
Predicting Femoral Strain
Using Surrogate Modelling

By

Thomas Rundle

2219463

Thesis

Submitted to Flinders University, in conjunction with Griffith

University for the degree of

Bachelor of Engineering (Biomedical) (Honours) /

Master of Engineering (Biomedical)

College of Science and Engineering

03/11/2023

i

DECLARATION

I certify that this thesis:

1. does not incorporate without acknowledgment any material previously submitted for

a degree or diploma in any university

2. and the research within will not be submitted for any other future degree or diploma

without the permission of Flinders University; and

3. to the best of my knowledge and belief, does not contain any material previously

published or written by another person except where due reference is made in the

text.

Signature of student..

Print name of student................... Thomas Miles Rundle

Date..

I certify that I have read this thesis. In my opinion it is/is not (please circle) fully adequate, in

scope and in quality, as a thesis for the degree of <Degree Name>. Furthermore, I confirm

that I have provided feedback on this thesis and the student has implemented it

minimally/partially/fully (please circle).

Signature of Principal Supervisor..

Print name of Principal Supervisor..........David John Saxby

Date..............................

03/11/2023

03/11/2023

ii

ACKNOWLEDGEMENTS

I would like to acknowledge my academic supervisors, firstly from Griffith University, Dr

David Saxby and Dr Claudio Pizzolato, and also from Flinders University, Professor Mark

Taylor. The support, experience and guidance provided they provided has ultimately been

a driving force in the completion of this study, and I am extremely grateful for their help.

I would also like to express gratitude to some PhD students at Griffith University I was lucky

to work alongside throughout my study. Alireza Bavil Yahyaiee and Emmanuel Eghan-

Acquah, thank you sincerely for assisting me with Finite Element related problems I

encountered, and for allowing me to use your highly developed femur model in the later

stages of my project. Thank you also to Claire Crossley, for providing some baseline force

measurements used through the study.

Finally, a special thank you to Dermot O’Rourke, for his willingness to assist in a variety of

areas. Thank you sincerely for sharing your knowledge in Finite Element studies in general,

and with your assistance in constructing valid datasets.

iii

EXECUTIVE SUMMARY

Background: Quantification of femoral strain in real-time is valuable for a range of

biomedical fields as it enables rapid assessment of fracture risk. Amongst individuals living

with spinal cord injury, bone fracture during rehabilitation and exercise poses a particularly

high risk given diminished bone mass. Further, the lack of sensory feedback can result in

injuries untreated and lead to health implications.

Currently, the finite element (FE) method is used to predict femoral strains in response to

applied loads. Although the FE method has been validated for many models of bone

mechanics, it is time-consuming, requires high-level training to operate, and requires

extensive model development for each new application (e.g., patient). This study proposes

a method which uses surrogate modelling of legacy datasets to predict femoral strain in

response to novel and, in principle, arbitrary applied loading.

Methods: Four techniques were investigated: multi-linear regression (MLR), cubic splining,

Superposition Principle Method (SPM), and Kriging. Surrogate models were created in

MATLAB (Mathworks, USA), and were used to predict femoral strains in response to various

loads. Initially, a simplified linear elastic FE model of the femur was developed in Ansys

(Ansys, USA) and used to train surrogates. Based on this initial analysis, the most novel and

promising technique (SPM) was further explored by applying a more realistic material model:

elastic non-linear, and deployed in Abaqus (Dassault Systemes, France). Validation of all

techniques involved comparing surrogate predicted to FE solved strains and quantifying

error between them using normalized root mean square error (nRMSE) and assessing

differences in computational demand via central processing unit (CPU) time.

Results: The initial linear FE models showed SPM predicted FE-modelled strains with zero

error. The MLR and cubic splining techniques were both effective, with nRMSE values of

<0.05% and <0.08% respectively. Kriging was inaccurate, with nRMSE >15%. All

techniques were computationally tractable, but MLR was slowest taking ~14.9 seconds

while splining was fastest taking ~1.50 seconds. When applied to the non-linear model, SPM

was still accurate, with nRMSE of ~5% and CPU time <20 seconds.

Conclusion: The SPM is the recommended surrogate modelling technique for applications

requiring near-real-time femoral strain quantification. Despite being a lesser known and

under-developed method, it provided exact strains in a linear model, and highly accurate

iv

ones in a non-linear model in a timely manner. Other methods were found to be less

favourable, however their lack of testing in a non-linear environment should be considered.

Through code optimization, it is expected that SPM could run in real-time.

v

TABLE OF CONTENTS

DECLARATION ... I

ACKNOWLEDGEMENTS ... II

EXECUTIVE SUMMARY ... III

TABLE OF CONTENTS ... V

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

1. INTRODUCTION ... 1

1.1 Background ... 1

1.2 An Improved Method ... 2

2. LITERATURE REVIEW ... 3

2.1 Precursor ... 3

2.2 Review of Kriging (Gaussian Process Regression) .. 3

2.3 Review of Multi-linear Regression (MLR) ... 5

2.4 Review of Spline Interpolation ... 6

2.5 Review of Superposition Principle Method (SPM) .. 7

2.6 Conclusion of Literary Review ... 8

3. METHODOLOGY .. 10

3.1 Overview of Project Methodologies ... 10

3.2 FE Construction ... 11

3.2.1 Simplified FE ... 11

3.2.2 Detailed FE ... 16

3.3 Surrogate Construction .. 18

3.3.1 Multi-Linear Regression .. 19

3.3.2 Cubic Splines .. 19

3.3.3 Kriging .. 19

3.3.4 Superposition Principle Method ... 19

3.4 Surrogate Testing and Validation ... 19

4. RESULTS .. 21

vi

4.1 Preliminary Testing .. 21

4.2 Secondary Testing ... 25

4.2.1 Justifications ... 25

4.2.2 Results .. 25

5. DISCUSSION .. 29

5.1 Summary of Results .. 29

5.2 Discussion of Errors and Limitations .. 29

5.3 Application ... 31

5.4 Future Work and Project Improvement .. 31

6. CONCLUSION ... 32

BIBLIOGRAPHY .. 33

APPENDICES .. 37

Appendix A – Multi-linear Regression Surrogate Model: MATLAB Script 37

Appendix B – Cubic Splines Surrogate Model: MATLAB Script ... 40

Appendix C – Kriging Surrogate Model: MATLAB Script .. 43

Appendix D – Superposition Principle Method Surrogate Model (Linear Model): MATLAB Script

 .. 47

Appendix E - Superposition Principle Method Surrogate Model (Non-linear Model): MATLAB

Script ... 50

LIST OF FIGURES

Figure 1 - Demonstration of error prediction: (a) Observed data points, (b) Five sample functions

that fit the observed data points (Wang, 2022). ... 4

Figure 2 – Cubic spline implementation .. 6

Figure 3 - Demonstration of superposition of strain tensors to predict combined loading outputs. ... 7

Figure 4 - Project breakdown .. 10

Figure 6 - Simplified FE model, medial view .. 12

Figure 5 - Simplified FE model, lateral view .. 12

Figure 7 - View 1 of force locations on half-femur ... 13

file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913456
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913456
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913457
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913458
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913459
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913460
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913461
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913462

vii

Figure 8 - View 2 of force locations on half-femur model ... 14

Figure 9 - Detailed FEM full femur view .. 17

Figure 10 Detailed FEM proximal view .. 17

Figure 11 - Detailed FEM distal view ... 18

Figure 13 – Cubic splining surrogate maximum equivalent strain predictions throughout simplified

half femur model, plotted against known strains obtained through Ansys. 22

Figure 12 - MLR surrogate maximum equivalent strain predictions throughout simplified half femur

model, plotted against known strains obtained through Ansys. ... 22

Figure 14 - Kriging surrogate maximum equivalent strain predictions throughout simplified half

femur model, plotted against known strains obtained through Ansys. ... 23

Figure 15 - Visual representation of the SPM's accuracy in a strictly linear system. Narrowed view

for clarity. Predicted normal nodal strains are plotted against known ones. 23

Figure 16 - Visual representation of SPM's accuracy in a system that is non-linear. Nodal strain

components are colour coded for clarity. ... 26

Figure 18 - Y component of nodal strain predictions, plotted against actual values. Also plotted is a

95% confidence interval of the data. ... 27

Figure 17 - X component of nodal strain predictions, plotted against actual values. Also plotted is a

95% confidence interval of the data. ... 27

Figure 19 - Z component of nodal strain predictions, plotted against actual values. Also plotted is a

95% confidence interval of the data. ... 28

LIST OF TABLES

Table 1 - Summary of hip, adductor and glute force increments for linear FE simulations 15

Table 2 - Quantification of surrogate accuracy and time consumption ... 24

Table 3 - Known loading combination parameters ... 26

file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913463
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913464
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913465
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913466
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913467
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913467
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913468
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913468
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913469
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913469
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913470
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913470
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913471
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913471
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913472
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913472
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913473
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913473
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913474
file:///C:/Users/Tom%20Rundle/Downloads/Thesis%20-%20Femoral%20Strain%20Prediction%20Using%20Surrogate%20Modelling(DJSsigned).docx%23_Toc149913474

1

1. INTRODUCTION

1.1 Background

Real-time or near-real-time quantification of femoral strain has shown enormous benefits in

biomechanical applications (Ziaei Poor et al, 2019), including the prediction of bone fragility

(Martelli et al, 2015), analysis of running and cycling gaits (Zeng et al, 2020), and improving

the design of implantable devices (Singh et al, 2023). Furthermore, the ability to predict

femoral fractures is an especially beneficial notion in our rapidly ageing population, as this

demographic typically suffers from osteoporosis (SpinalCure, 2020). Moreover, there is an

enormous economic consumption as a consequence of hip and femoral fractures, with an

estimated worldwide cost of $12 billion (Burge et al, 2007).

More recently, the concept has been used in conjunction with muscle-excitation feedback to

patients whilst they are exercising (Pizzolato et al, 2017), in a therapeutic activity known as

lower limb Functional Electrical Stimulation (FES). Typically, this therapy is conducted on

individuals living with spinal cord injury (SCI), with studies by Martin et al (2012), and

BioSpine (2022), demonstrating beneficial FES application in voluntary muscle function

rehabilitation. Thus far, they have seen promising results ultimately showing evidence of

restoring muscle sensation. This is big news, in that SCI puts an individual’s life at risk of

numerous health complications (Bennett et al 2022) and are an economic burden on not

only the individual but also their society. With 20,800 Australians living with SCI, the lifetime

cost of their injuries has been valued at $75.4 billion, and it has been estimated that even

partial reversion of 10% of the population living with this paralysis could lead to a saving of

more than $3.5 billion (SpinalCure, 2020).

Specifically, quantification of femoral strains and stresses throughout the femur of people

living with SCI is very valuable, in that the nature of their injuries inhibits their ability to feel

muscle strains and bone breaks. This holds potential for extreme health risks during FES,

since injuries may go unnoticed and hence untreated, leading to further implications. By

modelling the femur of the individual, considering their bone density, we can analyse the

likely behaviours of the femur at given strain levels, in theory providing information on what

expected stimulations the individual can handle during FES treatment. Ultimately, real-time

strain prediction provides added safety for the individual during their therapy.

2

A series of Finite element (FE) models has been the leading tool for studying and quantifying

femoral strains (Taylor and Prendergast, 2015), however, the process requires complex

procedures to set up and is computationally very demanding (Panagiotopoulou et al, 2011;

Taylor et al, 2017; Ziaei Poor et al, 2019b), which prevents near-real time results which are

particularly useful in the clinic. The lack of prompt solutions can limit its application going

forward in time-sensitive applications (Liang et al, 2018).

1.2 An Improved Method

This study proposes an improved method of finding femoral strains, utilising surrogate

modelling techniques, to reduce the time currently used in obtaining FE results of multiple

models or simulations. This time save is possible by running fewer FE simulations and using

advanced and accurate interpolation methodologies on legacy datasets to predict the

femur’s response to future, unknown loadings. The overarching premise of this study is to

investigate the multiple known surrogate modelling techniques and analyse their

applicability in femoral strain predictions, in attempt to clarify which surrogate modelling

technique specifically is best suited to predicting strains in a way which is both very accurate,

and faster with respect to time and power consumption than current systems.

3

2. LITERATURE REVIEW

2.1 Precursor

This literature review compares a variety of surrogate modelling techniques with regards to

their application in the prediction of femoral strains in a timelier manner than current

processes, such as Finite Element Analysis (FEA). Literature shows that Kriging (Gaussian

process modelling) is especially valuable when working with non-linear systems (Eskinazi

and Fregly, 2015, Tu, 1996), and is well known for its complex processing leading to high

accuracy at the expense of high computational requirements (Zhang, 2016, Pizzolato et al,

2017, Ziaei Poor et al, 2019a, Ziaei Poor et al, 2019b). Simpler mathematical procedures

were also investigated, such as multi-linear regression and cubic splining strategies, which

revealed a much faster and simpler implementation (O’Rourke et al, 2016, Goldman, 2003)

but are not capable of processing such accurate predictions and are mainly limited to strictly

linear systems (Pizzolato et al, 2020, Sartori et al, 2012). Lastly, a newly developed

Superposition Principle Method (SPM) was explored, which exhibited high accuracy

characteristics whilst still being extremely simple to implement (O’Rourke et al, 2019). Unlike

the other methods, the SPM is not a machine learning (ML) strategy, but rather simple linear

interpolation, and hence the assumption of a perfectly linear system is critical (Taylor, 2023).

