Detecting Non-Hamiltonian Graphs by Improved Linear Programs and Graph Reductions

A thesis submitted for the degree of Doctor of Philosophy

Kieran Clancy
B.Sc. (Hons)

School of Computer Science,
Engineering \& Mathematics
Faculty of Science \& Engineering
Flinders University

May 2017

To my mother Gina for her immeasurable support.

Contents

Contents i
List of Tables iv
List of Figures vii
Summary x
Declaration xiii
Acknowledgements xiv
Glossary of terms xviii
Archive of problem sets and algorithms xx
1 Introduction and background 1
1.1 Hamiltonian cycle problem 1
1.2 Graph theory 6
1.2.1 Hamiltonian cycle problem for cubic graphs 11
1.3 Linear programming relaxations 12
2 Identifying non-Hamiltonian graphs by linear programming 15
2.1 Existing models to solve TSP and HCP 17
2.1.1 Subtour elimination model and MCF 17
2.1.2 Tightened multi-commodity flow model 21
2.1.3 SST model 23
2.1.4 The Base Model 25
2.2 Comparisons of LP models 28
2.2.1 Adapting TSP models to solve HCP 29
2.2.2 Results of LP models on HCP instances 32
2.2.3 Adapting the Base Model to solve TSP 34
2.2.4 Generating TSP instances based on cubic graphs 37
2.2.5 Results of LP models on TSP instances 42
2.2.6 A conjecture on the strength of the Base Model 44
2.3 Classifications of difficult cubic graphs 51
2.3.1 Vertex and edge connectivity 51
2.3.2 Graph toughness 55
2.4 Concluding remarks on the Base Model 62
3 Hamiltonicity-preserving graph reductions 64
3.1 Graph reductions based on subgraphs 70
3.2 Graph reductions based on Hamiltonian and non-Hamiltonian edges 74
3.3 Edge orbits and their classification 79
3.4 Graph reductions based on edge orbits 92
3.5 Graph reduction algorithm 98
3.6 Results of reduction algorithm on cubic graphs 110
4 Extending the Base Model 120
4.1 Merging SST with the Base Model 125
4.1.1 Base-SST model with multiple starting vertices 127
4.1.2 Extended Base-SST model 130
4.2 Constraints involving forced edges 142
4.3 Constraints based on 3-cuts 149
4.4 Constraints based on an eigenvalue of Hamiltonian permuta- tion matrices 152
4.5 Results of combined extensions 162
4.6 Detecting non-Hamiltonicity of graphs by using LP models on their subgraphs 173
5 Conclusions and future work 176
5.1 Summary of results 177
5.2 Future work arising from Chapter 2 178
5.3 Future work arising from Chapter 3 179
5.4 Future work arising from Chapter 4 179
Appendix A Non-Hamiltonian non-bridge cubic graph sets 182
A. 1 NHNB20 GENREG IDs 183
A. 2 NHNB20PR edge lists 185
Appendix B ATSP problem sets 189
Appendix C Implementation of graph reduction algorithm 204
Bibliography 220

List of Tables

2.5 Results of MCF, MCF+, SST and the Base Model on non- Hamiltonian graphs up to order 20 33
2.6 Results of MCF, MCF +, SST and the Base Model on NHNB20 34
2.9 Results of MCF, MCF+, SST and the Base Model on ATSP16A 43
2.10 Results of MCF, MCF +, SST and the Base Model on ATSP16AC 43
2.13 Hamiltonicity of connected 10 -vertex graphs up to isomor- phism by vertex connectivity 53
2.14 The numbers of non-Hamiltonian and Hamiltonian cubic graphs up to order 20 54
2.15 The percentage of cubic graphs up to order 20 that are Hamil- tonian 54
2.16 Contingency table for cubic graphs up to order 20 by Hamil- tonicity and connectivity 55
2.17 Contingency table for non-Hamiltonian cubic graphs up to order 20 by Base Model feasibility and connectivity 55
2.19 Hamiltonian and non-Hamiltonian cubic graphs up to order 20 by toughness 59
2.20 Base Model feasibility for non-Hamiltonian cubic graphs up to order 20 by toughness 60
3.7 Number of asymmetric and non-asymmetric cubic graphs by order up to 20 vertices 81
3.12 Percentage of edges in each type of orbit, as classified by The- orem 3.36, for non-asymmetric cubic graphs up to order 20 90
3.18 Automorphism group size of cubic graphs of order between 6 and 20 with at least one triangle 100
3.19 Cubic graphs up to order 18 where multiple graph reductions of the types $\psi_{\text {star }}, \psi_{\text {pinwheel }}, \psi_{\text {cycle }}$ and $\psi_{\text {cut }}$ were simultaneously applicable 102
3.20 The number of comparisons made between each pair of reduc- tions 102
3.21 The number of comparisons between reductions where one re- duction led to a graph with fewer edges than the other reduction103
3.24 Number of cubic graphs up to order 20 that are reducible by Algorithm 3.1 110
3.25 Number of Hamiltonian cubic graphs up to order 20 that are reducible by Algorithm 3.1 111
3.26 Number of graphs in NHNB20 that are reducible by Algo- rithm 3.1 111
3.27 Base Model feasibility of reducible instances of NHNB20, be- fore and after reduction 112
3.28 Base Model feasibility after reduction versus Base Model fea- sibility before reduction, for instances of NHNB20 that are partially reduced by Algorithm 3.1 113
4.1 Results of the Base Model on NHNB20 and NHNB20PR 124
4.2 Results of the Base Model on ATSP16A and ATSP16AC 124
4.3 Results of Base-SST on NHNB20 and NHNB20PR 127
4.4 Results of Base-SST on ATSP16A and ATSP16AC 128
4.5 Results of Base-SST- k on ATSP16A and ATSP16AC 130
4.7 Results of Base-SST- k-Ext on ATSP16A and ATSP16AC 138
4.8 Gaps for each of the Base Model, Base-SST, Base-SST- k and Base-SST- k-Ext on the four instances from ATSP16A for which SST outperforms the Base Model 139
4.12 Results of Base-Forced on NHNB20 and NHNB20PR 148
4.13 Results of Base-Forced on ATSP16AC 148
4.14 Results of Base-3-Cut on NHNB20 and NHNB20PR 151
4.15 Results of Base-3-Cut on ATSP16AC 152
4.16 Results of Base-Spectral on NHNB20 and NHNB20PR 159
4.17 Results of Base-Spectral on ATSP16A and ATSP16AC 160
4.19 Results of Base-Combined on NHNB20 and NHNB20PR 166
4.21 Results of Base-Combined on ATSP16A and ATSP16AC 167
4.22 A comparison of Base-Combined with the other extended mod- els on ATSP16A and ATSP16AC 168
4.23 Gaps for various models on ATSP16AC instance 31 168
4.27 Results of the Base Model and Base-Combined using the sub- graph method on NHNB20 and NHNB20PR 175
5.1 Successive results of the approach described in Section 5.1 on NHNB20 178

List of Figures

1.1 An example of a Hamiltonian cycle in the 20 vertex dodeca- hedral cubic graph 2
1.2 The first of Euler's solutions to the knight's tour problem 3
1.3 The Petersen graph and its corresponding adjacency matrix 8
2.1 Visualisation of the feasible region for a relaxed model of HCP 16
2.2 Example of subtours in a TSP instance 18
2.3 Example of a subtour elimination constraint 19
2.4 Visualisation of the feasible region after adding additional con- straints 22
2.7 The smallest instance of NHNB20 that induces infeasibility in MCF, MCF+, SST and the Base Model 34
2.8 Base Model gaps for randomly generated TSP instances 41
2.11 Plot of gaps for the Base Model against gaps for SST 45
2.12 The smallest cubic graphs having connectivity 1,2 , and 3 52
2.18 Selected examples of tough and non-tough cubic graphs 58
2.21 The smallest tough cubic graph that induces infeasibility in MCF, MCF+, SST and the Base Model 62
3.1 Trivially Hamiltonian and trivially non-Hamiltonian graphs 66
3.2 The contraction of a triangle in a graph 72
3.3 A diamond before and after its reduction with $\psi_{\text {diamond }}$ 74
3.4 A graph with known Hamiltonian edges before and after its reduction with $\psi_{\text {forced }}$ 77
3.5 A graph with a path of degree-2 vertices before and after its reduction with $\psi_{\text {path }}$ 78
3.6 A 6 -vertex graph with automorphism group of order 8 79
3.8 The Frucht graph, one of the five minimal asymmetric cubic graphs 81
3.9 Vertex and edge orbits for the graph shown in Figure 3.6 83
3.10 An example of a graph and its line graph 85
3.11 Example showing five types of edge orbits in a non-Hamiltonian cubic graph 91
3.13 Examples of incompatible edge sets 93
3.14 A graph with known redundant edges before and after its re- duction with $\psi_{\text {star }}$ 95
3.15 A graph with a known Hamiltonian edge and known redundant edges, before and after its reduction with $\psi_{\text {pinwheel }}$ 96
3.16 A graph with known redundant edges in a short cycle, before and after its reduction with $\psi_{\text {cycle }}$ 97
3.17 A graph with known redundant edges forming a minimal cut set of odd size, before and after its reduction with $\psi_{\text {cut }}$ 98
3.22 Flowchart of Algorithm 3.1 105
3.23 Flowchart of Algorithms 3.2 to 3.4 106
4.6 An example of two directed Hamiltonian cycles showing both possible vertex orderings of four vertices 131
4.9 Gaps for the Base Model, Base-SST, Base-SST- k and Base- SST- k-Ext versus the gaps for SST on ATSP16A 140
4.10 Ternary plots showing the proportion of the total reduction in gap on instances of ATSP16A that can be attributed to Base- SST, Base-SST- k and Base-SST- k-Ext relative to the Base Model 141
4.11 Visualisation of part of one feasible solution of the Base Model for a non-Hamiltonian subcubic graph 143
4.18 Modified ATSP16AC instances 288 and 352 161
4.20 NHNB20PR instance 83 166
4.24 ATSP16AC instance 16 with optimal tour identified by Base- Combined 169
4.25 Euler diagrams showing effective HCP instances 171
4.26 Euler diagrams showing effective TSP instances 172

Summary

In this thesis, we continue a recent line of research that seeks to solve the Hamiltonian cycle problem (HCP). In particular, the research is aimed at providing certificates of non-Hamiltonicity. The approaches described fall broadly into two categories. First, we can detect non-Hamiltonicity by formulating HCP as a linearly-constrained integer program, and subsequently relaxing it to a linear program (LP). Infeasibility of such an LP implies nonHamiltonicity. Second, we can attempt to identify edges or vertices that can be removed from a graph without altering its Hamiltonicity, resulting in a reduced graph which may be easier to solve. In order to test the effectiveness of our approaches, we will consider all non-Hamiltonian non-bridge cubic graphs with up to 20 vertices, the set of which we call NHNB20.

Following an introduction of the relevant background in Chapter 1, in Chapter 2 we consider several notable formulations of HCP, and compare their effectiveness on NHNB20. In Section 2.1 we introduce four LP models from literature to which we assign the names MCF, MCF+, SST, and the Base Model. In Section 2.2.2 we find that the first three of these models are similarly effective, solving 399 out of the 2099 instances of NHNB20. The Base Model is found to be somewhat more effective, solving 477 out of the 2099 instances. To achieve a finer comparison, in Section 2.2.5, we consider these four models in the context of the travelling salesman problem (TSP), a problem closely related to HCP. We introduce Algorithm 2.1, a technique for producing small but difficult instances of TSP, and use this technique to
produce two TSP problem sets which we call ATSP16A and ATSP16AC. In Section 2.2.5 we report on experiments on these TSP problem sets, which indicate that the Base Model is the strongest of the considered models on average. Based on the empirical evidence, in Section 2.2.6, we conjecture that the Base Model is stronger than MCF and MCF+, and provide a partial proof of this conjecture. Next, in Section 2.3, we consider classifications of the nonHamiltonian graphs that are not identified by these methods. Notably, in Section 2.3.2 we consider non-tough graphs, and prove that MCF, MCF+ and SST are infeasible for any non-tough graph. We conjecture that the same result holds for the Base Model. The problem sets considered in Chapter 2, and in the remainder of the thesis, are given in Appendices A and B.

In Chapter 3, we develop a framework for reducing a given graph without altering its Hamiltonicity. In Section 3.1 we consider particular subgraphs that, if present in a graph, may be replaced by a vertex. Next, in Section 3.2 we examine the effect of forced edges on a graph, and use this to identify other edges that may be removed. Then, in Section 3.3 we consider the automorphism group of a graph, and use this information about the symmetries of the graph to identify redundant edges that are not otherwise obvious. Combining these approaches, in Section 3.5 we introduce Algorithm 3.1 to search for applicable reductions and show, in Section 3.6, that the algorithm successfully reduces many of the graphs in NHNB20 to trivial instances of HCP. Of those graphs in NHNB20 not reduced to a trivial graph, a majority are at least partially reduced. We also demonstrate that the Base Model is more effective on these partially reduced graphs than on the original graphs. In addition to the pseudocode of Algorithm 3.1 given in Section 3.5, an implementation of the algorithm is presented in Appendix C.

In Chapter 4, we seek to improve upon the Base Model by augmenting it with new constraints that take advantage of particular graph features. First, in Section 4.1, we combine the Base Model with SST by expressing the latter
in the variables of the former. We then extend this model further by taking advantage of the Base Model's built-in capacity to handle different starting vertices. Next, in Sections 4.2 and 4.3, we introduce constraints based on the presence of forced edges, as well as the presence of non-trivial 3-cuts, and show that both of these are very strong constraints in graphs that contain these features. Then, in Section 4.4 we introduce constraints based on an eigenvalue of permutation matrices corresponding to Hamiltonian cycles, and demonstrate that a small improvement results. In Section 4.5 we combine all of these constraints into a single model, which we call Base-Combined. We show that Base-Combined is stronger than taking the best result of any of its constituent models. Finally, in Section 4.6 we introduce a technique, which we call the subgraph method, that uses Base-Combined on a set of subgraphs of a given graph to test necessary conditions for Hamiltonicity of the original graph. We show that this technique is often effective at detecting non-Hamiltonicity.

We conclude in Chapter 5 by considering, in turn, the application of each of the developed approaches, to the 2099 instances of NHNB20, and show that we can now provide certificates of non-Hamiltonicity for 2087 instances. This is significantly more than the 477 instances solved by the unaugmented Base Model. We note that although our focus was often limited to cubic graphs, the approaches considered are applicable to more general HCP instances. The dramatic improvements obtained inspire great hope that further investigations in this direction will constitute a successful line of research. To this end, in Sections 5.2 to 5.4 we outline the most promising future directions arising from this thesis.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Kieran Clancy

Acknowledgements

The research presented in this thesis could not have happened without the generous support of many and it is an honour for me to thank them here.

Firstly, I would like to express my gratitude to my supervisors for their patience and guidance throughout my candidature. To Prof. Jerzy Filar for bringing the Hamiltonian cycle problem to life and sharing his wealth of experience as an academic. To Dr Michael Haythorpe, or in the words of my mother, 'Saint Michael', for his encouragement, extraordinary patience, and for his sacrifice of much of his valuable time to support me throughout the writing and editing process. And to A/Prof. Murk Bottema for his timely and candid professional advice on numerous occasions.

Discussions with the other members of the Flinders Hamiltonian Cycle Project team have been invaluable, leading to many new ideas and directions that I have pursued in the course of this research. I would like to thank Prof. Jerzy Filar and A/Prof. Vladimir Ejov for starting the project, Dr Michael Haythorpe for sharing many fascinating problems and findings with the group, and Mr Serguei Rossomakhine for his comments and great sense of humour. I also wish to express my gratitude to Dr David Glynn, whose regular contributions illuminated the connections between the Hamiltonian cycle problem and other areas of mathematics. My peers in the project, Mr Pouya Baniasadi, Mr Alex Newcombe and the now graduated Dr Asghar Moeini have each made valuable comments and suggestions, and I have enjoyed discussions with them on a broad range of topics.

For assisting in the administration of my candidature, I am also grateful to A/Prof. Paul Calder, Prof. Mark Taylor, and Mrs Jennie Brand. Each of them has provided practical advice and encouragement, and assisted in resolving any administrative difficulties that arose.

I have greatly benefited from the friendly work and research environment created by my colleagues and peers in the School of Computer Science, Engineering \& Mathematics at Flinders University. The Dean, Prof. John Roddick, has been an exemplary manager and very accommodating of my candidature. The school administrative staff have always been supportive and I would particularly like to thank Megan, Rosalee, Debbie, Gina, Linda and Kelly; their assistance with topic administration has allowed me to spend more time on research. I have also been fortunate to have the prompt assistance of Jarrad, Ivan and Rino for any matters relating to computers and networks.

I am thankful to the Commonwealth of Australia and, by extension, the Australian taxpayers who have supported my research through an Australian Postgraduate Award scholarship. I have also received funding to attend a number of conferences, gaining valuable feedback on my presented research at each of them. In particular, I am grateful to the South Australian branch of ANZIAM for funding my attendance at their mini-meetings in 2013, 2014 and 2015, and to the Australian Mathematical Society for funding part of my costs to attend their 60th Annual Meeting in 2016.

Research of this nature could not occur without high performance computing resources, so I am also very appreciative of Flinders University and eResearch SA for generously providing access to their computing clusters. I also wish to thank the authors of the open source software used to perform much of my research; GNU Octave, nauty, GENREG, EATEX and its packages including TikZ, and Linux and its many userspace tools. I also appreciate IBM for providing the CPLEX Optimization Studio freely for academic use.

The community at the $T_{E X}$ StackExchange forum also deserves special mention for typesetting advice without which my thesis would look terrible.

I am deeply grateful for my students who in every semester of my candidature have kept me sane, inspired me, and helped me to find ever more passion for mathematics. When times were difficult, it was the joy I found in teaching mathematics that motivated me to press on. My thanks thus also goes to fellow lecturers Miss Bree Martin and Dr Simon Williams, with whom I alternated topics, for their encouragement and many great discussions.

There are three others I would particularly like to thank for their advice and support at crucial times. Dr Nurulla Azamov, who shared his enthusiasm for mathematics and encouraged me to do a PhD. Dr Maria Gardiner, for sharing her experience and research on academic writing at nearly a dozen workshops and, most of all, for her unwavering confidence in me to finish. Finally, Dr Timothy Trudgian of the Australian National University for his sincere encouragement and indispensable professional advice.

Tracing back my interest in mathematics that has set me on this path, there are also a number of people to whom I owe special thanks. First, the teachers in primary school who recognised my abilities, especially Ms Elaine Ahladas, and my teachers in secondary school who encouraged and inspired me to extend myself, especially Mr Kon Marussinszky. I also owe a great debt of gratitude to my year 12 mathematics teacher Mr Paul Thurlow, who saw my potential despite my missing nearly the entire year of school due to illness. Without his encouragement, I am certain that I could not have completed school and gone on to university. Next, my undergraduate lecturers, notably A/Prof. Murk Bottema, A/Prof. Alan Branford, Prof. Fedor Sukochev, Prof. Raja Huilgol, Dr Boris Blankleider and Dr Ray Booth who each helped me to see an aspect of the beauty of mathematics. Ultimately, I am grateful to God for the gift of mathematics that we might, to quote Kepler, "share in his own thoughts."

I would also like to express my heartfelt gratitude to my friends for their loyalty and encouragement to me throughout this endeavour; Nick, Hayley, Anna, Terry, Jemima, Matt M., Sally, Lochy, Pete, Matt W., Rachael, Nicole, Jake, Kelly, Jarrod, Tristan, Leah, Joel, Kristy, Luke, Yarran, Ben, Nanks, Tait, Ariane, Steve, Jess, Brendan, Gary, Kate, David S., Jonno, and many others, all of whose individual contributions would require another book just to list. I have also had the great blessing to know, both as mentors and friends, David K., Andrew and Liz, David and Cathy W., and Bruce.

Finally, I want to convey my deepest appreciation to my family for their incredible support. My parents Gina and David have never ceased in their love. They have provided a warm home and warm food, nurtured my gifts, encouraged me during difficulties, and celebrated with me in my triumphs. Throughout my studies I have also had the steadfast encouragement of my sisters Jess, Michelle, and Danielle, my brothers-in-law Dan, Lachlan, and Ben, my nieces and nephews, and my extended family. My grandmothers Mary and Kath deserve a special mention for their faithful prayers and regular reassurance.

Glossary of terms

The following notations are commonly used in this thesis.
$G=(V, E) \quad$ A simple graph with vertices V and edges E
$n \quad$ The number of vertices $|V|$ of a graph G
$G_{n}^{k} \quad$ The cubic graph on n vertices with GENREG ID k
$C_{n} \quad$ The cycle graph with n vertices
$K_{n} \quad$ The complete graph with n vertices
$P_{r} \quad$ The path graph with r edges
$S_{r} \quad$ The star graph with r edges
$\Gamma(G) \quad$ The automorphism group of a graph G
$L(G) \quad$ The line graph of G
$N(i) \quad$ The set of vertices adjacent to $i \in V$
$\operatorname{deg}(i) \quad$ The degree of a vertex $i \in V$
$u v \quad$ The edge with endpoints u and v in V
$u \rightarrow v \quad$ The arc from u to v, using the edge $u v$
$x_{1} \neq \cdots \neq x_{k} \quad x_{i} \neq x_{j}$ for all $i \neq j$ in $1, \ldots, k$
$\mathcal{O}(f(n)) \quad$ A function bounded from above by a constant positive multiple of $f(n)$ for all $n>n_{0}$ for some n_{0}
$G_{S} \quad$ The subgraph of G induced by the vertices S if $S \subseteq V$, or by the edges S if $S \subseteq E$

The following acronyms are commonly used in this thesis.

ATSP Asymmetric travelling salesman problem
DFJ Dantzig, Fulkerson and Johnson formulation/model
HC Hamiltonian cycle
HCP Hamiltonian cycle problem
LP Linear program
MCF Multi-commodity flow formulation/model
MCF + Multi-commodity flow, improved formulation/model
NH Non-Hamiltonian
NHNB Non-Hamiltonian non-bridge
NP Nondeterministic polynomial time
SAT Boolean satisfiability problem
SST Sherali, Sarin and Tsai ATSP6 formulation/model
TSP Traveling salesman problem

Archive of problem sets and

algorithms

An archive of the most commonly considered problem sets in this thesis, and of a GNU Octave / MATLAB implementation of the graph reduction algorithm Algorithm 3.1, is available for download on the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website:
http://fhcp.edu.au.
The two archives are as follows.
(i) GraphReduction.zip contains the GNU Octave / MATLAB implementation of GraphReduction (Algorithm 3.1), as well as the subalgorithms Algorithms 3.2 to 3.4.
(ii) ProblemSets.zip contains each instance of the following problem sets.

- NHNB20, introduced in Section 2.2.2.
- NHNB2OPR , introduced in Section 3.6.
- ATSP16A and ATSP16AC, introduced in Section 2.2.4.

README files with further details may be found in the archives. The implementation of the graph reduction algorithm as well as an index of the above problem sets may also be found in Appendices A to C.

Chapter 1

Introduction and background

1.1 Hamiltonian cycle problem

The Hamiltonian cycle problem (HCP) is a famous problem in graph theory that has the following, deceptively simple, definition.

Definition 1.1 (Hamiltonian cycle problem). Given a graph $G=(V, E)$, determine whether any cycle of length $|V|$ exists in G.

Such cycles of length $|V|$ are known as Hamiltonian cycles. HCP could thus more succinctly be defined as determining whether a given graph contains a Hamiltonian cycle.

The concept of a Hamiltonian cycle was formalised independently by two authors. While the concept was named after Sir William Rowan Hamilton who posed a single instance of the problem in 1856, in fact it was Kirkman who had written a more general paper on the matter a year prior in 1855 [6]. Unfortunately, this and many of Kirkman's other results were not recognised until much later. Credit is due to Hamilton, however, for having popularised HCP with a board game based on the planar embedding of the dodecahedron, the graph of which is displayed in Figure 1.1 [7].

Figure 1.1: An example of a Hamiltonian cycle in the 20 vertex dodecahedral cubic graph.

Although the Hamiltonian cycle problem was not formally defined until the nineteenth century, particular instances of HCP, albeit by other names, had been considered in other contexts for centuries. The most notable of these instances is the problem of finding knight's tours on square chessboards. This centuries-old problem involves finding a way for a knight to start on one square of a vacant 8×8 chessboard and visit each of the squares exactly once before returning to the start location, using only valid "L-shaped" moves (1 square in one direction and 2 squares in a perpendicular direction). Euler was fascinated by the problem and in 1766 published several solutions [25], the first of which is shown in Figure 1.2. Solutions to the knight's tour problem correspond directly to Hamiltonian cycles where each square of the chessboard is considered to be a vertex of a graph.

For the most part, however, HCP did not begin to be widely explored until its close relationship with other problems became apparent. In particular, there has been renewed interest in HCP due to its importance in complexity theory. A key set of problems in complexity theory is the set of decision problems, which is the set of all problems having a YES or NO answer. Indeed, HCP is a decision problem; the answers can be that YES, the graph contains

Figure 1.2: The first of Euler's solutions to the knight's tour problem [25].
at least one Hamiltonian cycle, or NO, it does not. A special class of decision problems is the set of $N P$ problems defined as follows.

Definition 1.2 (NP problems). A decision problem is said to be in the set of nondeterministic polynomial time (NP) problems if for any instance that has the answer YES, it is possible to provide a proof of that answer that can be verified in polynomial time. We call any such proof a certificate of that YES answer.

In the case of HCP, a certificate of the answer YES typically takes the form of a discovered Hamiltonian cycle, which can be verified to exist in the given graph in linear time. Note that the definition of NP does not require instances with a NO answer to have any certificate. It is for this very reason that the problem of providing certificates of NO answers for NP problems is a fascinating area of research. For HCP, one approach for providing such a certificate is to establish that a necessary condition for Hamiltonicity is violated by the instance, where this violation can be established by some algorithm that terminates in polynomial time. This thesis considers a number of such necessary conditions and polynomial time algorithms.

We say that an algorithm has time complexity $\mathcal{O}(f(n))$ if, for an input of size n, the algorithm is guaranteed to terminate within $\mathcal{O}(f(n))$ time steps of some fixed duration. Notably, an algorithm is said to be polynomial-time if it has a time complexity of $\mathcal{O}\left(n^{c}\right)$ for some constant c.

In a seminal paper in 1971, Cook [18] proved that any instance of any problem from NP can be converted to an instance of boolean satisfiability (SAT) with only polynomial growth in the size of the instance, implying that, in general, SAT is at least as difficult to solve as any problem from NP. Then, in 1972, Karp [46] investigated a set of twenty NP problems, including HCP, to which SAT can be converted, implying that each of these problems must be at least as difficult as SAT. However, since Cook's result implies that SAT is at least as difficult as any of those problems, the problems considered by Karp are therefore equally difficult in a complexity sense. Problems of this type are called NP-complete and are, by definition, the most difficult problems in NP. For more on this fascinating topic, the interested reader is referred to the seminal book by Garey and Johnson [30].

One of the most important open problems in mathematics and computer science is the so-called P vs $N P$ problem, which is now famous as one of the Clay Institute Millennium Prize problems [13]. The P vs NP problem asks whether P , the set of decision problems that can be solved in polynomial time, is equal to NP, the set of decision problems for which a certificate exists for every Yes answer. Since every NP problem is at most as difficult as a problem in NP-complete, then if a polynomial time algorithm were found to solve any one problem from NP-complete, such as HCP, it would imply the existence of polynomial time algorithms to solve every other problem in NP. It is perhaps this prospect that has prompted much of the research on HCP in recent years. For more history on the P vs NP problem, refer to Cook [17].

In addition to being famous as one of the first discovered NP-complete problems, HCP is also well-known for its close relationship with the travelling
salesman problem (TSP). In this problem, a salesman must visit n cities using roads of given distance between pairs of cities, by starting at one city and visiting every other city exactly once before returning, such that the total distance travelled is minimised. The observant reader will notice that HCP is embedded in this problem since a valid travel itinerary necessarily constitutes a Hamiltonian cycle. Formally, the travelling salesman problem can be defined as follows.

Definition 1.3 (Travelling salesman problem). Given a graph $G=(V, E)$ and an associated cost $c_{i j}$ for each arc $i \rightarrow j$ with $i, j \in V$, find a Hamiltonian cycle or tour, if one exists, such that the sum of the costs on the arcs used, called the tour cost, is minimised. If $c_{i j}=c_{j i}$ for all i and j, then the instance is said to be symmetric, otherwise the instance is said to be asymmetric. The latter is sometimes distinguished by the abbreviation ATSP.

The travelling salesman problem is a member of the NP-hard set of problems, which is the set of problems that are at least as difficult as any problem in NP. Note that although TSP as defined in Definition 1.3 is not a decision problem, there is a decision variant in which the question is whether any Hamiltonian cycles exist that have a tour cost below a given threshold.

There is a myriad of different approaches for solving HCP and TSP. For HCP, these include fast heuristics [2], as well as exhaustive algorithms that find every Hamiltonian cycle in a graph [14]. For HCP and TSP restricted to graphs of certain types there are more efficient algorithms such as [23, 43, 75]. Finally, for TSP in general, there are various approaches, including simulated annealing [49], edge-exchange heuristics [52, 37], and approaches based on relaxations of integer programming formulations [1, 19]. Much of this thesis is focused on linear programming relaxations of integer programming formulations for HCP and TSP. A further discussion of this topic is included in Section 1.3. For more information about the TSP in general, the reader is referred to [50].

The heuristics for solving HCP are often quick to find a Hamiltonian cycle in a Hamiltonian graph, and this Hamiltonian cycle constitutes a certificate that can be efficiently verified. However, for non-Hamiltonian graphs, these algorithms are not able to provide any evidence of that non-Hamiltonicity other than their failure to find a Hamiltonian cycle in a reasonable time. In this thesis, we seek to continue a relatively new line of research, initiated in Haythorpe [36] and continued in Eshragh [24] and Filar et al. [28], aimed at providing certificates of non-Hamiltonicity.

1.2 Graph theory

As this thesis is primarily concerned with the investigation of graphs, we now include a brief introduction of some relevant concepts from graph theory.

Definition 1.4 (Graph). A graph $G=(V, E)$ is defined as a finite set V, called the vertices of G, and a set E, called the edges of G, where each edge $u v \in E$ is an unordered pair of distinct vertices $u, v \in V$. Two vertices $u, v \in V$ are said to be adjacent if the edge $u v \in E$. An edge $u v \in E$ is said to be incident to the endpoint vertices u and v. Also, two distinct edges $u v, w x \in E$ are said to be adjacent if both are incident to a common vertex.

More general definitions of graphs do exist, for example permitting directed edges (directed graphs) or multiple edges between the same pair of vertices (multigraphs). However, in this thesis we restrict our consideration to simple, undirected graphs with finitely many vertices. A graph is said to be simple if it contains no loops and no multi-edges; that is, $v v \notin E$ for any v, and E is not a multiset. A graph is said to be undirected if its edges are unordered pairs of vertices; that is, $u v$ and $v u$ are considered to be the same edge for any u and v. As given, Definition 1.4 already excludes these possibilities, but we provide this clarification for readers familiar with a more general definition of graphs. Further, unless otherwise stated, all graphs considered in this thesis are connected; that is, every pair of vertices in G has
some path of edges in E between them.
We refer to the number of vertices $|V|$ of a graph $G=(V, E)$ as the order of G and, where no confusion is possible, denote this simply by n. Although we only consider undirected graphs, in the context of Hamiltonian cycles it is often necessary to consider an edge $u v$ of a graph used in some particular direction; such an ordered pair of vertices is called an arc. If u precedes v we denote the arc by $u \rightarrow v$, otherwise, by $v \rightarrow u$.

Since we are primarily interested in graphs from the perspective of HCP, we will mostly consider graphs with relatively few edges. Indeed, graphs with many edges are usually trivial instances of HCP. It is therefore desirable to consider sparse graphs. Technically speaking, it is difficult to define whether a given graph is sparse on its own. Rather, a graph must be considered in the context of a family of graphs to which it belongs. One definition is that a graph is sparse if it is contained in a family of graphs satisfying the property that the number of edges is bounded from above by some constant multiple of the number of vertices.

One method of describing a graph is via its adjacency matrix, which for a graph $G=(V, E)$ with vertices $V=\{1, \ldots, n\}$ is an $n \times n$ matrix containing a 1 in row i and column j if $i j \in E$, and 0 otherwise. Figure 1.3 shows an example of the adjacency matrix of the Petersen graph, a non-Hamiltonian graph famous as a counterexample to many conjectures [40].

We now define some common graph theoretic terms and concepts that will be important throughout this thesis. More specialised concepts will be introduced in later chapters as they arise. For a more detailed introduction to graph theory, the reader is directed to Bondy and Murty [9].

Definition 1.5 (Degree). Given a graph $G=(V, E)$, the degree of a vertex $v \in V$, denoted by $\operatorname{deg}(v)$, is defined as the number of vertices adjacent to v.

Definition 1.6 (k-regular graph). A graph $G=(V, E)$ is said to be k-regular if every vertex in V has degree k.

$$
A=\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Figure 1.3: The Petersen graph and its corresponding adjacency matrix.

Definition 1.7 (Cubic and subcubic graphs). A graph $G=(V, E)$ is said to be cubic if it is 3-regular. G is said to be subcubic if no vertex in V has degree greater than 3.

Definition 1.8 (Bipartite graph). A graph $G=(V, E)$ is said to be bipartite if there is a partition of V into two subsets V_{1} and V_{2} such that every edge $e \in E$ is incident to exactly one vertex in V_{1} and one vertex in V_{2}.

Definition 1.9 (Subgraph). A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is said to be a subgraph of a graph $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

Definition 1.10 (Vertex-induced subgraph). For any graph $G=(V, E)$, and a subset $U \subseteq V$ of its vertices, the subgraph of G induced by U is the graph $G_{U}=\left(U, E^{\prime}\right)$, where $E^{\prime}=\{u v \in E \mid u, v \in U\}$. That is, $G_{U}=\left(U, E^{\prime}\right)$ is the subgraph of G containing only vertices U and any edges that are incident only to vertices in U. The subgraph G_{U} is called a vertex-induced subgraph.

Definition 1.11 (Edge-induced subgraph). For any graph $G=(V, E)$, and a subset $D \subseteq E$ of its edges, the subgraph of G induced by D is the graph $G_{D}=\left(V^{\prime}, D\right)$, where $V^{\prime}=\{v \in V \mid \exists u \in V$ such that $u v \in D\}$. That is, $G_{D}=\left(V^{\prime}, D\right)$ is the subgraph of G containing only edges D and the vertices to which those edges are incident. The subgraph G_{D} is called an edge-induced subgraph.

Where no confusion is possible, we will use the term induced subgraph to refer to either a vertex-induced subgraph or edge-induced subgraph as the context dictates.

Definition 1.12 (Connected component). Given a graph $G=(V, E)$, a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of G is said to be a connected component of G if H is connected, H is the subgraph of G induced by the vertices V^{\prime}, and no edge in E is incident to both a vertex in V^{\prime} and a vertex not in V^{\prime}.

Definition 1.13 (k-connected graph). A graph $G=(V, E)$ with at least $k+1$ vertices is said to be k-connected if it cannot be disconnected by the removal of $k-1$ vertices. In other words, at least k vertices must be removed to disconnect the graph or to obtain a 1-vertex graph.

Definition 1.14 (k-edge-connected graph). A graph $G=(V, E)$ with at least $k+1$ vertices is said to be k-edge-connected if it cannot be disconnected by the removal of $k-1$ edges. In other words, at least k edges must be removed to disconnect the graph.

Definition 1.15 (k-cut). Given a graph $G=(V, E)$, we define a k-cut (also known as a disconnecting set of size k) to be a subset of k edges from E whose removal disconnects the graph. A k-cut is said to be minimal if the removal of no proper subset of the edges in the k-cut leaves the graph disconnected.

Definition 1.16 (Bridge graph). A graph $G=(V, E)$ is called a bridge graph if it contains at least one minimal 1-cut.

Definition 1.17 (Path). A path of length k in a graph $G=(V, E)$ is an ordered subset of sequentially adjacent edges $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}\right\} \subseteq E$ such that the vertices v_{1}, \ldots, v_{k+1} are all distinct.

Definition 1.18 (Cycle). A cycle of length $k \geq 3$ in a graph $G=(V, E)$ is a path of length $k-1$ with an additional edge that closes the path in G. That is, a cycle is a path $\left\{v_{1} v_{2}, \ldots, v_{k-1} v_{k}\right\} \subset E$ with the additional edge $v_{k} v_{1} \in E$.

Similarly to individual edges, which we sometimes consider as arcs in a particular direction, there are occasions where we must also consider paths or cycles in a directed sense. That is, we may consider a path or cycle as a sequence of arcs end-to-end $v_{1} \rightarrow v_{2}, v_{2} \rightarrow v_{3}, \ldots$, which we abbreviate by $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow \cdots$.

Definition 1.19 (Hamiltonian path). A Hamiltonian path in a graph $G=$ (V, E) is a path of length $|V|-1$; that is, a path that traverses all vertices of V.

Definition 1.20 (Hamiltonian cycle). A Hamiltonian cycle (HC) in a graph $G=(V, E)$ is a cycle of length $|V|$; that is, a cycle that traverses all vertices of V.

Definition 1.21 (Graph isomorphism). Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ $\left(V_{2}, E_{2}\right)$ are said to be isomorphic if there exists a one-to-one mapping φ : $V_{1} \rightarrow V_{2}$ such that for any $u, v \in V_{1}, u v \in E_{1}$ if and only if $\varphi(u) \varphi(v) \in E_{2}$. To consider a set of graphs up to isomorphism is to consider all pairwise isomorphic graphs in the set as the same element.

We now define some common graph families used in this thesis.
Definition 1.22 (Complete graph K_{n}). The complete graph K_{n} is the n vertex graph in which any two distinct vertices are adjacent.

Definition 1.23 (Path graph P_{r}). A path graph $P_{r}=(V, E)$ is a graph comprising just the vertices and edges to trace out a path of length r. In P_{r}, $|V|=r+1$ and $|E|=r$.

Definition 1.24 (Cycle graph C_{n}). A cycle graph $C_{n}=(V, E)$ is a graph comprising just the vertices and edges to form a cycle of length n. In C_{n}, $|V|=|E|=n$.

Definition 1.25 (Star graph S_{r}). A star graph $S_{r}=(V, E)$ is a graph comprising just a central vertex $v \in V$ and r degree-1 vertices each of which is adjacent to v. In $S_{r},|V|=r+1$ and $|E|=r$.

1.2.1 Hamiltonian cycle problem for cubic graphs

If it were necessary to consider all simple connected graphs for HCP, the task would be unmanageable if only due to the astronomical number of possible graphs for a given order n. For example, there are on the order of 10^{7} unique simple connected graphs with 10 vertices, 10^{38} with 20 vertices and 10^{98} with 30 vertices [67]. It is a natural question, then, to ask whether we can consider a subset of the problem space for which HCP remains NP-complete.

Fortunately, there are indeed several considerably smaller subsets of simple connected graphs to which HCP may be restricted while retaining NPcompleteness. The first paper to show this was by Garey et al. [31] in 1976; they showed that the problem space may be restricted to graphs that are planar, cubic, and 3-connected, with HCP still being NP-complete on this subspace. Since the intersection of these three subsets of simple graphs provides an NP-complete problem space, it follows that HCP restricted just to any one of those individual sets is also NP-complete. Following Garey et al.'s result, many other subsets of the problem space have been found to fulfill this condition, including planar, cubic, 2-connected, bipartite graphs; cubic, 3-connected, bipartite graphs; maximal planar graphs; and 4-connected, 4regular graphs, as summarised in [38]. Perhaps the most practical subset of these is the set of cubic graphs, which can be identified and enumerated efficiently and have fascinating structural properties. There are also far fewer of them for a given number of vertices n than planar graphs or 3-connected graphs with the same number of vertices, making them ideal for use in computation. Furthermore, it was shown recently that any non-cubic graph can be converted to an equivalent cubic instance of HCP with only linear growth in the order of the problem [22].

Cubic graphs have also been the subject of a number of conjectures, such as the disproved conjectures by Tait [68] and Tutte [69], as well as Bar-
nette's conjecture [3] that every 3-connected, planar, bipartite cubic graph is Hamiltonian, which remains open. There are numerous extremely efficient algorithms for enumerating all cubic graphs satisfying certain properties, such as GENREG [56], Plantri [10], and Snarkhunter [11]. Throughout this thesis, it will often be convenient to refer to particular cubic graphs by the ID number given to them by GENREG. In such a case we will refer to a cubic graph with n vertices and ID k as G_{n}^{k}.

In 1992, Robinson and Wormald [64] proved that almost all cubic graphs are Hamiltonian. Later, Filar et al. [27] conjectured that, of the remaining, non-Hamiltonian, cubic graphs, almost all are bridge graphs, and as such can be identified as non-Hamiltonian in linear time. However, there are difficult and interesting examples of non-Hamiltonian cubic graphs. Snarks, which are cubic graphs that are not 3-edge-colourable [62], are perhaps the most well-known of these. The smallest snark is the Petersen graph displayed in Figure 1.3, which was proved to be a minor of every snark [58].

There is a variety of research into HCP restricted to cubic graphs. Currently, one of the state-of-the-art algorithms for solving HCP and TSP on cubic instances, due to Xiao and Nagamochi [75], can solve HCP on cubic graphs in $\mathcal{O}\left(1.2312^{n}\right)$ time. This is significantly better than brute-forcing combinations of vertices, requiring $\mathcal{O}(n!)$ time, and still better than a depthfirst search of paths in the graph, requiring $\mathcal{O}\left(2^{n}\right)$ time.

1.3 Linear programming relaxations

One approach to solving HCP or TSP is to formulate the problem as an integer program such that the set of feasible solutions and the set of Hamiltonian cycles is in one-to-one correspondence. Note that if the graph under consideration does not contain any Hamiltonian cycle, then such an integer program will be infeasible. Unfortunately, integer programming is NP-hard,
and as such, difficult to solve. A common technique, then, is to relax the integer requirement to obtain a linear program (LP). Linear programming is a powerful platform for solving many problems and has polynomial-time implementations [48, 45]. The continuation of research into linear programs for HCP and TSP is a key component of this thesis.

Definition 1.26 (Linear program). A linear program consists of a set of variables and a set of linear constraints on those variables, which may be equalities or inequalities. A linear program typically also has a linear objective function to be optimised. For example, suppose there are n variables $x_{1}, x_{2}, \ldots, x_{n}$ for which we have an objective function

$$
\text { Minimise } \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

and which are subject to l inequality constraints and m equality constraints:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{l 1} x_{1}+a_{l 2} x_{2}+\cdots+a_{l n} x_{n} \leq b_{l} \\
& a_{(l+1) 1} x_{1}+a_{(l+1) 2} x_{2}+\cdots+a_{(l+1) n} x_{n}=b_{l+1} \\
& a_{(l+2) 1} x_{1}+a_{(l+2) 2} x_{2}+\cdots+a_{(l+2) n} x_{n}=b_{l+2} \\
& \vdots \\
& a_{(l+m) 1} x_{1}+a_{(l+m) 2} x_{2}+\cdots+a_{(l+m) n} x_{n}=b_{l+m} .
\end{aligned}
$$

If the system of constraints is inconsistent, that is, if there are no feasible solutions, then the linear program is said to be infeasible. Otherwise, the LP is said to be feasible, and any solution that minimises the objective function is called optimal.

Definition 1.27 (Integer program). A linearly-constrained integer program, or simply integer program, is an extension of a linear program in which some or all of the variables are required to take integer values.

As mentioned earlier, linear programs can arise from relaxing linearlyconstrained integer programs by simply replacing the integer requirements with appropriate bounds. For example, if a variable is constrained in the integer program to be 0 or 1 , the appropriate relaxation is for it to lie on the interval $[0,1]$. In such a case, the optimal solution to the relaxed program, provided that one exists, cannot have a higher objective function value than that of the integer program. For this reason, the optimal objective function value for the LP in such a case is called a lower bound. The following definition will be used as one of the primary measures of effectiveness throughout this thesis.

Definition 1.28 (Gap). For an integer programming formulation, and its associated linear programming relaxation, the gap is defined to be the difference between the lower bound from the linear program and the optimal objective value for the integer program.

If a linear programming relaxation of an integer program has a relatively small gap, then it implies that the relaxation is relatively tight. Throughout this thesis we compare several such relaxations by considering the gaps over a number of instances of TSP. In the case where an integer programming formulation has no feasible solutions, the linear programming relaxation may or may not be infeasible. If the linear program has polynomially many variables and constraints and is infeasible, then this constitutes a polynomial-time certificate that the corresponding integer program has no solution.

Chapter 2

Identifying non-Hamiltonian graphs by linear programming

In this chapter we consider linear programming formulations of TSP and HCP from literature. Three of the considered models, MCF [16], MCF + [34] and SST [66], were designed to solve the traveling salesman problem (TSP), while the most recent model considered, the Base Model [28], was designed specifically to solve HCP. These four models along with another, equivalent to MCF, will be detailed in Section 2.1.

Each of the aforementioned models, when expressed as integer programs, are exact formulations of HCP and TSP in the sense that the set of each model's feasible points corresponds exactly to the set of Hamiltonian cycles. However, their linear relaxations, which we consider here, may permit feasible solutions outside the convex hull of solutions corresponding to Hamiltonian cycles. Ideally, the feasible region of a relaxed model should be as close an approximation as possible to the convex hull of integer solutions, which in this case correspond to Hamiltonian cycles. Figure 2.1 provides a visualisation of this concept.

In Section 2.2 we compare the performance of the four linear programming models. For comparisons of the models on HCP instances, we first modify the

Figure 2.1: A two-dimensional visualisation of the feasible region of a relaxed model for HCP. The desired solutions will be at one of the blue vertices corresponding to Hamiltonian cycles. The light-blue shaded convex hull of these blue vertices represents the feasible region of a theoretical set of ideal linear constraints. Red lines represent the (non-ideal) constraints of the relaxed model.
three TSP models in Section 2.2.1 so that they may be applied directly to noncomplete graphs, with infeasibility implying the graph is non-Hamiltonian. We show in Section 2.2.2 that considering only the feasibility of the generated linear programs does not provide a very precise comparison of the models.

To obtain a finer comparison of the models, we seek to also compare the models in a TSP context. To this end, in Section 2.2 .3 we augment the Base Model with an appropriate objective function so that it can be used to find lower bounds for TSP instances. Then, in Section 2.2.4, we introduce a new technique for producing instances of TSP based on cubic instances of HCP, and construct two problem sets that will be valuable for comparing models throughout the thesis. Results on these problem sets, presented in Section 2.2.5, will lead naturally to a conjecture in Section 2.2.6 that the Base Model is stronger than both MCF and MCF+. We give a partial proof of this conjecture. It will also be seen that, although the Base Model performs better than SST in the average case, there are some instances for which SST outperforms the Base Model.

In Section 2.3 we will consider the classifications of graphs whose nonHamiltonicity cannot be identified by this approach and summarise our findings. The results of this section suggest that the considered models are always infeasible for non-tough graphs, which is proved for MCF, MCF + and SST, and stated as a conjecture for the Base Model.

Finally, in Section 2.4, we outline the approaches we will take in the following chapters to improve upon the detection of non-Hamiltonian graphs currently offered by the Base Model.

2.1 Existing models to solve TSP and HCP

2.1.1 Subtour elimination model and MCF

Some of the earliest models that could be used to solve HCP were based on formulations of the traveling salesman problem (TSP, Definition 1.3).

In a seminal article in 1954, Dantzig et al. formulated TSP as an assignment problem with $\mathcal{O}\left(2^{n}\right)$ linear constraints designed to eliminate subtours [19]. A subtour is where a path prematurely returns to a previously visited vertex rather than completing a cycle of all n vertices in the graph. Figure 2.2 shows an example of two candidate solutions to a TSP instance; the left candidate has a total cost of just 6 but contains subtours, whereas the candidate on the right has a total cost of 8 and is the correct solution. Dantzig et al.'s formulation of TSP may be expressed as:

Definition 2.1 (Dantzig, Fulkerson and Johnson (DFJ) formulation [19]). Given a graph with vertices $1, \ldots, n$ and a cost $c_{i j}$ of using each arc $i \rightarrow j$ for $i, j \in\{1, \ldots, n\}$,
minimise $\quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}$,

$$
\begin{array}{llr}
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \tag{2.1}\\
\sum_{i \in S} \sum_{j \notin S}\left(x_{i j}+x_{j i}\right) \geq 2 & \forall S \subset V, 0<|S|<n \\
x_{i j} \in\{0,1\} & \forall i, j=1, \ldots, n .
\end{array}
$$

3

Figure 2.2: An invalid and a valid candidate solution to the same TSP instance. Costs are shown on the edges, and edges used in the path are highlighted in blue.

In the DFJ formulation, $x_{i j}$ is 1 if the arc $i \rightarrow j$ is used in the Hamiltonian cycle, and 0 otherwise. For a binary solution, the LHS of (2.3) counts the number of edges in the cycle connecting a subset S to the rest of the graph. In particular, the $x_{i j}$ terms in the equation count the number of arcs leaving the subset, and the $x_{j i}$ terms count the number of arcs entering the subset. If the solution contains a subtour comprising just the vertices of S, there will not be any arc leaving S and the LHS will be less than 2 , violating (2.3). As this constraint is present for every proper subset S, it follows that all subtours are prevented. Figure 2.3 shows an example of a subtour elimination constraint that would prevent the subtour seen in the left side of Figure 2.2. Note that (2.3) may be replaced with constraints counting only the arcs in one direction (for instance, those leaving the subset), so the DFJ constraints are often reported using (2.5) below rather than (2.3):

$$
\begin{equation*}
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq 1 \quad \forall S \subset V, 0<|S|<n . \tag{2.5}
\end{equation*}
$$

Figure 2.3: Example of a DFJ subtour elimination constraint (2.3) for a graph with vertices and a subset S as labelled. Edges with exactly one endpoint in S are shown in solid black, with other edges of the graph dashed.

Since solving a general integer programming problem, such as the DFJ integer program, is NP-hard, the binary condition (2.4) is typically relaxed so that $x_{i j} \in[0,1]$ for all $i, j \in\{1, \ldots, n\}$. The relaxed version of DFJ is a linear program, and as mentioned in Section 1.3, linear programs can be solved in polynomial time. The downside of relaxing (2.4) is that this may introduce new extreme points (with fractional values) that do not correspond to proper solutions of TSP. Therefore, the relaxed version of DFJ is no longer an exact formulation and will hereafter be referred to as the DFJ model. After relaxation, we may think of the $x_{i j}$ variables as being elements of a doubly-stochastic matrix due to (2.1) and (2.2). Then, the well-known Birkhoff-von Neuman Theorem [8] implies that the solution will always correspond to a convex combination of permutation matrices, of which some may, unfortunately, represent subtours.

Even after relaxing the $x_{i j}$ variables, the main barrier to using the DFJ model is that (2.3) comprises an exponential number of constraints; if there are n vertices in the graph, then there are $2^{n}-2$ non-empty proper subsets S. This precludes the DFJ model from being used to provide (polynomial
time) certificates of non-Hamiltonicity. For use in practice, Dantzig et al. introduced a heuristic approach in which the model is first solved without any subtour elimination constraints. Then, if a binary solution corresponding to a tour is obtained, that tour is optimal. Otherwise, they identify some subtour elimination constraints that the solution violates, add them to the model, and solve again, iterating until the optimal tour is found.

Many years after the introduction of DFJ, Wong [71] developed an alternative construction of the same subtour elimination model that makes use of some extra variables but has only polynomially many, $\mathcal{O}\left(n^{3}\right)$, constraints. Claus [16] later developed another DFJ-equivalent construction along the same approach but using fewer variables and constraints, though still $\mathcal{O}\left(n^{3}\right)$; a version of this model is given below as the multi-commodity flow (MCF) model, where $V=\{1, \ldots, n\}$ and $V^{*}=\{2, \ldots, n\}$. The equivalence to DFJ was proved by Padberg and Sung [60].

Definition 2.2 (Multi-commodity flow (MCF) model [16]).

$$
\begin{array}{llr}
\text { Minimise } & \sum_{i \in V} \sum_{j \in V} c_{i j} x_{i j}, & \\
\text { subject to } & \sum_{j \in V} x_{i j}=1 & \forall i \in V \\
& \sum_{i \in V} x_{i j}=1 & \forall j \in V \\
& \sum_{j \in V} y_{i j k}-\sum_{j \in V} y_{j i k}=0 & \forall i, k \in V^{*} ; i \neq k \\
& \sum_{i \in V} y_{i k k}=1 & \forall k \in V^{*} \\
& \sum_{i \in V^{*}} y_{1 i k}=1 & \forall k \in V^{*} \\
& \sum_{i \in V} y_{k i k}=0 & \forall k \in V^{*} \\
0 \leq y_{i j k} \leq x_{i j} & \forall i, j \in V ; k \in V^{*} \\
0 \leq x_{i j} \leq 1 & \forall i, j \in V . \tag{2.14}
\end{array}
$$

The $x_{i j}$ variables here have precisely the same interpretation as in DFJ, while the $y_{i j k}$ variables can be thought of as tracking the location of a number of packages (or commodities) to be delivered as the Hamiltonian cycle is traversed. Specifically, there are $n-1$ packages to be delivered, one to every vertex except the first vertex, which is considered to be the depot from which the commodities are dispatched. Then, $y_{i j k}$ is intended to be 1 only if both the arc $i \rightarrow j$ is used in the cycle and the package destined for vertex k is yet to be delivered after leaving vertex i; otherwise, $y_{i j k}$ is intended to be zero. As the model does not restrict $y_{i j k}$ variables to integer values, it is possible to obtain extreme points with fractional values as in the relaxed DFJ model. MCF and three other models will be compared empirically in Section 2.2.

2.1.2 Tightened multi-commodity flow model

Since the relaxed subtour-elimination models such as DFJ and MCF have extreme points that do not correspond to Hamiltonian cycles, there are many potential improvements to be made through the addition of new linear constraints (see Figure 2.4 for a visualisation). If one can design additional constraints to exclude some of the unwanted points lying outside the convex hull of Hamiltonian cycles, the model will be tighter, often reducing the difference between the solution to the LP and the desired integer solution.

One such improvement to the MCF model was introduced as MCF + by Gouveia and Pires [34] in 2001. Their approach was to take advantage of a third set of variables, $v_{i j}$, intended such that $v_{i j}$ will be 1 if vertex j comes later than vertex i in the Hamiltonian cycle, and 0 otherwise. By adding these variables and some linking constraints to MCF, the resulting MCF+ can be shown to be a tighter model. Gouveia and Pires changed the notation slightly by replacing the $y_{i j k}$ variables in MCF with equivalent variables $f_{k i j}$. The variables $f_{k i j}$ are intended to be 1 only if both the arc $i \rightarrow j$ is used in the cycle, starting at vertex 1 , and the package destined for vertex k has been

Figure 2.4: A visualisation of the feasible region from Figure 2.1 after adding additional linear constraints to obtain a tighter LP. The additional constraints are represented by a dashed line. The blue vertices corresponding to Hamiltonian cycles are all still contained in the feasible region.
delivered prior to reaching vertex j. Therefore, the linear relation between $f_{k i j}$ and the $y_{i j k}$ variables of MCF is given by

$$
y_{i j k}=x_{i j}-f_{k i j} .
$$

Substituting this change of variable into (2.9) - (2.13) and using (2.7), (2.8) and (2.13) for simplification, we arrive at equivalent constraints, to those of MCF, in terms of the new variables:

$$
\begin{array}{lr}
\sum_{j \in V} f_{k j i}-\sum_{j \in V} f_{k i j}=0 & \forall i, k \in V^{*} ; i \neq k \\
\sum_{i \in V} f_{k i k}=0 & \forall k \in V^{*} \\
\sum_{i \in V^{*}} f_{k 1 i}=0 & \forall k \in V^{*} \\
\sum_{i \in V} f_{k k i}=1 & \forall k \in V^{*} \\
0 \leq f_{k i j} \leq x_{i j} & \forall i, j \in V ; k \in V^{*} .
\end{array}
$$

The extra $v_{i j}$ variables are then added to the model and linked with the $f_{k i j}$
variables through the following constraints:

$$
\begin{array}{lr}
\sum_{j \in V} f_{k i j}=v_{k i} & \forall i, k \in V^{*} \\
x_{i j}+x_{j i}+v_{k i}-v_{k j} \leq 1 & \forall i, j, k \in V^{*} ; k \neq i, j \\
0 \leq v_{i j} \leq 1 & \forall i, j \in V^{*} . \tag{2.22}
\end{array}
$$

We remark that the $v_{i j}$ variables are more of a notational convenience, as they may be expressed as linear combinations of the $f_{k i j}$ variables via (2.20).

Definition 2.3 (MCF+ model [34]). Minimise the objective function (2.6) subject to $(2.7),(2.8)$ and (2.14) - (2.22).

The key addition in MCF + are the $\mathcal{O}\left(n^{3}\right)$ constraints of (2.21) which may be interpreted in the following way: Considering the case where the x variables are integers, the edge $i j$ may be used in one direction ($x_{i j}=1$), in the other direction $\left(x_{j i}=1\right)$, or not used at all $\left(x_{i j}=x_{j i}=0\right)$. In the last case, (2.21) becomes $v_{k i}-v_{k j} \leq 1$, which is redundant due to (2.22). However, in the first and second cases, $x_{i j}+x_{j i}=1$ and so (2.21) becomes $v_{k i}-v_{k j} \leq 0$. Given there is no condition on the ordering of the indices i and j in the constraint, we will additionally have the constraint $v_{k j}-v_{k i} \leq 0$; together, these imply $v_{k i}=v_{k j}$. Recalling the interpretation of the $v_{i j}$ variables, this means that if the edge $i j$ is used in either direction, then any third vertex k is either visited before both i and $j\left(v_{k i}=v_{k j}=1\right)$, or after both i and j $\left(v_{k i}=v_{k j}=0\right) . \mathrm{MCF}+$ is compared to the other models in Section 2.2.

2.1.3 SST model

Another model based on similar variables to those of MCF+ was presented in 2006 by Sherali, Sarin and Tsai [66], and shown to be tighter than MCF + . Sherali et al. refer to the model as ATSP6 in [66], but for clarity we will refer to it as the SST model, with its relaxed definition given below. The model uses three sets of variables; $x_{i j}$ exactly as in DFJ, $y_{i j}$ analogous to the
$v_{i j}$ variables in MCF + , and $f_{i j}^{v}$ with indices i, v and j analogous to the $f_{i j k}$ variables from MCF with respective indices i, j and k. That is, in SST, $f_{i j}^{v}$ is intended to be 1 if the arc $i \rightarrow v$ is used in the cycle before visiting vertex j, and 0 otherwise. One other difference in the way the indices are defined is that SST does not include any variables for which two indices are equal.

Definition 2.4 (SST model [66]).

$$
\begin{array}{lr}
\text { Minimise } & \\
\sum_{i=1}^{n} \sum_{j=1 \neq i}^{n} c_{i j} x_{i j}, & \forall i=1, \ldots, n \\
\text { subject to } \sum_{\substack{n \\
\sum_{i, j \neq i}^{n}}} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{i=1, i \neq j}^{n} x_{i j}=1 & \forall i, j=2, \ldots, n ; i \neq j \\
y_{i j}+y_{j i}=1 & \forall i, j=2, \ldots, n ; i \neq j \\
y_{i j} \geq x_{1 i} & \forall i, j=2, \ldots, n ; i \neq j \\
y_{j i} \geq x_{i 1} & \forall i, j=1, \ldots, n ; i \neq j \\
0 \leq x_{i j} \leq 1 & \forall i, j=2, \ldots, n ; i \neq j \\
y_{i j} \geq 0 & \forall i, j, k=2, \ldots, n ; \\
y_{i j}+x_{j i}+y_{j k}+y_{k i} \leq 2 & i \neq j \neq k \\
& \\
0 \leq f_{i j}^{v} \leq x_{i v} \tag{2.33}\\
\sum_{v=2, v \neq i, j}^{n} f_{i j}^{v}+x_{i j}=y_{i j} & \forall i, j=2, \ldots, n ; i \neq j \\
x_{1 v}+\sum_{i=2, i \neq v, j}^{n} f_{i j}^{v}=y_{v j} & \forall v, j=2, \ldots, n ; v \neq j .
\end{array}
$$

The constraints involving the variables $y_{i j}$ and $f_{i j}^{v}$ may be interpreted as follows: If i and j are distinct vertices, then (2.25) expresses that either vertex i comes before vertex j or vice versa. Next, the inequalities in (2.26) and (2.27) ensure that if vertex i is either the first vertex visited after vertex

1 , or the last vertex visited before vertex 1 , then all other vertices j must come respectively after or before vertex i. Considering just the y variables of (2.30), it can be seen that these inequalities express the property that three distinct vertices $i, j, k \neq 1$ should not form a subtour; for example, having started at vertex 1 , if i comes before $j\left(y_{i j}=1\right)$, then it follows that k cannot be both after j and before i (at most one of $y_{j k}$ and $y_{k i}$ can be 1). The addition of the variable $x_{j i}$ to the LHS of (2.30) is an insightful way to strengthen this inequality, since if vertex i immediately follows j then it still follows that k cannot be after j and before i. Bounds on the $y_{i j}$ and $f_{i j}^{v}$ variables in (2.29) and (2.31) follow logically from the interpretation of the variables. Finally, (2.32) and (2.33) express, in two different ways, the y variables as linear combinations of the other variables. The former expresses that vertex i precedes j precisely when either the arc $i \rightarrow j$ is used, or when some other vertex v immediately follows i before later visiting j. The latter is similar, expressing that a vertex v precedes j if either v is the first vertex visited after vertex 1 , or if some arc $i \rightarrow v$ for $i \neq 1$ is used before j.

