compared with other numbers, however the semantics

of the number is discernible only when the domain is viewed as a whole. Year

2005 has a very different meaning from postcode 2005 and both domains require

knowledge of the unit of measure to interpret the value and their relationships to

other values. For example, postcode 2005 is not necessary adjacent to postcode

2006. Exacerbating this modelling problem is the fact that domains and database

systems’ requirements change, necessitating metadata changes, application code

modifications and data conversions.

Structural alterations to databases have been well researched, as described

in the literature review, with various techniques explored for schema evolution,

schema transformation and schema integration, but none can currently deal with

79

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 80

all aspects of evolution and few of them deal specifically with the problem of

attribute domain evolution.

To ascertain the magnitude of the modelling problem, an empirical investiga-

tion was undertaken of the evolution of a commercial database system over nine

years to measure and delineate changes to the database that are (a) structural

and (b) attribute domain related. The goal of this study was to discover from

these data what impact the mesodata approach would have on the effort needed

to incorporate changing demands on the system’s schema and as a consequence

its data.

Sjøberg’s (1993) work provides change statistics for a database system over

eighteen months, covering six months of development and twelve months of field

trials. This study complements his work as it follows the changes in a database

system over many years. The data in this study describe the evolution of the

released versions rather than the details of the ‘develop, test and revise’ cycle as

researched by Sjøberg.

6.2 System Overview and Evolution

AGEIS is a relational database system (Figure 6.1)1 which is designed to cater for

the needs of aged care organizations in Australia by providing various functions

including the following;

• Financial control, including debtors, creditors, general ledger, inventory and

asset management,

• Management of aged care facilities and services,

• Government funding claim and reconciliation,

• Statistics and reporting.

This system and its development are representative of small-to-medium sized

database systems and worthy of empirical investigation. The software is installed

at eight sites. One client has 1800 independent living units, with about 2800

residents, and about 5,000 on the waiting list. They have 6 nursing homes with

approximately 700 residents, and 300 on the waiting list. They also have about

1AGEIS is a commercial product of Versatile Solutions Pty. Ltd.

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 81

Figure 6.1. Schematic of the Database System
c©Versatile Solutions Pty Ltd

230 community care clients, with about 200 on the waiting list. Their food ser-

vices division supplies around 600,000 meals per annum to its aged-care facilities

as well as to external organisations. In addition, they have about 900 staff.

Since 1995, data definitions have been dated with their last modification and

from 1999, an audit trail has been maintained of all metadata modifications. The

date stamp is the date on which the definition was moved from ‘development’

to ‘release’. In December 2004, a snapshot was taken of the current metadata

configuration. This snapshot in conjunction with the audit trail has been analysed

to provide a ‘biography’ of a database system.

6.2.1 System Metrics

The current version of the database system, at the time of the snapshot, consists

of 197 relations - 16 of which are ‘work files’ for generating summaries and re-

ports - with 3087 attributes representing 1446 distinct domains, 287 indices and

139 logical views. During the period analysed, the system has grown from an

original 52 relations to 197 relations, as shown in Figure 6.2, expanding from 401

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 82

Milestones of the System
pre-1995 Legacy system: menu driven with a text-based user inter-

face
1995 The ‘ACE’ Financial System: event driven with a graph-

ical user interface
1996 - 1997 Asset Management added to ‘ACE’
1998 ‘AGEIS’ integrating the original ‘ACE’ financial system

with new modules for other aspects of aged care adminis-
tration

1999 Staff Roster management added
2000 Role-based System Security introduced
2001 - 2004 Configuration modifications

attributes2 initially to 3087, as illustrated in Figure 6.3. The database did not, of

course, undergo a monotonic growth of attributes and relations. During the nine

years, as new relations were created (Figure 6.4), attributes were created, deleted

and modified (Figure 6.5). The motivations for these modifications to the data-

base system fall into three classifications: (1) Clients’ requests for new features,

(2) New or changed laws, and (3) New or changed computing environment.

0

20

40

60

80

100

120

140

160

180

200

N
o

of
 R

el
at

io
ns

Year

Evolving Database
Relation Totals

Relations 52 89 92 167 185 188 194 195 197 197

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.2. Growth of Relations

pre-1995 Legacy system with a ‘green screen’ text-based user interface for resi-

2NB: The number of attributes in a relation was not able to be calculated without audit
trail data. Therefore, prior to 1999, the precise number of attributes and consequently domains
is unknown. Numbers shown for 1995 to 1998 are a best approximation.

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 83

0

500

1000

1500

2000

2500

3000

3500

N
o

of
 A

ttr
ib

ut
es

Year

Evolving Database
Attribute Totals

Total Attributes 401 771 804 1721 2328 2370 2802 2877 2919 3087

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.3. Growth of Attributes

0

10

20

30

40

50

60

70

80

N
o

of
 R

el
at

io
ns

Year

Relation Addition

New Relations 52 37 3 75 18 3 6 1 2 0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.4. New Relations

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 84

0

100

200

300

400

500

600

700

800

900

1000

N
o

of
 A

ttr
ib

ut
es

Year

Evolving Database
Attribute Activity

Deleted 0 111 7 33 19 3 20 20 14 0

Added 401 481 40 947 606 45 432 81 56 168

Modified 0 0 0 0 1 0 24 151 14 6

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.5. Attribute Movement

dent care.

1995 The ‘ACE’ Financial System was created with an event driven graphical

user interface incorporating the legacy system. The development was mo-

tivated by clients requesting a GUI interface and integration with an ‘MS

Windows’-compatible platform. The application code platform changed

from RPG to Visual Age. This version contained 52 relations.

1996 - 1997 New and current clients requested that Asset Management be added

to ‘ACE’. The database expanded to 89 relations and also required modifi-

cations to the existing relations pertinent to Banking, Sales and Purchases.

The addition of this financial module required an additional 481 attributes

and 111 attributes were no longer necessary and were deleted.

1998 ‘AGEIS’ integrating the original ‘ACE’ financial system with new modules

for other aspects of aged care administration. The database at this stage

had 167 relations. The development of AGEIS was actuated by clients’

requests for more features in the software as well as government policies on

reporting requirements for the Aged Care Industry.

1999 A Staff Roster management module was added at a client’s request to

replace a separate legacy DOS system in order to interface between the

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 85

financial management and an external payroll package. Taxation calcula-

tions on sales and purchases altered as a consequence of new taxation laws

to be introduced in 2000. The database had 185 relations.

2000 Role-based System Security introduced to comply with the new Privacy

Act, as well as to cater for the changes in a client’s hardware configuration.

Prior to this only authorised personnel had access to a workstation and,

therefore, the software. From this point, the integrated system was required

to run on all workstations accessible to a range of personnel with varying

levels of authority. The database contained 188 relations.

2001 - 2004 Clients’ upgrading their hardware and operating systems required

some minor modifications. Developer optimisations were also carried out,

resulting in a total of 197 relations.

6.2.2 Stable Characteristics

2897 attributes (1381 domains), i.e. about 94% of the attribute data definitions,

in this system have not been altered since their creation. Whilst this figure may

seem initially to defy the widely held belief that clients do not always know what

they want, one should remember that these are attributes that have been through

the whole development cycle prior to their release. It is, however, reassuring that

this cycle did produce such a stable system and perhaps reflects the abilities of the

software engineers and developers, as well as the good communication between

the developers and their clients. In particular, note that the major changes to

the system in 1998 and 1999 were very stable (Figure 6.6) with 99% of attributes

added in those two years remaining unchanged.

6.2.3 Deleted Values

Almost all of the deleted attributes in this database system were as a result of

application change rather than data values no longer being required. The total

number of deletions over the nine years is 227 (Figure 6.7), of which 165 deletions

were from extract, summary or work relations and 7 deletions were direct moves

from one relation to another. Of the remaining 55, only one domain was no longer

required, with all the other domains being stored in different configurations. That

is, some domains were denormalised, some merged and others split with the

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 86

0

100

200

300

400

500

600

700

800

900

1000

N
o

of
 A

ttr
ib

ut
es

Year

Unmodified Attributes

Attributes 224 475 33 944 591 41 289 79 55 166

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.6. Unmodified Attributes

results stored as new attributes. During the analysed period four relations were

deleted.

6.2.4 Modified Domains

Data relevant to modifying domains and attributes were collected from 1999 on-

wards, hence modifications to attributes for the first four years are reported as

zero in Figure 6.5. The six percent of attributes that have been modified pertain

to 69 different domains affecting 196 attributes. The peak period of attribute

modification took place in 2002, (Figure 6.8), to deal mainly with hardware and

operating system changes rather than as result of added or altered functions to the

system. These changes include 158 data definition changes, of which 5 were type

changes, with the remaining 38 attributes having their data dictionary (descrip-

tion) changed with the actual domain modification (constraints and semantics)

being handled within the application code. Four domains (7 attributes) that had

their data definitions altered, reverted to their original specification during 2002.

Modified and new domains affected 161 of the 197 relations (Figure 6.9), that

is only 36 relations have remained unaltered since their creation. While we have

previously noted that 94% of attributes are stable, 82% of relations are not. On

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 87

0

20

40

60

80

100

120

N
o

of
 A

ttr
ib

ut
es

Year

Attribute Deletion

Deleted Attributes 111 7 33 19 3 20 20 14

1996 1997 1998 1999 2000 2001 2002 2003

Figure 6.7. Deleted Attributes

0

20

40

60

80

100

120

140

160

N
o

of
 A

tt
rib

ut
es

Year

Attribute Modification

Modified Attributes 1 24 151 14 6

1999 2001 2002 2003 2004

Figure 6.8. Modified Attributes

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 88

average a relation has been modified 3.6 times with a maximum of 8 times.

0

10

20

30

40

50

60

70

80

90

100

N
o

of
 R

el
at

io
ns

Year

Relation Modification

Modified Relations 31 22 90 98 15 75 46 30 12

1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.9. Modified Relations

6.3 Data Conversion and Maintenance

In the nine years this database has undergone every type of evolutionary operation

pertinent to schema evolution which were categorised in (Roddick, Craske &

Richards 1993) as follows:

• Domain/Attribute Evolution (Attribute Domain Change)

? Expanding an attribute domain3

? Restricting an attribute domain

? Changing the domain of an attribute

? Adding an attribute to the database

? Renaming an attribute

• Relation Evolution (Structural Change)

? Adding a relation

? Deactivating a relation

3Roddick’s use of the term domain refers to the data type

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 89

? Activating a relation

• Attribute-Relation Assignment Evolution (Structural Change)

? Adding an attribute to a relation

? Deactivating an attribute

? Promoting an attribute

? Demoting an attribute

? Splitting a relation

? Partitioning a relation

? Joining two relations

? Coalescing two relations

Versatile Solutions, the owner of the system, undertakes strict conversion

of data to ensure that data are consistent with a new schema. Population

of new and modified attributes requires using default values or converted val-

ues from other domains, which may have been specialised, generalised or cal-

culated. New schema design required conversions to create links where they

had not existed before while preserving historical information. Versatile Solu-

tions’ CEO, Arthur Verster stated that ‘It is crucial not to lose client trust

in the validity of historical data, as in this industry the data are needed to re-

port to government and comply with the law ’. Thus attesting to the importance

of information capacity preservation (Hull 1986, Qian 1996, Miller, Ioannidis &

Ramakrishnan 1993, Miller et al. 1994a, Miller, Ioannidis & Ramakrishnan 1994b)

and data conversion/integration in database evolution.

The most effort-intensive data conversions took place when converting from

legacy systems. The factors contributing to the complexity of data conversions

were;

• Lack of data entry standards resulting in multiple terms for one meaning

(synonyms),

• Valid domain values changing over time resulting in some entries no longer

being valid and others acquiring different semantics,

• The introduction of laws that meant that values had to be calculated ac-

cording to a new set of criteria,

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 90

• Client organisational changes affecting veracity/validity of existing data

values,

• The new model representing entities, attributes and relationships differently

from the legacy model resulting in conflicts.

The conversion of much of the data first required industry domain experts

to manually inspect, and correct, the data for redundancies, errors, ambiguities

and missing information. After which the data was processed by specifically

written conversion procedures to populate the relations. For just one domain,

at one site, this entailed 80 working-hours of preparation before the data were

programmatically converted. Note that this is a small-medium sized enterprise

(SME) and recognise that the cost, both in time and money, for data conversion

and integration is significant.

Database evolution, as presented in this thesis, includes not only metadata

evolution but also attribute domain evolution, which can be broadly categorised

into three types;

Attribute Representation Change: expansion or contraction of field,

Domain Constraint Change: the possible range of values that may be recorded

has changed without the metadata changing or the currently stored data

changing,

Perception (meaning) Change: the semantics of the data change.

Using mesodata structures allows historic data to be kept instead of deleting

and/or editing, minimising information loss and reducing the need to convert data

with every release or version. The different mesodata types reflect the properties

of the domain, e.g. a tree, matrix or circular list, and not just the values within

the domain. The inbuilt intelligence of the mesodata type also reduces the need

to change application code as a change in the domain affects only the domain

and not the whole system. Constraints and rules residing within an intelligent

domain do not require metadata changes or code changes.

For example, there is an attribute within the database for recording a resi-

dent’s ‘country of birth’. The the allowable values of which have changed signif-

icantly during the twentieth century. When a country name changes it may be

a one-to-one change, such as Rhodesia to Zimbabwe, or one-to-many change, for

example Yugoslavia to {Bosnia Herzegovina, Croatia, Macedonia, Serbia, FYR

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 91

Montenegro, Slovenia}. The dilemma being to record the name of a country as

it was at the time the person was born or as it is now.

In addition to the evolution of the domain itself, there were no entry standards

in the legacy system to govern the form that a country’s name should take. This

lack of standards resulted in a variety of terms being used for a single country,

such as N.Z., NZ and New Zealand, and U.K., UK, United Kingdom, G.B., GB,

Great Britain, England, Scotland, Wales, Northern Ireland. To resolve these

issues all old values were converted and replaced with new values.

The mesodata solution for the attribute for ‘country of birth’ is to utilise the

mesodata types WGRAPH or TREE to map old values to the new values. The

domain of ’countries’ includes All country names, current and superseded, which

are then accessible to the DBMS with the extended SQL operators and original

values are not lost.

This empirical study has shown that over five years 6% of attributes have

evolved with 81% being attribute representation changes and 19% domain con-

straint or perception changes. All of these changes could have been handled

using mesodata types. Additionally, domains defined within the mesodata layer

are re-useable, which would have reduced the 196 attribute changes to 69 domain

changes. Few of these domain modifications would have required schema, data or

code alterations after initially implementing the three-layered database. Evaluat-

ing what effect the mesodata approach would have on the system’s development,

it is estimated that it would reduce cost by at least 10%4.

6.4 Summary

The database system in this empirical study is representative of a system in an

SME that has evolved from a relatively simple financial system to an integrated

system handling multiple areas within its universe of discourse (UoD). The data

available for this analysis consist of date-stamped changes to relations over a

period of nine years, as well as, date-stamped modifications to attributes over

five years. Investigation of these data reveal the system’s growth as summarised

in Table 6.1. The primary motivations for modifications to the system fall into

three classifications: (1) Clients’ requests, (2) New or changed laws, and (3) New

4A more precise estimation cannot be made as there are no data concerning application code
modifications as a result of domain change.

CHAPTER 6. EMPIRICAL STUDY OF A DATABASE SYSTEM 92

Table 6.1. Analysis Results
Feature Category

of Change
379% Increase Number of Relations Structural
2968% Increase Number of Attributes Structural &

Attribute Domain
82% Modified Number of Relations Structural
6% Modified Number of Attributes Attribute Domain
7% Deleted Number of Attributes Structural

or changed computing environment. It is also inferred that attribute specifica-

tions are quite stable after the development cycle as 94% of attributes did not

change. In contrast, relation structures are not, with 82% of them modfied at

least 3.6 times with a maximum of 8 times. The 6% of attributes that evolved

over five years required effort-intensive data coercion and conversion, in addition

to application code modifications.

Investigation of the applicability of the mesodata approach to system design

revealed that the initial conversion from legacy data would have been simplified

and that the inbuilt intelligence of mesodata types would have accommodated

the subsequent changes to attribute domains thus reducing effort and costs.

Chapter 7

Prototype Model

This chapter provides an overview of the prototype that has been developed to

validate the concepts presented in the previous chapters. The prototype has

primarily been developed as a proof of concept and consequently the goal was

not to implement a complete solution containing all mesodata types previously

described, but rather to provide an example of the efficacy of mesodata domains.

7.1 Prototype Evaluation

Introducing a mesodata layer into a relational database system has been argued

in this thesis to provide the following benefits:

• The facilitation of attribute evolution by using mesodata types to store

domain values so that attribute representation changes, constraint changes

and perception changes are implemented with minimum information loss

and application code changes.

• The facilitation of data integration by using mesodata types to store similar

terms and their inter-relationships within a domain so that data need not

be coerced and/or converted.

• The provision of enhanced querying by incorporating all valid domain val-

ues in the mesodata layer including values that may not be present in the

current data layer.

93

CHAPTER 7. PROTOTYPE MODEL 94

7.1.1 Evaluation Criteria

The evaluation of the prototype model has two major sections, firstly that the

model functions correctly with the new data definition and data manipulation

commands documented in Chapter 4, and secondly that the claimed benefits are

verified in the results. The first phase of evaluation, the prototype functionality,

detailed in Appendix D, verifies that all proposed syntax is executed correctly.

The second phase more importantly shows that mesodata domains do provide

the benefits claimed.

The evaluation criteria for the second phase of testing are;

• Enhanced Querying,

• Attribute Representation Change,

• Attribute Constraints Change,

• Attribute Perception Change,

• Domain Values Change,

• Data Integration.

A sample session of the execution of the prototype model is documented in

Appendix B.

7.1.2 Prototype Platform

The prototype model was built using the MySQL (version 4.0.12) database plat-

form and msql-connector-java-3.08 and written in Java version 1.4.1-b21. The

model simulates an SQL server with a three layer database platform. The main

components of the model, as shown in Figure 7.1, are the client application, the

mesodata wrapper, the MySQL server, the mesodata layer, the metadata and

data.

The client application user interface is a command line tool for entry of both

standard and extended SQL statements and for the display of query results.

The mesodata wrapper consists of an SQL parser to process the extended SQL

statements and to interact with the mesodata layer. The MySQL platform and

its interaction with the database has not been altered in any way, to ensure

backwards compatibility of the mesodata layer with existing relational databases.

CHAPTER 7. PROTOTYPE MODEL 95

To reduce anomalies in processing, the database attributes are specified with base

types that map precisely between MySQL and Java (q.v. Appendix G).

7.1.3 Prototype Components

In order to reproduce a three layer system, two tables are created as ‘system’ files

(denoted as mesodata types in the deployment diagram), that store structural

information regarding mesodata domains. These files are

• the DOMAIN table to store the created domains, their mesodata types,

base types and source relation and,

• the MESODATA REFERENCE table to store the attribute names, and

relation names, that have been defined over a particular domain.

The implemented mesodata types in the prototype are weighted graph, directed

weighted graph and list. The graphs are constructed with inbuilt operators for

EQUALTO, CLOSETO, and ADJACENCY using the unifying semantic distance

model (Roddick et al. 2003) in which a graph-based approach is used to quantify

the distance between two data values. This approach facilitates a notion of dis-

tance, both as a simple traversal distance and as weighted arcs. In this prototype,

the graphs have weighted arcs with values from 0 to 1 representing the degree of

similarity with equality (synonym) being 0 and the default maximum value for

‘close similarity’ set to 0.5.

The populated domain structures, domain data, are also stored as tables

within the mesodata layer. These tables are deemed as not directly accessible

from the client application but only via the extended SQL operators that are

built into the mesodata type. In order to visually separate the mesodata ‘sys-

tem’ files from the data relations, all mesodata files names are in upper case and

other relations in lower case. Mesodata type specifications, that is, the required

structure of a source relation and the valid operators over them, are stored as

constants within the mesodata definition language (meso DDL) and manipulation

language (meso DML). It is envisaged that mesodata types can be described by

XML, allowing for more flexibility in the design of the structures. The structures

themselves are easily described, encoding the inbuilt logic is more difficult and is

on-going research.

CHAPTER 7. PROTOTYPE MODEL 96

Figure 7.1. Deployment Diagram

7.1.4 Query Parser

The ‘engine’ of the prototype model is the mesodata wrapper. This component

parses the SQL statements to capture the new mesodata operators and process

them within the mesodata layer. An entered statement is split into Mesodata

Query Language (Mesodata QL) and Standard SQL phrases and the Mesodata

QL phrase is executed first over the domain data and then over the database

data. For example, a query for Find all products in a shade of green is

select * from product where Colour closeto ‘green’.

The phrase Colour closeto ‘green’ is executed over the domain data to

retrieve all valid values for comparison. The phrase select * from product is

a standard SQL phrase that is combined with the results from the domain and is

subsequently handled by the SQL server over the database data.