In the scope of femoral predictions, this assumption is often made. In further studies, it is

likely that all these techniques will be used or experimented with to predict femoral strains,

however it is hypothesised that Kriging and the SPM will be most suitable.

2.2 Review of Kriging (Gaussian Process Regression)

Kriging is a statistical technique used in interpolation, utilising Gaussian processes to model

predicted values based on prior covariances (Kumar er al, 2020). Historically it is best suited

to forecasting values of a geographical area, for example in the fields of soil and mining

(Matheron, 1973), however it has also shown success in structural reliability analysis

(Gaspar, 2014), and has recently been included in some biomechanical applications (Taylor

et al, 2016), due to its ability to solve non-linear problems (Eskinazi and Fregly, 2015).

Kriging is a complex process which considers the magnitude and location of known data

points in its prediction models. Uniquely, Kriging is a stochastic approach, meaning it uses

statistical procedures rather than mathematical operations to formulate its calculations

(Rebholz and Almekkawy, 2020). This is useful in that the degree of error can also be

4

predicted, indicating the uncertainties of the model at different points. As expected, model

error estimates are lower where the distribution field is dense (Bagheri et al, 2017). This

principle is demonstrated in Fig. 1, which appears in a paper written by Wang (2022),

explaining how there are an infinite number of possible functions which can pass through a

given set of observed data points.

Taylor et al (2016) performed a study comparing Kriging to multivariate linear regression

techniques, with results concluding that the kriging model was more accurately able to

predict 95th percentile strains through the hemipelvis, with an R2 value of 99% when given

30 data training sets. Comparatively, the multi-linear regression model saw an R2 of only

87% at best, concluding that Kriging is a profoundly accurate surrogate modelling technique.

This evidence is also by supported in studies done by Gaspar et al (2014), proving

superiority over polynomial regression strategies, and Haeri and Fadae (2016),

demonstrating accurate analysis of laminated composite models. Kriging has also shown

excellent potential when used as a surrogate for FE models containing contact forces

(O’Rourke, 2023), however this may not be a requirement in the project at hand, considering

an isolated femur model will be used.

The Kriging model is well known for its high computational energy consumption amongst the

other surrogate modelling techniques, supported by papers written by Ziaepoor et al (2019),

Bagheri et al (2017) and Haeri and Fadaee (2016), which is a limitation of its application.

Despite this, in comparison with the full-factorial analyses completed within finite modelling

software, the computational intensity is still significantly lower, and hence this limitation’s

effect is not as detrimental. Another limitation of this method is that it requires a large sample

Figure 1 - Demonstration of error prediction: (a) Observed data points, (b) Five sample functions
that fit the observed data points (Wang, 2022).

Figure removed due to copyright restriction

5

of input points, otherwise the resulting predictions and errors exhibit large deviations (Chu

et al, 2020).

Kriging is an all-around versatile surrogate modelling technique, commonly known as one

of the leading methodologies in terms of accuracy (Taylor et al, 2016, Freier et al, 2017,

Gaspar et al, 2014). Its ability to create a smooth prediction surface whilst considering the

degree of confidence is highly beneficial (Bagheri et al, 2017).

2.3 Review of Multi-linear Regression (MLR)

Multivariate linear regression is a mathematical technique used to model a relationship

between several independent variables and a singular dependent outcome (Marill, 2004),

by fitting a linear equation to the observed data. Stockemer (2018) explains this in his book,

Quantitative Methods for the Social Sciences, using the analogy of a student’s exam results

being dependent on not only their study habits, but also their health, their mood, and their

sleep. Using multi-linear regression all variables can be considered to gauge their influence

absolutely and comparatively on the outcome.

Multi-linear regression is an extension of simple linear regression (Hayes, 2023), in that it

assumes independence of observations, meaning each independent variable is linearly

correlated to the dependent variable. It also assumes that the various independent variables

are not correlated to one another (Slinker and Glantz, 1985). These assumptions can be

validated by the trend in residuals, which should have a normal distribution with mean zero

and constant standard deviations (Alexopolous, 2010). It has had successful application in

geographic disciplines such as weather forecasting (Hay and Viger, 1999, Chung et al,

1995) as well as medical uses including diagnostic research (Marill, 2004) and fracture risk

assessment (O’Rourke et al, 2017, Awal and Faisal, 2021), where outcomes may be

dependent on multiple inputs.

Accuracy-wise, multi-linear regression is not the optimal surrogate modelling technique, as

shown by the study mentioned above including the hemipelvis, utilizing the kriging method

(O’Rourke et al, 2016). This evidence is also supported by Bekesiene et al, 2021, in a study

attempting to predict ozone concentration changes using multi-linear regression and artificial

neural networks. Results concluded that the multi-linear regression model lacked capacity

for precise measures, where other methods offered more accurate outcomes. Despite this,

a point of interest for some researchers is that amongst other methodologies it is fast and

6

simple, computing only linear models as seen in Eq. 1 below, taken from Bevans, 2020. This

property is highly desired for real-time applications.

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2…+ 𝛽𝑛𝑋𝑛 + 𝜖 [1]

Where:

• 𝑦 is the predicted dependent value.

• 𝛽0 is the y-intercept.

• n is the number of independent variables being considered.

• 𝛽𝑛 is the regression coefficient of the nth independent variable.

• 𝜖 is the model’s error term, known as residuals.

2.4 Review of Spline Interpolation

Regular cubic splines, like linear regression techniques, utilise mathematical operations to

carry out the interpolation. However, rather than linear principles, this method links data

points, known as ‘knots’ using a series of unique cubic polynomials, creating a smooth,

piecewise curve between known values (Biran, 2019, McClarren, 2018, Mostoufi and

Constantinides, 2023, Phillips and Talor, 1996).

To ensure each piecewise function fits smoothly, the first and second derivatives of adjacent

functions are equated to evaluate the polynomial coefficients (Phillips and Taylor, 1996).

Each of k functions can be expressed using Eq 2., and are plotted together as shown in Fig

2, both pulled from Wolberg’s review of cubic spline interpolation (1988).

Figure 2 – Cubic spline implementation

7

𝑓𝑘(𝑥) = 𝐴3(𝑥 − 𝑥𝑘)
3 + 𝐴2(𝑥 − 𝑥𝑘)

2 + 𝐴1(𝑥 − 𝑥𝑘) + 𝐴0 [2]

Like MLR, splining typically has the most success in linear systems, since its calculating

processes are mathematically simple. A popular variation of this is cubic B-spline

interpolation. In contrast, cubic B-spline interpolation also involves constructing piecewise

functions to model the data, however the chosen knots do not need to coincide with known

data points (Farin, 2002), and can be flexibly placed within the data set, which in most cases

results in a closer approximation of the true data trends (Goldman, 2003). This typically

provides a more flexible model and is more robust when exposed to non-linear systems.

2.5 Review of Superposition Principle Method (SPM)

This Superposition Principle Method is by far the least documented and has been developed

only in recent years. It differs from other techniques in that it is not necessarily a machine

learning technique, in that its principles do not revolve around the prediction of future

variables. Instead, the fundamental theory of the SPM is that the strain field of a system in

response to a given input scheme can be found using simply using the known strain tensors

found in response to other inputs.

A paper written by Ziaei Poor et al (2019) is the first and only documentation of this method,

and conveniently this study focuses on finding femoral strains. It explains that a muscle’s

contribution to strain can be described by calculating the resultant strain tensor in response

to the three force components at the relevant attachment points. Hence, by applying

arbitrary loadings at each muscle attachment or contact force location, and solving for the

nodal strain components, it can be said that every solution in the model can be expressed

as a linear combination of scaled solutions found previously (Ziaei Poor et al, 2019). Fig. 3

shows this in greater detail.

Figure 3 - Demonstration of superposition of strain tensors to predict combined loading outputs.

8

A meeting with one of the Australia’s leading surrogate modelling experts, Prof. Mark Taylor

(2023) revealed that this method has showed excellent promise in its few implementations

thus far, for a variety of reasons. Firstly, an advantageous characteristic of the SPM is that

it calculates exact solutions, rather than predictions when utilised on a completely linear

system (Taylor, 2023). Not only does this result in a higher accuracy, but it also saves time

in that it removes the need to calculate error. Furthermore, SPM interpolation requires a far

smaller sample size to be done effectively than comparative methods such as Kriging (Ziaei

Poor et al, 2019).

A limitation to this method is that thus far it has only been used reliably within strictly linear

systems (O’Rourke, 2023, Ziaei Poor et al, 2019, Taylor, 2023). In this project, however, the

SPM will be further analysed to not only confirm its applicability to linear systems, but also

in how well it responds to non-linear ones.

Ziaei Poor et al, 2019 showed that in comparison to linear regression, adaptive spline

techniques, and Gaussian process methods, the SPM showed the smallest error without

requiring any training when predicting femoral strains. It also exhibited the fastest model

generation time and the second fastest prediction time per activity, behind multi-linear

regression. These results strongly support the application of the SPM in biomechanical

strain predictions.

2.6 Conclusion of Literary Review

In terms of surrogate modelling, all of the considered techniques are valid in the correct

applications. Kriging is clearly more suited to complex problems, as it can provide solutions

to non-linear solutions (Eskinazi and Fregly, 2015, Tu, 1996), at the expense of more

computational power requirements (Zhang, 2016). In general, Gaussian techniques also

offer more accuracy when applied to simpler problems as well, however their solutions are

still somewhat comparable to the likes of multi-linear regression and splining methods, which

are substantially faster and simpler to implement (Ziaei Poor et al, 2019, Taylor et al, 2019).

In a slightly different stream, the SPM was also considered, and looks very promising in that

it can effectively provide very high accuracy without training, when linearity is assumed

(Ziaei Poor et al, 2019).

Considering all techniques, the SPM is a standout in terms of its high accuracy, low power

consumption, and simplicity. Despite this, other methods will also be experimented with, for

credibility of research. Through MATLAB, all these techniques have accompanying

9

packages and toolkits to assist with the construction of a surrogate model (MathWorks,

USA).

In summary, all these techniques are substantially faster than standard finite element

processing and can all provide a sufficient level of accuracy to justify their use, however

some are more applicable to certain scenarios than others. In the case of measuring femoral

strains in real time, accuracy is paramount so to not risk harm, and therefore it is likely that

higher consideration will be given to the methods which can provide better precision.

10

3. METHODOLOGY

3.1 Overview of Project Methodologies

The aim of this study is to find a method which obtains femoral strain predictions in a manner

which is faster than, but as accurate as continuously building FE models. To do so, the

theory of surrogate modelling and data interpolation indicated that previous FE simulations

could be used to predict future ones. Throughout the project, four surrogate modelling

techniques were explored:

1. Multi-linear Regression (MLR)

2. Cubic Splining

3. Kriging

4. Superposition Principle Method (SPM)

Prior to implementing the surrogate models, a base dataset needed to be acquired. Using

this, mathematical and statistical operations could be performed on the data to make

calculated predictions of strain responses to loadings which were not explicitly tested during

the FE simulation. Hence the methods used before implementation of the different surrogate

techniques were widely the same. The basis of the project is described in Fig 4., which

breaks down the different components of the study. The components will be explored further

in following sections.

Figure 4 - Project breakdown

11

3.2 FE Construction

The FE part of the study was broken into two sub-components, named accordingly:

1. Simplified FE

2. Detailed FE

This was done to simplify the project into steps which appeared more achievable to someone

who was new at using surrogate models. The implementation of surrogate models can be

complicated, particularly when datasets become large and complex, including multiple

predictor variables. Hence, removing some of the predictor variables, whilst certainly

compromising the overall accuracy of the analysis, allowed the acquisition of a dataset which

appeared more reasonable to operate on using surrogate models. The surrogates were still

built with the intention of handling many predictor variables, however only considering a few

in this initial stage made the process smoother and more intuitive. In theory, once the initial

surrogate models had been made, a more detailed FE model could be made, which

considered a larger number of muscle and contact forces, with more anatomically accurate

data. Whilst this was the case, unfortunately time constraints prohibited all surrogate

modelling techniques to be reviewed using the detailed FE model. This is spoken about

further in the limitations section within the discussion.