In 2009, Öncan et al. [57] compared several TSP formulations in this class and reported that SST was the strongest known polynomial size formulation of TSP. However, as SST uses only a combination of 2-index and 3-index variables, it is reasonable that a four index model (with more variables and constraints) may be even stronger. We next introduce a recently published four index model, following a short discussion of how the aims of this recent model may differ from those considered so far.

2.1.4 The Base Model

It may be said that solving a TSP instance comprises two separate problems. The first is to identify Hamiltonian cycles in the graph, and the second is to find an optimal tour from amongst these cycles. Previous applications of linear programming to these problems such as DFJ, MCF, MCF + and SST,
have typically focused on complete graphs wherein identifying Hamiltonian cycles is trivial (any ordering of the vertices suffices) and thus the difficulty lies solely in determining which is optimal. Some recent research has instead focused on applying linear programming to sparse graphs, where even establishing the existence of Hamiltonian cycles is a challenging problem.

In 2015, Filar et al. [28] published a linear programming model, the feasibility of which is a necessary condition for the existence of Hamiltonian cycles in a given undirected graph. Filar et al. begin by defining the model, which they call the Base Model, then consider a branching algorithm with branch-specific constraints designed for cubic graphs. We will not consider that branching algorithm in this thesis, but rather focus on the Base Model itself without any branch-specific constraints. We give the linear constraints of the Base Model below.

Let G be a graph with vertices $V=\{1, \ldots, n\}$. We denote by $N(i)$ the set of all vertices adjacent to $i \in V$. Unless otherwise restricted, it should be assumed that the indices i, j, and k range from 1 to n, representing the vertices of V, and that the indices r and s range from 0 to $n-1$.

Definition 2.5 (Base Model).

$$
\begin{array}{lr}
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(i)} x_{r-1, a i}^{k}=0 & \forall i, k, r ; r \neq 0 \\
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(k)} x_{n-r, k a}^{i}=0 & \forall i, k, r ; r \neq 0 \\
\sum_{r=0}^{n-1} x_{r, i a}^{k}-\sum_{r=0}^{n-1} x_{r, i a}^{j}=0 & \forall i, j, k ; a \in N(i) ; k \neq j \\
\sum_{k=1}^{n} x_{r, i a}^{k}-\sum_{k=1}^{n} x_{s, i a}^{k}=0 & \forall i, r, s ; a \in N(i) ; s \neq r \\
\sum_{r=0}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, k \\
\sum_{k=1}^{n} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, r \tag{2.39}
\end{array}
$$

$$
\begin{array}{rr}
x_{0, i a}^{k}=0 & \forall i, k ; a \in N(i) ; i \neq k \\
x_{r, i a}^{k} \geq 0 & \forall k, r ; a \in N(i) . \tag{2.41}
\end{array}
$$

Note that the Base Model as introduced has no objective function. It is only necessary to find a feasible solution satisfying (2.34) - (2.41). In Section 2.2.3 we will consider the addition of an appropriate objective function in order to permit more effective comparisons with other models.

The intention of the Base Model is to determine the Hamiltonicity of G by attempting to find a solution corresponding to a Hamiltonian cycle in G from the complementary perspectives of n different starting points. The value of $x_{r, i a}^{k}$ is intended to be 1 if the arc $i \rightarrow a$ is used exactly r steps after leaving vertex k in the Hamiltonian cycle, and 0 otherwise. For example, $x_{0,34}^{3}=1$ would indicate that the arc $3 \rightarrow 4$ is used 0 steps after, that is, immediately after, leaving vertex 3 . Here we give a brief summary of the constraints according to this interpretation:
(2.34) Vertex i is departed r steps after leaving vertex k if and only if i was entered by an arc during the previous step.
(2.35) Vertex i is departed r steps after leaving vertex k if and only if k is departed $n-r$ steps after leaving i.
(2.36) If arc $i \rightarrow a$ is used in the cycle for one starting vertex, it must be used in the cycle for every other starting vertex.
(2.37) For every starting vertex that uses $i \rightarrow a$ after exactly r steps, there is a starting vertex using the same arc after exactly s steps.
(2.38) For any starting vertex k, there will be precisely one step in which vertex i is departed.
(2.39) There will be precisely one starting vertex for which vertex i is departed after exactly r steps.
(2.40) Only the starting vertex itself can be departed after exactly 0 steps.
(2.41) Non-negativity follows immediately from the interpretation.

For sparse graphs, the Base Model has $\mathcal{O}\left(n^{3}\right)$ variables and constraints, while for non-sparse graphs such as complete graphs, the Base Model has $\mathcal{O}\left(n^{4}\right)$ variables and constraints. The set of all binary solutions to the Base Model corresponds precisely to the set of Hamiltonian cycles in G. Indeed, if (2.41) is replaced with binary constraints on the $x_{r, i a}^{k}$ variables, the resulting model is an exact formulation of HCP [28]. However, as in the relaxed DFJ, MCF, MCF+ and SST models, the Base Model is not guaranteed to find a binary solution. In the case that $0<x_{r, i a}^{k}<1$, Filar et al. instead interpret the value as the probability of, r steps after leaving vertex k, using the arc $i \rightarrow a$.

If G contains no Hamiltonian cycles, then the variables $x_{r, i a}^{k}$ cannot describe a Hamiltonian cycle, and hence there are no binary solutions to the Base Model for non-Hamiltonian graphs. However, there may or may not be other feasible solutions. If there are no feasible solutions, then it is certain that G is non-Hamiltonian. This situation is desirable since infeasibility of the Base Model can be verified in polynomial time, providing a certificate of non-Hamiltonicity for G.

2.2 Comparisons of LP models

Having introduced MCF^{1}, $\mathrm{MCF}+$, SST, and the Base Model in Section 2.1, which relate to either solving TSP or HCP, we now develop methods by which the models may be evaluated. Firstly, we consider straightforward variations of MCF, MCF + and SST that can be used on non-complete graphs, allowing us to try solving HCP instances by the LP infeasibility of those

[^0]models as with the Base Model. Following that, we construct an appropriate objective function to enable the Base Model to solve TSP instances, and introduce a new method for generating TSP instances based on cubic graphs. Having created a framework by which all four models may be compared, Sections 2.2.2 and 2.2.5 then present the results of each model on a set of non-Hamiltonian cubic graphs, and on TSP instances derived from cubic graphs.

All the results from this section and the remainder of the chapter were found using CPLEX ${ }^{\mathrm{TM}}$ Optimization Studio version 12.5 [42]. The linear programs were executed on a cluster of machines with four 16-core AMD Opteron ${ }^{\mathrm{TM}} 6282$ processors.

2.2.1 Adapting TSP models to solve HCP

Suppose there is a non-complete graph $G=(V, E)$ whose Hamiltonicity is unknown. There are three ways in which a TSP model for complete instances may be used to try to detect non-Hamiltonicity in G. One way is to set the $\operatorname{costs} c_{i j}$ to be zero only when the arc $i \rightarrow j$ is in E, and positive otherwise. A feasible solution using only the edges of G then exists if and only if the objective function can be minimised to zero. The advantage of this approach is that it will work for any TSP linear programming model, but it comes at the expense of potentially having many superfluous variables or constraints. A second method is to retain the original costs $c_{i j}$ on the arcs in E and set all other costs to a suitably large penalty value. The benefit is that we can still obtain a lower bound for the minimum tour cost, as opposed to the first approach. However, a difficulty is that in order to ensure that only the variables corresponding to arcs in E have non-zero values, the penalties must in theory be infinitely large. A sensible third approach that avoids these drawbacks is to modify the model to only include variables and constraints relevant to finding a solution in G. This still allows us to use arbitrary costs $c_{i j}$ on the arcs of G while ensuring that only these arcs are used.

We now make the appropriate variations to the objective function and constraints of MCF, using the same notation $N(i)$ as in the Base Model to denote the set of vertices adjacent to i. The objective function (2.6) becomes

$$
\begin{equation*}
\sum_{i \in V} \sum_{j \in N(i)} c_{i j} x_{i j} \tag{2.42}
\end{equation*}
$$

and the constraints (2.7) - (2.14) become

$$
\begin{array}{lr}
\sum_{j \in N(i)} x_{i j}=1 & \forall i \in V \\
\sum_{i \in N(j)} x_{i j}=1 & \forall j \in V \\
\sum_{j \in N(i)} y_{i j k}-\sum_{j \in N(i)} y_{j i k}=0 & \forall i, k \in V^{*} ; i \neq k \\
\sum_{i \in N(k)} y_{i k k}=1 & \forall k \in V^{*} \\
\sum_{i \in N(1)} y_{1 i k}=1 & \forall k \in V^{*} \\
\sum_{i \in N(k)} y_{k i k}=0 & \forall k \in V^{*} \\
0 \leq y_{i j k} \leq x_{i j} & \forall i \in V ; j \in N(i) ; k \in V^{*} \\
0 \leq x_{i j} \leq 1 & \forall i \in V ; j \in N(i) .
\end{array}
$$

Similarly, we can make the necessary variations to (2.15) - (2.21), the constraints used in MCF+:

$$
\begin{array}{lr}
\sum_{j \in N(i)} f_{k j i}-\sum_{j \in N(i)} f_{k i j}=0 & \forall i, k \in V^{*} ; i \neq k \\
\sum_{i \in N(k)} f_{k i k}=0 & \forall k \in V^{*} \\
\sum_{i \in N(1)} f_{k 1 i}=0 & \forall k \in V^{*} \\
\sum_{i \in N(k)} f_{k k i}=1 & \forall k \in V^{*} \\
0 \leq f_{k i j} \leq x_{i j} & \forall i \in V ; j \in N(i) ; k \in V^{*}
\end{array}
$$

$$
\begin{array}{rr}
\sum_{j \in N(i)} f_{k i j}=v_{k i} & \forall i, k \in V^{*} \\
x_{i j}+x_{j i}+v_{k i}-v_{k j} \leq 1 & \forall i \in V^{*} ; j \in V^{*} \cap N(i) ; \\
k \in V^{*} ; k \neq i, j \tag{2.57}
\end{array}
$$

We use the subscript HCP to denote the altered models as defined below:
Definition 2.6 ($\mathrm{MCF}_{\mathrm{HCP}}$ model). Minimise (2.42) subject to (2.43) - (2.50). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Definition 2.7 (MCF $+_{\text {HCP }}$ model). Minimise (2.42) subject to (2.22), (2.43), (2.44) and (2.50) - (2.57). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

To construct $\mathrm{SST}_{\mathrm{HCP}}$ in a similar manner, we provide variations of the SST constraints (2.26), (2.27) and (2.30) - (2.33). Note that (2.23), (2.24) and (2.28) from SST become equivalent to the modified constraints (2.43), (2.44) and (2.50) above.

$$
\begin{array}{lr}
y_{i j} \geq x_{1 i} & \forall i \in N(1) ; j=2, \ldots, n ; i \neq j \\
y_{j i} \geq x_{i 1} & \forall i \in N(1) ; j=2, \ldots, n ; i \neq j \\
y_{i j}+x_{j i}+y_{j k}+y_{k i} \leq 2 & \forall i, k=2, \ldots, n ; j \in N(i) ; 1 \neq j \neq k \neq i \\
y_{i j}+0+y_{j k}+y_{k i} \leq 2 & \forall i, k=2, \ldots, n ; j \notin N(i) ; i \neq j \neq k \neq 1 \\
0 \leq f_{i j}^{v \leq x_{i v}} & \forall i, j=2, \ldots, n ; v \in N(i) ; i \neq j \neq v \neq 1 \\
\sum_{v \in N(i) \backslash\{1, j\}} f_{i j}^{v}+x_{i j}=y_{i j} & \forall i=2, \ldots, n ; j \in N(i) ; j \neq 1 \\
\sum_{v \in N(i) \backslash\{1\}} f_{i j}^{v}+0=y_{i j} & \forall i=2, \ldots, n ; j \neq N(i) ; j \neq i \neq 1 \\
x_{1 v}+\sum_{i \in N(v) \backslash\{1, j\}} f_{i j}^{v}=y_{v j} & \forall j=2, \ldots, n ; v \in N(1) \\
0+\sum_{i \in N(v) \backslash\{j\}} f_{i j}^{v}=y_{v j} & \forall j=2, \ldots, n ; v \neq N(1) ; v \neq 1 .
\end{array}
$$

Note that (2.30), (2.32) and (2.33) each become two separate constraints here; (2.60) and (2.61), (2.63) and (2.64), and (2.65) and (2.66), respectively.
$\mathrm{SST}_{\mathrm{HCP}}$ is defined as follows.

Definition 2.8 ($\mathrm{SST}_{\mathrm{HCP}}$ model). Minimise (2.42) subject to (2.25), (2.29), (2.43), (2.44), (2.50) and (2.58) - (2.66). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

2.2.2 Results of LP models on HCP instances

We now compare $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+_{\mathrm{HCP}}, \mathrm{SST}_{\mathrm{HCP}}$ and the Base Model on their ability to detect non-Hamiltonian graphs by the infeasibility of their linear programs. In such a case, we say that a graph induces infeasibility in the given LP model. In order to make this evaluation we need a set of suitable non-Hamiltonian graphs. As mentioned in Section 1.2.1, HCP is NP-complete even when restricted to cubic graphs, and cubic graphs can be enumerated efficiently, making them a natural candidate set for testing these models. Selecting small enough instances (e.g. no more than 20 vertices) enables us to undertake exhaustive searches for Hamiltonian cycles, so the true Hamiltonicity can be determined for comparison with the results.

There are 556471 cubic graphs with between 4 and 20 vertices, a vast majority (roughly 97%) of which are Hamiltonian while only 16425 (roughly 3\%) are non-Hamiltonian. The four models we compare, $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+{ }_{\mathrm{HCP}}$, $\mathrm{SST}_{\mathrm{HCP}}$ and the Base Model, are necessarily feasible for Hamiltonian graphs, so we only consider feasibility of the models for non-Hamiltonian graphs. Ideally, all non-Hamiltonian graphs would induce infeasibility. However, as shown in Table 2.5, the models are feasible for approximately one tenth of these instances. $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+_{\mathrm{HCP}}$ and $\mathrm{SST}_{\mathrm{HCP}}$ have feasible LPs for the same set of 1720 graphs, while the Base Model performed marginally better on the 18 -vertex and 20-vertex graphs, with an additional 98 graphs inducing infeasibility. The Base Model is thus strictly better than MCF, MCF+ and SST on this set of instances in the sense that the graphs inducing infeasibility
in the Base Model are a proper superset of the graphs inducing infeasibility in any of the other three models.

Table 2.5: The number of infeasible LPs for $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+{ }_{\mathrm{HCP}}, \mathrm{SST}_{\mathrm{HCP}}$ and the Base Model on non-Hamiltonian cubic graphs up to order 20. The final column gives the number of additional instances solved by the Base Model relative to the other models.

Vertices	NH	MCF	MCF +	SST	Base M.	Add.
10	2	1	1	1	1	
12	5	4	4	4	4	
14	35	30	30	30	30	
16	231	192	192	192	192	
18	1666	1477	1477	1477	1487	10
20	14498	13001	13001	13001	13089	88
Total	16425	14705	14705	14705	14803	98

We remark that the vast majority of graphs tested that induce infeasibility in the four models are bridge graphs. Indeed, the Base Model was proved in [28] to be infeasible for all bridge graphs. Later, in Theorem 2.23, we will prove that the other three models are infeasible for all non-tough graphs which, in particular, include all bridge graphs. Hence, we will exclude bridge graphs from all future experiments described in this thesis. To that end, we now define $N H N B 20$ to be the set of all 2099 non-Hamiltonian non-bridge cubic graphs containing up to 20 vertices. A list of all instances of NHNB20 is given in Appendix A.1. Table 2.6 shows the results of the four models considered when restricted to this problem set. Figure 2.7 displays the smallest instance of NHNB20 that induces infeasibility in each of these models. The problem set NHNB20 will be given particular focus in Chapters 3 and 4.

Although these results indicate that the Base Model is stronger than the other three models, in most cases the graphs that induced feasible LPs for those other models also induced feasible LPs for the Base Model. This raises the question: To what extent do these models vary in their feasible regions, or, as visualised in Figure 2.1, how close are they to a polytope corresponding to the convex hull of Hamiltonian cycles? Given the results here, we may

Table 2.6: The number of infeasible LPs for $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+{ }_{\mathrm{HCP}}, \mathrm{SST}_{\mathrm{HCP}}$ and the Base Model on NHNB20. The final column gives the number of additional instances solved by the Base Model relative to the other models.

Vertices	NHNB	MCF	MCF +	SST	Base M.	Add.
10	1	0	0	0	0	
12	1	0	0	0	0	
14	6	1	1	1	1	
16	33	6	6	6	6	
18	231	42	42	42	52	10
20	1827	330	330	330	418	88
Total	2099	379	379	379	477	98

Figure 2.7: The smallest instance of NHNB20, G_{14}^{120}, that induces infeasibility in $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+_{\mathrm{HCP}}, \mathrm{SST}_{\mathrm{HCP}}$ and the Base Model.
expect the Base Model to have a tighter feasible region, but are there any instances for which the Base Model is outperformed by the other models, and how may the differences amongst them be quantified? To investigate these questions further, we next consider the TSP versions of these models.

2.2.3 Adapting the Base Model to solve TSP

Although the Base Model was designed with the goal of detecting nonHamiltonicity, with the addition of an appropriate objective function the Base Model may also be used to find lower bounds for general TSP instances. Constraints specific to sparse graphs will be considered later in Chapter 4, but for now note that the Base Model as defined does not require the graph to
be sparse, so the Base Model can be used for any graph (including complete graphs).

Whereas the definitions of MCF, MCF + and SST naturally included suitable objective functions for TSP, the Base Model was not originally intended as a model for solving TSP and hence an objective function was not included. We show how an appropriate objective function may be written and then simplified using the constraints of the Base Model.

Consider the Base Model and fix some vertex k as the starting point of a tour. Let \boldsymbol{x} represent the vector of variables $x_{r, i a}^{k}$. We will argue that the objective function below, which is to be minimised, is a valid expression to express the cost of a tour according to the definition of TSP:

$$
\begin{align*}
f(\boldsymbol{x}) & =\sum_{i=1}^{n} \sum_{j \in N(i)} \sum_{r=0}^{n-1} c_{i j} x_{r, i j}^{k} \\
& =\sum_{i=1}^{n} \sum_{j \in N(i)} c_{i j}\left(\sum_{r=0}^{n-1} x_{r, i j}^{k}\right) . \tag{2.67}
\end{align*}
$$

Note that $\sum_{r=0}^{n-1} x_{r, i j}^{k}$ in (2.67) may be interpreted as the probability of starting at vertex k and using the arc $i \rightarrow j$ at some step during the tour. With binary variables, this will be 1 only where an arc $i \rightarrow j$ is used; so the total sum will be just the sum of costs $c_{i j}$ for each of the used edges only. By (2.36) from the Base Model, the choice of vertex k will not influence the sum here. In particular, we can use this fact, without loss of generality, to fix $k=i$ for each respective summand, and thus obtain an expression that no longer depends on the choice of k;

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{i=1}^{n} \sum_{j \in N(i)} c_{i j}\left(\sum_{r=0}^{n-1} x_{r, i j}^{i}\right) . \tag{2.68}
\end{equation*}
$$

To further simplify the objective function, we introduce the following lemma.

Lemma 2.9. Let $G=(V, E)$ be a graph. For any $i \in V$ and $a \in N(i)$, the linear constraints of the Base Model imply

$$
x_{r, i a}^{i}=0, \quad \forall r=1,2, \ldots, n-1 .
$$

Proof. Setting $k=i$ in (2.38), we obtain

$$
\sum_{r=0}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{i}=1, \quad \forall i
$$

The outer sum may be split into two parts, so

$$
\begin{equation*}
\sum_{a \in N(i)} x_{0, i a}^{i}+\sum_{r=1}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{i}=1, \quad \forall i . \tag{2.69}
\end{equation*}
$$

Next, by setting $r=0$ in (2.39), we obtain

$$
\sum_{k=1}^{n} \sum_{a \in N(i)} x_{0, i a}^{k}=1, \quad \forall i
$$

Combining this with (2.40), all the terms on the LHS are zero when $k \neq i$; therefore,

$$
\begin{equation*}
\sum_{a \in N(i)} x_{0, i a}^{i}=1, \quad \forall i \tag{2.70}
\end{equation*}
$$

Substituting (2.70) into (2.69), we arrive at

$$
1+\sum_{r=1}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{i}=1, \quad \forall i
$$

Therefore,

$$
\sum_{r=1}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{i}=0, \quad \forall i
$$

and finally, by non-negativity of the variables in (2.41), it follows that each summand is exactly zero.

We may interpret Lemma 2.9 as ensuring that if a tour starts at some vertex i, that vertex i may only be departed at the first step $(r=0)$; not at any later step. Applying the lemma, we can remove the zero terms from the
right side of (2.68) to obtain

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{i=1}^{n} \sum_{j \in N(i)} c_{i j} x_{0, i j}^{i} \tag{2.71}
\end{equation*}
$$

Accordingly, in the context of solving any TSP instance, we henceforth consider the Base Model to include (2.71) as an objective function to be minimised.

2.2.4 Generating TSP instances based on cubic graphs

Having established the correctness of the TSP objective function for the Base Model, it is necessary to select a set of TSP instances for testing. While there are sets of TSP instances available in literature, for example in TSPLIB [63], these were found to have too many vertices against which to reasonably test a model with time complexity $\mathcal{O}\left(n^{4}\right)$. Recall that the Base Model has time complexity $\mathcal{O}\left(n^{3}\right)$ for sparse graphs. Given this, it was decided that a new set of TSP instances should be constructed for testing, with the following goals in mind:

- Constructed instances should have relatively few vertices.
- An exact optimal tour for each instance should be known.
- Instances should be relatively difficult as far as the Base Model is concerned, to allow as much room as possible for improving the solutions, a direction we consider in Chapter 4.
- Given the previously discussed benefits of cubic graphs, it is desirable for the constructed instances to have some relation to cubic graphs, both Hamiltonian and non-Hamiltonian non-bridge.

In light of these goals, we now introduce Algorithm 2.1 for generating sets of asymmetric TSP instances. Following the algorithm, we make a number
of comments about choosing appropriate inputs and parameters, and how this influences the tractability of finding exact optimal tours in Step 3 of the algorithm. This is followed by a discussion of a particular set of TSP instances generated and the results on those instances.

```
Algorithm 2.1 Generate asymmetric TSP instances from cubic graphs
Input: \(G_{1}, \ldots, G_{N}\) are cubic graphs
    \(r\) is the number of candidates to generate from each graph
    \(q\) is the maximum number of output graphs ( \(q \leq r N\) )
    \(m\) is the maximum cost to assign to edges from the graphs
    \(l\) is the cost to assign to non-edges from the graphs
    LPMODEL is a linear program for solving ATSP
```

Output: T_{1}, \ldots, T_{M} are ATSP instances $(M \leq q)$
O_{1}, \ldots, O_{M} are optimal tours for each ATSP instance
1 For each graph G_{i}, produce r candidate instances by assigning, for each candidate, uniformly random integer costs between 0 and m to every arc.
2 For each candidate, complete the graph by adding edges between all pairs of non-adjacent vertices, and assign a bi-directional cost of l to each of these new edges.
3 Calculate the optimal tour for each candidate.
4 Execute LPModel for each candidate and discard any where the obtained lower bound is equal to the optimal tour cost.
5 If the number of remaining candidates exceeds q, set M equal to q. Otherwise, set M equal to the number of remaining candidates.
6 Select the M candidates with the largest gaps as a percentage of their optimal tour costs, and return these candidates T_{1}, T_{2}, \ldots and their respective optimal tours O_{1}, O_{2}, \ldots.

Since one of the goals was to generate difficult instances as far as the Base Model is concerned, it was decided that the algorithm should generate many candidate instances randomly, and only return those having sizeable gaps. Recall from Definition 1.28 that the gap is defined to be the difference between the LP lower bound and the exact optimal tour length. Determining the gap therefore requires the exact optimal tour length to be known, an NPhard problem in general. Indeed, a naïve enumeration of all tours would take a prohibitively long time even for small graphs. However, by restricting the input graphs to be traceable graphs (those containing a Hamiltonian path) of order n and setting $l=m n$, we can find the optimal tour much more
efficiently by Lemma 2.10 below. In this way, only the Hamiltonian cycles or paths from the original graph G need be considered, which can be done orders of magnitude more quickly than considering all tours in the complete instance.

Lemma 2.10. Let $G=(V, E)$ be a traceable graph with n vertices, and let m and l be positive integers. Suppose that a complete ATSP instance of order n were constructed such that the arcs corresponding to those in G have costs chosen from $\{0, \ldots, m\}$, and the remaining arcs have cost l. If $l \geq m n$, then:
(i) If G is Hamiltonian, any optimal tour is guaranteed to lie on the arcs corresponding to a Hamiltonian cycle of G.
(ii) If G is non-Hamiltonian, any optimal tour is guaranteed to lie on arcs corresponding to a Hamiltonian path of G with one additional arc from the complement of E.

Proof. Consider the case that G is Hamiltonian. For any Hamiltonian cycle from the original graph, it is clear that the cost of the tour corresponding to this HC can be at most $m n$ (when all n arcs in the tour have maximal cost $m)$. Using even a single arc from the complement of E will increase the tour cost to be at least as large as this; $l \geq m n$, plus the remaining cost of the tour. Therefore, at least one of the Hamiltonian cycles of G corresponds to the optimal tour.

Alternatively, consider the case that G is non-Hamiltonian. By the traceability of G, there is at least one Hamiltonian path. The cost of using the corresponding $n-1$ arcs of this path can be at most $m(n-1)$. To close the path it is necessary to go directly from the last vertex in the path to the first. This additional arc cannot be in E, since that would imply that G is Hamiltonian, so the cost of using this arc is l. The maximum cost for such a cycle is thus $m(n-1)+l$. If, instead, two or more arcs from the complement of E were used, the cost would be at least $2 l$, which is strictly greater than
$m(n-1)+l$. Therefore, at least one of the Hamiltonian paths is optimal when closed.

Using Algorithm 2.1, a particular set of TSP instances was generated from cubic graphs with 16 vertices. There are 4060 cubic graphs with 16 vertices comprising 3841 Hamiltonian graphs and 219 non-Hamiltonian graphs. The 219 non-Hamiltonian graphs can be further classified into 186 bridge graphs and 33 non-Hamiltonian non-bridge (NHNB) graphs. All cubic graphs on 16 vertices are traceable except for one bridge graph, however, we do not consider any bridge graphs here as the models considered already perform very well on them (see Section 2.2.2). For Hamiltonian and NHNB instances from this set then, Lemma 2.10 may be used.

The cost parameters chosen were $m=100$ and $l=m n=1600$, and LPModel was set to be the Base Model. To ensure balance in the generated problem set, it was decided to separately collect 200 instances based on Hamiltonian graphs, and 200 instances based on NHNB graphs. For both the Hamiltonian and NHNB subsets then, q was set to 200. The parameter r was set to 2 for Hamiltonian graphs (for 7682 candidates) and set to 10 for NHNB graphs (for 330 candidates.) Histograms showing the gaps from the Base Model for the 8012 candidates are shown in Figure 2.8.

Combining both sets, the 400 ATSP instances returned are included in Appendix B and will be referred to as problem set ATSP16A. Although the problems generated by this method are complete graphs, it is trivial to remove the extra edges (all having cost of 1600) and to consider the related problem set of cubic ATSP problems, which will be referred to as ATSP16AC; this latter set will become useful when considering linear constraints that only hold for cubic or other sparse graphs.

The new problem sets ATSP16A and ATSP16AC provide a way of quantitatively measuring the relative efficacy of the LP models under consideration,

Figure 2.8: Histogram showing gaps obtained with the Base Model as a percentage of the optimal tour cost for 8012 candidate ATSP instances generated by Algorithm 2.1. The gaps are grouped by whether the input graph was Hamiltonian or non-Hamiltonian non-bridge, of which in total there were 7682 and 330 candidates respectively. The vertical dashed lines represent the cutoffs, to the right of which the 200 instances with the largest percentage gaps were retained for the two input types.
and are sensitive enough that small improvements to the models can be detected if found. The key measure is the gap for each instance in the problem set; the difference between the lower bound found by the linear program and the optimal tour cost.

We remark that in the case of the 200 non-Hamiltonian cubic instances in ATSP16AC, there is no optimal tour, and a sufficiently tight linear model might in theory be infeasible for some or all of these instances. In the following section, and again in Chapter 4, we consider results of linear models on these instances, but for convenience of terminology we continue to refer to the gaps for these instances, using a special case definition of the term:

Definition 2.11 (Gaps for non-Hamiltonian instances of ATSP16AC). For any non-Hamiltonian instance of ATSP16AC, we define the gap to be the optimal tour cost of the corresponding complete instance in ATSP16A minus the lower bound found for the linear program. If the linear program is infeasible, we say the gap is not defined.

This definition is practical, since, for all linear models considered, the non-Hamiltonian instances of ATSP16AC have feasible solutions with similar lower bounds to that of the corresponding ATSP16A instances. In theory, if a linear model were infeasible for a non-Hamiltonian instance of ATSP16AC, we would report those instances separately, but this does not occur for any model considered in this thesis. Note that the definition of gaps for nonHamiltonian instances of ATSP16AC could also be used as the definition of the gap for the Hamiltonian instances, since the optimal tours of the corresponding instances of ATSP16A are necessarily the same.

2.2.5 Results of LP models on TSP instances

Using the TSP instances constructed in Section 2.2.4, we can now examine more finely the relative performance of MCF, MCF + , SST , and the Base

Model. Rather than simply a binary result of feasible or infeasible as in Section 2.2.2, we obtain a gap which may theoretically be any non-negative rational number. The lower the gap, the better the model performs on that instance, and any difference or improvement in the gap can be measured quantitatively.

Aggregated results for the four models are presented in Table 2.9 for the instances in set ATSP16A and in Table 2.10 for ATSP16AC. Recall that the former are complete graphs, while the latter are the corresponding instances having only the edges of the cubic graph from which they are derived. Note that none of the four models were able to find the optimal tour for any of the instances.

Table 2.9: Aggregated results of MCF, MCF+, SST and the Base Model on the 200 NHNB-derived and 200 Hamiltonian-derived instances of ATSP16A.

| | NHNB-derived | | | Ham.-derived | |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: |
| Model | Sum of gaps | Mean | | Sum of gaps | Mean |
| MCF | 295768.0 | 1478.8 | | 22693.1 | 114.8 |
| MCF + | 294799.8 | 1474.0 | | 22368.9 | 111.8 |
| SST | 293721.7 | 1468.6 | | 20705.3 | 103.5 |
| Base Model | 289064.2 | 1445.3 | | 16864.2 | 84.3 |

Table 2.10: Aggregated results of MCF, MCF+, SST and the Base Model on the 200 NHNB-derived and 200 Hamiltonian-derived instances of ATSP16AC.

| | NHNB-derived | | | Ham.-derived | |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: |
| Model | Sum of gaps | Mean | | Sum of gaps | Mean |
| MCF | 295768.0 | 1478.8 | | 22963.1 | 114.8 |
| MCF+ | 294799.8 | 1474.0 | | 22368.9 | 111.8 |
| SST | 293721.7 | 1468.6 | | 20705.3 | 103.5 |
| Base Model | 288979.2 | 1444.9 | | 16864.2 | 84.3 |

As can be seen from Tables 2.9 and 2.10, the Base Model outperforms MCF, MCF+ and SST in the average case. Recall that the instances of ATSP16A and ATSP16AC were specifically chosen over others because the

Base Model was the least effective on them; despite this, the Base Model dominated MCF + , and hence MCF, for every instance tested. This provides strong empirical evidence that the Base Model may strictly contain MCF+, a conjecture we present in Section 2.2.6.

For comparison with SST, Figure 2.11 shows a plot of the gaps for the Base Model on these instances against the gaps for SST, the latter being necessarily tighter than MCF+ and MCF in turn, as discussed previously. This plot shows that the Base Model outperforms SST in almost all cases, but that there are four instances of ATSP16A and the corresponding four instances of ATSP16AC for which the gap obtained by SST was less than that obtained by the Base Model. These four instances have the IDs 92, 105, 259 and 338; the edge lists and costs for which may be found in Appendix B. In these instances, the difference in gaps between the two models was small; no more than 1.5\%. In contrast, the Base Model provided a tighter bound in all remaining 396 instances of both sets. Although the Base Model is stronger on average, there must be information about Hamiltonian cycles expressed in SST that is not captured by the Base Model. This presents an opportunity to improve the Base Model by adding constraints similar to those of SST, an extension we consider in Chapter 4.

2.2.6 A conjecture on the strength of the Base Model

The results shown in Sections 2.2.2 and 2.2.5 lead naturally to the following conjecture.

Conjecture 2.12. The Base Model is stronger than MCF+.

Specifically, by stronger we mean that for any given instance of HCP or TSP, the set of feasible solutions to the Base Model when projected to the $x_{i j}$ variables of MCF+, is a subset of the set of feasible solutions to MCF + when projected to the same variables. To make this projection, we note the natural

Figure 2.11: Gaps for the Base Model plotted against gaps for SST, for the Hamiltonian-derived and NHNB-derived instances of ATSP16A and ATSP16AC. The solid line $y=x$ corresponds to the gaps being the same for both models. The four instances from each of ATSP16A and ATSP16AC for which SST outperforms the Base Model are shown as solid red points.
equivalence of the Base Model variables $x_{0, i j}^{i}$ and the $\mathrm{MCF}+$ variables $x_{i j}$ in their respective objective functions (2.71) and (2.42).

We remark that Conjecture 2.12 implies that the Base Model is in turn stronger than MCF, and MCF is in turn equivalent to DFJ. Therefore, one approach to proving the conjecture would be to establish that:
(i) The Base Model implies constraints equivalent to those of DFJ and hence those of MCF.
(ii) Assuming (i), the Base Model also implies constraints equivalent to (2.20) - (2.22), the constraints of MCF+ without analogues in MCF.

We now give a partial proof of (i). First, we express the constraints of DFJ in terms of the variables of the Base Model. By the observation above, the DFJ variables $x_{i j}$ are equivalent to the Base Model variables $x_{0, i j}^{i}$. Therefore, constraints (2.1) - (2.3), and the relaxation of (2.4), may be written as

$$
\begin{array}{lr}
\sum_{a \in N(i)} x_{0, i a}^{i}=1 & \forall i=1, \ldots, n \\
\sum_{a \in N(i)} x_{0, a i}^{a}=1 & \forall i=1, \ldots, n \\
\sum_{i \in S} \sum_{a \in N(i) \backslash S}\left(x_{0, i a}^{i}+x_{0, a i}^{a}\right) \geq 2 & \forall S \subset V, 0<|S|<n \\
0 \leq x_{0, i a}^{i} \leq 1 & \forall i=1, \ldots, n ; a \in N(i) .
\end{array}
$$

Lemma 2.13. The constraints of the Base Model imply constraints (2.72), (2.73) and (2.75).

Proof. Observe that (2.72) follows immediately from (2.38) if we set $k=i$ and apply Lemma 2.9. Next, (2.75) follows immediately from (2.41) and (2.72). Hence we now focus on (2.73).

Consider any vertices i and k. Taking (2.34) and fixing $r=1$, we obtain

$$
\begin{equation*}
\sum_{a \in N(i)} x_{1, i a}^{k}=\sum_{a \in N(i)} x_{0, a i}^{k} . \tag{2.76}
\end{equation*}
$$

From (2.40), it is clear that the RHS of (2.76) reduces to $x_{0, k i}^{k}$ if k is adjacent to i, and 0 otherwise. Therefore,

$$
\sum_{a \in N(i)} x_{1, i a}^{k}= \begin{cases}x_{0, k i}^{k} & \text { if } k \in N(i) \tag{2.77}\\ 0 & \text { otherwise }\end{cases}
$$

Next, consider (2.39) for $r=1$:

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{a \in N(i)} x_{1, i a}^{k}=1 \tag{2.78}
\end{equation*}
$$

Substituting (2.77) into (2.78), we obtain the desired equality;

$$
\sum_{k \in N(i)} x_{0, k i}^{k}=1
$$

We now consider the remaining constraint (2.74). We will show that (2.74) is implied by

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \in N(i) \backslash S} x_{0, i a}^{i} \geq 1 \quad \forall S \subset V, 0<|S|<n . \tag{2.79}
\end{equation*}
$$

Lemma 2.14. Constraint (2.74) is satisfied if the constraints (2.72), (2.73) and (2.79) are satisfied.

Proof. Summing over (2.72) we obtain

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \in N(i)} x_{0, i a}^{i}=|S| . \tag{2.80}
\end{equation*}
$$

We can then separate the summed terms of the LHS of (2.80):

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \in N(i)} x_{0, i a}^{i}=\sum_{i \in S} \sum_{a \in N(i) \backslash S} x_{0, i a}^{i}+\sum_{i \in S} \sum_{a \in N(i) \cap S} x_{0, i a}^{i} \tag{2.81}
\end{equation*}
$$

Substituting (2.79) and (2.80) into (2.81), we obtain

$$
\sum_{i \in S} \sum_{a \in N(i) \cap S} x_{0, i a}^{i} \leq|S|-1 .
$$

Similarly, summing over (2.73) we obtain

$$
\begin{equation*}
|S|=\sum_{i \in S} \sum_{a \in N(i)} x_{0, a i}^{a}=\sum_{i \in S} \sum_{a \in N(i) \backslash S} x_{0, a i}^{a}+\sum_{i \in S} \sum_{a \in N(i) \cap S} x_{0, a i}^{a} . \tag{2.82}
\end{equation*}
$$

It may be seen that

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \in N(i) \cap S} x_{0, a i}^{a}=\sum_{i \in S} \sum_{a \in N(i) \cap S} x_{0, i a}^{i} \leq|S|-1 . \tag{2.83}
\end{equation*}
$$

Hence, substituting (2.83) into (2.82), we obtain

$$
\sum_{i \in S} \sum_{a \in N(i) \backslash S} x_{0, a i}^{a} \geq 1,
$$

which along with (2.79) implies (2.74).

The upcoming theorem will require the following result, shown in [28].

Lemma 2.15. The constraints of the Base Model imply that $x_{n-1, i a}^{k}=0$ for all $a \neq k$, and $x_{r, i k}^{k}=0$ for all $r \neq n-1$.

For the sake of neatness, in the proof of the following theorem we will permit sums over variables corresponding to arcs that may not exist in the graph. In such a case, we treat these variables as identically zero.

Theorem 2.16. The constraints of the Base Model imply (2.74) for all subsets $S \subset V$ such that $|S| \in\{1,2,3, n-3, n-2, n-1\}$.

Proof. First, we argue that if (2.74) is satisfied for all S such that $|S|=k$, it is also satisfied for all S such that $|S|=n-k$. Suppose that (2.74) is satisfied for all $|S|=k$. That is, for any S such that $|S|=k$, we have

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \notin S}\left(x_{0, i a}^{i}+x_{0, a i}^{a}\right) \geq 2 . \tag{2.84}
\end{equation*}
$$

If we consider the complement of S, then the LHS of (2.74) is

$$
\begin{equation*}
\sum_{i \notin S} \sum_{a \in S}\left(x_{0, i a}^{i}+x_{0, a i}^{a}\right) . \tag{2.85}
\end{equation*}
$$

It is clear that (2.85) contains the identical terms as the LHS of (2.84). Since any S such that $|S|=n-k$ can be obtained by taking the complement of a set of size k, we conclude that (2.74) is satisfied for any S such that $|S|=n-k$ as well.

Recall from Lemma 2.14 that (2.74) is satisfied if (2.72), (2.73) and (2.79) are satisfied. By Lemma 2.13, the Base Model implies (2.72) and (2.73). We now show that (2.79) is satisfied for $k=1,2,3$. Without loss of generality, we will assume that $S=\{1, \ldots, k\}$; that is, S contains the first k vertices of the graph. It is clear that for other choices of S the graph can be relabelled so that the remaining arguments are applicable.

For $k=1$, the result follows immediately from (2.72). Next, for $k=2$, we seek to prove the following:

$$
\begin{equation*}
\sum_{a>2} x_{0,1 a}^{1}+\sum_{a>2} x_{0,2 a}^{2} \geq 1 \tag{2.86}
\end{equation*}
$$

The LHS of (2.86) can be rewritten using (2.72) for the first sum, and (2.36), (2.40), and Lemma 2.9 for second sum as follows:

$$
\begin{equation*}
1-x_{0,12}^{1}+\sum_{r=1}^{n-1} \sum_{a>2} x_{r, 2 a}^{1} . \tag{2.87}
\end{equation*}
$$

Note that by Lemma 2.15, we have

$$
\begin{equation*}
\sum_{a>2} x_{n-1,2 a}^{1}=0 . \tag{2.88}
\end{equation*}
$$

Also, using (2.34) and (2.40), we have

$$
\begin{equation*}
\sum_{a>2} x_{1,2 a}^{1}=x_{0,12}^{1} . \tag{2.89}
\end{equation*}
$$

Substituting (2.88) and (2.89) into (2.87), we see the LHS of (2.86) becomes

$$
\begin{equation*}
\sum_{a>2} x_{0,1 a}^{1}+\sum_{a>2} x_{0,2 a}^{2}=1+\sum_{r=2}^{n-2} \sum_{a>2} x_{r, 2 a}^{1} . \tag{2.90}
\end{equation*}
$$

Hence, from the non-negativity of the $x_{r, i a}^{k}$ variables, (2.86) is satisfied.

Finally, for $k=3$, we seek to prove the following:

$$
\begin{equation*}
\sum_{i \leq 3} \sum_{a>3} x_{0, i a}^{i} \geq 1 . \tag{2.91}
\end{equation*}
$$

We can rewrite the LHS of (2.91) as

$$
\begin{equation*}
\sum_{i \leq 2} \sum_{a>2} x_{0, i a}^{i}-\sum_{i \leq 2} x_{0, i 3}^{i}+\sum_{a>3} x_{0,3 a}^{3} . \tag{2.92}
\end{equation*}
$$

Then, substituting (2.90) into (2.92), and separating the cases when $r=2$ and $r=n-2$, we obtain

$$
\begin{equation*}
1+\sum_{r=3}^{n-3} \sum_{a>2} x_{r, 2 a}^{1}+\sum_{a>2} x_{2,2 a}^{1}+\sum_{a>2} x_{n-2,2 a}^{1}-\sum_{i \leq 2} x_{0, i 3}^{i}+\sum_{a>3} x_{0,3 a}^{3} . \tag{2.93}
\end{equation*}
$$

Then, by (2.34) and (2.35), we can rewrite (2.93) as

$$
\begin{equation*}
1+\sum_{r=3}^{n-3} \sum_{a>2} x_{r, 2 a}^{1}+\sum_{a>2} x_{1, a 2}^{1}+\sum_{a>2} x_{1, a 1}^{2}-\sum_{i \leq 2} x_{0, i 3}^{i}+\sum_{a>3} x_{0,3 a}^{3} . \tag{2.94}
\end{equation*}
$$

Now, consider the rightmost sum in (2.94). It follows from (2.37) where we set $r=0$ and $s=1$, along with (2.40), that each term of the form $x_{0,3 a}^{3}$ can be expressed as

$$
x_{0,3 a}^{3}=\sum_{k=1}^{n} x_{1,3 a}^{k},
$$

and thus

$$
\begin{align*}
\sum_{a>3} x_{0,3 a}^{3} & =\sum_{k=1}^{n} \sum_{a>3} x_{1,3 a}^{k} \\
& =\sum_{a>3} x_{1,3 a}^{1}+\sum_{a>3} x_{1,3 a}^{2}+\sum_{k>3} \sum_{a>3} x_{1,3 a}^{k} . \tag{2.95}
\end{align*}
$$

Then, by (2.34), (2.40), and Lemma 2.15, we can rewrite (2.95) as

$$
\begin{equation*}
\sum_{a>3} x_{0,3 a}^{3}=x_{0,13}^{1}-x_{1,32}^{1}+x_{0,23}^{2}-x_{1,31}^{2}+\sum_{k>3} \sum_{a>3} x_{1,3 a}^{k} . \tag{2.96}
\end{equation*}
$$

Finally, substituting (2.96) into (2.94), we see that the LHS of (2.91) becomes

$$
\sum_{i \leq 3} \sum_{a>3} x_{0, i a}^{i}=1+\sum_{r=3}^{n-3} \sum_{a>2} x_{r, 2 a}^{1}+\sum_{a>3} x_{1, a 2}^{1}+\sum_{a>3} x_{1, a 1}^{2}+\sum_{k>3} \sum_{a>3} x_{1,3 a}^{k} .
$$

Hence, from the non-negativity of the $x_{r, i a}^{k}$ variables, (2.91) is satisfied.

We expect that arguments similar to the above could be used to prove that the Base Model implies (2.74) for the remaining cardinalities of $S \subset V$.

2.3 Classifications of difficult cubic graphs

A natural question to ask about the non-Hamiltonian graphs identified and those not identified by these models is whether they may be distinguished by a particular classification. For example, what characteristics distinguish, or tend to distinguish the 14803 non-Hamiltonian graphs identified as such by infeasibility of the Base Model, from the 1622 graphs that were not? In particular, we consider the classification of cubic graphs by connectivity, and by toughness, with regard to identifying non-Hamiltonicity. We prove that non-tough graphs necessarily induce infeasibility in the DFJ model and models with equivalent constraints. We conjecture based on empirical evidence and the previous Conjecture 2.12 that the same result holds for the Base Model.

2.3.1 Vertex and edge connectivity

Two fundamental properties of any graph are its vertex connectivity and edge connectivity. The vertex connectivity, or simply connectivity, of a graph G is defined as the maximum value of k for which G is k-connected. Similarly, the edge connectivity of G is defined as the maximum value of k for which G is k-edge-connected.

Note that the vertex connectivity can be at most 3 for any cubic graph. This is due to the fact that for any cubic graph $G=(V, E)$, other than the complete graph K_{4}, it is possible to disconnect G by removing the three vertices adjacent to any vertex $v \in V$. For the remaining case of K_{4}, which is 3 -connected, the definition of k-connected precludes K_{4} from being 4 -connected, so K_{4} has a connectivity of 3 . Furthermore, for any cubic
graph, the vertex connectivity and edge connectivity are always equal by Lemma 2.17 below. We also note that the connectivity of a cubic graph can be found in polynomial time; at worst, all subsets of 3 vertices must be considered for removal, but there are only $\mathcal{O}\left(n^{3}\right)$ such subsets. Examples of the smallest cubic graphs with vertex connectivities 1,2 and 3 are shown in Figure 2.12.

Figure 2.12: The smallest cubic graphs having connectivity 1 (left), 2 (centre) and 3 (right). Examples of vertex cuts are shown with hollow vertices, and examples of edge cuts are shown with dashed edges. The graph on the right side, K_{4}, does not have a 3 vertex cut set, but is 3 -connected as it cannot be 4 -connected by definition.

The following lemma is a well-known result.

Lemma 2.17. Let G be a connected cubic graph with connectivity $\kappa(G)$ and edge connectivity $\lambda(G)$. Then $\kappa(G)=\lambda(G)$.

All connected graphs of a given order n may be considered to lie on a scale of varying connectivities. At one extreme are graphs with vertex connectivity 1 , being necessarily non-Hamiltonian. At the other extreme are the complete graphs K_{n}, necessarily Hamiltonian and having vertex connectivity $(n-1)$. One might then predict that the ratio of Hamiltonian graphs to non-Hamiltonian graphs increases with higher connectivity. For empirical evidence to support this prediction, consider all connected graphs with 10 vertices. There are 11716571 such graphs up to isomorphism, summarised by Hamiltonicity and vertex connectivity in Table 2.13. These results were collected using the database from the Encyclopedia of Finite Graphs [41]. Note that having vertex connectivity of at least $n / 2$, or 5 in the case of these 10 -vertex graphs, is a sufficient condition for Hamiltonicity by a well-known theorem of Dirac [21] which states that any graph with minimum degree $n / 2$

Table 2.13: Hamiltonicity of connected 10-vertex graphs up to isomorphism by vertex connectivity.

Vertex connectivity	Non-Ham.	Ham.	\% Ham.
1	1973029	0	0
2	424177	4205286	90.84
3	14177	3888167	99.64
4	70	1109035	99.99
5	0	99419	100
6	0	3124	100
7	0	81	100
8	0	5	100
9	0	1	100

is Hamiltonian. This follows since any graph with a vertex connectivity of $n / 2$ must have a minimum degree of $n / 2$.

Restricting our attention to cubic graphs, and considering all such graphs up to order 20, Table 2.14 displays a strong correlation between connectivity and Hamiltonicity. Indeed, 87.2% of the non-Hamiltonian cubic graphs have connectivity 1 , followed by 6.8% having connectivity 2 and the remaining 6.0% having connectivity 3 . This is the case, despite graphs with connectivity 2 , and especially connectivity 3 , being far more common than graphs of lesser connectivity. Treating connectivity as an indicator of the likelihood of a graph being non-Hamiltonian, approximately 1 in 100 of the connectivity 2 graphs were non-Hamiltonian, while only 1 in 435 of the connectivity 3 graphs were non-Hamiltonian. Furthermore, as shown Table 2.15, the differences in proportions appear to increase with order.

Excluding the trivial case of bridge graphs, the measure of connectivity on its own has very poor sensitivity and specificity for classifying cubic graphs as Hamiltonian or non-Hamiltonian. A contingency table, effectively a summary of the data in Table 2.14, is shown in Table 2.16. In a probabilistic sense, it seems that non-Hamiltonian graphs with connectivity 3 are rarer, and hence more difficult to detect as such than for graphs with con-

Table 2.14: The number of (a) non-Hamiltonian, and (b) Hamiltonian cubic graphs up to order 20 by connectivity and number of vertices.

(a) Non-Hamiltonian					(b) Hamiltonian				
n	Connectivity			Total	n	Connectivity			Total
	1	2	3			1	2	3	
4	0	0	0	0	4	0	0	1	1
6	0	0	0	0	6	0	0	2	2
8	0	0	0	0	8	0	1	4	5
10	1	0	1	2	10	0	4	13	17
12	4	0	1	5	12	0	23	57	80
14	29	2	4	35	14	0	137	337	474
16	186	15	18	219	16	0	1031	2810	3841
18	1435	117	114	1666	18	0	9281	30354	39635
20	12671	979	848	14498	20	0	100689	395302	495991
Total	14326	1113	986	16425	Total	0	111166	428880	540046

Table 2.15: The percentage of cubic graphs up to order 20 that are Hamiltonian by connectivity and number of vertices.

	Connectivity			
n	1	2	3	All
4			100	100
6			100	100
8		100	100	100
10	0	100	92.86	89.47
12	0	100	98.28	94.12
14	0	98.56	98.83	93.12
16	0	98.57	99.36	94.61
18	0	98.76	99.63	95.97
20	0	99.04	99.79	97.16
All	0	99.01	99.77	97.05

Table 2.16: Contingency table for cubic graphs up to order 20 by Hamiltonicity and connectivity.

Connectivity	Hamiltonian	Non-Hamiltonian	Total
1	0	14326	14326
2	111166	1113	112279
3	428880	986	429886
Total	540046	16425	556471

Table 2.17: Contingency table for non-Hamiltonian cubic graphs up to order 20 by Base Model feasibility and connectivity.

Connectivity	Feasible	Infeasible	Total
1	0	14326	14326
2	636	477	1113
3	986	0	986
Total	1622	14803	16425

nectivity 2 . We also consider how connectivity relates to accurate detection of non-Hamiltonian graphs by the Base Model. The results shown in Table 2.17 clearly demonstrate that non-Hamiltonian graphs with connectivity 3, though less common, are much more difficult to identify using the Base Model. Indeed, none of the 968 graphs with connectivity 3 were detected as non-Hamiltonian, in contrast to 477 out of 1113 , or 40%, of the nonHamiltonian graphs with connectivity 2, and 100% of the non-Hamiltonian graphs with connectivity 1.

2.3.2 Graph toughness

A related concept to connectivity is that of toughness. Graph toughness was introduced by Chvátal in 1973 and described as "[measuring] in a simple way how tightly various pieces of a graph hold together" [15]. While connectivity measures the number of vertices or edges that must be removed just to disconnect a graph, toughness measures the most economical ratio of vertices removed to the resulting number of connected components.

Definition 2.18 (t-tough graph). A graph is said to be t-tough if, for every integer $k \geq 2$, the removal of fewer than $t k$ vertices always results in fewer than k connected components.

Definition 2.19 (Graph toughness). The toughness $\tau(G)$ of a graph G is the maximum value t for which G is t-tough. If G is a complete graph then it is necessarily t-tough for every value of t, thus in this case we say $\tau(G)=\infty$.

The minimum toughness of a cubic graph is $1 / 3$, when a single vertex may be removed to give 3 connected components. The maximum toughness of a cubic graph, excluding K_{4} which has infinite toughness by definition, is $3 / 2$, when exactly three vertices must be removed to disconnect the graph into two connected components. Toughness and Hamiltonicity are known to be related. In particular, any graph with a toughness less than 1 is known to be non-Hamiltonian [15], and it remains an open problem as to whether there is a t_{0} such that all t_{0}-tough graphs are necessarily Hamiltonian [12]. Certainly in the case of $3 / 2$-tough graphs, the maximum for non-complete cubic graphs, there are both Hamiltonian and non-Hamiltonian graphs. We note that 1-toughness being a necessary condition for Hamiltonicity makes it a special case, so 1-tough graphs are simply called tough while graphs with toughness less than 1 are called non-tough. An obvious example of a nontough graph is a graph with vertex connectivity 1 ; the graph can be broken into two connected components by removing one vertex, and so it must have toughness no larger than $1 / 2$.

Figure 2.18 shows a number of minimal examples of tough and non-tough cubic graphs; the smallest cubic graphs with toughnesses $1 / 3,1 / 2,1$, and $3 / 2$, as well as the smallest non-Hamiltonian graph with (maximal) toughness $3 / 2$. To find the smallest non-Hamiltonian cubic graph with toughness $3 / 2$, Theorem 2.21 due to Jackson and Katerinis [44] was utilised. Since the 10vertex Petersen graph is the uniquely smallest 3-connected non-Hamiltonian cubic graph, its inflation (replacing all the vertices with triangles, under
which Hamiltonicity is invariant) must therefore be the uniquely smallest 3/2-tough non-Hamiltonian cubic graph.

Definition 2.20 (Graph inflation [15]). Let $G=(V, E)$ be a cubic graph. The inflation of G is the graph G^{*} obtained by first replacing each vertex of G with a copy of K_{3}. Then, for each vertex $v \in V$ in the original graph G, consider its three incident edges. For each of these edges, let there be a corresponding edge in G^{*}, such that these three corresponding edges are each incident to a different vertex of the copy of K_{3} that corresponds to v. The resulting graph is cubic and has $3|V|$ vertices.

Theorem 2.21 (Characterisation of $3 / 2$-tough cubic graphs [44]). Let G be a cubic graph. Then G is 3/2-tough if and only if $G=K_{4}, G=K_{2} \times K_{3}$, or G is the inflation of a 3-connected-cubic graph.

Unlike connectivity which can be determined for cubic graphs in polynomial time, the decision problem of determining whether a graph is (1-)tough is NP-hard [4], even when only cubic graphs are considered [5]. Consequently, the best known algorithms for determining graph toughness take exponential time, and this prevents toughness from being a useful diagnostic criterion in determining Hamiltonicity.

Table 2.19 shows the distribution of toughness for cubic graphs up to order 20. The most common toughness for this collection of graphs was 1 (30% of the total), followed closely by graphs with toughness $9 / 8$ (28% of the total). Toughness was calculated by removing every possible subset of k vertices, from $k=1$ to $|V|-2$, and counting the number of resulting connected components, finding the lowest possible value of $t=\frac{k}{\text { components }}$ whenever there are at least two connected components. The maximum possible number of connected components after removing k vertices is $|V|-k$, so the processing may stop once the current bound for t is less than $\frac{k}{|V|-k}$ for all remaining values of k. Note that counting the number of connected components at each

$\tau\left(G_{10}^{1}\right)=1 / 2$

Figure 2.18: Selected examples of tough and non-tough cubic graphs. The top row, from left to right, shows the uniquely smallest cubic graphs with toughness 1 , with toughness $3 / 2$, and with toughness ∞. The middle row, from left to right, shows the uniquely smallest cubic graph with toughness $1 / 2$ and with toughness $1 / 3$. The bottom graph shows the smallest non-Hamiltonian graph with toughness $3 / 2$, the inflated Petersen graph (see Figure 1.3 for the uninflated graph).

Table 2.19: Hamiltonian and non-Hamiltonian cubic graphs up to order 20 by toughness.

Toughness	Non-Hamiltonian	Hamiltonian
$1 / 3$	34	0
$1 / 2$	14292	0
$2 / 3$	230	0
$3 / 4$	41	0
$4 / 5$	16	0
$5 / 6$	6	0
1	1077	164630
$10 / 9$	0	48924
$9 / 8$	147	157809
$8 / 7$	179	77089
$7 / 6$	134	31642
$6 / 5$	146	18741
$5 / 4$	95	38094
$9 / 7$	24	2972
$4 / 3$	3	131
$7 / 5$	0	6
$10 / 7$	1	3
$3 / 2$	0	4
∞	0	1

step may be done more easily if every step only removes or restores a single vertex from the graph; this can be done without repeating any subset by using a monotonic Gray code [65]. We remark that there is an interesting coincidence here with respect to HCP; Gray codes are themselves Hamiltonian cycles on the vertices of a hypercube.

In Table 2.20 we consider all non-Hamiltonian cubic graphs containing up to order 20, partitioned by their toughness. In each case, we give the number of graphs with feasible and infeasible LPs in the Base Model. As the table shows, all tested non-tough graphs, which are necessarily non-Hamiltonian, induce infeasibility. Interestingly, it is also the case that every graph tested with a toughness exceeding 1 has a feasible Base Model LP.

Conducting the same experiment with $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+_{\mathrm{HCP}}$ and $\mathrm{SST}_{\mathrm{HCP}}$, we found that all the tested non-tough cubic graphs induce infeasibility in these models just as in the Base Model. These experiments suggest that toughness is a necessary condition for feasibility of the four models. We will

Table 2.20: Base Model feasibility for non-Hamiltonian cubic graphs up to order 20 by toughness.

Toughness	Infeasible	Feasible
$1 / 3$	34	0
$1 / 2$	14292	0
$2 / 3$	230	0
$3 / 4$	41	0
$4 / 5$	16	0
$5 / 6$	6	0
1	184	893
$9 / 8$	0	147
$8 / 7$	0	179
$7 / 6$	0	134
$6 / 5$	0	146
$5 / 4$	0	95
$9 / 7$	0	24
$4 / 3$	0	3
$10 / 7$	0	1

show, by Theorem 2.23 below, that this is indeed the case for any model which includes constraints equivalent to or stronger than the constraints of DFJ. This result therefore applies to $\mathrm{MCF}_{\mathrm{HCP}}, \mathrm{MCF}+_{\mathrm{HCP}}$ and $\mathrm{SST}_{\mathrm{HCP}}$, since the weakest of them, $\mathrm{MCF}_{\mathrm{HCP}}$, is equivalent to DFJ. For the Base Model, however, it is unknown whether constraints equivalent to those of DFJ are implied, so we make the following conjecture.

Conjecture 2.22. Non-toughness is a sufficient condition for infeasibility of the Base Model.

Recall that in Section 2.2.6 we presented a partial proof that the Base Model implies constraints equivalent to those of DFJ. If the remaining components of that proof were established, Conjecture 2.22 would follow immediately from Theorem 2.23.

Theorem 2.23. If $G=(V, E)$ is a non-tough graph, then the $L P$ from the DFJ model is infeasible.