When an entered statement is a more complex combination of standard and

extended operators, the Mesodata QL phrase is separated and processed first and

the result is then recombined with the original standard SQL statement’s phrases

for further processing. A query such as Find all customers, and their invoice

numbers, who bought a type of chair in a shade of yellow is

select CustomerName, sales.InvoiceNo, ItemType, Colour

from customers, product, sales, salesitem

where ItemType CLOSETO ‘chair’ and

Colour CLOSETO ‘yellow’ and

customers.CustomerID = sales.CustomerID and

sales.InvoiceNo = salesitem.InvoiceNo and

product.PartID = salesitem.PartID

In this example, the two mesodata QL phrases ItemType CLOSETO ‘chair’

CHAPTER 7. PROTOTYPE MODEL 97

and Colour CLOSETO ‘yellow’ are processed over the domain data and their

results combined with the remaining standard SQL phrases. Figure 7.2 illustrates

the major activities that take place within the mesodata wrapper component.

Figure 7.2. Activity Diagram for Mesodata Wrapper

7.2 Example Database

The example database was initially created containing five relations as shown in

the ER diagram in Figure 7.3 with Mesodata domains for Categories and Colours.

The mesodata domains were created as

• a weighted graph of twenty-five Colours, and

CHAPTER 7. PROTOTYPE MODEL 98

• a directed weighted graph of seventeen Categories.

The source relations for these domains were populated with SQL source files listed

in Appendix C.1 and C.2 respectively.

The relations were populated with sample data of

• 27 records in relation Product (Appendix C.4),

• 9 records in relation Suppliers (Appendix C.6),

• 27 records in relation Customers (Appendix C.5),

• 25 records in relation Sales (Appendix C.7), and

• 25 records in relation Salesitem (Appendix C.8).

Figure 7.3. Entity-Relationship Model of Test Database

7.2.1 Evaluation of Model

Scenarios were designed to represent the six evaluation criteria listed previously.

A few examples of each of these criteria are presented here, with the complete

evaluation schedule detailed in Appendix E.

CHAPTER 7. PROTOTYPE MODEL 99

7.2.2 Enhanced Querying

In the example database there are two mesodata domains, COLOURS and

CATEGORIES which contain more domain values than are recorded in the

relation product. These domains also hold a similarity measure between each

value in the domain. The attribute product.Colour is defined over the domain

COLOURS and the attribute product.ItemType is defined over the domain

CATEGORIES.

Queries to retrieve records that are equal to (=) a specified value return only an

exact match to the value whereas a query for records that are similar (closeto)

return a larger record set. The ‘=’ comparison operator being standard SQL,

and ‘closeto’ a mesodata QL extension.

7.2.2.1 Query: ‘Which products are green?’

select * from product where Colour = "green"

PartID ItemType Colour SupplierID Price

EG123 ErgonomicChair green 2001 60.00

DC001 DiningChair green 2007 90.00

7.2.2.2 Query: ‘Which products are a shade of green?’

select * from product where Colour closeto "green"

PartID ItemType Colour SupplierID Price

IC001 ClericalChair olive 2002 150.00

IC002 ClericalChair lime 2002 150.00

EG123 ErgonomicChair green 2001 60.00

EG456 ErgonomicChair emerald 2001 60.00

DC001 DiningChair green 2007 90.00

DC023 DiningChair chartreuse 2007 96.00

DC510 DiningChair jade 2006 126.00

SC345 BarStool turquoise 2005 46.00

SC125 BarStool seagreen 2005 55.00

CHAPTER 7. PROTOTYPE MODEL 100

PartID ItemType Colour SupplierID Price

RC831 Recliner jade 2006 250.00

RC444 Recliner lightgreen 2006 250.00

RC234 Recliner darkgreen 2006 250.00

KC020 KitchenStool lime 2008 40.00

KC021 KitchenStool apple 2008 40.00

LC040 Sofa aqua 2004 650.00

LC551 Lounge3seater verdigris 2007 899.00

DT345 DiningTable turquoise 2005 500.00

CT831 CoffeeTable jade 2005 50.00

7.2.2.3 Query: ‘List the customers who have purchased a recliner’

select CustomerName, product.PartID, Colour, ItemType,

sales.InvoiceNo from customers, product, sales, salesitem

where ItemType = "Recliner" and

customers.CustomerID = sales.CustomerID and

sales.InvoiceNo = salesitem.InvoiceNo and

product.PartID = salesitem.PartID

CustomerName PartID Colour ItemType InvoiceNo

Barry de Veen RC444 lightgreen Recliner 106

John Haggar RC234 darkgreen Recliner 107

Peter Adams RC831 jade Recliner 121

7.2.2.4 Query: ‘List the customers who have bought a type of chair

in an apple sort of colour’

select CustomerName, product.PartID, Colour, ItemType,

sales.InvoiceNo from customers, product, sales, salesitem

where Colour CLOSETO "apple" and ItemType CLOSETO "chair" and

customers.CustomerID = sales.CustomerID and

sales.InvoiceNo = salesitem.InvoiceNo and

product.PartID = salesitem.PartID

CHAPTER 7. PROTOTYPE MODEL 101

CustomerName PartID Colour ItemType InvoiceNo

Keith Myers KC020 lime KitchenStool 101

Keith Myers IC002 lime ClericalChair 103

Barbara Lincoln EG456 emerald ErgonomicChair 104

Garry Cronin SC125 seagreen BarStool 105

Barry de Veen RC444 lightgreen Recliner 106

Barry de Veen KC021 apple KitchenStool 110

Keith Myers SC125 seagreen BarStool 112

Catherine Hartstein EG456 emerald ErgonomicChair 119

Peter Adams RC831 jade Recliner 121

Garry Cronin DC023 chartreuse DiningChair 124

Shirley Hetherington IC002 lime ClericalChair 125

7.2.3 Domain Perception Change

Example: The attribute product.Colour is coded as a string of the hexadecimal

RGB values of a shade of colour. The hexadecimal strings are added to the

domain COLOURS but there is no conversion of existing records in the relation

product. Existing word terms for colours must be perceived to be the same as

the hexadecimal values.

7.2.3.1 Query: ‘Which products are a shade of green?’ and ‘Which

products are like colour #008000?’ are perceived to be the

same and therefore return the same record set.

select * from product where Colour closeto "green"

PartID ItemType Colour SupplierID Price

IC001 ClericalChair olive 2002 150.00

IC002 ClericalChair lime 2002 150.00

EG123 ErgonomicChair green 2001 60.00

EG456 ErgonomicChair emerald 2001 60.00

DC001 DiningChair green 2007 90.00

DC023 DiningChair chartreuse 2007 96.00

CHAPTER 7. PROTOTYPE MODEL 102

PartID ItemType Colour SupplierID Price

DC510 DiningChair jade 2006 126.00

SC345 BarStool turquoise 2005 46.00

SC125 BarStool seagreen 2005 55.00

RC831 Recliner jade 2006 250.00

RC444 Recliner lightgreen 2006 250.00

RC234 Recliner darkgreen 2006 250.00

KC020 KitchenStool lime 2008 40.00

KC021 KitchenStool apple 2008 40.00

LC040 Sofa aqua 2004 650.00

LC551 Lounge3seater verdigris 2007 899.00

DT345 DiningTable turquoise 2005 500.00

CT831 CoffeeTable jade 2005 50.00

select * from product where Colour closeto "#008000"

PartID ItemType Colour SupplierID Price

IC001 ClericalChair olive 2002 150.00

IC002 ClericalChair lime 2002 150.00

EG123 ErgonomicChair green 2001 60.00

EG456 ErgonomicChair emerald 2001 60.00

DC001 DiningChair green 2007 90.00

DC023 DiningChair chartreuse 2007 96.00

DC510 DiningChair jade 2006 126.00

SC345 BarStool turquoise 2005 46.00

SC125 BarStool seagreen 2005 55.00

RC831 Recliner jade 2006 250.00

RC444 Recliner lightgreen 2006 250.00

RC234 Recliner darkgreen 2006 250.00

KC020 KitchenStool lime 2008 40.00

KC021 KitchenStool apple 2008 40.00

LC040 Sofa aqua 2004 650.00

LC551 Lounge3seater verdigris 2007 899.00

CHAPTER 7. PROTOTYPE MODEL 103

PartID ItemType Colour SupplierID Price

DT345 DiningTable turquoise 2005 500.00

CT831 CoffeeTable jade 2005 50.00

7.2.4 Domain Constraints Change

The domain constraints, that is the possible range of valid values, have changed

for the domains COLOURS, as noted in the previous example, as well as for the

domain CATEGORIES, for which product.ItemTypes are now classified at

different levels of the domain hierarchy. New records reflecting these constraints

changes are added to the relation product. The utilisation of a mesodata domain

requires no change to queries to retrieve records containing the new terms.

7.2.4.1 Query: ‘List our product range of tables.’

select * from product where ItemType closeto "table"

PartID ItemType Colour SupplierID Price

DT345 DiningTable turquoise 2005 500.00

DT125 DiningTable white 2005 355.00

CT831 CoffeeTable jade 2005 50.00

CT444 CoffeeTable darkblue 2005 59.00

WT450 table #A52A2A 2009 167.95

WT451 table #7B3F00 2009 167.95

WT452 table #000000 2009 167.95

WT453 table #63A671 2009 167.95

7.2.4.2 Query: ‘List our product range of tables that are a shade of

brown.’

select * from product where ItemType closeto "table" and Colour

closeto "brown"

PartID ItemType Colour SupplierID Price

WT450 table #A52A2A 2009 167.95

WT451 table #7B3F00 2009 167.95

CHAPTER 7. PROTOTYPE MODEL 104

7.2.5 Data Integration

The database now has two formats for recording the Colour of a product, the

name of the colour and the hexadecimal RGB string, as well as different terms

for the categories of product. By using mesodata domains to store the

relationships between these different terms, there is no call for the conversion

from one protocol to another. Records related to the different standards for

Colour and ItemType are added to the relations sales and salesitem.

7.2.5.1 Query: ‘List the invoices for sales of any of our tables’

select sales.InvoiceNo, product.PartID, Colour, ItemType from

sales, salesitem, product where salesitem.InvoiceNo =

sales.InvoiceNo and salesitem.PartID = product.PartID and ItemType

closeto "table"

InvoiceNo PartID Colour ItemType

109 DT345 turquoise DiningTable

116 DT345 turquoise DiningTable

118 DT125 white DiningTable

123 CT831 jade CoffeeTable

131 WT452 #000000 table

133 CT831 jade CoffeeTable

7.2.6 Attribute Representation Change

The product PartIDs now have number codes instead of character codes. In

order to retain the original historical codes and avoid data conversion and

application code changes, a new mesodata domain is created to provide the

synonymous new numeric code for each character code. The attribute

product.PartID is modified to refer to the new mesodata domain. There is no

data loss as the attribute retains its original specification. Alternatively, the

attribute can be changed to refer to the integer field of the mesodata type. This

then entails replacing character codes with numeric codes in the product

relation. In either case, queries may now refer to either the old or the new codes.

7.2.6.1 Query: Which product has the new code 1444?

select * from product where PartID equalto 1444

CHAPTER 7. PROTOTYPE MODEL 105

PartID ItemType Colour SupplierID Price

CT444 CoffeeTable darkblue 2005 59.00

7.2.6.2 Query: Which products have either the codes 5001 or IC004?

select SupplierID, PartID, ItemType from product where PartID

equalto 5001 or PartID = ‘ic004’

SupplierID PartID ItemType

2002 IC001 ClericalChair

2002 IC004 IndustrialChair

7.3 Summary of Evaluation

The prototype model of a three-level database containing a mesodata layer met

the functional criteria for the suggested extensions to Data Definition Language

and Data Manipulation Language. The prototype implements three of the possi-

ble mesodata type structures, by which it demonstrates that mesodata domains

enable enhanced querying, as well as facilitating data integration and attribute

evolution.

This implementation of a prototype model provides empirical evidence that

the utilisation of mesodata types endows relational databases with features that

to date have required conversion of data, loss of information, schema evolution,

schema translation, and rewriting application code. Additionally, the example

queries show that both standard SQL and the suggested extensions to SQL are

compatible and that ad hoc queries are possible over domains with heterogeneous

data values. The use of an existing relational database platform demonstrates

backwards compatibility of the mesodata architecture.

Chapter 8

Conclusions and Further

Research

The introduction of databases for data storage and handling revolutionised the

way we dealt with records and enabled simple and fast information processing, ag-

gregation and summarisation. Database and information technology systems have

evolved from simple file processing systems to powerful database systems. Data

management technology has progressed from hierarchical and network systems

to relational databases, data modelling tools and indexing and organisational

techniques. The development of Relational Database Management Systems and

automated systems put the layout and form into the unchanging metadata and

gave us record once systems.

8.1 Database Evolution

Unfortunately, the ‘real world’ upon which databases are modelled constantly

changes. These changes may affect the schema, as described by Sjøberg (1993),

Roddick et al. (1999), Comyn-Wattiau et al. (2003), as well as this project’s

study presented in Chapter 6, for a variety of reasons including:

• Unanticipated requirements - all the desired functionality of a system may

not be known in advance.

• A change in the universe of discourse - new or changed regulations, features

or facts may need to be removed or accommodated in the system.

106

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 107

• A change to the interpretation of facts about the universe of discourse and

the manner in which the task is realised in a system.

• Changes in the form of updates to effect upgrades to the functionality or

scope of a system.

• Changes in the form of updates to effect efficiency improvements.

• Changes caused by system operation. For example, the discovery of new in-

formation which is then fed back into the system or the abnormal behaviour

of a component.

• Error correction.

8.2 Techniques for Database Evolution

Different formalisms have been developed to deal with schema changes with the

aim being to preserve information capacity and preserve semantic correctness.

Schematic changes may be the result of evolving one system or may arise due to

the need for merging two or more systems. For whichever reason, conflicts occur,

such as naming, type, domain and cardinality, which must be resolved and the

schemata unified to produce a new version. To reach this goal there are graph

based schema integration architectures, for example the Common Data Model

(CDM), the Schema Intension Graph (SIG), Hypergraph Data Model (HDM) and

EVolutionary ER diagrams (EVER), as well as, semi-automatic systems applying

schema matching and schema translation techniques, such as TSIMMIS, MIX,

MADS and others. These systems also utilise ontologies, thesauri, and so forth to

integrate data from heterogeneous sources in order to process queries and views.

8.3 Data Integration

Data integration or conversion remains a partially resolved issue. Metadata

changes that move attributes from one relation to another or delete attributes

from a relation are managed by changes to application code and system down

time for conversion procedures. However an attribute change, while in itself may

not be a complex process, is not a trivial task. This type of change may result in

data loss, changed accuracy, and altered semantics.

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 108

Whilst the use of ontologies, concept graphs and other knowledge interchange

techniques are alleviating the problems of data integration, these structures are

not yet an integral part of the database architecture. A mesodata layer, sepa-

rate from the metadata and data, provides complex structures in which to store

domain values and their inter-relationships as well as supplying the ‘intelligence’

required to operate and manipulate them. The domain structures enable differ-

ent orderings that form the bases of filters for enhanced querying and information

retrieval. DBMS supplied mesodata types would allow for the re-usable inclusion

of domain information such as in ontologies, taxonomies, thesauri and concept

graphs that to date have been only application specific.

8.4 Mesodata Layer

This thesis suggests that common domain structures, such as graphs, queues,

circular lists, and so on, if available as mesodata, complete with appropriate

operations and DBMS support, would both simplify and enhance database mod-

elling. The inclusion of a mesodata layer in the definition of attribute domains

introduces

• more flexibility into the modelling process,

• promotes re-use of domains,

• increases the level of abstraction,

• simplifies the implementation of schema change,

• facilitates attribute evolution, and

• enables enhanced querying.

8.5 Future Research

8.5.1 DB Platform Support for Mesodata

As part of the development of the prototype model, extensions to SQL have been

suggested to provide support for a mesodata layer, the implemented mesodata

types, as well as for other suggested complex structures. Further research is

necessary to enable fully database platform support for a mesodata layer.

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 109

8.5.2 XML

A path not followed was the investigation of XML to build mesodata types.

The main obstacle being that the language did not provide a way to express

the algorithms required to construct the mesodata types with ‘intelligence’. The

mesodata types, themselves, are easily described, there is, however, no provision

for the inclusion of procedures for the traversal and manipulation of the structures

that are necessary. Development of this feature would allow for user-defined

structures to be used as well as platform provided ones.

8.5.3 Ontologies of Data Structures

Somewhat related to the previous point, there are of course many domain struc-

tures that have not been researched and described in this thesis. Further research

and exploration of other useful domain structures could provide ontologies for

data structures that include algorithms/logic for their use.

8.5.4 Mesodata types based on UDTs

All mesodata types researched in this project are based on simple data types.

The user-defined types in object-relational databases incorporated into domains

structures would provide even more flexibility into data modelling.

8.5.5 Modelling Tools

In order to incorporate a third layer into a database, modelling tools need to be

developed to both design new systems, as well as to re-engineer evolving systems.

8.5.6 Other Database Technologies

Incorporation of a mesodata layer into data warehousing, data mining, and knowl-

edge base technologies where reducing data loss and expanding information ca-

pacity also augurs well, should provide for very interesting future research.

Appendix A

Publications Resulting From This

Thesis

The following conference papers have been published as a result of work associated

with this thesis.

Roddick, J. F., K. Hornsby, and D. de Vries (2003). ‘A Unifying Semantic

Distance Model for Determining the Similarity of Attribute Values’. 26th Aus-

tralasian Computer Science Conference (ACSC2003), Adelaide, Australia, ACS.

Abstract: The relative difference between two data values is of

interest in a number of application domains including temporal and

spatial applications, schema versioning, data warehousing (particu-

larly data preparation), internet searching, validation and error cor-

rection, and data mining. Moreover, consistency across systems in

determining such distances and the robustness of such calculations is

essential in some domains and useful in many. Despite this, there is

no generally adopted approach to determining such distances and no

accommodation of distance within SQL or any commercially avail-

able DBMS. For non-numeric data values calculating the difference

between values often requires application specific support but even

for numeric values the practical distance between two values may not

simply be their numeric difference or Euclidean distance. In this pa-

per, a model of semantic distance is developed in which a graph-based

approach is used to quantify the distance between two data values.

The approach facilitates a notion of distance, both as a simple traver-

sal distance and as weighted arcs. Transition costs, as an additional

110

APPENDIX A. PUBLICATIONS RESULTING FROM THIS THESIS 111

expense of passing through a node, are also accommodated. Further-

more, multiple distance measures can be incorporated and a method

of ’localisation’ is discussed which allows relevant information to take

precedence over less relevant information. Some results from our in-

vestigations, including our SQL based implementation, are presented.

de Vries, D., S. Rice, and J. F. Roddick (2004). ‘In Support of Mesodata in

Database Management Systems’. 15th International Conference on Database and

Expert Systems Applications DEXA 2004, Zaragoza, Spain, Springer-Verlag.

Abstract: In traditional relational database modelling there is a

strict separation between the definition of the relational schema and

the data itself. This simple two level architecture works well when the

domains over which attributes are required to be defined are relatively

simple. However, in cases where attributes need to be defined over

more complex domain structures, such as graphs, hierarchies, circular

lists and so on, the aggregation of domain and relational definition

becomes confused and a separation of the specification of domain def-

inition from relational structure is appropriate. This aggregation of

domain definition with relational structure also occurs in XMLS and

ontology definitions. In this paper we argue for a three level archi-

tecture when considering the design and development of domains for

relational and semi-structured data models. The additional level facil-

itating more complete domain definition - mesodata - allows domains

to be engineered so that attributes can be defined to possess additional

intelligence and structure and thus reflect more accurately ontologi-

cal considerations. We argue that the embedding of this capability

within the modelling process augments, but lies outside of, current

schema definition methods and thus is most appropriately considered

separately.

de Vries, D. and J. F. Roddick (2004). ‘Facilitating Database Attribute Do-

main Evolution Using Mesodata’. Third International Workshop on Evolution

and Change in Data Management (ECDM2004), Shanghai, China, Springer-

Verlag.

Abstract: Database evolution can be considered a combination of

schema evolution, in which the structure evolves with the addition and

APPENDIX A. PUBLICATIONS RESULTING FROM THIS THESIS 112

deletion of attributes and relations, together with domain evolution in

which an attribute’s specification, semantics and/or range of allowable

values changes. We present a model in which mesodata - an additional

domain definition layer containing domain structure and intelligence

- is used to alleviate and in some cases obviate the need for data

conversion or coercion. We present the nature and use of mesodata

as it affects domain evolution, such as when a domain changes, when

the semantics of a domain alter and when the attribute’s specification

is modified.