3.2.1 Simplified FE

The simplified FE model was constructed in Ansys (Ansys, USA), using a femoral model

obtained from Griffith University (Griffith University, QLD, 2023). The model was cut in half

such that only the proximal end of the femur remained, since the literature had proven that

it was in the femoral neck where majority of femoral fractures occurred (Florschutz et al,

2015; Merloz, 2018). The bone material was assumed to be linearly elastic throughout this

model, in accordance with literature stating that this assumption was valid in most contexts.

The model’s mesh specifications were triangular elements, 2.5mm in size. These

specifications were not obtained from a convergence study since accuracy was not the focus

of this initial FEA. Instead, the principle of correctly executing the surrogate models on the

dataset was the priority, and the accuracy of the data would be further considered in the

more detailed FEA. The model can be seen in Fig. 5 and 6.

12

This model was loaded with three forces, defined by the most commonly occurring study

points throughout the literature review (Bitsakos et al, 2005; Duda et al, 1998; Kenedi et al,

2014).

1. Hip contact force

2. Adductor muscle force

3. Glute muscle force

It was acknowledged that the knee force is a primary contributor to loadings through the

femur, however it was omitted from this investigation since the distal part of the femur had

Figure 6 - Simplified FE model, lateral view

Figure 5 - Simplified FE model, medial view

13

been ignored. A constraint was also placed on the cut face of the femur as a boundary

condition, which would have also led to issues should the knee contact force been

considered.

3.2.1.1 Assumptions – Simplified FE

Force location and direction were fundamental assumptions of this model. Force locations

were given to groups of elements which were perceived as most applicable to the given

force, via muscle attachment positions viewed in literature (Carriero et al, 2010; Yadav et al,

2017), and directions were simplified as much as possible to the most dominant direction of

that muscle or contact force. All forces were considered to be acting along the distal-proximal

axis of the femur, with the hip contact force acting in the opposing direction to the glute and

adductor. Fig. 7 and 8 demonstrate this. In these figures, A represents a constrained face in

all three directions, whilst B, C and D represent the hip contact force, and the glute and

adductor forces respectively.

Figure 7 - View 1 of force locations on half-femur

14

Accuracy was not a priority in this stage of the study. Instead, the main focus was obtaining

a dataset which could be effectively interpolated through the use of surrogate modelling.

Hence, a mesh convergence study was deemed unnecessary. Instead, an automatically

generated mesh was considered adequate with element sizing at 2.5mm. For these reasons,

the force locations, directions, and magnitudes were also not meticulously managed, as the

consistent theme of this component of the study was to analyse the surrogate modelling

methodologies. Thus, any dataset could be used to achieve this. Data that was somewhat

relevant to the study was all that was desired.

Another assumption of this model was that it was completely linear. The material was made

linearly with an elastic modulus of 1GPa and a Poisson’s Ratio of 0.3. Ignoring non-linear

behaviours of bone would speed up the simulating process. Although realistically the hip

and femoral environment is not strictly elastically linear, it is often considered throughout

related literature and anatomical science that the femur’s properties can be considered

linear when static (Carriero et al, 2010; Yadav et al, 2017; Taylor, 2023). Non-linear

scenarios will be explored more in the detailed model.

3.2.1.2 Loading and Simulation – Simplified FE

The magnitude of the forces was also found through literature (Layton et al, 2022), with a

median value being investigated, and then 2 equal increments each side of it to replicate 5

different loading types per force, as shown in Table 1.

Figure 8 - View 2 of force locations on half-femur model

15

Table 1 - Summary of hip, adductor, and glute force increments for linear FE simulations

Force Value (N)

Muscle Increment 1 Increment 2 Increment 3 Increment 4 Increment 5

Hip 1000 1200 1400 1600 1800

Adductor 400 500 600 700 800

Glute 700 800 900 1000 1100

With three forces, each having 5 potential load values, it was determined that all possible

loading combinations would be simulated, with the desired output of maximal equivalent

strain throughout the entire femur. The location of this maximum strain was not considered.

The simulations took approximately 1 minute each to run, eventually constructing a dataset

of 125 loading combinations and their corresponding maximal strain output. To summarise,

there were three predictor variables and one singular output.

For the special case of the SPM surrogate, only one simulation was required per force being

considered to complete the dataset. In this FE model, only three forces were being explored,

each unidirectional. Hence only three simulations were required to complete the SPM

dataset. During these simulations, the loadings were isolated, specified as 1000N, whilst

other loads were held constant at 0N. Trial simulations were then conducted using random

loading combinations of the three forces. After simulating, the nodal strain tensors could be

extracted and assembled as shown in Eq. 3. The 3 shear strains were easily found; however,

the 3 principal strains were not capable of being extracted on a nodal level, and instead the

normal strains were obtained. This is an unfortunate limitation of Ansys, and it did prohibit

an equal comparison with the other methods since different strain variations were being

measured. Despite this, matching nodal tensors of the predicted strains to the tensors of the

measured strains obtained from the trial simulations still gave an indication of accuracy. In

further applications these strain tensors could be used to find maximal principal strains which

may be more useful.

16

𝜀𝑛𝑜𝑑𝑒 = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑦𝑥 𝜀𝑧𝑧

]

3.2.2 Detailed FE

Following the construction of the simplified FE model, a more detailed model was desired.

Since the surrogate models were already created and developed to handle large numbers

of predictor variables and data, in theory any newfound datasets could also be interpolated

using the same models.

Hence to increase the relevance of the results, it was hoped that a realistic dataset could be

acquired. Thankfully, a more detailed FE model was easily accessible, with the help of two

Griffith University PhD students, Alireza Yahyaiee Bavil, and Emmanuel Eghan-Acquah,

who were completing a paper titled ‘Effect of Different Constraining Boundary Conditions on

Simulated Femoral Stresses and Strains During Gait’. By nature of their study an extremely

detail FE model was required and adequately constructed with the help of OpenSim software

(Simbios, USA) to accurately locate the position of muscle and contact forces throughout

the femur. This model considered bone density throughout the femur, and hence introduced

some non-linearities in that the material properties were changing.

3.2.2.1 Loading and Simulation – Detailed FEA

The detailed FE model considered 22 muscle and contact forces, each of which were

decomposed into x, y and z components. Hence, 66 total force components could be

considered with this model. It was decided that analysing the influence of all forces was

outside the scope of the project, and that only three of the most dominant forces would be

considered. Again, the hip contact force and adductor muscle force were chosen, along with

the knee contact force, which was omitted in the first model, as all distal structures were

ignored.

This new model’s mesh size was reduced to just 2mm, used quadrilateral elements, and

considered the entire femur. It was constrained via external points in space, imitating a femur

under zero force when untouched. Constructed with data obtained from segmented CT

scans and the aid of OpenSim, the model was considered extremely anatomically accurate.

[3]

[3]

17

A small limitation of this new model, however, was that it was built in Abaqus (Dassault

Systemes, France), an unfamiliar software. There were challenges in learning how to

effectively use this software. Thankfully, with the model built, it was purely the simulating

process that needed to be learned. Fig. 9, 10 and 11 outline further outline the detail of this

model.

Figure 10 Detailed FEM proximal view

Figure 9 - Detailed FEM full femur view

18

The SPM was the only surrogate modelling method that was investigated using the detailed

FEM, for reasons explained in the discussion section of this paper. Hence only one

simulation was required for each force considered to complete the dataset. In this instance,

there were three forces, each with an x, y and z component, thus making 9 total forces. Each

force component had x, y, and z normal nodal strains extracted for consistency with the first

trial. Simulations were done in alignment with the initial FE model, wherein isolated forces

were given 1000N loadings, whilst other forces were held constant at 0. To save time, shear

strains were not collected, since it was thought that validating adequate normal strain

prediction would indicate the shear strain prediction, since the simple addition of strain

tensor components applies to both normal and shear strains. In summary, measuring

accuracy in normal strain prediction infers the same accuracy in shear.

3.3 Surrogate Construction

All surrogate models were constructed in MATLAB 2023 (MathWorks, USA). Except for the

SPM, all techniques had an available toolbox to assist in the execution of complex

mathematical operations involved in some techniques. For the first three models, to access

the dataset, it was exported from Ansys into Excel, where it was then indexed through

MATLAB. This was a simple table which defined the force combinations and corresponding

output from each trial. For the SPM, each simulation had nodal measurements extracted

Figure 11 - Detailed FEM distal view

19

into an Excel file before it could be accessed within MATLAB. Hence, this required the

indexing of multiple Excel spreadsheets.

3.3.1 Multi-Linear Regression

The MLR surrogate was among the simplest to make. Utilising the ‘fitlm’ function in MATLAB

(MathWorks, 2013), which assigns a linear equation to datasets with more than one

predictor variable.

3.3.2 Cubic Splines

Cubic splining was also easily implemented on the dataset using the multivariate splining

tool ‘interpn’ and specifying ‘spline’ as the designated interpolation tool (MathWorks, 2021).

This function applies splines constructed with cubic polynomials to the dataset.

3.3.3 Kriging

The kriging surrogate was built using the ‘fitgrp’ function, which returns a Gaussian Process

Regression model trained using the dataset it is provided (MathWorks, 2015). Defined as

ordinary kriging, this function could also allow a kriging variance to be calculated for each

data point prediction.

3.3.4 Superposition Principle Method

Unlike the other methods, the SPM was constructed from scratch. Once the nodal

measurements had been taken, they were accessed via Excel and assembled into nodal

strain tensors. Simple addition was used to superimpose nodal strain tensors, using

multipliers specified by the loading condition being investigated. For example, for the loading

combination of -600N, 150N, 780N for the hip, glute, and adductor respectively, the nodal

strain tensors of each isolated simulation would be multiplied by -0.6, 0.15, and 0.78,

considering the isolated simulations were done using 1000N loads. These results were then

compared to known nodal strain solutions obtained by conducting a simulation of the given

loading combination in Ansys.

3.4 Surrogate Testing and Validation

MLR, splining and kriging surrogates were tested by plotting the predicted femoral strain

values against the known ones obtained in the initial data collection phase. To ensure

datapoints fed into the model were not being copied as outputs, strain values were predicted

between the known data points, but still within the bounds of the dataset.

20

Since the SPM surrogate considered a different dataset and analysed nodal strains tensors

rather than maximal equivalent strains, their outputs were visually validated in a different

way. This time, the strain tensor components of a known loading obtained via Ansys were

plotted against the ones predicted using the SPM. The linearity of the plot would

demonstrate its accuracy.

Root mean square error (RMSE) and normalised root mean square error (nRMSE) were

both key validation tools used to verify the accuracy of each surrogate’s strain predictions.

RMSE is a technique which simply finds the error between the actual strain values and the

predicted ones throughout the entire dataset. Since strain values were generally in the

domain of 10-3 to 10-5, and hence the error values were so tiny they could’ve been

considered negligible. A more realistic quantitative measure was the nRMSE, which

normalises the RMSE relative to the raw data, effectively allowing a percentage of accuracy

to be measured, which was far more comparable. This made it easier to draw conclusions

and make generalisations. These methods were simply mathematical and were easily

implemented through MATLAB.

The time taken to for the computer to build, train and use the surrogate to predict strains

was also considered. This was done by starting a timer in the initialisation phase of the code,

and simply requesting the time at the code’s ending. It’s recognised that this is not a perfect

measure of each technique’s CPU consumption, but it does provide a quantifiable measure

which can be used to compare the complexity of the different techniques.

21

4. RESULTS

4.1 Preliminary Testing

The preliminary result of this study refers to the analyses of the surrogate models when

predicting strain values on a simplified FE model; that is, a model created with little

consideration for anatomically accurate results, and more regard for an eligible and valid

dataset to that could be used to train, test, and validate the surrogate models.

The MLR, splining, and Kriging techniques all considered the same dataset. Hence

analysing these techniques relative to each other was easy by simply comparing their

nRMSE and CPU runtime. Visually they could also be examined by plotting the actual

resultant maximal equivalent strain received using the FE software to the values predicted

using the surrogates. Planes were formed to create surfaces of both actual and predicted

strains, to indicate where the surrogate was most effective. To enable visual assessment,

only two predictor variables could be considered simultaneously, creating a 3-dimensional

plot with maximal equivalent strain as the output. Figures 12, 13 and 14 show a comparison

of the three initial surrogate modelling techniques when applied to the simple FEM’s dataset.

These plots consider only the hip and adductor, omitting the glute force to portray results in

3 dimensions.

The SPM method was plotted differently, since this surrogate used a different dataset and

measured different strain quantities, with nodal shear and normal strains being obtained

rather than the maximal equivalent ones. Hence, validating this model and comparing it with

the previous ones was challenging. An nRMSE value and a CPU runtime was still obtainable

to quantify the accuracy and computational demand, however visually representing them in

the same way as previous methods was not. Instead, a simple visual measure of the SPM’s

accuracy was to plot the expected nodal strain components to the actual ones. The linearity

of the solutions in this case would indicate its accuracy. Fig. 15 shows these results.

22

Figure 12 – Cubic splining surrogate maximum equivalent strain predictions throughout simplified half
femur model, plotted against known strains obtained through Ansys.