Proof. Since G is non-tough, by definition it is possible to remove fewer than k vertices and be left with k connected components, for some integer
$k>1$. Denote by V_{0} the set of removed vertices, and let V_{t} denote the set of vertices in the t-th connected component that remains when V_{0} is removed for $t=1, \ldots, k$. Then V_{0}, \ldots, V_{k} is a partitioning of the vertices of the graph, such that $\left|V_{0}\right|<k$, and every edge $u v \in E$ where $u \in V_{t}$ and $v \in V_{s}$ satisfies $t=s, t=0$, or $s=0$.

Now, recall the subtour elimination constraints (2.3) of the DFJ model,

$$
\sum_{i \in S} \sum_{j \notin S}\left(x_{i j}+x_{j i}\right) \geq 2 \quad \forall S \subset V, 0<|S|<n
$$

The constraints of DFJ are posed for complete graphs. Rather than modify the constraints to remove $x_{i j}$ variables which do not correspond to arcs in G, we may instead assume, without loss of generality, that $x_{i j}=x_{j i}=0$ if $i j \notin E$. Next, if we take $S=V_{t}$ for $t=1, \ldots, k$, and sum each corresponding inequality (2.3), we obtain

$$
\begin{equation*}
\sum_{t=1}^{k} \sum_{i \in V_{t}} \sum_{j \notin V_{t}}\left(x_{i j}+x_{j i}\right)=\sum_{i \notin V_{0}} \sum_{j \in V_{0}}\left(x_{i j}+x_{j i}\right) \geq 2 k . \tag{2.97}
\end{equation*}
$$

However, from (2.1) and (2.2) we have the following:

$$
\sum_{i \notin V_{0}}\left(x_{i j}+x_{j i}\right) \leq 2
$$

and since $\left|V_{0}\right|<k$, this implies

$$
\begin{equation*}
\sum_{j \in V_{0}} \sum_{i \notin V_{0}}\left(x_{i j}+x_{j i}\right)<2 k . \tag{2.98}
\end{equation*}
$$

Clearly, (2.97) and (2.98) cannot both be true, and so a contradiction is obtained. Hence, (2.97) cannot be satisfied and the LP from the DFJ model is infeasible for G.

As noted earlier, determining if a graph is tough is an NP-hard problem, but here we can identify almost all of the considered tough graphs by feasibility of an LP model. If any of the models were to be feasible only for tough graphs, then it would imply that $\mathrm{P}=\mathrm{NP}$. Hence, it is interest-
ing to consider the tough graphs with infeasible LPs, which must necessarily be non-Hamiltonian. From Table 2.20, it appears that these instances are relatively rare, and perhaps, only occur for graphs with toughness precisely equal to 1. Ironically, the poorer performance of a model such as $\mathrm{MCF}_{\mathrm{HCP}}$ relative to the Base Model is an advantage in this context, as fewer tough graphs induce infeasibility. If these graphs could be characterised and efficiently identified, then that would provide a polynomial-time algorithm for recognising tough graphs. Figure 2.21 shows the uniquely smallest example of a tough cubic graph that induces infeasibility in the Base Model. In fact, the 16 -vertex graph shown induces infeasibility in all four of $\mathrm{MCF}_{\mathrm{HCP}}$, $\mathrm{MCF}+{ }_{\mathrm{HCP}}, \mathrm{SST}_{\mathrm{HCP}}$ and the Base Model. Note the similarity between the graph in Figure 2.21 and the graph in Figure 2.7, which also induced infeasibility in these four models. Attempting to characterise all such graphs is a ripe topic for future research.

Figure 2.21: The smallest tough cubic graph that induces infeasibility in each of MCF, MCF+, SST and the Base Model. The graph, G_{16}^{547}, has a toughness of exactly 1 .

2.4 Concluding remarks on the Base Model

Although the Base Model appears to be strictly stronger than MCF+, and stronger than SST in the average case, the benefits gained in terms of HCP
are minimal. Indeed, only an additional 98 (4.7\%) of the 2099 instances of NHNB20 are identified by the Base Model compared to MCF + and SST. It is therefore desirable to attempt to improve upon the Base Model, particularly in the context of determining non-Hamiltonicity. Such improvements logically fall into two categories. Either we can attempt to modify the graphs to make them more suitable for the Base Model, without altering their Hamiltonicity, or we can attempt to improve the Base Model directly.

To this end, it is natural to consider whether the 1622 instances of NHNB20 with feasible Base Model LPs described in Section 2.2.2 tend to have any identifiable properties that we can exploit to improve the Base Model. One such property that we have identified is the presence of symmetries, with 1437 (88.6\%) of the instances having a non-trivial automorphism group. Another property is the presence of certain structures within the graph; for example, cubic graphs often contain at least one triangle.

In Chapter 3 we therefore consider a number of graph reductions, which permit us to remove edges or vertices from a graph without changing the Hamiltonicity. As will be shown in that chapter, this is particularly effective on graphs with non-trivial automorphism groups. We also consider graph reductions based on the presence of structures such as triangles. After reducing the graphs for which this is possible, it will be shown that many of them can then be identified as non-Hamiltonian immediately, while others induce infeasibility in the Base Model after being reduced. This provides us with an effective alternative approach for the instances where the Base Model does not detect non-Hamiltonicity. Then, to further assist in the identification of non-Hamiltonian graphs, in Chapter 4 we consider extensions to the Base Model that allow us to identify many of the remaining instances.

Chapter 3

Hamiltonicity-preserving graph reductions

In this chapter a method is presented that can, in many cases, reduce the size of instances of the Hamiltonian cycle problem (HCP) and thus reduce the computational complexity of identifying their Hamiltonicity. The method works by attempting to identify edges or vertices in the graph that can be removed in a way that preserves Hamiltonicity. These edges and vertices are identified through examination of the graph's structure and symmetries. Results of applying the method to cubic graphs are presented, along with the performance of the Base Model on the resulting reduced graphs.

As introduced in Section 1.1, HCP is an NP-complete problem, and to date there is no known method that can determine if an arbitrary graph is Hamiltonian in polynomial time. In the case of cubic graphs with n vertices, the best known exact algorithms ${ }^{1}$ have time complexity $\mathcal{O}\left(1.276^{n}\right)$ by Eppstein [23], $\mathcal{O}\left(1.251^{n}\right)$ by Iwama and Nakashima [43], and recently $\mathcal{O}\left(1.2312^{n}\right)$ by Xiao and Nagamochi [75]. In light of this, any reduction in the size of the instance will reduce the time required to solve it by an exponential factor.

[^1]For example, if it were possible to reduce the number of vertices in a cubic graph by k vertices for a given instance in polynomial time, while ensuring the solution to the problem were the same, then the required time could be reduced by factor of at least 1.2312^{k} with current techniques.

To formalise the concept of reducing the size of a graph while maintaining the same HCP solution, we introduce the concepts of a Hamiltonicitypreserving graph reduction and a graph reduction algorithm below, before establishing their existence and introducing several such graph reductions.

Definition 3.1 (Graph reduction). Let $\psi: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ be a function whose domain and codomain are sets of graphs. We say that ψ is a graph reduction, or simply reduction, if for every $G=(V, E) \in \mathcal{G}, \psi(G)=G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ meets the conditions $\left|V^{\prime}\right| \leq|V|$ and $\left|E^{\prime}\right| \leq|E|$. Provided that at least one of these inequalities is strict, the reduction is called proper and the graph G^{\prime} is called the reduced graph of G under ψ.

Definition 3.2 (Hamiltonicity-preserving graph reduction). A graph reduction $\psi: G \mapsto G^{\prime}$ is said to be Hamiltonicity-preserving provided that G^{\prime} is Hamiltonian if and only if G is Hamiltonian, for any choice of G in the domain of ψ. Equivalently, we say that such a ψ preserves Hamiltonicity. Such a reduction is additionally said to be recoverable if, given ψ and any Hamiltonian cycle in G^{\prime}, it is possible to find a Hamiltonian cycle in G in polynomial time (in the number of vertices).

Note that by Definition 3.2, any Hamiltonicity-preserving graph reduction acting on a non-Hamiltonian graph is necessarily recoverable, as there can be no Hamiltonian cycles in the reduced graph.

Definition 3.3 (Graph reduction algorithm). A graph reduction algorithm is any method to search for a suitable reduction ψ for a given graph $G=(V, E)$. If the reduction ψ found by the method is such that $\psi(G)=\left(V^{\prime}, E^{\prime}\right)$ satisfies $\left|V^{\prime}\right|<|V|$ or $\left|E^{\prime}\right|<|E|$, then G is said to be reducible under the algorithm;
otherwise, G is said to be irreducible under the algorithm. The algorithm itself is said to preserve Hamiltonicity if, given any graph G, the returned reduction ψ preserves Hamiltonicity.

Definition 3.4 (Trivially Hamiltonian and non-Hamiltonian graphs). Let G be a connected graph. We say that G is trivially Hamiltonian if G is isomorphic to K_{3}. Similarly, we say that G is trivially non-Hamiltonian if G is isomorphic to K_{2}. If, instead, G has more than two vertices and is not isomorphic to either of K_{2} or K_{3}, then we say that G is non-trivial.

Figure 3.1 shows the trivially Hamiltonian and trivially non-Hamiltonian graphs as defined in Definition 3.4. Note that in this definition we implicitly leave aside the question of whether graphs with just one or zero vertices are Hamiltonian.

Figure 3.1: Trivially Hamiltonian graph K_{3} (left) and trivially nonHamiltonian graph K_{2} (right) that are irreducible (while maintaining connectedness).

Lemma 3.5. Let $G=(V, E)$ be a non-trivial graph. There exists a proper Hamiltonicity-preserving graph reduction ψ whose domain contains G.

Proof. Suppose G is non-Hamiltonian. Any edge may be removed and the resulting graph will remain non-Hamiltonian. The reduction ψ can be defined to remove any edge in E and (non-)Hamiltonicity is preserved.

Alternatively, suppose G is Hamiltonian. Let $v_{1}, \ldots, v_{n} \in V$ trace out a Hamiltonian cycle in G. Since G is non-trivial, it is not isomorphic to K_{3}, implying $n \geq 4$. Define ψ that removes v_{n} and its incident edges from G while adding an edge $v_{1} v_{n-1}$ if it is not present. It is clear that v_{1}, \ldots, v_{n-1} will be a Hamiltonian cycle in $\psi(G)$, thus ψ preserves Hamiltonicity.

Lemma 3.5 guarantees the existence of proper graph reductions for any non-trivial graph. However, unless $P=N P$, there cannot exist a polynomialtime algorithm that, given any non-trivial graph, is guaranteed to find a proper reduction. If there were such an algorithm, it could be used to solve HCP for any graph in polynomial time by repeated application (no more times than the number of edges and vertices) until the graph became trivially (non-)Hamiltonian, thus solving HCP in polynomial time. Therefore, in practice we restrict our focus to developing a polynomial-time graph reduction algorithm, with the expectation that many graphs will be irreducible under the algorithm.

Rather than trying to design a single graph reduction to be as general as possible, we will instead introduce many specialised graph reductions and a method to find compositions of such reductions. We now show that key properties of the individual reductions extend to the composition of those reductions.

Lemma 3.6. If the function $\psi=\psi_{k} \circ \cdots \circ \psi_{2} \circ \psi_{1}$ is the composition of k Hamiltonicity-preserving graph reductions, then ψ also preserves Hamiltonicity. Additionally, if $\psi_{1}, \ldots, \psi_{k}$ are proper and recoverable graph reductions, then ψ is also proper and recoverable.

Proof. Firstly, if $k=1$ then the result is trivial. Assume then that the proposition holds for the composition of $k-1$ reductions; the proof will proceed by induction: Let G be a graph in the domain of ψ and let $\psi^{\prime}=$ $\psi_{\mathrm{k}-1} \circ \cdots \circ \psi_{1}$. Given that ψ_{k} is Hamiltonicity-preserving, $\psi_{\mathrm{k}}\left(\psi^{\prime}(G)\right)=\psi(G)$ has the same Hamiltonicity as $\psi^{\prime}(G)$, which by the induction assumption has the same Hamiltonicity as G. Thus ψ preserves Hamiltonicity.

Similarly, if $\psi_{1}, \ldots, \psi_{\mathrm{k}}$ are proper and recoverable graph reductions, then given any Hamiltonian cycle in $\psi_{\mathrm{k}}\left(\psi^{\prime}(G)\right)$, we can recover a Hamiltonian cycle in $\psi^{\prime}(G)$ in polynomial time. By the induction assumption, given this

Hamiltonian cycle in $\psi^{\prime}(G)$, it is then possible to find a Hamiltonian cycle in G in the sum of $k-1$ separate polynomial times. As $\psi_{1}, \ldots, \psi_{\mathrm{k}}$ are proper reductions, k cannot exceed the combined number of edges and vertices in G, $\mathcal{O}\left(n^{2}\right)$. Therefore, the total time elapsed remains polynomial in the number of vertices and ψ is recoverable. Further, since each of $\psi_{1}, \ldots, \psi_{\mathrm{k}}$ is proper, it immediately follows that ψ is also proper.

In the first stage of any reduction algorithm, it may be beneficial to check sufficient or necessary conditions for Hamiltonicity or non-Hamiltonicity, at least when these conditions can be checked in polynomial time. For example, a necessary condition for a graph G to be Hamiltonian is that it must be 2-connected. Another example is Ore's Theorem [59] shown below, which gives a sufficient condition for Hamiltonicity; equivalently, the contrapositive provides a necessary condition for non-Hamiltonicity. There are other sufficient or necessary conditions that may be checked (see [72, 33, 26]) but in our algorithm we will just check for 2-connectivity and the conditions of Ore's Theorem.

Theorem 3.7 (Ore's Theorem [59]). Let $G=(V, E)$ be a graph with $|V| \geq 3$ vertices. The graph G is Hamiltonian if

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq|V| \quad \forall u, v \in V \text { where } u \neq v \text { and } u v \notin E .
$$

If the Hamiltonicity of a graph is determined by checking sufficient or necessary conditions, we may apply the appropriate graph reduction ψ_{H} or ψ_{NH}, defined as follows. These are defined for use later in Section 3.5.

Definition 3.8 (ψ_{H} graph reduction). We define the constant function ψ_{H} to return the trivially Hamiltonian graph K_{3}, namely

$$
\psi_{\mathrm{H}}(G)=K_{3} .
$$

Domain of ψ_{H} : The set of all Hamiltonian graphs.

Definition 3.9 (ψ_{NH} graph reduction). We define the constant function ψ_{NH} which returns the trivially non-Hamiltonian graph K_{2}, namely

$$
\psi_{\mathrm{NH}}(G)=K_{2} .
$$

Domain of ψ_{NH} : The set of all non-Hamiltonian graphs.

By the definitions of ψ_{H} and ψ_{NH}, it is clear that both reductions preserve Hamiltonicity. Also, ψ_{NH} is recoverable by definition, since the reduced graph contains no Hamiltonian cycles. Unfortunately, ψ_{H} is not necessarily recoverable. That is, knowing the obvious Hamiltonian cycle in the reduced graph K_{3} does not help us find a Hamiltonian cycle in the original graph. However, in practice we only apply ψ_{H} to graphs that meet the conditions of Ore's Theorem. As noted in [61], the argument used by Ore to prove the theorem effectively constitutes a polynomial-time algorithm to find Hamiltonian cycles in graphs meeting the conditions. Therefore, if we restrict the domain of ψ_{H} to graphs satisfying Ore's Theorem, which we have in the upcoming algorithm, then ψ_{H} is recoverable.

In contrast to testing a sufficient condition for Hamiltonicity, it will be shown that there are also occasions where the structure of a graph makes a particular Hamiltonian cycle evident. To handle such cases where a Hamiltonian cycle is serendipitously identified during our search for applicable reductions, we introduce $\psi_{\text {hcycle }}$, defined below.

We remark that due to the number of graph reductions introduced in this chapter, descriptive subscripts are used for graph reductions to avoid confusion. This and later graph reductions are parametrised families of functions with parameters listed in square brackets.

Definition 3.10 ($\psi_{\text {hcycle }}\left[v_{1}, \ldots, v_{n}\right]$ graph reduction). Given a graph $G=$ (V, E) and vertices v_{1}, \ldots, v_{n} that trace out a Hamiltonian cycle in G, we define $\psi_{\text {hcycle }}\left[v_{1}, \ldots, v_{n}\right]$ to remove any edge in E other than those in the
cycle, namely

$$
\psi_{\text {hcycle }}\left[v_{1}, \ldots, v_{n}\right](G)=\left(V,\left\{v_{1} v_{2}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}\right) .
$$

Domain of $\psi_{\text {heycle }}\left[v_{1}, \ldots, v_{n}\right]$: The set of graphs $G=(V, E)$ satisfying
(i) $V=\left\{v_{1}, \ldots, v_{n}\right\}$
(ii) $v_{1} v_{2}, \ldots, v_{n-1} v_{n}, v_{n} v_{1} \in E$.

Since $\psi_{\text {hcycle }}$ is only defined for Hamiltonian graphs and outputs a cycle graph, it is clear that it preserves Hamiltonicity. Given the Hamiltonian cycle in the reduced graph it may be seen that all the same edges must be present in the original graph and hence $\psi_{\text {hcycle }}$ is also recoverable.

3.1 Graph reductions based on subgraphs

When it is not possible to reduce a graph based on checking a necessary or sufficient condition, we then begin to look at structures within the graph that could lead to other reductions. For example, one common structure in graphs is the triangle, which is a well-known example of a subgraph that can be replaced with a single vertex in many instances [73]. In particular, triangles may be contracted to a single vertex without altering the Hamiltonicity of the graph under the conditions described in Proposition 3.12 below, which utilises the following well-known lemma.

Lemma 3.11. Let $G=(V, E)$ be a graph and let $\left\{V_{1}, V_{2}\right\}$ be a partition of V. Let E_{12} be the set $\left\{u v \in E \mid u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$; that is, the subset of edges with an endpoint in each part. The total number of edges in E_{12} used in any given Hamiltonian cycle of G must be a positive even integer.

For an illustration of the operation described in the following proposition, refer to Figure 3.2.

Proposition 3.12. Let $G=(V, E)$ be a graph with $|V| \geq 5$ having three degree- 3 vertices $u, v, w \in V$ such that the subgraph induced by $\{u, v, w\}$ is a triangle. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be an altered copy of G wherein the vertices v and w have been contracted into vertex u; that is, v and w have been removed from the set of vertices, and edges from u to all the other originally adjacent vertices of v and w have been added where not already present. Then G^{\prime} will be Hamiltonian if and only if G is Hamiltonian.

Proof. Note that the vertices $\{u, v, w\}$ are connected to $V \backslash\{u, v, w\}$, the remainder of the vertices in G, via exactly three edges. Let these three edges be denoted by $u a, v b$ and $w c$ for the edges respectively incident to u, v and w. Note that the other endpoints a, b and c are not necessarily distinct $(1 \leq|\{a, b, c\}| \leq 3)$.

Suppose that G^{\prime} is Hamiltonian. Let C^{\prime} be any Hamiltonian cycle in G^{\prime}. Then C^{\prime} must use exactly two edges incident to u, that is, two edges from $\{a u, b u, c u\}$. Without loss of generality, suppose that edges $a u$ and $b u$ are used in C^{\prime}. Then C^{\prime} can be viewed as a path P from a to b that avoids vertex u and visits all other vertices, plus $a u$ and $b u$. It is clear that P also exists in G, visiting all vertices other than u, v and w. Thus, a Hamiltonian cycle in G can be formed by $C=P \cup\{u a, u w, w v, v b\}$. An equivalent argument can be made for C^{\prime} containing $a u$ and $c u$, or $b u$ and $c u$. Hence, if G^{\prime} is Hamiltonian, G must be as well.

Now, suppose that G is Hamiltonian. By Lemma 3.11, any Hamiltonian cycle C in G must use exactly two edges of $\{u a, v b, w c\}$, and hence C in G visits all three vertices of the triangle consecutively before traversing the rest of the graph. Without loss of generality, suppose C starts at u, then goes to w, then v. Then C can be defined as $\{u w, w v, v b, u a\} \cup P$, with P defined as earlier. Then a Hamiltonian cycle C^{\prime} exists in G^{\prime}, defined as $P \cup\{a u, b u\}$. Hence, G^{\prime} is Hamiltonian if and only if G is Hamiltonian.

Figure 3.2: A triangle u, v, w of degree-3 vertices in a graph before (left) and after (right) contracting vertices v and w into vertex u. In the resulting graph, u has between 1 and 3 incident edges; one for each distinct neighbour of u, v and w in the original graph (shown here with 3).

Given our particular interest in solving HCP for cubic graphs, it is notable that a majority of cubic graphs contain at least one triangle. Precisely, it has been established [74] that the probability of a random labelled cubic graph containing no 3 -cycles asymptotically approaches $e^{-4 / 3}$ as $|V| \rightarrow \infty$. Therefore, the probability that a random labelled cubic graph contains at least one triangle (3-cycle) approaches $1-e^{-4 / 3} \approx 73.6 \%$. For every such cubic graph apart from K_{4}, the number of vertices can then be reduced by at least 2 while maintaining Hamiltonicity, as shown in Proposition 3.12. Furthermore, it is straightforward to find triangles in polynomial time (for example, by checking if any pair of adjacent vertices has a common neighbour).

In practice, it is useful to distinguish two cases involving triangles of degree-3 vertices: (i) Triangles where each vertex in the triangle has a distinct neighbour outside the triangle; and (ii) triangles where two vertices in the triangle share a common degree-3 neighbour outside the triangle. The latter situation corresponds to a subgraph which is sometimes called a diamond (see Figure 3.3, left.) To handle these two cases we now introduce the graph reductions $\psi_{\text {triangle }}$ and $\psi_{\text {diamond }}$.

Definition 3.13 ($\psi_{\text {triangle }}[u, v, w]$ graph reduction). Given a graph $G=$ (V, E) and vertices $u, v, w \in V$ forming a triangle in G, we define the graph reduction $\psi_{\text {triangle }}[u, v, w]$ to contract v and w into the remaining vertex u as
shown in Figure 3.2. That is,

$$
\begin{aligned}
\psi_{\text {triangle }}[u, v, w](G)= & G^{\prime}=\left(V^{\prime}, E^{\prime}\right) \\
\text { where } V^{\prime}= & V \backslash\{v, w\}, \\
E^{\prime}= & \{a b \in E \mid a, b \notin\{v, w\}\} \\
& \cup\{u b \mid b \in N(v) \cup N(w)\} .
\end{aligned}
$$

Domain of $\psi_{\text {triangle }}[u, v, w]$: The set of all graphs $G=(V, E)$ where the three vertices $u, v, w \in V$ satisfy
(i) $\operatorname{deg}(u), \operatorname{deg}(v), \operatorname{deg}(w)=3$
(ii) $u v, u w, v w \in E$
(iii) $|N(u) \cup N(v) \cup N(w)|=6$.

Definition $3.14\left(\psi_{\text {diamond }}[u, v, w, x]\right.$ graph reduction). Given a graph $G=$ (V, E), we define the function $\psi_{\text {diamond }}[u, v, w, x]$ to contract v, w and x, three vertices of a diamond into the remaining vertex u as shown in Figure 3.3. That is,

$$
\begin{aligned}
\psi_{\text {diamond }}[u, v, w, x](G)= & G^{\prime}=\left(V^{\prime}, E^{\prime}\right) \\
\text { where } V^{\prime}= & V \backslash\{v, w, x\} \\
E^{\prime}= & \{a b \in E \mid a, b \notin\{v, w, x\}\} \\
& \cup\{u b \mid b \in N(x) \backslash\{v, w\}\} .
\end{aligned}
$$

Domain of $\psi_{\text {diamond }}[u, v, w, x]$: The set of graphs $G=(V, E)$ where the four distinct vertices $u, v, w, x \in V$ satisfy
(i) $\operatorname{deg}(u), \operatorname{deg}(v), \operatorname{deg}(w), \operatorname{deg}(x)=3$
(ii) $u v, u w, v w, v x, w x \in E$
(iii) $|N(u) \cap N(x)|=2$.

Figure 3.3: A diamond in a graph before (left) and after (right) its reduction with $\psi_{\text {diamond }}[u, v, w, x]$.

Lemma 3.15. The reductions $\psi_{\text {triangle }}[u, v, w]$ and $\psi_{\text {diamond }}[u, v, w, x]$ preserve Hamiltonicity and are recoverable.

Proof. First consider $\psi_{\text {triangle }}$. It follows as a direct consequence of Proposition 3.12 that $\psi_{\text {triangle }}$ preserves Hamiltonicity, and given any Hamiltonian cycle in the reduced graph the argument made in Proposition 3.12 may be used to recover a Hamiltonian cycle in the original graph.

Next consider $\psi_{\text {diamond }}$. It is clear that $\psi_{\text {diamond }}[u, v, w, x]$ is equivalent to contracting the triangle uvw by applying Proposition 3.12 and then combining u and x into one vertex by contracting the edge between them. Since u and x have degree 2, it is clear that this preserves Hamiltonicity, and the Hamiltonian cycle in the original graph can be recovered accordingly.

3.2 Graph reductions based on Hamiltonian and non-Hamiltonian edges

In this section we consider two useful graph reductions that are applicable in certain situations. In particular, if we know that an edge must be used in all Hamiltonian cycles, or if we know that an edge cannot be used in any Hamiltonian cycle, then under certain additional conditions graph reductions are possible. We begin by defining the concepts of redundant edges, Hamiltonian edges, non-Hamiltonian edges, and forced edges.

Definition 3.16 (Redundant edge). An edge $u v$ of a graph $G=(V, E)$ is said to be redundant if removing the edge does not affect the Hamiltonicity; that is, G is Hamiltonian if and only if $G^{\prime}=(V, E \backslash\{u v\})$ is Hamiltonian.

An edge that is not redundant must therefore be one whose removal changes the graph from being Hamiltonian to being non-Hamiltonian, since a non-Hamiltonian graph cannot be made Hamiltonian through the removal of an edge. In general, a redundant edge may be used in some but not all of the Hamiltonian cycles of a graph.

It is useful to also have terms for edges used in all of the Hamiltonian cycles, and edges used in none of the Hamiltonian cycles of a graph.

Definition 3.17 (Hamiltonian and non-Hamiltonian edges). An edge that is used in every Hamiltonian cycle of a graph will be called a Hamiltonian edge. On the other extreme, an edge not used in any Hamiltonian cycle of a graph will be called a non-Hamiltonian edge.

To avoid ambiguity, we remark that in the case of a non-Hamiltonian graph, where every edge is used in all (zero) yet also none of the Hamiltonian cycles, we will say that every edge of a non-Hamiltonian graph is both Hamiltonian and non-Hamiltonian. This flexibility of notation is necessary as the Hamiltonicity of a graph under consideration will typically not be known in advance. Note that in earlier literature, Hamiltonian edges and non-Hamiltonian edges are sometimes called a-edges and b-edges respectively [39]. Note also that, by definition, non-Hamiltonian edges are necessarily redundant.

In general, determining whether any given edge is redundant, Hamiltonian, non-Hamiltonian, or in none of these categories, is as difficult as solving HCP. However, there are some special cases where we can efficiently (in polynomial time) identify Hamiltonian edges or non-Hamiltonian edges from the structure of a graph. In practice then, it is useful to distinguish be-
tween the set of all Hamiltonian edges of a graph, which may not be known a priori, and the subset of Hamiltonian edges that have been deduced as such by some efficient calculation. Henceforth, the latter will be referred to as forced edges, ${ }^{2}$ defined as follows.

Definition 3.18 (Forced edges). Given a graph $G=(V, E)$, a subset of the edges $F \subseteq E$ is said to be forced if every edge of F is known to be a Hamiltonian edge. For convenience, we additionally define $F(v) \subseteq V$ to be the subset of vertices that are adjacent to $v \in V$ using an edge in F.

Observe that if $|F(v)|>2$ for any vertex $v \in V$, then G is necessarily non-Hamiltonian. This condition will be checked as part of the upcoming graph reduction algorithm.

One efficient test for Hamiltonian edges, which will be used in the upcoming graph reduction algorithm to identify a set of forced edges F, is given in Lemma 3.19 as follows.

Lemma 3.19. Let $G=(V, E)$ be a graph, let $e \in E$ be an edge in G, and let $G^{\prime}=(V, E \backslash\{e\})$ be the graph obtained by removing the edge e. A sufficient condition for e to be a Hamiltonian edge is that G^{\prime} is not 2-connected.

Proof. All Hamiltonian graphs are known to be 2-connected. Since G^{\prime} is not 2-connected, there cannot be a Hamiltonian cycle using the edges of G^{\prime}. Therefore, if G has a Hamiltonian cycle it must necessarily pass through the edge e. Alternatively, if G is not Hamiltonian, then e is a Hamiltonian edge by definition.

The following result follows immediately from Definition 3.18.
Lemma 3.20. Let $G=(V, E)$ be a graph, let $v \in V$ be a vertex, and let $F \subseteq E$ be a set of forced edges. If $|F(v)|=2$ and $\operatorname{deg}(v) \geq 3$, v has incident non-Hamiltonian edges going to each vertex of the set $N(v) \backslash F(v)$.

[^2]By Lemma 3.20, we define below a Hamiltonicity-preserving graph reduction $\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right]$. After using this reduction, it is common for there to be a path of three or more forced edges in the graph. This can in turn be handled by another Hamiltonicity-preserving graph reduction $\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right]$ in the upcoming Definition 3.22.

Definition 3.21 ($\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right]$ graph reduction). Given a graph $G=$ (V, E), we define the function $\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right]$ to remove from the graph the non-Hamiltonian edges $u v_{1}, \ldots, u v_{m}$, that is

$$
\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right](G)=\left(V, E \backslash\left\{u v_{1}, \ldots, u v_{m}\right\}\right) .
$$

An example is shown in Figure 3.4.
Domain of $\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right]$: The set of graphs $G=(V, E)$ having vertices $u, v_{1}, \ldots, v_{m} \in V$ such that the edges $u v_{1}, \ldots, u v_{m} \in E$ are all known to be non-Hamiltonian edges (for example by Lemma 3.20.)

Figure 3.4: A graph with known Hamiltonian edges (green) and known nonHamiltonian edges (red), before (left) and after (right) its reduction with $\psi_{\text {forced }}\left[u, v_{1}, v_{2}\right]$.

Definition $3.22\left(\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right]\right.$ graph reduction). Given a graph $G=$ (V, E), we define the function $\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right]$ for $m \geq 3$ to contract the vertices v_{2}, \ldots, v_{m-1} into the vertex v_{1}, that is

$$
\begin{aligned}
\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right](G) & =G^{\prime}=\left(V^{\prime}, E^{\prime}\right) \\
\text { where } V^{\prime} & =V \backslash\left\{v_{2}, \ldots, v_{m-1}\right\} \\
E^{\prime} & =\left\{a b \in E \mid a, b \notin\left\{v_{2}, \ldots, v_{m-1}\right\}\right\} \cup\left\{v_{1} v_{m}\right\} .
\end{aligned}
$$

An example is shown in Figure 3.5.
Domain of $\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right]$: The set of graphs $G=(V, E)$ satisfying
(i) $v_{1}, \ldots, v_{m} \in V$
(ii) $v_{i} \neq v_{j}$ when $i \neq j$ and $i, j=1, \ldots, m$
(iii) $3 \leq m \leq|V|-1$
(iv) $\operatorname{deg}\left(v_{i}\right)=2$ for $i=1, \ldots, m-1$
(v) $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m-1} v_{m} \in E$.

Figure 3.5: A graph with a path of degree-2 vertices, before (left) and after (right) its reduction with $\psi_{\text {path }}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$.

Lemma 3.23. The reductions $\psi_{\text {forced }}\left[u, v_{1}, \ldots, v_{m}\right]$ and $\psi_{\text {path }}\left[v_{1}, \ldots, v_{m}\right]$ preserve Hamiltonicity and are recoverable.

Proof. Consider first $\psi_{\text {forced }}$. It follows from Definition 3.21 that this reduction does not remove any edges that could be in a Hamiltonian cycle. Hence, any Hamiltonian cycle in the reduced graph must also exist in the original graph. Therefore, $\psi_{\text {forced }}$ preserves Hamiltonicity and is recoverable.

Next consider $\psi_{\text {path }}$. Suppose there is a Hamiltonian cycle C^{\prime} in the reduced graph. Since v_{1} has degree $2, C^{\prime}$ must contain $v_{1} v_{m}$, plus a path P from v_{m} to v_{1}. Then a Hamiltonian cycle can be recovered in the original graph consisting of P and the edges $v_{1} v_{2}, \ldots, v_{m-1} v_{m}$. Using an equivalent argument, it can be seen that if there is a Hamiltonian cycle C in the original graph, there is a corresponding Hamiltonian cycle in the reduced graph. Hence, $\psi_{\text {path }}$ preserves Hamiltonicity and is recoverable.

3.3 Edge orbits and their classification

Another way to identify applicable graph reductions is to examine the symmetries of a graph. In the presence of certain symmetries, it is possible to take a subset of the edges of a graph and efficiently demonstrate that one or more of those edges is redundant and hence can be removed while preserving Hamiltonicity. These edge subsets are constructed from the symmetries of the graph by the action of the graph's automorphism group, defined below.

In this section we introduce the necessary background, with examples, before providing a novel classification of edge orbits. This classification will be used to identify redundant edges in the following section. The interested reader is referred to Godsil and Royle [32] for a more in-depth treatment of automorphism groups and related theory from a graph theoretic perspective.

Definition 3.24 (Graph automorphism). Given a graph $G=(V, E)$, a bijection φ from V to itself is called an automorphism of G if, for any pair of vertices $u, v \in V, \varphi(u) \varphi(v) \in E$ if and only if $u v \in E$.

Definition 3.25 (Automorphism group). Let $\Gamma=\operatorname{Aut}(G)$ denote the set of all automorphisms of a graph G. These automorphisms form a group under the operation of composition, where the identity element is the identity map on V [40]. Any automorphisms other than the identity map, if they exist, are called non-trivial automorphisms. The cardinality of an automorphism group is called its order.

Figure 3.6: A 6 -vertex graph with automorphism group of order 8 .

Example 3.26. Consider the graph in Figure 3.6 and its automorphism group of order $8, \Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{8}\right\}$ below, where each bijection on the
vertices $\{1,2, \ldots, 6\}$ is represented as a product of disjoint cycles:

$$
\begin{array}{ll}
\varphi_{1}=() & \varphi_{5}=(12)(56) \\
\varphi_{2}=(12) & \varphi_{6}=(1526)(34) \\
\varphi_{3}=(56) & \varphi_{7}=(1625)(34) \\
\varphi_{4}=(15)(26)(34) & \varphi_{8}=(16)(25)(34) .
\end{array}
$$

Each non-trivial automorphism represents a symmetry of the graph. For example, φ_{2} represents a reflection of the vertices 1 and 2 , if we picture the other four vertices lying in a different plane. The automorphism φ_{4} represents a horizontal reflection of Figure 3.6. As another example, φ_{8} represents a rotation through the centre of the figure of the graph by 180 degrees. Note that $\left\{\varphi_{2}, \varphi_{4}\right\}$ is a set of generators for the whole group, meaning that any element of the group can be written as some composition of those two elements:

$$
\begin{array}{ll}
\varphi_{1}=\varphi_{2}^{2} & \varphi_{5}=\left(\varphi_{2} \circ \varphi_{4}\right)^{2} \\
\varphi_{2}=\varphi_{2} & \varphi_{6}=\varphi_{2} \circ \varphi_{4} \\
\varphi_{3}=\varphi_{4} \circ \varphi_{2} \circ \varphi_{4} & \varphi_{7}=\varphi_{4} \circ \varphi_{2} \\
\varphi_{4}=\varphi_{4} & \varphi_{8}=\varphi_{2} \circ \varphi_{4} \circ \varphi_{2} .
\end{array}
$$

It may be shown that this particular group is equivalent to the dihedral group of order 8 , which is the symmetry group of a square [35].

Definition 3.27 (Asymmetric graphs). A graph is said to be asymmetric if it has no non-trivial automorphisms. Table 3.7 shows the number of asymmetric and non-asymmetric cubic graphs for up to 20 vertices.

See Figure 3.8 for an example of an asymmetric graph with 12 vertices; the Frucht graph, described in [29].

Definition 3.28 (Vertex and edge orbits). Given a graph $G=(V, E)$ and its automorphism group $\Gamma=\operatorname{Aut}(G)$, the vertex orbit of a vertex $v \in V$,

Table 3.7: Number of asymmetric and non-asymmetric cubic graphs by order up to 20 vertices.

Vertices	Asymmetric	Non-asymmetric
4	0	1
6	0	2
8	0	5
10	0	19
12	5	80
14	103	406
16	1547	2513
18	22124	19177
20	327580	182909
Total	351359	205112

Figure 3.8: The Frucht graph, one of the five minimal asymmetric cubic graphs.
denoted by $\Gamma(v)$, is defined as the set

$$
\Gamma(v)=\{\varphi(v) \mid \varphi \in \Gamma\}
$$

Similarly, given an edge $u v \in E$, we define the edge orbit of $u v$, denoted by $\Gamma(u v)$, as the set

$$
\Gamma(u v)=\{\varphi(u) \varphi(v) \mid \varphi \in \Gamma\}
$$

We now define the notations $\Gamma(V)$ and $\Gamma(E)$, which by Lemma 3.30 below are partitions of the vertices and edges of a graph, respectively. Note the distinction between $\Gamma(V)$ and $\Gamma(v)$, the latter being the orbit of a particular vertex v as defined above; similarly for $\Gamma(E)$ and $\Gamma(u v)$.

Definition 3.29 (Vertex and edge partitions). Let $G=(V, E)$ be a graph, and let Γ be the automorphism group of G. The partition of the vertices V by Γ is defined as

$$
\Gamma(V)=\{\Gamma(v) \mid v \in V\}
$$

and the partition of the edges E by Γ is defined as

$$
\Gamma(E)=\{\Gamma(u v) \mid u v \in E\}
$$

The following result is well-known and follows from the definitions of vertex and edge orbits.

Lemma 3.30. Let Γ be the automorphism group of a graph $G=(V, E)$. The sets $\Gamma(V)$ and $\Gamma(E)$ are partitions of V and E, respectively.

Example 3.26 (Continued). Continuing the previous example of graph automorphisms, we now consider the vertex and edge orbits of the graph shown previously in Figure 3.6. Recalling that

$$
\begin{aligned}
& \Gamma=\{(),(12),(56),(15)(26)(34),(12)(56), \\
&(1526)(34),(1625)(34),(16)(25)(34)\}
\end{aligned}
$$

it is now straightforward to calculate the vertex orbits

$$
\left.\begin{array}{rl}
\Gamma(1)=\Gamma(2)= & \Gamma(5)
\end{array}=\Gamma(6)=\{1,2,5,6\}, ~ \begin{array}{rl}
& =\Gamma(3)
\end{array}\right)=\lceil(4)=\{3,4\},
$$

and to calculate the edge orbits

$$
\begin{aligned}
\Gamma(12)=\Gamma(56) & =\{12,56\} \\
\Gamma(13)=\Gamma(23)=\Gamma(45)=\Gamma(46) & =\{13,23,45,46\} \\
\Gamma(34) & =\{34\}
\end{aligned}
$$

Furthermore, this example clearly shows the partitioning of the six vertices
and seven edges, so that

$$
\begin{aligned}
\Gamma(V) & =\{\{1,2,5,6\},\{3,4\}\} \\
\Gamma(E) & =\{\{12,56\},\{13,23,45,46\},\{34\}\}
\end{aligned}
$$

These vertex and edge orbits induced by Γ are shown with colours in Figure 3.9.

Figure 3.9: The graph shown previously in Figure 3.6 but with its orbits shown in different colours. On the left, vertices are filled with either red or yellow according to their vertex orbit. On the right, edges are highlighted with blue, red or yellow according to their edge orbit.

Of the partitions $\Gamma(V)$ and $\Gamma(E)$, it is particularly the edge partition $\Gamma(E)$ of a graph that we have found to be useful for identifying graph reductions. The motivating principle here is that graphs typically contain edges not required for forming a particular Hamiltonian cycle, and the goal is to remove some of these edges. That is, given a graph G and a Hamiltonian cycle C in G, then all the edges not used in C are redundant with respect to determining the Hamiltonicity G. Alternatively, if G does not contain a Hamiltonian cycle, then all of the edges can be removed and the graph will remain non-Hamiltonian. Unfortunately, without a priori knowledge of a Hamiltonian cycle (or their absence), deciding if a particular edge is redundant would, in general, require solving two instances of the NP-complete decision problem; deciding if the graph is Hamiltonian, and then deciding if the graph is Hamiltonian after the removal of the edge in question. However, in the case of graphs with certain edge orbits, some of these redundant edges can be efficiently identified by finding incompatible edge sets, as will be shown in the following section, Section 3.4.

For the purposes of finding edge orbits containing redundant edges, it is convenient to have a classification of edge orbits. Such a classification is developed in Theorem 3.36 through the use of the Propositions 3.33 and 3.34 and Lemma 3.35. Although a classification with more categories may be possible, this classification provides enough granularity for our purposes while still allowing us to classify orbits efficiently.

Prior to introducing our classification of edge orbits, we first provide a definition of semiregular graphs:

Definition 3.31. (Semiregular bipartite graph) Let $G=(U \cup V, E)$ be a bipartite graph with bipartition $\{U, V\}$. The graph G is said to be semiregular if every vertex in U has the same degree, and every vertex in V has the same degree. Further, if the degrees of vertices in U and V are given by a and b respectively, we may specifically say that G is (a, b)-semiregular or equivalently (b, a)-semiregular. Note that if $a=b$ then G is also a-regular.

Given any graph $G=(V, E)$, its automorphism group Γ, and any edge $e \in E$, Propositions 3.33 and 3.34 and Lemma 3.35 are concerned with the subgraph H induced by the edges of $\Gamma(e)$. Propositions 3.33 and 3.34 require the following definition.

Definition 3.32 (Line graph). Let $G=(V, E)$ be a graph. The line graph of G, denoted by $L(G)$, is defined as the graph

$$
L(G)=\left(E, E^{\prime}\right),
$$

where

$$
E^{\prime}=\left\{(u v, w x) \in E^{2}| |\{u, v, w, x\} \mid=3\right\} .
$$

That is, each vertex of $L(G)$ corresponds to an edge of G, and two vertices of $L(G)$ are adjacent precisely when their two corresponding edges in G are incident to a common vertex.

Figure 3.10 shows an example of a graph and its line graph.

Figure 3.10: A graph (left) and its line graph (right). Vertices of the line graph are labelled with their corresponding edges in the original graph.

Proposition 3.33. If H is the subgraph induced by an edge orbit $\Gamma(e)$, then the line graph of H is regular.

Proof. First we consider the case that $|\Gamma(e)|=1$, that is, the orbit contains just a single edge. In this case the line graph $L(H)$ is a singleton graph and is 0 -regular.

Otherwise, $|\Gamma(e)|>1$ so there are multiple edges in the orbit and we may consider taking any two distinct vertices $l_{1}, l_{2} \in L(H)$. To complete the proof it must be shown that $\operatorname{deg}\left(l_{1}\right)=\operatorname{deg}\left(l_{2}\right)$.

Let vertex l_{1} in the line graph correspond to an edge $u_{1} v_{1} \in \Gamma(e)$, and similarly let vertex l_{2} in the line graph correspond to an edge $u_{2} v_{2} \in \Gamma(e)$. Note that the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ may share at most one endpoint, so there are at least three distinct vertices amongst $u_{1}, u_{2}, v_{1}, v_{2}$. Since $u_{1} v_{1}$ and $u_{2} v_{2}$ are both in $\Gamma(e)$, by definition there exists an automorphism $\varphi \in \Gamma$ such that $\varphi\left(u_{1} v_{1}\right)=u_{2} v_{2}$. Without loss of generality, assume the indices are set so that $\varphi\left(u_{1}\right)=u_{2}$ and $\varphi\left(v_{1}\right)=v_{2}$.

The degree of l_{1} in the line graph can be expressed as the cardinality of a particular subset of vertices neighbouring u_{1} and v_{1} in H as follows.

$$
\operatorname{deg}\left(l_{1}\right)=\mid\left\{w \in V \backslash\left\{u_{1}, v_{1}\right\} \mid w u_{1} \in \Gamma(e) \text { or } w v_{1} \in \Gamma(e)\right\} \mid .
$$

By definition of edge orbits and the automorphism φ, a condition such as $w u_{1} \in \Gamma(e)$ holds if and only if $\varphi(w) \varphi\left(u_{1}\right) \in \Gamma(e)$. Therefore,

$$
\begin{aligned}
\operatorname{deg}\left(l_{1}\right) & =\mid\left\{w \in V \backslash\left\{u_{1}, v_{1}\right\} \mid \varphi(w) \varphi\left(u_{1}\right) \in \Gamma(e) \text { or } \varphi(w) \varphi\left(v_{1}\right) \in \Gamma(e)\right\} \mid \\
& =\mid\left\{w \in V \backslash\left\{u_{1}, v_{1}\right\} \mid \varphi(w) u_{2} \in \Gamma(e) \text { or } \varphi(w) v_{2} \in \Gamma(e)\right\} \mid
\end{aligned}
$$

Applying the automorphism φ to both sides of the condition $w \in V \backslash\left\{u_{1}, v_{1}\right\}$, and letting $x=\varphi(w)$, we obtain

$$
\begin{aligned}
\operatorname{deg}\left(l_{1}\right) & =\mid\left\{\varphi(w) \in V \backslash\left\{\varphi\left(u_{1}\right), \varphi\left(v_{1}\right)\right\} \mid \varphi(w) u_{2} \in \Gamma(e) \text { or } \varphi(w) v_{2} \in \Gamma(e)\right\} \mid \\
& =\mid\left\{x \in V \backslash\left\{u_{2}, v_{2}\right\} \mid x u_{2} \in \Gamma(e) \text { or } x v_{2} \in \Gamma(e)\right\} \mid \\
& =\operatorname{deg}\left(l_{2}\right)
\end{aligned}
$$

The following result is inspired by a similar result in [32], Lemma 1.7.5, which is stated in terms of line graphs rather than edge orbits. The proof below is more detailed, with [32] leaving steps to the reader as an exercise.

Proposition 3.34. If H is the subgraph induced by an edge orbit $\Gamma(e)$ and H_{1} is a connected component of H, then either H_{1} is non-bipartite and regular, or H_{1} is bipartite and semiregular.

Proof. First we deal with the trivial case that H_{1} contains only one edge; H_{1} is then bipartite and $(1,1)$-semiregular. Otherwise, H_{1} contains at least two edges. Since H_{1} is a connected component of H, it follows that $L\left(H_{1}\right)$ must be a connected component of $L(H)$. By Proposition 3.33, the line graph $L(H)$ is regular, therefore $L\left(H_{1}\right)$ is also regular with the same degree; let this degree be k.

Let $u v$ and $v w$ be any two adjacent edges in H_{1}. Calculating the degrees of u, v and w with respect to H_{1}, the k-regularity of $L\left(H_{1}\right)$ guarantees that

$$
\begin{aligned}
& \operatorname{deg}(u)+\operatorname{deg}(v)=k+2, \text { and } \\
& \operatorname{deg}(v)+\operatorname{deg}(w)=k+2
\end{aligned}
$$

Equating the left hand sides yields

$$
\operatorname{deg}(u)=\operatorname{deg}(w)
$$

Since the only condition on vertices u and w is that they have a path of length 2 between them (via v in this case), we may conclude that all pairs of vertices in H_{1} with a path of length 2 between them necessarily have the same degree.

Let A be the set containing u and all vertices with paths of even length from u. Similarly, let B be the set containing v and all vertices with paths of even length from v. Applying the argument above, all vertices in A have the same degree, and all vertices in B have the same degree; let these degrees be a and b respectively. Since every vertex in H_{1} has a path of even length to either u or v, or to both, $A \cup B$ contains all the vertices of H_{1}. Finally, there are just two cases to consider: If H_{1} contains a cycle of odd length, then $A=B$ and thus H_{1} will be non-bipartite and a-regular. Otherwise, if H_{1} contains no cycles of odd length, then $A \cap B=\emptyset$, and H_{1} must be bipartite and (a, b)-semiregular.

Lemma 3.35. If the subgraph H induced by an edge orbit $\Gamma(e)$ has more than one connected component, every such component of H is isomorphic to the other components.

Proof. Let H_{1} and H_{2} be two connected components of H, let $u_{1} v_{1}$ be an edge of H_{1}, and let $u_{2} v_{2}$ be an edge of H_{2}. By the definition of $\Gamma(e)$, there must be an automorphism $\varphi \in \Gamma$ such that $\varphi\left(u_{1}\right) \varphi\left(v_{1}\right)=u_{2} v_{2}$. Note that φ must also map any neighbouring edges of $u_{1} v_{1}$, if any, to neighbouring edges of $u_{2} v_{2}$. This argument can be repeated inductively on those neighbouring edges, et cetera, until the entire connected component H_{1} is mapped to H_{2} by φ. Similarly, it can be shown that the entire connected component H_{2} is mapped to H_{1} by φ^{-1}. Since a one-to-one mapping exists between H_{1} and
H_{2}, they are by definition isomorphic, and as H_{1} and H_{2} could be any two components of H, this proves that all the components are isomorphic.

For Theorem 3.36 below, we use the notation $k G$, where $k \in \mathbb{N}$ and G is a graph, to denote the disjoint union of k copies of G. The notations X_{r} and $X_{r, s}$, further described in the theorem, are used to denote generic regular graphs with minimum degree 3, and semiregular bipartite graphs with minimum degree 2 , respectively.

Theorem 3.36. Given a graph $G=(V, E)$ and any edge $e \in E$, the edge orbit $\Gamma(e)$ may be classified into one of the following six mutually exclusive types that can be identified by the number of connected components k in the subgraph H induced by $\Gamma(e)$ and the structure of those components.
($k K_{2}$) Each component of H is a complete graph with two vertices.
$\left(k P_{2}\right)$ Each component of H is a path graph with two edges.
$\left(k S_{r}\right)$ Each component of H is a star graph with r edges, where $r \geq 3$.
$\left(k C_{n}\right)$ Each component of H is a cycle graph with n vertices, where $n \geq 3$.
$\left(k X_{r}\right)$ Each component of H is isomorphic to the same r-regular nonbipartite cyclic graph X_{r}, where $r \geq 3$.
($k X_{r, s}$) Each component of H is isomorphic to the same (r, s)-semiregular bipartite cyclic graph $X_{r, s}$, where $r \geq s \geq 2$ and $r \geq 3$.

Proof. Firstly, observe that each of the six cases are mutually exclusive. Next, by Lemma 3.35 we know that all the connected components of H are isomorphic to one another so we only need to consider one connected component H_{1} of H. We will show that H_{1} is in one of the six forms listed in the theorem. The primary tool to distinguish amongst forms is Proposition 3.33; each edge in H_{1} has the same number of neighbouring edges. Thus, we take any edge e from H_{1} and let l be the degree of $L\left(H_{1}\right)$.

By Proposition 3.34 we know that H_{1} is either regular or semiregular. In the former case let a and b both equal the degree of H_{1}. In the latter case let a and b be such that $a \geq b$ and H_{1} is (a, b)-semiregular. The following easily-verified equation will be used several times in the remainder of the proof:

$$
\begin{equation*}
a+b=l+2 . \tag{3.1}
\end{equation*}
$$

For the purposes of this proof it is useful to separate the cases based on whether H_{1} is cyclic or acyclic. First we consider all the possible cases when H_{1} is acyclic: If $l=0$, then H_{1} contains only one edge and the orbit is of type $k K_{2}$. If $l=1$, then H_{1} must be a 2 -path and the orbit must be of type $k P_{2}$. Otherwise, if $l \geq 2$, then we will show that H_{1} is a star graph S_{l+1}. Since we assume H_{1} is acyclic, it must contain vertices of degree 1 . Therefore, $b=1$ and by (3.1), $a=l+1 \geq 3$. It is clear that the star graph S_{a} is the only (1, a)-semiregular connected graph, thus H_{1} is isomorphic to S_{a} and the orbit is of type $k S_{a}$.

In turn, we consider all the possible cases when H_{1} is a cyclic graph. If H_{1} contains a cycle, it necessarily follows that $l \geq 2$ since each edge on a cycle has at least two adjacent edges; this also implies that $a \geq b \geq 2$. The first case to consider here is when $l=2$; in this case the lower bounds on a and b, together with (3.1), imply that $a=b=2$. Since H_{1} is connected this leaves a cycle graph as the only possibility and thus the orbit is of type $k C_{n}$ with n being the number of edges in H_{1}. Lastly, we consider the case when $l \geq 3$; here, the lower bound on b and ordering of a and b, together with (3.1), imply that $a \geq 3$. There are two sub-cases, depending on the bipartiteness of H_{1} : If H_{1} is non-bipartite, then by Proposition $3.34 H_{1}$ must be regular with $a=b=\frac{l+2}{2}$, so the orbit is of type $k X_{a}$. Otherwise, H_{1} must be bipartite and (a, b)-semiregular, so the orbit is of type $k X_{a, b}$.

Table 3.12: Percentage of edges in each type of orbit, as classified by Theorem 3.36, for non-asymmetric cubic graphs by order up to 20 vertices.

Vertices	Graphs	$k K_{2}$	$k P_{2}$	$k S_{r}$	$k C_{n}$	$k X_{r}$	$k X_{r, s}$
4	1	0	0	0	0	100	0
6	2	16.67	0	0	33.33	50.00	0
8	5	25.00	13.33	0	31.67	20.00	10.00
10	19	38.60	19.65	3.16	29.12	5.26	4.21
12	80	49.58	27.64	1.67	20.28	0	0.83
14	406	58.95	29.04	0.74	10.60	0.25	0.42
16	2513	65.91	26.87	0.24	6.84	0.04	0.10
18	19177	71.43	24.21	0.04	4.28	5×10^{-3}	0.03
20	182909	76.08	21.18	0.01	2.72	1×10^{-3}	7×10^{-3}
≤ 20	205112	75.55	21.51	0.02	2.91	3×10^{-3}	0.01

Since we have enumerated all possible cases, H must belong to one of the six listed types, concluding the proof.

An example graph containing five of these six orbit types may be seen in Figure 3.11. Interestingly, the graph displayed is the only instance of NHNB20 to feature at least five different classes of orbit. The only type of orbit not shown in Figure 3.11 is the regular X_{r} type, which for cubic graphs can only appear in edge-transitive graphs, for example the Petersen graph in Figure 1.3.

Table 3.12 shows the prevalence of edges in non-asymmetric cubic graphs up to order 20 constituting each of these types of orbits.

Figure 3.11: An 18 -vertex non-Hamiltonian cubic graph G_{18}^{34034} with six edge orbits highlighted to demonstrate five different types of orbit as classified by Theorem 3.36: The outer cycle orbit $1 C_{6}$ in dashed grey, a triple 2-path orbit $3 P_{2}$ in yellow, a triple edge orbit $3 K_{2}$ in blue, a star orbit $1 S_{3}$ in lilac, a second triple edge orbit $3 K_{2}$ in dashed maroon, and lastly a bipartite (3,2)-semiregular orbit $X_{3,2}$ in red.

3.4 Graph reductions based on edge orbits

We now turn our attention to considering how edge orbits may aid in the identification of graph reductions, and hence introduce several new Hamiltonicitypreserving graph reductions. We begin by defining the concept of an incompatible edge set.

Definition 3.37 (Incompatible edge set). We define a non-empty subset D of the edges E in a graph to be incompatible if it is not possible to use all the edges of D in the same Hamiltonian cycle.

In general, determining whether an arbitrary subset of edges is incompatible requires knowledge of all the Hamiltonian cycles of the graph, so in practice we just consider some common structures that are guaranteed to be incompatible. A list of these common structures is given in Theorem 3.38, although this list is not intended to be exhaustive. Examples of sets of edges satisfying the conditions listed in Theorem 3.38 are shown in Figure 3.13.

Theorem 3.38. Let $G=(V, E)$ be a graph and let $D \subseteq E$ be a non-empty subset of the edges. Then D is incompatible if any of the following three conditions hold:
(i) $|D| \geq 3$ and every edge in D is incident to the same vertex $v \in V$.
(ii) $|D|<|V|$ and the subgraph of G induced by D is a cycle graph.
(iii) $|D|$ is odd and D is an edge cut set such that there exists a connected component G_{1} of $(V, E \backslash D)$ in which every edge of D has exactly one endpoint.

Proof. If G does not contain a Hamiltonian cycle, then by definition any (non-empty) subset of the edges is incompatible. It then remains only to prove the sufficiency of these conditions for Hamiltonian graphs. The proof
will proceed by contradiction; that is, assume G contains a Hamiltonian cycle using every edge of D and let $C \supseteq D$ be the edges of this cycle.

If D meets condition (i), this would imply a Hamiltonian cycle using three or more edges incident to v, which is a contradiction as a Hamiltonian cycle must enter and exit each vertex exactly once. If D meets condition (ii) then D traces out a short cycle (visiting fewer than $|V|$ vertices), and since a cycle graph cannot be a subgraph of a larger cycle graph, $D \nsubseteq C$; a contradiction.

Finally, assume D meets condition (iii). Since D is the edge cut set that separates G_{1} from the remainder of the graph, we have a partition of the vertices into two sets with only edges in D having one endpoint in each set. Then, by Lemma 3.11 the number of edges of D used in C must be even. But this contradicts the assumption that every edge in D, of which there is an odd number, is used.

Figure 3.13: Examples of incompatible edge sets as given by Theorem 3.38. The highlighted edges belong to incompatible edge sets. On the left is a subset of edges with more than two edges incident to the same vertex. In the centre is a short cycle. On the right is an edge cut with an odd number of edges separating a connected component from the rest of the graph.

Lemma 3.39. Suppose that $D \subseteq E$ is an incompatible edge set of the graph $G=(V, E)$. Then at least one of the edges in D is redundant.

Proof. By definition, it is not possible to use all the edges in D in the same Hamiltonian cycle. Therefore, either D is a set containing a single nonHamiltonian edge (in which case it is necessarily redundant), or D contains
more than one edge. In the latter case, without loss of generality, suppose that $u_{1} v_{1} \in D$ and $u_{2} v_{2} \in D$ are not both used in the same Hamiltonian cycle. If there is a Hamiltonian cycle that uses $u_{1} v_{1}$, then $u_{2} v_{2}$ may therefore be removed without changing the Hamiltonicity. Alternatively, if there is not a Hamiltonian cycle that uses $u_{1} v_{1}$, then $u_{1} v_{1}$ may be removed without changing the Hamiltonicity. Therefore, at least one of the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ is redundant.

By Lemma 3.39, any incompatible edge set D is guaranteed to contain a redundant edge. The question then arises; which edges of D are redundant? As mentioned earlier, in general this question is not necessarily any easier to answer than the original decision problem (HCP). Neither is it easy to decide whether a given subset of edges is incompatible. Therefore, we restrict our attention to only certain incompatible edge sets; in particular, those formed by the edge partition $\Gamma(E)$, and only those which can be easily proved to be incompatible. The key to this process is given in the following theorem.

Theorem 3.40. Given a graph $G=(V, E)$, its automorphism group Γ, and an edge orbit $\Gamma(u v) \in \Gamma(E)$, then one of the following conditions must hold:
(i) Every edge of $\Gamma(u v)$ is redundant.
(ii) Every edge of $\Gamma(u v)$ is a Hamiltonian edge.
(iii) In the case that G is non-Hamiltonian, both (i) and (ii).

Proof. If G is not Hamiltonian, then by definition every edge in $E \supseteq \Gamma(u v)$ is a Hamiltonian edge, and is also redundant. Thus for the remainder of the proof we only need to consider graphs G that are Hamiltonian.

Suppose that none of the edges of $\Gamma(u v)$ are redundant. Then by definition, each of the edges is Hamiltonian.

Alternatively, suppose that at least one of the edges of $\Gamma(u v)$ is redundant. Without loss of generality, let $e \in \Gamma(u v)$ be redundant. That is, there exists
a Hamiltonian cycle C in G that does not contain e. Consider any other edge $f \in \Gamma(u v)$. By the definition of the automorphism group Γ, there exists an automorphism φ such that $\varphi(e)=f$. Then there exists a Hamiltonian cycle C^{\prime} using the edges $\{\varphi(c) \mid c \in C\}$. Since $e \notin C$, then it follows that $f \notin C^{\prime}$. Therefore, f is also redundant in G. Since this argument may be made for any other edge in $\Gamma(u v)$, every edge in $\Gamma(u v)$ is redundant.