Mooney, C. H., D. De Vries, and J. F. Roddick (2005). ‘A Multi-level Frame-

work for the Analysis of Sequential Data’. Data Mining: Theory, Methodology,

Techniques, and Applications. S. J. Simoff and G. J. Williams, Springer-Verlag.

Abstract: Traditionally text mining has had a strong link with

information retrieval and classification, for search engine purposes,

and has aimed to classify documents according to known knowledge.

Association rule mining and sequence mining on the other hand have

had a different goal; one of eliciting relationships within or about the

data being mined. Recently there has been some research conducted

using sequence mining techniques on digital document collections by

treating the text as sequential data.

In this paper we propose a multi-level framework that is applicable

to text analysis and that improves the knowledge discovery process

by finding additional or hitherto unknown relationships within the

data being mined. We believe that this can lead to the detection or

fine tuning of the context of documents under consideration and may

lead to a more informed classification of those documents. Moreover,

since we use a semantic map at varying stages in the framework, we

are able to impose a greater degree of focus and therefore a greater

transitivity of semantic relatedness that facilitates the improvement

in the knowledge discovery process.

Rice, S., J. F. Roddick, and D. de Vries (2006). ‘Defining and Implementing

Domains with Multiple Types using Mesodata Modelling Techniques’. 3rd Asia-

Pacific Conference on Conceptual Modelling (APCCM 2006), Hobart, Australia,

January 16-19 2006, ACS. [to be published]

APPENDIX A. PUBLICATIONS RESULTING FROM THIS THESIS 113

Abstract: The integration of data from different sources often

leads to the adoption of schemata that entails a loss of information in

respect of one or more of the data sets being combined. The coercion

of data to conform to the type of the unified attribute is one of the

major reasons for this information loss. We argue that for maximal

information retention it would be useful to be able to define attributes

over domains capable of accommodating multiple types, that is, do-

mains that potentially allow an attribute to take its values from more

than one base type.

Mesodata is a concept that provides an intermediate conceptual

layer between the definition of a relational structure and that of at-

tribute definition to aid the specification of complex domain structures

within the database. Mesodata modelling techniques involve the use

of data types and operations for common data structures defined in

the mesodata layer to facilitate accurate modelling of complex data

domains, so that any commonality between similar domains used for

different purposes can be exploited.

This paper shows how the mesodata concept can be extended to

facilitate the creation of domains defined over multiple base types,

and also allow the same set of base values to be used for domains

with different semantics. Using an example domain containing values

representing three different type of incomplete knowledge about the

data item (coarse granularity, vague terms, or intervals) we show how

operations and data structures for types already existing within the

mesodata can simplify the task of developing a new intelligent domain.

Appendix B

Sample Session

Enter database name
> tritier

Enter Login name

Enter password

Enter SQL Statement or quit to finish

> show catalogue (1)

Tables in tritier
DOMTABLE
MESOTABLE

Enter SQL Statement or quit to finish

> CREATE TABLE colourgraph (NodeI char(15) NOT NULL , NodeJ char(15)
NOT NULL, Distance float NOT NULL, primary key (NodeI, nodeJ), index
(NodeI), index (NodeJ)) (2)

Enter SQL Statement or quit to finish

> source adjColours.sql (3)

Enter SQL Statement or quit to finish

> select * from colourgraph (4)

NodeI NodeJ Distance
white lightblue 0.4
lightblue darkblue 0.2
lightblue aqua 0.15
white lightgreen 0.4
lightgreen aqua 0.2
lightgreen green 0.15
lightgreen lime 0.15
white yellow 0.4
yellow lime 0.4

114

APPENDIX B. SAMPLE SESSION 115

yellow lightyellow 0.2
yellow orange 0.3
lightblue lightyellow 0.35
lightblue lightgreen 0.35
olive green 0.15
emerald green 0.15
chartreuse lime 0.1
jade green 0.1
turquoise aqua 0
seagreen aqua 0.1
darkgreen green 0.2
apple lime 0
verdigris lightgreen 0.1
olive brown 0.25
brown orange 0.3
orange burntorange 0.15
chestnut brown 0.15
aqua teal 0.18
darkblue navy 0.1
navy black 0.4

Enter SQL Statement or quit to finish

> CREATE TABLE categorygraph (NodeI char(20) NOT NULL , NodeJ char(20)
NOT NULL, Distance float NOT NULL, primary key (NodeI, nodeJ), index
(NodeI), index (NodeJ)) (5)

Enter SQL Statement or quit to finish

> show catalogue (6)

Tables in tritier
DOMTABLE
MESOTABLE
categorygraph
colourgraph

Enter SQL Statement or quit to finish

> source categories.sql (7)

Enter SQL Statement or quit to finish

> select * from categorygraph (8)

NodeI NodeJ Distance
chair table 1
chair domchair 0.25
chair officechair 0.25
officechair clericalchair 0
officechair ergonomicchair 0

APPENDIX B. SAMPLE SESSION 116

domchair diningchair 0.1
officechair barstool 0.1
domchair recliner 0.1
domchair kitchenstool 0.1
domchair sofa 0.1
domchair lounge3seater 0.1
table diningtable 0
table coffeetable 0
table sidetable 0
table changetable 0
table boardroomtable 0

Enter SQL Statement or quit to finish

> CREATE domain COLOURS as wgraph of char(15) over colourgraph (9)
COLOURS created

Enter SQL Statement or quit to finish

> show catalogue (10)

Tables in tritier
COLOURS
DOMTABLE
MESOTABLE
categorygraph
colourgraph

Enter SQL Statement or quit to finish

> show domains (11)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 COLOURS wgraph char(15) colourgraph

Enter SQL Statement or quit to finish

> create domain CATEGORIES as dwgraph of char(20) over categorygraph
(12)

CATEGORIES created

Enter SQL Statement or quit to finish

> show domains (13)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 COLOURS wgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 117

> show catalogue (14)

Tables in tritier
CATEGORIES
COLOURS
DOMTABLE
MESOTABLE
categorygraph
colourgraph

Enter SQL Statement or quit to finish

> Alter domain COLOURS name SHADES (15)

Enter SQL Statement or quit to finish

> show domains (16)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 SHADES wgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> show catalogue (17)

Tables in tritier
CATEGORIES
DOMTABLE
MESOTABLE
SHADES
categorygraph
colourgraph

Enter SQL Statement or quit to finish

> desc SHADES (18)

Field Type Collation Key
nodeI char(15) latin1_swedish_ci PRI
nodeJ char(15) latin1_swedish_ci PRI
distance float binary

Enter SQL Statement or quit to finish

> Alter domain SHADES MESODATATYPE dwgraph (19)

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 118

> show domains (20)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 SHADES dwgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> refresh domain SHADES (21)

Enter SQL Statement or quit to finish

> alter domain SHADES BASETYPE char(25) (22)

Enter SQL Statement or quit to finish

> show domains (23)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 SHADES dwgraph char(25) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> desc SHADES (24)

Field Type Collation Key
nodeI char(25) latin1_swedish_ci PRI
nodeJ char(25) latin1_swedish_ci PRI
distance float binary

Enter SQL Statement or quit to finish

> CREATE TABLE shadesgraph (NodeI char(30) NOT NULL , NodeJ char(30)
NOT NULL, Distance float NOT NULL, primary key (NodeI, nodeJ), index
(NodeI), index (NodeJ)) (25)

Enter SQL Statement or quit to finish

> show catalogue (26)

Tables in tritier
CATEGORIES
DOMTABLE
MESOTABLE
SHADES
categorygraph
colourgraph
shadesgraph

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 119

> source shadescolours.sql (27)

Enter SQL Statement or quit to finish

> alter domain SHADES OVER shadesgraph (28)

Enter SQL Statement or quit to finish

> show domains (29)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
1 SHADES dwgraph char(25) shadesgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> drop domain SHADES (30)

Enter SQL Statement or quit to finish

> show catalogue (31)

Tables in tritier
CATEGORIES
DOMTABLE
MESOTABLE
categorygraph
colourgraph
shadesgraph

Enter SQL Statement or quit to finish

> CREATE domain COLOURS as wgraph of char(15) over colourgraph (32)
COLOURS created

Enter SQL Statement or quit to finish

> show domains (33)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
3 COLOURS wgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> show catalogue (34)

Tables in tritier
CATEGORIES
COLOURS
DOMTABLE
MESOTABLE
categorygraph
colourgraph
shadesgraph

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 120

> CREATE TABLE product (PartID char(5) NOT NULL, ItemType CATEGORIES,
Colour COLOURS, SupplierID int, Price numeric(9), PRIMARY KEY (PartID))

(35)

Enter SQL Statement or quit to finish

> show catalogue (36)

Tables in tritier
CATEGORIES
COLOURS
DOMTABLE
MESOTABLE
categorygraph
colourgraph
product
shadesgraph

Enter SQL Statement or quit to finish

> show domains (37)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
3 COLOURS wgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph

Enter SQL Statement or quit to finish

> show mesodatatypes (38)

MTID TABLE_NAME FIELD_NAME DOMID
1 product ItemType 2
2 product Colour 3

Enter SQL Statement or quit to finish

> desc product (39)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,0) binary

Enter SQL Statement or quit to finish

> CREATE TABLE suppliers (SupplierID int NOT NULL , SupplierName
char(30), PRIMARY KEY (SupplierID)) (40)

APPENDIX B. SAMPLE SESSION 121

Enter SQL Statement or quit to finish

> CREATE TABLE customers (CustomerID int NOT NULL, CustomerName
char(30), PRIMARY KEY (CustomerID)) (41)

Enter SQL Statement or quit to finish

> CREATE TABLE sales (InvoiceNo int NOT NULL, InvDate date, CustomerID
int, PRIMARY KEY (InvoiceNo)) (42)

Enter SQL Statement or quit to finish

> CREATE TABLE salesitem (SalesItem int NOT NULL, InvoiceNo int,
PartID char(5), Quantity numeric(5), PRIMARY KEY(SalesItem)) (43)

Enter SQL Statement or quit to finish

> alter table product modify Price numeric(9,2) (44)

Enter SQL Statement or quit to finish

> desc product (45)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary

Enter SQL Statement or quit to finish

> alter table product add column Instock numeric(4) (46)

Enter SQL Statement or quit to finish

> desc product (47)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary
Instock decimal(4,0) binary

Enter SQL Statement or quit to finish

> alter table product drop column Instock (48)

Enter SQL Statement or quit to finish

> desc product (49)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI

APPENDIX B. SAMPLE SESSION 122

ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary

Enter SQL Statement or quit to finish

> alter table product add column category CATEGORIES (50)

Enter SQL Statement or quit to finish

> desc product (51)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary
category char(5) latin1_swedish_ci

Enter SQL Statement or quit to finish

> show mesodatatypes (52)

MTID TABLE_NAME FIELD_NAME DOMID
1 product ItemType 2
2 product Colour 3
3 product category 2

Enter SQL Statement or quit to finish

> alter table product modify category char(6) (53)

Enter SQL Statement or quit to finish

> desc product (54)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary
category char(6) latin1_swedish_ci

Enter SQL Statement or quit to finish

> show mesodatatypes (55)

APPENDIX B. SAMPLE SESSION 123

MTID TABLE_NAME FIELD_NAME DOMID
1 product ItemType 2
2 product Colour 3

Enter SQL Statement or quit to finish

> alter table product drop column category (56)

Enter SQL Statement or quit to finish

> desc product (57)

Field Type Collation Key
PartID char(5) latin1_swedish_ci PRI
ItemType char(20) latin1_swedish_ci
Colour char(15) latin1_swedish_ci
SupplierID int(11) binary
Price decimal(9,2) binary

Enter SQL Statement or quit to finish

> show mesodatatypes (58)

MTID TABLE_NAME FIELD_NAME DOMID
1 product ItemType 2
2 product Colour 3

Enter SQL Statement or quit to finish

> source furnitureB.sql (59)

Enter SQL Statement or quit to finish

> select * from product (60)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00

APPENDIX B. SAMPLE SESSION 124

LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
IC003 IndustrialChair white 2002 150.00
IC004 IndustrialChair lightyellow 2002 150.00
EG120 ErgonomicChair orange 2008 60.00
EG453 ErgonomicChair lightblue 2008 60.00
DC004 DiningChair white 2006 90.00
DC026 DiningChair darkblue 2006 96.00
DC512 DiningChair white 2006 126.00
DT345 DiningTable turquoise 2005 500.00
DT125 DiningTable white 2005 355.00
CT831 CoffeeTable jade 2005 50.00
CT444 CoffeeTable darkblue 2005 59.00

Enter SQL Statement or quit to finish

> select * from product where Colour = "green" (61)

PartID ItemType Colour SupplierID Price
EG123 ErgonomicChair green 2001 60.00
DC001 DiningChair green 2007 90.00

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "green" (62)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
DT345 DiningTable turquoise 2005 500.00
CT831 CoffeeTable jade 2005 50.00

Enter SQL Statement or quit to finish

> select * from product where Colour = "green" and itemtype =
"recliner" (63)

APPENDIX B. SAMPLE SESSION 125

PartID ItemType Colour SupplierID Price

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "green" and itemtype =
"recliner" (64)

PartID ItemType Colour SupplierID Price
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "green" and itemtype
closeto "chair" (65)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00

Enter SQL Statement or quit to finish

> source customers.sql (66)

Enter SQL Statement or quit to finish

> source suppliers.sql (67)

Enter SQL Statement or quit to finish

> source sales.sql (68)

Enter SQL Statement or quit to finish

> source salesitem.sql (69)

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 126

> select CustomerName, product.PartID, Colour, sales.InvoiceNo from
customers, product, sales, salesitem where Colour = "apple" and
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (70)

CustomerName PartID Colour InvoiceNo
Barry de Veen KC021 apple 110

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, sales.InvoiceNo from
customers, product, sales, salesitem where Colour CLOSETO "apple" and
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (71)

CustomerName PartID Colour InvoiceNo
Keith Myers KC020 lime 101
Keith Myers IC002 lime 103
Barbara Lincoln EG456 emerald 104
Garry Cronin SC125 seagreen 105
Barry de Veen RC444 lightgreen 106
Barbara Lincoln DT345 turquoise 109
Barry de Veen KC021 apple 110
Keith Myers SC125 seagreen 112
Johanna Baker DT345 turquoise 116
Catherine Hartstein EG456 emerald 119
Peter Adams RC831 jade 121
Stella Shepherd CT831 jade 123
Garry Cronin DC023 chartreuse 124
Shirley Hetherington IC002 lime 125

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, ItemType, Colour,
sales.InvoiceNo from customers, product, sales, salesitem where
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (72)

CustomerName PartID ItemType Colour InvoiceNo
Keith Myers KC020 KitchenStool lime 101
Denise Devine IC004 IndustrialChair lightyellow 102
Keith Myers IC002 ClericalChair lime 103
Barbara Lincoln EG456 ErgonomicChair emerald 104
Garry Cronin SC125 BarStool seagreen 105
Barry de Veen RC444 Recliner lightgreen 106
John Haggar RC234 Recliner darkgreen 107
Lee Provins EG453 ErgonomicChair lightblue 108
Barbara Lincoln DT345 DiningTable turquoise 109
Barry de Veen KC021 KitchenStool apple 110

APPENDIX B. SAMPLE SESSION 127

Stephen May EG453 ErgonomicChair lightblue 111
Keith Myers SC125 BarStool seagreen 112
Barry de Veen IC004 IndustrialChair lightyellow 113
Marion Cartwright DC004 DiningChair white 114
Denise Devine EG453 ErgonomicChair lightblue 115
Johanna Baker DT345 DiningTable turquoise 116
Ian Pill EG120 ErgonomicChair orange 117
John Haggar DT125 DiningTable white 118
Catherine Hartstein EG456 ErgonomicChair emerald 119
Stuart Barich IC003 IndustrialChair white 120
Peter Adams RC831 Recliner jade 121
Janis Jones DC026 DiningChair darkblue 122
Stella Shepherd CT831 CoffeeTable jade 123
Garry Cronin DC023 DiningChair chartreuse 124
Shirley Hetherington IC002 ClericalChair lime 125

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, ItemType,
sales.InvoiceNo from customers, product, sales, salesitem where
ItemType = "Recliner" and customers.CustomerID = sales.CustomerID and
sales.InvoiceNo = salesitem.InvoiceNo and product.PartID =
salesitem.PartID (73)

CustomerName PartID Colour ItemType InvoiceNo
Barry de Veen RC444 lightgreen Recliner 106
John Haggar RC234 darkgreen Recliner 107
Peter Adams RC831 jade Recliner 121

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, ItemType,
sales.InvoiceNo from customers, product, sales, salesitem where Colour
CLOSETO "apple" and ItemType CLOSETO "chair" and customers.CustomerID =
sales.CustomerID and sales.InvoiceNo = salesitem.InvoiceNo and
product.PartID = salesitem.PartID (74)

CustomerName PartID Colour ItemType InvoiceNo
Keith Myers KC020 lime KitchenStool 101
Keith Myers IC002 lime ClericalChair 103
Barbara Lincoln EG456 emerald ErgonomicChair 104
Garry Cronin SC125 seagreen BarStool 105
Barry de Veen RC444 lightgreen Recliner 106
Barry de Veen KC021 apple KitchenStool 110
Keith Myers SC125 seagreen BarStool 112
Catherine Hartstein EG456 emerald ErgonomicChair 119
Peter Adams RC831 jade Recliner 121
Garry Cronin DC023 chartreuse DiningChair 124
Shirley Hetherington IC002 lime ClericalChair 125

APPENDIX B. SAMPLE SESSION 128

Enter SQL Statement or quit to finish

> source hexColours.sql (75)

Enter SQL Statement or quit to finish

> refresh domain COLOURS (76)

Enter SQL Statement or quit to finish

> select * from product where Colour = "#008000" (77)

PartID ItemType Colour SupplierID Price

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "#008000" (78)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
DT345 DiningTable turquoise 2005 500.00
CT831 CoffeeTable jade 2005 50.00

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "green" (79)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00

APPENDIX B. SAMPLE SESSION 129

SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
DT345 DiningTable turquoise 2005 500.00
CT831 CoffeeTable jade 2005 50.00

Enter SQL Statement or quit to finish

> source furnitureC.sql (80)

Enter SQL Statement or quit to finish

> select * from product (81)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
IC003 IndustrialChair white 2002 150.00
IC004 IndustrialChair lightyellow 2002 150.00
EG120 ErgonomicChair orange 2008 60.00
EG453 ErgonomicChair lightblue 2008 60.00
DC004 DiningChair white 2006 90.00
DC026 DiningChair darkblue 2006 96.00
DC512 DiningChair white 2006 126.00
DT345 DiningTable turquoise 2005 500.00
DT125 DiningTable white 2005 355.00
CT831 CoffeeTable jade 2005 50.00
CT444 CoffeeTable darkblue 2005 59.00
WT450 table #A52A2A 2009 167.95
CC234 domchair #009966 2009 85.50
WC117 officechair #00C957 2009 250.00

APPENDIX B. SAMPLE SESSION 130

WT451 table #7B3F00 2009 167.95
WT452 table #000000 2009 167.95
WT453 table #63A671 2009 167.95
CC235 domchair #000000 2009 85.50
CC236 domchair #90EE90 2009 85.50
CC237 domchair #008080 2009 85.50
WC118 officechair #006400 2009 175.00
WC119 officechair #7CFC00 2009 200.00
WC120 officechair #7B3F00 2009 250.00

Enter SQL Statement or quit to finish

> select * from product where Colour closeto "#90EE90" (82)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
IC003 IndustrialChair white 2002 150.00
EG453 ErgonomicChair lightblue 2008 60.00
DC004 DiningChair white 2006 90.00
DC512 DiningChair white 2006 126.00
DT345 DiningTable turquoise 2005 500.00
DT125 DiningTable white 2005 355.00
CT831 CoffeeTable jade 2005 50.00
CC234 domchair #009966 2009 85.50
WC117 officechair #00C957 2009 250.00
WT453 table #63A671 2009 167.95
CC236 domchair #90EE90 2009 85.50
CC237 domchair #008080 2009 85.50
WC118 officechair #006400 2009 175.00
WC119 officechair #7CFC00 2009 200.00

Enter SQL Statement or quit to finish

> Select * from product where ItemType = "table" and Colour closeto
"brown" (83)

APPENDIX B. SAMPLE SESSION 131

PartID ItemType Colour SupplierID Price
WT450 table #A52A2A 2009 167.95
WT451 table #7B3F00 2009 167.95

Enter SQL Statement or quit to finish

> Select * from product where ItemType closeto "table" and Colour
closeto "brown" (84)

PartID ItemType Colour SupplierID Price
WT450 table #A52A2A 2009 167.95
WT451 table #7B3F00 2009 167.95

Enter SQL Statement or quit to finish

> source salesB.sql (85)

Enter SQL Statement or quit to finish

> source salesitemB.sql (86)

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, sales.InvoiceNo from
customers, product, sales, salesitem where Colour = "brown" and
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (87)