Figure 13 - MLR surrogate maximum equivalent strain predictions throughout simplified half femur
model, plotted against known strains obtained through Ansys.

23

Figure 15 - Visual representation of the SPM's accuracy in a strictly linear system. Narrowed
view for clarity. Predicted normal nodal strains are plotted against known ones.

Figure 14 - Kriging surrogate maximum equivalent strain predictions throughout simplified half
femur model, plotted against known strains obtained through Ansys.

24

Visually, the preliminary results indicated some key findings. However, to reinforce this,

some measurable quantities were also found. The nRMSE, calculated using the relative

error between the known and predicited strains, and the CPU time, found simply by getting

MATLAB to output the time difference between start and finish, were both recorded. Table

2 shows these results:

Table 2 - Quantification of surrogate accuracy and time consumption

nRMSE CPU Time (sec)

MLR 0.00413 14.9

Cubic Splines 0.00782 1.50

Kriging 0.157 7.42

SPM 0 4.25

As seen both visually and measurably, the SPM surrogate exhibited the most accuracy,

exactly predicting the nodal normal strain components in all directions. It was also required

the dataset that was smallest and simplest to collect, totalling just three simulations, in

comparison to the 125 needed for the other techniques. Comparably, the SPM surrogate

was also fast to train and execute, taking just 4.25 seconds.

The cubic splining technique resulted in very accurate predictions, in the timeliest manner,

taking just 1.50 seconds to train and execute. With a normalised root mean square error of

just 0.00782 (<0.08%), this method’s compatibility with linear systems was also clearly

indicated by these results.

The MLR surrogate was the most accurate of the techniques used in the 125-simulation

dataset. Aligning with the assumption of a strictly elastic material being used in this FE

model, the favourable linear characteristics of this technique were undoubtedly on display

here, since these strain predictions were incredibly accurate, exhibiting an nRMSE of just

0.00413 (<0.05%). Interestingly, the method unexpectedly had the longest CPU time of 14.9

seconds. This may be indicative of a limitation in the coding of this surrogate.

25

Finally, kriging demonstrated poorer accuracy than hypothesised, with a significantly higher

nRMSE of 0.157 (>15%). As expected, the variance exhibited by this technique increased

as the strain predictions reached the bounds of the known dataset. This can be seen by the

dipping corners of the plane in Fig. 14. This occurs due to the decrease in density of known

data point distribution, which is a critical part of the mathematics behind this technique. The

accuracy of this model was somewhat surprising and did not necessarily align with the theory

of kriging being suitable for both linear and non-linear systems. These results posed a

question regarding how suitable the 125-simulation dataset was for the given techniques. In

retrospect, providing a grid-style set of data gathered at equal intervals, within a strictly linear

model would certainly have benefited the techniques based around linearity (MLR and cubic

splines) more. In hindsight, a different loading dataset, potentially one which used a

hypercube to introduce more variability, may have led to more reliable results. Kriging is also

most effective when trained on large, dense datasets (Haeri and Fadaee, 2016; Chu et al,

2020). This was not necessarily available in this study, and hence may have further impacted

the accuracy of the resultant strain predictions.

4.2 Secondary Testing

4.2.1 Justifications

Initially, it was intended that all four surrogate modelling techniques would be trained using

both the simplified, linear FE model, followed by the more anatomically detailed, non-linear

FE model to compare results. This would allow clear conclusions to be drawn for each

technique regarding their strengths and weaknesses. Unfortunately, time constraints led to

only limited time towards the end of this study to implement the more detailed FE model.

The decision was made to test only the SPM surrogate model as this had shown the most

promising results in the preliminary testing and was the most novel of the techniques.

Another advantage of this decision was that an extensive dataset was not required, but

rather just one simulation for each isolated loading, totalling just 9. This model was made in

Abaqus, an unfamiliar software, and so simplifying this process would be beneficial to the

completion of this study.

4.2.2 Results

Following the completion of the 9 require simulations for the SPM dataset, some further

simulations were conducted to gather the nodal solutions to a known loading combination.

This allowed the comparison of the predicted strain components found via the surrogate to

26

be compared with some known values found via the software. For the results shown, the

known loading used for reference solutions is shown in Table 2.

In this trial, only normal strains were gathered to simplify the process. The principles of

superposition are the same with shear strains, and so the same results could be expected

if they were investigated too.

Table 3 - Known loading combination parameters

The predicted normal nodal strain components were all plotted on the same axis, against

their actual values obtained by solving the system with specifications shown in Table 2. This

can be seen in Fig. 16. For simplicity the individual components are also plotted against

themselves, as shown in Fig. 17, 18 and 19.

Force

Component

Hip Knee Adductor

X Y Z X Y Z X Y Z

Magnitude (N) -500 250 -300 -120 -400 20 550 210 10

Figure 16 - Visual representation of SPM's accuracy in a system that is non-linear. Nodal strain
components are colour coded for clarity.

nRMSE = 0.0492

CPU time = 19.6 sec

27

Figure 18 - X component of nodal strain predictions, plotted against actual values. Also plotted is
a 95% confidence interval of the data.

nRMSE = 0.0129

Figure 17 - Y component of nodal strain predictions, plotted against actual values. Also plotted is a 95%
confidence interval of the data.

nRMSE = 0.00290

28

In applying the SPM to a more detailed model, it was found that the non-linear properties of

the material were not a major limitation, which was the biggest concern going into this

analysis. Although nodal strain predictions were no longer exact, there was still a very

accurate correlation between the predicted solutions and the actual ones. Overall, this

technique exhibited an nRMSE of 0.0492 (4.92%), whilst the sub-components were

predicted with an nRMSE of 0.0129 (1.29%), 0.00290 (0.29%) and 0.0158 (1.58%)

respectively in x, y, and z directions. The surrogate model was built, trained, and executed

in a time of approximately 19.6 seconds, making it slower than all methods in the preliminary

testing phase, however this was to be expected given the model was not exactly elastically

linear, which typically poses longer simulating times in FE studies. There were also

significantly more nodes in this model (97,000 compared to 27,000), however this was not

much of a limitation, since only the femoral neck nodes were selected, and hence in both

SPM trials the node count was approximately 2000, and the resultant time loss was

considered negligible.

Figure 19 - Z component of nodal strain predictions, plotted against actual values. Also plotted is a 95%
confidence interval of the data.

nRMSE = 0.0158

29

5. DISCUSSION

5.1 Summary of Results

The preliminary results indicated a few key findings. Firstly, it was obvious that in the linearly

elastic model, with the gridded dataset, mathematically linear surrogate modelling

techniques were most applicable. Aside from the SPM, the MLR and splining surrogates

showed extremely high accuracy. Kriging did not present particularly valuable predictions,

with significantly higher error appearing systematically across the distribution. This was

contradictory to the existing literature, which suggested that kriging would provide accurate

results when applied to both linear and non-linear systems (Taylor et al, 2016; Gaspar et al,

2014; Haeri and Fadae, 2016). Whilst splining was the fastest of the preliminary testing

techniques, all techniques took less than 15 seconds using the initial dataset. This is

significantly faster than average FE simulation, which is generally in the range of 120-180

seconds (Basafa et al, 2013), and so these measures were not considered vitally important.

Preliminary SPM testing revealed that it could provide exact strain predictions, given the

system is completely linear, matching the little literature that was available (Ziaei Poor et al,

2019). Taking just 4.25 seconds to run and execute, this technique was by far the most

promising of the four, which provoked a second look at how effective this method might be

by applying a dataset from a non-elastically linear FE model. Results from this ‘secondary’

study concluded again that the SPM would be a commendable surrogate modelling

technique, providing accurate, yet no longer exact solutions in 19.6 seconds.

The results from both the preliminary and secondary study both indicate that the SPM would

be the recommended surrogate modelling technique when choosing between the four

investigated. That said, there are some limitations and potential sources of error

encountered throughout the study which should be considered.

5.2 Discussion of Errors and Limitations

The first limitation of this study were the time constraints. Ideally, all four surrogate modelling

techniques would be subject to testing on both the linear and non-linear model. Not only

does this increase the sample size of the study, improving reliability, but it would also expose

some of the techniques strong with linear systems to a non-linear dataset. For example, it

would be hypothesised that the MLR and splining methods would instead be less accurate

30

than kriging when applied to this model. Unfortunately, time constraints and lack of familiarity

with the Abaqus software resulted in cutting these project objectives out. Despite this, the

findings shown within the SPM are still very valuable, particularly since it such an under-

researched technique.

Secondly, with the nature of the SPM surrogate requiring nodal solutions, whilst the others

considered equivalent maximal strains, comparing the SPM to other methods was

challenging. In other surrogates, many equivalent strain solutions of known loadings were

found, which could easily be interpolated using their respective method. Acquiring nodal

solutions for such a large number of known loading combinations was simply too time

consuming and would have also contradicted the principles of superposition which state that

in a linear system, once isolated solutions had been acquired, any combined loading’s nodal

strain components could be predicted (Ziaei Poor et al, 2019). The results perfectly

demonstrated this. Although this output is useful, though, it is difficult to compare to other

techniques. Quantifiable measures such as nRMSE and CPU time were used to provide

some detail on how accurate the SPM was in reference to the other techniques, however

there is also some common sense that applies when trying to identify which method is best

suited.

The predicted strains found via Kriging were uncharacteristically inaccurate. Although

exhibiting some of the common themes of gaussian process regression, such as deviation

at the bounds of known data distribution, there appeared to be a systematic difference

between the predicted and actual equivalent strain values. Literature based around this

technique indicates that it should be adequate in both linear and non-linear applications

(Eskinazi and Fregly, 2015), however it requires a dataset larger than the one used in this

study to be considered accurate. Since the principles behind Kriging allow it to consider both

the magnitude and location of data points in the training set, it’s also thought that the

equidistant training data points used in this study were a hindrance and would have instead

benefited the linear mathematical operatives (MLR and splining).

Obtaining realistic loading conditions for the femur proved to be a challenging task. In the

simplified model, literature was used to find an approximate value of each muscle’s force

contribution to the femur itself (Layton et al, 2022). This was not considered vitally important

in the first model since the focus here was more on the successful execution of the surrogate

models themselves, and hence the dataset’s origin was not relevant. However, when

attempting a more realistic FE model, anatomically accurate force values were desirable to

31

increase the reliability of the results in the given context. Finding such values proved

challenging. Another Griffith PhD student, Claire Crossley, was able to assist in providing

some force measurements obtained through her study in reclined cycling. These force

measurements were used as a baseline to replicate realistic loadings on the femur, and

provide a better context to the study, regarding femoral fracture prediction.

5.3 Application

This study was aligned with the BioSpine clinical trial currently being held at Griffith

University (BioSpine, 2023). In this trial, participants with SCI take part in FES therapy,

combined with neurological technology to stimulate the subject’s leg muscles when they

voluntarily choose to. This effectively replicates a voluntary movement.

A fundamental component of this trial is calculating how much strain a subject’s femur may

be able to handle under excitation, to avoid injury due to overstimulation. Lower-limb injuries

in this demographic can be particularly detrimental due to their lack of sensory feedback.

Whilst FE models can accurately predict the femoral strains following CT segmentation, it is

an incredibly time-intensive process. Creating a series of FE models and using a trial-and-

error process is the best currently available tool used within the BioSpine clinic to allow a

successful FES stimulation parameter set to be found without risking harm for the patient.

The application of findings in this study may help to reduce the time spent continuously

running FE simulations, by creating an initial dataset and then using surrogate interpolation

to find strain responses to unknown loadings. This removes the need for the trial-and-error

process, whilst maintaining accurate results, ultimately saving time for the clinicians, and

improving the experience of the participant.

5.4 Future Work and Project Improvement

The key limitation to this study was the inability to test all four surrogate models in both a

linear and a non-linear capacity. Although it is said with high confidence that the SPM is truly

the most suitable of the techniques considered in this study, in future it would be beneficial

to implement a non-linear dataset in all surrogates for accuracy and reliability.

32

6. CONCLUSION

This study provided an analysis of four leading surrogate modelling techniques, MLR,

splining, Kriging, and SPM, with respect to their effectiveness in predicting femoral strains

when unknown loading combinations are applied. The surrogates were validated by

comparing predicted results to ones obtained by solving the loading combinations using

Abaqus or Ansys software. Normalised root mean square error and the total CPU time taken

to construct, train and execute the surrogate model were considered in the analysis.

Initially, the techniques were trained using a dataset obtained from an elastically linear

model. This revealed that the SPM would be most suitable for the task, providing exact

predictions in just 4.25 seconds. Splining and MLR also exhibited highly accurate answers,

although they were not exact. Kriging posed the highest nRMSE value of >15% indicating a

surprising lack of accuracy, which did not necessarily align with the known literature. It’s

believed that a small, highly linear dataset contributed to this contradictory result.