Definition $3.41\left(\psi_{\text {star }}\left[u, v_{1}, \ldots, v_{m}\right]\right.$ graph reduction $)$. Given a graph $G=$ (V, E), we define the function $\psi_{\text {star }}\left[u, v_{1}, \ldots, v_{m}\right]$ for $m \geq 3$ to remove one redundant edge $u v_{m}$ from G out of a collection of redundant edges $u v_{1}, \ldots, u v_{m}$ incident to the same vertex u. There may be other edges incident to vertex u which are not known to be redundant.

$$
\psi_{\mathrm{star}}\left[u, v_{1}, \ldots, v_{m}\right](G)=\left(V, E \backslash\left\{u v_{m}\right\}\right) .
$$

An example is shown in Figure 3.14.
Domain of $\psi_{\text {star }}\left[u, v_{1}, \ldots, v_{m}\right]$: The set of graphs $G=(V, E)$ having vertices $u, v_{1}, \ldots, v_{m} \in V, m \geq 3$, where the edges $u v_{1}, \ldots, u v_{m} \in E$ are all known to be redundant.

Figure 3.14: A graph with known redundant edges $u v_{1}, u v_{2}, u v_{3}, u v_{4}$, before (left) and after (right) its reduction with $\psi_{\text {star }}\left[u, v_{1}, v_{2}, v_{3}, v_{4}\right]$. If the four edges $u v_{1}, u v_{2}, u v_{3}, u v_{4}$ are in the same orbit (shown in red), their redundancy is guaranteed by Theorems 3.38 and 3.40.

While $\psi_{\text {star }}$ may be used with any incompatible edge set whose edges are incident to a common vertex, there is a special case in which may one use a stronger reduction, defined as follows.

Definition $3.42\left(\psi_{\text {pinwheel }}\left[u, v_{1}, \ldots, v_{m}\right]\right.$ graph reduction). Given a graph $G=(V, E)$, we define the function $\psi_{\text {pinwheel }}\left[u, v_{1}, \ldots, v_{m}\right]$ for $m \geq 2$ to remove all but one edge $u v_{1}$ from G out of a collection of redundant edges $u v_{1}, \ldots, u v_{m}$ in the same edge orbit where: (i) v_{1}, \ldots, v_{m} are adjacent to the vertex u, and (ii) one Hamiltonian edge $u w$ is also incident to u.

$$
\psi_{\text {pinwheel }}\left[u, v_{1}, \ldots, v_{m}\right](G)=\left(V, E \backslash\left\{u v_{2}, \ldots, u v_{m}\right\}\right) .
$$

An example is shown in Figure 3.15.
Domain of $\psi_{\text {pinwheel }}\left[u, v_{1}, \ldots, v_{m}\right]$: The set of graphs $G=(V, E)$ with $u, v_{1}, \ldots, v_{m} \in V, m \geq 2$, and edges $u v_{1}, \ldots, u v_{m} \in E$ that are all known to be redundant and where $\Gamma\left(u v_{1}\right)=\Gamma\left(u v_{2}\right)=\cdots=\Gamma\left(u v_{m}\right)$. Further, there must exist another vertex $w \notin\left\{v_{1}, \ldots, v_{m}\right\}$ in G such that $u w$ is known to be Hamiltonian.

Figure 3.15: A graph with known Hamiltonian edge $u w$ (green) and known redundant edges $u v_{1}, u v_{2}, u v_{3}, u v_{4}$, before (left) and after (right) its reduction with $\psi_{\text {pinwheel }}\left[u, v_{1}, v_{2}, v_{3}, v_{4}\right]$. If the four edges $u v_{1}, u v_{2}, u v_{3}, u v_{4}$ are in the same orbit (shown in red), their redundancy is guaranteed by Theorems 3.38 and 3.40.

We now define another two reductions $\psi_{\text {cycle }}$ and $\psi_{\text {cut }}$, as follows.

Definition 3.43 ($\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{m}\right]$ graph reduction). Given a graph $G=$ (V, E), we define the function $\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{m}\right]$ to remove a redundant edge $v_{m} v_{1}$ from a short cycle of edges $\left(v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m} v_{1}\right)$ in G.

$$
\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{m}\right](G)=\left(V, E \backslash\left\{v_{m} v_{1}\right\}\right)
$$

An example is shown in Figure 3.16.

Domain of $\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{m}\right]$: The set of graphs $G=(V, E)$ with vertices $v_{1}, \ldots, v_{m} \in V, 3 \leq m<|V|$, and with edges forming a short cycle $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m} v_{1} \in E$ where $v_{m} v_{1}$ is known to be redundant.

Figure 3.16: A graph with known redundant edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{5} v_{1}$ in a short cycle, before (left) and after (right) its reduction with $\psi_{\text {cycle }}\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]$. If the edges are in the same orbit (shown in red), their redundancy is guaranteed by Theorems 3.38 and 3.40.

Definition $3.44\left(\psi_{\text {cut }}\left[u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{m}, v_{m}\right]\right.$ graph reduction). Given a graph $G=(V, E)$, we define $\psi_{\text {cut }}\left[u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{m}, v_{m}\right]$ to remove a redundant edge $u_{m} v_{m}$ from an edge cut set $\left\{u_{1} v_{1}, \ldots, u_{m} v_{m}\right\} \subset E$ with odd cardinality.

$$
\psi_{\text {cut }}\left[u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{m}, v_{m}\right](G)=\left(V, E \backslash\left\{u_{m} v_{m}\right\}\right) .
$$

An example is shown in Figure 3.17.
Domain of $\psi_{\text {cut }}\left[u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{m}, v_{m}\right]$: The set of graphs $G=(V, E)$ with distinct vertices $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m} \in V$ and edges $u_{1} v_{1}, \ldots, u_{m} v_{m}$ such that m is odd and $\left\{u_{1} v_{1}, \ldots, u_{m} v_{m}\right\}$ is a minimal cut set; that is, removing all the edges in the set disconnects the graph but adding any one of them back decreases the number of (connected) components. Note that this is an incompatible edge set by Theorem 3.38.

Lemma 3.45. The reductions $\psi_{\text {star }}, \psi_{\text {pinwheel }}, \psi_{\text {cycle }}$ and $\psi_{\text {cut }}$ preserve Hamiltonicity and are recoverable.

Proof. In the cases of $\psi_{\text {star }}, \psi_{\text {cycle }}$ and $\psi_{\text {cut }}$, only a single redundant edge is removed, and so it is clear that these reductions preserve Hamiltonicity.

Figure 3.17: A graph with known redundant edges $u_{1} v_{1}, u_{2} v_{2}$ and $u_{3} v_{3}$ forming a minimal cut set, before (left) and after (right) its reduction with $\psi_{\text {cut }}\left[u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}\right]$. If the edges are in the same orbit (shown in red), their redundancy is guaranteed by Theorems 3.38 and 3.40.

Furthermore, any Hamiltonian cycle in the reduced graph must necessarily be present in the original graph, so recoverability follows immediately.

In the case of $\psi_{\text {pinwheel }}$, recovery is similarly trivial, so all that remains is to prove that Hamiltonicity is preserved. From the definition of $\psi_{\text {pinwheel }}$, the reduction removes edges $u v_{2}, \ldots, u v_{m}$, each of which is redundant and lies in the edge orbit $\Gamma\left(u v_{1}\right)$, from a graph G containing a Hamiltonian edge $u w$. Note that any Hamiltonian cycle in G must therefore contain $u w$, and hence contain at most one of the edges $u v_{1}, \ldots, u v_{m}$. If none of the edges $u v_{1}, \ldots, u v_{m}$ are used in a Hamiltonian cycle of G, then the removal of any of these edges cannot alter the Hamiltonicity of G and thus Hamiltonicity is preserved. Alternatively, let C be a Hamiltonian cycle in G using one of the edges $e \in\left\{u v_{1}, \ldots, u v_{m}\right\}$. Then, since $\Gamma\left(u v_{1}\right)=\cdots=\Gamma\left(u v_{m}\right)$, there is an automorphism φ such that $\varphi(e)=u v_{1}$. Hence, there is a Hamiltonian cycle that contains $u v_{1}$, and so the removal of $u v_{2}, \ldots, u v_{m}$ does not alter the Hamiltonicity. Therefore, in all cases, Hamiltonicity is preserved.

3.5 Graph reduction algorithm

Having introduced eleven Hamiltonicity-preserving graph reductions and also characterised the situations in which they may be applied, it is now possible to describe a graph reduction algorithm that searches for applicable reduc-
tions or applicable compositions of these reductions. Before presenting the algorithm, it is useful to consider what should be done when multiple reductions are applicable to a given graph simultaneously; that is, should there be a preferred order to search for reductions?

Firstly it is clear that the reductions ψ_{H} and ψ_{NH} which reduce the graph to the maximum extent possible (to a trivially Hamiltonian or nonHamiltonian graph) should have the highest priority if they are determined to be applicable. Next, it may be argued that the reductions $\psi_{\text {triangle }}$ and $\psi_{\text {diamond }}$, being based on particular subgraphs, may reasonably be applied prior to reductions based on edge orbits: Since non-trivial edge orbits are only present when there is some kind of symmetry in the graph, any subgraphs whose modification would affect the edge orbits would necessarily share in the same symmetries. Therefore, as long as all such subgraphs are modified in the same way (e.g. by $\psi_{\text {triangle }}$ or $\psi_{\text {diamond }}$), the symmetries upon which the orbits are based will remain. In fact, by contracting subgraphs that are not involved in symmetries, new symmetries may appear.

Table 3.18 shows empirical results on cubic graphs with at least one triangle, between 6 and 20 vertices in order. After performing all applicable $\psi_{\text {triangle }}$ and $\psi_{\text {diamond }}$ reductions, the order of the automorphism group increased by a factor of 2.91 on average and the number of asymmetric graphs reduced by 25.7%. By a similar argument, any reductions made to or at forced edges (such as $\psi_{\text {forced }}$ and $\psi_{\text {path }}$) will not affect symmetries elsewhere in the graph as long as all such structures are modified in the same way.

Based on this reasoning, the upcoming algorithm first searches for conditions allowing the reductions ψ_{H} and ψ_{NH}, then for reductions based on forced edges $\left(\psi_{\text {forced }}\right.$ and $\left.\psi_{\text {path }}\right)$, then for reductions based on subgraphs ($\psi_{\text {triangle }}$ and $\left.\psi_{\text {diamond }}\right)$ before finally searching for reductions based on edge orbits. For these reductions based on edge orbits, the only reduction that should have a clear priority over the others is $\psi_{\text {hcycle }}$, which we will use when an

Table 3.18: Automorphism group size of cubic graphs of order between 6 and 20 with at least one triangle, before and after performing all applicable $\psi_{\text {triangle }}$ and $\psi_{\text {diamond }}$ reductions. The mean factor increase in the order of the automorphism group for the graphs modified is also given, as well as the number of asymmetric graphs $(|\Gamma|=1)$ before and after.

| | | Mean $\|\Gamma\|$ | | | | Asymmetric | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vertices | Graphs | Before | After | Factor | | Before | After |
| 6 | 1 | 12.00 | 24.00 | $\times 2.00$ | | 0 | 0 |
| 8 | 3 | 10.67 | 33.33 | $\times 4.08$ | | 0 | 0 |
| 10 | 13 | 9.23 | 31.08 | $\times 5.71$ | | 0 | 0 |
| 12 | 63 | 7.83 | 24.89 | $\times 7.36$ | | 5 | 0 |
| 14 | 399 | 5.31 | 18.30 | $\times 7.49$ | | 89 | 4 |
| 16 | 3268 | 3.88 | 12.42 | $\times 6.15$ | | 1253 | 317 |
| 18 | 33496 | 2.70 | 7.58 | $\times 4.29$ | | 17372 | 9016 |
| 20 | 412943 | 2.05 | 4.47 | $\times 2.76$ | | 253557 | 193017 |
| All | 450186 | 2.11 | 4.77 | $\times 2.91$ | | 272276 | 202354 |

edge orbit $C_{|V|}$ is present, because that leads to a graph that is simple to establish as Hamiltonian. For the other reductions based on edge orbits $\left(\psi_{\text {star }}, \psi_{\text {pinwheel }}, \psi_{\text {cycle }}\right.$, and $\left.\psi_{\text {cut }}\right)$ it is less obvious how the priorities should be ranked, or even if the ordering makes any significant difference. To investigate this, a target set of graphs was chosen and all applicable reductions at each step of the process were compared to determine an appropriate order in which to search for these reductions.

The target graphs chosen to evaluate the edge orbit reduction order were the 45982 cubic graphs up to order 18. Each graph was first reduced only with $\psi_{\mathrm{H}}, \psi_{\mathrm{NH}}, \psi_{\text {forced }}, \psi_{\text {path }}, \psi_{\text {triangle }}$, and $\psi_{\text {diamond }}$, following the first stage of the algorithm later presented in Algorithm 3.1. Next, the orbits were examined to see which graph reductions based on edge orbits would be applicable. If $\psi_{\text {hcycle }}$ was applicable, or otherwise if only one edge orbit reduction was applicable, then it would be applied to the graph and the process would restart from the beginning on the new graph. However, when two or more edge orbit reductions (other than $\psi_{\text {hcycle }}$) were applicable, each of them would be
attempted one at a time before restarting the reduction search, recursively determining which choice could potentially lead to a graph with the fewest edges. Unfortunately, always trying all possible orderings of reductions makes the algorithm run in exponential time, so a specific order must be fixed.

The differences in the number of resulting edges, even if zero, were then recorded for each pair of available reductions at every step. In total, there were 615115 pairwise comparisons in processing 6041 (13\%) of the starting graphs, summaries of which are shown in Tables 3.19 to 3.21. Note that the application of $\psi_{\text {cycle }}$ was split into two separate cases; one where there is a short cycle orbit $k C_{n}$, and the other where there is a $k K_{2}$ or $k P_{2}$ orbit that forms a short cycle when combined with forced edges. These two cases were compared separately as they occur in fundamentally different circumstances despite using the same reduction function; Table 3.20 shows the former as $\psi_{\text {cycle }}$ and the latter as $\psi_{\text {cycle (forced) }}$.

From Table 3.19 it can be seen that on these graphs where there are multiple ways to order the sequence of reductions, the average best and worst case performance is very close. Specifically, as a percentage of edges removed with the best possible reduction ordering, the worst case ordering still reduces 90% as many edges on average. Table 3.20 shows a matrix of the number of times each pair of reductions was compared, and Table 3.21 shows a matrix of the number of times one reduction outperformed another.

To determine a suitable ranking for the reductions, we consider the proportion of comparisons where each reduction is outperformed by others. For example, $\psi_{\text {cut }}$ is never outperformed, so it is reasonable to give it the highest priority amongst the five. If we then eliminate $\psi_{\text {cut }}$ from the table of comparisons, that then leaves $\psi_{\text {star }}$ as never outperformed by other remaining reductions. Thus we give $\psi_{\text {star }}$ the second highest priority. At this point,
excluding the already ranked $\psi_{\text {cut }}$ and $\psi_{\text {star }}$, we have:

$$
\begin{aligned}
\text { Comparisons where } \psi_{\text {pinwheel outperformed }} & =\frac{128+115}{220233+9466} \\
\text { Comparisons where } \psi_{\text {cycle }} \text { outperformed } & =\frac{645+198}{220233+2478} \quad \approx 0.38 \%, \\
\text { Comparisons where } \psi_{\text {cycle (forced) }} \text { outperformed } & =\frac{12}{9466+2478} \quad \approx 0.10 \% .
\end{aligned}
$$

Hence, $\psi_{\text {cycle (forced) }}$ has the lowest ratio here, but $\psi_{\text {pinwheel }}$ is very close. Just considering the 9466 comparisons between this pair, $\psi_{\text {cylce (forced) }}$ outperforms $\psi_{\text {pinwheel }} 115$ times compared to only 12 times for the converse. Therefore $\psi_{\text {cycle (forced) }}$ is given the third highest priority, and of the remaining two reductions $\psi_{\text {pinwheel }}$ is outperformed less often, leaving $\psi_{\text {cycle }}$ to be the lowest priority of the five reductions.

Table 3.19: Cubic graphs up to order 18 where multiple graph reductions of the types $\psi_{\text {star }}, \psi_{\text {pinwheel }}, \psi_{\text {cycle }}$, and $\psi_{\text {cut }}$ were simultaneously applicable at the same point. The table shows the mean difference in the number of edges reduced between the best and worst orders to apply the reductions.

			Mean reduction in $\|E\|$		
Vertices	Graphs	Comparisons	Worst	Best	Gap
8	1	1	9	9	0
10	5	179	10.20	12.40	2.20
12	22	1491	11.86	12.91	1.05
14	122	7664	13.97	15.86	1.89
16	751	65748	16.13	17.91	1.78
18	5140	540032	17.71	19.62	1.91
≤ 18	6041	615115	17.41	19.30	1.89

Table 3.20: The number of comparisons made between each pair of reductions. A dash indicates that the given pair were never both applicable at the same point for the graphs tested.

	$\psi_{\text {star }}$	$\psi_{\text {pinwheel }}$	$\psi_{\text {cycle }}$	$\psi_{\text {cycle (forced) }}$	$\psi_{\text {cut }}$
$\psi_{\text {star }}$	238	-	569	75	776
$\psi_{\text {pinwheel }}$	-	372544	220233	9466	-
$\psi_{\text {cycle }}$	569	220233	1394	2478	529
$\psi_{\text {cycle (forced) }}$	75	9466	2478	6802	-
$\psi_{\text {cut }}$	776	-	529	-	11

Table 3.21: The number of comparisons between reductions where one reduction led to a graph with fewer edges than the other reduction. For example, the 450 in the $\psi_{\text {star }}$ row and $\psi_{\text {cycle }}$ column indicates that $\psi_{\text {star }}$ outperformed $\psi_{\text {cycle }}$ on 450 occasions. A dash indicates that the given pair were never both applicable at the same point for the graphs tested.

Werse	$\psi_{\text {star }}$	$\psi_{\text {pinwheel }}$	$\psi_{\text {cycle }}$	$\psi_{\text {cycle (forced) }}$	$\psi_{\text {cut }}$
$\psi_{\text {star }}$	10	-	450	0	0
$\psi_{\text {pinwheel }}$	-	826	645	12	-
$\psi_{\text {cycle }}$	0	128	119	0	0
$\psi_{\text {cycle (forced) }}$	0	115	198	0	-
$\psi_{\text {cut }}$	11	-	466	-	0

Having determined a suitable ordering in which to search for reductions, Algorithms 3.1 to 3.4 are presented on the following pages. For the sake of readability and modularity, the main algorithm, GraphReduction (Algorithm 3.1), makes repeated calls to three separate functions, each of which is a graph reduction algorithm in its own right: ForcedEdgeReduction (Algorithm 3.2) searches for reductions based on forced edges, SubgraphReduction (Algorithm 3.3) searches for reductions based on particular subgraphs, and EdgeOrbitReduction (Algorithm 3.4) searches for reductions based on edge orbits.

Prior to the pseudocode of the algorithms, Figure 3.22 shows a flowchart of the main steps in Algorithm 3.1, and Figure 3.23 shows flowcharts of the main steps in Algorithms 3.2 to 3.4. A GNU Octave / MATLAB implementation may be found in Appendix C. Section 3.6 presents empirical results of Algorithm 3.1 on the set NHNB20, with a discussion of the findings, concluded with three examples of graphs reduced by the algorithm.

Theorem 3.46. Algorithm 3.1 terminates in polynomial time for graphs of bounded degree.

Proof. At each iteration of the algorithm, it either terminates, or removes at least one edge. Since the graph is of bounded degree, there is order $\mathcal{O}(n)$
edges, so there are polynomially many iterations. Hence, we focus on the complexity of each iteration.

During each iteration we may need to check for one or more of the following: Connectivity, the criterion of Ore's theorem, the presence of triangles or diamonds, consecutive degree-2 vertices, cycles containing forced edges, and minimal edge cut sets. Each of these can be checked in polynomial time. During this process, we may also need to find the edge orbits. The edge orbits can be computed in polynomial time since finding a set of generators for the automorphism group is known to be polynomial-time equivalent to the graph isomorphism problem [54] which in turn is of polynomial complexity for graphs of bounded degree [53]. Hence, Algorithm 3.1 will terminate in polynomial time for graphs of bounded degree.

In practice, we do not compute the edge orbits by using graph isomorphism directly, instead choosing to use the excellent nauty package [55], which we found to terminate very quickly for the graphs we considered. We remark that the restriction of Theorem 3.46 to graphs of bounded degree can be avoided in some sense by converting a non-sparse HCP instance to a sparse instance, and then considering the latter instead. Indeed, any HCP instance can be converted to a cubic instance having the same Hamiltonicity, with only linear growth in the size of the graph [22].

In the upcoming pseudocode, $\psi_{\text {identity }}$ denotes the identity function mapping any graph G to itself. Where S is any subset of edges in a graph $G=(V, E)$, we use $N_{S}(u)$ to denote the set of vertices adjacent to $u \in V$ using only edges in S; more precisely, $N_{S}(u)=\{v \in V \mid u v \in S\}$. Further, if $S \subseteq E$ then let G_{S} denote the subgraph induced by the edges in S. Similarly, if $U \subseteq V$ then let G_{U} denote the subgraph induced by the vertices in U. Comments in the pseudocode are preceded by \triangleright. Each graph reduction algorithm returns a graph reduction rather than the reduced graph itself.

Figure 3.22: Flowchart of Algorithm 3.1.

Figure 3.23: Flowchart of Algorithms 3.2 to 3.4. Refer to Figure 3.22 for key.

```
Algorithm 3.1 Find a Hamiltonicity-preserving graph reduction
Input: \(G=(V, E)\) is a graph
Output: A Hamiltonicity-preserving graph reduction
function GraphReduction \((G)\)
    \(\psi \leftarrow \psi_{\text {identity }}\)
    loop
        if \(\psi=\psi_{\mathrm{NH}} \circ \cdots\) then
            return \(\psi\)
        if \(G\) is not 2-connected then
            \(\psi \leftarrow \psi_{\mathrm{NH}} \circ \psi\)
            return \(\psi\)
        if \(|E|=\frac{1}{2}|V|(|V|-1)\) then
                \(\psi \leftarrow \psi_{\mathrm{H}} \circ \psi \quad \triangleright G\) is a complete graph \(K_{n}, n \geq 3\)
                return \(\psi\)
            if \(\min _{u, v \in V ; u v \notin E ; u \neq v}(\operatorname{deg}(u)+\operatorname{deg}(v)) \geq|V|\) then
                \(\psi \leftarrow \psi_{\mathrm{H}} \circ \psi \quad \triangleright\) Hamiltonian by Ore's Theorem (3.7)
                return \(\psi\)
        \(\psi_{\text {next }} \leftarrow\) ForcedEdgeReduction \((G)\)
        if \(\psi_{\text {next }} \neq \psi_{\text {identity }}\) then
            \(\psi \leftarrow \psi_{\text {next }} \circ \psi\)
            \(\mathrm{G} \leftarrow \psi_{\text {next }}(G)\)
            restart loop
        \(\psi_{\text {next }} \leftarrow \operatorname{SubGRaphREDUCTion}(G)\)
        if \(\psi_{\text {next }} \neq \psi_{\text {identity }}\) then
            \(\psi \leftarrow \psi_{\text {next }} \circ \psi\)
            \(\mathrm{G} \leftarrow \psi_{\text {next }}(G)\)
            restart loop
        \(\psi_{\text {next }} \leftarrow\) EdgeOrbitReduction \((G)\)
        if \(\psi_{\text {next }} \neq \psi_{\text {identity }}\) then
            \(\psi \leftarrow \psi_{\text {next }} \circ \psi\)
            \(\mathrm{G} \leftarrow \psi_{\text {next }}(G)\)
            restart loop
        return \(\psi\)
                                \(\triangleright\) No further reductions found
```

```
Algorithm 3.2 Find a graph reduction based on forced edges
Input: \(G=(V, E)\) is a graph
Output: A Hamiltonicity-preserving graph reduction
    function ForcedEdgeReduction \((G)\)
    \(F \leftarrow\) the forced edge set \(\left\{u v \in E \mid G_{E \backslash\{u v\}}\right.\) is not 2-connected \(\}\)
    if \(\max _{u \in V}|F(u)|>2\) then
            return \(\psi_{\mathrm{NH}} \quad \triangleright\) Too many forced edges at a vertex
        if \(\exists u \in V\) such that \(|F(u)|=2\) and \(\operatorname{deg}(u)>2\) then
            \(v_{1}, v_{2}, \ldots \leftarrow\) the elements of \(N(u) \backslash F(u)\)
            return \(\psi_{\text {forced }}\left[u, v_{1}, v_{2}, \ldots\right]\)
        \(U \leftarrow\{v \in V \mid \operatorname{deg}(v)=2\}\)
        for each connected component \(P=\left(P_{V}, P_{E}\right) \subseteq G_{U}\) do
            if \(\left|P_{V}\right|>1\) then
                if \(|V|=3\) then
                    return \(\psi_{\text {identity }} \quad \triangleright G\) already reduced to \(K_{3}\)
                \(u_{1}, u_{2}, \ldots \leftarrow\) a sequence of vertices tracing out \(P\)
                if \(\left|P_{V}\right|>|V|-2\) then
                    truncate \(u_{1}, u_{2}, \ldots\) to the first \(|V|-2\) items
                \(v \leftarrow\) the vertex in \(V \backslash P_{V}\) adjacent to the last vertex in \(u_{1}, u_{2}, \ldots\)
                return \(\psi_{\text {path }}\left[u_{1}, u_{2}, \ldots, v\right]\)
        else
            \(u \leftarrow\) the one element of \(P_{V}\)
            \(v, w \leftarrow\) the two elements of \(N(u)\)
            if \(v w \in E\) then
                return \(\psi_{\text {cycle }}[v, u, w] \quad \triangleright v w\) is a redundant edge
        return \(\psi_{\text {identity }}\)
```

```
Algorithm 3.3 Find a graph reduction based on subgraphs
Input: \(G=(V, E)\) is a graph
Output: A Hamiltonicity-preserving graph reduction
    function SubgraphReduction \((G)\)
        if \(|V| \leq 4\) then
            return \(\psi_{\text {identity }} \quad \triangleright\) No subgraph reductions applicable
        for each vertex set \(\{u, v, w\}\) inducing a triangle in \(G\) do
        if \(\operatorname{deg}(u), \operatorname{deg}(v), \operatorname{deg}(w)=3\) and \(|N(u) \cup N(v) \cup N(w)|=6\) then
                return \(\psi_{\text {triangle }}[u, v, w]\)
    for each vertex set \(\{u, v, w, x\}\) inducing a diamond in \(G\) do
        order the values of \(u, v, w, x\) so that \(u v w\) and \(v w x\) are triangles
        if \(\operatorname{deg}(u), \operatorname{deg}(v), \operatorname{deg}(w), \operatorname{deg}(x)=3\) and \(|N(u) \cap N(x)|=2\) then
            return \(\psi_{\text {diamond }}[u, v, w, x]\)
    return \(\psi_{\text {identity }}\)
```

```
Algorithm 3.4 Find a graph reduction based on edge orbits
Input: \(G=(V, E)\) is a graph
Output: A Hamiltonicity-preserving graph reduction
    function EdgeOrbitReduction \((G)\)
        classify type of each orbit \(O \in \Gamma(E)\) according to Theorem 3.36
        \(F \leftarrow\) the forced edge set \(\left\{u v \in E \mid G_{E \backslash\{u v\}}\right.\) is not 2-connected \(\}\)
        \(\triangleright\) An orbit may trace out a complete Hamiltonian cycle
        if \(\max _{u \in V} \operatorname{deg}(u) \geq 3\) and \(\exists O \in \Gamma(E)\) of type \(1 C_{|V|}\) then
        \(v_{1}, \ldots, v_{n} \leftarrow\) a sequence of vertices tracing out \(G_{O}\)
        return \(\psi_{\text {hcycle }}\left[v_{1}, \ldots, v_{n}\right]\)
        \(\triangleright\) Search for complete cycles using one or more forced edges
        if \(\exists O \in \Gamma(E)\) of type \(k K_{2}\) or \(k P_{2}\), s.t. \(G_{O \cup F}\) is a \(|V|\)-cycle then
            \(v_{1}, \ldots, v_{n} \leftarrow\) a sequence of vertices tracing out \(G_{O \cup F}\)
        return \(\psi_{\text {hcycle }}\left[v_{1}, \ldots, v_{n}\right]\)
        \(\triangleright\) Search for minimal edge cut sets of odd size
        for each \(O \in \Gamma(E)\) of type \(k K_{2}\) or \(k P_{2}\), s.t. \(k \neq 2^{n} \forall n \in \mathbb{Z}\) do
        if \(G_{E \backslash O}\) has more than one connected component then
            \(u v \leftarrow\) any edge from \(O\)
            \(W \leftarrow\) the vertices of the component of \(G_{E \backslash O}\) containing \(u\)
            \(X \leftarrow\) the vertices of the component of \(G_{E \backslash O}\) containing \(v\)
            \(u_{1} w_{1}, \ldots, u_{a} w_{a} \leftarrow\) the edges in \(O \backslash\{u v\}\) from \(W\) to \(V \backslash W\)
            \(v_{1} x_{1}, \ldots, v_{b} x_{b} \leftarrow\) the edges in \(O \backslash\{v u\}\) from \(X\) to \(V \backslash X\)
            if \(a+1\) is odd then
                return \(\psi_{\text {cut }}\left[u_{1}, w_{1}, \ldots, u_{a}, w_{a}, u, v\right]\)
            else if \(b+1\) is odd then
                return \(\psi_{\text {cut }}\left[v_{1}, x_{1}, \ldots, v_{b}, x_{b}, v, u\right]\)
            \(\triangleright\) Search for orbits containing star graphs or star subgraphs
        if \(\exists O \in \Gamma(E)\) of type \(k S_{r}, k X_{r}\) or \(k X_{r, s}\), then
        \(u \leftarrow\) any vertex in \(V\) s.t. \(\left|N_{O}(u)\right| \geq 3 \triangleright\) Exists by Theorem 3.36
        \(v_{1}, v_{2}, \ldots \leftarrow\) the elements of \(N_{O}(u)\)
        return \(\psi_{\text {star }}\left[u, v_{1}, v_{2}, \ldots\right]\)
            \(\triangleright\) Search for short cycles using one or more forced edges
    if \(\exists O \in \Gamma(E)\) of type \(k K_{2}\) or \(k P_{2}\), s.t. \(G_{O \cup F}\) has a cycle \(C\) then
        \(v_{1}, \ldots, v_{m} \leftarrow\) a sequence of vertices tracing out \(C\) s.t. \(v_{m} v_{1} \in O\)
        return \(\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{m}\right]\)
        \(\triangleright\) Search for forced edge and two orbit edges incident to one vertex
        for each \(u \in V\) s.t. \(|F(u)|=1\) do
        if \(\exists O \in \Gamma(E)\) not of type \(k K_{2}\) s.t. \(\left|N_{O}(u) \backslash F(u)\right| \geq 2\) then
            \(v_{1}, v_{2}, \ldots \leftarrow\) the elements of \(N_{O}(u) \backslash F(u)\)
            return \(\psi_{\text {pinwheel }}\left[u, v_{1}, v_{2}, \ldots\right]\)
        \(\triangleright\) Search for an orbit containing a short cycle
        if \(\exists O \in \Gamma(E)\) of type \(k C_{n}\) s.t. \(n<|V|\) then
        \(v_{1}, \ldots, v_{n} \leftarrow\) a sequence of vertices tracing out one cycle in \(O\)
        return \(\psi_{\text {cycle }}\left[v_{1}, \ldots, v_{n}\right]\)
    return \(\psi_{\text {identity }}\)
```


3.6 Results of reduction algorithm on cubic graphs

This section presents results of applying Algorithm 3.1 to cubic graphs, the efficacy of the Base Model on the resultant reduced graphs, and three step-by-step examples of graphs with reductions.

A summary of the reducible cubic graphs up to order 20 may be seen in Table 3.24. The algorithm is very effective on these graphs, with reductions found for 455533 (81.9%) of the graphs, and on average resulting in the removal of nearly one third of the vertices and edges. Table 3.25 shows a summary of reductions found on Hamiltonian graphs, and Table 3.26 shows a summary of reductions found on the non-Hamiltonian non-bridge graphs; that is, the set NHNB20. A table is not included for bridge graphs, since Algorithm 3.1 reduces every bridge graph to the trivial non-Hamiltonian graph K_{2} after checking connectivity.

Table 3.24: Number of cubic graphs reducible by Algorithm 3.1 by initial order up to 20 . For the resulting reduced graphs, the table shows the mean number of vertices and edges, and the mean percentage decrease in the number of edges.

			Mean size of red. graphs			
N	Graphs	Red.	$\%$	$\|V\|$	$\|E\|$	$\% \downarrow\|E\|$
4	1	1	100	3	3	50.0
6	2	2	100	3	3	66.7
8	5	5	100	3	3	75.0
10	19	18	94.7	3.28	3.39	77.4
12	85	75	88.2	4.71	5.68	68.4
14	509	433	85.1	6.08	7.95	62.1
16	4060	3403	83.8	8.48	11.85	50.6
18	41301	34169	82.7	11.15	16.13	40.2
20	510489	417427	81.8	13.85	20.38	32.0
All	556471	455533	81.9	13.60	19.98	32.9

Since our main goal is to detect non-Hamiltonian graphs, the fact that the algorithm finds reductions for 1980 (94.3\%) of the instances of NHNB20,

Table 3.25: Number of Hamiltonian cubic graphs reducible by Algorithm 3.1, and those reducible to the trivially Hamiltonian graph K_{3}, by initial order up to 20 . For the resulting reduced graphs, the table shows the mean number of vertices and edges, and the mean percentage decrease in the number of edges.

			Red.				Mean size of red. graphs		
N	Graphs	Red.	$\%$	to K_{3}	$\%$	$\|V\|$	$\|E\|$	$\% \downarrow\|E\|$	
4	1	1	100	1	100	3	3	50.0	
6	2	2	100	2	100	3	3	66.7	
8	5	5	100	5	100	3	3	75.0	
10	17	16	94.1	15	88.2	3.44	3.69	77.4	
12	80	70	87.5	53	66.3	4.71	5.68	68.4	
14	474	398	84.0	232	48.9	6.08	7.95	62.1	
16	3841	3185	82.9	1175	30.6	8.48	11.85	50.6	
18	39635	32516	82.0	6608	16.7	11.15	16.13	40.2	
20	495991	403034	81.3	39553	8.0	13.85	20.38	32.0	
All	540046	439227	81.3	47644	8.8	14.01	19.98	30.6	

Table 3.26: Number of graphs in NHNB20 that are reducible by Algorithm 3.1, and those reducible to the trivially non-Hamiltonian graph K_{2}, by initial order. For the resulting reduced graphs, the table shows the mean number of vertices and edges, and the mean percentage decrease in the number of edges.

| | | | | Red. | Mean size of red. graphs | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N | Graphs | Red. | $\%$ | | $\%$ | $\|V\|$ | $\|E\|$ | $\% \downarrow\|E\|$ |
| 10 | 1 | 1 | 100 | | 100 | 2 | 1 | 93.3 |
| 12 | 1 | 1 | 100 | 1 | 100 | 2 | 1 | 94.4 |
| 14 | 6 | 6 | 100 | 6 | 100 | 2 | 1 | 95.2 |
| 16 | 33 | 32 | 97.0 | 31 | 93.9 | 2.44 | 1.69 | 93.0 |
| 18 | 231 | 218 | 94.4 | 193 | 83.5 | 3.60 | 3.55 | 86.9 |
| 20 | 1827 | 1722 | 94.3 | 1305 | 71.4 | 5.58 | 6.73 | 77.6 |
| All | 2099 | 1980 | 94.3 | 1537 | 73.2 | 5.30 | 6.27 | 78.9 |

a significant majority, makes it a valuable preprocessing step. To evaluate the extent to which the algorithm assists detection of non-Hamiltonicity, we now compare the feasibility of the Base Model (introduced in Section 2.1.4) before and after reductions on these graphs. Recall that infeasibility of the Base Model is a sufficient condition for non-Hamiltonicity, so an increase in the number of infeasible LPs indicates that detection has improved. A summary of the results are shown in Table 3.27. Note that although the Base Model as originally defined does not detect K_{2} as non-Hamiltonian, it is trivial to include a linear constraint such as $|V| \geq 3$, and thus we treat any graph reduced to K_{2} as having an infeasible Base Model regardless.

Table 3.27: Base Model feasibility of reducible instances of NHNB20, before and after reduction.

		Base LP infeasible			
N	Reduced	Before	$\%$	After	$\%$
10	1	0	0	1	100
12	1	0	0	1	100
14	6	1	16.7	6	100
16	32	6	18.8	31	96.9
18	218	52	23.9	196	89.9
20	1722	418	24.3	1346	78.2
All	1980	477	24.1	1581	79.8

Nearly three quarters of the reduced NHNB cubic graphs are reduced to K_{2}, so these are straightforward to identify as non-Hamiltonian, but the remaining 443 reduced graphs are only reduced partially, as illustrated in Example 3.49 below. Restricting our analysis to these partially reduced graphs, it is natural to consider the question of whether they are more or less likely to be detected as non-Hamiltonian by the LP. That is, do the (partial) graph reductions merely reduce the size of the problem (and hence the computational complexity to solve), or do the reductions fundamentally alter the graph in a way that makes it easier (or harder) to detect as nonHamiltonian? Table 3.28 shows a contingency table with feasibility of the Base Model and after making the partial reduction.

Table 3.28: Base Model feasibility after reduction versus Base Model feasibility before reduction, for instances of NHNB20 that are partially reduced by Algorithm 3.1.

	Feasible after	Infeasible after	Total
Feasible before	397	41	438
Infeasible before	2	3	5
Total	399	44	443

It is worth noting that although two of the partially reduced graphs of NHNB20 have an infeasible Base Model LP pre-reduction and a feasible LP post-reduction, this situation can be eliminated in practice by executing the Base Model both before and after reduction. Then, if either is infeasible, the graph is necessarily non-Hamiltonian. At the cost of executing several LPs (though never more than the number of edges in the graph), the model could even be checked after each individual reduction, to detect any cases where only an intermediate reduced graph induces infeasibility during the reduction process.

For the 443 graphs of NHNB20 that were partially reduced, there may be opportunities for identifying non-Hamiltonicity in the reduced graphs that did not exist for the original graphs. Indeed, prior to applying the partial reductions, only 5 of these 443 instances were detected as non-Hamiltonian by the Base Model, a proportion of $\frac{5}{443} \approx 1.13 \%$. After applying the partial reductions, 44 instances were detected as non-Hamiltonian by the Base Model, a proportion of $\frac{44}{44} \approx 9.9 \%$. This difference in proportions is strongly statistically significant, with an exact McNemar's test giving a p-value of 2.2×10^{-10}. That is, even if we can only make a partial reduction to a given graph, we not only decrease the computational complexity of executing a linear program, but likely also increase the chance of detecting nonHamiltonicity with the Base Model.

It should be noted that many of the 443 partially reduced graphs are isomorphic to one another. In fact, there are only 87 graphs up to iso-
morphism. This means that, in many cases, proving that just one of these partially reduced instances is non-Hamiltonian constitutes a proof of the nonHamiltonicity of multiple instances of NHNB20. Furthermore, 14 of these 87 instances, corresponding to 215 of the 443 partially reduced instances of NHNB20, were themselves isomorphic to smaller cubic graphs of NHNB20 that were not reducible. Hence, improving the detection for those instances would often lead to a proof of the non-Hamiltonicity of many larger instances as well. We now define the problem set NHNB20PR to be this set of 87 nonisomorphic partially reduced graphs. Edge lists of these 87 instances, and the IDs of the 443 instances in NHNB20 to which they correspond, may be found in Appendix A.2. In Chapter 4 we will investigate extensions of the Base Model, and so will have a particular interest in how the extended models perform on instances of NHNB20PR, with the eventual goal of solving even more instances of NHNB20.

Having demonstrated a significant improvement in the number of nonHamiltonian graphs detected through polynomial-time methods, we conclude this chapter with three illustrative examples of the reductions found by Algorithm 3.1. Example 3.47 shows a Hamiltonian graph reduced to K_{3} along with a recovery of a Hamiltonian cycle; Example 3.48 shows the famous Petersen graph reduced to K_{2}; and Example 3.49 shows a NHNB graph for which only a partial reduction is found. In the examples, edges detected as forced are dashed, and orbits consisting of more than one edge are drawn with thick lines highlighted in different colours, while the remaining orbits are black. The italicised comment below each reduction summarises the change made to the graph since the previous step.

Example 3.47. A triangle-free 10 -vertex graph $\left(G_{10}^{14}\right)$ reduced to K_{3} after applying the reduction found by Algorithm 3.1. The example also demonstrates how a Hamiltonian cycle in the original graph can be recovered from a Hamiltonian cycle in the reduced graph.

$\operatorname{GraphReduction}\left(G_{10}^{14}\right)=\psi_{\mathrm{H}} \circ \psi_{\text {path }}[1,4,7,10,8] \circ \psi_{\text {forced }}[7,9]$

$$
\circ \psi_{\text {pinwheel }}[4,7,8] \circ \psi_{\text {path }}[1,2,6,3,5,9]
$$

$\circ \psi_{\text {forced }}[2,5] \circ \psi_{\text {pinwheel }}[1,2,3]$

- $\psi_{\text {cut }}[1,4,5,9,6,10]$.

$\psi_{\text {pinwheel }}[1,2,3] \circ \cdots\left(G_{10}^{14}\right)=$
Edge 13 removed.

$\psi_{\text {forced }}[2,5] \circ \cdots\left(G_{10}^{14}\right)=$
Edge 25 removed.

$\psi_{\text {path }}[1,2,6,3,5,9] \circ \cdots\left(G_{10}^{14}\right)=$
Path 1-2-6-3-5-9
replaced with edge 19.

At this point we have a graph isomorphic to K_{3} with a Hamiltonian cycle 1-8-9. Applying ψ_{H} is not strictly necessary. To recover a Hamiltonian cycle in the original graph we take this cycle and apply inverses of just the $\psi_{\text {path }}$ reductions:
$\psi_{\text {path }}^{-1}[1,4,7,10,8] \circ \cdots\left(G_{10}^{14}\right)=$
Edge 18 replaced with path 1-4-7-10-8.

$\psi_{\text {path }}[1,4,7,10,8] \circ \cdots\left(G_{10}^{14}\right)=$
Path 1-4-7-10-8 replaced with edge 18.

It is straightforward to verify that $1-4-7-10-8-9-5-3-6-2$ is a Hamiltonian cycle in the original graph.

Example 3.48. The Petersen graph, the smallest NHNB cubic graph, is reduced to K_{2} after applying the reduction found by Algorithm 3.1.

$$
\begin{gathered}
\operatorname{GraphReduction}\left(G_{10}^{19}\right)=\psi_{\mathrm{NH}} \circ \psi_{\text {forced }}[10,7] \circ \psi_{\text {pinwheel }}[2,5,6] \\
\circ \psi_{\text {star }}[1,2,3,4] .
\end{gathered}
$$

At this stage Algorithm 3.1 detects more than two forced edges at either vertex 3 or 5 and so it applies ψ_{NH} :

$$
\psi_{\mathrm{NH}} \circ \cdots\left(G_{10}^{14}\right)=
$$

Graph replaced with K_{2}.

Example 3.49. The smallest NHNB cubic graph just partially reduced by Algorithm $3.1\left(G_{16}^{3337}\right)$. Only a single reduction step is found before the algorithm terminates.

$$
\operatorname{GraphReduction}\left(G_{16}^{3337}\right)=\psi_{\text {cycle }}[1,2,5,3] .
$$

Chapter 4

Extending the Base Model

In Chapter 2 we examined a number of linear models for HCP and TSP and concluded that the Base Model is the strongest amongst them in two senses. First, for the non-Hamiltonian HCP instances tested, the Base Model identifies a proper superset of those which the other models identify. Second, for the TSP instances tested, the gaps obtained by the Base Model are on average the smallest amongst the considered models. Indeed, of the 800 TSP instances tested, only eight instances were found for which the Base Model is outperformed, in each case by the SST model.

Rather than trying to further reduce the graphs as done in Chapter 3, an alternative avenue to improve detection of non-Hamiltonian graphs is to seek to tighten the Base Model itself. In this way we aim to induce infeasibility more often for non-Hamiltonian graphs. Additionally, we aim to improve the bounds obtained for TSP instances as this also constitutes a measure of improvement. To this end, we have considered a variety of new kinds of constraints, some of which offered improvement while others appeared to be redundant. In this chapter, we describe the new constraints for which an improvement is observed for the instances considered. The new constraints are grouped into several categories, and for each category we define an extension of the Base Model with the additional constraints. In
particular, we will consider extensions based on the SST model, the presence of forced edges, the presence of 3 -cuts, and an eigenvalue of Hamiltonian permutation matrices.

Some of the new constraints exploit features that may only be present in some graphs, but all the constraints are presented in such a way that they reduce to an empty set of constraints when the features are absent, ensuring that the models are well-defined for any graph. It should be noted that the constraints proposed in this chapter are not designed to be minimal in a redundancy sense, although we will remove redundant constraints when such redundancies are obvious. With only one exception, the extended models do not have a higher time complexity than the Base Model. That is, the number of variables and constraints remains $\mathcal{O}\left(n^{3}\right)$ for sparse graphs and $\mathcal{O}\left(n^{4}\right)$ for dense graphs. For the one model that does have a higher time complexity than the Base Model, it will be shown that the set of $\mathcal{O}\left(n^{4}\right)$ constraints responsible may be replaced by a stronger set of $\mathcal{O}\left(n^{3}\right)$ constraints.

Throughout this chapter we test the extended models on the two HCP problem sets NHNB20 and NHNB20PR, and on the two TSP problem sets ATSP16A and ATSP16AC. NHNB20, introduced in Section 2.2.2, is the set of all 2099 non-Hamiltonian non-bridge cubic graphs up to order 20, an index of which may be found in Appendix A.1. NHNB20PR, introduced in Section 3.6, is the set of 87 graphs to which the 443 partially reduced instances of NHNB20 are isomorphic. The TSP problem sets are the ATSP16A and ATSP16AC sets constructed in Section 2.2.4, each containing 400 instances. Recall that each instance of ATSP16A is a complete instance that is based on an underlying cubic graph. For each instance in ATSP16A, there is a corresponding cubic instance in ATSP16AC where only the edges in the underlying cubic graph are used. Note that, for any instance of ATSP16A and the corresponding instance in ATSP16AC, those edges in common for both instances have the same costs.

We conclude this introduction by recalling the Base Model and the results of the Base Model on the four problem sets. The following sections then introduce the extended models along with their results on the problem sets, showing the improvements gained. Then, in Section 4.5, we define a combined model that uses constraints from all the extended models. We will demonstrate that this combined model is stronger than any of its constituent models, in the sense that instances exist for which the combined model outperforms all the other extended models considered. Finally, in Section 4.6, we introduce a method that produces a set of subgraphs for any given HCP instance, and uses the combined model on these subgraphs to attempt to infer non-Hamiltonicity of the original instance. We will show that this approach is successful for almost all instances of NHNB20 and NHNB20PR.

Recall that the Base Model is defined in terms of variables $x_{r, i a}^{k}$ for all vertices $k, i=1, \ldots, n$, steps $r=0, \ldots, n-1$, and adjacent vertices $a \in N(i)$. The value of $x_{r, i a}^{k}$ is intended to be 1 if the $\operatorname{arc} i \rightarrow a$ is used r steps after vertex k in the Hamiltonian cycle, and 0 otherwise. For convenience, we restate the (relaxed) linear constraints of the Base Model, from Section 2.1.4. Unless otherwise restricted, the indices i, j, and k range from 1 to n and that the indices r and s range from 0 to $n-1$.

$$
\begin{array}{lr}
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(i)} x_{r-1, a i}^{k}=0 & \forall i, k, r ; r \neq 0 \\
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(k)} x_{n-r, k a}^{i}=0 & \forall i, k, r ; r \neq 0 \\
\sum_{r=0}^{n-1} x_{r, i a}^{k}-\sum_{r=0}^{n-1} x_{r, i a}^{j}=0 & \forall i, j, k ; a \in N(i) ; k \neq j \\
\sum_{k=1}^{n} x_{r, i a}^{k}-\sum_{k=1}^{n} x_{s, i a}^{k}=0 & \forall i, r, s ; a \in N(i) ; s \neq r \\
\sum_{r=0}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, k \\
\sum_{k=1}^{n} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, r \tag{4.6}
\end{array}
$$

$$
\begin{array}{rr}
x_{0, i a}^{k}=0 & \forall i, k ; a \in N(i) ; i \neq k \\
x_{r, i a}^{k} \geq 0 & \forall k, r ; a \in N(i) .
\end{array}
$$

When used in a TSP sense, recall from Section 2.2.3 that we may define the objective function, which we seek to minimise, to be

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j \in N(i)} c_{i j} x_{0, i j}^{i} \tag{4.9}
\end{equation*}
$$

We now summarise the results of the Base Model on the problem sets NHNB20 and NHNB20PR in Table 4.1, the former of which were presented in Section 2.2.2. Similarly, results of the Base Model on ATSP16A and ATSP16AC from Section 2.2.5 are summarised in Table 4.2. As in previous chapters, all results in this chapter were generated using the CPLEX ${ }^{\mathrm{TM}}$ Callable Library version 12.5 [42]. For the HCP instances we report the number of graphs for which the Base Model is infeasible, and for the TSP instances we report the sum and mean of the gaps. Recall that for a TSP instance and a given model, the gap is defined to be the difference between the length of the optimal tour and the lower bound obtained by that model. Also recall from Definition 2.11 that for the non-Hamiltonian instances of ATSP16AC, where no optimal tour exists, we define the gap to be the difference between the length of the optimal tour of the corresponding complete instance of ATSP16A, and the lower bound obtained by the model on the ATSP16AC instance. Finally, recall that the TSP instances were specifically constructed to induce large gaps between the solution found by the Base Model and the length of the optimal tour in the complete instances; indeed, no instances in these sets have zero gap for the Base Model, with the minimum gap being approximately 48.7 for both sets.

In the upcoming extended models, we report not only infeasibility and gaps, but also the improvements relative to the Base Model. That is, for HCP instances we report the number of instances that are feasible for the Base Model but infeasible for the extended model, if any. For TSP instances, we

Table 4.1: Results of the Base Model on (a) NHNB20 and (b) NHNB20PR, by order n.
(b) NHNB20PR
(a) NHNB20

n	Graphs	Infeasible
10	1	0
12	1	0
14	6	1
16	33	6
18	231	52
20	1827	418
All	2099	477

n	Graphs	Infeasible
12	1	0
13	1	1
14	7	3
15	5	4
16	9	4
17	23	3
18	17	0
19	6	3
20	18	0
All	87	18

Table 4.2: Results of the Base Model on the 200 Hamiltonian-derived and 200 NHNB-derived instances in each of (a) ATSP16A and (b) ATSP16AC.
(a) ATSP16A

Subset	Sum of gaps	Mean
Ham.-derived	16864.2	84.3
NHNB-derived	289064.2	1445.3
All	305928.4	764.8

(b) ATSP16AC

Subset	Sum of gaps	Mean
Ham.-derived	16864.2	84.3
NHNB-derived	288979.2	1444.9
All	305843.4	764.6

report the number of instances for which the optimal solution changed, and the mean improvement in the gap for those changed instances. Specifically, we consider the solution to have changed for a TSP instance, if in the given extended model there is not a feasible solution with the same $x_{r, i a}^{k}$ values as those in the optimal feasible solution from the Base Model.

4.1 Merging SST with the Base Model

As seen in Section 2.2.5, there are four instances from the ATSP16A problem set (and their corresponding four instances in the ATSPC16AC cubic problem set) for which the SST model outperforms the Base Model. It follows that the constraints in SST prevent some linear combinations of cycles and subcycles that are not prevented by constraints in the Base Model. Therefore, a natural extension to the Base Model is to include variables and constraints analogous to those in the SST model. We begin by mapping the $x_{i j}$ variables from SST to the $x_{r, i a}^{k}$ variables of the Base Model and including the appropriately reformulated constraints from SST in the Base Model.

Recall that SST is defined in terms of the following variables:

- $x_{i j}$, intended to be 1 if the arc $i \rightarrow j$ is used in the cycle, and 0 otherwise.
- $y_{i j}$, intended to be 1 if, starting from vertex 1 , vertex j comes later than vertex i in the cycle, and 0 otherwise.
- $f_{i j}^{v}$, intended to 1 if, starting from vertex 1 , the arc $i \rightarrow v$ is used prior to visiting vertex j, and 0 otherwise.

While the Base Model contains no natural analogues to the y and f variables of SST, the $x_{i j}$ variables of SST can easily be expressed in terms of the $x_{r, i a}^{k}$ variables from the Base Model. Specifically, inspecting the objective functions of the two models it is clear that we can express the variables $x_{i j}$ of SST as

$$
x_{i j}=x_{0, i j}^{i} .
$$

Hence the constraints from SST, based on the more general constraints for potentially non-complete graphs, (2.25), (2.29), (2.43), (2.44), (2.50) and (2.58) - (2.66) may be reformulated for the Base Model variables as follows. Unless otherwise restricted, all indices range from 1 to n.

$$
\begin{array}{lr}
\sum_{j \in N(i)} x_{0, i j}^{i}=1 & \forall i \\
\sum_{i \in N(j)} x_{0, i j}^{i}=1 & \forall j \\
y_{i j}+y_{j i}=1 & \forall i, j ; 1 \neq i \neq j \\
y_{i j} \geq x_{0,1 i}^{1} & \forall j ; i \in N(1) ; 1 \neq i \neq j \\
y_{j i} \geq x_{0, i 1}^{i} & \forall j ; i \in N(1) ; 1 \neq i \neq j \\
0 \leq x_{0, i j}^{i} \leq 1 & \forall i, j ; i \neq j \\
y_{i j} \geq 0 & \forall i, j ; 1 \neq i \neq j \\
y_{i j}+x_{0, j i}^{j}+y_{j l}+y_{l i} \leq 2 & \forall i, l ; j \in N(i) ; 1 \neq i \neq j \neq l \\
y_{i j}+0+y_{j l}+y_{l i} \leq 2 & \forall i, l ; j \notin N(i) ; 1 \neq i \neq j \neq l \\
0 \leq f_{i j}^{v} \leq x_{0, i v}^{i} & \forall i, j ; v \in N(i) ; 1 \neq i \neq v \neq j \\
\sum_{v \in N(i) \backslash\{1, j\}} f_{i j}^{v}+x_{0, i j}^{i}=y_{i j} & \forall i ; j \in N(i) ; 1 \neq i \neq j \\
\sum_{v \in N(i) \backslash\{1\}} f_{i j}^{v}+0 & \\
x_{0,1 v}^{1}+\sum_{i \in N(v) \backslash\{1, j\}}^{v} f_{i j}^{v}=y_{v j} & \forall i ; j \notin N(i) ; 1 \neq i \neq j \\
0+\sum_{i \in N(v) \backslash\{j\}}^{v} f_{v j}^{v}=y_{v j} & \forall j ; v \in N(1) ; 1 \neq v \neq j
\end{array}
$$

The intention is now to combine the Base Model constraints (4.1) - (4.8) with the reformulated SST constraints (4.10) - (4.23). However, there are some redundancies. Clearly, (4.15) follows from (4.8) and (4.6) where $r=0$. Additionally, (4.10) and (4.11) follow from Lemma 2.13. Hence, adding the non-redundant constraints above to the Base Model, we obtain a new model which we call Base-SST.

Definition 4.1 (Base-SST). Minimise (4.9), subject to (4.1) - (4.8), (4.12) - (4.14) and (4.16) - (4.23). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Table 4.3 shows the results of Base-SST on the problem sets NHNB20 and NHNB20PR. As can be seen, there are no additional instances in these sets for which Base-SST obtains infeasibility, relative to the Base Model.

Table 4.3: Results of Base-SST on (a) NHNB20 and (b) NHNB20PR, by order n. The table also shows the improvement in solved instances relative to the Base Model.
(b) NHNB20PR
(a) NHNB20

n	Graphs	Inf.	Imprv.
10	1	0	0
12	1	0	0
14	6	1	0
16	33	6	0
18	231	52	0
20	1827	418	0
All	2099	477	0

n	Graphs	Inf.	Imprv.
12	1	0	0
13	1	1	0
14	7	3	0
15	5	4	0
16	9	4	0
17	23	3	0
18	17	0	0
19	6	3	0
20	18	0	0
All	87	18	0

Table 4.4 shows the results of Base-SST on the problem sets ATSP16A and ATSP16AC. It can be seen that, unlike for the HCP instances, there is a clear improvement over the Base Model in these instances. Indeed, an improvement is observed in 183 of the 400 instances for both problem sets.

4.1.1 Base-SST model with multiple starting vertices

As seen above, adding the reformulated SST constraints tightens the Base Model. However, the y and f variables used of the SST constraints are intended to describe only a cycle starting at vertex 1 . In contrast, the variables of the Base Model are intended to describe the same cycle n times, from each possible starting vertex. Therefore, a natural extension of Base-SST is

Table 4.4: Results of Base-SST on the 200 NHNB-derived and 200 Hamiltonian-derived instances in each of (a) ATSP16A and (b) ATSP16AC. The table indicates the number of instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.
(a) ATSP16A

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	16667.5	83.3	$101 / 200$	1.947
NHNB-derived	288895.7	1444.5	$82 / 200$	2.054
All	305563.2	763.9	$183 / 400$	1.995

(b) ATSP16AC

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	16667.6	83.3	$101 / 200$	1.947
NHNB-derived	288810.8	1444.1	$82 / 200$	2.054
All	305478.3	763.7	$183 / 400$	1.995

to consider higher-dimensional y and f variables, defined for each possible starting vertex, as below. Note that for consistency with the Base Model variables, where the superscript k denotes the starting vertex, the positions of the indices in the extended y and f variables have been altered.

- $y_{i j}^{k}$, intended to be 1 if, starting from vertex k, vertex j comes later than vertex i in the cycle, and 0 otherwise, for $i, j, k=1 \ldots n ; i \neq j \neq k$.
- $f_{i a, j}^{k}$, intended to be 1 if, starting from vertex k, the arc $i \rightarrow a$ is used prior to visiting vertex j, and 0 otherwise, for $i, j, k=1 \ldots n ; a \in$ $N(i) ; i \neq a \neq j \neq k$.

Constraints (4.12) - (4.14) and (4.16) - (4.23) can now be extended to use these new variables as follows. Since this extension involves effectively just replacing every instance of the index 1 with k in the original constraints, correctness follows from the correctness of Base-SST. Unless otherwise restricted, the indices i, j, k and l range from 1 to n.

$$
\begin{array}{lr}
y_{i j}^{k}+y_{j i}^{k}=1 & \forall k, i, j ; k \neq i \neq j \\
y_{i j}^{k} \geq x_{0, k i}^{k} & \forall k, j ; i \in N(k) ; k \neq i \neq j \\
y_{j i}^{k} \geq x_{0, i k}^{i} & \forall i, j ; i \in N(k) ; k \neq i \neq j \\
y_{i j}^{k}+x_{0, j i}^{j}+y_{j l}^{k}+y_{l i}^{k} \leq 2 & \forall k, i, l ; j \in N(i) ; k \neq i \neq j \neq l \\
y_{i j}^{k}+0+y_{j l}^{k}+y_{l i}^{k} \leq 2 & \forall k, i, l ; j \notin N(i) ; k \neq i \neq j \neq l \\
y_{i j}^{k} \geq 0 & \forall k, i, j ; k \neq i \neq j \\
0 \leq f_{i a, j}^{k} \leq x_{0, i a}^{i} & \forall k, i ; j \in N(i) ; k \neq i \neq j \\
\sum_{a \in N(i) \backslash\{k, j\}} f_{i a, j}^{k}+x_{0, i j}^{i}=y_{i j}^{k}, & \forall k, i ; j \notin N(i) ; k \neq i \neq j \\
\sum_{a \in N(i) \backslash\{k\}} f_{i a, j}^{k}+0=y_{i j}^{k} & \forall k, j ; i \in N(k) ; k \neq i \neq j \\
x_{0, k i}^{k}+\sum_{b \in N(i) \backslash\{k, j\}} f_{b i, j}^{k}=y_{i j}^{k} & \forall k, j ; i \notin N(k) ; k \neq i \neq j . \\
0+\sum_{b \in N(i) \backslash\{j\}}^{k} f_{b i, j}^{k}=y_{i j}^{k} & \forall \neq i \neq a
\end{array}
$$

We remark that (4.28) contains $\mathcal{O}\left(n^{4}\right)$ constraints in the event that the graph is sparse, in contrast to the Base Model which has $\mathcal{O}\left(n^{3}\right)$ constraints in total for sparse graphs. This increase in time complexity is undesirable, however it will be shown in Section 4.1.2 that we can replace both (4.27) and (4.28) with a stronger set of $\mathcal{O}\left(n^{3}\right)$ equality constraints.