CustomerName PartID Colour InvoiceNo

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, sales.InvoiceNo from
customers, product, sales, salesitem where Colour CLOSETO "brown" and
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (88)

CustomerName PartID Colour InvoiceNo
Ian Pill EG120 orange 117
Angela Brown IC001 olive 127
Barry de Veen DC001 green 134
Ian Morgan IC001 olive 136

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, ItemType, Colour,
sales.InvoiceNo from customers, product, sales, salesitem where
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (89)

APPENDIX B. SAMPLE SESSION 132

CustomerName PartID ItemType Colour InvoiceNo
Keith Myers KC020 KitchenStool lime 101
Denise Devine IC004 IndustrialChair lightyellow 102
Keith Myers IC002 ClericalChair lime 103
Barbara Lincoln EG456 ErgonomicChair emerald 104
Garry Cronin SC125 BarStool seagreen 105
Barry de Veen RC444 Recliner lightgreen 106
John Haggar RC234 Recliner darkgreen 107
Lee Provins EG453 ErgonomicChair lightblue 108
Barbara Lincoln DT345 DiningTable turquoise 109
Barry de Veen KC021 KitchenStool apple 110
Stephen May EG453 ErgonomicChair lightblue 111
Keith Myers SC125 BarStool seagreen 112
Barry de Veen IC004 IndustrialChair lightyellow 113
Marion Cartwright DC004 DiningChair white 114
Denise Devine EG453 ErgonomicChair lightblue 115
Johanna Baker DT345 DiningTable turquoise 116
Ian Pill EG120 ErgonomicChair orange 117
John Haggar DT125 DiningTable white 118
Catherine Hartstein EG456 ErgonomicChair emerald 119
Stuart Barich IC003 IndustrialChair white 120
Peter Adams RC831 Recliner jade 121
Janis Jones DC026 DiningChair darkblue 122
Stella Shepherd CT831 CoffeeTable jade 123
Garry Cronin DC023 DiningChair chartreuse 124
Shirley Hetherington IC002 ClericalChair lime 125
Denise Devine CC236 domchair #90EE90 126
Angela Brown IC001 ClericalChair olive 127
Shirley Hetherington DC026 DiningChair darkblue 128
Stuart Barich LC040 Sofa aqua 129
Stella Shepherd RC831 Recliner jade 130
Stephen May WT452 table #000000 131
Brian Heydon DC004 DiningChair white 132
Marion Cartwright CT831 CoffeeTable jade 133
Barry de Veen DC001 DiningChair green 134
Victoria Heineman RC831 Recliner jade 135
Ian Morgan IC001 ClericalChair olive 136
Ian Morgan IC003 IndustrialChair white 137
Stella Shepherd CC235 domchair #000000 138
Denise Devine DC512 DiningChair white 139

Enter SQL Statement or quit to finish

> select product.PartID, Colour, ItemType, sales.InvoiceNo from
product, sales, salesitem where Colour CLOSETO "apple" and
sales.InvoiceNo = salesitem.InvoiceNo and product.PartID =
salesitem.PartID (90)

PartID Colour ItemType InvoiceNo

APPENDIX B. SAMPLE SESSION 133

KC020 lime KitchenStool 101
IC002 lime ClericalChair 103
EG456 emerald ErgonomicChair 104
SC125 seagreen BarStool 105
RC444 lightgreen Recliner 106
DT345 turquoise DiningTable 109
KC021 apple KitchenStool 110
SC125 seagreen BarStool 112
DT345 turquoise DiningTable 116
EG456 emerald ErgonomicChair 119
RC831 jade Recliner 121
CT831 jade CoffeeTable 123
DC023 chartreuse DiningChair 124
IC002 lime ClericalChair 125
CC236 #90EE90 domchair 126
IC001 olive ClericalChair 127
LC040 aqua Sofa 129
RC831 jade Recliner 130
CT831 jade CoffeeTable 133
DC001 green DiningChair 134
RC831 jade Recliner 135
IC001 olive ClericalChair 136

Enter SQL Statement or quit to finish

> select product.PartID, Colour, ItemType, sales.InvoiceNo from
product, sales, salesitem where Colour CLOSETO "black" and
sales.InvoiceNo = salesitem.InvoiceNo and product.PartID =
salesitem.PartID (91)

PartID Colour ItemType InvoiceNo
WT452 #000000 table 131
CC235 #000000 domchair 138

Enter SQL Statement or quit to finish

> select CustomerName, product.PartID, Colour, ItemType,
sales.InvoiceNo from customers, product, sales, salesitem where
ItemType = "Recliner" and customers.CustomerID = sales.CustomerID and
sales.InvoiceNo = salesitem.InvoiceNo and product.PartID =
salesitem.PartID (92)

CustomerName PartID Colour ItemType InvoiceNo
Barry de Veen RC444 lightgreen Recliner 106
John Haggar RC234 darkgreen Recliner 107
Peter Adams RC831 jade Recliner 121
Stella Shepherd RC831 jade Recliner 130
Victoria Heineman RC831 jade Recliner 135

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 134

> select CustomerName, product.PartID, Colour, ItemType,
sales.InvoiceNo from customers, product, sales, salesitem where Colour
CLOSETO "apple" and ItemType CLOSETO "chair" and customers.CustomerID =
sales.CustomerID and sales.InvoiceNo = salesitem.InvoiceNo and
product.PartID = salesitem.PartID (93)

CustomerName PartID Colour ItemType InvoiceNo
Keith Myers KC020 lime KitchenStool 101
Keith Myers IC002 lime ClericalChair 103
Barbara Lincoln EG456 emerald ErgonomicChair 104
Garry Cronin SC125 seagreen BarStool 105
Barry de Veen RC444 lightgreen Recliner 106
Barry de Veen KC021 apple KitchenStool 110
Keith Myers SC125 seagreen BarStool 112
Catherine Hartstein EG456 emerald ErgonomicChair 119
Peter Adams RC831 jade Recliner 121
Garry Cronin DC023 chartreuse DiningChair 124
Shirley Hetherington IC002 lime ClericalChair 125
Denise Devine CC236 #90EE90 domchair 126
Angela Brown IC001 olive ClericalChair 127
Stuart Barich LC040 aqua Sofa 129
Stella Shepherd RC831 jade Recliner 130
Barry de Veen DC001 green DiningChair 134
Victoria Heineman RC831 jade Recliner 135
Ian Morgan IC001 olive ClericalChair 136

Enter SQL Statement or quit to finish

> select product.PartID, Colour, ItemType, sales.InvoiceNo from
customers, product, sales, salesitem where ItemType CLOSETO "chair" and
customers.CustomerID = sales.CustomerID and sales.InvoiceNo =
salesitem.InvoiceNo and product.PartID = salesitem.PartID (94)

PartID Colour ItemType InvoiceNo
KC020 lime KitchenStool 101
IC002 lime ClericalChair 103
EG456 emerald ErgonomicChair 104
SC125 seagreen BarStool 105
RC444 lightgreen Recliner 106
RC234 darkgreen Recliner 107
EG453 lightblue ErgonomicChair 108
KC021 apple KitchenStool 110
EG453 lightblue ErgonomicChair 111
SC125 seagreen BarStool 112
DC004 white DiningChair 114
EG453 lightblue ErgonomicChair 115
EG120 orange ErgonomicChair 117
EG456 emerald ErgonomicChair 119
RC831 jade Recliner 121

APPENDIX B. SAMPLE SESSION 135

DC026 darkblue DiningChair 122
DC023 chartreuse DiningChair 124
IC002 lime ClericalChair 125
CC236 #90EE90 domchair 126
IC001 olive ClericalChair 127
DC026 darkblue DiningChair 128
LC040 aqua Sofa 129
RC831 jade Recliner 130
DC004 white DiningChair 132
DC001 green DiningChair 134
RC831 jade Recliner 135
IC001 olive ClericalChair 136
CC235 #000000 domchair 138
DC512 white DiningChair 139

Enter SQL Statement or quit to finish

> select * from product where ItemType closeto "table" (95)

PartID ItemType Colour SupplierID Price
DT345 DiningTable turquoise 2005 500.00
DT125 DiningTable white 2005 355.00
CT831 CoffeeTable jade 2005 50.00
CT444 CoffeeTable darkblue 2005 59.00
WT450 table #A52A2A 2009 167.95
WT451 table #7B3F00 2009 167.95
WT452 table #000000 2009 167.95
WT453 table #63A671 2009 167.95

Enter SQL Statement or quit to finish

> CREATE TABLE codelist (NodeI char(5) NOT NULL , NodeJ int NOT NULL,
primary key (NodeI, nodeJ), index (NodeI), index (NodeJ)) (96)

Enter SQL Statement or quit to finish

> source codelist.sql (97)

Enter SQL Statement or quit to finish

> create domain NEWCODES as LIST of char(5) over codelist (98)

Enter SQL Statement or quit to finish

> show domains (99)

DOMID DOM_NAME MESODATA_TYPE BASE_TYPE RELATION_NAME
3 COLOURS wgraph char(15) colourgraph
2 CATEGORIES dwgraph char(20) categorygraph
4 NEWCODES list char(5) codelist

Enter SQL Statement or quit to finish

APPENDIX B. SAMPLE SESSION 136

> alter table product modify column PartID NEWCODES NOT NULL (100)

Enter SQL Statement or quit to finish

> show mesodatatypes (101)

MTID TABLE_NAME FIELD_NAME DOMID
1 product ItemType 2
2 product Colour 3
4 product PartID 4

Enter SQL Statement or quit to finish

> select * from product (102)

PartID ItemType Colour SupplierID Price
IC001 ClericalChair olive 2002 150.00
IC002 ClericalChair lime 2002 150.00
EG123 ErgonomicChair green 2001 60.00
EG456 ErgonomicChair emerald 2001 60.00
DC001 DiningChair green 2007 90.00
DC023 DiningChair chartreuse 2007 96.00
DC510 DiningChair jade 2006 126.00
SC345 BarStool turquoise 2005 46.00
SC125 BarStool seagreen 2005 55.00
RC831 Recliner jade 2006 250.00
RC444 Recliner lightgreen 2006 250.00
RC234 Recliner darkgreen 2006 250.00
KC020 KitchenStool lime 2008 40.00
KC021 KitchenStool apple 2008 40.00
LC040 Sofa aqua 2004 650.00
LC551 Lounge3seater verdigris 2007 899.00
IC003 IndustrialChair white 2002 150.00
IC004 IndustrialChair lightyellow 2002 150.00
EG120 ErgonomicChair orange 2008 60.00
EG453 ErgonomicChair lightblue 2008 60.00
DC004 DiningChair white 2006 90.00
DC026 DiningChair darkblue 2006 96.00
DC512 DiningChair white 2006 126.00
DT345 DiningTable turquoise 2005 500.00
DT125 DiningTable white 2005 355.00
CT831 CoffeeTable jade 2005 50.00
CT444 CoffeeTable darkblue 2005 59.00
WT450 table #A52A2A 2009 167.95
CC234 domchair #009966 2009 85.50
WC117 officechair #00C957 2009 167.95
WT452 table #000000 2009 167.95
WT453 table #63A671 2009 167.95
CC235 domchair #000000 2009 85.50
CC236 domchair #90EE90 2009 85.50

APPENDIX B. SAMPLE SESSION 137

CC237 domchair #008080 2009 85.50
WC118 officechair #006400 2009 175.00
WC119 officechair #7CFC00 2009 200.00
WC120 officechair #7B3F00 2009 250.00

Enter SQL Statement or quit to finish

> select * from codelist (103)

NodeI NodeJ
CT444 1444
CT831 1831
DC001 2001
DC004 2004
DC023 2023
DC026 2026
DC510 2510
DC512 2512
DT125 3125
DT345 3345
EG120 4120
EG123 4123
EG453 4453
EG456 4456
IC001 5001
IC002 5002
IC003 5003
IC004 5004
KC020 6020
KC021 6021
LC040 7040
LC551 7551
RC234 8234
RC444 8444
RC831 8831
SC125 9125
SC345 9345

Enter SQL Statement or quit to finish

> select * from product where PartID equalto 1444 (104)

PartID ItemType Colour SupplierID Price
CT444 CoffeeTable darkblue 2005 59.00

Enter SQL Statement or quit to finish

> select SupplierID, PartID, ItemType from product where PartID
equalto 5001 or PartID = ’ic004’ (105)

APPENDIX B. SAMPLE SESSION 138

SupplierID PartID ItemType
2002 IC001 ClericalChair
2002 IC004 IndustrialChair

Enter SQL Statement or quit to finish
quit

Appendix C

Sample Session SQL Files

C.1 adjColours.sql

INSERT INTO colourgraph VALUES (‘white’, ‘lightblue’,0.40);

INSERT INTO colourgraph VALUES (‘lightblue’, ‘darkblue’,0.2);

INSERT INTO colourgraph VALUES (‘lightblue’, ‘aqua’,0.15);

INSERT INTO colourgraph VALUES (‘white’, ‘lightgreen’,0.40);

INSERT INTO colourgraph VALUES (‘lightgreen’, ‘aqua’,0.20);

INSERT INTO colourgraph VALUES (‘lightgreen’, ‘green’,0.15);

INSERT INTO colourgraph VALUES (‘lightgreen’, ‘lime’,0.15);

INSERT INTO colourgraph VALUES (‘white’, ‘yellow’,0.40);

INSERT INTO colourgraph VALUES (‘yellow’, ‘lime’,0.40);

INSERT INTO colourgraph VALUES (‘yellow’, ‘lightyellow’,0.20);

INSERT INTO colourgraph VALUES (‘yellow’, ‘orange’,0.30);

INSERT INTO colourgraph VALUES (‘lightblue’, ‘lightyellow’,0.35);

INSERT INTO colourgraph VALUES (‘lightblue’, ‘lightgreen’,0.35);

INSERT INTO colourgraph VALUES (‘olive’, ‘green’,0.15);

INSERT INTO colourgraph VALUES (‘emerald’, ‘green’,0.15);

INSERT INTO colourgraph VALUES (‘chartreuse’, ‘lime’,0.10);

INSERT INTO colourgraph VALUES (‘jade’, ‘green’,0.10);

INSERT INTO colourgraph VALUES (‘turquoise’, ‘aqua’,0.00);

INSERT INTO colourgraph VALUES (‘seagreen’, ‘aqua’,0.10);

INSERT INTO colourgraph VALUES (‘darkgreen’, ‘green’,0.20);

INSERT INTO colourgraph VALUES (‘apple’, ‘lime’,0.00);

INSERT INTO colourgraph VALUES (‘verdigris’, ‘lightgreen’,0.10);

INSERT INTO colourgraph VALUES (‘olive’, ‘brown’,0.25);

INSERT INTO colourgraph VALUES (‘brown’, ‘orange’,0.30);

INSERT INTO colourgraph VALUES (‘orange’, ‘burntorange’,0.15);

139

APPENDIX C. SAMPLE SESSION SQL FILES 140

INSERT INTO colourgraph VALUES (‘chestnut’, ‘brown’,0.15);

INSERT INTO colourgraph VALUES (‘aqua’, ‘teal’,0.18);

INSERT INTO colourgraph VALUES (‘darkblue’, ‘navy’,0.10);

INSERT INTO colourgraph VALUES (‘navy’, ‘black’,0.4);

C.2 categories.sql

INSERT INTO categorygraph VALUES (‘chair’, ‘table’, 1);

INSERT INTO categorygraph VALUES (‘chair’, ‘domchair’, 0.25);

INSERT INTO categorygraph VALUES (‘chair’, ‘officechair’, 0.25);

INSERT INTO categorygraph VALUES (‘officechair’, ‘clericalchair’,

0.00);

INSERT INTO categorygraph VALUES (‘officechair’, ‘ergonomicchair’,

0.00);

INSERT INTO categorygraph VALUES (‘domchair’, ‘diningchair’, 0.1);

INSERT INTO categorygraph VALUES (‘officechair’, ‘barstool’, 0.1);

INSERT INTO categorygraph VALUES (‘domchair’, ‘recliner’, 0.1);

INSERT INTO categorygraph VALUES (‘domchair’, ‘kitchenstool’, 0.1);

INSERT INTO categorygraph VALUES (‘domchair’, ‘sofa’, 0.1);

INSERT INTO categorygraph VALUES (‘domchair’, ‘lounge3seater’, 0.1);

INSERT INTO categorygraph VALUES (‘table’, ‘diningtable’, 0.00);

INSERT INTO categorygraph VALUES (‘table’, ‘coffeetable’, 0.00);

INSERT INTO categorygraph VALUES (‘table’, ‘sidetable’, 0.00);

INSERT INTO categorygraph VALUES (‘table’, ‘changetable’, 0.00);

INSERT INTO categorygraph VALUES (‘table’, ‘boardroomtable’, 0.00);

C.3 shadescolours.sql

INSERT INTO shadesgraph VALUES (‘white’, ‘lightblue’,0.40);

INSERT INTO shadesgraph VALUES (‘lightblue’, ‘darkblue’,0.2);

INSERT INTO shadesgraph VALUES (‘lightblue’, ‘aqua’,0.15);

INSERT INTO shadesgraph VALUES (‘white’, ‘lightgreen’,0.40);

INSERT INTO shadesgraph VALUES (‘lightgreen’, ‘aqua’,0.20);

INSERT INTO shadesgraph VALUES (‘lightgreen’, ‘green’,0.15);

INSERT INTO shadesgraph VALUES (‘lightgreen’, ‘lime’,0.15);

INSERT INTO shadesgraph VALUES (‘white’, ‘yellow’,0.40);

INSERT INTO shadesgraph VALUES (‘yellow’, ‘lime’,0.40);

INSERT INTO shadesgraph VALUES (‘yellow’, ‘lightyellow’,0.20);

APPENDIX C. SAMPLE SESSION SQL FILES 141

INSERT INTO shadesgraph VALUES (‘yellow’, ‘orange’,0.30);

INSERT INTO shadesgraph VALUES (‘lightblue’, ‘lightyellow’,0.35);

INSERT INTO shadesgraph VALUES (‘lightblue’, ‘lightgreen’,0.35);

INSERT INTO shadesgraph VALUES (‘olive’, ‘green’,0.15);

INSERT INTO shadesgraph VALUES (‘emerald’, ‘green’,0.15);

INSERT INTO shadesgraph VALUES (‘chartreuse’, ‘lime’,0.10);

INSERT INTO shadesgraph VALUES (‘jade’, ‘green’,0.10);

INSERT INTO shadesgraph VALUES (‘turquoise’, ‘aqua’,0.00);

INSERT INTO shadesgraph VALUES (‘seagreen’, ‘aqua’,0.10);

INSERT INTO shadesgraph VALUES (‘darkgreen’, ‘green’,0.20);

INSERT INTO shadesgraph VALUES (‘apple’, ‘lime’,0.00);

INSERT INTO shadesgraph VALUES (‘verdigris’, ‘lightgreen’,0.10);

INSERT INTO shadesgraph VALUES (‘olive’, ‘brown’,0.25);

INSERT INTO shadesgraph VALUES (‘brown’, ‘orange’,0.30);

INSERT INTO shadesgraph VALUES (‘orange’, ‘burntorange’,0.15);

INSERT INTO shadesgraph VALUES (‘chestnut’, ‘brown’,0.15);

INSERT INTO shadesgraph VALUES (‘aqua’, ‘teal’,0.18);

INSERT INTO shadesgraph VALUES (‘darkblue’, ‘navy’,0.10);

INSERT INTO shadesgraph VALUES (‘navy’, ‘black’,0.4);

C.4 furnitureB.sql

INSERT INTO product VALUES (‘IC001’, ‘ClericalChair’, ‘olive’ ,2002,

149.99);

INSERT INTO product VALUES (‘IC002’, ‘ClericalChair’, ‘lime’ ,2002,

149.99);

INSERT INTO product VALUES (‘EG123’, ‘ErgonomicChair’, ‘green’ ,2001,

59.80);

INSERT INTO product VALUES (‘EG456’, ‘ErgonomicChair’, ‘emerald’ ,2001,

59.80);

INSERT INTO product VALUES (‘DC001’, ‘DiningChair’, ‘green’ ,2007,

89.90);

INSERT INTO product VALUES (‘DC023’, ‘DiningChair’, ‘chartreuse’,2007,

95.50);

INSERT INTO product VALUES (‘DC510’, ‘DiningChair’, ‘jade’ ,2006,

125.50);

INSERT INTO product VALUES (‘SC345’, ‘BarStool’, ‘turquoise’ ,2005,

45.90);

INSERT INTO product VALUES (‘SC125’, ‘BarStool’, ‘seagreen’ ,2005,

APPENDIX C. SAMPLE SESSION SQL FILES 142

55.00);

INSERT INTO product VALUES (‘RC831’, ‘Recliner’, ‘jade’ ,2006, 250.00);