The most promising and novel of these techniques, the SPM, was then further investigated

by applying a dataset obtained from a more realistic, elastically non-linear model. Results

from this analysis showed that the non-linear nature of the data was not a significant

limitation, although exactly accurate answers were no longer attainable. The predictions

exhibited an nRMSE of 4.92%, which suggests a reasonably high level of accuracy,

particularly considering the non-linear nature of the data. Unfortunately, time constraints

prevented the testing of other techniques using this model, which may have better indicated

their application in this context.

From the results, it can be said with confidence that the SPM is the recommended surrogate

modelling technique to use when predicting femoral strains. Its ability to predict exact strains

in a linear system, which is commonly inferred in many femoral applications, and CPU time

consumption very similar to the other techniques, makes it the obvious choice of the four

methods investigated. It is hoped that these results can be applied to some of the works

being completed at BioSpine, to ensure patient safety whilst reducing the loss of time in the

clinic.

33

BIBLIOGRAPHY

Abaqus, Dassault Systemes, 2023,
https://www.3ds.com/edu/education/students/solutions/abaqus-le/

Alexopoulous, E., Introduction to Multivariate Regression Analysis, December 2010.

Ansys Inc, USA, 2023, https://www.ansys.com/

Bartlett, R., Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?, Journal of
Sports Science & Medicine, Pages 474-479, December 2006

Bekesiene, S., Meidute-Kavaliuskiene, I., Vasiliauskiene, V., Accurate Prediction of Concentration
Changes in Ozone as an Air Pollutant by Multiple Linear Regression and Artificial Neural
Networks, https://doi.org/10.3390/math9040356, 2021

Bennet, J., Das, J., Emmady, P., Spinal Cord Injuries, StatPearls Publishing Co., May 2011

Bessho, M., Ohnishi, I., Matsuyama, K., Matsumoto, T., Imaim K., Nakamura, K., Prediction of
strength and strain of the proximal femur by a CT-based finite element method, Journal of
Biomechanics, 40(8), Pg 1745-1753, 2007, https://doi.org/10.1016/j.jbiomech.2006.08.003

BioSpine Clinical Trial, Griffith University, Digitally-enabled Rehabilitation For Spinal Cord Injury,
2023, https://www.griffith.edu.au/menzies-health-institute-queensland/research-
trials/biospine-study

Biran, A., Chapter 7 – Cubic Splines, Geometry for Naval Architects, Pages 305-324, 2019

Bitsakos, C., Kerner, J., Fisher, I., Amis, A., The effect of muscle loading on the simulation of bone
remodelling in the proximal femur, Journal of Biomechanics, 38(1), Pg 133-139, January
2005, https://doi.org/10.1016/j.jbiomech.2004.03.005

Burge, R., Dawson-Hughes, B., Solomon, D., Wong., J., King., A., Tosteson, A., Incidence and
Economic Burden of Osteoporosis-Related Fractures in the United States 2005-2025,
Journal of Bone and Minearl Research Vol 22, November 2007

Carriero, A., Jonkers, I., Shefelbine, S., Mechanobiological prediction of proximal femoral
deformities in children with cerebral palsy, March 2010, DOI:10.1080/10255841003682505,

Chu, L., Shi, J., Souza de Cursi, Efficiency improvement of Kriging surrogate model by subset
simulation in implicit expression problems. Comp. Appl. Math. 39, 119 (2020).
https://doi.org/10.1007/s40314-020-01147-1, July 2018

Chung, CJ.F., Fabbri, A.G., Van Westen, C.J. (1995). Multivariate Regression Analysis for Landslide
Hazard Zonation. In: Carrara, A., Guzzetti, F. (eds) Geographical Information Systems in
Assessing Natural Hazards. Advances in Natural and Technological Hazards Research, vol 5.
Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8404-3_7

https://www.ansys.com/
https://doi.org/10.3390/math9040356
https://www.griffith.edu.au/menzies-health-institute-queensland/research-trials/biospine-study
https://www.griffith.edu.au/menzies-health-institute-queensland/research-trials/biospine-study
https://doi.org/10.1016/j.jbiomech.2004.03.005
https://doi.org/10.1007/s40314-020-01147-1

34

Duda, G., Heller, M., Albinger, K., Schulz, O., Schneider, E., Claes, L., Influence of muscle forces on
femoral strain distribution, Journal of Biomechanics, 31(9), Pg 841-846, September 1998,
https://doi.org/10.1016/S0021-9290(98)00080-3

Eskinazi, I., Fregly, B., Surrogate modeling of deformable joint contact using artificial neural
networks, Medical Engineering & Physics, Vol. 37 Issue 9, Pages 885-891, September 2015

Farin, G., Chapter 8 – B-Spline Curves, Curves and Surfaces for CAGF (Fifth Edition), Morgan
Kaufmann, Pages 119-146, 2002

Florshutz, A., Langford, J., Haidukewych, G., Koval, K., Femoral neck fractures: current
management, March 2015, DOI: 10.1097/BOT.0000000000000291

Gaspar, B., Teixeira, A., Soares, C., Assessment of the efficiency of Kriging surrogate models for
structural reliability analysis, Probabilistic Engineering Mechanics Vol. 37, Pages 24-34, July
2014

Goldman, R., Chapter 7 – B-Spline Approximation and the de Boor Algorithm, Pyramid Algorithms,
Morgan Kaufmann, Pages 347-443, https://doi.org/10.1016/B978-155860354-7/50008-8,
2003

Habermann, C., Kindermann, F., Multidimensional Spline Interpolation: Theory and Applications,
DOI 10.1007/s10614-007-9092-4, May 2007

Harmening, C., Spatio-temporal deformation analysis using enhanced B-Spline models of laser
scanning point clouds, Vienna, Austria, 2020

Hay, L., and Viger, R., Precipitation interpolation in mountainous regions using multiple linear
regression, Denver Federal Centre, 1998

Hayes, A., Multiple Linear Regression (MLR) Definition, Formula and Example, April 2023.

Imai, K., Recent Methods for Assessing Osteoporosis and Fracture Risk, Vol. 8 Issue 1, Pages 48-59,
2014

Jenkins, S., Harrington, M., Zavatsky, A., O’Connor, J., Theologis T., Femoral muscle attachment
locations in children and adults, and their prediction from clinical measurement, Gait &
Posture, 18(1), Pg 13-22, August 2003, https://doi.org/10.1016/S0966-6362(02)00137-6

Kenedi, P., Riagusoff, I., Stress development at human femur by muscle forces, Journal of the
Brazilian Society of Mechanical Sciences and Engineering, 37, Pg 31-43, 2015,
https://doi.org/10.1007/s40430-014-0164-9

Kosinka, J., Sabin, M., Dodgson, N., Creases and Boundary Conditions for Subdivision Curves, DOI:
10.1016/j.gmod.2014.03.004, September 2014

Kumar, V., Sharma, A., Cerda, A., Heavy Metals in the Environment, Published 2020.

Layton, R., Messenger, N., Stewart, T., Characteristics of hip joint reaction forces during a range of
activities, Medical Engineering & Physics, 108, October 2022,
https://doi.org/10.1016/j.medengphy.2022.103894

https://doi.org/10.1016/S0021-9290(98)00080-3
https://doi.org/10.1007/s40430-014-0164-9
https://doi.org/10.1016/j.medengphy.2022.103894

35

Liang, L., Liu, M., Martin, C., Sun, W., A deep learning approach to estimate stress distribution: a
fast and accurate surrogate of finite-element analysis,
https://doi.org/10.1098/rsif.2017.0844, January 2018

Martelli, S., Kersh, M., Pandy, M., Sensitivity of femoral strain calculations to anatomical scaling
errors in musculoskeletal models of movement, Journal of Biomechanics, Vol. 48 Issue 13,
October 2015

Martin, R., Sadowsky, C., Obst, K., Meyer, B., McDonald, K., Functional Eletrical Stimulation In
Spinal Cord Injury, DOI: 10.1310/sci1801-28, 2012

Matheron, G., The Intrinsic Random Functions and their Applications, 1973

MATLAB, MathWorks, Massachusetts, USA, 2023,
https://au.mathworks.com/products/matlab.html

MATLAB, Mathworks, Fit a Gaussian process regression (GPR) model, interpn, 2015,
https://au.mathworks.com/help/stats/fitrgp.html#mw_24df21fa-3e4a-463b-97aa-
3e5cbe1bea4b

MATLAB, Mathworks, Fit Linear Regression Model, fitlm, 2013
https://au.mathworks.com/help/stats/fitlm.html

MATLAB, Mathworks, Interpolation for 1-D, 2-D, 3-D, and N-D gridded data in ndgrid format,
interpn, 2021, https://au.mathworks.com/help/matlab/ref/interpn.html#mw_6208770a-
3b10-4532-aa2f-f90ad8830d7e

MATLAB, Surrogate Optimisation, 2023, https://au.mathworks.com/discovery/surrogate-
optimization.html

McClaren, R., Chapter 10 – Interpolation, Computational Nuclear Engineering and Radiological
Science Using Python, Pages 173-192, Academic Press, https://doi.org/10.1016/B978-0-12-
812253-2.00012-1, 2018

Merloz, P., Optimization of perioperative management of proximal femoral fracture in the elderly,
Orthopaedics & Traumatology: Surgery & Research, Vol 104, Pg 25-30, 2018,
https://doi.org/10.1016/j.otsr.2017.04.020

Mostoufi, N., Constantinides, A., Chapter 3 – Finite difference methods and interpolation, Applied
Numerical Methods for Chemical Engineers, Pages 137-178, Academic Press,
https://doi.org/10.1016/B978-0-12-822961-3.00003-0, 2023

OpenSim, Simbios, USA, 2023, https://simtk.org/projects/opensim

O’Rourke, D., Martelli, S., Bottema, M., Taylor, M., A Comopoutational Efficient Method to Assess
the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis, Journal of
Biomechanical Engineering, DOI:10.1115/1.4034831, September 2016

Phillips, G. and Taylor, P., Chapter 6 – Splines and Other Approximations, Theory and Applications
of Numerical Analysis (Second Edition), Academic Press, Pages 131-159,
https://doi.org/10.1016/B978-012553560-1/50007-0, 1996

https://doi.org/10.1098/rsif.2017.0844
https://au.mathworks.com/products/matlab.html
https://au.mathworks.com/help/stats/fitrgp.html#mw_24df21fa-3e4a-463b-97aa-3e5cbe1bea4b
https://au.mathworks.com/help/stats/fitrgp.html#mw_24df21fa-3e4a-463b-97aa-3e5cbe1bea4b
https://au.mathworks.com/help/stats/fitlm.html
https://au.mathworks.com/help/matlab/ref/interpn.html#mw_6208770a-3b10-4532-aa2f-f90ad8830d7e
https://au.mathworks.com/help/matlab/ref/interpn.html#mw_6208770a-3b10-4532-aa2f-f90ad8830d7e
https://au.mathworks.com/discovery/surrogate-optimization.html
https://au.mathworks.com/discovery/surrogate-optimization.html
https://doi.org/10.1016/j.otsr.2017.04.020

36

Pizzolato, C., Reggiani, M., Saxby, D., Ceseracciu, E., Modenese, L., Lloyd, D., Biofeedback for Gait
Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, Vol 25, September 2017

Pizzolato, C., Shim, V., Lloyd, D., Devaprakash, D., Obst, S., Newsham-West, R., Graham, D., Besier,
T., Zheng, M., Barrett, R., Targeted Achilles Tendon Training and Rehabilitation Using
Personalized and Real-Time Multiscale Models of the Neuromusculoskeletal System,
DOI:10.3389/fbioe.2020.00878, August 2020

Rebholz. B., and Almekkawy, M., Efficacy Of Kriging Interpolation In Ultrasound Imaging;
Subsample Displacement Estimation, DOI: 10.1109/EMBC44109.2020.9175457, July 2020

Sartori, M., Reggiani, M, van den Bogert, A, Lloyd, D., Estimation of musculotendon kinematics in
large musculoskeletal models using multidimensional B-splines, Journal of Biomechanics
Vol 45 Issue 3, Pages 595-601, https://doi.org/10.1016/j.jbiomech.2011.10.040, February
2012

Schöllhorn, W., Applications of artificial neural nets in clinical biomechanics, Clinical Biomechanics
Vol. 19 Issue 9, Pages 876-898, November 2004.

Singh, A., Rana, M., Pal, B., Datta, P., Majumder, S., Roychowdhury, A., Patient-specific femoral
implant design using metamaterials for improving load transfer at proximal-lateral region
of femur, Medical Engineering & Physics Vol. 113, March 2023.