We now define the model Base-SST- k to use these modified constraints, where k signifies the use of every starting vertex:

Definition 4.2 (Base-SST- k). Minimise the objective function (4.9), subject to (4.1) - (4.8) and (4.24) - (4.34). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Unfortunately, as with Base-SST, Base-SST- k is not infeasible for any additional instances of NHNB20 or NHNB20PR relative to the Base Model. However, Base-SST- k offers significant improvements in a TSP sense relative
to Base-SST. Table 4.5 shows the results of Base-SST- k on ATSP16A and ATSP16AC, where improvements are given relative to the Base Model. Unlike for Base-SST, for which fewer than half of the instances show an improvement, Base-SST- k induces an improved gap in 348 instances of ATSP16A and ATSP16AC, with the mean improvement in gaps more than three times as large compared to Base-SST, demonstrating the value of considering the different starting points.

Table 4.5: Results of Base-SST- k on the 200 NHNB-derived and 200 Hamiltonian-derived instances in each of (a) ATSP16A and (b) ATSP16AC. The table indicates the number of instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.
(a) ATSP16A

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	15351.9	76.8	$188 / 200$	8.044
NHNB-derived	288363.1	1441.8	$160 / 200$	4.382
All	303715.0	759.3	$348 / 400$	6.360

(b) ATSP16AC

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	15351.9	76.8	$188 / 200$	8.044
NHNB-derived	288278.1	1441.4	$160 / 200$	4.382
All	303630.1	759.1	$348 / 400$	6.360

4.1.2 Extended Base-SST model

A further extension to Base-SST is possible by adding linking constraints for the new y and f variables:

$$
\begin{array}{lr}
y_{i j}^{k}=y_{j k}^{i} & \forall k, i, j ; k<i<j \text { or } j<k<i \\
f_{i a, j}^{k}+f_{i a, k}^{j}=x_{0, i a}^{i} & \forall k, i, j ; a \in N(i) ; k<j ; k \neq i \neq a \neq j . \tag{4.36}
\end{array}
$$

To show the correctness of the new constraints it is sufficient to show that, for any Hamiltonian cycle, the constraints are satisfied if the variables are set
according to their interpretations, which we show in Proposition 4.4 below.
For use in the upcoming proposition and the remainder of this section, we introduce the following definition.

Definition 4.3 (Vertex ordering). A vertex ordering, denoted $\left[v_{0}, v_{1}, \ldots, v_{k-1}\right]$, indicates an ordered sequence of vertices in a cyclic sense. That is, vertex v_{i} occurs at some point after v_{i-1} on a cycle, but before v_{i+1} for all $i=0 \ldots, k-1$, where the subscripts are taken $\bmod k$.

Proposition 4.4. Let $G=(V, E)$ be a graph. Constraints (4.35) and (4.36) are satisfied for any solution of Base-SST-k corresponding to a (directed) Hamiltonian cycle H in G.

Proof. We first show that (4.35) holds. Let $i, j, k \in V$ be distinct and consider the vertex ordering of these vertices in H. There are just two possible vertex orderings; $[k, i, j]$ if i precedes j when starting at k, and $[k, j, i]$ otherwise. See Figure 4.6 for a visualisation. By the stated interpretation of the y variables, in the case of $[k, i, j]$ we should set $y_{i j}^{k}=1$. By cyclicity, it is clear that we should also set $y_{j k}^{i}=y_{k i}^{j}=1$. In the case of $[k, j, i]$ however, $y_{i j}^{k}=0$ since i does not precede j, if starting at k. Similarly, $y_{j k}^{i}=y_{k i}^{j}=0$. Thus regardless of the direction of H and the choice of distinct vertices, we have

$$
\begin{equation*}
y_{i j}^{k}=y_{j k}^{i}=y_{k i}^{j} \quad \forall k \neq i \neq j . \tag{4.37}
\end{equation*}
$$

$[k, i, j]$

$[k, j, i]$

Figure 4.6: An example of two directed Hamiltonian cycles showing both possible vertex orderings of the vertices i, j and k.

Clearly, (4.37) implies (4.35). However, it can also be shown that (4.35), along with (4.24), implies (4.37) despite the latter not imposing ordering requirements on the indices. Without loss of generality, choose three vertices numbered 1,2 and 3 . It is sufficient to show that (4.35), together with the other constraints in Base-SST- k, implies

$$
\begin{align*}
& y_{23}^{1}=y_{31}^{2}=y_{12}^{3} \tag{4.38}\\
& y_{32}^{1}=y_{13}^{2}=y_{21}^{3} . \tag{4.39}
\end{align*}
$$

Immediately from (4.35) we have the two equalities when the indices satisfy $k<i<j$ and $j<k<i$, respectively,

$$
\begin{align*}
& y_{23}^{1}=y_{31}^{2} \tag{4.40}\\
& y_{31}^{2}=y_{12}^{3} . \tag{4.41}
\end{align*}
$$

This implies (4.38). Next, by (4.24) in Base-SST- k, we can exchange the variables in (4.40) and (4.41) as follows:

$$
\begin{align*}
& 1-y_{32}^{1}=1-y_{13}^{2} \tag{4.42}\\
& 1-y_{13}^{2}=1-y_{21}^{3} . \tag{4.43}
\end{align*}
$$

It is clear that (4.42) and (4.43) imply (4.39). Therefore, (4.35) implies (4.37).

Finally we show that (4.36) holds for the Hamiltonian cycle H. Let $i \rightarrow a$ be any arc in G. By the stated interpretation of the $x_{0, i a}^{i}$ variables, we can set $x_{0, i a}^{i}=1$ if the arc $i \rightarrow a$ is used in H, and set $x_{0, i a}^{i}=0$ otherwise. In the latter case, (4.30) will constrain $f_{i a, j}^{k}$ and $f_{i a, k}^{j}$ to be zero regardless of the choice of k and j, so (4.36) holds.

It remains to consider the case that $x_{0, i a}^{i}=1$. Since a must immediately follow i, there are again two possible vertex orderings of the vertices k, i, a and j; either $[i, a, j, k]=[k, i, a, j]$ or $[i, a, k, j]=[j, i, a, k]$. In the former case, the arc $i \rightarrow a$ is used before j if starting at k, so we can set $f_{i a, j}^{k}=1$
and $f_{i a, k}^{j}=0$. In the latter case we can similarly set $f_{i a, j}^{k}=0$ and $f_{i a, k}^{j}=1$. Therefore (4.36) holds in either case.

Additionally to the linking constraints (4.35) and (4.36), we may also replace the inequality constraints (4.27) and (4.28) with a stronger set of equality constraint as follows:

$$
\begin{equation*}
y_{i j}^{1}+y_{i l}^{j}+y_{j l}^{1}+y_{l i}^{1}=2 \quad \forall i, j, l ; 1<i<j<l . \tag{4.44}
\end{equation*}
$$

We remark that in contrast to (4.27) and (4.28) from Base-SST- k, which together comprise $\mathcal{O}\left(n^{4}\right)$ inequality constraints, (4.44) has only $\mathcal{O}\left(n^{3}\right)$ equality constraints.

Proving that (4.44) is stronger than (4.27) and (4.28) is non-trivial. First we consider a more general version of (4.44);

$$
\begin{equation*}
y_{i j}^{k}+y_{i l}^{j}+y_{j l}^{k}+y_{l i}^{k}=2 \quad \forall k, i, j, l ; k \neq i \neq j \neq l . \tag{4.45}
\end{equation*}
$$

We will first prove in Proposition 4.5 that (4.45) is satisfied for all solutions corresponding to Hamiltonian cycles and is stronger than (4.27) and (4.28). Following this, Theorem 4.6 shows that (4.44) and (4.45) are equivalent.

Proposition 4.5. Let $G=(V, E)$ be a graph. Then:
(i) The constraints (4.27) and (4.28) are redundant in the presence of (4.45) and the other Base-SST-k constraints.
(ii) The constraints (4.45) are satisfied for any solution of Base-SST-k corresponding to a Hamiltonian cycle H in G.

Proof. By (4.25) and the non-negativity constraints (4.8) we have

$$
0 \leq x_{0, j i}^{j} \leq y_{i l}^{j},
$$

so the left hand sides of (4.27) and (4.28) are both bounded from above by
(4.45) as follows:

$$
\begin{aligned}
& y_{i j}^{k}+x_{0, j i}^{j}+y_{j l}^{k}+y_{l i}^{k} \leq y_{i j}^{k}+y_{i l}^{j}+y_{j l}^{k}+y_{l i}^{k}=2 \\
& y_{i j}^{k}+0+y_{j l}^{k}+y_{l i}^{k} \leq y_{i j}^{k}+y_{i l}^{j}+y_{j l}^{k}+y_{l i}^{k}=2 .
\end{aligned}
$$

Therefore the constraints (4.27) and (4.28) are redundant, hence (i) is proved.
Next, we show that (4.45) is satisfied for the cycle H. Consider four distinct vertices i, j, k and l in V. There are six possible vertex orderings of these vertices depending on the cycle $H:[k, i, j, l],[k, i, l, j],[k, j, i, l]$, $[k, j, l, i],[k, l, i, j]$ and $[k, l, j, i]$. Setting each of the y variables in (4.45) according to their interpretations, we tabulate the values for the six possible vertex orderings:

Vertex ordering	$y_{i j}^{k}$	$y_{i l}^{j}$	$y_{j l}^{k}$	$y_{l i}^{k}$	Sum
$[k, i, j, l]$	1	0	1	0	2
$[k, i, l, j]$	1	1	0	0	2
$[k, j, i, l]$	0	1	1	0	2
$[k, j, l, i]$	0	0	1	1	2
$[k, l, i, j]$	1	0	0	1	2
$[k, l, j, i]$	0	1	0	1	2

In every case the sum of the four variables is 2 . Therefore the solution corresponding to H always satisfies (4.45) regardless of the ordering of the vertices on the cycle.

We remark that the equalities of (4.45) may be especially stronger than the inequalities of (4.27) and (4.28) when the arc $j \rightarrow i$ is not used or not present. In that case, the only potentially positive terms remaining on the left hand sides of (4.27) and (4.28) are $y_{i j}^{k}, y_{j l}^{k}$ and $y_{l i}^{k}$, whereas (4.45) has an additional non-negative term on the left hand side, namely $y_{i l}^{j}$.

Theorem 4.6. The equalities in (4.45) are implied by the subset of $\binom{n-1}{3}$ equalities given in (4.44) and the constraints (4.24) and (4.35).

Proof. This proof consists of two parts. We will first prove that (4.45) is
equivalent to

$$
\begin{equation*}
y_{i j}^{k}+y_{i l}^{j}+y_{j l}^{k}+y_{l i}^{k}=2 \quad \forall k, i, j, l ; k<i<j<l, \tag{4.46}
\end{equation*}
$$

which is identical to (4.45) except the indices are ordered. Following this, we will prove that k can be fixed to be 1 .

To show the equivalence of (4.45) and (4.46), we will demonstrate that given any particular equation from (4.46), we can derive additional constraints that have the same form but a different ordering of the indices. In particular, we will show the derivation of two such additional constraints, which respectively correspond to two cyclic permutations of the indices; $(i j)$ and $(i j l k)$. Together, these are a generating set for the group of all permutations on the four indices (that is, the symmetric group S_{4}.) Hence, we will conclude that we can derive any constraint of (4.45) from an appropriate constraint of (4.46).

Fix any k, i, j, and l, such that $k<i<j<l$. Then the corresponding equality from (4.46) is

$$
\begin{equation*}
y_{i j}^{k}+y_{i l}^{j}+y_{j l}^{k}+y_{l i}^{k}=2 . \tag{4.47}
\end{equation*}
$$

By (4.24) and (4.35), which were shown in Proposition 4.4 to imply (4.37), we may rotate the indices of any given y term. In this way we take (4.47) and rotate the indices clockwise in the second term:

$$
\begin{equation*}
y_{i j}^{k}+y_{l j}^{i}+y_{j l}^{k}+y_{l i}^{k}=2 \tag{4.48}
\end{equation*}
$$

Then by (4.24), we obtain

$$
\begin{equation*}
\left(1-y_{j i}^{k}\right)+\left(1-y_{j l}^{i}\right)+\left(1-y_{l j}^{k}\right)+\left(1-y_{i l}^{k}\right)=2, \tag{4.49}
\end{equation*}
$$

Next, we multiply both sides by -1 and subtract 4:

$$
\begin{equation*}
y_{j i}^{k}+y_{j l}^{i}+y_{l j}^{k}+y_{i l}^{k}=2 . \tag{4.50}
\end{equation*}
$$

Now we swap the third and fourth terms:

$$
\begin{equation*}
y_{j i}^{k}+y_{j l}^{i}+y_{i l}^{k}+y_{l j}^{k}=2 . \tag{4.51}
\end{equation*}
$$

It can be seen that the steps in (4.48) - (4.51) correspond to the cyclic permutation $(i j)$ on the indices of (4.47).

Next, we may take (4.51) and rotate the indices of the first, third and fourth terms, respectively, anti-clockwise, clockwise and clockwise:

$$
\begin{equation*}
y_{k j}^{i}+y_{j l}^{i}+y_{l k}^{i}+y_{j k}^{l}=2 . \tag{4.52}
\end{equation*}
$$

Finally, we rotate the positions of the first, fourth and second terms:

$$
\begin{equation*}
y_{j l}^{i}+y_{j k}^{l}+y_{l k}^{i}+y_{k j}^{i}=2 \tag{4.53}
\end{equation*}
$$

The steps in (4.48) - (4.53) can be seen to correspond to the cyclic permutation $(i j l k)$ on the indices of (4.47). Thus by the group properties of S_{4} for which $\{(i j),(i j l k)\}$ is a generating set, all possible permutations of (4.45) are implied by (4.46) in the presence of (4.35) and the constraints in Base-SST- k.

Finally, we prove that any equality from (4.46) can be derived from equalities in (4.44). That is, we can effectively fix k to be 1 without weakening the constraint set (4.46).

Consider again (4.47) for any choice of $k>1$; that is, $1<k<i<j<l$. We will show that (4.47) follows from the following four equalities in (4.44):

$$
\begin{array}{r}
y_{i j}^{1}+y_{i l}^{j}+y_{j l}^{1}+y_{l i}^{1}=2 \\
y_{k i}^{1}+y_{k l}^{i}+y_{i l}^{1}+y_{l k}^{1}=2 \\
y_{k j}^{1}+y_{k l}^{j}+y_{j l}^{1}+y_{l k}^{1}=2 \\
y_{k i}^{1}+y_{k j}^{i}+y_{i j}^{1}+y_{j k}^{1}=2 . \tag{4.57}
\end{array}
$$

Then, by adding (4.54) and (4.55) and subtracting (4.56) and (4.57), we
obtain

$$
\begin{aligned}
& y_{i j}^{1}+y_{i l}^{j}+y_{j l}^{1}+y_{l i}^{1}+y_{k i}^{1}+y_{k l}^{i}+y_{i l}^{1}+y_{l k}^{1} \\
& \quad-y_{k j}^{1}-y_{k l}^{j}-y_{j l}^{1}-y_{l k}^{1}-y_{k i}^{1}-y_{k j}^{i}-y_{i j}^{1}-y_{j k}^{1}=0
\end{aligned}
$$

and after simplifying,

$$
\begin{equation*}
y_{i l}^{j}+y_{k l}^{i}-y_{k l}^{j}-y_{k j}^{i}+\left(y_{l i}^{1}+y_{i l}^{1}\right)-\left(y_{k j}^{1}+y_{j k}^{1}\right)=0 . \tag{4.58}
\end{equation*}
$$

By (4.24), $y_{l i}^{1}+y_{i l}^{1}=y_{k j}^{1}+y_{j k}^{1}=1$, so (4.58) reduces to

$$
\begin{equation*}
y_{i l}^{j}+y_{k l}^{i}-y_{k l}^{j}-y_{k j}^{i}=0 . \tag{4.59}
\end{equation*}
$$

Also by (4.24), we can replace the negated terms of (4.59) as follows:

$$
y_{i l}^{j}+y_{k l}^{i}+\left(y_{l k}^{j}-1\right)+\left(y_{j k}^{i}-1\right)=0 .
$$

Finally, by rotating the indices and simplifying, we obtain

$$
y_{i j}^{k}+y_{i j}^{j}+y_{j l}^{k}+y_{l i}^{k}=2,
$$

which is identical to (4.47).

Having established the correctness of (4.35), (4.36) and (4.44), we now define an extension of Base-SST- k which we name Base-SST- k-Ext.

Definition 4.7 (Base-SST- k-Ext). Minimise (4.9), subject to (4.1) - (4.8), (4.24) - (4.26), (4.29) - (4.36) and (4.44). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

As with Base-SST and Base-SST- k, Base-SST- k-Ext is not infeasible for any additional instances of NHNB20 or NHNB20PR relative to the Base Model. However, there are additional improvements in a TSP sense, which are shown in Table 4.7. Indeed, an additional 10 instances for each of ATSP16A and ATSP16AC display improvement, and the mean reductions in the gaps of each case are also significantly improved.

Table 4.7: Results of Base-SST- k-Ext on the 200 NHNB-derived and 200 Hamiltonian-derived instances in each of (a) ATSP16A and (b) ATSP16AC. The table indicates the number of instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.
(a) ATSP16A

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	14756.9	73.8	$193 / 200$	10.919
NHNB-derived	288170.2	1440.9	$165 / 200$	5.418
All	302927.1	757.3	$358 / 400$	8.383

(b) ATSP16AC

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	14756.9	73.8	$193 / 200$	10.919
NHNB-derived	288085.2	1440.4	$165 / 200$	5.418
All	302842.1	757.1	$358 / 400$	8.383

The additional improvements offered by Base-SST- k-Ext are particularly pleasing given that the model has $\mathcal{O}\left(n^{4}\right)$ fewer constraints than Base-SST- k. As noted, unlike Base-SST- k, Base-SST- k-Ext has the same time complexity as the Base Model. Thus, in the combined model to be introduced in Section 4.5, we can include the constraints of Base-SST- k-Ext to take advantage of this significant improvement without increasing the time complexity of the model.

As mentioned in the chapter introduction, there are eight TSP instances for which SST outperforms the Base Model. Specifically, these instances, identified in Section 2.2.5, comprise four instances from the problem set ATSP16A and their corresponding four instances from ATSP16AC. Since we have included the SST constraints in the three models developed in this section, it follows that SST cannot outperform any of these extended models on these four instances. Rather, the combination of SST and Base Model constraints in Base-SST, Base-SST- k and Base-SST- k-Ext leads to significant additional improvement on these four instances, which we highlight in

Table 4.8. Note that the gaps obtained for these four instances in ATSP16A are identical to the gaps obtained for the four corresponding instances in ATSP16AC, so we only report gaps for the former.

Table 4.8: Gaps for each of the Base Model, Base-SST, Base-SST- k and Base-SST- k-Ext on the four instances from ATSP16A for which SST outperforms the Base Model.

ID	Base Model	SST	Base-SST	Base-SST- k	Base-SST- k-Ext
92	66.2	62.7	57.6	49.6	49.3
105	77.2	75.1	66.3	65.4	64.9
259	1465.7	1462.5	1455.1	1440.8	1438.6
338	1444.1	1434.5	1427.9	1425.2	1424.8

We now conclude this section with two visualisations of the relative improvements obtained by Base-SST, Base-SST- k and Base-SST- k-Ext. In Figure 4.9 we plot four points for each instance in ATSP16A. The points have the gap obtained from the SST model as an x-coordinate, and the gaps obtained from the Base Model, Base-SST, Base-SST- k and Base-SST- k-Ext as y-coordinates, with the four points for each instance connected by a vertical line. The further that points lie below the solid line $y=x$, the bigger the improvement over the SST model. This can be compared to Figure 2.11, which for each instance only includes the points for the Base Model. The four instances for which the SST model outperforms the Base Model are displayed in dark red.

In Figure 4.10 there are two ternary plots containing a point for each instance of ATSP16A. For each instance, we consider first the improvement in gap from the Base Model to Base-SST, then the improvement from Base-SST to Base-SST- k, and finally the improvement from Base-SST- k to Base-SST-k-Ext. Then for each instance, we plot a point where the three coordinates are the proportions of the total improvement in gap comprising the respective individual improvements. For example, if the three improvements were 5,15 and 10 for a total improvement of 30 , we would plot the point $\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$.

Figure 4.9: Gaps for the Hamiltonian-derived and NHNB-derived instance of ASTP16A under the Base Model, Base-SST, Base-SST- k and Base-SST- k-Ext versus the gaps for SST. The solid line $y=x$ corresponds to the given model and SST having the same gap.

Figure 4.10: Ternary plots showing the proportion of the total reduction in gap that can be attributed to Base-SST, Base-SST- k and Base-SST- k-Ext relative to the Base Model, for the Hamiltonianderived and NHNB-derived instances of ATSP16A.

In Figure 4.10 the size of each point also corresponds to the size of total reduction in gap. As can be seen, the majority of instances have negligible improvement attributable to Base-SST relative to the Base Model. In contrast, there are many instances for which a majority of the improvement can be attributed to Base-SST- k, with most of the remaining improvement attributable to Base-SST- k-Ext.

We do not include figures equivalent to Figures 4.9 and 4.10 for the set ATSP16AC as, for the extended models considered in this section, they are visually almost identical to those for ATSP16A.

4.2 Constraints involving forced edges

Suppose a feasible solution has been obtained from the Base Model, but does not correspond to a Hamiltonian cycle. Such a solution necessarily contains some $x_{r, i a}^{k}$ values strictly between 0 and 1 . This may be interpreted as multiple edges being traversed when leaving a vertex. For example, Figure 4.11 shows part of a feasible solution from the Base Model on a non-Hamiltonian subcubic graph resulting from the reduction algorithm in Chapter 3. It can be seen that, considering the starting vertex k shown, multiple edges are used even in the initial step $(r=0)$. Clearly this cannot be the case for a solution corresponding to a Hamiltonian cycle but, in general, this feature is difficult to prevent through linear constraints on relaxed variables, because we do not know a priori which edges should be used.

Figure 4.11 shows the evolution of this feasible solution, relative to this starting point, on a subset of three vertices and their six incident edges from the graph. We make some remarks about these values: First, it can be seen that, summing the values over all steps, each of the vertices has exactly one unit on outgoing arcs, which follows from (4.5). Second, for each vertex, the sum of values on outgoing arcs is always equal to the sum on incoming

Figure 4.11: Visualisation of part of one feasible solution of the Base Model for a non-Hamiltonian subcubic graph (top, produced by GraphReduction on G_{20}^{71268}). We consider the variables $x_{r, i a}^{k}$ where the starting vertex k is shown in red. The arc labels give the non-zero values of $x_{r, i a}^{k}$ for arc $i \rightarrow a$ in the given step r. For steps $r>0$ it is instructive to only show a subset of the edges (from the blue rectangle), skipping steps $r=1,2,11,12,13$ where these edges have only zero values.
arcs in the previous step, which follows from (4.1). Third, note the unwanted feature that some edges are used more than once at different steps, sometimes in both directions.

Clearly, it is desirable to prevent solutions with the kind of behaviour seen in Figure 4.11, and fortunately there are instances in which this is possible. Specifically, where we know that any particular edge must be used in the solution, we can impose additional constraints on the linear program. Recall from Definition 3.18 that we define forced edges to be those that we have determined to be Hamiltonian edges; that is, edges we know must be present in every Hamiltonian cycle of the graph, should any Hamiltonian cycles exist. Consider a graph $G=(V, E)$ with forced edges $F \subseteq E$. We may then impose constraints (4.60) - (4.62), which prevent some unwanted behaviour from occurring in feasible solutions.

$$
\begin{array}{lr}
x_{0, i a}^{i}+x_{0, a i}^{a}=1 & \forall i ; i a \in F \\
x_{r, i a}^{k}=\sum_{b \in N(i) \backslash\{a\}} x_{r-1, b i}^{k} & \forall i, k ; i a \in F ; r \neq 0 \\
x_{r, i a}^{k}=\sum_{j \in N(a) \backslash\{i\}} x_{r+1, a j}^{k} & \forall i, k ; i a \in F ; r \neq n-1 . \tag{4.62}
\end{array}
$$

These constraints, respectively, are motivated by the following observations about any forced edge $i a \in F$:
(i) The edge $i a$ must be used, either as the arc $i \rightarrow a$ or the arc $a \rightarrow i$.
(ii) If the vertex i was entered in the previous step from a vertex other than a, then arc $i \rightarrow a$ must used in the current step.
(iii) Similarly to (ii), if the arc $i \rightarrow a$ is used in the current step, then in the next step it is not possible to return to vertex i.

An obvious subset of F is the edges incident to degree 2 vertices, which includes the two bottom edges of the graph as shown in Figure 4.11. Including constraints (4.60) - (4.62) would help to prevent the undesired behaviour in
the solution displayed in this figure. In particular, the value of $\frac{1}{4}$ that enters the degree-2 vertex in step 4 would be prevented from returning over the same arc in step 5 by (4.62). Similarly, the values of $\frac{1}{2}$ and $\frac{1}{4}$ entering the degree- 2 vertex in steps 6 and 8 respectively would be prevented from returning over those arcs. In fact, after imposing these additional constraints, with F set to the edges incident to degree 2 vertices, the Base Model no longer has any feasible solution for the graph in Figure 4.11; precisely the desired outcome for a non-Hamiltonian graph.

Proposition 4.8. Constraints (4.60) - (4.62) are satisfied for any solution of the Base Model corresponding to a Hamiltonian cycle H in G, where G has a set of forced edges F.

Proof. Let $i a$ be a forced edge in F. By definition, the edge $i a$ must be used in H; that is, either arc $i \rightarrow a$ or $a \rightarrow i$ is used. Without loss of generality, let vertex u be the vertex, other than a, adjacent in an undirected sense to i in H. Similarly, let the vertex v be the vertex, other than i, adjacent in an undirected sense to a in H. In a directed sense, then, H contains either the path $u \rightarrow i \rightarrow a \rightarrow v$ or the path $v \rightarrow a \rightarrow i \rightarrow u$.

If we set the $x_{r, i a}^{k}$ variables according to their interpretation, it is straightforward to show that (4.60) is satisfied: If arc $i \rightarrow a$ is used, then $x_{0, i a}^{i}=1$ and $x_{0, a i}^{a}=0$. Otherwise if $a \rightarrow i$ is used, then $x_{0, i a}^{i}=0$ and $x_{0, a i}^{a}=1$. In both cases the sum is exactly 1 .

For constraints (4.61) and (4.62), first consider the case where arc $a \rightarrow i$ is used in H. Then it is clear that $x_{r, i a}^{k}=0$ for all k and r, and so the left hand side of (4.61) and (4.62) are zero. Similarly, it is clear that for all k and r, we have $x_{r, b i}^{k}=0$ if $b \neq a$, and $x_{r, a j}^{k}=0$ if $j \neq i$. Hence the right hand side of (4.61) and (4.62) are zero as well, and so both constraints are satisfied.

Next consider the case where arc $i \rightarrow a$ is used in H, with the path $u \rightarrow i \rightarrow$ $a \rightarrow v$. Let k be the starting vertex of H. Then suppose that $i \rightarrow a$ is step s of
H. If we set the $x_{r, i a}^{k}$ variables according to their interpretation, we have the following:

$$
\begin{aligned}
& x_{r, i a}^{k}= \begin{cases}1 & \text { if } r=s \\
0 & \text { otherwise }\end{cases} \\
& x_{r, b i}^{k}= \begin{cases}1 & \text { if } r=s-1 \bmod n, \text { and } b=u, \\
0 & \text { otherwise }\end{cases} \\
& x_{r, a j}^{k}= \begin{cases}1 & \text { if } r=s+1 \bmod n, \text { and } j=v, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Now consider the LHS of (4.61). It will be equal to one if $r=s$ and will be zero otherwise. Every term in the RHS of (4.61) is of the type $x_{r, b i}^{k}$. Recall that only one such term is equal to one, when $r=s-1 \bmod n$ and $b=u$. Suppose that $s>0$. Then the RHS will contain such a term when $r=s$ but not for any other value of r. Hence the RHS will be equal to one if and only if $r=s$, and will be zero otherwise. This is identical to the LHS and hence (4.61) is satisfied by H when $s>0$.

Then consider the case when $s=0$. By definition this can only occur when $k=i$. In this case, the LHS of (4.61) is always zero since the case when $r=0$ is excluded. Likewise, the RHS of (4.61) is always zero because the term $x_{n-1, u i}^{k}$ never occurs. Hence (4.61) is satisfied by H in all cases.

Next, consider the LHS of (4.62). It will be equal to one if $r=s$ and will be zero otherwise. Every term in the RHS of (4.62) is of the type $x_{r, a j}^{k}$. Recall that only one such term is equal to one, when $r=s+1 \bmod n$ and $j=v$. Suppose that $s<n-1$. Then the RHS will contain such a term when $r=s$ but not for any other value of r. Hence the RHS will be equal to one if and only if $r=s$, and will be zero otherwise. This is identical to the LHS and hence (4.62) is satisfied by H when $s<n-1$.

Finally, consider the case when $s=n-1$. By definition this can only
occur when $k=a$. In this case, the LHS of (4.62) is always zero since the case when $r=n-1$ is excluded in (4.62). Likewise, the RHS of (4.62) is always zero because the term $x_{0, a j}^{k}$ never occurs. Hence (4.62) is satisfied by H in all cases.

We now define the model Base-Forced.

Definition 4.9 (Base-Forced). Minimise the objective function (4.9), subject to (4.1) - (4.8) and (4.60) - (4.62). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Note that in order to take advantage of the new constraints in BaseForced we must find a set of forced edges F. Recall from Lemma 3.19 that edges whose removal results in a graph that is not 2-connected are necessarily Hamiltonian, so in the results that follow we will use the same construction of F as in Chapter 3, which can be found in polynomial time:

$$
F=\left\{u v \in E \mid G_{E \backslash\{u v\}} \text { is not 2-connected }\right\} .
$$

Table 4.12 shows the results of Base-Forced on the problem sets NHNB20 and NHNB20PR. It is notable that, unlike in any of the extended models based on SST, for Base-Forced there are 52 and 8 additional instances, relative to the Base Model, with infeasible LPs from the respective problem sets.

Table 4.13 shows the results of Base-Forced on the set ATSP16AC. Note that ATSP16A is not included here as all instances in that set are complete and hence do not contain any forced edges. As can be seen, in almost all of the 43 instances of ATSP16AC containing forced edges an improvement is found.

Table 4.12: Results of Base-Forced on (a) NHNB20 and (b) NHNB20PR, by order n. We restrict our consideration to the instances that contain forced edges, the numbers of which are shown in the $|F|>0$ columns. For these instances, the table shows the improvement relative to the Base Model.
(b) NHNB20PR

(a) NHNB20					n	Graphs	$\|F\|>0$	Inf.	Imprv.
n	Graphs	$\|F\|>0$	Inf.	Imprv.	12	1	1	0	0
10	1	0			13	1	1	1	0
12	1	0			14	7	7	6	3
14	6	2	1	0	15	5	5	4	0
16	33	15	6	0	16	9	8	6	2
18	231	117	52	0	17	23	23	4	1
20	1827	979	470	52	18	17 6	4	0	1
All	2099	1113	529	52	20	18	18	1	1
					All	87	73	26	8

Table 4.13: Results of Base-Forced on the 200 NHNB-derived and 200 Hamiltonian-derived instances of ATSP16AC. The table indicates the number of instances for which F is not empty, and thus additional constraints are present. The table also includes the number of such instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.

Subset	Sum of gaps	Mean	$\|F\|>0$	Changed	Mean red.
Ham.-derived	16844.4	84.2	3	3	6.585
NHNB-derived	288782.0	1443.9	40	35	5.635
All	305626.4	764.1	43	38	5.710

4.3 Constraints based on 3-cuts

Recall the subtour elimination constraints from the DFJ formulation (Definition 2.1), which ensure that any induced subgraph is entered and exited at least once by a solution:

$$
\begin{equation*}
\sum_{i \in S} \sum_{j \notin S}\left(x_{i j}+x_{j i}\right) \geq 2 \quad \forall S \subset V, 0<|S|<n \tag{4.63}
\end{equation*}
$$

As for other constraints based on $x_{i j}$ variables, in the Base Model these constraints may be expressed as:

$$
\begin{equation*}
\sum_{i \in S} \sum_{a \in N(i) \backslash S}\left(x_{0, i a}^{i}+x_{0, a i}^{a}\right) \geq 2 \quad \forall S \subset V, 0<|S|<n . \tag{4.64}
\end{equation*}
$$

Note that we do not intend to add the constraints in (4.64) to the Base Model, as there are exponentially many. Furthermore, Conjecture 2.12 implies that all these constraints are already satisfied for the Base Model. However, if we know a priori that an induced subgraph with vertices S may only be entered and exited exactly once by any Hamiltonian cycle, the inequality in (4.63) may be tightened to a strict equality. One particular case in which we know that the subgraph induced by S may only be entered and exited once is when S is connected to $V \backslash S$ by an edge cut set of size no greater than 3. This follows since, in such a case, there are not enough edges in the cut set to enter and exit S more than once. In this section we develop equality constraints to take advantage of this property.

Consider first a 1 -cut, which by definition only occurs in bridge graphs. It was proved in [28] that the Base Model is always infeasible for bridge graphs. Hence, we do not consider 1-cuts. Next consider a 2-cut. Note that in this case, both edges in the 2-cut are forced edges. Hence from (4.60) we can immediately obtain (4.64) with equality on any 2-cut. As such, we do not consider 2-cuts here either, as these are handled in the Base-Forced model. In this section then, we restrict our focus to 3 -cuts only. The combined
effect of forced edge constraints and 3-cut constraints will be considered in Section 4.5.

Note that not all 3 -cuts need be considered. For instance, in the cases where the 3 -cut isolates a single vertex, (4.64) reduces to (4.5). Hence, we exclude this situation. We also exclude the case where the 3 -cut contains a 2-cut, since, as mentioned earlier, the 2-cut case is handled by Base-Forced. Therefore, in the following set of constraints, we only consider minimal 3-cuts that do not isolate a single vertex. Denote the set of all such 3 -cuts by \mathcal{C}_{3}. Then we define the 3 -cut constraints as follows:

$$
\begin{equation*}
x_{0, a b}^{a}+x_{0, b a}^{b}+x_{0, c d}^{c}+x_{0, d c}^{d}+x_{0, e f}^{e}+x_{0, f e}^{f}=2, \quad \forall\{a b, c d, e f\} \in \mathcal{C}_{3} . \tag{4.65}
\end{equation*}
$$

The validity of (4.65) follows immediately from the subtour elimination constraints (4.64). Regarding the number of constraints $\left|\mathcal{C}_{3}\right|$, consider the result of Lehel et al. [51] that the number of 3-cuts in any simple graph with n vertices is bounded from above by $\left\lfloor\frac{3 n}{2}\right\rfloor-2$. Since \mathcal{C}_{3} is a subset of all 3-cuts, it follows that (4.65) consists of $\mathcal{O}(n)$ equality constraints. Furthermore, fast polynomial-time algorithms exist for finding small edge cuts in any graph [47].

We now define the Base-3-Cut model.

Definition 4.10 (Base-3-Cut). Minimise the objective function (4.9), subject to (4.1) - (4.8) and (4.65). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Table 4.14 shows the results of Base-3-Cut on the problem sets NHNB20 and NHNB20PR. Note that \mathcal{C}_{3} is non-empty for almost all of the instances in these sets, so additional constraints are imposed in nearly all cases. Relative to the Base Model, there are 49 and 4 additional instances with infeasible LPs from the respective problem sets. We note that this includes 5 instances and 1 instance, respectively, that do not have infeasible LPs in Base-Forced. A full breakdown of the overlaps of instances solved for the various models
in this chapter will be given at the end of Section 4.5.
Table 4.14: Results of Base-3-Cut on (a) NHNB20 and (b) NHNB20PR, by order n. We restrict our consideration to the instances that have a non-empty set of 3 -cuts as defined in this section, the numbers of which are shown in the $\left|\mathcal{C}_{3}\right|>0$ columns. For these instances, the table shows the improvement relative to the Base Model.
(b) NHNB20PR
(a) NHNB20

n	Graphs	$\left\|\mathcal{C}_{3}\right\|>0$	Inf.	Imprv.
10	1	0		
12	1	1	0	
14	6	6	1	0
16	33	33	6	0
18	231	229	52	0
20	1827	1820	467	49
All	2099	2089	526	49

n	Graphs	$\left\|\mathcal{C}_{3}\right\|>0$	Inf.	Imprv.
12	1	1	0	0
13	1	1	1	0
14	7	7	3	0
15	5	5	4	0
16	9	9	6	2
17	23	23	4	1
18	17	16	0	0
19	6	6	4	1
20	18	18	0	0
All	87	86	22	4

Table 4.15 shows the results of Base-3-Cut on the problem sets ATSP16A and ATSP16AC. Note that \mathcal{C}_{3} is non-empty for most of the Hamiltonianderived instances, and all of the NHNB-derived instances. In the majority of these cases there is a substantial reduction in the gap, considerably larger than that obtained by the extended models considered thus far. Indeed, the gaps for 29 of the Hamiltonian-derived instances were reduced to zero; that is, the solutions found correspond to the optimal tours. This is notable as none of the models considered previously in this thesis obtained optimal tours for any of the instances in ATSP16A or ATSP16AC. For reference, then, we give the IDs of these 29 instances; $4,5,6,7,8,9,10,11,13,15,16,17,18$, $19,20,21,22,30,48,50,51,55,66,68,76,82,108,163$, and 165. Edge lists and weights for these instances may be found in Appendix B.

Table 4.15: Results of Base-3-Cut on the 200 NHNB-derived and 200 Hamiltonian-derived instances of ATSP16AC. The table indicates the number of instances for which \mathcal{C}_{3} is not empty, and thus additional constraints were present. The table indicates the number of such instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.

Subset	Sum of gaps	Mean	$\left\|\mathcal{C}_{3}\right\|>0$	Changed	Mean red.
Ham.-derived	10428.8	52.1	165	161	39.971
NHNB-derived	284734.8	1423.7	200	168	25.264
All	295163.6	737.9	365	329	32.461

4.4 Constraints based on an eigenvalue of Hamiltonian permutation matrices

Consider a graph G, with adjacency matrix A, containing a (directed) Hamiltonian cycle H with a corresponding permutation matrix P. That is, the element $P_{j k}$ is 1 if the arc $j \rightarrow k$ is used in H, and 0 otherwise. Since G is undirected, the reverse cycle to H is also present with corresponding permutation matrix $P^{-1}=P^{T}$.

In 2012, Weber [70] proved the following result:

Theorem 4.11 (Weber [70]). Let P be an $n \times n$ doubly-stochastic matrix. Then P is a permutation matrix corresponding to a cycle graph if and only if the complex exponential $e^{\frac{2 \pi}{n} i}$ is an eigenvalue of P.

For the sake of neatness we define θ to be $\frac{2 \pi}{n}$ throughout the remainder of this chapter. We now define a vector v, which we prove in Proposition 4.12 to be an eigenvector of P corresponding to the eigenvalue $e^{\theta i}$. For convenience, we use h_{j} to denote the number of steps after vertex 1 that vertex j occurs in the Hamiltonian cycle H, where h_{1} is fixed to be zero. Let the entries of v then be given by

$$
\begin{equation*}
v_{j}=e^{h_{j} \theta i} . \tag{4.66}
\end{equation*}
$$

Proposition 4.12. The vector v, whose elements v_{j} are given by (4.66), satisfies

$$
\begin{equation*}
P v=e^{\theta i} v . \tag{4.67}
\end{equation*}
$$

Proof. Recall that P is a permutation matrix corresponding to a Hamiltonian cycle H. Suppose that vertex $k \neq 1$ follows vertex j in H. That is, $h_{k}=$ $h_{j}+1$, and $P_{j k}=1$. Now consider the element in the j th position of the left hand side of (4.67). Since the j th row of P contains all zeros except for $P_{j k}$,

$$
\begin{align*}
{[P v]_{j} } & =v_{k} \\
& =e^{h_{k} \theta i} \\
& =e^{\left(h_{j}+1\right) \theta i} \\
& =e^{\theta i} v_{j} . \tag{4.68}
\end{align*}
$$

Hence (4.67) is satisfied element-wise for all elements j whose subsequent vertex in H is not 1 . We now consider this final case. If $k=1$, then clearly $h_{j}=n-1$, and

$$
\begin{align*}
{[P v]_{j} } & =v_{1} \\
& =e^{h_{1} \theta i} \\
& =e^{0 \theta i} \\
& =e^{\theta i} e^{(n-1) \theta i} \\
& =e^{\theta i} v_{j} . \tag{4.69}
\end{align*}
$$

By (4.68) and (4.69), (4.67) is satisfied.

Given a graph with the adjacency matrix A, and the permutation matrix P corresponding to the Hamiltonian cycle H, define

$$
S=A-P-P^{T}
$$

Clearly, S is a $0-1$ matrix. For any given vertex j, the corresponding j th row of S will contain $\operatorname{deg}(j)-2$ unit entries, all contained within the positions corresponding to the neighbours of vertex j. In particular, we focus on the cases where the degree of j is either 2 or 3 . By Proposition 4.12,

$$
\begin{aligned}
S v & =A v-P v-P^{T} v \\
& =A v-e^{\theta i} v-e^{-\theta i} v \\
& =A v-2 \cos \theta v \\
& =(A-2 \cos \theta I) v .
\end{aligned}
$$

If the degree of j is 2 , then the j th row of S has all zeros, thus $[S v]_{j}=0$ and we obtain

$$
[A-2 \cos \theta I]_{j} v=0, \quad \forall j=1, \ldots, n ;, ~ \begin{array}{ll}
& \operatorname{deg}(j)=2 . \tag{4.70}
\end{array}
$$

Alternatively, if the degree of j is 3 , then the j th row of S has exactly one unit, whose element must be in a column corresponding to one of the three vertices in $N(j)$. Therefore,

$$
\begin{equation*}
[A-2 \cos \theta I]_{j} v \in\left\{e^{h_{k} \theta i} \mid k \in N(j)\right\}, \quad \forall j=1, \ldots, n ; 7 \text { deg }(j)=3 . \tag{4.71}
\end{equation*}
$$

It will be shown that the vector v, and hence the left hand sides of (4.70) and (4.71) may be expressed by a (complex) linear combination of $x_{r, i a}^{k}$ variables from the Base Model. However, since the ordering of vertices in the desired Hamiltonian cycle is not known a priori, we cannot assume to know the individual values of h_{k} in the set on the right hand side of (4.71). Rather, we may give lower and upper bounds on each h_{k} based on the shortest path between vertex 1 and k, which can easily be calculated in polynomial time [20].

Let μ_{k}^{1} denote the length of the shortest path between vertex 1 and k, where μ_{1}^{1} is defined to be zero. For convenience, we also define $\hat{\mu}_{k}^{1}$ to be
identical to μ_{k}^{1} in all cases except for $k=1$ where we define $\hat{\mu}_{1}^{1}=n$. It is clear that h_{k}, the position of vertex k on the Hamiltonian cycle relative to vertex 1 , can be bounded from above and below, as

$$
\begin{equation*}
\mu_{k}^{1} \leq h_{k} \leq\left(n-\hat{\mu}_{k}^{1}\right) \tag{4.72}
\end{equation*}
$$

Note that in the case that $k=1$, the definition of $\hat{\mu}_{k}^{1}$ ensures that both the lower and upper bounds of (4.72) will be 0 . Note also that it is not possible for the left hand side of (4.72) to be greater than $\frac{n}{2}$, since in such a case the graph would be non-Hamiltonian by the following lemma.

Lemma 4.13. Let G be an undirected graph and let k be a vertex in G. Then G is non-Hamiltonian if $\mu_{k}^{1}>\frac{n}{2}$.

Proof. Suppose a Hamiltonian cycle H exists in G, and that $\mu_{k}^{1}>\frac{n}{2}$. Then vertex k follows more than $\frac{n}{2}$ steps after vertex 1 in H. Likewise, since G is undirected, vertex 1 follows more than $\frac{n}{2}$ steps after vertex k in H. Thus the length of H must be greater than n, and hence it is not a Hamiltonian cycle. By contradiction, G is non-Hamiltonian.

Using (4.72) we can then replace the right hand side of (4.71) with a superset as follows, which can be calculated in advance using just the shortest paths in G. For brevity, we do not repeat here the conditions on j from (4.71).

$$
\begin{equation*}
[A-2 \cos \theta I]_{j} v \in\left\{e^{l \theta i} \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \tag{4.73}
\end{equation*}
$$

In order to derive linear constraints suitable for use with the Base Model, we now consider a construction of the vector v in terms of the $x_{r, i a}^{k}$ variables of the Base Model, and write linear constraints based on the real and imaginary parts of (4.70) and (4.73).

Let the $x_{r, i a}^{k}$ variables be set according to their interpretations for the Hamiltonian cycle H; that is, 1 precisely if the arc $i \rightarrow a$ is used after starting at vertex k and visiting r vertices, and 0 otherwise. If we set $k=1$, then by
definition of h_{j}, an arc out of j must be used after visiting h_{j} vertices, thus

$$
\sum_{a \in N(j)} x_{h_{j}, j a}^{1}=1,
$$

and we multiply both sides by $e^{h_{j} \theta i}$ to obtain

$$
\begin{equation*}
e^{h_{j} \theta i} \sum_{a \in N(j)} x_{h_{j}, j a}^{1}=e^{h_{j} \theta i} \tag{4.74}
\end{equation*}
$$

Furthermore, for all $a \in N(j)$ and any $r \neq h_{j}$ it is clear that

$$
x_{r, j a}^{1}=0,
$$

and thus,

$$
\begin{equation*}
\sum_{\substack{r=0 \\ r \neq h_{j}}}^{n-1} e^{r \theta i} \sum_{a \in N(j)} x_{r, j a}^{1}=0 \tag{4.75}
\end{equation*}
$$

Adding (4.74) and (4.75), and recalling (4.66), we arrive at a linear expression for v_{j} in terms of the $x_{r, i a}^{k}$ variables:

$$
\begin{equation*}
\sum_{r=0}^{n-1} e^{r \theta i} \sum_{a \in N(j)} x_{r, j a}^{1}=e^{h_{j} \theta i}=v_{j} \tag{4.76}
\end{equation*}
$$

Applying (4.72) to (4.76) we can express the set of valid values for each of these linear combinations as:

$$
\begin{equation*}
\sum_{r=0}^{n-1} e^{r \theta i} \sum_{a \in N(j)} x_{r, j a}^{1} \in\left\{e^{l \theta i} \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \tag{4.77}
\end{equation*}
$$

Next, using (4.76), the left hand sides of both (4.70) and (4.73) may be expressed as:

$$
\begin{aligned}
\text { LHS } & =\sum_{k=1}^{n}[A-2 \cos \theta I]_{j k} v_{k} \\
& =\left(\sum_{k \in N(j)} v_{k}\right)-2 \cos \theta v_{j} \\
& =\sum_{k \in N(j)} \sum_{r=0}^{n-1} e^{r \theta i} \sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta \sum_{r=0}^{n-1} e^{r \theta i} \sum_{a \in N(j)} x_{r, j a}^{1}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{r=0}^{n-1} e^{r \theta i}\left(\sum_{k \in N(j)} \sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta \sum_{a \in N(j)} x_{r, j a}^{1}\right) \\
& =\sum_{r=0}^{n-1} e^{r \theta i} \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right) \tag{4.78}
\end{align*}
$$

Finally, by (4.78), we can give linear constraints based on the real and imaginary parts of (4.70) and (4.73) for vertices j with degree 2 or 3 , respectively, as well as bounds for based on (4.77).

Linear constraints based on (4.70), where $j=1, \ldots, n$, and $\operatorname{deg}(j)=2$, may be written as:

$$
\begin{align*}
& \sum_{r=0}^{n-1} \cos (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right)=0 \tag{4.79}\\
& \sum_{r=0}^{n-1} \sin (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right)=0 . \tag{4.80}
\end{align*}
$$

Linear constraints based on (4.73), where $j=1, \ldots, n$, and $\operatorname{deg}(j)=3$, may be written as:

$$
\begin{align*}
& \min \left\{\cos (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \cos (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right) \tag{4.81}\\
& \leq \max \left\{\cos (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \min \left\{\sin (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\}
\end{aligned} \quad \begin{aligned}
& \leq \sum_{r=0}^{n-1} \sin (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right) \\
& \quad \leq \max \left\{\sin (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} . \tag{4.82}
\end{align*}
$$

Linear constraints based on the bounds (4.77), for all $j=1, \ldots, n$ regardless
of the degree of j, may be written as:

$$
\begin{align*}
& \min \left\{\cos (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \cos (r \theta) \sum_{a \in N(j)} x_{r, j a}^{1} \tag{4.83}\\
& \quad \leq \max \left\{\cos (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \min \left\{\sin (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \sin (r \theta) \sum_{a \in N(j)} x_{r, j a}^{1} \tag{4.84}\\
& \quad \leq \max \left\{\sin (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\}
\end{align*}
$$

Note that in (4.81) - (4.84), the sets over which the minimum and maximum values are found could theoretically be empty, precisely where $\mu_{k}^{1}>\frac{n}{2}$ for some k. To handle such cases, we define, for (4.81) - (4.84), the minimum of an empty set to be ∞, and the maximum of an empty set to be $-\infty$. This will have the effect of forcing the model to be infeasible, which is appropriate since such a graph must be non-Hamiltonian by Lemma 4.13.

Since constraints (4.79) - (4.84) were constructed based on an eigenvalue and eigenvector pair that is guaranteed to exist for any Hamiltonian cycle, it follows that these constraints will be satisfied for any solution to the Base Model that corresponds to a Hamiltonian cycle. Thus we define the model Base-Spectral:

Definition 4.14 (Base-Spectral). Minimise (4.9), subject to (4.1) - (4.8) and (4.79) - (4.84). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

Table 4.16 shows the results of Base-Spectral on the sets NHNB20 and NHNB20PR. As can be seen, there are no additional instances in these sets for which Base-Spectral obtains infeasibility, so we focus instead on the TSP instances.

Table 4.16: Results of Base-Spectral on (a) NHNB20 and (b) NHNB20PR, by order n. The table also shows the improvement in solved instances relative to the Base Model.
(b) NHNB20PR
(a) NHNB20

n	Graphs	Inf.	Imprv.
10	1	0	0
12	1	0	0
14	6	1	0
16	33	6	0
18	231	52	0
20	1827	418	0
All	2099	477	0

n	Graphs	Inf.	Imprv.
12	1	0	0
13	1	1	0
14	7	3	0
15	5	4	0
16	9	4	0
17	23	3	0
18	17	0	0
19	6	3	0
20	18	0	0
All	87	18	0

Table 4.17 shows the results of Base-Spectral on the sets ATSP16A and ATSP16AC. We note that for ATSP16A, which comprises complete ATSP instances, the only additional constraints are (4.83) and (4.84). In contrast, for ATSP16AC, which comprises cubic ATSP instances, constraints (4.81) and (4.82) are applicable in addition to (4.83) and (4.84). As can be seen, there are no instances from ATSP16A for which the optimal solution changed relative to the Base Model. This suggests, perhaps, that the constraints (4.83) and (4.84) do not provide any additional benefit, at least in isolation. However, for ATSP16AC there are two instances for which the solution did change, albeit with only a very slight improvement in the gap.

Given the very small improvement in gaps for these two instances of ATSP16AC, we wanted to ensure that these improvements were not perhaps due to numerical inaccuracy, and so we investigated these instances further. We verified that the solutions of the Base Model for these two instances are, indeed, infeasible in Base-Spectral, and that this infeasibility could not be attributed to any numerical inaccuracy in the double-precision floating-point format used. The two instances have IDs 288 and 352, and the ratios of the improvement in gap to the original lower bounds are 1.3×10^{-7}

Table 4.17: Results of Base-Spectral on the 200 NHNB-derived and 200 Hamiltonian-derived instances in each of (a) ATSP16A and (b) ATSP16AC. The table indicates the number of instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.
(a) ATSP16A

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	16864.2	84.3	$0 / 200$	
NHNB-derived	289064.2	1445.3	$0 / 200$	
All	305928.4	764.8	$0 / 400$	

(b) ATSP16AC

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	16864.2	84.3	$0 / 200$	
NHNB-derived	288969.2	1444.9	$2 / 200$	4.8×10^{-4}
All	305843.4	764.6	$2 / 400$	4.8×10^{-4}

and 1.2×10^{-6}, respectively. Both instances may be found in Appendix B. Since a small improvement is found for these instances, it follows that the constraints are not redundant, and so we reasoned that, for some carefully chosen costs, the improvement in gap could be made starker.

We used the following technique to modify the costs. First, we compared the solution from the Base Model to that of Base-Spectral, and noted which x variables in the objective function had changed. Then, we made small increases and decreases to the costs, with the intention that the new solution from Base-Spectral would be more costly relative to that from the Base Model, while ensuring the total sum of costs was unchanged. We continued this process iteratively, each time comparing the two solutions and adjusting the costs, until the method ceased to yield further improvement. At the end of this process, we scaled and rounded the costs to the integer range 0 to 100, which is the same range as other instances in ATSP16AC. For BaseSpectral, the modified instance based on that with ID 288 has a lower bound of 705.958 compared to 705.653 for the Base Model; a difference of 0.305 or

Δ

Figure 4.18: Instances of ATSP16AC with IDs 288 (top) and 352 (bottom), modified to increase the contrast between Base-Spectral and the Base Model. Costs are shown on each arc closest to the vertex that the arc enters. Colour gives an indication of the increase or decrease of costs relative to the costs of the original instances.
ratio of 4.3×10^{-4}. For the modified instance based on that with ID 352 , Base-Spectral has a lower bound of 599.809 compared to 595.586 for the Base Model; a difference of 4.22 or a ratio of 7.1×10^{-3}. Note that in each case the ratio is improved by three orders of magnitude. We display these two modified instances along with their new arc costs in Figure 4.18.

4.5 Results of combined extensions

We have seen that each of the models Base-SST- k-Ext, Base-Forced, Base-3-Cut and Base-Spectral are improvements upon the Base Model. A logical question is whether additional improvements could be gained by combining all four of these models. Note that while each of these models is well-defined for any graph G, some of the models only offer improvements for graphs with certain properties. For example, some additional constraints will only be present in graphs that contain forced edges, 3-cuts or vertices of certain degrees.

We now define the model Base-Combined, as follows:
Definition 4.15. Minimise (4.9), subject to (4.1) - (4.8), (4.24) - (4.26), $(4.29)-(4.36),(4.44),(4.60)-(4.62),(4.65)$ and (4.79) - (4.84). If the costs $c_{i j}$ are not provided, find any solution subject to these constraints.

For the reader's convenience, we repeat the objective function,

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j \in N(i)} c_{i j} x_{0, i j}^{i} \tag{4.9}
\end{equation*}
$$

and each of the linear constraints of Base-Combined below. Unless otherwise restricted, the indices i, j, k and l range from 1 to n, and r and s range from 0 to $n-1$. The set of forced edges is denoted by F and the set of minimal 3 -cuts not isolating a single vertex is denoted by \mathcal{C}_{3}.

Constraints from the Base Model:

$$
\begin{array}{lr}
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(i)} x_{r-1, a i}^{k}=0 & \forall i, k ; r \neq 0 \\
\sum_{a \in N(i)} x_{r, i a}^{k}-\sum_{a \in N(k)} x_{n-r, k a}^{i}=0 & \forall i, k ; r \neq 0 \\
\sum_{r=0}^{n-1} x_{r, i a}^{k}-\sum_{r=0}^{n-1} x_{r, i a}^{j}=0 & \forall j, k \neq j ; i a \in E \\
\sum_{k=1}^{n} x_{r, i a}^{k}-\sum_{k=1}^{n} x_{s, i a}^{k}=0 & \forall r, s \neq r ; i a \in E \\
\sum_{r=0}^{n-1} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, k \\
\sum_{k=1}^{n} \sum_{a \in N(i)} x_{r, i a}^{k}=1 & \forall i, r \\
x_{0, i a}^{k}=0 & \forall k ; i \neq k ; i a \in E \\
x_{r, i a}^{k} \geq 0 & \forall k, r ; i a \in E .
\end{array}
$$

Additional constraints from Base-SST- k-Ext:

$$
\begin{array}{lr}
y_{i j}^{k}+y_{j i}^{k}=1 & \forall k, i, j ; k \neq i \neq j \\
y_{i j}^{k} \geq x_{0, k i}^{k} & \forall k, j ; i \in N(k) ; k \neq i \neq j \\
y_{j i}^{k} \geq x_{0, i k}^{i} & \forall i, j ; i \in N(k) ; k \neq i \neq j \\
y_{i j}^{k} \geq 0 & \forall k, i, j ; k \neq i \neq j \\
0 \leq f_{i a, j}^{k} \leq x_{0, i a}^{i} & \forall k, i, j ; a \in N(i) ; k \neq i \neq a \neq j \\
\sum_{a \in N(i) \backslash\{k, j\}} f_{i a, j}^{k}+x_{0, i j}^{i}=y_{i j}^{k} & \forall k, i ; j \in N(i) ; k \neq i \neq j \\
\sum_{a \in N(i) \backslash\{k\}} f_{i a, j}^{k}+0=y_{i j}^{k} & \forall k, i ; j \notin N(i) ; k \neq i \neq j \\
x_{0, k i}^{k}+\sum_{b \in N(i) \backslash\{k, j\}} f_{b i, j}^{k}=y_{i j}^{k} & \forall k, j ; i \in N(k) ; k \neq i \neq j \\
0 \quad+\sum_{b \in N(i) \backslash\{j\}} f_{b i, j}^{k}=y_{i j}^{k} & \forall k, j ; i \notin N(k) ; k \neq i \neq j \\
y_{i j}^{k}=y_{j k}^{i} & \forall k, i, j ; k<i<j \text { or } j<k<i
\end{array}
$$

$$
\begin{array}{lr}
f_{i a, j}^{k}+f_{i a, k}^{j}=x_{0, i a}^{i} & \forall k, i, j ; a \in N(i) ; k<j ; k \neq i \neq a \neq j \\
y_{i j}^{1}+y_{i l}^{j}+y_{j l}^{1}+y_{l i}^{1}=2 & \forall i, j, l ; 1<i<j<l . \tag{4.44}
\end{array}
$$

Additional constraints from Base-Forced:

$$
\begin{array}{lr}
x_{0, i a}^{i}+x_{0, a i}^{a}=1 & \forall i ; i a \in F \\
x_{r, i a}^{k}=\sum_{b \in N(i) \backslash\{a\}} x_{r-1, b i}^{k} & \forall i, k ; i a \in F ; r \neq 0 \\
x_{r, i a}^{k}=\sum_{j \in N(a) \backslash\{i\}} x_{r+1, a j}^{k} & \forall i, k ; i a \in F ; r \neq n-1 .
\end{array}
$$

Additional constraints from Base-3-Cut:

$$
\begin{equation*}
x_{0, a b}^{a}+x_{0, b a}^{b}+x_{0, c d}^{c}+x_{0, d c}^{d}+x_{0, e f}^{e}+x_{0, f e}^{f}=2 \quad \forall\{a b, c d, e f\} \in \mathcal{C}_{3} . \tag{4.65}
\end{equation*}
$$

Additional constraints from Base-Spectral for all j such that $\operatorname{deg}(j)=2$;

$$
\begin{align*}
& \sum_{r=0}^{n-1} \cos (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right)=0 \tag{4.79}\\
& \sum_{r=0}^{n-1} \sin (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right)=0 \tag{4.80}
\end{align*}
$$

for all j such that $\operatorname{deg}(j)=3$;

$$
\begin{align*}
& \min \left\{\cos (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \cos (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right) \tag{4.81}\\
& \leq \max \left\{\cos (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \min \left\{\sin (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \sin (r \theta) \sum_{k \in N(j)}\left(\sum_{a \in N(k)} x_{r, k a}^{1}-2 \cos \theta x_{r, j k}^{1}\right) \tag{4.82}\\
& \quad \leq \max \left\{\sin (l \theta) \mid \min _{k \in N(j)} \mu_{k}^{1} \leq l \leq \max _{k \in N(j)}\left(n-\hat{\mu}_{k}^{1}\right) ; l \in \mathbb{Z}\right\},
\end{align*}
$$

and for all j;

$$
\begin{align*}
& \min \left\{\cos (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \cos (r \theta) \sum_{a \in N(j)} x_{r, j a}^{1} \tag{4.83}\\
& \leq \max \left\{\cos (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \min \left\{\sin (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\} \\
& \leq \sum_{r=0}^{n-1} \sin (r \theta) \sum_{a \in N(j)} x_{r, j a}^{1} \tag{4.84}\\
& \quad \leq \max \left\{\sin (l \theta) \mid \mu_{j}^{1} \leq l \leq\left(n-\hat{\mu}_{j}^{1}\right) ; l \in \mathbb{Z}\right\}
\end{align*}
$$

Table 4.19 shows the results of Base-Combined relative to the Base Model on the problem sets NHNB20 and NHNB20PR. As expected, all of the instances that are infeasible in any of the extended models are infeasible for Base-Combined as well. However, there is one additional instance from NHNB20PR that is feasible for all the individual models, but for which the combination of all the models induces infeasibility. We display this instance in Figure 4.20. This instance indicates that Base-Combined prevents some feasible solutions, not corresponding to Hamiltonian cycles, that lie in the intersection of feasible solutions in the other extended models. In other words, using Base-Combined for a given instance can give a stronger result than taking the best outcome from the individual extended models.