INSERT INTO product VALUES (‘RC444’, ‘Recliner’, ‘lightgreen’ ,2006,

250.00);

INSERT INTO product VALUES (‘RC234’, ‘Recliner’, ‘darkgreen’ ,2006,

250.00);

INSERT INTO product VALUES (‘KC020’, ‘KitchenStool’, ‘lime’ ,2008,

40.50);

INSERT INTO product VALUES (‘KC021’, ‘KitchenStool’, ‘apple’ ,2008,

40.50);

INSERT INTO product VALUES (‘LC040’, ‘Sofa’, ‘aqua’ ,2004, 650.00);

INSERT INTO product VALUES (‘LC551’, ‘Lounge3seater’, ‘verdigris’

,2007, 899.00);

INSERT INTO product VALUES (‘IC003’, ‘IndustrialChair’, ‘white’ ,2002,

149.99);

INSERT INTO product VALUES (‘IC004’, ‘IndustrialChair’, ‘lightyellow’

,2002, 149.99);

INSERT INTO product VALUES (‘EG120’, ‘ErgonomicChair’, ‘orange’ ,2008,

59.80);

INSERT INTO product VALUES (‘EG453’, ‘ErgonomicChair’, ‘lightblue’

,2008, 59.80);

INSERT INTO product VALUES (‘DC004’, ‘DiningChair’, ‘white’ ,2006,

89.90);

INSERT INTO product VALUES (‘DC026’, ‘DiningChair’, ‘darkblue’ ,2006,

95.50);

INSERT INTO product VALUES (‘DC512’, ‘DiningChair’, ‘white’ ,2006,

125.50);

INSERT INTO product VALUES (‘DT345’, ‘DiningTable’, ‘turquoise’ ,2005,

500.00);

INSERT INTO product VALUES (‘DT125’, ‘DiningTable’, ‘white’ ,2005,

355.00);

INSERT INTO product VALUES (‘CT831’, ‘CoffeeTable’, ‘jade’ ,2005,

50.00);

INSERT INTO product VALUES (‘CT444’, ‘CoffeeTable’, ‘darkblue’ ,2005,

59.00);

C.5 customers.sql

INSERT INTO customers VALUES (1001, ‘Peter Adams’);

APPENDIX C. SAMPLE SESSION SQL FILES 143

INSERT INTO customers VALUES (1002, ‘Johanna Baker’);

INSERT INTO customers VALUES (1003, ‘Stuart Barich’);

INSERT INTO customers VALUES (1004, ‘Angela Brown’);

INSERT INTO customers VALUES (1005, ‘Marion Cartwright’);

INSERT INTO customers VALUES (1006, ‘Garry Cronin’);

INSERT INTO customers VALUES (1007, ‘Barry de Veen’);

INSERT INTO customers VALUES (1008, ‘Denise Devine’);

INSERT INTO customers VALUES (1009, ‘Rosalie Dunn’);

INSERT INTO customers VALUES (1010, ‘John Haggar’);

INSERT INTO customers VALUES (1011, ‘Clive Hallett’);

INSERT INTO customers VALUES (1012, ‘Catherine Hartstein’);

INSERT INTO customers VALUES (1013, ‘Victoria Heineman’);

INSERT INTO customers VALUES (1014, ‘Shirley Hetherington’);

INSERT INTO customers VALUES (1015, ‘Brian Heydon’);

INSERT INTO customers VALUES (1016, ‘Janis Jones’);

INSERT INTO customers VALUES (1017, ‘Barbara Lincoln’);

INSERT INTO customers VALUES (1018, ‘Stephen May’);

INSERT INTO customers VALUES (1019, ‘Geoff McRae’);

INSERT INTO customers VALUES (1020, ‘Ian Morgan’);

INSERT INTO customers VALUES (1021, ‘Keith Myers’);

INSERT INTO customers VALUES (1022, ‘Ian Pill’);

INSERT INTO customers VALUES (1023, ‘Lee Provins’);

INSERT INTO customers VALUES (1024, ‘Stephen Schroeter’);

INSERT INTO customers VALUES (1025, ‘Stella Shepherd’);

INSERT INTO customers VALUES (1026, ‘Stephen Tongue’);

INSERT INTO customers VALUES (1027, ‘Susanne Wright’);

C.6 suppliers.sql

INSERT INTO suppliers VALUES (2001, ‘Aardvark Furniture

Manufacturers’);

INSERT INTO suppliers VALUES (2002, ‘Blacksmith Commercial’);

INSERT INTO suppliers VALUES (2003, ‘Creative Office Furniture’);

INSERT INTO suppliers VALUES (2004, ‘Salon Furniture’);

INSERT INTO suppliers VALUES (2005, ‘Tables R Flat’);

INSERT INTO suppliers VALUES (2006, ‘Chairs Galore’);

INSERT INTO suppliers VALUES (2007, ‘Comfy Home Supplies’);

INSERT INTO suppliers VALUES (2008, ‘Sit Yourself’);

INSERT INTO suppliers VALUES (2009, ‘World of Furniture’);

APPENDIX C. SAMPLE SESSION SQL FILES 144

C.7 sales.sql

INSERT INTO sales VALUES (101, ‘2005-1-31’, 1021);

INSERT INTO sales VALUES (102, ‘2005-2-7’, 1008);

INSERT INTO sales VALUES (103, ‘2005-3-10’, 1021);

INSERT INTO sales VALUES (104, ‘2005-3-22’, 1017);

INSERT INTO sales VALUES (105, ‘2005-4-1’, 1006);

INSERT INTO sales VALUES (106, ‘2005-4-5’, 1007);

INSERT INTO sales VALUES (107, ‘2005-4-11’, 1010);

INSERT INTO sales VALUES (108, ‘2005-7-1’, 1023);

INSERT INTO sales VALUES (109, ‘2005-7-3’, 1017);

INSERT INTO sales VALUES (110, ‘2005-7-6’, 1007);

INSERT INTO sales VALUES (111, ‘2005-7-8’, 1018);

INSERT INTO sales VALUES (112, ‘2005-7-14’, 1021);

INSERT INTO sales VALUES (113, ‘2005-7-19’, 1007);

INSERT INTO sales VALUES (114, ‘2005-7-24’, 1005);

INSERT INTO sales VALUES (115, ‘2005-8-1’, 1008);

INSERT INTO sales VALUES (116, ‘2005-8-14’, 1002);

INSERT INTO sales VALUES (117, ‘2005-9-3’, 1022);

INSERT INTO sales VALUES (118, ‘2005-9-30’, 1010);

INSERT INTO sales VALUES (119, ‘2005-10-3’, 1012);

INSERT INTO sales VALUES (120, ‘2005-10-4’, 1003);

INSERT INTO sales VALUES (121, ‘2005-10-12’, 1001);

INSERT INTO sales VALUES (122, ‘2005-10-15’, 1016);

INSERT INTO sales VALUES (123, ‘2005-11-7’, 1025);

INSERT INTO sales VALUES (124, ‘2005-11-26’, 1006);

INSERT INTO sales VALUES (125, ‘2005-12-4’, 1014);

C.8 salesitem.sql

INSERT INTO salesitem VALUES (1, 101, ‘KC020’, 3);

INSERT INTO salesitem VALUES (2, 102, ‘IC004’, 1);

INSERT INTO salesitem VALUES (3, 103, ‘IC002’, 2);

INSERT INTO salesitem VALUES (4, 104, ‘EG456’, 5);

INSERT INTO salesitem VALUES (5, 105, ‘SC125’, 1);

INSERT INTO salesitem VALUES (6, 106, ‘RC444’, 4);

INSERT INTO salesitem VALUES (7, 107, ‘RC234’, 3);

INSERT INTO salesitem VALUES (8, 108, ‘EG453’, 3);

INSERT INTO salesitem VALUES (9, 109, ‘DT345’, 2);

APPENDIX C. SAMPLE SESSION SQL FILES 145

INSERT INTO salesitem VALUES (10, 110, ‘KC021’, 2);

INSERT INTO salesitem VALUES (11, 111, ‘EG453’, 5);

INSERT INTO salesitem VALUES (12, 112, ‘SC125’, 4);

INSERT INTO salesitem VALUES (13, 113, ‘IC004’, 5);

INSERT INTO salesitem VALUES (14, 114, ‘DC004’, 3);

INSERT INTO salesitem VALUES (15, 115, ‘EG453’, 2);

INSERT INTO salesitem VALUES (16, 116, ‘DT345’, 4);

INSERT INTO salesitem VALUES (17, 117, ‘EG120’, 5);

INSERT INTO salesitem VALUES (18, 118, ‘DT125’, 4);

INSERT INTO salesitem VALUES (19, 119, ‘EG456’, 5);

INSERT INTO salesitem VALUES (20, 120, ‘IC003’, 5);

INSERT INTO salesitem VALUES (21, 121, ‘RC831’, 4);

INSERT INTO salesitem VALUES (22, 122, ‘DC026’, 5);

INSERT INTO salesitem VALUES (23, 123, ‘CT831’, 2);

INSERT INTO salesitem VALUES (24, 124, ‘DC023’, 5);

INSERT INTO salesitem VALUES (25, 125, ‘IC002’, 5);

C.9 hexColours.sql

INSERT INTO colourgraph VALUES (‘apple’, ‘#7CFC00’, 0.00);

INSERT INTO colourgraph VALUES (‘aqua’, ‘#00FFFF’, 0.00);

INSERT INTO colourgraph VALUES (‘black’, ‘#000000’, 0.00);

INSERT INTO colourgraph VALUES (‘brown’, ‘#A52A2A’, 0.00);

INSERT INTO colourgraph VALUES (‘burntorange’, ‘#FF8C00’, 0.00);

INSERT INTO colourgraph VALUES (‘chartreuse’, ‘#7FFF00’, 0.00);

INSERT INTO colourgraph VALUES (‘chestnut’, ‘#7B3F00’, 0.00);

INSERT INTO colourgraph VALUES (‘darkblue’, ‘#00008B’, 0.00);

INSERT INTO colourgraph VALUES (‘darkgreen’, ‘#006400’, 0.00);

INSERT INTO colourgraph VALUES (‘emerald’, ‘#00C957’, 0.00);

INSERT INTO colourgraph VALUES (‘green’, ‘#008000’, 0.00);

INSERT INTO colourgraph VALUES (‘jade’, ‘#009966’, 0.00);

INSERT INTO colourgraph VALUES (‘lightblue’, ‘#ADD8E6’, 0.00);

INSERT INTO colourgraph VALUES (‘lightgreen’, ‘#90EE90’, 0.00);

INSERT INTO colourgraph VALUES (‘lightyellow’, ‘#FFFFE0’, 0.00);

INSERT INTO colourgraph VALUES (‘lime’, ‘#00FF00’, 0.00);

INSERT INTO colourgraph VALUES (‘navy’, ‘#000080’, 0.00);

INSERT INTO colourgraph VALUES (‘olive’, ‘#808000’, 0.00);

INSERT INTO colourgraph VALUES (‘orange’, ‘#FFA500’, 0.00);

INSERT INTO colourgraph VALUES (‘seagreen’, ‘#2E8B57’, 0.00);

APPENDIX C. SAMPLE SESSION SQL FILES 146

INSERT INTO colourgraph VALUES (‘teal’, ‘#008080’, 0.00);

INSERT INTO colourgraph VALUES (‘turquoise’, ‘#40E0D0’, 0.00);

INSERT INTO colourgraph VALUES (‘verdigris’, ‘#63A671’, 0.00);

INSERT INTO colourgraph VALUES (‘white’, ‘#FFFFFF’, 0.00);

INSERT INTO colourgraph VALUES (‘yellow’, ‘#FFFF00’, 0.00);

C.10 furnitureC.sql

INSERT INTO product VALUES (‘WT450’, ‘table’, ‘#A52A2A’,2009, 167.95);

INSERT INTO product VALUES (‘CC234’, ‘domchair’, ‘#009966’,2009,

85.50);

INSERT INTO product VALUES (‘WC117’, ‘officechair’, ‘#00C957’, 2009,

250.00);

INSERT INTO product VALUES (‘WT451’, ‘table’, ‘#7B3F00’, 2009, 167.95);

INSERT INTO product VALUES (‘WT452’, ‘table’, ‘#000000’, 2009, 167.95);

INSERT INTO product VALUES (‘WT453’, ‘table’, ‘#63A671’, 2009, 167.95);

INSERT INTO product VALUES (‘CC235’, ‘domchair’, ‘#000000’, 2009,

85.50);

INSERT INTO product VALUES (‘CC236’, ‘domchair’, ‘#90EE90’, 2009,

85.50);

INSERT INTO product VALUES (‘CC237’, ‘domchair’, ‘#008080’, 2009,

85.50);

INSERT INTO product VALUES (‘WC118’, ‘officechair’, ‘#006400’, 2009,

175.00);

INSERT INTO product VALUES (‘WC119’, ‘officechair’, ‘#7CFC00’, 2009,

200.00);

INSERT INTO product VALUES (‘WC120’, ‘officechair’, ‘#7B3F00’, 2009,

250.00);

C.11 salesB.sql

INSERT INTO sales VALUES (126, ‘2006-1-17’, 1008);

INSERT INTO sales VALUES (127, ‘2006-1-30’, 1004);

INSERT INTO sales VALUES (128, ‘2006-2-1’, 1014);

INSERT INTO sales VALUES (129, ‘2006-5-15’, 1003);

INSERT INTO sales VALUES (130, ‘2006-5-8’, 1025);

INSERT INTO sales VALUES (131, ‘2006-6-24’, 1018);

INSERT INTO sales VALUES (132, ‘2006-7-29’, 1015);

APPENDIX C. SAMPLE SESSION SQL FILES 147

INSERT INTO sales VALUES (133, ‘2006-7-3’, 1005);

INSERT INTO sales VALUES (134, ‘2006-8-16’, 1007);

INSERT INTO sales VALUES (135, ‘2006-8-25’, 1013);

INSERT INTO sales VALUES (136, ‘2006-8-8’, 1020);

INSERT INTO sales VALUES (137, ‘2006-9-12’, 1020);

INSERT INTO sales VALUES (138, ‘2006-9-27’, 1025);

INSERT INTO sales VALUES (139, ‘2006-11-11’, 1008);

C.12 salesitemB.sql

INSERT INTO salesitem VALUES (26, 126, ‘CC236’‘, 5);

INSERT INTO salesitem VALUES (27, 127, ‘IC001’, 1);

INSERT INTO salesitem VALUES (28, 128, ‘DC026’, 3);

INSERT INTO salesitem VALUES (29, 129, ‘LC040’, 4);

INSERT INTO salesitem VALUES (30, 130, ‘RC831’, 1);

INSERT INTO salesitem VALUES (31, 131, ‘WT452’, 2);

INSERT INTO salesitem VALUES (32, 132, ‘DC004’, 1);

INSERT INTO salesitem VALUES (33, 133, ‘CT831’, 2);

INSERT INTO salesitem VALUES (34, 134, ‘DC001’, 5);

INSERT INTO salesitem VALUES (35, 135, ‘RC831’, 4);

INSERT INTO salesitem VALUES (36, 136, ‘IC001’, 3);

INSERT INTO salesitem VALUES (37, 137, ‘IC003’, 3);

INSERT INTO salesitem VALUES (38, 138, ‘CC235’, 2);

INSERT INTO salesitem VALUES (39, 139, ‘DC512’, 4);

C.13 codelist.sql

INSERT INTO codelist VALUES (‘CT444’, 1444);

INSERT INTO codelist VALUES (‘CT831’, 1831);

INSERT INTO codelist VALUES (‘DC001’, 2001);

INSERT INTO codelist VALUES (‘DC004’, 2004);

INSERT INTO codelist VALUES (‘DC023’, 2023);

INSERT INTO codelist VALUES (‘DC026’, 2026);

INSERT INTO codelist VALUES (‘DC510’, 2510);

INSERT INTO codelist VALUES (‘DC512’, 2512);

INSERT INTO codelist VALUES (‘DT125’, 3125);

INSERT INTO codelist VALUES (‘DT345’, 3345);

INSERT INTO codelist VALUES (‘EG120’, 4120);

APPENDIX C. SAMPLE SESSION SQL FILES 148

INSERT INTO codelist VALUES (‘EG123’, 4123);

INSERT INTO codelist VALUES (‘EG453’, 4453);

INSERT INTO codelist VALUES (‘EG456’, 4456);

INSERT INTO codelist VALUES (‘IC001’, 5001);

INSERT INTO codelist VALUES (‘IC002’, 5002);

INSERT INTO codelist VALUES (‘IC003’, 5003);

INSERT INTO codelist VALUES (‘IC004’, 5004);

INSERT INTO codelist VALUES (‘KC020’, 6020);

INSERT INTO codelist VALUES (‘KC021’, 6021);

INSERT INTO codelist VALUES (‘LC040’, 7040);

INSERT INTO codelist VALUES (‘LC551’, 7551);

INSERT INTO codelist VALUES (‘RC234’, 8234);

INSERT INTO codelist VALUES (‘RC444’, 8444);

INSERT INTO codelist VALUES (‘RC831’, 8831);

INSERT INTO codelist VALUES (‘SC125’, 9125);

INSERT INTO codelist VALUES (‘SC345’, 9345);

Appendix D

Prototype Functionality

Table D.1. Prototype Functionality

Function Action Example in
Appendix
B

USE DATABASE System tables DOMTABLE and
MESOTABLE opened (created if not
existing)

1

CREATE DOMAIN System Table DOMTABLE updated. 9-13
System Table created with the domain
name and populated with values from
source relation.

Trap error for Error Message
Domain already exists
Invalid mesodata type
Incompatible source relation
Source not found
Incorrect syntax
ALTER DOMAIN
NAME System table of domain values renamed. 15, 17

System table DOMTABLE updated 16
MESODATATYPE System table of domain values deleted. 19

System table of domain values created
and populated from source.

20

149

APPENDIX D. PROTOTYPE FUNCTIONALITY 150

Function Action Example in
Appendix
B

Entry in DOMTABLE updated. 20
BASETYPE System table of domain values altered. 22, 24

System table DOMTABLE updated 23
RELATION System table of domain values deleted. 28

System table of domain values created
and populated from new source.
Entry in DOMTABLE updated. 29

Trap error for Error message
Domain does not exist
New name exists
Invalid mesodata type
Invalid base type
Source relation does not exist
Incorrect syntax
DROP DOMAIN System table of domain values deleted. 30,31

Entry in DOMTABLE deleted. 33
Source relation saved. 31

Trap error for Error Message
Domain does not exist
Reference found for domain
Incorrect syntax
CREATE TABLE
with mesodata domain base type inherited by table specification. 35,39

Entry in MESOTABLE 38
without mesodata domain standard table created 2
Trap error for Error Message
Domain does not exist.
Incorrect syntax
ALTER TABLE
without mesodata domain standard alter table 44- 49
with mesodata domain
ADD COLUMN base type inherited by table specification.

Entry in MESOTABLE created
50-52

CHANGE COLUMN Table specification altered 53- 55
MODIFY COLUMN
from reference to mesodata
type to base type

Entry in MESOTABLE deleted

APPENDIX D. PROTOTYPE FUNCTIONALITY 151

Function Action Example in
Appendix
B

CHANGE COLUMN base type inherited by table specification. 98- 100
MODIFY COLUMN Entry in MESOTABLE.
to reference to mesodata type

DROP COLUMN Table specification altered. 56 - 58
Entry in MESOTABLE deleted.

Trap error for Error Message
Domain does not exist.
Incorrect syntax
REFRESH DOMAIN System table of domain values rebuilt

from source relation.
76

SHOW DOMAINS Display Domains 13
SHOW MESODATATYPES Display Mesodata types referenced by

attributes
38

SELECT statements
Standard SQL only execute as normal 60,62,63
with mesodata operators only Result set retrieved correctly 62,78, 79,82
with multiple mesodata
domains and operators

Result set retrieved correctly 65,84

with mesodata operators plus
standard SQL operators

Result set retrieved correctly 64,71

multiple mesodata domains
and operators plus standard
SQL operators

Result set retrieved correctly 74,93

Appendix E

Prototype Domain Querying

152

APPENDIX E. PROTOTYPE DOMAIN QUERYING 153

T
a
b
le

E
.1

.
P

ro
to

ty
p
e

Q
u
er

y
in

g

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

E
n
h
an

ce
d

q
u
er

y
in

g
C

ol
ou

rs
ar

e
d
efi

n
ed

ov
er

a

m
es

o
d
at

a
d
om

ai
n

w
ei

gh
te

d

gr
ap

h
.

It
em

T
y
p
es

ar
e

d
efi

n
ed

ov
er

a
M

es
o
d
at

a
d
om

ai
n

d
ir

ec
te

d

w
ei

gh
te

d
gr

ap
h
.