SpinalCure, Spinal Cord Injury In Australia, AlphaBeta, December 2020

Stockemer, D., Multivariate Regression Analysis, Quantitative Methods for the Social Sciences,
Pages 163-174, November 2018

Taylor, M., Prendergast, P., Four decades of finite element analysis of orthopaedic devices: Where
are we now and what are the opportunities?, Journal of Biomechanics Vol. 48 Issue 5,
Pages 767-778, March 2015

Wang, J., An Intuitive tutorial to Gaussian Processes Regression, Ingenuity Labs Research Institute,
2022

Wolberg, G., Cubic Spline Interpolation: A Review, Columbia University, September 1988

Yadav, P., Shefelbine, S., Ponten, E., Gutierrez-Farewik, E., Influence of muscle groups’ activation
on proximal femoral growth tendency, June 2017, doi: 10.1007/s10237-017-0925-3

Zeng, w., Liu, Y., Hou, X., Biomechanical evaluation of internal fixation implants for femoral neck
fractures: A comparative finite element analysis, August 2020, Computer Methods and
programs in Biomedicine, Vol 196, https://doi.org/10.1016/j.cmpb.2020.105714

Ziaei Poor, H. (a), Taylor, M., Pandy, M., Martelli, S., A novel training-free method for real-time
prediction of femoral strain, Journal of Biomechanics, Vol. 86, Pages 110-116, March 2019

Ziaei Poor, H. (b), Calculation of femoral strain during normal activities using efficient
computational methods, Flinders University, College of Science and Engineering, 2019.

https://doi.org/10.1016/j.jbiomech.2011.10.040
https://doi.org/10.1016/j.cmpb.2020.105714

37

APPENDICES

Appendix A – Multi-linear Regression Surrogate Model: MATLAB Script

% code was created by Thomas Rundle, Flinders University
clc;
clear all;
load HalfFemurParanalysis.mat
tStart = cputime;

%% Collecting and assigning simulated data
hipRaw = -HalfFemurParanalysis.HipCF; % Input 1
adductRaw = HalfFemurParanalysis.AdductorMF; % Input 2
gluteRaw = HalfFemurParanalysis.GluteMF; % Input 3
strainsRaw = HalfFemurParanalysis.StrainMax; % Output

%% Simplifying into a single matrix
X = [hipRaw, adductRaw, gluteRaw];

%% Fitting a linear regression model
model = fitlm(X, strainsRaw); % Finds the expected coefficients of y = b0 + b1x1 +
b2x2...

%% Plotting the model
plot(model) % y = predicted strains, x = b0 + b1x1 + b2x2.....
title('Multi-linear Regression Plot of Glute MF, Adductor MF, and Hip CF on Femoral
Neck Strain')
ylabel('Maximum Strain (mm^-1)')
xlabel('b0 + b2*hipCF + b3*adductorMF + b4*gluteMF')

%% useful for comparing unique results to other methods

hipCF_load = 1200; % Setting predictor variables
adductorMF_load = 500;
gluteMF_load = 900;

predictedStrain = table2array(model.Coefficients(1,1)) + ... +
 table2array(model.Coefficients(2,1))*hipCF_load + ...
 table2array(model.Coefficients(3,1))*adductorMF_load + ... +
 table2array(model.Coefficients(4,1))*gluteMF_load;

%% storing the predicted strains so they can be plotted
vecLocation = 1;
hipCount = 1000;
adductCount = 400;
gluteCount = 700;
predictedStrainVector = zeros(1,length(strainsRaw));
queryMatrix = zeros(length(strainsRaw), 4);

% loop for interpolating more data points, and assigning to 'queryMatrix'
for i = 0:8
 for j = 0:8

for k = 0:8
 gluteValue = gluteCount+k*50;
 adductValue = adductCount + j*50;
 hipValue = hipCount + i*100;
 k = k+1;
 strainValue = table2array(model.Coefficients(1,1)) + ... +

38

 table2array(model.Coefficients(2,1))*hipValue + ...
 table2array(model.Coefficients(3,1))*adductValue + ... +
 table2array(model.Coefficients(4,1))*gluteValue;

 predictedStrainVector(vecLocation) = strainValue;
 queryMatrix(vecLocation, 1) = hipValue;
 queryMatrix(vecLocation, 2) = adductValue;
 queryMatrix(vecLocation, 3) = gluteValue;
 queryMatrix(vecLocation, 4) = strainValue;
 vecLocation = vecLocation + 1;
end
j = j+1;

 end
 i = i+1;
end

%% plotting a singular surface for validation
% in this instance, we will isolating the hip and adductor, holding the
% glute force constant

surfVector = zeros(length(strainsRaw)/5,4);
surfPredictedVec = zeros(length(queryMatrix)/9,3);
surfVecLocation = 1;
surfPredictedVecLocation = 1;

% looping through points to find suitable locations where glute is constant
for l = 1:5:length(strainsRaw)
 surfVector(surfVecLocation, 1) = hipRaw(l);
 surfVector(surfVecLocation, 2) = adductRaw(l);
 surfVector(surfVecLocation, 3) = strainsRaw(l);
 surfVector(surfVecLocation, 4) = predictedStrainVector(l);
 surfVecLocation = surfVecLocation + 1;
end

% setting up a surface for this plot
X_raw = surfVector(:, 1);
Y_raw = surfVector(:, 2);
Z_raw = surfVector(:, 3);

% reshape the data for plotting as a surface
num_X = numel(unique(X_raw));
num_Y = numel(unique(Y_raw));
X_raw = reshape(X_raw, num_Y, num_X);
Y_raw = reshape(Y_raw, num_Y, num_X);
Z_raw = reshape(Z_raw, num_Y, num_X);

% doing the same for the much larger queryMatrix, which has far more values
for m = 1:9:length(queryMatrix)
 surfPredictedVec(surfPredictedVecLocation, 1) = queryMatrix(m, 1);
 surfPredictedVec(surfPredictedVecLocation, 2) = queryMatrix(m, 2);
 surfPredictedVec(surfPredictedVecLocation, 3) = queryMatrix(m, 4);
 surfPredictedVecLocation = surfPredictedVecLocation + 1;
end

% creating a surface for queryMatrix
X_interp = surfPredictedVec(:, 1);
Y_interp = surfPredictedVec(:, 2);
Z_interp = surfPredictedVec(:, 3);

% reshape the data to plot as surface
num_X_interp = numel(unique(X_interp));
num_Y_interp = numel(unique(Y_interp));
X_interp = reshape(X_interp, num_Y_interp, num_X_interp);

39

Y_interp = reshape(Y_interp, num_Y_interp, num_X_interp);
Z_interp = reshape(Z_interp, num_Y_interp, num_X_interp);

% plotting the two datasets, surfVector and surfPredictedVector, which
% represents the raw data plotted against the interpolated data, and also
% plotting the two surfaces
figure
plot3(surfVector(:,1), surfVector(:,2), surfVector(:,3), 'ro')
hold on
plot3(surfPredictedVec(:,1), surfPredictedVec(:,2), surfPredictedVec(:,3), 'kx')
hold on
surf(X_raw, Y_raw, Z_raw, 'FaceColor', 'r', 'EdgeColor', 'none');
alpha(0.2);
hold on
surf(X_interp, Y_interp, Z_interp, 'FaceColor', 'k', 'EdgeColor', 'none');
alpha(0.2);
xlabel('Hip Force (N)');
ylabel('Adductor Force (N)');
zlabel('Maximal Strain');
title({'Multi-linear Regression',...
 'Hip & Adductor Force, Predicted vs Actual Strains'})
legend('Actual,','Predicted', 'Location', 'southeast')
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

%% Calculating RMSE

rmseVector = zeros(length(queryMatrix), 1);

for p = 1:length(queryMatrix);
 if mod(queryMatrix(p,3), 100) == 50

continue
 end
 if mod(queryMatrix(p,2), 100) == 50

continue
 end
 if mod(queryMatrix(p,1), 200) == 100

continue
 end
 rmseVector(p) = queryMatrix(p, 4);
end

rmseVector = nonzeros(rmseVector);

% Compute squared errors
squaredErrors = (rmseVector - strainsRaw).^2;

% Calculate RMSE & nRMSE using difference between predicted and actual
% strains
rmse = sqrt(mean(squaredErrors));
nrmse = rmse/(max(strainsRaw)-min(strainsRaw));
disp(['Root Mean Square Error (RMSE): ', num2str(rmse)]);
disp(['Normal Root Mean Square Error (nRMSE): ', num2str(nrmse)]);

% find CPU time expired during construction, training and execution of model
tEnd = cputime - tStart

40

Appendix B – Cubic Splines Surrogate Model: MATLAB Script

% code was created by Thomas Rundle, Flinders University
clc;
clear all;
load HalfFemurParanalysis.mat
tStart = cputime;
%% specifying data from FEM simulation, sorting it into individual predictor inputs
hipRaw = -HalfFemurParanalysis.HipCF.'; % Input 1
adductRaw = HalfFemurParanalysis.AdductorMF.'; % Input 2
gluteRaw = HalfFemurParanalysis.GluteMF.'; % Input 3
strainsRaw = HalfFemurParanalysis.StrainMax.'; % Output

%% reshaping the data so that it can be interpolated using 'interpn' and 'spline'
% this requires the data to not be interpreted as one whole dataseries, but
% rather a 5x5x5 block combination of all possible values.
hip = [1000:200:1800];
adduct = [400:100:800];
glute = [700:100:1100];
strainValues = HalfFemurParanalysis.StrainMax;

gridsize = [5,5,5]; % reshaping the data
strains = reshape(strainValues, gridsize);

[X1, X2, X3] = ndgrid(hip, adduct, glute);

%% for predicting single strain responses, useful for comparison of known solutions to
other methods
hipTest = 1000;
adductTest = 800;
gluteTest = 900;
testValue = interpn(X1, X2, X3, strains, hipTest, adductTest, gluteTest, 'spline');
disp('Predicted strain')
disp(testValue)

%% storing the predicted strains so they can be plotted
vecLocation = 1;
hipCount = 1000;
adductCount = 400;
gluteCount = 700;
predictedStrainVector = zeros(1,length(strainsRaw));
queryMatrix = zeros(length(strainsRaw), 4);

% loop to interpolate more data points than the ones given, and assigning to
'queryMatrix'
% creates more points to plot the surface from
for i = 0:8
 for j = 0:8

for k = 0:8
 gluteValue = gluteCount+k*50;
 adductValue = adductCount + j*50;
 hipValue = hipCount + i*100;
 k = k+1;
 strainValue = interpn(X1, X2, X3, strains, hipValue, adductValue,

gluteValue, 'spline');
 % interpn is used as the interpolation function, specified to
 % use splines
 predictedStrainVector(vecLocation) = strainValue;
 queryMatrix(vecLocation, 1) = hipValue;
 queryMatrix(vecLocation, 2) = adductValue;
 queryMatrix(vecLocation, 3) = gluteValue;

41

 queryMatrix(vecLocation, 4) = strainValue;
 vecLocation = vecLocation + 1;
end
j = j+1;

 end
 i = i+1;
end

%% plotting a singular surface for validation
% in this instance, we will isolating the hip and adductor, holding the
% glute force constant

surfVector = zeros(length(strainsRaw)/5,4);
surfPredictedVec = zeros(length(queryMatrix)/9,3);
surfVecLocation = 1;
surfPredictedVecLocation = 1;

% looping through points to find suitable locations where glute is constant
for l = 1:5:length(strainsRaw)
 surfVector(surfVecLocation, 1) = hipRaw(l);
 surfVector(surfVecLocation, 2) = adductRaw(l);
 surfVector(surfVecLocation, 3) = strainsRaw(l);
 surfVector(surfVecLocation, 4) = predictedStrainVector(l);
 surfVecLocation = surfVecLocation + 1;
end

% setting up a surface for this plot
X_raw = surfVector(:, 1);
Y_raw = surfVector(:, 2);
Z_raw = surfVector(:, 3);

% reshape the data for plotting as a surface
num_X = numel(unique(X_raw));
num_Y = numel(unique(Y_raw));
X_raw = reshape(X_raw, num_Y, num_X);
Y_raw = reshape(Y_raw, num_Y, num_X);
Z_raw = reshape(Z_raw, num_Y, num_X);

% doing the same for the much larger queryMatrix, which has far more values
for m = 1:9:length(queryMatrix)
 surfPredictedVec(surfPredictedVecLocation, 1) = queryMatrix(m, 1);
 surfPredictedVec(surfPredictedVecLocation, 2) = queryMatrix(m, 2);
 surfPredictedVec(surfPredictedVecLocation, 3) = queryMatrix(m, 4);
 surfPredictedVecLocation = surfPredictedVecLocation + 1;
end

% creating a surface for queryMatrix
X_interp = surfPredictedVec(:, 1);
Y_interp = surfPredictedVec(:, 2);
Z_interp = surfPredictedVec(:, 3);

% reshape the data to plot as surface
num_X_interp = numel(unique(X_interp));
num_Y_interp = numel(unique(Y_interp));
X_interp = reshape(X_interp, num_Y_interp, num_X_interp);
Y_interp = reshape(Y_interp, num_Y_interp, num_X_interp);
Z_interp = reshape(Z_interp, num_Y_interp, num_X_interp);