Table 4.21 shows the results of Base-Combined relative to the Base Model on the problem sets ATSP16A and ATSP16AC. There are 358 and 379 instances, respectively, for which the optimal solution changed relative to the Base Model. We note that this set of instances is the union of the respective sets from the individual extended models. It is worthwhile, then, to compare the reduction in gap for Base-Combined on these instances to the best of the reductions for the individual extended models. Table 4.22 shows the means of the gaps for Base-Combined compared to the best gaps obtained by any of

Table 4.19: Results of Base-Combined on (a) NHNB20 and (b) NHNB20PR, by the order n. The table also shows the improvement in solved instances relative to the Base Model.
(b) NHNB20PR
(a) NHNB20

n	Graphs	Inf.	Imprv.
10	1	0	0
12	1	0	0
14	6	1	0
16	33	6	0
18	231	52	0
20	1827	475	57
All	2099	534	57

n	Graphs	Inf.	Imprv.
12	1	0	0
13	1	1	0
14	7	6	3
15	5	4	0
16	9	6	2
17	23	6	3
18	17	0	0
19	6	4	1
20	18	1	1
All	87	28	10

Figure 4.20: The instance of NHNB20PR that induced infeasibility in BaseCombined but not any of the individual extended models. It is the reduced graph of G_{20}^{71235} and has NHNB20PR ID 83.
the individual models for each instance. Note that for the complete instances in ATSP16A, Base-Combined effectively contains constraints from only Base-SST- k-Ext and the relatively weak Base-Spectral. It is not unexpected then that in all cases, there is no improvement over the result obtained for Base-SST- k-Ext. In contrast, for the cubic instances of ATSP16AC, there is a significant improvement in gap (greater than 0.1) found for 154 , or 44% of the instances considered that had not already been solved to optimality.

Table 4.21: Results of Base-Combined on the 200 NHNB-derived and 200 Hamiltonian-derived instances in each of (a) ATSP16A and (b) ATSP16AC. The table indicates the number of instances for which the optimal solution changed relative to the Base Model, and the mean reduction in gap for these instances.
(a) ATSP16A

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	14756.9	73.8	$193 / 200$	10.536
NHNB-derived	288170.2	1440.9	$165 / 200$	4.470
All	302927.1	757.3	$358 / 400$	7.503

(b) ATSP16AC

Subset	Sum of gaps	Mean	Changed	Mean red.
Ham.-derived	9794.9	49.0	$197 / 200$	35.346
NHNB-derived	284412.2	1422.1	$182 / 200$	22.835
All	294207.1	735.5	$379 / 400$	29.091

Recall that there are 29 Hamiltonian-derived instances of ATSP16AC for which the optimal solution for Base-3-Cut corresponded to the optimal tour. For Base-Combined, there is one additional instance for which the optimal tour is obtained, bringing the total number up to 30 . In other words, the information exploited by any individual extended model is not sufficient to obtain the optimal tour for this instance, but their combination is. This offers further support for the merit of the Base-Combined model. To illustrate the performance of each of the different models, Table 4.23 shows the gaps for each model considered in this chapter on this instance, which has ID 31 and

Table 4.22: A comparison of Base-Combined with the other extended models for the instances of (a) ATSP16A and (b) ATSP16AC in which the optimal solution changed relative to the Base Model. For each instance, we find the best gap obtained over each of the individual extended models, and list the mean of these in the column labelled Mean best. We then list the mean of the gaps found for Base-Combined in the column labelled Base-Combined. Finally the improvement in mean is listed.
(a) ATSP16A

Subset	Changed	Mean best	Base-Combined	Improvement
Ham.-derived	193	73.2	73.2	0
NHNB-derived	165	1445.0	1445.0	0
All	358	705.5	705.5	0

(b) ATSP16AC

Subset	Changed	Mean best	Base-Combined	Improvement
Ham.-derived	197	50.0	48.4	1.618
NHNB-derived	182	1423.8	1422.4	1.423
All	379	709.7	708.2	1.524

is displayed in Figure 4.24. Note that this instance has no forced edges, so Base-Forced is no stronger than the Base Model. It does contain four 3-cuts, and Base-3-Cut is very effective, though constraints from the other models are required to reduce the gap all the way to zero.

Table 4.23: Gaps for various models on ATSP16AC instance with ID 31.

Model	Gap
SST	136.5
Base Model	82.6
Base-SST	82.6
Base-SST- k	78.3
Base-SST- k-Ext	75.9
Base-Forced	82.6
Base-3-Cut	3.0
Base-Spectral	82.6
Base-Combined	0

Each of the extended models considered in this chapter exploit some information or features that may or may not be present in a given instance.

Figure 4.24: Instance of ATSP16AC with ID 31, showing the optimal tour of length 839 , which is identified by Base-Combined. Costs are shown on each arc closest to the vertex that the arc enters. Costs for arcs in the optimal tour are shown in green.

In some instances then, it may be helpful to exploit one feature, while in another instance this may not provide any benefit. To illustrate this concept, we present Euler diagrams in Figures 4.25 and 4.26 that indicate the number of instances for which each extended model is effective on the four problem sets. For the instances in NHNB20 and NHNB20PR, we consider an extended model to be effective if it is infeasible but the Base Model is feasible. For the instances in ATSP16A and ATSP16AC, we consider a model to be effective if the optimal solution found by the Base Model is no longer feasible. In each Euler diagram the universal set is taken to be the set of instances that are effective under Base-Combined, and we only include those models that are effective on at least one instance.

Recall that for the Base Model, 477 instances of NHNB20 are infeasible, while an extra 57 instances are infeasible for Base-Combined. In Figure 4.25 (a) we consider these 57 instances. As discussed previously, of the individual extended models, only Base-Forced and Base-3-Cut are effective, but it is interesting to note that there are instances for which one but not the other is effective. Similarly, recall that for the Base Model, 18 instances of NHNB20PR are infeasible, while an extra 10 instances are infeasible for Base-Combined. In Figure 4.25(b) we consider these 10 instances. As before, of the individual extended models, only Base-Forced and Base-3-Cut are effective on these instances, again with some instances effective in only one but not the other. Note also the one instance effective for Base-Combined that is not effective for either Base-Forced or Base-3-Cut, shown previously in Figure 4.20.

In Figure 4.26(a) we consider the 358 instances of ATSP16A for which Base-Combined is effective. As discussed previously, only Base-SST, Base-SST- k and Base-SST- k-Ext are effective on any of these instances. In Figure 4.26 (b) we consider the 379 instances of ATSP16AC for which BaseCombined is effective. In this case, each of the extended models are effective

Figure 4.25: Euler diagrams of the (a) 57 instances from NHNB20, and (b) 10 instances from NHNB20PR, for which Base-Combined is effective relative to the Base Model. Zones show which individual extended models are effective.
on at least one instance, so they are each included in the Euler diagram. It is notable that the 379 instances are partitioned into many distinct zones (thirteen), indicating how each of the extended models contributes to the effectiveness of Base-Combined on this problem set. Interestingly, the two instances for which Base-Spectral is effective are contained entirely in the intersection of instances effective for Base-SST and Base-3-Cut.

Figure 4.26: Euler diagrams of the (a) 358 instances from ATSP16A, and (b) 379 instances from ATSP16AC, for which Base-Combined is effective relative to the Base Model. Zones show which individual extended models are effective.

4.6 Detecting non-Hamiltonicity of graphs by using LP models on their subgraphs

Throughout this chapter we have considered both TSP and HCP instances. The TSP instances have been useful for providing a higher fidelity test set for the models. However, as we are primarily interested in detecting nonHamiltonicity in HCP instances, we now conclude this chapter with a more elaborate approach to solving instances of NHNB20 and NHNB20PR, many of which are not detected as non-Hamiltonian even by the combined model. We will use this method with Base-Combined to successfully detect nonHamiltonicity of almost all of the instances considered.

Observing that the two most effective extensions to the Base Model in an HCP sense are Base-Forced and Base-3-Cut, it follows that the graph features exploited by these extended models are very useful for inducing infeasibility of the LPs. However, not all of the instances considered possess these features; in particular, only 1113 of the 2099 instances in NHNB20, and 73 of the 87 instances in NHNB20PR contain forced edges by the definition used in Base-Forced. Therefore we consider the following straightforward method to take any subcubic HCP instance and construct a corresponding set of smaller instances, each having forced edges.

Given any graph $G=(V, E)$, consider the set of subgraphs obtained by the following approach. For each edge $u v \in E$, we produce the subgraph ($V, E \backslash\{u v\}$), which we denote by $G_{-u v}$. If the subgraph $G_{-u v}$ is non-Hamiltonian, it is apparent that the edge $u v$ must be present in all Hamiltonian cycles of G (if any exist). Thus, if we are able to determine that some of these subgraphs $G_{-u v}$ are non-Hamiltonian for a subset of the edges $S \subseteq E$, we may verify that the edges in S are compatible with the presence of a Hamiltonian cycle in G. Specifically, since each edge of S lies in all Hamiltonian cycles of G, a necessary condition for G to be Hamiltonian is that
the subgraph induced by S must be isomorphic to a subgraph of the cycle graph C_{n}. Note that a graph is isomorphic to a subgraph of C_{n} if and only if it has at most n vertices, a girth of either n or ∞, and a maximum vertex degree of 2. If this condition is not met, then G must be non-Hamiltonian. When combined with any given heuristic for detecting non-Hamiltonicity in the subgraphs $G_{-u v}$, we refer to this method of detecting non-Hamiltonicity in G as the subgraph method.

For a subcubic graph G, such as any of the instances from NHNB20 or NHNB20PR, there are $\mathcal{O}(n)$ edges and the given heuristic is run for each corresponding subgraph. In general, then, the subgraph method comes at the expense of an additional factor of $\mathcal{O}(n)$ in time complexity for subcubic graphs. However, an advantage of the method comes from the fact that if G is subcubic, then each subgraph produced by the subgraph method will necessarily contain forced edges by the definition used in Base-Forced.

In Table 4.27 we show the results of applying the subgraph method with both the Base Model and Base-Combined acting as the underlying heuristic, compared to the results of the two models without using the subgraph method. As one might expect, both models perform much better with the subgraph method, at the expense of this $\mathcal{O}(n)$ factor in additional time complexity, but the contrast is especially stark for Base-Combined which exploits more structural properties of the subgraphs. Indeed, using Base-Combined with the subgraph method detects non-Hamiltonicity in 99.0% of graphs from NHNB20, and 98.9% of graphs from NHNB20PR.

Table 4.27: Results of the Base Model and Base-Combined, using the subgraph method on (a) NHNB20 and (b) NHNB20PR, by order n. The columns labelled Without and With show the number of instances for which the given model is infeasible respectively with and without using the subgraph method.
(a) NHNB20

		Base Model			Base-Combined	
n	Graphs	Without	With		Without	With
10	1	0	0		0	0
12	1	0	1		0	1
14	6	1	4		1	6
16	33	6	27	6	33	
18	231	52	191	52	229	
20	1827	418	1418		475	1809
All	2099	477	1641		534	2078

(b) NHNB20PR

		Base Model		Base-Combined		
n	Graphs	Without	With		Without	With
12	1	0	1		0	1
13	1	1	1		1	1
14	7	3	7		7	
15	5	4	5	4	5	
16	9	4	9	6	9	
17	23	3	23	6	23	
18	17	0	13	0	16	
19	6	3	6		4	6
20	18	0	18	1	18	
All	87	18	83	28	86	

Chapter 5

Conclusions and future work

We now conclude this thesis with a summary of the gains that have been made, and the future work arising from the research presented.

In Chapter 2 we compared various relaxed formulations of HCP. In order to make these comparisons, we considered NHNB20, the set of all nonHamiltonian non-bridge cubic graphs with up to 20 vertices. We also constructed two sets of TSP instances, ATSP16A and ATSP16AC, to enable finer comparisons to be made. We concluded that the Base Model was the most powerful of the models considered in the majority of instances in these sets. Indeed, the Base Model dominated the other models in terms of identifying non-Hamiltonian graphs in NHNB20. In particular, the Base Model detected non-Hamiltonicity in approximately 23% of the instances of NHNB20.

In Chapter 3 we investigated techniques for reducing the HCP instances, without altering their Hamiltonicity. We identified a number of graph reductions, each of which is applicable on any graph containing particular features. We described an algorithm, GraphReduction, that searches for a sequence of such reductions for a given graph. This is so effective that in many cases, the sequences of reductions found reduce the corresponding instances to trivially Hamiltonian or trivially non-Hamiltonian graphs. In particular, the algorithm is capable of reducing approximately 73% of the
instances from NHNB20 to a trivially non-Hamiltonian graph, and partially reducing an additional 21% of the instances. Furthermore, approximately 10% of these partially reduced instances can be immediately identified as non-Hamiltonian by the Base Model.

In Chapter 4 we considered several extensions of the Base Model and quantified their improved effectiveness. We then combined each of these extensions into a single model which we called Base-Combined. Base-Combined was shown to be considerably stronger than the Base Model, and indeed, stronger than even taking the best result from each of its constituent models. Finally, we introduced the subgraph method which, when paired with BaseCombined, is effective in solving almost all remaining instances of NHNB20, but at the cost of increasing the time complexity by a factor of $\mathcal{O}(n)$.

We now summarise the cumulative results of applying each of the above methods in turn on NHNB20. Following that, we outline the directions of future research that have arisen from each of the chapters in this thesis.

5.1 Summary of results

Given the methods described in this thesis, there is a natural approach for attempting to establish the non-Hamiltonicity of a graph. First, we apply the Base-Combined LP (Section 4.5) to see if the graph induces infeasibility. If not, we use GraphReduction (Algorithm 3.1) to see if the graph can be reduced to a trivially non-Hamiltonian graph. If a partially reduced graph is obtained instead, we apply Base-Combined again on this reduced graph. Finally, if we have still not been successful in identifying non-Hamiltonicity, we use the subgraph method (Section 4.6) with Base-Combined.

Table 5.1 shows the outcome of the above approach for the instances of NHNB20. After each successive method is applied, the table shows the number of instances that have not yet been identified as non-Hamiltonian. As
can be seen, after all of our methods are applied, only 12 instances of NHNB20 remain unidentified as non-Hamiltonian. This is a dramatic improvement over the original Base Model for which 1622 graphs were not identified.

Since the approach described is guaranteed to terminate in polynomial time for cubic graphs, this constitutes a certificate of non-Hamiltonicity for 2087 out of the 2099 instances of NHNB20.

Table 5.1: The number of instances of NHNB20, by order n, that remain unidentified as non-Hamiltonian after each successive method is applied as described in Section 5.1.

	Graphs	Base- Combined	Graph Reduction	(Red) Base- Combined	Subgraph method
10	1	1	0	0	0
12	1	1	0	0	0
14	6	5	0	0	0
16	33	27	2	2	0
18	231	179	38	34	1
20	1827	1352	506	452	11
Total	2099	1565	546	488	12

5.2 Future work arising from Chapter 2

Conjectures 2.12 and 2.22 are obvious topics for future research. Conjecture 2.12 would imply Conjecture 2.22 , and all empirical evidence points to both being true.

The result of Theorem 2.23 is also very interesting from the perspective of the NP-hard graph toughness problem; determining whether a given graph is tough or non-tough. In particular, the feasibility of DFJ constitutes a new, polynomial-time verifiable, sufficient condition for graph toughness. Similar to in this thesis wherein we try to improve the detection of non-Hamiltonicity with polynomial-time methods, we could instead focus on improving the detection of tough graphs with polynomial-time methods such as the feasibility of appropriate LP models. This presents an interesting challenge; unlike for
the LP models we sought to tighten in Chapter 4, in this scenario we would seek rather to weaken the models as much as possible, without permitting non-tough graphs to induce feasibility.

5.3 Future work arising from Chapter 3

An obvious line of future work is to identify more reductions for inclusion in the graph reduction algorithm. One such family of reductions could be to consider more specific subgraphs than just triangles and diamonds. Such a choice of subgraph would need to be chosen by a suitable survey of graphs to see which are the most common. It would also be beneficial to try to identify other classes of incompatible edge sets. This could be achieved by identifying new measures of edge equivalence besides edge orbits.

Another potentially fruitful approach would be to further develop the graph reduction algorithm as a heuristic for solving HCP in its own right. We would first apply as many reductions as possible, and when no further reductions can be made, systematically remove edges and then see if the graph can now then be reduced to a trivial Hamiltonian or non-Hamiltonian graph. In the former case, the problem is solved, and in the latter case, we can return to the original graph and list that edge as forced, and then iterate. This procedure could also be combined with linear programming techniques, such as the Base-Combined model, to assist in the detection of forced edges.

5.4 Future work arising from Chapter 4

Broadly speaking, there are two different ways to improve the effectiveness of the techniques in Chapter 4. The first would be to further extend the models considered, by adding new constraints that take advantage of more graph properties. The second would be to consider ways that we can modify the
instances to take further advantage of the constraints we already have. For example, the constraints in Base-Forced and Base-3-Cut, which exploit the features of forced edge and 3 -cuts respectively, were very effective but only on the graphs in which these graph features were present. Hence, a possible avenue for future research is to investigate techniques for introducing forced edges or 3-cuts into graphs without either altering the Hamiltonicity (in an HCP instance) or changing the length of the optimal tour (in a TSP sense). For example, one way to introduce a 3 -cut is to replace any degree- 3 vertex with a triangle, or some other appropriate graph, such that the original three edges form a 3-cut that separates the introduced subgraph from the rest of the graph.

Many of the new constraints in the extended models only involve $x_{r, i a}^{k}$ variables where $k=i$ and $r=0$. Given the benefits gained so far, it stands to reason that finding new linking constraints on the other $x_{r, i a}^{k}$ variables might lead to additional improvement. One possible idea in this direction is to try to impose constraints on the powers of the permutation matrix P corresponding to a Hamiltonian cycle, as considered in Section 4.4. Although we only considered P in that section in order to obtain constraints on other variables, in fact, it can be easily seen that we can represent any element of any power of P linearly in terms of the $x_{r, i a}^{k}$ variables as follows.

$$
\begin{equation*}
\left[P^{r}\right]_{k i}=\sum_{a \in N(i)} x_{r, i a}^{k} \quad \forall r=0, \ldots, n-1 \tag{5.1}
\end{equation*}
$$

Powers of P higher than $n-1$ may be obtained by recognising that $P^{n}=I$ for any Hamiltonian cycle. Thus (5.1) allows us to impose constraints on powers of P.

One potentially useful property on powers of P is the following: If P is a permutation matrix corresponding to a Hamiltonian cycle in a graph with n vertices, it can be shown that for $r=1, \ldots, n$, the matrix P^{r} will be a permutation matrix consisting of cycles of length $\frac{n}{\operatorname{gcd}(r, n)}$. Using linear
constraints to demand that powers of P contain cycles of the desired length is difficult; indeed, no easier than HCP itself, where we want a cycle of length n in the first power of P. We did, however, investigate the following set of constraints based on the cyclic properties of powers of P. For all r such that $\frac{n}{\operatorname{gcd} r, n} \neq 3$; we can prevent P^{r} from containing 3-cycles though the linear constraints

$$
\begin{align*}
{\left[P^{r}\right]_{i j} } & +\left[P^{r}\right]_{i k}+\left[P^{r}\right]_{j i} \\
& +\left[P^{r}\right]_{j k}+\left[P^{r}\right]_{k i}+\left[P^{r}\right]_{k j} \leq 2 \tag{5.2}
\end{align*}
$$

In investigating these constraints, we found many instances where particular feasible solutions from the Base Model violated (5.2) for some powers of r. However, imposing (5.2) never led to an improvement in gap for any TSP instances tested, nor to additional infeasible instances in the non-Hamiltonian graphs tested. Nonetheless, constraints such as (5.2), in combination with other carefully designed constraints for powers of P, could yield significant improvements.

Appendix A

Non-Hamiltonian non-bridge cubic

graph sets

This appendix provides two sets of HCP instances used throughout the thesis. In Appendix A. 1 we give a list of GENREG IDs for the instances in NHNB20; the cubic non-Hamiltonian non-bridge graphs up to 20 vertices in size, defined in Section 2.2.2. In Appendix A. 2 we provide GENREG IDs and edge lists for the instances in NHNB20PR; the set of partially reduced graphs of NHNB20 after applying the graph reduction algorithm presented in Algorithm 3.1.

For both lists of instances, the GENREG ID refers to the graph number, starting at 1 , produced by the quality GENREG software by Meringer [56], when the genreg executable is called to produce all cubic graphs of that size. For example, to produce the 510489 cubic (3-regular) graphs of size 20 vertices, the command genreg 203 -a is used. The Hamiltonicity of all instances was verified with the exact algorithm of Chalaturnyk [14].

For convenience, both sets in GENREG's ASCII format may be downloaded from the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website: http://fhcp.edu.au.

A. 1 NHNB20 GENREG IDs

There are 2099 non-Hamiltonian non-bridge cubic graphs up to 20 vertices in size, with the GENREG IDs as listed below. We also indicate the instances for which the graph reduction algorithm in Algorithm 3.1 is able to find a reduction; a plus (+) following an ID indicates that the instance is partially reduced, while an asterisk (*) indicates that the instance is completely reduced to a trivially non-Hamiltonian graph. There are respectively 443 and 1537 instances of NHNB20 with partial and complete reductions.

10 vertices (1 graph):

19*

12 vertices (1 graph):

63*

14 vertices (6 graphs):
120* 123* 251* 372* 388* 421*

16 vertices (33 graphs):

| $237 *$ | $240 *$ | $410 *$ | $416 *$ | $547 *$ | $552 *$ | $582 *$ | $824 *$ | $830 *$ | $831 *$ | $842 *$ | $852 *$ | $971 *$ | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1066 *$ | $1281 *$ | $1386 *$ | $1792 *$ | $1828 *$ | $1840 *$ | $1864 *$ | $1998 *$ | $2031 *$ | $2235 *$ | $2911 *$ | $2923 *$ | $3009 *$ | |
| $3112 *$ | $3123 *$ | $3138 *$ | $3300 *$ | $3337+$ | $3427 *$ | 3453 | | | | | | | |

18 vertices (231 graphs):

$1066 *$	$1069 *$	$1245 *$	$1251 *$	$1397 *$	$1402 *$	$1440 *$	$1567 *$	$1697 *$	$1703 *$	$1704 *$	$1715 *$	$1726 *$	
$1863 *$	$1866 *$	$2033 *$	$2038 *$	$2210 *$	$2215 *$	$2412 *$	$2469+$	$2748 *$	$3030 *$	$3031 *$	$3032 *$	$3058 *$	
$3074 *$	$3107 *$	$3121 *$	$3145 *$	$3472 *$	$3556 *$	$3564 *$	$3646 *$	$3649 *$	$3707 *$	$4189 *$	$4195 *$	$4203 *$	
$4212 *$	$4213 *$	$4238 *$	$4250 *$	$4279 *$	$4489 *$	$4535 *$	$4536 *$	$4537 *$	$4557 *$	$4652+$	$5112 *$	$5132 *$	
$5190 *$	$5459 *$	$5460 *$	$5461 *$	$6099 *$	$6105 *$	$6814 *$	$6932 *$	$6933 *$	$6934 *$	$6964 *$	$6965 *$	$6966 *$	
$6967 *$	$6968 *$	$6969 *$	$6970 *$	$6971 *$	$7018 *$	$7027+$	$7037 *$	$7038 *$	$7039+$	$7119 *$	$7120 *$	$7121 *$	
$7122 *$	$7147 *$	$7229 *$	$7305 *$	$7389 *$	$7578 *$	$7640 *$	$7648 *$	$7649 *$	$7675 *$	$7679 *$	$7683 *$	$7710 *$	
$7899 *$	$8045 *$	$8151 *$	$8420 *$	$8430 *$	$8625 *$	$8746 *$	$8864 *$	$9134 *$	$9147 *$	$9249 *$	$9379 *$	$9506 *$	
$9719 *$	$9907 *$	$10094 *$	$10937 *$	$10976 *$	$1099 * *$	$11010 *$	$11041 *$	$11133 *$	$11360 *$	$11424 *$	$11526 *$	$11969 *$	
$12006 *$	$12018 *$	$12043 *$	$12201 *$	$12300 *$	$12952 *$	$13068 *$	$14794 *$	$15633 *$	$15971 *$	$15996 *$	$16009 *$	$16029 *$	
$16238 *$	$16239 *$	$16240 *$	$16241 *$	$16331 *$	$16332 *$	$16353 *$	$16432 *$	$16611 *$	$16612 *$	$16613 *$	$16617 *$	$16664 *$	
$16781 *$	$17340 *$	$17499 *$	$17576 *$	$17641 *$	$17766 *$	$17796 *$	$17914 *$	$18069+$	$18139 *$	$18214 *$	$18567+$	$18597 *$	
$18608 *$	$18632 *$	$18758+$	$18902 *$	$18921 *$	$18978 *$	$19026 *$	$19153 *$	$19271+$	$19337 *$	$20388 *$	$20633 *$	$20740 *$	
$20766 *$	$20795 *$	$21027+$	$21493 *$	$22141+$	$22181 *$	$25534 *$	$28010 *$	$28478 *$	$28485 *$	$28488 *$	$28544 *$	$28579 *$	
$28624 *$	$28803 *$	$28884+$	$29269+$	$29446 *$	$29479 *$	$29498+$	$29499+$	$29500 *$	$29501+$	$29502+$	$29777 *$	$29824 *$	
$30289 *$	$30554+$	$30555 *$	$30556+$	$30557 *$	$30558+$	$30560+$	$30599 *$	$30675 *$	$33494 *$	$33547 *$	$33587 *$	$33737 *$	
33798	$33827+$	$34034 *$	$34065+$	$34468+$	$34621+$	$34742 *$	34770	$34858 *$	$34877 *$	34901	34934	35117	
35141	35533	36973	37070	37124	37193	38297	$40847+$	40849	$40852 *$				

20 vertices (1827 graphs):

| $8602 *$ | $8605 *$ | $8783 *$ | $8789 *$ | $8938 *$ | $8943 *$ | $8981 *$ | $9108 *$ | $9238 *$ | $9244 *$ | $9245 *$ | $9256 *$ | $9267 *$ |
| ---: |
| $9407 *$ | $9410 *$ | $9583 *$ | $9588 *$ | $9770 *$ | $9775 *$ | $9986 *$ | $10043+$ | $10336 *$ | $10568 *$ | $10624 *$ | $10625 *$ | $10626 *$ |
| $10652 *$ | $10668 *$ | $10701 *$ | $10715 *$ | $10739 *$ | $11081 *$ | $11090 *$ | $11222 *$ | $11242 *$ | $11333 *$ | $11336 *$ | $11405 *$ | $11631 *$ |
| $11912 *$ | $11918 *$ | $11926 *$ | $11935 *$ | $11936 *$ | $11962 *$ | $11975 *$ | $12006 *$ | $12235 *$ | $12291 *$ | $12292 *$ | $12293 *$ | $12294 *$ |
| $12300 *$ | $12304 *$ | $12319 *$ | $12416+$ | $12417 *$ | $12929 *$ | $12949 *$ | $13021 *$ | $13268 *$ | $13301 *$ | $13302 *$ | $13303 *$ | $13532 *$ |

13862*	13865*	13986*	13992*	14753*	14759*	14880*	14886*	14887*	14888*	14889*	14923*	14924*
14925*	14926*	14927*	14928*	14929*	14930*	14931*	14977*	14985*	14996+	15007*	15008*	15009+
15094	15095*	15096*	15097*	15123*	15208*	15286*	15371*	15574*	15639*	15647*	15648*	*
15685*	15689*	15716*	15942*	15945*	16117*	16123*	16267*	16272*	16308*	16560*	16566*	16567*
16578*	16589*	16877*	16882*	17165*	17174*	17326*	17331*	17397*	17896*	17902*	17910*	17919*
17920*	17946*	17959*	17990*	18203*	18208*	18369*	18375*	18654*	18663+	18813*	18818*	18884*
19385	19391*	19399	19408*	194	1943	19	19	19	19645*	19943*	19949+	20093*
20099	20345*	20356	20603+	20830*	21016+	21056*	210	21058*	21121*	21197*	21203+	21556+
21569+	21633*	21706+	21730+	21792*	21899+	22087*	22092*	22242*	22935*	22946*	24207+	24261*
24262*	24263*	24267*	24273+	24298+	24465+	24547*	24682+	24940*	25061*	25149*	25218+	25868*
26304*	26305*	26306*	27203*	27204*	27	27206*	27207*	27208*	27209*	27210*	27	27212*
27213*	27214*	27455*	27456*	27457*	27458*	27459*	27495*	27545*	27550*	27581*	27586*	27631*
27649*	27666*	27702*	27771*	27806*	27834*	28015+	28034*	28045*	28046*	28047*	28048*	28159*
28160*	28161+	28162*	281	281	282	283	28448*	28503*	28504*	28505*	28506*	28510*
285	29056*	29344*	293	293	29	29519*	29534*	29712*	29946*	29949*	30057*	30060*
30213*	30219*	30494*	30500*	30750+	30993+	31419*	31985*	31993*	32006*	32052*	32070*	32087*
32123*	32224*	32233*	32248*	32417*	32423*	32515*	32518*	32821*	32858*	32861*	32863*	32885*
32902*	32959*	33147	33283*	33288*	33321*	33568*	33574*	33575*	33586*	33597*	33797*	33942*
34021*	34022*	34023*	34027*	34077*	34220+	34882*	35029*	35059*	35194*	35468*	35773*	35774*
35775*	37189*	37195*	38348*	38505*	38757*	38783*	38838*	38839*	38840*	38865*	38878*	38911*
38925*	38948*	39023*	39024*	39025*	39026*	39080*	39081*	39082*	39083*	39084*	39085*	39086*
390	39088*	39089	390	39229*	39245+	39256+	39	39268*	39269*	39270+	39379*	39380*
39381*	39382*	39407*	39489*	39719*	39720*	39721*	39722*	39726*	39777*	39911*	40103*	40593*
40785*	40871*	40889*	40894*	40936*	40958*	41017*	41082*	41141*	41145*	41149*	41183*	41203*
41314*	41317*	41596+	41710*	41728*	41874*	42420+	42463*	42476*	42505*	42727*	42877*	42883*
42	42888*	42889*	42890*	42891*	42892*	42893*	42894*	42895*	42896*	42897*	42898*	42899*
42900*	42925*	42926*	42927*	42943*	42944*	42945*	42972*	42977*	43006*	43025*	43042+	43049*
43050*	43051*	43174*	43318+	43403*	43473+	43752+	43761+	43772+	43880+	44016*	44021*	44304+
44530+	45443*	45618+	48031+	48114*	48127*	48129*	48180*	48274*	48278*	48384*	48725*	48839*
48840*	48841*	49097*	49337*	49382+	50083*	50485*	50935*	50936*	50937*	50938*	51552*	51553*
51554*	51579*	51580*	51581*	51582*	51583*	51584*	51585*	51586*	51587*	51588*	51589*	51671+
52039	53516+	53778	537	53790*	55422	55933+	56973*	57130*	57408*	58570	58579*	58580*
58767*	58768*	58769*	59264+	59806*	59830*	59884*	59885*	59886*	59910*	59920*	59953*	59967*
59990*	60204*	60256+	62899*	67169*	67186*	67396*	67397*	67398*	67429*	67435*	67532*	67605*
67627*	67643*	67675	69036	69052+	69084	694	70252*	70258+	70298*	70299*	70300*	70320*
70321*	70322*	70323*	70324*	70325*	70326*	703	70328*	70329*	70330*	70331*	70332*	70333*
70334*	70335*	70336*	70337*	70560*	70561*	70562*	70563*	70564*	70565*	70566*	70567*	70568*
70569*	70570*	70571*	705	70573*	70574*	70575*	70576*	70577*	70578*	70579*	70580*	70581*
70582*	70583*	7058	705	705	705	70588*	70589*	70590*	70591*	70592*	70593*	70594*
70595*	70596*	70597*	70598*	70599*	70600*	70601*	70602*	70603*	70604*	70605*	70606*	70607*
70608*	70609*	70893*	70917*	71121*	71122*	71123*	71170+	71171+	71172+	71230*	71231*	71232+
71233*	71234*	71235+	712	71237+	71238+	71239+	71240*	71241+	71242+	71243*	71244+	71268+
71300*	71415*	71907*	71	71912*	71913*	71914+	71915*	71916*	71917*	71918*	71919*	71920*
71921*	71922*	71923+	71924*	71925+	71926*	71927+	71928+	71976+	71988*	72082*	72088*	72101*
72103*	72112*	72115*	72116*	72117+	72118*	72119+	72240+	72338+	72738*	72971*	72987*	73011*
73012+	732	7389	73907+	73916+	73918*	7475	74772*	74784*	75369*	77114*	77368*	77398*
77410*	77416+	77509*	77878*	77901*	78010*	78139*	78140*	78517*	79742*	79974*	79975*	80023*
80160*	80169*	80175*	80189*	80190*	80199*	80214*	80220*	80221*	80234*	80251*	80295*	80649*
80722*	808	809	809	81032*	810	81093*	81099*	81376*	81495*	8157	81586*	81595*
81596*	81630*	81638*	81643*	81644*	81651*	81680*	81688*	81695*	81786*	81791*	81805*	81821*
81886*	82068*	82140*	82141*	82236+	82277+	82507*	82679+	83062*	83063*	83064*	83065*	83066*
84038*	84186*	84294*	84563*	84573*	84690*	84830*	84980*	85195+	85711*	85741*	85755*	85777*
86050*	86123*	86623*	86660*	86672*	86699*	86889*	86932*	86933*	86934*	87038+	87480*	88390*
89071*	89273*	89274*	89275+	89352*	89353*	89354*	89378*	89458*	89533*	89616*	89800*	89860*
89867*	89868*	89893*	89897*	89901*	89928*	90728*	90868*	90972*	91236*	91246*	91400*	91627*
91747*	92184*	92221*	92233*	92260*	92400*	92628+	92747*	93144*	93287*	93317*	93352*	93470*
93587*	94071*	94745*	94746*	94848+	94939*	95983*	95987*	96002*	96006*	96011*	96033*	96064*
96123*	96124*	96173*	96174*	96175+	96235*	96445*	96474*	96647*	96781*	96880*	97141*	97151*

170852* 170866* 170891* 170963* 171124* 171125* 171126* 171213* 171214* 171215* 171216* 171306* 171373* 171464* 171499* 171500* 171525* 171910* 172136* 172139* 172153* 172292* 172579+ 173333+ 173918* 173971* 174005* 174039+ 174040+174041+ 174042* 174043* 174044* 174045* 174046+174047* 174048+174049* 174050* 174051+ 174052* 174777* 174779+ 174780* 174781* 174782* 174783* 174784* 174785* 174786* 174787+ 174788+ $174789+174918 * 174928 * 174930 * 174931 * 174932 *$ 174933* 175683* 175698* 175721* 175722* 175977* 176089+ 177006* 177632* 177633* 177634+ 177635* 177636+ 177637* 177638* 177639+ 177641* 177642* 177643+ 177653* 177654* 177655* 177669* 177793* 177802* 178017* 178127* 178143* 178166* 178167* 179254* 179256* 179257* 182425* 186153* 186194* 186200* 186637* 186850* 186851* 187281* 188890* 188918* 189026* 189062* 189113* 189114* 191480* 191528* 191581* 191719* 191827* 192683* 192805* 193097* 193158* 193920* 194403* 194486* 194487+ 194491* 194596* 196149* 196150+ 196151* 196152* 196967* 197189* 197427* 197513* 197527* 197545* 197604* 197932* 197982+ 198032+ 198385+ 198416* 198417* 199119* 199473* 199474* 199476+ 200370* 200529* 200679* 200743* 201079* 201109* 201120* 201144* 201298* 201384* 201468* 201618+ 201744+ 201879+ 202523+ 202555+ 202571+ 202585+ 202613+ 202687+ 202782* 202857* 203109* 203192* 203255* 203259* 203350* 203559+ 203637+ 203967* 203978* 204002* 204136* 204215+ 204745+204844+206349+207340* 207395+207424+207436+ 207457+ 207656+ 207741+ 207760* 207833* 208000+ 208003* 208044* 208151* 208705* 208856* 208933* 208995+ $209091+209142 * 209171 * 209254 * 209332 * 209467+209536+209872+209902+209913+209937+210057+210089 *$ 210344+ 211262* 211282* 211292* 211444+ 211508* 211580* 211596+ 211613* 211911* 211992+ 212133* 212152* 212216* 212295* 212351* 212544* 212553* 212622* 212693* 212743* 212865* 212981* 213100* 213707* 213739* 213755* 213769* 213797* 213871* 213940* 214007* 214134+ 214195* 214304+ 214644+ 214726+ 214953+ 214964+ $215068+215089+215202+215285+215343 * 215578+215656 * 215718 * 215722 * 215812 * 216001+216111+216176 *$ $217298+217400+217878+219722+220429+223296 * 226842 * 226899 * 227152 * 227193 * 227244 * 227255 * 227331 *$ 227432* 227531* 227594* 227680* 229417* 229744* 229771* 229782* 229793* 229816* 230047* 230831* 230898* 230968* 231170* 231315* 231318* 231374* 231795* 231942* 231964* 231969* 231970* 232076* 232197+ 232303+ $232370+232470+233428 * 233535+233630+233728+234254+234286+234302+234315+234342+234412+234498+$ $234775 * 234869+235163+235415+236835+238741+238807 * 238863 * 238867 * 238950 * 239092+239729+244064 *$ $244128+244227+244329+244421+244509+246245+246334+246729 * 246869+246874+246934+246983+247004+$ $247022+247089 * 247289+247377 * 247420 * 247440 * 253182+253379+253474+254298+254502+254738+255389+$ 255703+ 255786* 256054+ 256761+ 257382+ 258408* 260741+ 264223+ 267396+ 268521+ 269104+ 270280* 287129* 287176* 287418+ 287441* 287450* 287468* 288629+ 288800+ 288887+ 288997+ 289991+ 296754+ 296802* 297985+ $298024+306924+311109+311887+319062+327104 * 327161+327579 * 327660 * 327749+328042 * 332900 * 333264 *$ 333295* 333320* 333329* 333442* 333609* 333662* 333687* 333731+ 333985+ 334076* 334104* 334118+ 334119+ 334120* 334121+ 334122+ 334437* 334438+334439+334440+334441* 334442+334752* 334962*335385* 337526+ 338019* 338854* 339126+ 339160* 339385+ 339405+ 339412+ 339429+ 339583+341155* 341201+ 341516+ 342307* $342351+343102+343247+343250+343379+343404+343482+343567+343580+345988 * 345989 * 345990 * 345991 *$ 345992* 346054+ 346104+ 346192+ 346203* 346204* 346205* 346206* 346207* 346334+ 346358* 346359* 346360* $346361+346362+346363+346364+346365+346366+346367+346368+346369 * 346370+346371+346372+346373+$ $346374+346375 * 346376+346377+346378+346379+346380+346381+346382+346383+346384+346385+346386+$ $346387+346388+346389+346390+346391+346392+346393+346394+346395 * 346396 * 347133 * 348925 * 348992 *$ $349065+349087+349204+349236+349291+349300 * 349301+349309+349315 * 349316+349323+349337+349519+$ $350322+350339+353410+353469+353551 * 353552+353553+355890+356755 * 357734+357795+358211+358279 *$ 358448* 358449+358450*358451+358452+358453+358454+358455+358456+358457*358458+358459+358461+ $358462+358463+358464+358465 * 358466 * 358467+358468+358469+358470+358471+358472+358476 * 358477 *$ $358478+358479+358480+358481+358482+358483+358484+358485+358486+358487+358488 * 358489 * 358490+$ $358491+358492+358493 * 358506 * 358567+358675+358766+358806+358843+358844 * 358848+358908+358919+$ $359301+359378+359379 * 359380+359381+361236 * 361500+367771+376442+376498+376786+377178+379913+$ $383925+385630+385965+391322+392099+393918 * 400138 * 404228 * 404260 * 404577+404727+405059 * 405120+$ 405454+ 410763* 411046+ 411965* 412677* 413133* 413174* 413325* 413365* 413423+ 413662* 413670* 413715+ 414174* 414497+ 414514* 414737* 414790* 414828* 414980* 415007* 415069 415122 415178 415570 415698+ 415824 415856+ 416707+ 417120 417162+ 417355+ 417721+ 417798* 417830+ 417930* 417982+ 418009+ 418224+ 418273 418288* 418801 418847 418976+ 422384 $422473+424159+424367+424399+424400 \quad 424401+424541+$ 425973* 426002+ 426126* 426173 426198 426389+ 426400* 427045* 427071+ 427207* 427232 427355* 427395 427417 427596* $427633427665427786428012+428031$ 428525 $429718 *$ 429732* 429763 429780 429950* 429962* 429990 430005* 430028 430135430352 430366 430633 430655 430805 431491 $434209 * 434218 *$ $\begin{array}{lllllllllllllll}434232 & 434253 & 434405 & 434417 & 434644 & 436326 & 436338 & 436558 & 436638 & 436748 & 437336 & 439826 & 439993\end{array}$ 440009 451500* 451510* 451522 451538 451658451672 452512* 452518* 452528 452678452691452702453194 453197* 453259 453299* 453309 453371453570 $\begin{array}{llllllllllllll}455252 & 455548 & 455865 & 458069 & 458181 & 458184 & 460746 & 461487 & 462692 & 468366 & 468368 * & 468386 & 468428\end{array}$ $\begin{array}{llllllllllllll}468429 & 468581 & 468582 & 468610 & 468851 & 468863 & 470354 & 470360 & 470469 & 470475 & 470481 & 470674 & 474063\end{array}$ $\begin{array}{llllllllllllll}474064 & 474227 & 474575 & 476227 & 495446+504707 * & 504708 & 504713 & 504724 & 504725 & 504730 & 504756 & 504757\end{array}$ 504758 504759* 504803 504912 505618 505657+ 510433+

A. 2 NHNB20PR edge lists

Of the 443 instances of NHNB20 which are partially reduced by Algorithm 3.1, there are 87 unique partially reduced instances up to isomorphism (determined with the graph canonicalisation routines in nauty [55]). These 87 instances are given in this
section, along with the GENREG IDs of the 443 instances in NHNB20 to which they correspond. The first number given is the assigned instance ID followed by an edge list consisting of pairs of vertices in base 20 (vigesimal); the first through tenth vertices are represented by 0 through 9 , the eleventh vertex is represented by A and so on until a maximum of J for the 20th vertex, where present. Below this line is an indented list of NHNB20 GENREG IDs that are reduced to this instance by Algorithm 3.1. Instances are numbered by the first time they are produced as NHNB20 is processed in order of graph size then GENREG ID, with this first produced instance also determining the given vertex labelling.

10103141524253637465869 7A 7B 8C 8D 9E 9F AC AE BD BF CF DE
16 vertices: 3337
18 vertices: $180691856718758 \quad 29269 \quad 29498 \quad 29499 \quad 3055430556$
20 vertices: $42420 \quad 59264127438128063128462128561156844157399173333174039174040174041$
174779174789176089177634177636194487198032198385202523202555202571202585
202613202687203559203637204844207395207424207436209091209872209902209913
209937210344232303232370238741247289333985334118334119334438334439337526
343247343250343379343404343567346104349236349291349316353410353469358766
358919359301359378
20102131423253646475859 6A 7B 7C 8B 8D 9C 9E AD AE BE CD
18 vertices: 2469
20 vertices: $10043 \quad 21203 \quad 21556 \quad 21569 \quad 21706 \quad 21730 \quad 21899 \quad 24682 \quad 25218$
8519592628413423

18 vertices: 4652
20 vertices: $12416 \quad 24465 \quad 28161 \quad 34220 \quad 43752 \quad 43761$
$4 \quad 0102131425 \quad 263738494 A 5759686 B 7 A 89$ AB
18 vertices: 7027
20 vertices: 14996

18 vertices: 7039
20 vertices: $15009 \quad 39270 \quad 71237 \quad 71238 \quad 71242 \quad 72119 \quad 73012 \quad 73916$

18 vertices: $1927121027 \quad 22141 \quad 28884 \quad 29501 \quad 29502 \quad 30558 \quad 30560$
20 vertices: 129651131439131606137371137814140064140462158943167396172579174046174048
174051174787174788177639177643196150197982199476214726214953214964215068
215089215202220429234254234286234302234315234342234412235163239729244329
246245246869246874246934246983247022253474264223267396288800288997311109
327161327749333731334121334122334440334442339405339412339429349301349309
349323353552353553358843358848359380359381
$7 \quad 0103141524253637465869797 A \quad 8 B 8 C \quad 9 D$ AE AF BE BG CF CH DG DH EH FG
18 vertices: 33827
20 vertices: 201744207457209536254738319062346363346373358449358458
$8 \quad 01051314232437485759676 E 8 A 8 B 9 C 9 D$ AC AE BD BF CF DE
18 vertices: 34065
20 vertices: 204215208995210057298024311887346374346388358459358461
9010203142425363748 5D 696 A 79 7A 8B 8C 9F AG BD BF CE CG DG EF
18 vertices: 34468
20 vertices: 206349207741211596349519358806
$10010314152425363748596 A 6 B 7 C 7 D 8 A 8 C ~ 9 B ~ 9 E ~ A F ~ B C ~ D G ~ D H ~ E G ~ E H ~ F G ~ F H ~$ 18 vertices: 34621
20 vertices: 207656208000211444357734361500392099404727
$110102031415263839464857596 A 7 B 8 C \quad 9 D$ AE AF BE BG CF CH DG DH EH FG 18 vertices: 40847
20 vertices: 346054350339385630
$120102131423253645475867697 A 8 B 8 C$ 9D 9E AF AG BD BF CE CG DG EF 20 vertices: 18663
 20 vertices: 19949
$140102131423253646475859687 A 7 B \quad 8 C$ 9D 9E AD AF BE BG CF CG DG EF 20 vertices: 20356

20 vertices: 20603
$1601021314232536464758596 A 7 A 7 B 8 C 8 D 9 E 9 F A G B C$ BE CF DE DG FG 20 vertices: 21016
$17010213142325364748595 A 67687 B 8 C 9 D 9 E$ AF AG BD BF CE CG DG EF 20 vertices: 24207
 20 vertices: 24273
 20 vertices: 24298
$20 \quad 01021314232536474859$ 5A 6B 6C 79 7B 8A 8C 9C AD BD 20 vertices: 28015
2101021314232536474859 5A 6B 6C 79 7B 8C 8D 9C AE AF BG DE DF EG FG 20 vertices: 28163
2201021314232536474859 5A 6B 6C 7B 7D 8C 8E 9F AF AG BE CD DF EG 20 vertices: 29368
$230102131425263536474857697 A 8 B 8 C$ 9D 9E AF AG BD BF CE CG DG EF 20 vertices: 41596
$240102131425263537464858697 A 7 B 8 C$ 9D 9E AD AF BE BG CF CG DG EF 20 vertices: 43042
 20 vertices: 43318
 20 vertices: 43473
2701021415242635374859 6A 6B 7C 7D 8C 8E 9A 9F AC BE BF DE DF 20 vertices: 43880
$280102131425263537474858696 A 7 B 8 C 9 D 9 E$ AF AG BD BF CE CG DG EF 20 vertices: 44304
$290102131425263537474859676 A 8 B 8 C 9 D 9 E$ AF AG BD BF CE CG DG EF 20 vertices: 44530
$3001021314252635374748596 A 6 B 798 C 8 D 9 E A C$ AF BD BG CG DF EF EG 20 vertices: 45618
310102131425263537484958 6A 6B 78 7C 9D 9E AD AF BE BG CF CG DG EF 20 vertices: 49382
3201061314232538464759 5A 6B 7C 8D 8E 9B 9D AC AE BE CD 20 vertices: 51671
 20 vertices: 60256
 20 vertices: 69052
 20 vertices: 70258
 20 vertices: 71232
$370102131425263738494 A 575968$ 6B 7C 89 AC AD BE BF CG DE DF EG FG 20 vertices: 71235
$380102131425263738494 A 5759686 B 7 C 89$ AD AE BD BF CE CF DG EG FG 20 vertices: 71239
$390102131425263738494 A 575968$ 6B 7C 89 AD AE BD BF CE CG DG EF FG 20 vertices: 71241
$400102131425263738494 A 575968$ 6B 7C 89 AD AE BF BG CD CF DG EF EG 20 vertices: 71244
$410102131425 \quad 263738494 A 575968$ 6B 7C 8A 9D AD BC BD 20 vertices: 71268
$420102131425263738494 A 57596 B 6 C \quad 7 A 898 B A D \quad B E C F C G \quad D F ~ D G E F E G$ 20 vertices: 71914
4301021415262738394648 5A 5B $69787 C$ 9D AC AE BD BE CF DF EF 20 vertices: 71923
4401021415262738394648 5A 5B 69787 C 9 D AC AE BD BF CF DE EF 20 vertices: 71925
$450102131425263738494 A 57596 B 6 C 7 A 898 D$ AE BD BF CF CG DG EF EG 20 vertices: 71927
4601021415262738394648 5A 5B 6978 7C 9D AE AF BE BF CD CE DF 20 vertices: 71928
$470102131425263738494 A 5759$ 6B 6C 7B 8A 8C 9D AD BD 20 vertices: 72240
4801031516272839 3A 4B 4C 575867 6D 8E 9B 9D AC AE BE CD 20 vertices: 82236
 20 vertices: 82277
$50 \quad 010203141524253637465869787 A 8 B 9 C \quad 9 D$ AE AF BG BH CE CG DF DH EH FG 20 vertices: 201618201879204745209467343482343580346361346362346368358451358455358484 404577411046
$51010203141524263536475869787 A 8 B 9 C 9 D A E A F B G B H C E C G D F D H E H F G$ 20 vertices: 211992215285215578255703287418346364346370358453358472383925
$52010203141524263537475868697 A$ 8B 9C 9D AE AF BG BH CE CG DF DH EH FG 20 vertices: 214134233630246334339385346365346371358456358490405454
$530102031415242635374758696 A 79$ 8B 8C 9D AE AF BE BG CF CH DG DH EH FG

20 vertices: 214304214644233535233728244227247004339126346366346367346372358452358454 358470376786391322
$54010203141524263537485967687 A 8 B 9 C \quad 9 D$ AE AF BG BH CE CG DF DH EH FG
20 vertices: 216001217878256761296754346376346379358462358478379913
5501020314152426353748596769 7A 8B 8C 9D AE AF BE BG CF CH DG DH EH FG
20 vertices: 216111219722255389256054260741288629346382346383346390355890358211358471 358481358483377178
5601020314152426353748596869 7A 7B 8C 9D AE AF BG BH CE CG DF DH EH FG
20 vertices: 217298217400288887289991346378346381358464358480405120
$57010203141524263738475658697 A 8 B 9 C 9 D$ AE AF BG BH CE CG DF DH EH FG
20 vertices: 232197232470341516343102346377346380358479358485385965
5801020314152426373847585968 6A 7B 9C 9D AE AF BG BH CE CG DF DH EH FG
20 vertices: 234498236835244421341201342351346384346389350322358486358491376442
$590102031415242637384758596 A 6 B 798 C \quad 9 D$ AE AF BG BH CE CG DF DH EH FG
20 vertices: 234869244128253182339583346385346392349337358469358482358908
$60 \quad 0102031415242637384758596 A 6 B 7 C 8 C \quad 9 D 9 E$ AD AF BE BG CH DG EF FH GH
20 vertices: 235415239092244509253379254298254502269104306924346386346387346391358463 358467358487376498
$6101020314152426373849575 A 676 A 8 B 8 C 9 D 9 E$ AF BD BG CE CH DH EG FG FH 20 vertices: 257382268521297985346393346394357795358468358492
$620102031415262738394648575 A \quad 69$ 7B 8C 9D AE AF BE BG CF CH DG DH EH FG
20 vertices: 346192346334349065349204358675367771
$63010314152627383946485 A 5 B 697 A 7 C ~ 8 D ~ 9 E ~ A F ~ B D ~ B G ~ C E ~ C G ~ D H ~ E H ~ F G ~ F H ~$ 20 vertices: 349087358567
$640103141524253637465869797 A 8 B 8 C 9 D$ AD AE BF BG CH CI DJ EF EH FI GH GJ IJ 20 vertices: 415698
$6501031415242536374658697 A 7 B 8 A 8 C 9 A 9 D$ BE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 415856
$6601031415242536374658697 A 7 B 8 C 8 D 9 A 9 B$ AE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 416707
6701031415242536374658697 A 7 B 8C 8D 9E 9F AC AE BF BG CF DH DI EJ GH GI HJ IJ 20 vertices: 417162
680102031415242536374658697 A 7 B 8C 8D 9E 9F AC AG BD BH CH DG EI FI FJ GI HJ 20 vertices: 417355
$6901031415242536374658697 A 7 B 8 C 8 D \quad 9 E \quad 9 F$ AE AG BF BH CI DI DJ EH FG GI HJ 20 vertices: 417721
 20 vertices: 417830
$7101031415242536374859686 A 787 B 9 A 9 C$ AD BE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 417982
720105131423243748575967 6A 8B 8C 9A 9D AE BF BG CH CI DF DH EG EI FI GH 20 vertices: 418009
730102031424253637485968 6A 797 A 8B 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 418224
740103141524253637485968 6A 7A 7B 8C 9D 9E AC BF BG CH DF DI EG EJ FJ GI HI HJ 20 vertices: 418976
7501031415242536374859 6A 6B 7A 7C 8A 8B 9D 9E BF CG CH DG DI EH EJ FI FJ GJ HI 20 vertices: 422473
$76010203142425363748596 A 6 B 7 A 7 C 8 D 8 E 9 F 9 G$ AH BC BH CI DF DI EG EJ FJ GI HJ 20 vertices: 424159
77010203142425363748 5E 69 6A 79 7B 8C 8D 9G AG AH BG BI CE CH DF DI EI FH 20 vertices: 424367
 20 vertices: 424399
 20 vertices: 424401
$80 \quad 010513142324374859$ 5A 6B 6C 79 7B 8D 8E 9C AB AF CG DF DH EG EI FI GH HI 20 vertices: 424541
810102031415242635475768798 A 8 B 9 A 9 C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 426002
$820102031415242635364758697 A 8 A 8 B 9 C 9 D$ AE BG CF CG DH DI EF EH FI GH 20 vertices: 426389
83010203141524263537476879 8A 8B 9A 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI 20 vertices: 427071
$840102031415242635374758697 B 89$ 8A 9C AH BD BE CF CG DF DH EG EI FI GH 20 vertices: 428012
$850103141524263738495 A 5 B 6 A 6 B 797 A 8 C 8 D 9 E \quad B F C G C H D I D J$ DG EI FH FJ GJ HI 20 vertices: 495446
8601031415262738394648 5A 5B 69 7C 7D 8C 9A AE BF BG CH DF DI EI EJ FJ GH GI HJ 20 vertices: 505657
$87010203141526273839464 A 5 B 5 C 7 E 7 F 8 B 8 E 9 C ~ 9 F ~ A G ~ A H ~ B G ~ C H ~ D E ~ D I ~ F I ~ G I ~$ 20 vertices: 510433

Appendix B

ATSP problem sets

This appendix contains the 400 ATSP instances of ATSP16A and ATSP16AC generated by the method described in Section 2.2.4. Each instance is arranged into a 24×3 array, labelled above with its instance ID and the optimal tour cost of the corresponding ATSP16A instance. In each row of the 24×3 array, the first element is an edge described by two vertices $u v$, and the second and third elements give the arc costs for $u \rightarrow v$ and $v \rightarrow u$ respectively. Vertices are represented in hexadecimal, with the first vertex being 0 and the 16th vertex being F.

Only the arc costs for the underlying cubic graph are given. For each complete instance of ATSP16A, all other arcs required to complete the graph have a cost of 1600 . Alternatively, for each cubic instance of ATSP16AC, only the given edges are present. Instances 1 through 200 are derived from Hamiltonian graphs, while instances 201 through 400 are derived from non-Hamiltonian graphs. Underlined arc costs correspond to that arc being used in the optimal tour of the ATSP16A instance, and in the case of a non-Hamiltonian graph they indicate which arcs are in the optimal Hamiltonian path (with the cycle being formed in the complete graph using the additional arc with cost 1600 between the end and start of the optimal Hamiltonian path).

For convenience, the complete instances in TSPLIB [63] format may be downloaded from the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website: http://fhcp.edu.au.

An example is helpful in describing the format. Consider the instance with ID 1:

1697
$01 \underline{26} 41$
$0276 \underline{63}$
039879
125915

Having an ID between 1 and 200, this instance is derived from a Hamiltonian cubic graph. It has edges between the vertex 0 and 1 , between vertex 0 and 2 , et cetera.

The arc cost for $0 \rightarrow 1$ is 26 while the arc cost for $1 \rightarrow 0$ is 41 . The optimal tour, of length 697, contains the arcs $2 \rightarrow 0$ and $0 \rightarrow 1$.