C
R

E
A
T

E
T
A

B
L
E

p
ro

d
u
ct

(P
ar

tI
D

ch
ar

(5
)

N
O

T
N

U
L
L
,

It
em

T
y
p
e

C
A
T

E
G

O
R

IE
S
,
C

ol
ou

r
C

O
L
O

U
R

S
,
S
u
p
p
li
er

ID

in
t,

P
ri

ce
n
u
m

er
ic

(9
),

P
R

IM
A

R
Y

K
E

Y
(P

ar
tI

D
))

35

Q
u
er

ie
s

fo
r

p
ro

d
u
ct

s
w

it
h

a

C
ol

ou
r

a
sh

ad
e

of
‘g

re
en

’

re
tr

ie
ve

s
tu

p
le

s
m

at
ch

in
g

si
m

il
ar

co
lo

u
r

va
lu

es
w

it
h
in

th
e

d
om

ai
n
.

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
=

‘g
re

en
’

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘g

re
en

’

61 62

Q
u
er

ie
s

fo
r

p
ro

d
u
ct

s
th

at

ar
e

a
ty

p
e

of
‘c

h
ai

r’
re

tr
ie

ve
s

tu
p
le

s
m

at
ch

in
g

si
m

il
ar

ca
te

go
ry

va
lu

es
w

it
h
in

th
e

d
om

ai
n
.

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘g

re
en

’
an

d

It
em

T
y
p
e

=
‘r
ec

li
n
er

’

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘g

re
en

’
an

d

It
em

T
y
p
e

cl
os

et
o

‘c
h
ai

r’

63 65

APPENDIX E. PROTOTYPE DOMAIN QUERYING 154

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

Q
u
er

ie
s

ov
er

m
u
lt

ip
le

re
la

ti
on

s
p
ro

je
ct

in
g

d
iff

er
en

t

v
ie

w
s

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
=

‘a
p
p
le

’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o

an
d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

70

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘a
p
p
le

’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID

=
sa

le
s.

C
u
st

om
er

ID
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

71

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
It

em
T

y
p
e,

C
ol

ou
r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

72

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
It

em
T

y
p
e

=
‘R

ec
li
n
er

’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o

an
d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

73

APPENDIX E. PROTOTYPE DOMAIN QUERYING 155

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘a
p
p
le

’
an

d
It

em
T

y
p
e

C
L
O

S
E

T
O

‘c
h
ai

r’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

74

D
om

ai
n

P
er

ce
p
ti
on

C
h
an

ge

T
h
e

p
ro

d
u
ct

co
lo

u
r

is
co

d
ed

b
y

a
h
ex

ad
ec

im
al

st
ri

n
g

fo
r

th
e

sh
ad

e
in

st
ea

d
of

w
or

d

te
rm

s.
N

ew
va

lu
es

ar
e

ad
d
ed

to
th

e
d
om

ai
n

d
at

a.

h
ex

C
ol

ou
rs

.s
q
l
(s

ee
A

p
p
en

d
ix

C
.9

)

re
fr

es
h

d
om

ai
n

C
O

L
O

U
R

S

75 76

Q
u
er

ie
s

re
fe

rr
in

g
to

n
ew

d
om

ai
n

va
lu

es
re

tr
ie

ve

m
at

ch
in

g
si

m
il
ar

va
lu

es
in

d
at

a.

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
=

‘#
00

80
00

’

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘#

00
80

00
’

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘g

re
en

’

77 78 79

D
om

ai
n

C
on

st
ra

in
ts

C
h
an

ge

It
em

T
y
p
es

cl
as

si
fi
ed

at

d
iff

er
en

t
le

ve
ls

of
ca

te
go

ri
es

.

R
ec

or
d
s

ar
e

ad
d
ed

to
th

e

p
ro

d
u
ct

re
la

ti
on

w
it

h
n
ew

It
em

T
y
p
es

an
d

h
ex

ad
ec

im
al

C
ol

ou
r

va
lu

es
.

fu
rn

it
u
re

C
.s

q
l
(s

ee
A

p
p
en

d
ix

C
.1

0)
80

APPENDIX E. PROTOTYPE DOMAIN QUERYING 156

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

Q
u
er

ie
s

re
fe

rr
in

g
to

b
ot

h

n
ew

an
d

ol
d

ca
te

go
ri
es

an
d

co
lo

u
rs

re
tr

ie
ve

m
at

ch
in

g

re
co

rd
s.

se
le

ct
*

fr
om

p
ro

d
u
ct

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
C

ol
ou

r
cl

os
et

o
‘#

90
E

E
90

’

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
It

em
T

y
p
e

=
‘t

ab
le

’
an

d
C

ol
ou

r

cl
os

et
o

‘b
ro

w
n
’

81 82 83

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
It

em
T

y
p
e

cl
os

et
o

‘t
ab

le
’
an

d

C
ol

ou
r

cl
os

et
o

‘b
ro

w
n
’

84

D
at

a
In

te
gr

at
io

n
D

at
a

co
n
fo

rm
in

g
to

d
iff

er
en

t

en
tr

y
st

an
d
ar

d
s

fo
r

C
ol

ou
r

an
d

It
em

T
y
p
e

ar
e

p
re

se
n
t

in

th
e

re
la

ti
on

p
ro

d
u
ct

.

R
ec

or
d
s

re
la

te
d

to
th

es
e

ad
d
ed

to
ot

h
er

re
la

ti
on

s.

sa
le

sB
.s

q
l
(s

ee
A

p
p
en

d
ix

C
.1

1)

sa
le

si
te

m
B

.s
q
l
(s

ee
A

p
p
en

d
ix

C
.1

2)

85 86

Q
u
er

ie
s

ov
er

m
u
lt

ip
le

re
la

ti
on

s
p
ro

je
ct

in
g

d
iff

er
en

t

v
ie

w
s

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
=

‘b
ro

w
n
’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o

an
d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

87

APPENDIX E. PROTOTYPE DOMAIN QUERYING 157

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘b
ro

w
n
’
an

d

cu
st

om
er

s.
C

u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

88

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
It

em
T

y
p
e,

C
ol

ou
r,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

89

se
le

ct
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m
w

h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘a
p
p
le

’
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o
an

d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

90

se
le

ct
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m
w

h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘b
la

ck
’
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o
an

d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

91

APPENDIX E. PROTOTYPE DOMAIN QUERYING 158

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
It

em
T

y
p
e

=
‘R

ec
li
n
er

’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d
sa

le
s.

In
vo

ic
eN

o
=

sa
le

si
te

m
.I
n
vo

ic
eN

o

an
d

p
ro

d
u
ct

.P
ar

tI
D

=
sa

le
si

te
m

.P
ar

tI
D

92

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
C

ol
ou

r
C

L
O

S
E

T
O

‘a
p
p
le

’
an

d
It

em
T

y
p
e

C
L
O

S
E

T
O

‘c
h
ai

r’
an

d
cu

st
om

er
s.

C
u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

93

se
le

ct
C

u
st

om
er

N
am

e,
p
ro

d
u
ct

.P
ar

tI
D

,
C

ol
ou

r,
It

em
T

y
p
e,

sa
le

s.
In

vo
ic

eN
o

fr
om

cu
st

om
er

s,
p
ro

d
u
ct

,
sa

le
s,

sa
le

si
te

m

w
h
er

e
It

em
T

y
p
e

C
L
O

S
E

T
O

‘c
h
ai

r’
an

d

cu
st

om
er

s.
C

u
st

om
er

ID
=

sa
le

s.
C

u
st

om
er

ID
an

d

sa
le

s.
In

vo
ic

eN
o

=
sa

le
si

te
m

.I
n
vo

ic
eN

o
an

d
p
ro

d
u
ct

.P
ar

tI
D

=

sa
le

si
te

m
.P

ar
tI

D

94

APPENDIX E. PROTOTYPE DOMAIN QUERYING 159

F
u
n
ct

io
n

E
x
a
m

p
le

S
Q

L
E
x
am

p
le

in

A
p
p
en

d
ix

B

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
It

em
T

y
p
e

cl
os

et
o

”t
ab

le
”

95

A
tt

ri
b
u
te

R
ep

re
se

n
ta

ti
on

C
h
an

ge

P
ar

tI
D

s
ar

e
ch

an
ge

d
fr

om

ch
ar

(5
)

to
in

te
ge

r
co

d
es

.

A
n
ew

d
om

ai
n

is
cr

ea
te

d
to

co
d
el

is
t.

sq
l
(s

ee
A

p
p
en

d
ix

C
.1

3
96

,
97

m
an

ag
e

th
e

n
ew

co
d
es

cr
ea

te
d
om

ai
n

N
E

W
C

O
D

E
S

as
L
IS

T
of

ch
ar

(5
)

ov
er

co
d
el

is
t

98

R
el

at
io

n
p
ro

d
u
ct

al
te

re
d

to

re
fe

re
n
ce

a
M

es
o
d
at

a
li
st

co
n
ta

in
in

g
n
u
m

er
ic

co
d
e

eq
u
iv

al
en

ts
to

st
ri

n
g

co
d
es

al
te

r
ta

b
le

p
ro

d
u
ct

m
o
d
if
y

co
lu

m
n

P
ar

tI
D

N
E

W
C

O
D

E
S

N
O

T
N

U
L
L

sh
ow

m
es

o
d
at

at
y
p
es

10
0

10
1

Q
u
er

y
fo

r
p
ro

d
u
ct

s
u
si

n
g

n
u
m

er
ic

co
d
e

se
le

ct
*

fr
om

p
ro

d
u
ct

se
le

ct
*

fr
om

p
ro

d
u
ct

w
h
er

e
P
ar

tI
D

eq
u
al

to
14

44

10
2

10
4

Q
u
er

y
fo

r
p
ro

d
u
ct

s
u
si

n
g

b
ot

h
th

e
ol

d
an

d
n
ew

co
d
es

.

se
le

ct
S
u
p
p
li
er

ID
,
P
ar

tI
D

,
It

em
T

y
p
e

fr
om

p
ro

d
u
ct

w
h
er

e

P
ar

tI
D

eq
u
al

to
50

01
or

P
ar

tI
D

=
‘i
c0

04
’

10
5

Appendix F

Data type Comparisons

160

APPENDIX F. DATA TYPE COMPARISONS 161

T
a
b
le

F
.1

.
C

o
m

p
a
ri

so
n

o
f
D

a
ta

T
y
p
e
s

T
y
p
e

n
a
m

e
T

y
p
e

n
a
m

e
T

y
p
e

N
a
m

e

V
B

M
y
S
Q

L
P
o
st

g
r
e
S
Q

L
S
Q

L
S
e
r
v
e
r

O
r
a
c
le

D
e
sc

r
ip

ti
o
n

R
a
n
g
e

N
U

M
E
R

IC

B
y
te

T
IN

Y
IN

T
ti
n
y
in

t
1
-b

y
te

b
in

a
ry

0
to

2
5
5

In
te

g
er

S
M

A
L
L
IN

T
in

t2
sm

a
ll
in

t
sm

a
ll
in

t
2
-b

y
te

in
te

g
er

-
3
2
,7

6
8

to
3
2
,7

6
7

M
E

D
IU

M
IN

T
3
-b

y
te

in
te

g
er

-8
,3

8
8
,6

0
8

to
8
,3

8
8
,6

0
7
.

T
h
e

u
n
si

g
n
ed

ra
n
g
e

is
0

to
1
6
,7

7
7
,2

1
5

L
o
n
g

IN
T

in
t4

in
t

in
te

g
er

4
-b

y
te

in
te

g
er

-2
,1

4
7
,4

8
3
,6

4
8

to
2
,1

4
7
,4

8
3
,6

4
7

IN
T

E
G

E
R

in
te

g
er

O
b
je

ct
4

b
y
te

s
A

n
y

O
b
je

ct
re

fe
re

n
ce

(s
a
m

e
a
s

lo
n
g
)

B
IG

IN
T

in
t8

b
ig

in
t

8
-b

y
te

in
te

g
er

T
h
e

si
g
n
ed

ra
n
g
e

is
−

9
,2

2
3
,3

7
2
,0

3
6
,8

5
4
,7

7
5
,8

0
8

to
9
,2

2
3
,3

7
2
,0

3
6
,8

5
4
,7

7
5
,8

0
7
.

T
h
e

u
n
si

g
n
ed

ra
n
g
e

is
0

to
1
8
,4

4
6
,7

4
4
,0

7
3
,7

0
9
,5

5
1
,6

1
5
.

S
in

g
le

F
L
O

A
T

fl
o
a
t4

re
a
l

4
-b

y
te

fl
o
a
ti

n
g
-p

o
in

t

n
u
m

b
er

-3
.4

0
2
8
2
3
E

3
8

to
-1

.4
0
1
2
9
8
E

-4
5

(-
v
e)

1
.4

0
1
2
9
8
E

-4
5

to
3
.4

0
2
8
2
3
E

3
8

(+
v
e)

D
o
u
b
le

D
O

U
B

L
E

R
E

A
L

fl
o
a
t8

fl
o
a
t

8
-b

y
te

fl
o
a
ti

n
g
-p

o
in

t

n
u
m

b
er

-1
.7

9
7
6
9
3
1
3
4
8
6
2
3
1
E

3
0
8

to

-4
.9

4
0
6
5
6
4
5
8
4
1
2
4
7
E

-3
2
4

(-
v
e)

4
.9

4
0
6
5
6
4
5
8
4
1
2
4
7
E

-3
2
4

to

1
.7

9
7
6
9
3
1
3
4
8
6
2
3
1
E

3
0
8

(+
v
e)

fl
o
a
t

n
u
m

b
er

u
p

to
3
8

d
ig

it
s

o
f
p
re

ci
si

o
n

M
O

N
E
T
A

R
Y

m
o
n
ey

sm
a
ll
m

o
n
ey

4
b
y
te

-2
1
,4

7
4
,8

3
6
.4

8
to

+
2
1
4
,7

4
8
,3

6
.4

7

C
u
rr

en
cy

m
o
n
ey

8
-b

y
te

n
u
m

b
er

w
it

h

fi
x
ed

d
ec

im
a
l
p
o
in

t

-9
2
2
,3

3
7
,2

0
3
,6

8
5
,4

7
7
.5

8
0
8

to

9
2
2
,3

3
7
,2

0
3
,6

8
5
,4

7
7
.5

8
0
7

D
E

C
IM

A
L

8
-b

y
te

R
a
n
g
e

is
d
ep

en
d
en

t
u
p
o
n

d
is

p
la

y
si

ze
a
n
d

p
re

ci
si

o
n

C
H

A
R

A
C

T
E

R
N

O
N

-

U
N

IC
O

D
E

C
H

A
R

(0
-

2
5
5
)

ch
a
r

(1
-n

)
ch

a
r

ch
a
r

(1
-

2
0
0
0
)

1
to

m
a
x

b
y
te

s
fi
x
ed

*
M

y
S
Q

L
*

a
ll
o
w

s
C

H
A

R
(0

)
th

a
t

o
n
ly

ca
n

ta
k
e

2

APPENDIX F. DATA TYPE COMPARISONS 162

T
y
p
e

n
a
m

e
T

y
p
e

n
a
m

e
T

y
p
e

N
a
m

e

V
B

M
y
S
Q

L
P
o
st

g
r
e
S
Q

L
S
Q

L
S
e
r
v
e
r

O
r
a
c
le

D
e
sc

r
ip

ti
o
n

R
a
n
g
e

ch
a
ra

ct
er

(1
-
8
0
0
0
)

le
n
g
th

v
a
lu

es
:

‘N
U

L
L
’
o
r

‘”
”
’.

V
A

R
C

H
A

R

(0
-2

5
5
)

v
a
rc

h
a
r(

1
-n

)
v
a
rc

h
a
r(

1
-
8
0
0
0
)

v
a
rc

h
a
r2

(1
-4

0
0
0
)

ra
w

(m
a
x

2
0
0
0
)

0
to

m
a
x

v
a
ri

a
b
le

le
n
g
th

R
A
W

s
a
re

u
se

d
to

st
o
re

d
a
ta

th
a
t

w
o
n
’t

b
e

co
n
v
er

te
d

T
IN

Y
B

L
O

B
m

a
x

2
5
5

ch
a
rs

T
IN

Y
T

E
X

T

B
L
O

B
T

E
X

T
m

a
x

6
5
,5

3
5

ch
a
rs

M
E

D
IU

M
B

L
O

B

M
E

D
IU

M
-

T
E

X
T

m
a
x

1
6
,7

7
7
,2

1
5

ch
a
rs

te
x
t

lo
n
g
;
lo

n
g

ra
w

m
a
x

2
G

B
O

ra
cl

e’
s

L
O

N
G

s
st

o
re

ch
a
ra

ct
er

d
a
ta

th
a
t

a
re

co
n
v
er

te
d

w
h
en

m
o
v
ed

fr
o
m

o
n
e

d
a
ta

b
a
se

to
th

e

o
th

er
.

R
A
W

s
a
re

u
se

d
to

st
o
re

d
a
ta

th
a
t

w
o
n
’t

b
e

co
n
v
er

te
d
.

L
O

N
G

s
a
re

o
n
ly

su
p
p
o
rt

ed
fo

r

b
a
ck

w
a
rd

co
m

p
a
ti

b
il
it
y

L
O

N
G

B
L
O

B
cl

o
b

m
a
x

4
G

B

L
O

N
G

T
E

X
T

te
x
t

u
n
li
m

it
ed

v
a
ri

a
b
le

le
n
g
th

U
N

IC
O

D
E

n
ch

a
r(

n
)

m
a
x

2
5
5

n
ch

a
r(

n
)

m
a
x

4
0
0
0

n
ch

a
r(

n
)
m

a
x

2
,0

0
0

fi
x
ed

le
n
g
th

n
a
ti
o
n
a
l

v
a
r-

ch
a
r(

n
)

m
a
x

2
5
5

n
v
a
rc

h
a
r(

n
)

m
a
x

4
0
0
0

n
v
a
rc

h
a
r(

n
)

m
a
x

4
0
0
0

v
a
ri

a
b
le

le
n
g
th

n
te

x
t

m
a
x

1
G

B

n
cl

o
b

m
a
x

4
G

B

st
ri

n
g

m
a
x

2

b
il
li
o
n

S
tr

in
g

o
f
ch

a
ra

ct
er

s
S
tr

in
g

v
a
ri

a
b
le

s
a
re

st
o
re

d
a
s

se
q
u
en

ce
s

o
f

u
n
si

g
n
ed

1
6
-b

it
(2

-b
y
te

)
n
u
m

b
er

s
ra

n
g
in

g
in

v
a
lu

e
fr

o
m

0
th

ro
u
g
h

6
5
,5

3
5
.

E
a
ch

n
u
m

b
er

re
p
re

se
n
ts

a
si

n
g
le

U
n
ic

o
d
e

ch
a
ra

ct
er

.
A

st
ri

n
g

ca
n

co
n
ta

in
u
p

to
a
p
p
ro

x
im

a
te

ly
2

b
il
li
o
n

(2
3
1
)

U
n
ic

o
d
e

ch
a
ra

ct
er

s.

APPENDIX F. DATA TYPE COMPARISONS 163

T
y
p
e

n
a
m

e
T

y
p
e

n
a
m

e
T

y
p
e

N
a
m

e

V
B

M
y
S
Q

L
P
o
st

g
r
e
S
Q

L
S
Q

L
S
e
r
v
e
r

O
r
a
c
le

D
e
sc

r
ip

ti
o
n

R
a
n
g
e

V
a
ri

a
n
t

D
a
te

/
ti
m

e,

fl
o
a
ti
n
g
-p

o
in

t

n
u
m

b
er

,
in

te
g
er

,

st
ri

n
g
,
o
r

o
b
je

ct
.

1
6

b
y
te

s,
p
lu

s
1

b
y
te

fo
r

ea
ch

ch
a
ra

ct
er

if

a
st

ri
n
g

v
a
lu

e.

D
a
te

v
a
lu

es
:

1
J
a
n
u
a
ry

1
0
0

to
3
1

D
ec

em
b
er

9
9
9
9
.

N
u
m

er
ic

v
a
lu

es
:

sa
m

e
ra

n
g
e

a
s

D
o
u
b
le

.
S
tr

in
g

v
a
lu

es
:

sa
m

e
ra

n
g
e

a
s

S
tr

in
g
.