% plotting the two datasets, surfVector and surfPredictedVector, which
% represents the raw data plotted against the interpolated data, and also
% plotting the two surfaces

42

figure
plot3(surfVector(:,1), surfVector(:,2), surfVector(:,3), 'ro')
hold on
plot3(surfPredictedVec(:,1), surfPredictedVec(:,2), surfPredictedVec(:,3), 'kx')
hold on
surf(X_raw, Y_raw, Z_raw, 'FaceColor', 'r', 'EdgeColor', 'none');
alpha(0.2);
hold on
surf(X_interp, Y_interp, Z_interp, 'FaceColor', 'k', 'EdgeColor', 'none');
alpha(0.2);
xlabel('Hip Force (N)');
ylabel('Adductor Force (N)');
zlabel('Maximal Strain');
title({'Cubic Splines',...
 'Hip & Adductor Force, Predicted vs Actual Strains'})
legend('Actual,','Predicted', 'Location', 'southeast')
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

%% Calculating RMSE and nRMSE
rmseVector = zeros(length(queryMatrix), 1);

for p = 1:length(queryMatrix);
 if mod(queryMatrix(p,3), 100) == 50

continue
 end
 if mod(queryMatrix(p,2), 100) == 50

continue
 end
 if mod(queryMatrix(p,1), 200) == 100

continue
 end
 rmseVector(p) = queryMatrix(p, 4);
end
rmseVector = nonzeros(rmseVector);

% Compute squared errors
squaredErrors = (rmseVector - strainsRaw').^2;

% Calculate RMSE & nRMSE
rmse = sqrt(mean(squaredErrors));
nrmse = rmse/(max(strainsRaw)-min(strainsRaw));
disp(['Root Mean Square Error (RMSE): ', num2str(rmse)]);
disp(['Normal Root Mean Square Error (nRMSE): ', num2str(nrmse)]);

% find CPU time expired during construction, training and execution of model
tEnd = cputime – tStart

43

Appendix C – Kriging Surrogate Model: MATLAB Script

% code was created by Thomas Rundle, Flinders University
clc;
clear all;
load HalfFemurParanalysis.mat
tStart = cputime;
%% specifying data from FEM simulation, sorting it into individual predictor inputs
hipRaw = -HalfFemurParanalysis.HipCF.'; % Input 1
adductRaw = HalfFemurParanalysis.AdductorMF.'; % Input 2
gluteRaw = HalfFemurParanalysis.GluteMF.'; % Input 3
strainsRaw = HalfFemurParanalysis.StrainMax.'; % Output

% Using the provided data
hip = [1000:200:1800];
adduct = [400:100:800];
glute = [700:100:1100];

gridsize = [5,5,5]; % reshaping the data
strains = reshape(strainsRaw, gridsize);

[X1, X2, X3] = ndgrid(hip, adduct, glute);

% Create a matrix for input variables and output variables
X = [X1(:), X2(:), X3(:)];
Y = strains(:);

% Assuming you have new locations stored in variables X_new1, X_new2, X_new3
X_new = [1000, 800, 900];

% Preallocate matrices for interpolated output and kriging variance
Y_pred_test = zeros(size(X_new, 1), size(Y, 2));
sigma = zeros(size(X_new, 1), size(Y, 2));

% Perform kriging interpolation for each output variable
for t = 1:size(Y, 2)
 % Create the kriging model for the current output variable
 krigingModel = fitrgp(X, Y(:, t), 'FitMethod', 'none', 'PredictMethod', 'exact',
'KernelFunction', 'ardsquaredexponential');

 % Perform kriging interpolation at new locations
 [Y_pred_test(:, t), sigma(:, t)] = predict(krigingModel, X_new);
end

% displaying results
text = sprintf('Hip joint force = %dN, adductor force = %dN, glute force = %dN',
X_new(1), X_new(2), X_new(3));
disp(text);

% Y_pred contains the interpolated output values at the new locations for each variable
disp('Interpolated output values:');
disp(Y_pred_test);

% sigma contains the kriging variance at the new locations for each variable
disp('Kriging variance:');
disp(sigma);

queryMatrix = zeros(length(strainsRaw), 5);
vecLocation = 1;
hipCount = 1000;
adductCount = 400;

44

gluteCount = 700;

% looping through data to create plottable data points. Points will be
% joined using a surface. 125 points used to train --> 729 points
% interpolated
for h = 0:8
 for j = 0:8

for k = 0:8
 gluteValue = gluteCount+k*50;
 adductValue = adductCount + j*50;
 hipValue = hipCount + h*100;
 X_query = [hipValue, adductValue, gluteValue];

 % Perform kriging interpolation for each output variable
 for i = 1:size(Y, 2)

 % Create the kriging model for the current output variable
 krigingModel = fitrgp(X, Y(:, i), 'FitMethod', 'none', 'PredictMethod',

'exact', 'KernelFunction', 'ardsquaredexponential');

 % Perform kriging interpolation at new locations
 [Y_pred(:, i), sigma_interp(:, i)] = predict(krigingModel, X_query);

 end

 k = k+1;
 queryMatrix(vecLocation, 1) = hipValue;
 queryMatrix(vecLocation, 2) = adductValue;
 queryMatrix(vecLocation, 3) = gluteValue;
 queryMatrix(vecLocation, 4) = Y_pred;
 queryMatrix(vecLocation, 5) = sigma_interp;
 vecLocation = vecLocation + 1;
end
j = j+1;

 end
 h = i+1;
end

%% plotting a singular surface for validation
% in this instance, we will isolating the hip and adductor, holding the
% glute force constant

surfVector = zeros(length(strainsRaw)/5,4);
surfPredictedVec = zeros(length(queryMatrix)/9,3);
surfVecLocation = 1;
surfPredictedVecLocation = 1;

% looping through points to find suitable locations where glute is constant
for l = 1:5:length(strainsRaw)
 surfVector(surfVecLocation, 1) = hipRaw(l);
 surfVector(surfVecLocation, 2) = adductRaw(l);
 surfVector(surfVecLocation, 3) = strainsRaw(l);
 surfVector(surfVecLocation, 4) = queryMatrix(l,4);
 surfVecLocation = surfVecLocation + 1;
end

% setting up a surface for this plot
X_raw = surfVector(:, 1);
Y_raw = surfVector(:, 2);
Z_raw = surfVector(:, 3);

% reshape the data for plotting as a surface
num_X = numel(unique(X_raw));

45

num_Y = numel(unique(Y_raw));
X_raw = reshape(X_raw, num_Y, num_X);
Y_raw = reshape(Y_raw, num_Y, num_X);
Z_raw = reshape(Z_raw, num_Y, num_X);

% doing the same for the much larger queryMatrix, which has far more values
for m = 1:9:length(queryMatrix)
 surfPredictedVec(surfPredictedVecLocation, 1) = queryMatrix(m, 1);
 surfPredictedVec(surfPredictedVecLocation, 2) = queryMatrix(m, 2);
 surfPredictedVec(surfPredictedVecLocation, 3) = queryMatrix(m, 4);
 surfPredictedVecLocation = surfPredictedVecLocation + 1;
end

% creating a surface for queryMatrix
X_interp = surfPredictedVec(:, 1);
Y_interp = surfPredictedVec(:, 2);
Z_interp = surfPredictedVec(:, 3);

% reshape the data to plot as surface
num_X_interp = numel(unique(X_interp));
num_Y_interp = numel(unique(Y_interp));
X_interp = reshape(X_interp, num_Y_interp, num_X_interp);
Y_interp = reshape(Y_interp, num_Y_interp, num_X_interp);
Z_interp = reshape(Z_interp, num_Y_interp, num_X_interp);

% plotting the two datasets, surfVector and surfPredictedVector, which
% represents the raw data plotted against the interpolated data, and also
% plotting the two surfaces
figure
plot3(surfVector(:,1), surfVector(:,2), surfVector(:,3), 'ro')
hold on
plot3(surfPredictedVec(:,1), surfPredictedVec(:,2), surfPredictedVec(:,3), 'kx')
hold on
surf(X_raw, Y_raw, Z_raw, 'FaceColor', 'r', 'EdgeColor', 'none');
alpha(0.2);
hold on
surf(X_interp, Y_interp, Z_interp, 'FaceColor', 'k', 'EdgeColor', 'none');
alpha(0.2);
xlabel('Hip Force (N)');
ylabel('Adductor Force (N)');
zlabel('Maximal Strain');
title({'Kriging (Gaussian Process Regression)',...
 'Hip & Adductor Force, Predicted vs Actual Strains'})
legend('Actual,','Predicted', 'Location', 'southeast')
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

%% Calculating RMSE & nRMSE

rmseVector = zeros(length(queryMatrix), 1);

for p = 1:length(queryMatrix);
 if mod(queryMatrix(p,3), 100) == 50

continue
 end
 if mod(queryMatrix(p,2), 100) == 50

continue
 end
 if mod(queryMatrix(p,1), 200) == 100

continue
 end

46

 rmseVector(p) = queryMatrix(p, 4);
end

rmseVector = nonzeros(rmseVector);

% Compute squared errors
squaredErrors = (rmseVector - strainsRaw').^2;

% Calculate RMSE & nRMSE
rmse = sqrt(mean(squaredErrors));
nrmse = rmse/(max(strainsRaw)-min(strainsRaw));
disp(['Root Mean Square Error (RMSE): ', num2str(rmse)]);
disp(['Normal Root Mean Square Error (nRMSE): ', num2str(nrmse)]);

% find CPU time expired during construction, training and execution of model
tEnd = cputime - tStart

47

Appendix D – Superposition Principle Method Surrogate Model (Linear
Model): MATLAB Script

% code was created by Thomas Rundle, Flinders University
clc;
clear all;
load ComponentsSPM.mat
load HalfFemurTrial1.mat
tStart = cputime;

%% initialise data from obtained FE dataset (excel)
nodes = ComponentsSPM.NodeNumber;
hipXY = ComponentsSPM.Hip_XY_Shear;
hipYZ = ComponentsSPM.Hip_YZ_Shear;
hipXZ = ComponentsSPM.Hip_XZ_Shear;
hipNormX = ComponentsSPM.Hip_X_Normal;
hipNormY = ComponentsSPM.Hip_Y_Normal;
hipNormZ = ComponentsSPM.Hip_Z_Normal;
gluteXY = ComponentsSPM.Glute_XY_Shear;
gluteYZ = ComponentsSPM.Glute_YZ_Shear;
gluteXZ = ComponentsSPM.Glute_XZ_Shear;
gluteNormX = ComponentsSPM.Glute_X_Normal;
gluteNormY = ComponentsSPM.Glute_Y_Normal;
gluteNormZ = ComponentsSPM.Glute_Z_Normal;
adductXY = ComponentsSPM.Adduct_XY_shear;
adductYZ = ComponentsSPM.Adduct_YZ_shear;
adductXZ = ComponentsSPM.Adduct_XZ_shear;
adductNormX = ComponentsSPM.Adduct_X_Normal;
adductNormY = ComponentsSPM.Adduct_Y_Normal;
adductNormZ = ComponentsSPM.Adduct_Z_Normal;

% identify number of nodes
numNodes = length(nodes);

% set multiplier used for superposition of each tensor
hipMulti = 1;
gluteMulti = 0.4;
adductMulti = 0.7;

%% creating strain tensors for each node in response to HIP
hipTensors = zeros(numNodes, 7);

for i = 1:numNodes
 hipTensors(i, 1) = nodes(i);
 hipTensors(i, 2) = hipXY(i);
 hipTensors(i, 3) = hipYZ(i);
 hipTensors(i, 4) = hipXZ(i);
 hipTensors(i, 5) = hipNormX(i);
 hipTensors(i, 6) = hipNormY(i);
 hipTensors(i, 7) = hipNormZ(i);
end

%% creating strain tensors for each node in response to GLUTE
gluteTensors = zeros(numNodes, 7);

for i = 1:numNodes
 gluteTensors(i, 1) = nodes(i);
 gluteTensors(i, 2) = gluteXY(i);
 gluteTensors(i, 3) = gluteYZ(i);
 gluteTensors(i, 4) = gluteXZ(i);
 gluteTensors(i, 5) = gluteNormX(i);

48

 gluteTensors(i, 6) = gluteNormY(i);
 gluteTensors(i, 7) = gluteNormZ(i);
end

%% creating strain tensors for each node in response to ADDUCTOR
adductTensors = zeros(numNodes, 7);

for i = 1:numNodes
 adductTensors(i, 1) = nodes(i);
 adductTensors(i, 2) = adductXY(i);
 adductTensors(i, 3) = adductYZ(i);
 adductTensors(i, 4) = adductXZ(i);
 adductTensors(i, 5) = adductNormX(i);
 adductTensors(i, 6) = adductNormY(i);
 adductTensors(i, 7) = adductNormZ(i);
end