1	697	2	693	3	623	4	757	5	18	6	682	7	792	8	777	9	834	10	691
01	2641	01	$\underline{29}$	01	$38 \quad 17$	01	5379	01	3568	01	1519	01	5388	01	$81 \underline{29}$	01	2642	01	9343
02	7663	02	5897	02	83	02	58	02	$57 \underline{26}$	02	7070	02	8447	02	10	02	$97 \quad 12$	2	9498
03	9879	03	$\underline{28} 10$	03	9324	03	$\underline{64} 75$	03	3472	03	$73 \underline{94}$	03	56	03	9457	03	4058	03	9299
12	5915	12	$31 \quad 77$	12	7128	12	6323	12	81	12	38	12	3477	12	6679	12	6857	12	4227
13	$\underline{24} 83$	13	7060	13	15 55	4	68	14	8441	14	8180	14	2543	14	10067	14	$\underline{4} 86$	14	7413
24	3458	24	9318	24	6127	25	3731	25	40	25	3217	25	9958	25	$36 \underline{44}$	25	2563	25	$67 \underline{44}$
35	4053	35	4612	35	$55 \quad 11$	34	3421	34	14 32	34	9988	34	$49 \quad 43$	34	8292	34	$2 \underline{41}$	34	$73 \underline{69}$
46	$78 \quad 15$	46	$52 \underline{62}$	46	1619	36	$\underline{42} 66$	36	$\underline{28}$	36	49	36	7884	36	5059	36	6452	36	$\underline{20} 22$
47	61	47	8645	47	4850	47	5190	47	32	47	62	47	8473	47	3372	47	5457	47	6730
58	61	58	10097	58	9424	56	6570	56	5847	56	$\underline{4} 98$	56	57	56	97100	56	3892	56	96
59	8084	59	36	59	$37 \quad 19$	58	5743	58	3691	58	$84 \underline{22}$	58	1948	58	711	58	6595	58	6256
68	5051	68	2844	6A	64	69	68	69	1212	69	248	69	7940	69	4470	69	99	69	1517
6 A	2669	6 A	$98 \underline{69}$	6B	$78 \quad 27$	78	7757	78	7229	78	8130	79	94	7A	988	7 A	$\underline{48}$	7 A	$\underline{20} 67$
79	$\underline{99}$	7B	3010	70	38	7 A	$57 \underline{69}$	7 A	$54 \underline{21}$	7 A	$\underline{9} 16$	7A	35	7B	3122	7B	9085	7B	$87 \underline{34}$
7B	$40 \quad 7$	7 C	$77 \quad 32$	7D	8074	8B	$\underline{43} 37$	8B	6329	8B	$50 \underline{66}$	8B	$\underline{53} 44$	89	$\underline{12}$	8 A	5287	8 A	8992
8 C	5792	8D	3698	8 A	1793	9 B	63 38	9 C	$\underline{4142}$	9 C	95	8C	6597	8 C	9719	8C	14 39	8C	3940
9D	$\underline{3} 12$	9 E	1712	8 C	10		$\underline{20} 12$	9 D	79	9D	8850	9 D	3945	9 D	6196	9B	52	9B	1989
AD	7232	9 F	9311	9B	$38 \underline{61}$	C	8345	AC	9732	AE	6572	AD	6554	AB	7 38	9D	1277	9D	967
AE	6129	AB	4133	9 E	6555	AD	92	AE	4148	AF	$\underline{23} 87$	AE	$77 \underline{63}$	AD	1249	AE	1589	AE	$\underline{8} 81$
BC	3440	AE	$45 \quad 46$	AD	1834	BE	9869	BE	2748	BC	8165	BC	95	BE	8185	BD	9186	BF	$50 \quad 7$
BF	564	BF	57	BF	2196		5276	BF	7562	BE	6316	E	1335	CE	$53 \quad 39$	CE	9086	CD	16
CF	6551	CD	$20 \underline{92}$	CE	$72 \underline{67}$	DE	$55 \quad \underline{2}$	CD	$\underline{5} 49$	CF	$48 \underline{49}$	CF	$47 \quad 33$	CF	7523	CF	$33 \underline{71}$	CE	10
DE	7256	CE	7079	DF	$\underline{69} 67$	DF	4743	DF	3056	DE	1218	DF	$\underline{44} 68$	DF	$\underline{24} 74$	DF	96100	DF	1360
EF	4949	DF	2810	EF	16	EF	47 13	EF	22		10059	EF	84	EF	171	EF	7491	EF	6777
11	600	12	767	13	08	14	661	15	652	16	67	17	777	18	66	19	76	20	539
01	1733	01	74	01	8 0	01	48	01	8067	01	4830	01	$73 \quad 33$	01	85	01	3552	01	3850
02	3997		99	02	56		51	02	1579	02	2316	2	$\underline{29} 33$	02	8979	02	$40 \quad 34$	02	20
03	3020	03	$\underline{26} 21$	03	$\underline{9} 88$	03	5064	03	3928	03	$\underline{24} 46$	03	8361	03	8624	03	2151	03	7518
12	5417	12	4817	12	6138	12	9073	12	331	12	5151	12	8587	12	6697	12	8352	12	5725
14	$80 \underline{42}$	14	4785	14	6876	4	774	14	2682	14	2173	14	$20 \quad 17$	14	$71 \quad 20$	14	8168	14	9444
25	1836	25	$22 \underline{20}$	25	$97 \quad 37$	25	$39 \underline{21}$	25	9288	25	6522	25	7091	25	$\underline{24} 58$	25	$27 \quad \underline{2}$	25	32
34	6133	34	39	34	5989	34	$39 \underline{40}$	34	7397	34	9792	34	$\underline{78}$	34	9859	34	8699	34	$96 \quad 37$
36	6938	36	9755	36	10	36	1599	36	240	36	6828	36	28	36	9594	36	6498	36	30
47	20	47	$\underline{5} 64$	47	6314	47	4989	47	1355	47	5184	47	7666	47	125	47	3940	47	12 - ${ }^{\text {a }}$
56	82 35	56	$38 \underline{69}$	56	1362	56	6189	56	$67 \underline{45}$	56	$51 \underline{89}$	56	3944	56	6662	56	95100	56	$\underline{69} 32$
58	75	58	6214	58	7777	58	99	58	5265	58	122	58	1736	58	1391	58	$70 \quad 78$	58	23 3
69	4718	69	8662	69	$18 \quad 33$	69	5528	69	6048	69	3035	69	$87 \quad 74$	69	$29 \quad 34$	69	1035	69	20
7 A	3737	7A	2719	7 A	6770	7 A	3446	7 A	78	7 A	6936	7 A	$71 \quad 35$	7 A	$26 \underline{97}$	7A	9913	7A	3221
	11 6	7B	$\underline{68} 11$	7 B	5954		6040	7B	$\underline{3} 44$	7 B	93	7B	33	7B	8428	7B	6691	7B	8811
8A	$\underline{26} 86$	8A	3944	8 A	7417	8C	248	8C	1246	8C	6469	8 C	$\underline{86}$	8C	5283	8C	$77 \quad 53$	8 C	3 7
8C	23	8C	$\underline{57} 32$	8 C	10051	8D	83	8D	$77 \quad 75$	8D	7188	8D	2332	8D	$\underline{2}$	8D	56	8D	6137
9 D	$\underline{29} 78$	9 D	9993	9 D	$29 \quad 37$	9 C	274	9 C	$42 \quad 73$	9 C	$13 \quad 16$	9 C	6380	9C	$75 \quad 3$	9 E	$\underline{6} 72$	9 E	3783
9 E	$82 \underline{22}$	9 E	$93 \quad 35$	9 E	7286	9 E	4115	9 E	8532	9 E	8593	9 E	$70 \quad 63$	9 E	8781	9 F	64	9 F	$\underline{27} 57$
AC	1895	AD	8489	AF	1223	AB	5118	AB	512	AB	4815	AD	$8 \underline{50}$	AD	4110	AC	8245	AC	$17 \quad 0$
BD	8677	BE	1996	BC	6553	AD	$3 \underline{83}$	AE	$\underline{9} 35$	AE	667	AF	9168	AF	$100 \underline{41}$	AE	56100	AE	$8 \underline{39}$
BF	6419	BF	8580	BD	80	BF	6695	BF	9197	BF	$10 \underline{10}$	BE	380	BE	1313	BD	5888	BD	9960
CE	7591	CE	$\underline{60} 88$	CF	1038	CF	5374	CD	8421	CD	22 3	BF	$\underline{27} 96$	BF	6227	BE	6726	BF	6931
DF	$\underline{2} 27$	CF	3341	DE	$55 \underline{47}$	DE	$31 \underline{52}$	DF	2114	DF	5130	CD	8455	CE	$32 \underline{20}$	CF	$72 \quad 15$	CD	9718
EF	4422	DF	3817	EF	$44 \underline{62}$	EF	1279	EF	5043	EF	$\underline{29} 49$	EF	$14 \quad 75$	DF	$\underline{25} 46$	DF	5585	EF	57 59

$21 \quad 739 \quad 22 \quad 675$ $019598 \quad 018893$ $0293 \quad \underline{59} \quad 02 \quad 42 \quad \underline{49}$ $03 \quad \underline{62} \quad 61 \quad 03 \quad \underline{21} \quad 99$ $\begin{array}{llllll}12 & \underline{68} & 35 & 12 & \underline{4} & 72\end{array}$ $\begin{array}{llllll}14 & 63 & 24 & 14 & 52 & \frac{12}{3}\end{array}$ $\begin{array}{llllll}25 & 96 & \overline{14} & & 25 & 11 \\ 34 & 72 & 86 & & 34 & 78 \\ 34 & 69\end{array}$ $\begin{array}{llllll}36 & \underline{14} & 48 & 36 & \underline{20} & 11\end{array}$ $\begin{array}{lllll}47 & \overline{94} & 24 & 47 & \overline{47} \\ \underline{44}\end{array}$ | 58 | 16 | $\underline{77}$ | 58 | 93 |
| :--- | :--- | :--- | :--- | :--- |
| 95 | | | | | $59 \quad \frac{36}{89} \quad 59 \quad \underline{21} \quad \overline{63}$ $\begin{array}{llllrr}67 & 90 & 90 & 67 & 2 & 24 \\ 68 & 32 & 91 & 68 & 16 & 88\end{array}$ $\begin{array}{llllll}68 & \frac{32}{42} & 91 & 68 & 16 & 88\end{array}$ $\begin{array}{llllll}8 B & 3 & 59 & 8 B & 17 & \frac{76}{44}\end{array}$ $9 \mathrm{C} \quad 0 \quad 36 \quad 9 \mathrm{C} 58 \quad 88$ 9D $\quad 73 \quad 94 \quad 9 \mathrm{D} \frac{86}{3} \quad 5$ AC $41 \quad 30$ AE $33 \quad 6$ $\begin{array}{llllll}\text { AE } & 87 & 84 & \text { AF } & 63 & 28 \\ \text { BD } & 59 & 95 & \text { BC } & 17 & 96\end{array}$ BF $70 \quad 40 \quad$ BE 5571 $\begin{array}{llllll}\text { CE } & 85 & 63 & \text { CD } & 45 & \frac{29}{7} \\ \text { DF } & 13 & 26 & \text { DF } & 22 & 77\end{array}$ EF $84 \quad \underline{7}$ EF $23 \quad 5$ 31839 014675 $02 \quad 77 \quad 83 \quad 01 \quad 9 \quad \underline{72}$ $\begin{array}{llllll}03 & \underline{43} & \frac{83}{89} & 03 & \underline{39} & 53\end{array}$ $12 \overline{75} 90 \quad 12 \quad \overline{20} \quad \frac{52}{87}$ $\begin{array}{llllrr}14 & 35 & 46 & 14 & 3 & 87 \\ 25 & 60 & 76 & 25 & 72 & 16\end{array}$ $\begin{array}{llllll}25 & 60 & 76 & 25 & 72 & 16 \\ 34 & 94 & 76 & 34 & 67 & 28\end{array}$ $\begin{array}{llllll}36 & \underline{24} & 47 & 36 & \overline{77} & 18\end{array}$ $\begin{array}{llllll}47 & 75 & 23 & 47 & \underline{81} & 80\end{array}$ $\begin{array}{rlllrr}58 & \underline{82} & 90 & 58 & 5 & 42 \\ 59 & 26 & \underline{51} & 59 & 80 & \underline{12}\end{array}$ $\begin{array}{lllll}68 & 32 & \overline{89} & 68 & \underline{64} \quad \overline{59}\end{array}$ $\begin{array}{llllll}6 A & 16 & 69 & 6 A & 57 & \underline{42} \\ 7 B & 36 & 81 & 7 B & 23 & 76\end{array}$ $\begin{array}{llllll}7 B & 36 & \frac{81}{} & 7 B & 23 & 76 \\ 7 \text { C } & 25 & 75 & 7 C & 44 & 96\end{array}$ 8D $48 \quad 87 \quad 8 \mathrm{D} \quad \underline{26} \quad 24$ $\begin{array}{llllll}9 \mathrm{~A} & 94 & 3 & 9 \mathrm{~A} & 35 & 39\end{array}$ 9B $40 \quad 85 \quad 9 \mathrm{E} \quad 72 \quad 36$ $\begin{array}{lllllll}A D & 64 & 14 & \text { AF } & 56 & \underline{47}\end{array}$ $\begin{array}{llllll}\mathrm{BE} & 18 & 29 & \text { BC } & 33 & \overline{19}\end{array}$ CE 8754 BD 457 $\begin{array}{llllll}\text { CF } & \overline{38} & 89 & \text { CF } & 14 & 28 \\ \text { DF } & 59 & 51 & \text { DE } & \frac{45}{45} & 95\end{array}$ EF $\overline{77} 31$ EF $\overline{96} 89$ $\begin{array}{llll}41 & 650 & 42 & 749\end{array}$ $01 \quad 66 \quad \underline{49} \quad 01 \quad 30 \quad \underline{6}$ $02 \quad \underline{14} \quad \overline{81} \quad 02 \quad \underline{67} \quad 59$ $0344 \quad 66 \quad 03 \quad 5793$ $\begin{array}{llllll}12 & 57 & 25 & 12 & 11 & 29\end{array}$ $\begin{array}{lllll}14 & 58 & 28 & 14 & 4 \\ 24\end{array}$ $25 \quad 69 \quad 5 \quad 25 \quad 89 \quad 15$ $34 \overline{55} 88 \quad 34 \underline{60} 20$ $\begin{array}{llllll}36 & 43 & 83 & 36 & 27 & 15\end{array}$ | 47 | 37 | 8 | 47 | 73 |
| :--- | :--- | :--- | :--- | :--- |
| 64 | | | | | $\begin{array}{llllll}58 & \underline{21} & 96 & 58 & \underline{47} & 82\end{array}$ | 59 | 41 | 67 | 59 | 26 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}6 A & 58 & 95 & 6 A & 68 & 67\end{array}$ $\begin{array}{llllll}6 B & 54 & 13 & 6 B & 23 & \frac{89}{29}\end{array}$ $\begin{array}{lllllll}7 \mathrm{~A} & 54 & \underline{6} & 7 \mathrm{~A} & 68 & \underline{29}\end{array}$ 7C 29 41 $\quad 7 \mathrm{C} \quad \underline{32} \quad \overline{90}$

$89 \underline{41} 10 \quad 89 \quad \underline{25} 12$

8B $26 \quad 75$ 8B 2120
9D $\underline{44} 32$ 9D $\underline{31} 93$
AD $62 \quad \underline{45}$ AE $45 \quad \underline{83}$ BE $17 \underline{78} \quad$ BC $52 \underline{43}$ CE $27 \overline{88}$ CF $78 \overline{79}$ CF 1035 DE 6138 DF $10017 \quad$ DF 4978

23	626	24	636		
01	1	71	01	97	5
02	$\frac{33}{}$	73	02	81	$\underline{50}$
03	43	$\frac{86}{9}$	03	$\underline{9}$	93
12	26	$\underline{42}$	12	$\underline{77}$	40
14	$\frac{27}{99}$	14	40	$\frac{68}{66}$	
25	84	50	25	77	66
34	20	9	34	41	35
36	97	$\underline{12}$	36	$\underline{17}$	28
47	$\underline{18}$	4	47	4	$\underline{8}$
58	83	$\underline{93}$	58	$\underline{81}$	78
59	$\underline{69}$	96	59	45	10
67	40	89	67	56	48
$6 A$	26	$\underline{0}$	$6 A$	$\underline{77}$	52
$7 B$	$\frac{86}{2}$	40	$7 B$	24	$\underline{91}$
$8 A$	9	59	$8 C$	64	17
$8 C$	43	$\underline{11}$	$8 D$	$\underline{10}$	67
$9 D$	93	51	$9 C$	13	$\underline{0}$
$9 E$	$\underline{2}$	36	$9 E$	29	66
AF	52	$\frac{55}{86}$	AD	23	45
BD	$\underline{1}$	86	AF	$\underline{47}$	22
BE	24	2	BE	98	$\underline{2}$
CD	87	$\underline{6}$	BF	42	42
CF	75	26	CF	49	$\underline{6}$
EF	$\underline{85}$	39	DE	$\underline{83}$	62

35	682	36	759	37	766
01	6412	01	728	01	6359
02	59	02	644	02	5220
03	1185	03	8584	03	8056
12	9256	12	7388	12	8269
14	54 6	14	501	14	661
25	$\underline{26} 38$	25	$\underline{40} 93$	25	337
34	1239	34	$64 \quad 34$	34	7072
36	7895	36	1058	36	$46 \quad 32$
47	1447	47	$88 \underline{42}$	47	6342
58	985	58	7655	58	$\underline{45} 74$
59	1095	59	$\underline{93} 44$	59	$66 \quad 87$
68	275	68	$\underline{4} 12$	68	7497
6A	4269	6A	5787	6A	6611
7B	58 30	7B	51 18	7B	$\underline{98} 87$
7 C	6222	7 C	1978	7 C	8956
8D	5676	8D	3313	8D	3 96
9B	$\underline{41} 46$	9B	8880	9B	9953
9 E	7532	9E	3 79	9E	3655
AC	$95 \underline{52}$	AC	3 4	AE	$21 \quad 14$
AF	3793	AF	2180	AF	693
BF	652	BF	1961	BD	7213
CD	8973	CE	6512	CD	$92 \quad 81$
DE	$90 \underline{41}$	DE	5996	CF	$\underline{40} 90$
EF	27 48	DF	$\underline{99} 89$	EF	1656

38708 $\begin{array}{lll}01 & 52 & 8 \\ 0 & 8\end{array}$ $\begin{array}{lll}02 & \underline{26} & 7\end{array}$ $\begin{array}{lll}03 & 26 & 31\end{array}$ $\begin{array}{lll}12 & 84 \\ 14 & 95 & 27\end{array}$ $25 \quad 3 \quad \frac{37}{96}$ $34 \underline{62 \quad 46}$ $\begin{array}{llrr}36 & 78 & \underline{9} \\ 47 & 77 & 82\end{array}$ $\begin{array}{rrr}58 & 3 & 52\end{array}$ $59 \quad 30 \quad 29$ $\begin{array}{lll}68 & 95 & \frac{92}{2} \\ 6 A & 85 & 52\end{array}$ $7 \mathrm{~B} 47 \underline{54}$ $\begin{array}{lrrr}7 \mathrm{C} & \underline{8} & 91 \\ 8 \mathrm{D} & 46 & 93\end{array}$ 9B $92 \quad 38$ 9E $91 \quad 30$ $\begin{array}{lrrr}\text { AE } & 0 & \underline{56} \\ \text { AF } & \underline{76} & \frac{54}{54}\end{array}$ BF $\overline{89} 65$ $\begin{array}{lrr}\text { CD } & 70 & 83 \\ \text { CE } & 38 & 2\end{array}$ DF $\overline{20} 34$

\[
48 \quad 663

\] $01 \underline{6074}$ $02 \overline{41} 83$ $03 \quad 51 \quad 20$ $\begin{array}{lll}12 & 23 & 79 \\ 14 & 10 & 84\end{array}$ $14 \quad 10 \quad 84$ $\begin{array}{lrr}25 & 5 & 6 \\ 34 & 60 & 34\end{array}$ $\begin{array}{lrr}36 & 59 & 52 \\ 47 & 81 & 0\end{array}$ $\begin{array}{lll}58 & 35 & 7\end{array}$ | 59 | 85 | 9 |
| ---: | ---: | ---: | 6 A 9785 $\begin{array}{lll}6 B & \overline{38} & 14 \\ 7 A & 31 & 39\end{array}$ $7 \mathrm{~A} \quad 31 \quad \underline{39}$ $\begin{array}{llll}7 C & 30 & 57 \\ \text { 8B } & 35 & 41\end{array}$ 8D $11 \overline{96}$ 9D $79 \quad \underline{38}$ 9E 5792 AC $\quad 36 \quad 26$ BE $80 \underline{57}$ $\begin{array}{lrr}\text { CF } & 7 & \frac{7}{62} \\ \text { DF } & 50 & 38\end{array}$ EF 61100

29	608	30	879
01	3793	01	3897
02	595	02	24100
03	2013	03	1195
12	6690	12	8916
14	1732	14	7586
25	859	25	29100
34	79 93	34	7483
36	9452	36	3565
47	1414	47	3178
58	8834	58	8566
59	3437	59	9474
68	1055	68	7017
6A	99 2	6A	434
7A	6076	7B	2738
7B	51 7	7 C	3 49
8C	1316	8A	7455
9D	4372	9B	$\underline{93} 35$
9E	8740	9D	$90 \underline{22}$
AF	9269	AE	8357
BD	8035	BF	2142
BF	8574	CD	9190
CD	916	CE	4960
CE	121	DF	937
	$\underline{29} 63$		6193

$$
\begin{aligned}
& 39 \quad 696 \quad 40 \quad 647 \\
& 01 \quad 82 \quad \underline{44} \quad 01 \quad 47 \quad \underline{14} \\
& 02 \quad 92 \quad \overline{89} \quad 02 \quad \underline{6} \quad \overline{12} \\
& \begin{array}{llllll}
03 & 21 & 53 & 03 & 61 & 74
\end{array} \\
& \begin{array}{llllll}
12 & 49 & \frac{29}{80} & 12 & 92 & 97
\end{array} \\
& 14 \quad 3 \quad 80 \quad 14 \quad 40 \quad \underline{9} \\
& \begin{array}{llllll}
25 & 4 & \frac{83}{7} & 25 & \underline{3} & 17
\end{array} \\
& \begin{array}{lllll}
34 & 16 & 79 & 34 & 13 \\
\hline
\end{array} \\
& \begin{array}{llllll}
36 & 2 & 75 & 36 & 71 & 84 \\
47 & \underline{25} & 73 & 47 & 13 & 76
\end{array} \\
& \begin{array}{llllll}
58 & 61 & 91 & 58 & \underline{42} & 73
\end{array} \\
& \begin{array}{rrlllll}
59 & 82 & \frac{29}{} & 59 & 28 & 54 \\
68 & 0 & 79 & 68 & 86 & 67
\end{array} \\
& \begin{array}{llllll}
6 \mathrm{~A} & \frac{36}{} & \frac{79}{93} & 6 \mathrm{~A} & 37 & \frac{76}{68} \\
7 \mathrm{~B} & \frac{47}{} & 15 & 7 B & 18 & \frac{68}{68}
\end{array} \\
& \begin{array}{llllll}
7 B & \frac{47}{} & 15 & 7 B & 18 & 68 \\
7 C & 100 & 81 & 7 C & 21 & \underline{65}
\end{array} \\
& \text { 8D } 14 \quad \underline{28} \quad 8 \mathrm{D} \quad \underline{66} \quad 8 \\
& \begin{array}{lllllr}
9 D & 29 & 37 & 9 E & \frac{33}{} & 5 \\
9 E & 66 & \underline{64} & 9 F & 80 & \underline{90}
\end{array} \\
& \begin{array}{lllllll}
\text { AE } & 38 & 20 & \text { AB } & 22 & 44 \\
\text { AF } & 13 & 70 & \text { AE } & 40 & \underline{30}
\end{array} \\
& \text { BC } \frac{56}{} 32 \quad \text { BF } \quad \frac{63}{3} \quad 3 \\
& \begin{array}{llllll}
\mathrm{BE} & 52 & 51 & \text { CD } & 62 & \underline{35} \\
\mathrm{CF} & \underline{91} & 66 & \text { CE } & 89 & 67
\end{array} \\
& \text { DF } 30 \quad 10 \text { DF } 806
\end{aligned}
$$

49	582	50	773		
01	4	$\underline{40}$	01	88	$\underline{19}$
02	13	5	02	72	95
03	$\frac{30}{}$	23	03	40	79
12	68	$\frac{82}{3}$	12	49	16
14	52	38	14	7	$\underline{90}$
25	17	$\underline{8}$	25	$\underline{80}$	4
34	$\frac{29}{7}$	78	34	$\underline{39}$	62
36	1	29	36	30	$\underline{41}$
47	$\underline{34}$	26	47	86	3
58	100	$\underline{4}$	58	49	10
59	77	66	59	$\underline{46}$	60
$6 A$	11	96	$6 A$	23	69
$6 B$	$\underline{8}$	29	$6 B$	85	$\underline{88}$
$7 A$	17	11	$7 A$	$\underline{5}$	25
$7 C$	$\underline{28}$	50	$7 C$	44	$\underline{29}$
8D	49	63	$8 D$	49	$\underline{73}$
8E	81	$\underline{69}$	$8 E$	$\underline{44}$	74
$9 D$	93	$\underline{41}$	$9 D$	$\underline{2}$	53
$9 E$	$\underline{9}$	78	$9 F$	72	51
AF	34	$\underline{34}$	AB	$\underline{67}$	83
BC	63	35	BE	94	42
BD	$\frac{69}{44}$	CD	7	86	
CF	$\underline{1}$	78	CF	79	$\underline{22}$
EF	85	87	EF	$\underline{56}$	71

$\begin{array}{llll}51 & 769 & 52 & 762\end{array}$ $01 \underline{29} 42 \quad 01 \quad 6 \quad \underline{35}$ $0219 \underline{94} 02 \quad 62 \quad 99$ $\begin{array}{lllllll}03 & 4 & 33 & 03 & 75 & 97\end{array}$ $\begin{array}{lllll}12 & 90 & 20 & 12 & 71 \\ 74\end{array}$ $\begin{array}{llllll}14 & 17 & 74 & 14 & 21 & 71\end{array}$ $\begin{array}{llllll}25 & 95 & 73 & 25 & 80 & \frac{68}{7} \\ 34 & 79 & 34 & 34 & 7 & 27\end{array}$ $\begin{array}{llllll}34 & 79 & \underline{34} & 34 & 7 & 27\end{array}$ $\begin{array}{lllllr}36 & 99 & 65 & 36 & 70 & 84 \\ 47 & 92 & 55 & 47 & 48 & 5\end{array}$ $\begin{array}{lllll}58 & 13 & 18 & 58 & \overline{89}\end{array} \frac{22}{22}$ $\begin{array}{lllll}59 & 40 & \overline{50} & 59 & 92 \quad 77\end{array}$ $\begin{array}{llllll}6 \mathrm{~A} & 93 & 37 & 6 \mathrm{~A} & 90 & 53 \\ 6 \mathrm{~B} & 84 & 99 & 6 \mathrm{~B} & 16 & -9\end{array}$ $\begin{array}{lllllr}\text { 6B } & 84 & 99 & 6 B & 16 & 9 \\ 7 C & 48 & 31 & 7 C & 13 & 79\end{array}$ $\begin{array}{llllll}7 \mathrm{D} & 9 & 19 & 7 \mathrm{D} & 80 & 95 \\ 89 & 56 & 10 & 89 & 56 & 39\end{array}$ $89 \quad 56 \quad \overline{10} \quad 89 \quad \overline{56} \quad \underline{39}$ $\begin{array}{lllllll}8 \mathrm{~A} & 18 & 74 & 8 \mathrm{~A} & 64 & 23\end{array}$ $\begin{array}{llllll}9 C & 58 & 17 & 9 C & 29 & 10\end{array}$ AB 9684 AD $47 \quad \underline{39}$ | BE | $\overline{33}$ | 67 | BE | 6 |
| :--- | :--- | :--- | :--- | :--- |
| 47 | | | | | CF $8972 \quad \mathrm{BF} 992$ $\begin{array}{lllll}\mathrm{DE} & 67 & 48 & \mathrm{CE} & 78 \\ 61\end{array}$ $\begin{array}{llllll}\mathrm{DF} & 73 & 6 & \mathrm{DF} & 71 & 63 \\ \mathrm{EF} & 83 & 37 & \mathrm{EF} & 32 & 36\end{array}$ EF $83 \quad 37$ EF $32 \underline{36}$ 61696 $01 \underline{28} 85$ $\begin{array}{lllll}02 & 89 & 21 & 02 & 7042\end{array}$ $\begin{array}{llllll}03 & 7 & \underline{36} & 03 & 56 & \underline{89}\end{array}$ $\begin{array}{llllll}12 & \underline{2} & \overline{66} & 12 & \frac{17}{28} & \overline{28}\end{array}$ $\begin{array}{lllll}14 & 92 & 29 & 14 & 32 \\ 32\end{array}$ $\begin{array}{llllll}25 & \frac{87}{8} & 58 & 25 & \underline{61} & 12\end{array}$ $\begin{array}{llllll}34 & 8 & 14 & 34 & 16 & 31 \\ 36 & 44 & 6 & 36 & 96 & 67\end{array}$ $\begin{array}{llllll}47 & 82 & 47 & 47 & 9 & 80\end{array}$ $\begin{array}{llllll}58 & 100 & 42 & 58 & 78 & 40 \\ 59 & 11 & 55 & 59 & 18 & 79\end{array}$ $\begin{array}{llllll}59 & 11 & 55 & 59 & \frac{18}{7} & 79\end{array}$ 6A $91 \quad \underline{9}$ $\begin{array}{lllllll}\text { 6B } & \frac{18}{18} & 14 & 6 B & 55 & \frac{25}{7}\end{array}$ 7D $59 \quad 55 \quad 7 \mathrm{D} 76 \frac{7}{84}$ $8 \mathrm{~A} \underline{54} \quad \overline{93} \quad 8 \mathrm{~A} 64 \underline{46}$ $\begin{array}{llllll}8 \mathrm{E} & 35 & 77 & 8 \mathrm{E} & \underline{2} & 44\end{array}$ 9C $77 \quad 13 \quad 9 C \quad 55 \quad 65$ | $9 E$ | 22 | 46 | $9 F$ | 78 | 75 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}A D & 68 & 38 & A B & \overline{68} & 37\end{array}$ $\begin{array}{llllll}\mathrm{BC} & \underline{91} & 41 & \text { BD } & 57 & \underline{6}\end{array}$ $\begin{array}{llllll}\mathrm{BF} & 87 & 0 & \mathrm{CE} & 3 & 14 \\ \mathrm{DF} & 14 & 37 & \mathrm{DF} & 61 & \frac{70}{1}\end{array}$ EF $83 \quad \frac{37}{42} \quad$ EF $\quad 2 \frac{70}{76}$ $\begin{array}{llll}71 & 659 & 72 & 586\end{array}$ $\begin{array}{llllll}01 & 75 & 14 & 01 & 4 & 50\end{array}$ $02 \quad 36 \quad \underline{90} \quad 02 \quad \underline{79} \quad 11$ $03 \quad \underline{24} \quad 36 \quad 03 \quad 14 \quad \underline{2}$ $12 \quad \frac{82}{54} \quad 95 \quad 1248 \quad \frac{70}{27}$ $\begin{array}{llllll}14 & 54 & \underline{9} & 14 & 30 & \overline{27}\end{array}$ $\begin{array}{llllll}25 & 39 & 30 & 25 & 9 & 91 \\ 36 & 41 & 75 & 36 & 8 & 70\end{array}$ $\begin{array}{llllll}37 & \overline{39} & 36 & 37 & 39 & \overline{62}\end{array}$ $\begin{array}{lllll}46 & 96 & 13 & 46 & 45 \\ 88\end{array}$ $\begin{array}{llllll}48 & 73 & \underline{17} & 48 & \underline{24} & 46\end{array}$ $\begin{array}{llllll}57 & 50 & \underline{74} & 57 & \underline{0} & 16\end{array}$ $\begin{array}{llllll}59 & 31 & 53 & 59 & 87 & 81\end{array}$ $\begin{array}{lllllll}6 \mathrm{~A} & \frac{60}{60} & 79 & 6 \mathrm{~A} & 55 & \frac{28}{3} \\ 7 B & 10 & 49 & 7 B & 25 & 38\end{array}$ 8B $93 \quad \overline{64} \quad 8 \mathrm{~B} \quad \frac{36}{7} 79$ 8C $\quad 6 \quad \underline{62} \quad 8 \mathrm{C} \quad \underline{57} 18$ 9C $\quad \underline{56} \quad 88 \quad 9 D \quad 16 \quad 95$ 9D $58 \quad 43 \quad 9 \mathrm{E} \quad 13 \quad \underline{2}$ AC 7620 AC 786 AE $\quad 1 \quad 67$ AF $25 \quad \underline{58}$ BF $68 \quad \underline{5} \quad$ BF $\quad \underline{56} 81$ $\mathrm{DE} 90 \quad 5 \overline{2} \quad \mathrm{CD} \quad \underline{4} 99$ DF $\underline{6} \quad \overline{21}$ DE $\quad \underline{0} 94$

55	826
01	6390
02	9176
03	5018
12	7557
14	7925
25	3172
34	2991
36	7361
47	60100
58	6385
59	9638
6A	1634
6B	$70 \quad 0$
7 C	$77 \quad 72$
7D	188
8A	8147
8B	8273
9 A	9722
9 E	3257
BC	$97 \quad 3$
CF	$13 \underline{29}$
DE	8076
DF	5658
EF	$96 \quad 1$

$$
018966
$$

$$
64 \quad 682
$$

$$
\begin{array}{lll}
01 & 89 & 66 \\
02 & \underline{85} 70
\end{array}
$$

$$
0188 \quad \underline{2}
$$

$$
02 \quad 1196
$$

$$
03 \overline{72} \frac{27}{10}
$$

$$
1264 \quad 10
$$

$$
03 \quad 3864
$$

$$
14 \quad \underline{2} 79
$$

$$
1210089
$$

$$
\begin{array}{lll}
25 & 99 & 56 \\
21 & 81 & 2
\end{array}
$$

$$
1472 \quad \frac{44}{10}
$$

$$
3481 \quad 3
$$

$$
\begin{array}{llll}
25 & 51 & 10 \\
34 & \underline{40} & 33
\end{array}
$$

$$
\begin{array}{lll}
36 & 94 & \underline{41} \\
47 & \underline{57} & 20
\end{array}
$$

$$
\begin{array}{llll}
58 & \frac{33}{3} & 53 \\
50 & 30 & 44
\end{array}
$$

$$
5939 \underline{44}
$$

$$
6 A 969
$$

$$
\begin{array}{lll}
\text { 6B } 29 & \frac{52}{} \\
7 \mathrm{C} & 81 & 54
\end{array}
$$

$$
\begin{array}{lll}
7 \mathrm{D} & 77 & 91 \\
8 \mathrm{~A} & \underline{93} & 29
\end{array}
$$

$$
\begin{aligned}
& 8 \mathrm{~A} \\
& \overline{93} \\
& 8 \mathrm{E} \\
& \hline 95
\end{aligned}
$$

$$
9 \mathrm{C} 67 \quad \underline{51}
$$

$$
\begin{array}{lrr}
9 F & 3 & 28 \\
\mathrm{AB} & 55 & 3
\end{array}
$$

$$
\begin{array}{llr}
\mathrm{AB} & 55 & 3 \\
\mathrm{BD} & 65 & 94
\end{array}
$$

$$
\begin{array}{rrr}
\mathrm{CF} & 42 & \underline{27} \\
\mathrm{DE} & 1 & 90
\end{array}
$$

$$
\begin{array}{llll}
\mathrm{DE} & \underline{1} & 90 \\
\mathrm{EF} & \underline{83} & 44
\end{array}
$$

$$
\begin{array}{lr}
73 & 784 \\
01 & 82
\end{array} \quad 76
$$

$$
\begin{array}{lll}
01 & 82 & 76 \\
\hline 10
\end{array}
$$

$$
027961
$$

$$
03 \quad 7 \quad 29
$$

$$
\begin{array}{llll}
12 & 84 & \frac{35}{5} \\
14 & 75 & 50
\end{array}
$$

$$
\begin{array}{lll}
14 & 75 & 50 \\
25 & 83 & 71
\end{array}
$$

$$
\begin{array}{lll}
25 & 83 & \underline{71} \\
36 & \underline{80} & 97
\end{array}
$$

$$
\begin{array}{llll}
37 & 29 & 48 \\
46 & 100 & 84
\end{array}
$$

$$
\begin{array}{lll}
48 & \frac{85}{71} & 71 \\
57 & 17 & 17
\end{array}
$$

$$
57 \quad 17 \quad 17
$$

$$
\begin{array}{rrr}
59 & 77 & 90 \\
6 \mathrm{~A} & 5 & 97
\end{array}
$$

$$
\begin{array}{rrr}
6 A & 5 & 97 \\
7 B & 74 & 29
\end{array}
$$

$$
\begin{array}{lll}
\text { 7B } & 74 & 29 \\
\text { 8B } & 21 & 93
\end{array}
$$

$$
\begin{array}{lll}
\text { 8B } & 21 & 93 \\
\text { 8C } & \underline{88} & 70
\end{array}
$$

$$
\begin{array}{lll}
9 D & 35 & \underline{3} \\
\text { OF } & 13 & \boxed{ }
\end{array}
$$

$$
9 E \frac{13}{00} 45
$$

$$
\begin{array}{lll}
\text { AD } \\
\text { AF } & \underline{82} & 24 \\
49 & 20
\end{array}
$$

$$
\begin{array}{lll}
\text { AF } & 49 & \frac{20}{16} \\
\text { BE } & 57 & 16
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{BE} 57 & \frac{16}{} \\
\mathrm{CE} 67 & 8
\end{array}
$$

$$
\text { CF } 7872
$$

$$
\text { DF } 7359
$$

58	642	
01	68	33
02	$\underline{60}$	48
03	37	$\frac{13}{}$
12	8	$\frac{72}{19}$
14	$\underline{20}$	19
25	63	15
34	21	33
36	23	$\underline{30}$
47	$\underline{90}$	58
58	53	$\underline{19}$
59	$\underline{87}$	72
$6 A$	5	$\underline{53}$
$6 B$	93	85
$7 C$	$\underline{8}$	10
$7 D$	73	
$8 A$	70	9
8C	46	$\underline{22}$
$9 B$	$\underline{64}$	68
$9 E$	47	58
AE	99	$\frac{50}{2}$
BD	$\underline{4}$	22
CF	54	97
DF	$\underline{14}$	36
EF	54	$\underline{36}$

59	705	60	608
01	1899	01	688
02	1069	02	6514
03	1488	03	333
12	667	12	$15 \underline{26}$
14	2343	14	9632
25	$60 \underline{43}$	25	$44 \quad 75$
34	99 98	34	$\underline{5} 73$
36	5639	36	64
47	8565	47	$\underline{21}$
58	70	58	919
59	87 3	59	8930
6A	4860	6A	$43 \quad 12$
6B	2952	6B	2849
7 C	88	7 C	9174
7D	8311	7D	63
8A	8542	8A	4582
8C	1530	8 E	$33 \underline{52}$
9 E	$6 \underline{43}$	9A	6181
9 F	1049	9 F	8611
AB	$65 \underline{32}$	BC	$\underline{25} 35$
BD	7264	BD	6984
CE	1422	CE	6756
DF	3390	DF	$\underline{52} 89$
EF	70 30	EF	6665

$$
\begin{array}{llllll}
78 & 737 & 79 & 502 & 80 & 709
\end{array}
$$

$$
\begin{array}{llllllll}
01 & 19 & \underline{78} & 01 & 16 & 74 & 01 & 48 \\
87
\end{array}
$$

$$
02 \underline{91} 57 \quad 02 \quad 26
$$

$$
03 \overline{32} 20
$$

$$
124915
$$

$$
1458 \quad \underline{9}
$$

$$
\begin{array}{llr}
25 & 69 & \overline{4} \\
36 & \underline{50} & 58
\end{array}
$$

$$
\begin{array}{lll}
37 & \overline{57} & 56 \\
46 & 58 & \underline{6}
\end{array}
$$

$$
4888 \quad 8 \overline{4}
$$

$$
\begin{aligned}
& 4888 \quad 84 \\
& 5998 \quad 41
\end{aligned}
$$

$$
5 A \underline{41} 10
$$

$$
67 \quad 3893
$$

$$
\text { 7B } 18 \quad \frac{40}{15}
$$

$$
\begin{array}{llr}
8 \mathrm{C} & \overline{57} & \overline{15} \\
8 \mathrm{D} & \overline{82} & 6
\end{array}
$$

$$
9 \mathrm{C} 89 \underline{69}
$$

$$
\begin{aligned}
& 9 \mathrm{C} 89 \underline{69} \\
& 9 \mathrm{E} \underline{42} \quad 81
\end{aligned}
$$

$$
\text { AC } 89100
$$

$$
\begin{array}{llr}
\mathrm{AF} & \frac{33}{a_{1}} & 4 \\
70
\end{array}
$$

$$
\text { BE } \overline{91} \underline{72}
$$

$$
\begin{array}{lll}
\mathrm{BF} & 53 & \overline{49} \\
\mathrm{DE} & 74 & 4
\end{array}
$$

$$
\text { DF } 90 \underline{18}
$$

$\begin{array}{llll}03 & 29 & \underline{26} \\ 12 & 59 & \underline{95}\end{array}$
$1413 \quad 57$
257044
362285
$\begin{array}{lll}37 & 46 & \underline{64} \\ 46 & \underline{30} & 57\end{array}$
$48 \quad 2957$

59	33	15

5A $\underline{77} \quad \frac{15}{42}$
$\begin{array}{lll}6 B & \overline{85} & 39 \\ 78 & \overline{39} & 58\end{array}$
$7989 \quad \underline{29}$
8C $46 \quad \underline{2}$
$\begin{array}{lll}\text { 9D } 24 & \underline{20} \\ \text { AC } & 77 & 12\end{array}$
AD $\overline{54} 30$
BE 1688
BF $\overline{35} 29$
$\begin{array}{lll}\text { CE } 48 & 58 \\ \text { DF } & 56 & 41\end{array}$
EF $31 \quad \underline{85}$

$$
\begin{aligned}
& 68798 \\
& 0167 \quad 35 \\
& 02 \quad 35 \quad 20 \\
& 038362 \\
& 127597 \\
& \begin{array}{llll}
14 & 68 & 31 \\
25 & \underline{19} & 54
\end{array} \\
& 36 \underline{64} 32 \\
& \begin{array}{lll}
3754 & 55 \\
4676 & 23
\end{array} \\
& 4895 \quad 38 \\
& 574293 \\
& \begin{array}{lll}
59 & \underline{13} & 84 \\
68 & \underline{15} & 99
\end{array} \\
& \text { 7A } 67 \underline{12} \\
& \begin{array}{llll}
\text { 8B } & 49 & 59 \\
9 C & 69 & 92
\end{array} \\
& \text { 9D } \quad 4 \\
& \text { AC } 2137 \\
& \text { AE } 52 \frac{75}{} \text { BE } 88 \\
& \text { BF } \overline{67} \underline{72} \\
& \begin{array}{lrr}
\text { CD } & 87 & 71 \\
\text { DF } & 90 & 5
\end{array} \\
& \text { EF } 8391
\end{aligned}
$$

$81 \quad 675 \quad 82 \quad 695$ $013179 \quad 01 \quad 27 \quad 75$ $02 \quad 26 \underline{16} \quad 02 \quad 26 \underline{63}$ $03 \quad 41 \quad 39 \quad 03 \quad 39 \quad 89$ $12 \begin{array}{llllll}12 & 61 & 76 & 12 & 6 & 86\end{array}$ $\begin{array}{llllll}14 & \overline{33} & \underline{90} & 14 & 33 & \frac{35}{86} \\ 25 & 2 & 25 & 41 & 70\end{array}$ $\begin{array}{lrllll}25 & 2 & 86 & 25 & 41 & 70 \\ 36 & 57 & 46 & 36 & 82 & 10\end{array}$ $\begin{array}{llllll}37 & \underline{28} & 74 & 37 & 96 & 35\end{array}$ $\begin{array}{llllll}46 & 97 & \underline{11} & 46 & 7 & \underline{7}\end{array}$ $\begin{array}{llllll}48 & 56 & 90 & 48 & 54 & 79\end{array}$ $59 \quad \underline{59} 73 \quad 59 \quad 74 \quad \underline{49}$ $\begin{array}{llllll}5 \mathrm{~A} & 59 & \underline{4} & 5 \mathrm{~A} & 60 & 95 \\ 6 \mathrm{~B} & 88 & 92 & 6 \mathrm{~B} & \underline{88} & 5\end{array}$ $\begin{array}{llllll}6 B & 88 & \underline{92} & 6 B & 88 & 5 \\ 78 & 87 & 78 & 65 & 55\end{array}$ $\begin{array}{lllllll}78 & \frac{87}{27} & 22 & 78 & 65 & 55 \\ 79 & 17 & 99 & 7 B & \underline{23} & 51\end{array}$ $\begin{array}{llllll}79 & 17 & 99 & 7 B & 23 & 31 \\ 8 \mathrm{C} & 70 & 19 & 8 \mathrm{C} & 84 & 31\end{array}$ $\begin{array}{lllllll}9 D & -34 & 23 & 9 C & 8 & 0\end{array}$ $\begin{array}{llllll}\text { AC } & 28 & 30 & 9 D & 67 & \underline{52}\end{array}$ $\begin{array}{llllll}\mathrm{AE} & 36 & \underline{18} & \mathrm{AE} & \underline{4} & 83\end{array}$ BD $35 \quad \overline{72} \quad$ AF 9424 $\begin{array}{llllll}\mathrm{BF} & 26 & \underline{6} & \text { BE } & 67 & \frac{97}{7} \\ \mathrm{CE} & 14 & 15 & \mathrm{CF} & \underline{13} & 15\end{array}$ DF $\underline{44} 45$ DE 5660 EF 8364 DF $26 \underline{20}$ $\begin{array}{llll}91 & 651 & 92 & 594\end{array}$ $\begin{array}{llllll}01 & 49 & 61 & 01 & 45 & 3\end{array}$ $0299 \quad 02 \quad 89 \quad \underline{26}$ $\begin{array}{llllll}03 & \underline{24} & 69 & 03 & \underline{28} & 17\end{array}$ $\begin{array}{llllll}12 & 97 & \underline{57} & 12 & 70 & 8 \\ 14 & 46 & 99 & 14 & 61 & 5\end{array}$ $\begin{array}{llllll}14 & 46 & 99 & 14 & \overline{61} & \underline{5}\end{array}$ $\begin{array}{llllll}25 & 76 & \underline{3} & 25 & 75 & 95\end{array}$ $\begin{array}{llllll}36 & 19 & 71 & 36 & 77 & 26\end{array}$ $37 \quad 16 \quad 52 \quad 37 \overline{80} 65$ $46 \underline{71} 66 \quad 46 \quad 61 \quad 26$ | 48 | 7 | $\underline{4}$ | 48 | 96 | 10 |
| :--- | ---: | :--- | :--- | :--- | :--- | $\begin{array}{llllll}59 & 79 & \underline{19} & 59 & \underline{2} & 21\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 69 & 44 & 5 \mathrm{~A} & 58 & 83 \\ 6 B & 88 & 38 & 6 \mathrm{~B} & 33 & \frac{83}{35}\end{array}$ $\begin{array}{lllllll}\text { 6B } & 88 & 38 & 6 B & 33 & 35 \\ 79 & \frac{47}{} & 66 & 79 & 7 & 11\end{array}$ 7C $\quad 38 \quad 45 \quad 7 \mathrm{C} \quad 32 \quad 93$ $8 \mathrm{~A} \quad 10 \quad 28 \quad 8 \mathrm{~A} \quad 2 \quad 82$ | $8 D$ | 28 | 64 | $8 D$ | 59 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | 9D $37 \quad 30 \quad 9 D 65 \quad 43$ $\begin{array}{llllll}\mathrm{AE} & 5 & 19 & \mathrm{AE} & 3 & 14\end{array}$ BD $71 \quad 4 \quad \mathrm{BE} 76 \quad 11$ BF $\quad 7 \quad 63 \quad \mathrm{BF} \overline{98} 63$ | CE 80 | 41 | CE | 61 | 76 |
| :--- | :--- | :--- | :--- | :--- |
| CF | 74 | 99 | $C F$ | 74 | CF $7499 \quad$ CF $74 \quad 3$ | EF 90 | $\underline{48}$ | | DF | 27 |
| :--- | :--- | :--- | :--- | :--- |
| 101 | 812 | | 102 | 595 | $\begin{array}{llllll}01 & 83 & 71 & 01 & 88 & \underline{1}\end{array}$ $02 \quad 97 \quad \begin{array}{lllll}24 & 02 & 55 & 31\end{array}$ $03 \underline{52} 94 \quad 03 \quad 5184$ $\begin{array}{lllll}12 & 57 & 92 & 12 & 29 \\ 92\end{array}$ $\begin{array}{lllll}14 & 52 & 10 & 14 & 45 \\ 7\end{array}$ $\begin{array}{llllll}25 & 32 & 79 & 25 & 88 & 30\end{array}$ $36 \quad 88 \quad \overline{58} \quad 36 \quad \overline{32} \quad \underline{90}$ $\begin{array}{llllll}37 & 71 & 92 & 37 & 7 & 62 \\ 46 & 32 & 1 & 46 & 89 & 44\end{array}$ $\begin{array}{llllll}48 & 94 & 7 & 48 & 11 & 70\end{array}$ $\begin{array}{lllll}59 & 28 & 31 & 59 & \underline{46} \\ 54\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 88 & 32 & 5 \mathrm{~A} & 37 & 24\end{array}$ 6B $41 \quad \underline{96} \quad 6 \mathrm{~B} 33 \quad \underline{0}$ $\begin{array}{lllll}79 & 95 & 92 & 79 & 37\end{array} \quad 32$ $\begin{array}{llllll}7 C & \underline{23} & 18 & 7 C & 10 & 12\end{array}$ 8D $\begin{array}{lllll}3 & 64 & 8 D & 4 & 19\end{array}$ | 8 E | 94 | 18 | 8 E | 10 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | 9D $67 \quad 37$ 9D 7975 AC $72 \underline{44}$ AE $\underline{\underline{35}} 69$ AF 9090 AF $26 \quad \underline{0}$ BC $\begin{array}{llllll}51 & 11 & B C & 31 & 74\end{array}$ BE $59 \underline{21}$ BD $68 \quad \underline{17}$ DF $76 \quad \overline{99} \quad$ CF $83 \quad \overline{88}$

83	696	$84 \quad 577$
01	96 8	015820
02	4461	028612
03	1358	033124
12	9232	$12 \quad 454$
14	$27 \quad 29$	1447 33
25	4135	$25 \quad 144$
36	873	$36 \underline{34} 44$
37	$82 \underline{80}$	$3747 \underline{52}$
46	$89 \underline{25}$	4699
48	2983	482218
59	8916	$59 \underline{84} 91$
5 A	1189	5A 5131
6B	9597	6B 4142
78	$75 \quad 71$	783243
7 C	9363	7C $24 \underline{54}$
8 D	7964	8D $91 \underline{28}$
9 A	22 9	9B 49
9 C	$\underline{2} 55$	$9 \mathrm{E} \quad 1 \quad 50$
AE	4914	AC 1368
BE	2979	AF $70 \underline{76}$
BF	9100	BD 815
CF	98	CF 6564
DE	377	DE 4744
DF	6235	EF 2882

- \circ
 $95 \quad 572$ $0183 \underline{28}$ $0291 \quad \frac{27}{97}$ $03 \underline{99} 87$ $12 \overline{38} \underline{51}$ 146546 $\begin{array}{lrr}25 & 7 & \underline{5} \\ 36 & 58 & 27\end{array}$ $37 \overline{93} \quad 21$
$4670 \quad 40$ $46 \quad 70 \quad 40$

$48 \quad 15 \quad 96$ $59 \quad 8088$ $\begin{array}{llll}5 A & 66 & 16 \\ 6 B & 46\end{array}$ $79 \quad \underline{30} 56$ $\begin{array}{llll}7 C & 53 & 38 \\ 8 A & 18 & 95\end{array}$ $\begin{array}{ll}\text { 8D } \underline{42} & 51 \\ 9 E & 13\end{array}$ AF $41 \quad \underline{58}$ BC $9 \underline{24}$ CD $87 \quad \frac{53}{63}$ DF 223 EF 3314 | 103 | 604 |
| :--- | ---: |
| 01 | $\underline{25}$ |
| 1 | 1 | $\begin{array}{llr}01 & \underline{25} & 1 \\ 02 & 39 & \underline{68}\end{array}$ $03 \quad 6 \quad \overline{97}$ 125271 147520 $25 \quad 8 \quad \underline{5}$ $3610 \quad 5 \overline{8}$ $3711 \quad 54$ 467137 $48 \quad 57 \quad 78$ $59 \quad 72 \quad 8$ 5A 4861 6B $69 \quad 72$ $79 \underline{26} \overline{54}$ 7C 5837 8D 3615 8E 8740 9D 1575 AE $\underline{29} 72$ AF $29 \underline{26}$ BC $54 \underline{37}$ BF 8784 CE $81 \underline{50}$ DF 2192

94660
019672 $020 \quad \underline{5}$ 039119 $1273 \quad 17$ $14 \quad 6395$ $\begin{array}{llll}25 & 34 & 72 \\ 36 & 8 & 91\end{array}$ $\begin{array}{llll}37 & 27 & \frac{86}{} \\ 46 & 79 & 20\end{array}$ $48 \underline{26} 59$ $\begin{array}{lrl}59 & 99 & \frac{55}{5}\end{array}$ 6B $13 \quad 24$ $79 \quad 9369$ $7 \mathrm{C} \quad 9 \quad 31$ $8 B \quad 190$ 8D $\quad 88 \quad 75$
$9 E \quad 88$ $\begin{array}{llll}\mathrm{AB} & 56 & 12 \\ \mathrm{AF} & 16 & 80\end{array}$ $\begin{array}{lll}\text { CD } & \overline{31} & \frac{31}{98}\end{array}$ $\begin{array}{rrr}\text { CE } & 7498 \\ \text { DF } & 185\end{array}$ EF $52 \underline{18}$

\[
104 \quad 622

\] $0198 \underline{29}$ $02 \underline{17} \quad 60$ $\begin{array}{lll}03 & 48 & 61 \\ 12 & 71 & 41\end{array}$ 14350 $\begin{array}{lll}25 & \frac{97}{29} & \underline{49} \\ 36 & \underline{29} & 86\end{array}$ $\begin{array}{lll}37 & 70 & 35 \\ 46 & 83 & \frac{1}{1}\end{array}$ $48 \quad 25 \quad 37$ $59 \underline{48} 96$ 5A 8942 | $6 B \quad 6544$ |
| :--- |
| 79 |
| 73 | 7 C 30 8D $\quad 38 \quad 87$ 8E $28 \quad 20$ $9 \mathrm{~F} \quad 3054$ $\begin{array}{lll}\text { AB } & 40 & 58 \\ \text { AC } & \underline{89} & 24\end{array}$ $\begin{array}{lrl}\text { BD } & 5 & 54 \\ \text { CF } & 44 & \end{array}$ CF 4435

DE 2989 EF $41 \underline{23}$

01
02
03
12
14 $02 \frac{10}{21} 18$ $0315 \frac{78}{22}$ 124365 $14 \quad 15 \quad 73$ $36 \quad 35 \quad \underline{2}$ $\begin{array}{lll}37 & 54 & 85 \\ 46 & 28 & 92\end{array}$ $\begin{array}{lll}48 & 31 & 71 \\ 59 & 10 & 16\end{array}$ 5A $19 \underline{57}$ $\begin{array}{lll}6 B & 46 & 9 \\ 79 & 42 & 12\end{array}$ 7C $51 \quad 25$ 8B $96 \underline{53}$ $\begin{array}{lll}8 \mathrm{D} & \underline{6} & 95 \\ 9 \mathrm{E} & \underline{7} & 46\end{array}$ AC $80 \quad 53$ AF $87 \overline{35}$ $\begin{array}{lll}\text { BF } & 43 & \underline{5} \\ \text { CD } & 18 & \underline{45}\end{array}$ DE 8711 $105 \quad 674$ $0116 \underline{61}$ $02 \quad 29 \quad \overline{59}$ $\begin{array}{llr}03 & 23 & 5 \\ 12 & 75 & \underline{40}\end{array}$ 141004 $\begin{array}{lllllllll}25 & 69 & \underline{6} & 25 & \underline{14} & 45 & 25 & \underline{67} & \frac{65}{67}\end{array}$ $\begin{array}{lllllllllllll}36 & 73 & 40 & 36 & \overline{87} & 92 & 36 & \overline{99} & \underline{47}\end{array}$ $\begin{array}{lllllllll}37 & \underline{41} & 77 & 37 & 48 & \underline{0} & 37 & \underline{28} & 1 \\ 46 & 82 & \underline{41} & 46 & 82 & \underline{16} & 46 & 33 & 81\end{array}$ $48 \underline{41} 95$ $5965 \quad 89$
$5 A 1565$ $6 B \quad 72 \quad \frac{32}{32}$
7974 $\begin{array}{lll}79 & 74 & 1 \\ 7 C & 66 & 27\end{array}$ $\begin{array}{rrr}7 C & 66 & 27 \\ 8 D & \underline{85} & 2\end{array}$ 8E 8240 9F 2128 $\begin{array}{rrr}\text { AB } & 13 & 84 \\ \text { AD } & 6 \underline{54}\end{array}$ BC $45 \underline{20}$ CE $54 \frac{50}{53}$ EF $75 \underline{20}$
 $0146 \quad \underline{50} \quad 01 \quad 90 \quad \underline{94}$ 029578

$59 \quad 96 \quad 21$ $\begin{array}{lrll}5 A & 96 & 35 \\ 6 B & 6 & 88\end{array}$ $\begin{array}{lll}79 & 55 & 62 \\ 7 C & 60\end{array}$ $7 C 4160$
$8957 \underline{56}$ 8D $\frac{38}{50} \quad 26$ AC $50 \quad 21$ $\begin{array}{ll}\text { AD } 6077 \\ \text { BE } 46 & 55\end{array}$ BF 1299

CE 78 DF $43 \quad \frac{3}{5}$ $98 \quad 779$ $01 \quad 17 \quad 17$ $02 \underline{28} \quad 1$ 037474 $1274 \underline{90}$ ${ }_{2}^{14} \quad \underline{61} 93$ 368763 | $37 \quad 84 \quad 11$ |
| :--- |
| $46 \quad 27$ |
| 17 | $\begin{array}{lll}46 & 27 & 97 \\ 48 & 32 & 86\end{array}$ 59 90 31 $\begin{array}{lr}5 \mathrm{~A} & 4 \quad 70 \\ 6 \mathrm{~B} & 24 \\ \underline{70}\end{array}$ 795081 $\begin{array}{ll}7 \mathrm{C} & 67 \quad 30 \\ \text { 8D } & 19 \\ 92\end{array}$ 8E $72 \underline{82}$ 9C $79 \quad 72$ $\begin{array}{llll}\text { AD } & 84 & 18 \\ \text { AF } & 76 & 70\end{array}$ BD 5393 $\begin{array}{llr}\text { BF } & 75 & 6 \\ \text { CE } & 50 & 24\end{array}$ EF $74 \quad 1$ $\begin{array}{ll}01 \\ 02 & 98 \\ 03\end{array}$ $02 \underline{98}^{7}$ 037891 127480 149887 $\begin{array}{lll}25 & 98 & 25 \\ 36 & 13 & 77\end{array}$ $37 \quad 138 \quad 1$ $4679 \quad 1$ $4842 \quad 64$ $5975 \quad 38$

54 5A 6686 $\begin{array}{lll}\text { 6B } & \underline{2} & 88 \\ 7 B & 38 & 87\end{array}$ 7C $57 \underline{34}$ 8B $83 \underline{79}$ 8D $40 \quad 66$

$9 C \quad 77 \quad 98$ | $9 C$ | $77 \quad 98$ |
| :--- | ---: |
| $9 E$ | 5 |
| 11 | | AE $26 \frac{11}{77}$ AF 73100 $\begin{array}{lll}\text { CF } 98 & 82 \\ \text { DE } 3983\end{array}$ $\begin{array}{lll}\text { DE } & 39 & 83 \\ \text { DF } & 26 & 66\end{array}$