C
a
n

a
ls

o
co

n
ta

in

E
rr

o
r

o
r

N
u
ll

E
N

U
M

E
n
u
m

er
a
ti
o
n

o
f

V
a
lu

e
S
et

m
a
x
im

u
m

o
f
6
5
,5

3
5

d
is

ti
n
ct

v
a
lu

es

S
E

T
S
et

o
f
v
a
lu

es
m

a
x
im

u
m

o
f
6
4

m
em

b
er

s

B
O

O
L
E

A
N

B
o
o
le

a
n

b
o
o
l

2
b
y
te

s
T
ru

e
o
r

F
a
ls

e

B
IT

/
B

O
O

L
b
it

(0
o
r

1
)

1
b
y
te

M
y
S
Q

L
T

IN
Y

IN
T

(1
)

V
a
lu

e
=

=
0

T
r
u
e/
6=

0
F

a
ls

e

D
A
T

E
/
T

IM
E

D
a
te

8
-b

y
te

d
a
te

/
ti
m

e

v
a
lu

e

1
J
a
n
u
a
ry

1
0
0

0
0
:0

0
:0

0
to

3
1

D
ec

em
b
er

9
9
9
9

2
3
:5

9
:5

9

D
A
T

E
3

b
y
te

s
D

a
te

w
it

h
o
u
t

T
im

e
1
0
0
0
-0

1
-0

1
-
9
9
9
9
-1

2
-3

1

D
A
T

E
T

IM
E

8
b
y
te

s
1
0
0
0
-0

1
-0

1
0
0
:0

0
:0

0
-
9
9
9
9
-1

2
-3

1
2
3
:5

9
:5

9

T
IM

E
S
T
A

M
P

4
b
y
te

s
1
9
7
0
-0

1
-0

1
0
0
:0

0
:0

0
to

so
m

et
im

e
2
0
3
7

T
IM

E
3

b
y
te

s
T

im
e

-8
3
8
:5

9
:5

9
-
8
3
8
:5

9
:5

9

Y
E

A
R

1
b
y
te

Y
ea

r
(i
n
te

g
er

-3
2
,7

6
8

to
3
2
,7

6
7
)

d
a
te

ti
m

e
8

b
y
te

s
1
7
5
3
-0

1
-0

1
to

9
9
9
-1

2
-3

1
a
cc

u
ra

cy
3
.3

3
m

il
li
se

c

sm
a
ll
d
a
te

ti
m

e
4

b
y
te

s
1
9
0
0
-0

1
-0

1
to

2
0
7
9
-1

2
-3

1
a
cc

u
ra

cy
1

m
in

d
a
te

7
b
y
te

s
F
ix

ed
-l
en

g
th

d
a
te

+
ti
m

e
v
a
lu

e.

4
7
1
2
B

C
-0

1
-0

1
0
0
:0

0
:0

0
to

9
9
9
9
A

D
-1

2
-3

1
2
3
:5

9
:5

9

d
a
te

4
b
y
te

s
4
7
1
3

B
C

-0
1
-0

1
to

3
2
7
6
7

A
D

-1
2
-3

1

ti
m

e
8

b
y
te

s
w

/
o

ti
m

e
zo

n
e

0
0
:0

0
:0

0
.0

0
-

2
3
:5

9
:5

9
.9

9

ti
m

e
1
2

b
y
te

s
w

it
h

ti
m

ez
o
n
e

0
0
:0

0
:0

0
.0

0
-

2
3
:5

9
:5

9
.9

9

ti
m

es
ta

m
p

8
b
y
te

s
4
7
1
3

B
C

-0
1
-0

1
0
0
:0

0
:0

0
.0

0
to

1
4
6
5
0
0
1
A

D
-1

2
-3

1

2
3
:5

9
:5

9
.9

9
(a

cc
1

m
ic

ro
se

co
n
d
)

APPENDIX F. DATA TYPE COMPARISONS 164

T
y
p
e

n
a
m

e
T

y
p
e

n
a
m

e
T

y
p
e

N
a
m

e

V
B

M
y
S
Q

L
P
o
st

g
r
e
S
Q

L
S
Q

L
S
e
r
v
e
r

O
r
a
c
le

D
e
sc

r
ip

ti
o
n

R
a
n
g
e

B
IN

A
R
Y

b
in

a
ry

m
a
x

8
0
0
0

fi
x
ed

le
n
g
th

v
a
rb

in
a
ry

m
a
x

8
0
0
0

v
a
ri

a
b
le

le
n
g
th

im
a
g
e

m
a
x

2
G

B
v
a
ri

a
b
le

le
n
g
th

b
fi
le

m
a
x

4
G

B
p
o
in

te
r

to
b
in

a
ry

fi
le

o
n

d
is

k
en

a
b
le

s
a
cc

es
s

to

b
in

a
ry

fi
le

L
O

B
s

th
a
t

a
re

st
o
re

d
in

fi
le

sy
st

em
s

o
u
ts

id
e

th
e

O
ra

cl
e

d
a
ta

b
a
se

b
lo

b
m

a
x

4
G

B
v
a
ri

a
b
le

le
n
g
th

b
y
te

a
4

b
y
te

s
+

b
in

a
ry

st
ri

n
g

Appendix G

Mapping MySQL to Java types

Table G.1. Mapping SQL and Java data types (MySQL 2003)

MySQL Data Types Java types

CHAR, VARCHAR, BLOB,

TEXT, ENUM, and SET

java.lang.String, java.io.InputStream, java.io.Reader,

java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE

PRECISION, NUMERIC,

DECIMAL, TINYINT,

SMALLINT, MEDIUMINT,

INTEGER, BIGINT

java.lang.String, java.lang.Short, java.lang.Integer,

java.lang.Long, java.lang.Double,

java.math.BigDecimal

DATE, TIME, DATETIME,

TIMESTAMP

java.lang.String, java.sql.Date, java.sql.Timestamp

MySQL Type Name Returned as Java Class for

ResultSet.getObject()

BIT(1) java.lang.Boolean

BIT(> 1) byte[]

TINYINT IF ’tinyInt1isBit’ is set to ’true’ (the default) AND

storage size is ’1’ java.lang.Boolean ELSE

java.lang.Integer

BOOL , BOOLEAN See TINYINT

SMALLINT[(M)]

[UNSIGNED]

java.lang.Integer (regardless if UNSIGNED or not)

165

APPENDIX G. MAPPING MYSQL TO JAVA TYPES 166

MySQL Type Name Returned as Java Class for

ResultSet.getObject()

MEDIUMINT[(M)]

[UNSIGNED]

java.lang.Integer (regardless if UNSIGNED or not)

INT,INTEGER[(M)]

[UNSIGNED]

java.lang.Integer, if UNSIGNED java.lang.Long

BIGINT[(M)] [UNSIGNED] java.lang.Long, if UNSIGNED java.math.BigInteger

FLOAT[(M,D)] java.lang.Float

DOUBLE[(M,B)] java.lang.Double

DECIMAL[(M[,D])] java.math.BigDecimal

DATE java.sql.Date

DATETIME java.sql.Timestamp

TIMESTAMP[(M)] java.sql.Timestamp

TIME java.sql.Time

YEAR[(2—4)] java.sql.Date (1 January at midnight)

CHAR(M) java.lang.String (unless the character set for the

column is BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] java.lang.String (unless the character set for the

column is BINARY, then byte[] is returned.

BINARY(M) byte[]

VARBINARY(M) byte[]

TINYBLOB byte[]

TINYTEXT java.lang.String

BLOB byte[]

TEXT java.lang.String

MEDIUMBLOB byte[]

MEDIUMTEXT java.lang.String

LONGBLOB byte[]

LONGTEXT java.lang.String

ENUM(’value1’,’value2’,...) java.lang.String

SET(’value1’,’value2’,...) java.lang.String

Bibliography

Abramsky, S. & Jung, A. (1994), Domain theory, in S. Abramsky, D. M. Gabbay

& T. S. E. Maibaum, eds, ‘Handbook of Logic in Computer Science’, Vol. 3,

Clarendon Press, pp. 1–168.

Ahmed-Nacer, M. & Estublier, J. (2000), ‘Schema evolution in software engi-

neering databases: A new approach in ADELE’, Computer and Artificial

Intelligence Journal 19, 183 – 203.

Albert, J. (2000), Theoretical foundations of schema restructuring in heteroge-

neous multidatabase systems, in ‘9th international conference on Information

and knowledge management’, ACM Press, McLean, Virginia, United States,

pp. 461–470.

Allen, J. F. (1983), ‘Maintaining knowledge about temporal intervals’, Commu-

nications of the ACM 26(11), 832 – 843.

Baekgaard, L. (1997), Transaction-based specification of database evolution., in

D. W. Embley & R. C. Goldstein, eds, ‘ER’97 16th International Conference

on Conceptual Modeling’, Vol. 1331 of Lecture Notes in Computer Science,

Springer, Los Angeles, California, USA, pp. 127–140.

Bechhofer, S., Broekstra, J., Decker, S., Erdmann, M., Fensel, D., Goble, C., van

Harmelen, F., Horrocks, I., Klein, M., McGuinness, D., Motta, E., Patel-

Schneider, P., Staab, S. & Studer, R. (2000), An informal description of

standard OIL and instance OIL, Technical report, DARPA.

Beneventano, D. & Bergamaschi, S. (2004), The MOMIS methodology for in-

tegrating heterogeneous data sources, in ‘IFIP World Computer Congress’,

Toulouse France.

Berlin, J. & Motro, A. (2002), Database schema matching using machine learning

with feature selection., in A. Banks Pidduck, J. Mylopoulos, C. C. Woo &

167

BIBLIOGRAPHY 168

M. T. Özsu, eds, ‘Conference on Advanced Systems Engineering (CAiSE)’,

Vol. 2348, Springer, Toronto, Canada, pp. 452–466.

Bernstein, P. A., Melnik, S., Petropoulos, M. & Quix, C. (2004), ‘Industrial-

strength schema matching.’, ACM SIGMOD Record 33(4), 38–43.

Bertino, E. & Martino, L. (1993), Object-Oriented Database Systems Concepts

and Architectures, Addison-Wesley Publishing Company, Wokingham.

Bertossi, L. & Schwind, C. (2004), ‘Database repairs and analytic tableaux’,

Annals of Mathematics and Artificial Intelligence 40(1-2), 5–35.

Blaschka, M., Sapia, C. & Hofling, G. (1999), On schema evolution in multidi-

mensional databases, in M. K. Mohania & A. M. Tjoa, eds, ‘1st International

Conference on Data Warehousing and Knowledge Discovery, DaWaK ’99’,

Vol. 1676 of Lecture Notes in Computer Science, Springer, Florence, Italy,

pp. 153–164.

Bornhövd, C. & Buchmann, A. P. (2000), Semantically meaningful data exchange

in loosely coupled environments, in ‘6th International Conference on Infor-

mation Systems Analysis and Synthesis (ISAS2000)’, Orlando, Fl., USA.

Braga, R. M. M., Werner, C. M. L. & Mattoso, M. (2000), Using ontologies for

domain information retrieval, in ‘11th International Workshop on Database

and Expert Systems Applications (DEXA’00)’, DEXA Workshops, IEEE

Computer Society, Greenwich, UK, pp. 836–840.

Buneman, P., Jung, A. & Ohori, A. (1991), ‘Using powerdomains to generalize

relational databases’, Theoretical Computer Science 91, 23–55.

Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M., Naggar, P. & Vernacotola,

F. (2002), IBIS: Data integration at work, in ‘10th Italian Conference on

Database Systems’, pp. 291–298.

Ceri, S., Gennaro, C., Paraboschi, S. & Serazzi, G. (2003), ‘Effective scheduling

of detached rules in active databases’, IEEE Transactions On Knowledge

And Data Engineering 15(1), 2–13.

Ceri, S. & Widom, J. (1991), Deriving production rules for incremental view

maintenance, in ‘17th International Conference on Very Large Data Bases’,

Morgan Kaufmann Publishers Inc., pp. 577–589.

BIBLIOGRAPHY 169

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou,

Y., Ullman, J. D. & Widom, J. (1994), The TSIMMIS project: Integration

of heterogeneous information sources, in ‘16th Meeting of the Information

Processing Society of Japan’, Tokyo, Japan, pp. 7–18.

Chein, M. & Mugnier, M.-L. (1992), ‘Conceptual graphs: Fundamental notions’,

Revue d’Intelligence Artificielle 6(4), 365–406.

Chein, M. & Mugnier, M.-L. (1995), Conceptual graphs are also graphs, Research

Report 95003, Universite Montpellier.

Chen, P. P.-S. (1976), ‘The entity-relationship model - toward a unified view of

data’, ACM Trans. Database Systems 1(1), 9–36.

Clamen, S. M. (1992), Type evolution and instance adaptation, Technical report,

Carnegie Mellon University.

Claypool, K. T., Natarajan, C. & Rundensteiner, E. A. (1999), Optimizing the

performance of schema evolution sequences, Technical Report WPI-CS-TR-

99-06, Worcester Polytechnic Institute, Massachusetts.

Comyn-Wattiau, I., Akoka, J. & Lammari, N. (2003), A framework for database

evolution management, in ‘2nd International Workshop on Unanticipated

Software Evolution’, Warsaw Poland.

Corbett, D. (2004), Interoperability of ontologies using conceptual graph theory,

in ‘Lecture Notes in Computer Science’, Vol. 3127, Springer, pp. 375–387.

Cui, C., Jones, D. & O’Brien, P. (2002), ‘Semantic B2B integration: Issues in

ontology-based approaches’, ACM SIGMOD Record 31(1), 43–48.

Cui, Z. & O’Brien, P. (2000), Domain ontology management environment, in

‘33rd Hawaii International Conference on System Sciences (HICSS‘00)’,

IEEE Computer Society, Hawaii, p. 8015.

Davidson, S., Buneman, P. & Kosky, A. (1998), ‘Semantics of database transfor-

mations’, Lecture Notes in Computer Science 1358, 55–91.

Davies, J., Duke, A. & Stonkus, A. (2001), Ontoshare: Using ontologies for

knowledge sharing, Technical report, BTexact Technologies. check entry.

De Giacomo, G., Lembo, D., Lenzerini, M. & Rosati, R. (2004), Tackling inconsis-

tencies in data integration through source preferences, in ‘2004 International

BIBLIOGRAPHY 170

workshop on information quality in information systems (IQIS ’04)’, ACM

Press, Paris, France, pp. 27–34.

de Vries, D., Rice, S. & Roddick, J. F. (2004), In support of mesodata in database

management systems, in ‘15th International Conference on Database and

Expert Systems Applications (DEXA 2004)’, Lecture Notes in Computer

Science, Springer Verlag, Zaragoza, Spain.

de Vries, D. & Roddick, J. (2004), Facilitating database attribute domain evo-

lution using mesodata, in ‘3rd International Workshop on Evolution and

Change in Data Management (ECDM2004)’, Vol. 3289, Springer-Verlag,

Shanghai, China, pp. 429–440.

Dey, D., Storey, V. C. & Barron, T. M. (1999), ‘Improving database design

through the analysis of relationships’, ACM Transactions on Database Sys-

tems 24(4), 453–474.

Do, H.-H., Melnik, S. & Rahm, E. (2002), ‘Comparison of schema matching

evaluations’, Lecture Notes in Computer Science 2593, 221–237.

Doan, A. (2002), Learning to Map between Structured Representations of Data,

Phd, University of Washington.

Eisenberg, A., Melton, J., Kulkarni, K. G., Michels, J.-E. & Zemke, F. (2004),

‘SQL: 2003 has been published.’, ACM SIGMOD Record 33(1), 119–126.

Elmasri, R. & Navathe, S. B. (2000), Fundamentals of Database Systems, 3rd

edn, Addison-Wesley, Reading, Mass; Menlo Park, Calif.

Elmasri, R. & Navathe, S. B. (2004), Fundamentals of Database Systems, 4th

edn, Addison-Wesley, Reading, Mass; Menlo Park, Calif.

Embley, D. W., Xu, L. & Ding, Y. (2004), ‘Automatic direct and indirect

schema mapping: Experiences and lessons learned.’, ACM SIGMOD Record

33(4), 14–19.

Embury, S. M. & Gray, P. M. D. (1999), Database internal applications, in N. W.

Paton, ed., ‘Active Rules in Database Systems’, Springer, New York, pp. 339

– 366.

Ferrandina, F., Meyer, T. & Zicari, R. (1994), Implementing lazy database up-

dates for an object database system, in ‘20th International Conference on

Very Large Databases’, Santiago, Chile, pp. 261–272.

BIBLIOGRAPHY 171

Fonseca, F. T., Egenhofer, M. J., Agouris, P. & Camara, C. (2002), ‘Using on-

tologies for integrated geographic information systems’, Transactions in GIS

6(3).

Franconi, E., Grandi, F. & Mandreoli, F. (2000), ‘A semantic approach for

schema evolution and versioning in object-oriented databases’, Lecture Notes

in Computer Science 1861, 1048–1062.

Franconi, E., Grandi, F. & Mandreoli, F. (2001), ‘Schema evolution and ver-

sioning: A logical and computational characterisation’, Lecture Notes in

Computer Science 2065, 85–99.

Fuh, Y.-C., Dessloch, S., Chen, W., Mattos, N., Tran, B. T., Lindsay, B. G.,

DeMichel, L., Rielau, S. & Mannhaupt, D. (1999), Implementation of SQL3

structured types with inheritance and value substitutability, in M. P. Atkin-

son, M. E. Orlowska, P. Valduriez, S. B. Zdonik & M. L. Brodie, eds, ‘25th

International Conference on Very Large Data Bases’, Morgan Kaufmann,

Edinburgh, Scotland, UK, pp. 565–574.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,

Ullman, J. D., Vassalos, V. & Widom, J. (1997), ‘The TSIMMIS approach to

mediation: Data models and languages’, Journal of Intelligent Information

Systems 8(2), 117–132.

Grandi, F. (2002), A relational multi-schema data model and query language for

full support of schema versioning, in ‘10th Italian Conference on Database

Systems (SEBD 2002)’, pp. 323–336.

Grandi, F. (2004), SVMgr: A tool for the management of schema versioning, in

P. Atzeni, W. Chu, H. Lu, S. Zhou & T. W. Ling, eds, ‘23rd International

Conference on Conceptual Modeling (ER2004)’, Vol. 3288, Springer-Verlag,

Shanghai, China, pp. 860–861.

Gruber, T. R. (1993), ‘A translation approach to portable ontology specifications’,

Knowledge Acquisition 5(2), 199–220.

Haas, L., Miller, R., Niswonger, B., Tork Roth, M., Schwarz, P. & Wimmers, E.

(1999), ‘Transforming heterogeneous data with database middleware: Be-

yond integration’, IEEE Data Engineering Bulletin 22(1), 31–36.

BIBLIOGRAPHY 172

Hakimpour, F. & Geppert, A. (2001), Resolving semantic heterogeneity in schema

integration, in ‘International conference on Formal Ontology in Information

Systems (FOIS01)’, ACM Press, Ogunquit, Maine, USA., pp. 297–308.

He, B. & Chang, K. C.-C. (2004), ‘A holistic paradigm for large scale schema

matching.’, ACM SIGMOD Record 33(4), 20–25.

Horrocks, I. (2000), A denotational semantics for standard OIL and instance OIL,

Technical report, Department of Computer Science University of Manch-

ester, UK.

Horrocks, I. (2002a), ‘DAML+OIL: a description logic for the semantic web’,

IEEE Data Engineering Bulletin 25(1), 4–9.

Horrocks, I. (2002b), DAML+OIL: A reason-able web ontology language, in

C. S. Jensen, K. G. Jeffery, J. Pokorny, S. Altenis, E. Bertino, K. Böhm &

M. Jarke, eds, ‘8th International Conference on Extending Database Tech-

nology’, Vol. 2287 of Lecture Notes in Computer Science, Springer-Verlag

Heidelberg, Prague, Czech Republic, pp. 2–13.

Hull, R. (1986), ‘Relative information capacity of simple relational database

schemata’, Society for Industrial and Applied Mathematics 15(3), 856 – 886.

Hull, R. (1997), Managing semantic heterogeneity in databases: A theoretical

perspective, in ‘ACM SIGACT SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS)’, ACM Press, Tucson, AZ, pp. 51–61.

ISO/ANSI (2003), Information technology - database languages - SQL - part

2: Foundation (SQL/foundation), in J. Melton, ed., ‘ISO/IEC 9075-2:2003

(E)’, ISO/IEC JTC 1/SC 32, Geneva.

Jasper, R. & Uschold, M. (1999), A framework for understanding and classifying

ontology applications, in ‘IJCAI99 Workshop on Ontologies and Problem-

Solving Methods(KRR5)’, Stockholm, Sweden.

Jensen, C. S., Clifford, J., Elmasri, R., Gadia, S. K., Hayes, P., Jajodia, S.,

Dyreson, C., Grandi, F., Kafer, W., Kline, N., Lorentzos, N., Mitsopou-

los, Y., Montanari, A., Nonen, D., Peressi, E., Pernici, B., Roddick, J. F.,

Sarda, N. L., Scalas, M. R., Segev, A., Snodgrass, R. T., Soo, M. D., Tansel,

A., Tiberio, P. & Wiederhold, G. (1998), A consensus glossary of tempo-

ral database concepts - February 1998 version, in O. Etzion, S. Jajodia &

BIBLIOGRAPHY 173

S. Sripada, eds, ‘Temporal Databases - Research and Practice’, Vol. 1399 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 367–405.