%% addition of tensors to find final tensors via superposition
finalTensors = hipMulti*hipTensors + gluteMulti*gluteTensors +
adductMulti*adductTensors;
finalTensors(:,1) = nodes;

%% creating strain tensors for each node in response to TRIAL 1, where loadings were
determined:
% Hip = 1000N
% Glute = 400N
% Adductor = 700N

trialTensors = zeros(numNodes, 7);
for i = 1:numNodes
 trialTensors(i, 1) = table2array(HalfFemurTrial1(i,1));
 trialTensors(i, 2) = table2array(HalfFemurTrial1(i,2));
 trialTensors(i, 3) = table2array(HalfFemurTrial1(i,3));
 trialTensors(i, 4) = table2array(HalfFemurTrial1(i,4));
 trialTensors(i, 5) = table2array(HalfFemurTrial1(i,5));
 trialTensors(i, 6) = table2array(HalfFemurTrial1(i,6));
 trialTensors(i, 7) = table2array(HalfFemurTrial1(i,7));
end

%% finding max and min normal strains (not required later)
maxNormStrainTrial1 = max(trialTensors(:,5:7));
trueMaxTrial1 = max(maxNormStrainTrial1)

maxNormStrain = max(finalTensors(:,5:7));
trueMaxFinal = max(maxNormStrain)

%% plotting the x, y, z normal strain tensor components
% surface is not used like other methods, since only 2D dataset is
% available
x1 = trialTensors(:,5);
y1 = finalTensors(:,5);
x2 = trialTensors(:,6);
y2 = finalTensors(:,6);
x3 = trialTensors(:,7);
y3 = finalTensors(:,7);

figure
plot(x1, y1, 'r*')
hold on
plot(x2, y2, 'bo')
hold on
plot(x3, y3, 'kx')

49

xlabel('Actual Strain');
ylabel('Predicted Strain');

title('Normal Strain Components',...
 'Actual vs Predicted Using SPM')
legend('x','y','z', 'south')
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

% find CPU time expired during construction, training and execution of model
tEnd = cputime - tStart

50

Appendix E - Superposition Principle Method Surrogate Model (Non-
linear Model): MATLAB Script

% code was created by Thomas Rundle, Flinders University
%% initialise all data. Load relevent files
clc;
clear all;
tStart = cputime; % starts counting for CPU time

%% loading X normal strain components (excel)
load addX11.mat
load addY11.mat
load addZ11.mat
load hipX11.mat
load hipY11.mat
load hipZ11.mat
load kneeX11.mat
load kneeY11.mat
load kneeZ11.mat
load T1_11.mat
load T2_11.mat
load T3_11.mat

%% loading X normal strain components (excel)
load addX22.mat
load addY22.mat
load addZ22.mat
load hipX22.mat
load hipY22.mat
load hipZ22.mat
load kneeX22.mat
load kneeY22.mat
load kneeZ22.mat
load T1_22.mat
load T2_22.mat
load T3_22.mat

%% loading X normal strain components (excel)
load addX33.mat
load addY33.mat
load addZ33.mat
load hipX33.mat
load hipY33.mat
load hipZ33.mat
load kneeX33.mat
load kneeY33.mat
load kneeZ33.mat
load T1_33.mat
load T2_33.mat
load T3_33.mat

%% setting the multipliers for the strain tensor addition
hip_x_multi = -0.5;
hip_y_multi = 0.25;
hip_z_multi = -0.3;

knee_x_multi = -0.12;
knee_y_multi = -0.4;
knee_z_multi = 0.02;

51

adduct_x_multi = 0.55;
adduct_y_multi = 0.21;
adduct_z_multi = 0.01;

nodes = length(table2array(XNORMALspmaddx2));

%% creating the tensors for the isolated hip responses, followed by knee and adductor
% remember, each force has three components (x, y, z)
% each component has three normal strains (x, y, z)
% hence there are 9 measured normal strain values per force, + 1 column to
% count nodes
hip_tensors = zeros(nodes/2, 10);

for i = 1:(nodes/2)
 hip_tensors(i, 1) = i;
 hip_tensors(i, 2) = table2array(XNORMALspmhipx2(1, 2*i));
 hip_tensors(i, 3) = table2array(XNORMALspmhipy2(1, 2*i));
 hip_tensors(i, 4) = table2array(XNORMALspmhipz2(1, 2*i));
 hip_tensors(i, 5) = table2array(YNORMALspmhipx2(1, 2*i));
 hip_tensors(i, 6) = table2array(YNORMALspmhipy2(1, 2*i));
 hip_tensors(i, 7) = table2array(YNORMALspmhipz2(1, 2*i));
 hip_tensors(i, 8) = table2array(ZNORMALspmhipx2(1, 2*i));
 hip_tensors(i, 9) = table2array(ZNORMALspmhipy2(1, 2*i));
 hip_tensors(i, 10) = table2array(ZNORMALspmhipz2(1, 2*i));
end

knee_tensors = zeros(nodes/2, 5);

for i = 1:(nodes/2)
 knee_tensors(i, 1) = i;
 knee_tensors(i, 2) = table2array(XNORMALspmkneex2(1, 2*i));
 knee_tensors(i, 3) = table2array(XNORMALspmkneey2(1, 2*i));
 knee_tensors(i, 4) = table2array(XNORMALspmkneez2(1, 2*i));
 knee_tensors(i, 5) = table2array(YNORMALspmkneex2(1, 2*i));
 knee_tensors(i, 6) = table2array(YNORMALspmkneey2(1, 2*i));
 knee_tensors(i, 7) = table2array(YNORMALspmkneez2(1, 2*i));
 knee_tensors(i, 8) = table2array(ZNORMALspmkneex2(1, 2*i));
 knee_tensors(i, 9) = table2array(ZNORMALspmkneey2(1, 2*i));
 knee_tensors(i, 10) = table2array(ZNORMALspmkneez2(1, 2*i));

end

adduct_tensors = zeros(nodes/2, 4);

for i = 1:(nodes/2)
 adduct_tensors(i, 1) = i;
 adduct_tensors(i, 2) = table2array(XNORMALspmaddx2(1, 2*i));
 adduct_tensors(i, 3) = table2array(XNORMALspmaddy2(1, 2*i));
 adduct_tensors(i, 4) = table2array(XNORMALspmaddz2(1, 2*i));
 adduct_tensors(i, 5) = table2array(YNORMALspmaddx2(1, 2*i));
 adduct_tensors(i, 6) = table2array(YNORMALspmaddy2(1, 2*i));
 adduct_tensors(i, 7) = table2array(YNORMALspmaddz2(1, 2*i));
 adduct_tensors(i, 8) = table2array(ZNORMALspmaddx2(1, 2*i));
 adduct_tensors(i, 9) = table2array(ZNORMALspmaddy2(1, 2*i));
 adduct_tensors(i, 10) = table2array(ZNORMALspmaddz2(1, 2*i));
end

%% creating the tensors for the responses to combination loadings
% this is the assembly of responses from known combination loadings found
% in Abaqus software

52

trial_tensors = zeros(nodes/2, 4);

for k = 1:(nodes/2)
 trial_tensors(k, 1) = k;
 trial_tensors(k, 2) = table2array(XNORMALT2(1, 2*k));
 trial_tensors(k, 3) = table2array(YNORMALT2(1, 2*k));
 trial_tensors(k, 4) = table2array(ZNORMALT2(1, 2*k));
end

%% creating the predicted tensors, by applying superposition. This will be compared
with the trial tensors
predicted_tensors = zeros(nodes/2, 4);

predicted_tensors(:,1) = hip_tensors(:,1);

predicted_tensors(:,2) = hip_x_multi*hip_tensors(:,2) + hip_y_multi*hip_tensors(:,3) +
hip_z_multi*hip_tensors(:,4) +...
 knee_x_multi*knee_tensors(:,2) + knee_y_multi*knee_tensors(:,3) +
knee_z_multi*knee_tensors(:,4) + ...
 adduct_x_multi*adduct_tensors(:,2) + adduct_y_multi*adduct_tensors(:,3) +
adduct_z_multi*adduct_tensors(:,4);

predicted_tensors(:,3) = hip_x_multi*hip_tensors(:,5) + hip_y_multi*hip_tensors(:,6) +
hip_z_multi*hip_tensors(:,7) +...
 knee_x_multi*knee_tensors(:,5) + knee_y_multi*knee_tensors(:,6) +
knee_z_multi*knee_tensors(:,7) + ...
 adduct_x_multi*adduct_tensors(:,5) + adduct_y_multi*adduct_tensors(:,6) +
adduct_z_multi*adduct_tensors(:,7);

predicted_tensors(:,4) = hip_x_multi*hip_tensors(:,8) + hip_y_multi*hip_tensors(:,9) +
hip_z_multi*hip_tensors(:,10) +...
 knee_x_multi*knee_tensors(:,8) + knee_y_multi*knee_tensors(:,9) +
knee_z_multi*knee_tensors(:,10) + ...
 adduct_x_multi*adduct_tensors(:,8) + adduct_y_multi*adduct_tensors(:,9) +
adduct_z_multi*adduct_tensors(:,10);

%% plotting singular normal strain components
x1 = trial_tensors(:,2);
y1 = predicted_tensors(:,2);
x2 = trial_tensors(:,3);
y2 = predicted_tensors(:,3);
x3 = trial_tensors(:,4);
y3 = predicted_tensors(:,4);

% used to find confidence interval (95%)
p1 = polyfit(x1, y1, 1);
f1 = polyval(p1, x1);
p2 = polyfit(x2, y2, 1);
f2 = polyval(p2, x2);
p3 = polyfit(x3, y3, 1);
f3 = polyval(p3, x3);

[w1, S1] = polyfit(x1, y1, 1);
[y_fit1, delta1] = polyval(w1, x1, S1);
[w2, S2] = polyfit(x2, y2, 1);
[y_fit2, delta2] = polyval(w2, x2, S2);
[w3, S3] = polyfit(x3, y3, 1);
[y_fit3, delta3] = polyval(w3, x3, S3);

% specifically made for the z component at the moment, change variables as
% needed to plot x and y components

53

figure
plot(x3, y3, 'b.', 'LineWidth', 0.1)
hold on
plot(x3, y_fit3, 'r-', 'LineWidth', 1)
xlim([-15*10^(-5) 10*10^(-5)])
ylim([-15*10^(-5) 10*10^(-5)])
hold on
plot(x3, y_fit3+2*delta3, 'm--',x3, y_fit3-2*delta3, 'm--')
xlabel('Actual Strain', 'FontSize', 16);
ylabel('Predicted Strain', 'FontSize',16);
title('Normal Strain - Z Component',...
 'Actual vs Predicted Using SPM')
legend('Strain','Linear Fit','95% Prediction Interval', 'FontSize',12)
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

%% plots all x y z on one axis
figure
plot(x1, y1, 'b.')
hold on
plot(x2, y2, 'k.')
hold on
plot(x3, y3, 'r.')
xlim([-15*10^(-5) 10*10^(-5)])
ylim([-15*10^(-5) 10*10^(-5)])
xlabel('Actual Strain', 'FontSize', 12);
ylabel('Predicted Strain', 'FontSize', 12);
title('Normal Strain Components - Non-Linear Model',...
 'Actual vs Predicted Using SPM')
legend('x','y','z', 'Fontsize', 12)
alpha(0.5)
ax = gca;
ax.TitleFontSizeMultiplier = 1.5;

%% validating, finding nRMSE and CPU time
% Compute squared errors
XsquaredErrors = (trial_tensors(:,2) - predicted_tensors(:,2)).^2;

Xrmse = sqrt(mean(XsquaredErrors));
Xnrmse = Xrmse/(max(trial_tensors(:,2)-min(trial_tensors(:,2))));
%disp(['X Root Mean Square Error (RMSE): ', num2str(Xrmse)]);
disp(['X Normal Root Mean Square Error (nRMSE): ', num2str(Xnrmse)]);

YsquaredErrors = (trial_tensors(:,3) - predicted_tensors(:,3)).^2;

Yrmse = sqrt(mean(YsquaredErrors));
Ynrmse = Yrmse/(max(trial_tensors(:,3)-min(trial_tensors(:,3))));
%disp(['Y Root Mean Square Error (RMSE): ', num2str(Yrmse)]);
disp(['Y Normal Root Mean Square Error (nRMSE): ', num2str(Ynrmse)]);

ZsquaredErrors = (trial_tensors(:,4) - predicted_tensors(:,4)).^2;

Zrmse = sqrt(mean(ZsquaredErrors));
Znrmse = Zrmse/(max(trial_tensors(:,4)-min(trial_tensors(:,4))));
%disp(['Z Root Mean Square Error (RMSE): ', num2str(Zrmse)]);
disp(['Z Normal Root Mean Square Error (nRMSE): ', num2str(Znrmse)]);

% calculates time required to construct, train, and execute surrogate model
% (CPU time)
tEnd = cputime - tStart