89	607	90	764
01	5767	01	4812
02	8432	02	$69 \quad 35$
03	$5 \underline{60}$	03	8079
12	023	12	6544
14	429	14	8016
25	$\underline{4} 75$	25	8383
36	3082	36	$80 \underline{22}$
37	40	37	3678
46	$78 \quad 15$	46	72
48	4084	48	8696
59	7544	59	5737
5A	1499	5A	9811
6B	52	6B	$55 \quad 19$
79	$78 \underline{52}$	79	84
7 C	2992	7 C	8789
89	60	8A	1615
8 D	8019	8D	4584
AE	4140	9 C	9492
AF	9872	AE	6120
BE	211	BD	$96 \quad 67$
BF	4764	BE	9763
CD	5789	CF	1551
CE	80	DF	54
DF	8531	EF	1319

$$
99 \quad 542
$$

$$
100 \quad 651
$$

$$
01 \quad \underline{8} 49
$$

$$
027490
$$

$$
0351 \quad \underline{2}
$$

$$
12 \quad \underline{5} \quad 91
$$

$$
147 \overline{3} 99
$$

$$
25 \frac{89}{17} 62
$$

$$
36 \quad 17 \quad 66
$$

$$
37 \quad 52 \quad \underline{7}
$$

$$
\begin{array}{lll}
46 & 7 & \underline{4}
\end{array}
$$

$$
48 \underline{42} 5 \overline{0}
$$

$$
593764
$$

$$
5 \mathrm{~A} \quad \underline{36} 40
$$

$$
\begin{array}{llll}
6 B & 18 & \frac{86}{86} \\
79 & 83 & 80
\end{array}
$$

$$
7983 \quad 80
$$

$$
7 C 78 \quad 8
$$

$$
\text { 8D } \underline{26} 24
$$

$$
8 \mathrm{E} 1391
$$

$$
\begin{array}{lll}
9 D & 61 & \frac{25}{80}
\end{array}
$$

$$
\mathrm{AB} 48 \quad 80
$$

$$
\begin{array}{llll}
\text { AC } & 57 & 83 \\
\text { BF } & 78 & 99
\end{array}
$$

$$
\text { BF } 78 \frac{99}{00}
$$

$$
\begin{array}{lll}
\mathrm{CE} & \frac{83}{98} & \overline{98} \\
\mathrm{DF} & \frac{1}{88} & 28
\end{array}
$$ EF $53 \frac{13}{39}$

$$
\text { EF } \quad \underline{2} 60
$$ 109692 $015453-110 \quad 693$

$$
\begin{array}{llllll}
01 & 54 & 53 & 01 & 55 & \frac{36}{} \\
02 & \underline{92} & 31 & 02 & 77 & 69
\end{array}
$$

$$
03 \overline{93} \underline{87} \quad 03 \underline{66} 84
$$

$$
\begin{array}{lllll}
12 & 90 & \frac{21}{21} & 12 & 56 \\
14 & 39 & \frac{33}{45} & 14 & 76
\end{array}
$$

$$
\begin{array}{llllll}
14 & 39 & 45 & 14 & 76 & 15 \\
25 & 29 & 32 & 25 & 43 & \underline{96} \\
\hline
\end{array}
$$

$$
\begin{array}{llllll}
36 & 77 & 40 & 36 & 3 & 84
\end{array}
$$

$$
\begin{array}{lllllr}
37 & 38 & \overline{22} & 37 & \underline{81} & 4 \\
46 & 90 & 83 & 46 & \underline{39} & 43
\end{array}
$$

$$
\begin{array}{lllllll}
48 & 24 & 95 & 48 & 17 & \frac{97}{} \\
59 & 87 & 42 & 59 & 38 & 59
\end{array}
$$

$$
\begin{array}{llllll}
59 & 87 & \underline{42} & 59 & 38 & \underline{59} \\
5 A & 66 & 65 & 5 A & 94 & 47
\end{array}
$$

$$
\begin{array}{llllll}
5 A & 60 & 65 & 5 A & 94 & 41 \\
6 B & 17 & 38 & 6 B & \underline{3} & 23 \\
\hline
\end{array}
$$

$$
\begin{array}{llllll}
7 B & \underline{64} & 37 & 7 B & 49 & 16
\end{array}
$$

$$
\begin{array}{rrrrrrr}
7 C & 24 & \frac{36}{} & 7 C & 18 & 69 \\
8 D & \underline{4} & 4 & 8 D & 92 & \underline{26}
\end{array}
$$

$$
8 \mathrm{E} \quad 33 \quad 43 \quad 8 \mathrm{E} \quad 43 \quad 72
$$

$$
\begin{array}{lllll}
\text { OE } & 33 & 43 & \text { 8E } & 43 \\
9 \text { A } & 77 & 35 & 9 B & 98 \\
\hline
\end{array}
$$

$$
\text { 9D } 67 \underline{22} \quad 9 F \quad 72 \quad 37
$$

$$
\begin{array}{lllllll}
\mathrm{AF} & \frac{7}{2} & 25 & \mathrm{AD} & 53 & 84 \\
\mathrm{BF} & 1 & 98 & \mathrm{AE} & \underline{78} & 50
\end{array}
$$

$$
\begin{array}{lrlll}
\mathrm{BF} & 1 & 98 & \text { AE } 78 & \frac{50}{} \\
\mathrm{CD} & 75 & 45 & \mathrm{CD} & 98 \\
\hline
\end{array}
$$

$$
\begin{array}{lllll}
\text { CE } 42 & 73 & \text { CF } & \underline{24} & 16
\end{array}
$$

$$
\text { EF } 64 \underline{37} \text { EF } 51 \quad \underline{5}
$$

 $01 \quad 6797$ $02 \overline{91} 34$ $\begin{array}{llllll}03 & 81 & 35 & 03 & 78 & \underline{65}\end{array}$ $\begin{array}{llllll}12 & 17 & 100 & 12 & \underline{41} & \frac{14}{14}\end{array}$ $\begin{array}{llllll}14 & 76 & 54 & 14 & 40 & 49\end{array}$ $\begin{array}{llllll}25 & 88 & \frac{65}{25} & 25 & \underline{44} & 19 \\ 36 & 72 & \frac{55}{27} & 36 & 74\end{array}$ $3672 \overline{55}$ $\begin{array}{llr}37 & \frac{47}{} & 6 \\ 46 & 56 & 25\end{array}$ $\begin{array}{lll}46 & 56 & 25 \\ 48 & \underline{14} & 41\end{array}$ $59 \quad \overline{84} 86 \quad 48 \quad 88 \quad 86$ $\begin{array}{llllll}5 \mathrm{~A} & 5 & \underline{32} & 5 \mathrm{~A} & \underline{5} 78\end{array}$ $\begin{array}{llllll}6 B & 24 & \overline{13} & 6 B & 38 & 40\end{array}$ $\begin{array}{llllll}7 C & 89 & 19 & 7 C & \underline{3} & 57\end{array}$ $\begin{array}{llllrl}7 D & 71 & 99 & 7 D & 59 & 43 \\ 8 C & 14 & 43 & 8 C & 2 & 81\end{array}$ 8D $\quad \underline{31} 82 \quad 8 \mathrm{E} 72 \quad \underline{8}$ $9 \mathrm{~A} \underline{11} \quad 26 \quad 9 \mathrm{~A} \quad 68 \quad \underline{76}$ $9 \mathrm{E} \quad 36 \quad 79$ AF $37 \overline{100}$ BE $0 \quad 6$ $\begin{array}{llllll}\text { BF } & 38 & 19 & \text { BF } & \frac{81}{20} & 89\end{array}$ CE $29 \quad 100 \quad$ CF $17 \quad \overline{27}$ DF $\quad 7 \quad 72$

$$
121684
$$

$$
01 \quad \underline{30} 59
$$

$$
2 \overline{31} 66 \quad 02 \quad \overline{62} \quad 75
$$

$$
\begin{array}{llllll}
03 & 38 & \underline{64} & 03 & 27 & \overline{92}
\end{array}
$$

$$
\begin{array}{llllll}
12 & 40 & 95 & 12 & 68 & 87 \\
14 & 89 & 36 & 14 & 25 & 46
\end{array}
$$

$$
\begin{array}{llllll}
14 & 89 & 36 & 14 & \underline{25} & 46 \\
25 & \underline{50} & 94 & 25 & 7 & \underline{29}
\end{array}
$$

$$
\begin{array}{rlllll}
25 & \underline{50} & 94 & 25 & 7 & \underline{29} \\
36 & 18 & \underline{57} & 36 & 91 & \underline{38}
\end{array}
$$

$$
\begin{array}{llllll}
37 & 63 & 97 & 37 & 53 & 74
\end{array}
$$

$$
\begin{array}{llllll}
46 & 88 & 79 & 48 & 7 & 28
\end{array}
$$

$$
\begin{array}{lllll}
48 & \overline{38} & 71 & 49 & 39
\end{array} 72
$$

$$
59 \quad 71 \quad 27 \quad 5 A 20 \quad 6
$$

$$
5 A \overline{21} 41 \quad 5 B 64 \quad 34
$$

$$
\begin{array}{llllrl}
6 B & 55 & 77 & 67 & 5 & 53
\end{array}
$$

$$
7 \mathrm{C} 69 \quad \underline{4} \quad 68 \quad 16 \quad 55
$$

$$
\text { 8E } 10 \quad 88 \quad 8 \mathrm{C} \quad 91
$$

$$
\begin{array}{llllll}
8 F & 36 & 8 & 9 C & 19 & 15
\end{array}
$$

$$
9 \mathrm{C} \quad 12 \quad 10 \quad \text { 9D } 55
$$

$$
9 \mathrm{E} \underline{48} 23 \quad \mathrm{AE} \quad \underline{0} \overline{70}
$$

$$
\begin{array}{lllll}
\mathrm{AD} & 63 & \underline{2} & \mathrm{BE} & 57 \\
\hline
\end{array}
$$

$$
\begin{array}{lrllrr}
\mathrm{AF} & \frac{29}{} & 5 \overline{6} & \mathrm{BF} & 8 & \frac{95}{8} \\
\mathrm{BC} & 9 & 22 & \mathrm{CF} & 55 & 82
\end{array}
$$

$$
\begin{array}{lllll}
\mathrm{BC} & \underline{9} & 22 & \mathrm{CF} & 55 \\
\mathrm{BE} & \overline{27} & 64 & \mathrm{DE} & \frac{47}{47} \\
33
\end{array}
$$

$$
\text { DF } 49 \quad 38 \text { DF } 94 \quad 22
$$

$$
\begin{array}{llll}
131 & 686 & 132 & 709
\end{array}
$$

$$
0180 \quad \underline{30} \quad 01 \quad 73 \quad 28
$$

$$
\begin{array}{llllll}
02 & 90 & 53 & 02 & 89 & 50
\end{array}
$$

$$
03 \underline{34} 50 \quad 03 \quad \underline{27} \quad 75
$$

$$
12 \quad 95 \quad 61 \quad 12 \quad 20 \quad \underline{50}
$$

$$
1460 \quad \overline{21} \quad 14 \quad 88 \quad \overline{55}
$$

$$
2539 \quad 37 \quad 25 \quad 55 \quad \underline{2}
$$

$$
\begin{array}{llllll}
36 & 86 & 10 & 36 & 16 & 55
\end{array}
$$

$$
\begin{array}{llllll}
37 & 76 & 14 & 37 & \frac{60}{02} & 86
\end{array}
$$

$$
48 \quad 30 \quad 3 \quad 48 \quad 23
$$

$$
49 \overline{62} \quad \frac{20}{10} \quad 49 \overline{19} \quad \underline{9}
$$

$$
5 A \quad 72 \quad 19 \quad 5 A 66
$$

$$
\begin{array}{llll}
5 B & 32 & \overline{42} & 5 B \\
17 & \overline{84}
\end{array}
$$

$$
\begin{array}{llllll}
67 & 38 & \underline{0} & 67 & 96 & \frac{3}{2}
\end{array}
$$

$$
\begin{array}{llllll}
6 \mathrm{C} & \underline{9} & 5 \overline{9} & 6 \mathrm{C} & \underline{88} & \frac{1}{3}
\end{array}
$$

$$
\text { 7D } \quad 2 \overline{3} \quad 88 \quad 7 \mathrm{D} \overline{61} \quad 5
$$

$$
8 \mathrm{~A} \quad 3099 \quad 8 \mathrm{~A} \quad 14 \quad 22
$$

$$
8 \mathrm{C} \overline{85} 96 \quad 8 \mathrm{C} \overline{30} 53
$$

$$
9 D \quad 28 \quad \underline{18} \quad 9 D \quad 36 \quad \underline{55}
$$

$$
9 E \quad 5 \quad \overline{61} \quad 9 E \quad 53 \quad \overline{25}
$$

$$
\begin{array}{llllll}
\text { AF } & 67 \quad 67 & \text { AF } & 87 & 41
\end{array}
$$

$$
\text { BE } 2489 \quad \text { BE } 47 \quad 36
$$

$$
\begin{array}{lllll}
\text { BF } & \frac{50}{6} & \boxed{6} & \text { BF } & \frac{27}{9} \\
\text { CE } & \overline{99} & 38 & \text { CE } & 91
\end{array}
$$

$$
\text { DF } \overline{37} \underline{93} \text { DF } \overline{69} \underline{78}
$$

116	614	117742
01	8094	019175
02	1133	028964
03	4770	032247
12	6379	122352
14	3251	$1473 \quad 4$
25	5953	253062
36	6368	363988
37	$60 \quad 31$	3762 28
46	8056	468091
48	$37 \quad 3$	481855
59	$77 \quad 35$	596941
5 A	5927	5A 8026
6B	2833	6B 10052
7 C	145	7C 9186
7D	$72 \quad 5$	7D 8015
8C	5926	8E 8735
8 E	3726	8F $5 \underline{46}$
9 D	2085	9A 9262
9 E	$97 \quad 9$	9B 2838
AD	7497	AC 628
AF	5419	BE $\underline{4} 29$
BE	166	CD 2367
BF 2	2135	DF 1552
CF	4048	EF 1121

118	651									
01	15	73								
02	91	48								
03	86	100								
12	34	40								
14	56	42								
25	74	46								
36	78	61								
37	74	88								
46	28	$\underline{2}$								
48	$\underline{53}$	9								
59	25	76								
5A	23	23								
$6 B$	30	51								
$7 C$	88	11								
$7 D$	66	$\underline{91}$								
8E	$\underline{0}$	40								
8F	93	43								
$9 A$	88	$\underline{0}$								
$9 C$	74	8								
AE	97	21								
BD	46	20								
BF	30	18								
CF	$\underline{22}$	3								
DE	11	$\underline{6}$	$01 \quad 16 \quad 37$	126	575	127	654			
:---	:---	:---	:---							
01	85	$\underline{47}$	01	$02 \underline{34} \underline{61}$ 035962	12	33	91	12	71	7
:---	:---	:---	:---	:---	:---	$12 \frac{71}{12} 79$ 141252 $\begin{array}{ll}25 & 26 \\ 36 & 10 \\ 42\end{array}$ $36 \quad 42 \quad 37$ $\begin{array}{lll}37 & 46 & 100 \\ 48 & 57 & 69\end{array}$				

$\begin{array}{lll}49 & \overline{36} & \frac{63}{} \\ 5 A & 22 & 27\end{array}$ 5B 4366 $67100 \quad \underline{8}$ $6898 \quad 25$ $\begin{array}{llll}\text { 7C } & 53 & 74 \\ \text { 8D } & 36 & 9\end{array}$ 9E 1048 9F $70 \quad 18$ $\begin{array}{llll}\text { AC } & 50 & 38 \\ \text { AE } & 44 & 13\end{array}$ BD $98 \quad \frac{13}{77}$ $\begin{array}{llll}\text { BF } & 64 & 31 \\ \text { CF } & 56 & 82\end{array}$ DE $13 \quad 2$

$$
138682
$$

$$
01 \quad 3640
$$

$$
0275 \underline{41}
$$

$$
03 \quad 78 \quad 33
$$

$$
\begin{aligned}
& 12 \quad 4 \quad 84
\end{aligned}
$$

$$
14 \underline{63} 19
$$

$$
25 \quad 18 \quad 46
$$

$$
3645 \quad 3
$$

$$
\begin{array}{lll}
37 & 76 & 49 \\
48 & 77 & 83
\end{array}
$$

$$
49 \quad 40 \quad 81
$$

$$
\begin{array}{lll}
49 & \frac{40}{100} \underline{16} \\
\hline
\end{array}
$$

$$
\text { 5B } 80 \quad 27
$$

$$
6857 \quad \frac{7}{0}
$$

$$
6 \mathrm{~A} 10080
$$

$$
79 \quad 658
$$

$$
7 \mathrm{C} \quad \underline{8} \quad 10
$$

$$
\begin{array}{lll}
8 D & 95 & 55 \\
9 E & 21 & 19
\end{array}
$$

$$
\mathrm{AF} \overline{1} \underline{64}
$$

$$
\text { BC } 95 \underline{\underline{4}}
$$

$$
\text { BF } \underline{90} 8 \overline{5}
$$

$$
\begin{array}{lll}
\text { CE } & \overline{21} & 24 \\
\text { DE } & 38 & 84
\end{array}
$$

$$
\text { DF } 15 \overline{32}
$$

119	609	12
01	45	$01 \underline{57} 66$
02	8250	$0260 \underline{43}$
03	32	0335
12	7058	1255
14	$\underline{9} 25$	$14 \underline{40} 50$
25	$43 \underline{34}$	$2522 \underline{44}$
36	71	$3695 \underline{22}$
37	3676	$37 \quad 114$
46	1629	$46 \quad 993$
48	51	489875
59	6849	591916
5A	2980	5A 5689
6B	44	6B 3247
7 C	27	7C 3030
7D	1541	7D 9668
8 E	$73 \underline{49}$	$8 \mathrm{E} \quad \underline{8} \quad 34$
8F	62	$8 \mathrm{~F} \quad 9 \underline{49}$
9B	9821	9B $4 \underline{83}$
9 C	$87 \underline{15}$	9C 9432
AB	$48 \quad 12$	AD 9258
AE	7378	AE 3411
CF	$65 \underline{47}$	BD 85 89
DE	8984	CF 5640
DF	3356	EF 9626
12	613	130767
	16	$01 \quad \underline{0} 75$
02	6959	029861
03	2938	$03 \quad 3 \quad 34$
12	7795	$12 \underline{23} 59$
14	$83 \quad 67$	142388
25	76 33	256689
36	$\underline{50}$	3672 90
37	7123	371442
48	3460	489314
49	22	496573
5A	4271	$5 \mathrm{~A} \underline{67} 42$
5B	92	5B 2038
67	2726	6763 6
6C	$29 \quad 75$	6C 450
7D	1689	7D $84 \underline{54}$
8A	$\underline{5} 97$	8A 58
8B	$68 \underline{20}$	8C $41 \underline{54}$
9E	72	9D 7466
9F	2335	9E 4074
AC	$\underline{27} 42$	AE $\underline{29}$
BD	8433	BC $\underline{31} 30$
CE	7874	BF $23 \underline{91}$
DF	6646	DF 3282
EF	56	EF 69
139	606	$40 \quad 595$
01	$63 \quad 80$	016255
02	9738	$0213 \quad 3$
03	8 22	038570
12	9567	1236
14	8594	$14 \underline{26} 38$
25	$12 \underline{24}$	2510060
36	1088	369439
37	5779	$378 \underline{63}$
48	$41 \underline{61}$	$48 \quad \underline{6} 26$
49	$\underline{20} 67$	$49 \quad 314$
5A	14	$5 \mathrm{~A} 48 \underline{24}$
5B	3522	5B 9558
68	1131	$68 \quad 0 \underline{24}$
6 A	1289	6A 51
79	674	7C 6494
7 C	8523	7D $7 \underline{38}$
8D	5960	8B 4028
9 E	42	9E $\underline{53} 44$
AF	$12 \underline{54}$	$9 \mathrm{~F} 94 \quad 36$
BD	614	AE 234
BE	3654	BC 2098
CD	1237	CF 4515
CF	44	DE $78 \underline{28}$
	4866	DF 2163

$141 \quad 458 \quad 142 \quad 684$ $01 \quad \underline{6} \quad 75 \quad 01 \quad \underline{21} 35$ $02 \quad 27 \quad 44$ $0326 \quad 9$ $\begin{array}{llllll}12 & 35 & 4 & 12 & 5 & 87\end{array}$ $\begin{array}{llllll}14 & \underline{3} & 83 & 14 & 65 & 77\end{array}$ $\begin{array}{lllll}25 & 20 & \boxed{5} & 25 & \overline{61} \quad 35\end{array}$ $\begin{array}{llllll}36 & 15 & \overline{5} & 36 & 70 & 33\end{array}$ $37 \quad 80 \quad 44$ $48 \quad \underline{13} \quad 45 \quad 48 \quad 50 \quad 60$ $\begin{array}{llllll}49 & 61 & 54 & 49 & 69 & 19\end{array}$ $\begin{array}{llllll}5 A & 1 & 81 & 5 A & 76 & 24\end{array}$ $\begin{array}{llllll}\text { 5B } & 38 & 15 & 5 B & 67 & 5\end{array}$ $\begin{array}{lllll}68 & 32 & \overline{30} & 68 & 31 \\ 31\end{array}$ $\begin{array}{llllll}6 \mathrm{~A} & 92 & 95 & 6 \mathrm{~A} & 92 & 14\end{array}$ $\begin{array}{llllll}7 C & 69 & 11 & 7 C & 86 & 56 \\ 7 D & 25 & 71 & 7 D & 41 & 94\end{array}$ 8C $\quad \underline{45} \quad 27 \quad 8 \mathrm{C} \quad 10 \quad 80$ 9C $\quad 22 \quad \underline{6} \quad 9 \mathrm{E} \quad 0 \quad \underline{58}$ $\begin{array}{llllll}9 \mathrm{E} & 21 & 79 & 9 \mathrm{~F} & 14 & 78\end{array}$ AF $\overline{47} \underline{15}$ AE $\overline{36} 95$ $\begin{array}{lllll}\mathrm{BD} & 20 & \overline{34} & \mathrm{BC} & 82 \\ \mathrm{BF} & 53 & \overline{65} & \mathrm{BD} & 84 \\ 39\end{array}$ $\begin{array}{lllll}\mathrm{BF} & 53 & 65 & \text { BD } 84 & 39 \\ \text { DE } & 74 & 25 & \text { DF } & 23\end{array}$ $\begin{array}{llllll}\mathrm{DE} & 74 & 25 & \mathrm{DF} & 23 & \frac{87}{17}\end{array}$ EF 46

151563

$$
\begin{array}{lll}
01 & 52 & 29
\end{array}
$$

017012 $03 \quad 41 \quad 11 \quad 03 \quad 73 \quad 73$ $\begin{array}{llll}12 & 73 & \underline{0} & 12 \quad \underline{54} 70\end{array}$ $\begin{array}{llllll}14 & 24 & 77 & 14 & 75 & \underline{3}\end{array}$ $\begin{array}{lrrrrr}25 & 2 & 4 & 25 & 5 & 30 \\ 36 & 45 & 15 & 36 & 69 & 22\end{array}$ $37 \quad 80 \quad \overline{31} \quad 37 \quad 74 \quad 96$ $\begin{array}{llllll}48 & 94 & 25 & 48 & 99 & 75\end{array}$ $\begin{array}{lllllr}49 & \underline{17} & 18 & 49 & 43 & 7 \\ 5 A & \underline{21} & 57 & 5 A & 91 & \underline{67}\end{array}$ $\begin{array}{llllll}\text { 5B } & 37 & \frac{33}{10} & 5 B & \frac{58}{40} & 79\end{array}$ $\begin{array}{llllll}68 & 59 & \frac{10}{6} & 68 & \frac{40}{93} & 72\end{array}$ $\begin{array}{llll}6 \mathrm{C} & 32 & \overline{64} & 6 \mathrm{C} \\ 93 & 54 \\ 7 A & 88 & 40 & \end{array}$ $\begin{array}{llllrr}7 \mathrm{~A} & 88 & 40 & 7 \mathrm{~A} & \underline{2} & 52 \\ 7 \mathrm{C} & 98 & 8 & 7 \mathrm{C} & 84 & 5\end{array}$ 8D $73 \quad 21 \quad 8 \mathrm{D} 4292$ 9B $\frac{85}{58} \quad 95$ 9D $86 \quad 31$ 9D $\overline{58} \quad 59 \quad 9 \mathrm{E} \quad 9 \quad \overline{10}$ $\begin{array}{llllll}\mathrm{AE} & 63 & 2 & \mathrm{AE} & 6 \overline{8} & 95\end{array}$ $\begin{array}{lllllll}\text { BF } & 58 & 37 & \text { BD } & \underline{57} & 45\end{array}$ $\begin{array}{rrrrrr}\text { CF } & \frac{63}{2} & 36 & \text { BF } & 42 & 48 \\ \text { DE } & 97 & 0 & C F & 18 & 34\end{array}$ EF 22 41 EF 18 $\quad \underline{67}$ $\begin{array}{llll}161 & 634 & 162 & 606\end{array}$ $01 \quad \underline{71} 64 \quad 01 \quad 26 \quad \underline{6}$ $02 \quad \overline{13} \quad 66 \quad 02 \quad 30 \quad 63$ $\begin{array}{llllll}03 & 47 & 48 & 03 & 30 & 20\end{array}$ $\begin{array}{llllll}14 & \frac{60}{23} & 86 & 14 & 77 & 82 \\ 15 & 22 & 15 & 57 & 9\end{array}$ $\begin{array}{llllll}15 & 23 & 22 & 15 & 57 & \underline{9}\end{array}$ $\begin{array}{llllll}24 & 54 & \frac{23}{} & 24 & \frac{85}{17} & 58\end{array}$ $25 \quad 10 \quad \overline{22} \quad 25 \overline{17} 65$ $\begin{array}{llllll}36 & 53 & 98 & 36 & 25 & 75 \\ 37 & 66 & 81 & 37 & 15 & 81\end{array}$ $48 \quad 65 \quad \overline{35} \quad 48 \quad \underline{46} \quad 25$ $59 \quad \underline{46} \quad 38 \quad 59 \quad \overline{41} \quad \frac{94}{10}$ $\begin{array}{llllll}6 A & 17 & \frac{35}{76} & 6 A & 12 & \overline{10}\end{array}$ 6B $\quad \underline{22} \quad \overline{76} \quad 6 B \quad 51 \quad \overline{16}$ 7С $28 \quad 58 \quad 7 \mathrm{C}$ 96 81 $\begin{array}{llllll}7 D & 5 & 79 & 7 D & 60 & 15\end{array}$ $8 \mathrm{~A} \quad \underline{15} \quad \overline{47} \quad 8 \mathrm{~A} \quad \underline{20} \quad 23$ 8 C $86 \quad 40 \quad 8 E \quad 86 \quad 22$ 9B $51 \quad 9 \quad 9 B \quad 12 \quad \underline{51}$ $\begin{array}{llllll}9 E & 1 & 18 & 9 F & 87 & 43\end{array}$ AE $43 \quad 57$ AC 69100 BD $\underline{77} \quad 32$ BE $67 \underline{15}$ CF 12 6 CF $22 \begin{aligned} & 22 \\ & 84\end{aligned}$ DF $48 \quad 82$ DE $\quad \underline{4} 45$
EF 2071 DF $93 \underline{28}$

145	618
01	4769
02	7274
03	$46 \quad 23$
12	7247
14	5154
25	1787
36	48 8
37	7234
48	2053
49	3877
5A	3556
5B	$\underline{53}$
68	1387
6A	5817
7C	2696
7D	$\underline{5} \quad 2$
8E	6135
9C	2144
9E	7373
AF	3478
BC	9229
BF	718
DE	185
	1865

146748	147700
019611	015093
025134	024460
$03 \underline{42} 44$	031241
126818	124689
141686	145993
2557 56	255210
365159	361199
376370	$3728 \quad 2$
481434	486129
$49 \underline{50} 57$	$49 \underline{23} 41$
5A 5491	5A $60 \underline{10}$
5B 3232	5B 8940
689879	68 33 45
6C 5788	6C 3093
792871	$7975 \quad 57$
7 D 337	7D 9364
8D 9067	8E 5618
9 E 3848	9F 3177
AC 10070	AC 6468
AF $42 \underline{10}$	AD 9140
BE $80 \underline{15}$	BC 6780
BF 1593	BF $70 \quad \underline{1}$
CE 9440	DE 1629
DF 602	EF 8848

148	759				
01	41	$\underline{79}$			
02	14	98			
03	44	89			
12	95	24			
14	99	49			
25	$\underline{49}$	$\underline{60}$			
36	46	$\underline{0}$			
37	16	62			
48	20	79			
49	65	$\underline{44}$			
$5 A$	71	79			
$5 B$	$\underline{57}$	31			
68	99	62			
$6 C$	17	87			
79	$\underline{90}$	79			
$7 D$	25	33			
$8 E$	18	$\underline{82}$			
$9 F$	12	17			
AC	13	34			
AD	66	$\frac{59}{}$			
BE	10	74			
BF	$\underline{7}$	56			
CE	80	74			
DF	5	$\underline{58}$	012855 $02 \quad 7 \quad 24$ $0369 \quad 38$ $1226 \underline{49}$ $1429 \quad 95$ $\begin{array}{rrr}25 & 99 & 5 \\ 36 & 77 & 28\end{array}$ $3741 \frac{28}{18}$ 486983	49	86
:---	:---				
54	75				
1	88	5B $\overline{21} 90$ $6856 \quad 7$ 6C 9580 $7 \mathrm{C} \quad \underline{9} \quad 38$ 7D $41 \underline{57}$ 8E 9140			

9D 87 9F $13 \quad 58$ AD $\underline{55} 85$ $\begin{array}{lll}\text { AF } & 16\end{array}$ | BE 7047 | |
| :--- | :--- |
| BF | 83 | $\begin{array}{lll}\text { BF } 83 & 76 \\ \text { CE } 51 & 51\end{array}$

$$
\begin{array}{lr}
168 & 569 \\
01 & 63 \\
52
\end{array}
$$

$$
\begin{array}{lll}
01 & 63 & 52 \\
02 & \underline{62} & 11
\end{array}
$$

$$
0359 \quad 6
$$

$$
14 \quad 20 \quad 82
$$

$$
15 \overline{25} \underline{31}
$$

$$
2494 \overline{6}
$$

$$
26 \quad \underline{55} 87
$$

$$
\begin{array}{lll}
35 & \overline{12} & 75 \\
37 & 30 & \underline{28}
\end{array}
$$

$$
48 \quad 3 \quad \overline{51}
$$

$$
\begin{array}{llll}
59 & 39 & 18
\end{array}
$$

$$
6923 \overline{44}
$$

$$
\begin{array}{lll}
6 A & 29 & 45 \\
7 B & 75 & 76
\end{array}
$$

$$
7 B \overline{75} \underline{76}
$$

$$
\begin{array}{lll}
7 C & 54 & 3 \\
8 B & 45 & 52
\end{array}
$$

$$
\text { 8D } 97 \quad 29
$$

$$
9 E \quad 35 \quad \underline{2}
$$

$$
\begin{array}{lll}
\text { AB } 33 \quad 93 \\
\text { AF } \quad 27 \quad 70
\end{array}
$$

$$
\text { CD } \overline{99} \underline{24}
$$

$$
\begin{array}{lll}
\text { CE } & \frac{97}{} & \overline{13} \\
\text { DF } & 6 & 46
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{DF} & 6 & \frac{40}{} \\
\mathrm{EF} & 2 & 5
\end{array}
$$

149661	15
016041	011841
$0224 \underline{51}$	0258
$03 \quad 927$	031720
128592	123121
$14 \quad 3479$	143469
2566 74	25 36 82
$36 \quad 9 \quad 18$	36 90 49
376897	$3744 \underline{75}$
484069	489510
496410	496259
5A 3661	$5 \mathrm{~A} \quad 1367$
5B $68 \underline{20}$	5B 5661
$6853 \underline{53}$	$68 \underline{18} 2$
$6 \mathrm{C} 33 \quad 39$	6 C 8731
798387	7 A 80
$7 \mathrm{D} \quad \underline{3} 53$	$7 \mathrm{C} 48 \underline{50}$
8E 39	8D 6818
9F 1434	$9 \mathrm{~B} 97 \underline{35}$
AC $\underline{47} 43$	$9 \mathrm{D} \quad 7 \quad 81$
AF 3270	AE 1670
BD $70 \quad \underline{1}$	BE 8968
BE 1682	CF $46 \underline{2}$
CE 7712	DF 3285
DF 1382	EF 1880

149661	150620
016041	$0118 \underline{11}$
$02 \quad 24 \underline{51}$	025851
$03 \quad 927$	031720
128592	123121
$14 \quad 3479$	143469
256674	25 36 82
$36 \quad 9 \quad 18$	$36 \underline{90} 49$
$37 \underline{68} 97$	374475
484069	489510
$49 \underline{6410}$	496259
5A 3661	5A 1367
5B $68 \underline{20}$	5B 5661
$6853 \leq 5$	$6818 \quad 2$
$6 \mathrm{C} 33 \quad 39$	6C 8731
798387	7A 8044
$7 \mathrm{D} \quad \underline{3} 53$	7C $48 \underline{50}$
8E $39 \quad \underline{7}$	8D 6818
9F 1434	9B $97 \quad 35$
AC $\underline{47} 43$	9D $\quad 7 \underline{81}$
AF $32 \underline{70}$	AE 1670
BD $70 \underline{1}$	BE 8968
BE 1682	CF $46 \underline{\underline{2}}$
CE 7712	DF 3285
DF 1382	EF 1880

160641
A $\begin{array}{llllll}01 & 79 & 23 & 01 & 9 & 66 \\ 02 & 52 & 74 & 02 & 94 & 88\end{array}$ $\begin{array}{lll}02 & 94 & 88 \\ 03 & 30 & 28\end{array}$ $\begin{array}{llll}12 & 8 & 51\end{array}$ $\begin{array}{lll}14 & 90 & 39 \\ 25 & \underline{23} & 89\end{array}$ $36 \quad \underline{64} 37$ $\begin{array}{lll}37 & 60 & \underline{3}\end{array}$ $48 \underline{35} 58$ $\begin{array}{llll}49 & 83 & \underline{68} \\ 5 A & 7 & 66\end{array}$ 5B $86 \quad 23$ $\begin{array}{llll}68 & 61 & 72 \\ 6 C & 70 & 3\end{array}$ 7D $59 \quad \underline{28}$ 7E 3249 8D 2498
9 E 8693 9F 2232 AC $82 \quad 76$ AD $\quad 3 \quad \overline{93}$ $\begin{array}{llll}\text { BC } & 16 & 64 \\ \text { BF } & 17 & 63\end{array}$ EF $\overline{95} \underline{22}$

170455

 011779 $0256 \quad 47$ $03 \quad 5 \quad 21$ $\begin{array}{lll}14 & \underline{5} & 41\end{array}$ $\begin{array}{lll}15 & 33 & 4\end{array}$ 241645 $2652 \quad \underline{6}$ $\begin{array}{lll}35 \quad 24 & 26 \\ 37 & 68 & 40\end{array}$ $48 \quad 6 \quad 19$ $59 \quad 35 \quad 96$ $6919 \quad \frac{9}{37}$ $6 A \quad 54 \quad 82$$7 B 79$ $\begin{array}{lll}7 C & \underline{0} & 61 \\ \text { 8B } & 26 & 62\end{array}$ 8D 4117 9E $100 \quad 3$ | AC | 35 | 28 |
| :--- | :--- | :--- |
| AF | 13 | 73 | BF $\quad 8 \frac{73}{16}$

$\begin{array}{lrr}\text { CD } & 6 & 21 \\ \text { DE } & 20 & 15\end{array}$ $\begin{array}{lll}\text { DE } & 20 & 15 \\ \text { EF } & 40 & 96\end{array}$

$\begin{array}{llll}171 & 575 & 172 & 659\end{array}$ $019468 \quad 016$ $\begin{array}{llllll}02 & 51 & 14 & 02 & 61 & 78\end{array}$ $03 \quad 16 \quad 46 \quad 03 \quad \underline{59} 46$ $14 \overline{57} \quad 34 \quad 14 \quad \overline{78} 84$ $\begin{array}{llllll}15 & 34 & \frac{94}{} & 15 & 67 & 38 \\ 24 & 61 & 31 & 24 & 71 & 88\end{array}$ $\begin{array}{llllll}24 & 61 & \overline{31} & 24 & \frac{71}{13} & \overline{88}\end{array}$ $\begin{array}{lllll}26 & 21 & \overline{14} & 26 & \overline{13} \\ 76\end{array}$ $\begin{array}{llllll}35 & 15 & 39 & 35 & 35 & 25 \\ 37 & \underline{45} & 34 & 37 & \underline{8} & 96\end{array}$ $48 \quad \overline{88} 28 \quad 48 \quad \underline{57} 49$ $\begin{array}{llllll}59 & 13 & 68 & 59 & 40 & 7\end{array}$ $\begin{array}{llllll}6 A & 81 & \underline{17} & 6 A & 51 & 89\end{array}$ $6 \mathrm{~B} \quad \underline{6} \quad 8 \quad 6 \mathrm{~B} \quad 28 \quad 16$ $\begin{array}{llllll}7 \mathrm{~A} & 99 & 10 & 7 \mathrm{C} & \underline{37} & 69\end{array}$ $\begin{array}{lllllll}7 \mathrm{C} & 28 & 62 & 7 \mathrm{D} & 31 & 58 \\ 8 \mathrm{~A} & 4 & 30 & 8 \mathrm{~A} & 96 & 92\end{array}$ $\begin{array}{lllllll}8 \mathrm{~A} & \underline{4} & 30 & 8 \mathrm{~A} & \underline{96} & 92\end{array}$ $\begin{array}{lllllr}\text { 8D } & 45 & \underline{24} & \text { 8C } & 50 & 1 \\ 9 B & 25 & 60 & 9 B & 54 & 81\end{array}$ | 9 E | 98 | 36 | 9 E | 18 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | | | | | | BF 3017 AD $27 \quad 76$ | CD | 84 | 24 | BF | 5 | 84 |
| :--- | :--- | :--- | :--- | :--- | :--- | | CE | $\underline{1}$ | 86 | CF | $\mathbf{0}$ | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DF | 8 | 100 | DE | 65 | 56 | EF $10 \overline{81}$ EF 9251

\section*{$\begin{array}{llll}181 & 716 & 182 & 777\end{array}$} $018782 \quad 0181 \quad \underline{66}$ $\begin{array}{llllll}02 & \underline{2} & 40 & 02 & 40 & 17\end{array}$ $\begin{array}{llllll}03 & 17 & 11 & 03 & 44 & 76\end{array}$ $\begin{array}{llllll}14 & 41 & \frac{7}{7} & 14 & 33 & 84\end{array}$ | 15 | $\frac{18}{82}$ | 47 | 15 | 61 | 76 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 24 | 68 | $\frac{76}{48}$ | | | $\begin{array}{llllll}24 & 82 & 86 & 24 & 68 & 48 \\ 26 & 84 & 91 & 26 & 19 & 13\end{array}$ $\begin{array}{llllll}37 & \overline{29} & 1 & 37 & \underline{67} & \frac{13}{31}\end{array}$ $\begin{array}{llllll}38 & 15 & 6 & 38 & 77 & 49\end{array}$ $\begin{array}{llllll}49 & 30 & 100 & 49 & 38 & 11\end{array}$ $57 \underline{25} \overline{41} \quad 57 \quad \overline{87} 50$ $\begin{array}{llllll}5 \mathrm{~A} & 1 & 79 & 5 \mathrm{~A} & 34 & 74 \\ 6 \mathrm{~A} & 99 & 59 & 6 \mathrm{~A} & 94 & \underline{88}\end{array}$ | $6 A$ | 99 | 59 | $6 A$ | 94 | 88 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $6 B$ | 81 | 29 | $6 B$ | 15 | 17 | $\begin{array}{llllll}7 C & 18 & 70 & 7 C & 55 & 48 \\ 89 & 73 & 65 & 8 B & 86 & 81\end{array}$ $89 \quad \overline{73} 65 \quad 8 \mathrm{~B} \quad \underline{86} 81$ $\begin{array}{llllll}\text { 8D } & 52 & 92 & 8 D & 94 & 34 \\ 9 E & 33 & 50 & 9 D & 45 & 73\end{array}$ AF $\underline{42} 57$ 9E $\underline{81} 21$ $\begin{array}{llllll}\mathrm{BC} & 35 & \underline{34} & \mathrm{AF} & \overline{62} & \underline{6}\end{array}$ BD $\frac{54}{62} \quad \mathrm{BE} 6375$ | CE | 11 | 87 | CD | 7 | 70 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| DF | 4 | 66 | | CF | 74 | EF 57 74 EF $4 \underline{45} 31$

$\begin{array}{llll}191 & 624 & 192 & 665\end{array}$

 $0186 \quad \underline{54} \quad 01 \quad 3498$ $02 \quad 43 \quad 48 \quad 02 \quad 53 \quad 88$ $03 \quad \underline{97} \quad 11 \quad 03 \quad 75 \quad \underline{37}$ $\begin{array}{rrrrrr}14 & 45 & 17 & 14 & 4 & 99 \\ 15 & 98 & 46 & 15 & 72 & 7\end{array}$ $1598 \underline{46} \quad 15 \quad 72 \quad \underline{7}$ $2668 \quad \underline{26} \quad 26 \quad \underline{87} \quad 62$ $27 \quad 68 \quad 5 \quad 27 \quad \overline{21} 77$ $\begin{array}{llllll}38 & 6 & 41 & 38 & 16 & 97 \\ 39 & 97 & 1 & 39 & 48 & 18\end{array}$ $\begin{array}{llllll}46 & \underline{57} & 44 & 46 & 2 & 68\end{array}$ $\begin{array}{llllll}48 & \overline{47} & \underline{5} & 48 & \underline{28} & 58\end{array}$ $\begin{array}{llllll}57 & 25 & 14 & 5 A & 80 & 56\end{array}$ $\begin{array}{llllll}\text { 5A } & 100 & \frac{26}{} & 5 B & 40 & 32 \\ 6 B & 86 & 91 & 69 & 16 & \frac{17}{7}\end{array}$ 7C $\quad 1 \quad 59 \quad 7 \mathrm{~A} \underline{29} 79$ 8D $7291 \quad 7 \mathrm{C} 45 \quad \underline{96}$ $9 \mathrm{E} \underline{80} 68 \quad 9 \mathrm{E} \quad \underline{78} \quad 4$ $\begin{array}{llllll}\mathrm{AE} & 9 & 23 & \mathrm{AF} & \underline{13} & 17\end{array}$ AF 9257 BC 5219 BF $83 \quad \frac{94}{17} \quad$ BD $50 \quad \frac{35}{52}$ $\begin{array}{lllllll}\mathrm{CD} & 6 & 17 & \text { CE } & 79 & 52 \\ \mathrm{CE} & 20 & 23 & \mathrm{DF} & 6 & 1\end{array}$ DF 123 EF 5269

173738 $01 \underline{50} 38$ $02 \underline{49} \underline{54}$ 033687
148973 $\begin{array}{lll}14 & 89 & 73 \\ 15 & 20 & 55\end{array}$ $24 \frac{51}{51}$ $\begin{array}{lll}26 & 93 \\ 35 & 33 & 91\end{array}$ $\begin{array}{lll}37 & 32 & \underline{80} \\ 48 & 76 & 89\end{array}$ $\begin{array}{rrrr}48 & 76 & \frac{29}{2} \\ 59 & 6 & 82\end{array}$ 6A $\quad \frac{61}{73} 85$ $\begin{array}{llll}\text { 6B } & 73 & \underline{1} \\ 7 C & 16 & 32\end{array}$ 7D $\overline{35} 33$ $8 \mathrm{~A} 41 \underline{48}$ 8C 8955
9 E 9492 $\begin{array}{lll}\text { 9F } & 93 & 83 \\ \text { AE } & 56 & 99\end{array}$ $\begin{array}{lll}\text { BD } & 92 & 37 \\ \text { BF } & 27 & 7\end{array}$ CF $44 \quad 22$ DE $63 \quad \underline{6}$ $\begin{array}{llll}183 & 620 & 184 & 717\end{array}$ $\begin{array}{lllllll}01 & 30 & 16 & 01 & 13 & 99\end{array}$ $02 \overline{6241}$ $03 \quad 56 \underline{42}$
$14 \underline{22} \quad 65$ $15 \quad 2021$ $24 \quad 24 \quad \frac{19}{93}$
2646 $\begin{array}{llll}37 & \overline{84} & \frac{18}{3} \\ 38 & 64 & 50\end{array}$ $\begin{array}{lll}49 & 17 & 77\end{array}$ $57 \underline{11} 54$ $\begin{array}{lll}5 A & 26 & 6 \\ 6 A & 23 & 87\end{array}$ 6B $25 \quad 86$ $7 \mathrm{C} \quad 2495$

8 C 5193 $\begin{array}{llll}\text { 8D } & 55 & 76 \\ \text { 9B } & 19 & 77\end{array}$ 9E $\underline{84} \frac{77}{10}$ $\begin{array}{llll}\text { AD } & 35 & 27 \\ \text { BF } & 32 & 92\end{array}$ | CF 68 |
| :--- |
| DE 31 |
| 15 | EF 3486 $\begin{array}{ll}193 \quad 707 \\ 01 & \end{array}$ $\begin{array}{lll}01 & 26 & 83 \\ 02 & 16 & 12\end{array}$ $03 \underline{10} \underline{65}$ $14 \underline{43} 51$ $15 \overline{81} \underline{12}$ $\begin{array}{lll}26 & 22 & 9 \\ 27 & 26 & 7\end{array}$ $\begin{array}{lll}38 & \frac{69}{} & 90 \\ 39 & 100 & 94\end{array}$ $46 \underline{66} 37$ $48 \overline{84} 73$ 5A $74 \frac{52}{7}$ 69 78 86 7A $\overline{67} 67$ 7C 1290 8D $98 \quad 17$ $9 \mathrm{E} \quad \underline{5} \quad 57$ AF $60 \quad \underline{8}$ BC 2795 $\begin{array}{rr}\text { BE } & 14 \\ \text { CD } & 98 \\ 97\end{array}$ CD $1 \overline{97}$ DF 3256 EF 3665

174667 $0155 \underline{22}$ $0272 \frac{22}{66}$ $03 \underline{44} 70$ $\begin{array}{lll}14 & 68 & 7\end{array}$ 158456 $2679 \quad 35$ $\begin{array}{lll}37 & 28 & 47 \\ 38 & 4 & 25\end{array}$ 476820 $58 \underline{64} 74$ $\begin{array}{lll}59 & 0 & 78 \\ 6 A & 100 & 53\end{array}$ $\begin{array}{lll}\text { 6B } 93 & 31 \\ 7 C & 89 & 17\end{array}$ 8A 8394 9B 2758 9D $66 \quad 16$ $\begin{array}{lll}\text { AE } & \underline{88} & 10 \\ \text { BF } & 26 & \underline{23}\end{array}$ CD $\underline{23} 63$ | CF | 69 |
| :--- | :--- | EF 3611

$\begin{array}{llr}175 & 779 \\ 01 & 10 & 77 \\ 02 & \underline{78} & 49 \\ 03 & 92 & \underline{14} \\ 14 & 52 & \underline{22} \\ 15 & \underline{44} & \underline{97} \\ 24 & \underline{84} & 8 \\ 26 & \underline{95} & 40 \\ 37 & 90 & 70 \\ 38 & 88 & \underline{84} \\ 47 & 43 & \underline{45} \\ 58 & \underline{69} & 68 \\ 59 & \underline{38} & 43 \\ \text { AA } & 85 & 66 \\ 6 B & \underline{21} & 33 \\ \text { 7C } & \underline{98} & \underline{81} \\ \text { 8D } & 66 & \underline{26} \\ 9 C & 67 & 95 \\ 9 E & \underline{32} & 91 \\ \text { AD } & \underline{75} & 49 \\ \text { AE } & 94 & \underline{47} \\ \text { BE } & \underline{5} & 65 \\ \text { BF } & \underline{21} & 27 \\ \text { CF } & 15 & \underline{56} \\ \text { DF } & 79 & 50\end{array}$

176	649	177	675
01	$47 \quad 32$	016	6855
02	9616	02	2339
03	6761	036	6120
14	1913	14	4348
15	835	15	1794
24	$\underline{6} 92$	24	64
26	8963	26	5780
37	7370	37	$86 \underline{21}$
38	117	381	1195
47	4488	47	3988
58	8469	58	71
59	1842	59	$72 \quad 71$
6 A	$11 \quad 71$	6A	4712
6B	3964	6B	$\underline{6} 82$
7 C	2654	7 C	$92 \underline{25}$
8 D	4787	8D 2	2737
9 E	6996	9 E	4441
9 F	2578	9 F	79
AC	4527	AC	6558
AE	$44 \quad 27$	AE	8361
BD	$87 \underline{88}$	BD	2185
BE	$\underline{5} 13$	BF	9683
CF	778	CF	7732
	97		3712

$1590 \quad 89$ 241192 $26 \quad 38 \quad 59$ $\begin{array}{lll}37 & \frac{58}{8} & 82 \\ 38 & 16 & 87\end{array}$ $\begin{array}{lll}47 & 78 & 19 \\ 59 & 35 & 61\end{array}$ $\begin{array}{lll}\text { 5A } & 12 & \frac{47}{} \\ 6 B & 27 & 58\end{array}$ 6C $51 \underline{20}$ $\begin{array}{llll}7 D & 55 & 25 \\ 89 & 17 & 45\end{array}$ $89 \underline{17} \underline{45}$ $\begin{array}{llll}\text { 8B } & 93 & 13 \\ \text { 9C } & 63 & 16\end{array}$ $\begin{array}{lll}\text { AD } & 39 & 57 \\ \text { AE } & 21 & 58\end{array}$ BE 4069 $\begin{array}{llll}\text { CF } & 75 & 19 \\ \text { DF } & 30 & 33\end{array}$ EF 3145

179	516	180730
01	$62 \quad 3$	019134
02	2819	027994
03	7136	0368
14	9611	147848
15	$42 \quad 13$	156929
24	$56 \underline{44}$	2440 56
26	3822	268842
37	3533	372950
38	036	$38 \quad 33 \quad 37$
47	8686	499696
59	1919	$5782 \underline{46}$
5 A	9167	5A 4834
6B	9139	$67 \underline{5244}$
6 C	5 91	6B 341
7D	4738	8C 9522
89	$39 \quad 14$	8D 7863
8E	3651	9C $46 \underline{25}$
9B	$55 \quad 35$	9E 7641
AE	$84 \underline{23}$	AD $95 \underline{33}$
AF	246	AF $\underline{9} \quad \underline{85}$
BD	34 5	BE $72 \underline{11}$
CE	129	BF 10029
CF	$\underline{28}$	CF $16 \underline{41}$
DF	68 39	DE 3050

 | 01 | 16 | 15 | 01 | 17 |
| :--- | :--- | :--- | :--- | :--- | $0263100 \quad 02 \quad 96 \quad 86$ $03 \quad \underline{97} 64 \quad 03 \quad 9891$ $\begin{array}{llllll}14 & 95 & \underline{60} & 14 & 80 & 60\end{array}$ $\begin{array}{lllllll}26 & 1 & 30 & 26 & 97 & 4\end{array}$ $\begin{array}{llllll}27 & 89 & \underline{81} & 27 & 35 & \underline{2}\end{array}$ $\begin{array}{llllll}38 & 18 & 100 & 38 & 56 & 71 \\ 39 & \underline{43} & 90 & 39 & 2 & 1\end{array}$ $\begin{array}{llllll}46 & 98 & 71 & 46 & \underline{1} & 31 \\ 4 \mathrm{~A} & 98 & \underline{9} & 4 \mathrm{~A} & 88 & \underline{48}\end{array}$ $\begin{array}{lllllll}58 & \underline{57} & 17 & 5 B & 30 & 47\end{array}$ 5B $614 \quad 5 \mathrm{C} 81 \quad 24$ 6C $\underline{59} 41$ 6D 9663 $\begin{array}{rrrrrr}7 B & 45 & 11 & 7 B & 90 & 37 \\ 7 D & 7 & 63 & 7 \mathrm{E} & 3 & 43\end{array}$ $8 \mathrm{E} \quad \underline{5} \quad 44 \quad 8 \mathrm{~A} \quad 38 \quad 54$ $\begin{array}{llllll}9 \mathrm{C} & 83 & 68 & 8 \mathrm{E} & 97 & 23\end{array}$ 9D $53 \quad 33$ 9D 6888 $\begin{array}{llllll}\text { AD } & 52 & 21 & 9 F & 55 & \frac{1}{3}\end{array}$ AE $73 \quad \underline{0} \quad A F \quad 4413$ $\begin{array}{lllllll}\text { BF } & 47 & 10 & & \text { BF } & 50 & 67 \\ \text { CF } & 98 & 5 & & \text { CD } & 28 & 43\end{array}$ EF 5794 CE $45 \quad 7$

2012072 012033 $02 \quad 80 \quad 4$ 03440 $\begin{array}{llllll}12 & 85 & 60 & 12 & \frac{24}{4} & 43\end{array}$ | 24 | $\frac{10}{68}$ | 12 | 12 | 24 | 66 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 56 | | | | | $\begin{array}{llllll}35 & \boxed{80} & \underline{64} & 35 & \underline{95} & \underline{54}\end{array}$ $45 \overline{64} 63$ $4617 \underline{26}$ $\begin{array}{llll}57 & 23 & 39 \\ 68 & 40 & 92\end{array}$ $684092 \quad 686356$ $\begin{array}{llll}69 & 18 & 59 & 69\end{array} 1 \quad 25$ $\begin{array}{lllllll}7 \mathrm{~A} & 57 & 43 & 7 \mathrm{~A} & 75 & \underline{29}\end{array}$ 7B $\underline{41} 27 \quad 7 B \quad 11 \quad 31$ 8C $\overline{30} \quad \underline{67} \quad$ 8C $\quad \overline{68} \quad \underline{28}$ 8D $\underline{40} \overline{75}$ 8D $14 \underline{81}$ 9E $7344 \quad 9 \mathrm{E} 90 \quad 16$ $\begin{array}{lllll}9 F & 32 & 97 & 9 F & 11 \\ 45\end{array}$ AC 8278 AE $100 \quad \underline{34}$ AE $26 \quad \underline{58}$ BD $28 \overline{54}$ BD $96 \overline{35}$ $\begin{array}{lllllll}\mathrm{BF} & 12 & 98 & \mathrm{BF} & 24 & 67 \\ \mathrm{CF} & 77 & 28 & \mathrm{CF} & 82 & 73\end{array}$ DE $16 \underline{62}$

\section*{2112016} $014660-12179$ $02 \quad 32 \quad 58 \quad 02 \quad 10 \quad \underline{24}$ $03 \quad 69 \quad 17 \quad 03 \quad 79 \quad \overline{66}$ $\begin{array}{llll}12 & \underline{2} \quad \mathbf{8 8} & 12 & 56 \\ 63\end{array}$ $\begin{array}{llllll}13 & 89 & 77 & 13 & \underline{87} & 60\end{array}$ $\begin{array}{llll}24 & 71 & 19 & 24 \\ 29 & 11\end{array}$ $\begin{array}{llllll}35 & 8 & \underline{98} & 35 & \frac{87}{72} & 76\end{array}$ | 46 | 92 | 24 | 46 | 32 | 48 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | | | | | | $\begin{array}{llllll}47 & 47 & 41 & 47 & 39 & 10\end{array}$ $\begin{array}{lllllll}58 & 71 & 14 & 58 & 27 & 93\end{array}$ $\begin{array}{llllll}59 & 31 & \underline{2} & 59 & \underline{26} & 61\end{array}$ | 67 | 26 | 56 | 67 | 77 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 10 | 17 | $6 A$ | 66 | | $\begin{array}{lllllll}6 A & 10 & 17 & 6 A & 66 & 42 \\ 7 B & 15 & 14 & 7 B & 54 & 3\end{array}$ $\begin{array}{llllll}8 \mathrm{C} & \underline{7} & 79 & \text { 8C } & 78 & 19\end{array}$ 8D $68 \quad 37 \quad 8 \mathrm{~B} \quad 85 \quad \underline{4}$ $9 E 75 \quad 26 \quad 9 E \quad 64 \quad 36$ $\begin{array}{llllll}9 F & 25 & 3 & 9 F & 74 & 34\end{array}$ AC $32 \quad \frac{81}{70}$ AC $88 \quad \frac{30}{30}$ AE $12 \overline{79}$ AE $38 \quad 30$ BD 3189 BD 5577 BF $1925 \quad$ BF 6094 CF 8221 CF $37 \underline{51}$ DE $32 \quad \underline{1} \quad$ DE $46 \quad \underline{4}$

\section*{$2212093 \quad 2222154$} $0188 \quad \underline{99} \quad 0167 \underline{49}$ $02 \quad 36 \quad 73 \quad 02 \quad 43 \quad 26$ $03 \quad 9962 \quad 034489$ $\begin{array}{lllll}12 & 46 & 57 & 12 & 84 \\ 53\end{array}$ $1347 \quad \underline{36} \quad 13 \quad 71 \quad \underline{26}$ $24 \quad 30 \quad 2 \quad 24 \quad 19 \quad 95$ $35 \quad 90 \quad \underline{25} \quad 35 \quad \overline{52} \quad 11$ $46 \quad 50 \quad \overline{68} \quad 46 \quad 42 \quad \overline{78}$ $47 \quad 17 \quad 93 \quad 47 \quad \underline{43} \quad 1$ $\begin{array}{llllll}58 & 5 & 29 & 58 & 63 & \frac{30}{16}\end{array}$ $\begin{array}{llllll}59 & 30 & 6 & 59 & 17 & 16\end{array}$ $6 \mathrm{~A} \underline{50} 86 \quad 6 \mathrm{~A} 54 \underline{62}$ 6B $\overline{64} 66$ 6B $33 \overline{26}$ $\begin{array}{lllllllllll}7 C & 74 & 18 & 7 C & 63 & 80\end{array}$ 7D $\underline{23} 53 \quad 7 \mathrm{D} \underline{16} 22$ $\begin{array}{llllll}8 A & 34 & 1 & 8 A & 28 & 85\end{array}$ 8C $65 \quad 51 \quad$ 8C $20 \underline{55}$ 9B $68 \quad \underline{26} \quad 9 B \quad 10 \quad \overline{92}$ $9 \mathrm{E} 77 \quad 92 \quad 9 \mathrm{E} \quad \underline{31} 39$ AF 9767 AF 9545 | BC | 58 | $\underline{9}$ | BC | $\underline{25}$ |
| :--- | :--- | :--- | :--- | :--- |
| 45 | | | | | DE 4541 DE $\overline{84} 66$ DF $47 \quad 72$ DF 9899 EF $65 \underline{23}$ EF 6695

203215	204
014653	018940
$02 \underline{72} 93$	$02 \underline{52} 38$
036168	034427
129412	128158
134321	138564
$24 \underline{54} 66$	$24 \quad 561$
358617	357183
$46 \underline{28} 62$	469785
474868	$47 \underline{22}$
568993	5672
583775	588580
$69 \underline{55} 52$	692179
7A 2419	7A 1226
7B $\underline{24} 94$	7B 921
8C 5690	8C $66 \underline{21}$
8D 4070	8D 5963
$9 \mathrm{E} \underline{66} 58$	9E $71 \quad 84$
9F 3590	$9 \mathrm{~F} \underline{13} 75$
AC 39	AC $3 \underline{34}$
AE 519	AE 4078
BD 3283	BD 6739
BF 3959	BF $34 \underline{46}$
CF 1975	CF 9343
3416	DE 35

2132138

$0197 \quad 32$ $02 \quad 87 \quad 68$ $03 \quad 7079$ $\begin{array}{llllll}12 & 5 & 13 & 12 & 56 & 73\end{array}$ $\begin{array}{lllll}13 & 74 \quad 51 & 13 \quad 46 & 33\end{array}$ $\begin{array}{llllll}24 & 48 & \frac{51}{2} & 24 & 20 & \frac{17}{17} \\ 35 & \underline{32} & 29 & 35 & 45 & 16\end{array}$ $46 \overline{43} 100$ $\begin{array}{llll}47 & 83 & 77\end{array}$ $5812 \quad 29$ $59 \overline{63} 57$ $67 \quad 72 \quad 15$ $\begin{array}{llr}6 \mathrm{~A} & 7 & 3 \\ 7 B & 3 & 70\end{array}$ 7 B 370 8C 9110 8D $46 \quad 9$ $\begin{array}{lll}9 E & 43 & 48 \\ 9 F & 92 & 83\end{array}$ $\begin{array}{llll}\text { 9F } & \underline{92} & 83 \\ \text { AC } & \underline{26} & 64\end{array}$ AE $\begin{array}{lll}62 & 69\end{array}$ BD 8485 $\begin{array}{lllll}\text { BF } & 85 & 15 & \text { BF } & 81 \\ 67\end{array}$ CF $93 \quad \overline{58}$ CF $80 \quad \underline{7}$ DE $\underline{9} \quad 33$ DE $6 \quad 60$
$2232014 \quad 2241990$ $\begin{array}{llllll}01 & 11 & 17 & 01 & 12 & 33\end{array}$ $\begin{array}{llllll}02 & 4 & \frac{62}{8} & 02 & 75 & \frac{2}{8} \\ 03 & 41 & 8 & 03 & 94 & 88\end{array}$ $\begin{array}{rrrrrr}12 & 31 & 77 & 12 & 56 & 5\end{array}$ $13 \quad 37 \quad 34$ $2466 \quad \underline{6}$ $35 \quad \underline{0} 80$ 468449 $47 \quad 36 \quad \underline{56}$ $5810 \quad 47$ $59 \quad 49100$ $\begin{array}{lll}6 A & 22 & 10 \\ 6 B & 22 & 48\end{array}$ 7C 100 58 7D 8282 $8 \mathrm{~A} \quad \underline{5} 52$ $\begin{array}{lrr}8 C & 1 & 56 \\ 9 B & 51 & 86\end{array}$ 9E $58 \quad 19$ AF $41 \quad 48$ BC 3498 DE $\underline{22} 86$ DF 1833 EF 3845
$\begin{array}{llrlrrlll}\text { CF } & 76 & 7 & \text { DF } & \underline{9} & 56 & \text { DF } & 19 & \underline{34} \\ \text { DE } & \underline{42} & 99 & \text { EF } & 61 & \underline{1} & \text { EF } & \underline{28} & 43\end{array}$

 $\begin{array}{lrlllll}215 & 2108 & 216 & 2047 & 217 & 1966 \\ 01 & 22 & \underline{43} & 01 & 47 & \frac{38}{28} & 01 \\ 02 & \underline{13} & 43 \\ 02 & 02 & 45 & 75 & 02 & 22 & \underline{44}\end{array}$ $\begin{array}{lrrllllll}02 & \underline{1} & 75 & 02 & 45 & 75 & 02 & 22 & 44 \\ 03 & 29 & 4 & 03 & \underline{33} & 44 & 03 & 61 & 78\end{array}$ \begin{tabular}{llllllll}
12 \& 48 \& 75 \& 12 \& 43 \& $\underline{43}$ \& 12 \& 30

\hline 1 \& 99

 $\begin{array}{lllllllll}13 & 34 & \frac{24}{7} & 13 & 84 & 47 & 13 & \underline{21} & 89\end{array}$ $\begin{array}{lllllllll}24 & 75 & 15 & 24 & 6 & \underline{2} & 24 & 66 & 11 \\ 35 & 97 & \underline{19} & 35 & 56 & 88 & 35 & 12 & 30\end{array}$ $\begin{array}{llllllllr}46 & 83 & 99 & 46 & 2 & \frac{6}{2} & 46 & 86 & 17 \\ 47 & 53 & 37 & 47 & 12 & 44 & 47 & 76 & 4\end{array}$ $\begin{array}{llllllll}58 & 46 & \underline{27} & 58 & \underline{26} & 36 & 58 & \underline{10} \\ 84\end{array}$ $\begin{array}{lllllllll}59 & 95 & \overline{46} & 59 & 9 & 11 & 59 & \overline{18} & 63\end{array}$ $\begin{array}{lllllllll}67 & 82 & \underline{1} & 68 & 72 & 39 & 68 & 98 & \underline{17} \\ 6 A & \underline{49} & 24 & 6 A & 27 & \underline{16} & 6 A & \underline{78} & 77\end{array}$