Kashap, V. & Sheth, A. P. (1996), ‘Semantic and schematic similarities between

database objects: a context-based approach’, The VLDB Journal 5(4), 276

– 304.

Kedad, Z. & Métais, E. (1999), Dealing with semantic heterogeneity during data

integration., in J. Akoka, B. Mokrane, I. Comyn-Wattiau & E. Métais, eds,

‘18th International Conference on Conceptual Modelling’, Vol. 1728 of Lec-

ture Notes in Computer Science, Springer, Paris France, pp. 325–339.

Klein, M. (2001), Combining and relating ontologies: an analysis of problems

and solutions., in A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt &

M. Uschold, eds, ‘Workshop on Ontologies and Information Sharing, IJ-

CAI’01’, Seattle, USA.

Klein, M. (2002), Supporting evolving ontologies on the internet, in A. B.

Chaudhri, R. Unland, C. Djeraba & W. Lindner, eds, ‘XML-Based

Data Management and Multimedia Engineering - EDBT 2002 Workshops

XMLDM, MDDE, and YRWS’, Vol. 2490 of Lecture Notes in Computer Sci-

ence, Springer, Prague, Czech Republic, pp. 597–606.

Klein, M. & Fensel, D. (2001), Ontology versioning for the semantic web, in ‘Inter-

national Semantic Web Working Symposium (SWWS)’, Stanford University,

California, USA.

Klein, M., Fensel, D., Kiryakov, A. & Ognyanov, D. (2002), Ontology versioning

and change detection on the web, in A. Gómez-Pérez & V. R. Benjamins,

eds, ‘Knowledge Engineering and Knowledge Management. Ontologies and

the Semantic Web, Thirteenth International Conference’, Lecture Notes in

Computer Science, Springer, Siguenza, Spain, pp. 197–212.

Lakshmanan, L. V. S., Sadri, F. & Subramanian, S. N. (1999), On efficiently

implementing SchemaSQL on an SQL database system, in M. P. Atkinson,

M. E. Orlowska, P. Valduriez, S. B. Zdonik & M. L. Brodie, eds, ‘25th

International Conference on Very Large Data Bases’, Morgan Kaufmann,

Edinburgh, Scotland, UK, pp. 471–482.

Lemke, T. (1994), Schema evolution in OODBMS: A selective overview of prob-

lems and solutions., Technical Report IDEA.WP.22.O.002, University of

Bonn.

BIBLIOGRAPHY 174

Lenzerini, M. (2002), Data integration: a theoretical perspective, in ‘21st ACM

SIGMOD-SIGACT-SIGART symposium on principles of database systems’,

ACM Press, Madison, Wisconsin, pp. 233–246.

Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ull-

man, J. & Valiveti, M. (1998), Capability based mediation in TSIMMIS,

in ‘1998 ACM SIGMOD international conference on Management of data’,

ACM Press, Seattle, Washington, United States, pp. 564–566.

Liu, C.-T., Chang, S.-K. & Chrysanthis, P. K. (1994), Database schema evolu-

tion using EVER diagrams, in ‘Workshop on advanced visual interfaces’,

Advanced Visual Interfaces, ACM Press New York, NY, USA, Bari, Italy,

pp. 123 – 132.

Liu, L., Zicari, R., Hursch, W. L. & Lieberherr, K. J. (1997), ‘The role of polymor-

phic reuse mechanisms in schema evolution in an object-oriented database’,

Knowledge and Data Engineering 9(1), 50–67.

Maier, D. (1983), The Theory of Relational Databases, Computer Science Press.

McBrien, P. & Poulovassilis, A. (1997), A formal framework for ER schema trans-

formation, in ‘International Conference on Conceptual Modeling / the Entity

Relationship Approach’, pp. 408–421.

McBrien, P. & Poulovassilis, A. (1998a), ‘A formalisation of semantic schema

integration’, Information Systems 23(5), 307–334.

McBrien, P. & Poulovassilis, A. (1998b), ‘A general formal framework for schema

transformation’, Data and Knowledge Engineering 28(1), 47–71,.

McBrien, P. & Poulovassilis, A. (2002), Schema evolution in heterogeneous data-

base architectures, a schema transformation approach, in ‘14th International

Conference on Advanced Information Systems Engineering (CAiSE’02)’,

Springer-Verlag, pp. 484–499.

Meersman, R. & Jarrar, M. (2002), Formal ontology engineering in the DOGMA

approach, in R. Meersman & Z. Tari, eds, ‘CoopIS/DOA/ODBASE 2002’,

Vol. 2519, Springer-Verlag, pp. 1238–1254.

Melton, J. & Simon, A. R. (2002), SQL:1999 Understanding Relational Language

Components, Academic Press, San Francisco.

BIBLIOGRAPHY 175

Miller, R., Hernandez, M., Haas, L., Yan, L., Ho, C. T. H., Fagin, R. & Popa, L.

(2001), ‘The Clio Project: Managing heterogeneity’, ACM SIGMOD Record

30(1), 78–83.

Miller, R. J., Ioannidis, Y. E. & Ramakrishnan, R. (1993), The use of information

capacity in schema integration and translation, in R. Agrawal, S. Baker

& D. Bell, eds, ‘19th International Conference on Very Large Data Bases,

VLDB’93’, Morgan Kaufmann, Palo Alto, CA, Dublin, Ireland, pp. 120–133.

Miller, R. J., Ioannidis, Y. E. & Ramakrishnan, R. (1994a), ‘Schema equiva-

lence in heterogeneous systems: Bridging theory and practice’, Information

Systems 19(1), 3–31.

Miller, R. J., Ioannidis, Y. E. & Ramakrishnan, R. (1994b), Schema intension

graphs: A formal model for the study of schema equivalence, Technical re-

port, University of Wisconsin-Madison.

Mooney, C. H., de Vries, D. & Roddick, J. F. (2005), A multi-level framework for

the analysis of sequential data, in S. J. Simoff & G. J. Williams, eds, ‘Data

Mining: Theory, Methodology, Techniques, and Applications’, Lecture Notes

in Artificial Intelligence, Springer.

Moshier, A. (2000), Mathematical foundations of domain theory, Technical re-

port, University of Birmingham. unprinted.

Motik, B., Maedche, A. & Volz, R. (2002), A conceptual modeling approach for

semantics-driven enterprise applications, in R. Meersman & Z. Tari, eds, ‘On

the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE

2002 Confederated International Conferences DOA, CoopIS and ODBASE

2002’, Vol. 2519 of Lecture Notes in Computer Science, Springer, Irvine,

California, USA, pp. 1082–1099.

Motro, A., Berlin, J. & Anokhin, P. (2004), ‘Multiplex, fusionplex, and auto-

plex - three generations of information integration’, ACM SIGMOD Record

33(4), 51–57.

Munkres, J. R. (1975), Topology: A First Course, Prentice Hall, Englewood Cliffs,

New Jersey.

MySQL (2003), ‘SQL shareware software: documentation and source code’.

http://www.mysql.com

BIBLIOGRAPHY 176

Ng, W. (1998), Inferring functional dependencies in linearly ordered databases,

in G. Quirchmayr, E. Schweighofer & T. J. M. Bench-Capon, eds, ‘9th

International Conference on Database and Expert Systems Applications

(DEXA98)’, Vol. 1460, Springer-Verlag, Heidelberg, p. 186195.

Ng, W. (2001), ‘An extension of the relational data model to incorporate ordered

domains’, ACM Transactions on Database Systems 26(3), 344–383.

Nirenburg, S. & Raskin, V. (2004), The static knowledge sources: Ontology, fact

database and lexicons, in ‘Ontological Semantics’, Language, Speech, and

Communication, MIT Press, pp. 191–246.

Noy, N. F. (2004), ‘Semantic integration: a survey of ontology-based approaches’,

ACM SIGMOD Record 33(4), 65–70.

Noy, N. F. & Klein, M. (2002), Ontology evolution: Not the same as schema

evolution, Technical Report SMI-2002-0926, Standford Medical Informatics.

Parent, C. & Spaccapietra, S. (1998), ‘Issues and approaches of database integra-

tion’, Communications of the ACM 41(5), 166–178.

Parent, C., Spaccapietra, S. & Zimányi, E. (2000), MurMur: Database manage-

ment of multiple representations, in ‘AAAI-2000 Workshop on Spatial and

Temporal Granularity’, Austin, Texas, pp. 83–86.

Parsons, J. & Wand, Y. (2000), ‘Emancipating instances from the tyranny of

classes in information modeling.’, ACM Transactions on Database Systems

25(2), 228– 260.

Partridge, C. (2002), The role of ontology in integrating semantically hetero-

geneous databases, Technical Report 05/02, National Research Council,

LADSEB-CNR.

Peters, R. J. & Özsu, M. T. (1997), ‘An axiomatic model of dynamic schema

evolution in objectbase systems’, ACM Transactions on Database Systems

22(1), 75–114.

Qian, X. (1996), Correct schema transformations, in P. M. G. Apers,

M. Bouzeghoub & G. Gardarin, eds, ‘Advances in Database Technology - 5th

International Conference on Extending Database Technology (EDBT’96)’,

Vol. 1057 of Lecture Notes in Computer Science, Springer, Avignon, France,

pp. 114–128.

BIBLIOGRAPHY 177

Rahm, E. & Bernstein, P. A. (2001a), On matching schemas automatically, Tech-

nical MSR-TR-2001-17, University of Leipzig.

Rahm, E. & Bernstein, P. A. (2001b), ‘A survey of approaches to automatic

schema matching’, VLDB Journal 10(4), 334–350.

Ram, S. & Park, J. (2004), ‘Semantic conflict resolution ontology (SCROL): An

ontology for detecting and resolving data and schema-level semantic con-

flicts’, IEEE Transactions on Knowledge and Data Engineering 16(2), 189–

202.

Ram, S. & Ramesh, V. (1999), Schema integration: past, present, and future, in

A. Elmagarmid, M. Rusinkiewicz & A. Sheth, eds, ‘Management of Hetero-

geneous and Autonomous Database Systems’, Morgan Kaufmann Publishers

Inc., pp. 119–155.

Rashid, A. (2002), Aspect-oriented schema evolution in object databases: A com-

parative case study, Technical report, Computing Department, Lancaster

University, Lancaster LA1 4YR, UK. check entry.

Rice, S. & Roddick, J. F. (2000), Lattice-structured domains, imperfect data

and inductive queries, in M. T. Ibrahim, J. Kng & N. Revell, eds, ‘11th

International Conference on Database and Expert Systems Applications

(DEXA2000)’, Vol. 1873 of Lecture Notes in Computer Science, Springer,

Greenwich, London, UK, pp. 664–674.

Rice, S., Roddick, J. F. & de Vries, D. (2006), Defining and implementing do-

mains with multiple types using mesodata modelling techniques, in ‘3rd

Asia-Pacific Conference on Conceptual Modelling (APCCM 2006)’, Hobart,

Australia.

Roddick, J. F. (1995), ‘A survey of schema versioning issues for database systems’,

Information and Software Technology 37(7), 383–393.

Roddick, J. F., Al-Jadir, L., Bertossi, L., Dumas, M., Estrella, F., Gregersen, H.,

Hornsby, K., Lufter, J., Mandreoli, F., Männistö, T., Mayol, E. & Wede-

meijer, L. (1999), ‘Evolution and change in data management - issues and

directions’, ACM SIGMOD Record 29(1), 21–25.

Roddick, J. F., Craske, N. G. & Richards, T. J. (1993), A taxonomy for schema

versioning based on the relational and entity relational models, in ‘12th

International Conference on Entity-Relationship Approach’, pp. 143–154.

BIBLIOGRAPHY 178

Roddick, J. F., Hornsby, K. & de Vries, D. (2003), A unifying semantic distance

model for determining the similarity of attribute values, in M. Oudshoorn,

ed., ‘26th Australasian Computer Science Conference (ACSC2003)’, Vol. 16,

ACS, Adelaide, Australia, pp. 111–118.

Rosenthal, A., Seligman, L. J. & Renner, S. (2004), ‘From semantic integration

to semantics management: case studies and a way forward.’, ACM SIGMOD

Record 33(4), 44–50.

Sattler, K.-U., Geist, I. & Schallehn, E. (2005), ‘Concept-based querying in me-

diator systems’, The VLDB Journal 14(1), 97–111.

Shankaranarayanan, G. & Ram, S. (2003), Research issues in database schema

evolution - the road not taken, Technical Report Technical Report 2003-15,

University of Arizona.

Sintek, M., Tschaitschian, B., Abecker, A. & Bernardi, A. (2000), Using ontolo-

gies for advanced information access, in J. Domingue, ed., ‘3rd International

Conference and Exhibition on The Practical Application of Knowledge Man-

agement (PAKeM 2000)’, Manchester, UK.

Sjøberg, D. (1993), ‘Quantifying schema evolution’, Information and Technology

Software 35(1), 35 – 44.

Sotnykova, A., Monties, S. & Spaccapietra, S. (2000), Semantic integration in

MADS conceptual model, in ‘17th International CODATA Conference’, Vol.

Integration of Heterogeneous Databases and Data Warehousing, Baveno,

Italy.

Sowa, J. F. (2000), Knowledge Representation: Logical, Philosophical, and Com-

putational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA,

USA.

Sowa, J. F. (2001), ‘Conceptual graph standard’.

http://users.bestweb.net/ sowa/cg/cgstand.htm

Spaccapietra, S., Parent, C., Vangenot, C. & Cullot, N. (2004), On using concep-

tual modeling for ontologies., in C. Bussler, S.-k. Hong, W. Jun, R. Kaschek,

Kinshuk, S. Krishnaswamy, S. W. Loke, D. Oberle, D. Richards, A. Sharma,

Y. Sure & B. Thalheim, eds, ‘Web Information Systems - WISE 2004 In-

ternational Workshops’, Vol. 3307 of Lecture Notes in Computer Science,

Springer, Brisbane, Australia, pp. 22–33.

BIBLIOGRAPHY 179

Spaccapietra, S., Yu, S. & Al-Jadir, L. (2005), Somebody, sometime, somewhere,

something, in ‘International Workshop on Ubiquitous Data Management

(UDM2005)In Memoriam Prof. Yahiko Kambayashi, In conjunction with

IEEE ICDE 2005’, Vol. 2005, Tokyo, Japan.

Spyns, P., Meersman, R. & Jarrar, M. (2002), ‘Data modelling versus ontology

engineering’, ACM SIGMOD Record 31(4), 12–17.

Staudt Lerner, B. (2000), ‘A model for compound type changes encountered in

schema evolution’, ACM Transactions on Database Systems 25(1), 83 – 127.

Stonebraker, M., Jhingran, A., Goh, J. & Potamianos, S. (1990), On rules, pro-

cedure, caching and views in data base systems, in ‘1990 ACM SIGMOD

international conference on Management of data’, ACM Press, Atlantic City,

New Jersey, United States, pp. 281–290.

Stonebraker, M. & Moore, D. (1996), Object-Relational DBMSs: The Next Great

Wave, Morgan Kaufman, San Francisco.

Türker, C. (2000), Schema evolution in SQL-99 and commercial (object-) rela-

tional DBMS, in ‘9th International Workshop on Foundations of Models and

Languages for Data and Objects’, Database Schema Evolution and Meta-

Modeling, Dagstuhl Castle Germany.

Uschold, M. & Gruninger, M. (2004), ‘Ontologies and semantics for seamless

connectivity’, ACM SIGMOD Record 33(4), 58–64.

Ventrone, V. & Heiler, S. (1991), ‘Semantic heterogeneity as a result of domain

evolution’, ACM SIGMOD Record 20(4), 16–20.

Vianu, V. (2001), A web odyssey: from Codd to XML, in ‘20th ACM SIGMOD-

SIGACT-SIGART symposium on principles of database systems (PODS

’01)’, ACM Press, Santa Barbara, California, USA, pp. 1–15.

Wache, H., Vogele, T., Stuckenschmidt, H., Schuster, G., Neumann, H. & Hubner,

S. (2001), Ontology-based integration of information a survey of existing

approaches, in ‘IJCAI-01 Workshop: Ontologies and Information Sharing’,

Seattle, WA, pp. 108–117.

Wache, H., Vogele, T., Stuckenschmidt, H., Schuster, G., Neumann, H. & Hubner,

S. (2002), ‘Ontology-based integration of information a survey of existing

approaches’.

BIBLIOGRAPHY 180

Wand, Y., Storey, V. C. & Weber, R. (1999), ‘An ontological analysis of the rela-

tionship construct in conceptual modeling.’, ACM Transactions on Database

Systems 24(4), 494–518.

Waszkiewicz, P. (2003), How do domains model topologies?, in ‘19th Conference

on the Mathematical Foundations of Programming Semantics’, Institute of

Computer Science, Jagiellonian University, Krakow, Poland Boole Centre

for Research in Informatics, University College, Cork, Ireland, Montreal

Canada.

Wei, H.-C. & Elmasri, R. (2000), ‘Schema versioning and database conversion

techniques for bi-temporal databases’, Annals of Mathematics and Artificial

Intelligence 30(1-4), 23–52.

Xu, L. & Poulovassilis, A. (1997), A method for integrating deductive databases,

in ‘British National Conference on Databases’, pp. 215–231.

Yan, L. L., Miller, R. J., Haas, L. M. & Fagin, R. (2001), ‘Data-driven understand-

ing and refinement of schema mappings’, ACM SIGMOD Record 30(2), 485

– 496.

Yugopuspito, P. & Araki, K. (1999), Evolution of relational database to object-

relational database in abstract level, in ‘International Workshop on Princi-

ples of Software Evolution’, Fukuoka City, Japan, pp. 103–107.

Zhou, L., Rundensteiner, E. A. & Shin, K. G. (1997), ‘Schema evolution of an

object-oriented real-time database system for manufacturing automation’,

Knowledge and Data Engineering 9(6), 956–977.

	Abstract
	Certification
	Acknowledgements
	Introduction
	Literature Review
	Database Organisation and Evolution
	Causes of Change
	Change Management
	Information Capacity
	Techniques for Database Evolution
	Schema Integration
	Common Data Model
	Schema Intension Graphs
	Hypergraph Data Model
	Evolutionary ER Diagrams
	Schematic Conflicts

	Schema Matching
	Semantic Heterogeneity
	Object-Relational Databases
	Data Conversion
	Attribute Evolution

	Data and View Integration
	Mediation Techniques
	Ontologies
	Concept Graphs
	Knowledge Interchange
	Summary

	Mesodata in DBMS
	Modelling
	Mesodata
	Mesodata Domains
	Definition of the Mesodata Domain
	Extended Querying

	Structured Domains
	Filters
	Topological Spaces

	Mesodata Operators
	Comparison of Mesodata with User-Defined Types
	Conceptual Model Incorporating Mesodata
	Summary

	Reference Data Language
	Aims
	Mesodata Definition Language
	Create Domain Syntax
	Drop Domain Syntax
	Alter Domain Syntax
	Refresh Domain Syntax
	Describe Domain Syntax
	Show Domains Syntax

	Mesodata Extended SQL
	Create Table Syntax
	Alter Table Syntax
	Drop Table Syntax
	Describe Mesodata Type Syntax
	Show Mesodata Types Syntax

	Extensions to Manipulation Language
	Select Syntax

	Summary

	Application of Mesodata
	Domain Evolution
	Change Management
	Attribute Domain Evolution
	Categories of Domain Evolution
	Attribute Representation Change
	Domain Constraints Change
	Domain Perception (meaning) Change
	Minimise Change

	Data Integration
	Enhanced Queries
	Example of a Circular Domain

	An Object-Relational Example
	Hierarchical Domain

	Summary

	Empirical Study of a Database System
	Motivation for the Study
	System Overview and Evolution
	System Metrics
	Stable Characteristics
	Deleted Values
	Modified Domains

	Data Conversion and Maintenance
	Summary

	Prototype Model
	Prototype Evaluation
	Evaluation Criteria
	Prototype Platform
	Prototype Components
	Query Parser

	Example Database
	Evaluation of Model
	Enhanced Querying
	Domain Perception Change
	Domain Constraints Change
	Data Integration
	Attribute Representation Change

	Summary of Evaluation

	Conclusions and Further Research
	Database Evolution
	Techniques for Database Evolution
	Data Integration
	Mesodata Layer
	Future Research
	DB Platform Support for Mesodata
	XML
	Ontologies of Data Structures
	Mesodata types based on UDTs
	Modelling Tools
	Other Database Technologies

	Appendices
	Publications Resulting From This Thesis
	Sample Session
	Sample Session SQL Files
	adjColours.sql
	categories.sql
	shadescolours.sql
	furnitureB.sql
	customers.sql
	suppliers.sql
	sales.sql
	salesitem.sql
	hexColours.sql
	furnitureC.sql
	salesB.sql
	salesitemB.sql
	codelist.sql

	Prototype Functionality
	Prototype Domain Querying
	Data type Comparisons
	Mapping MySQL to Java types
	Bibliography

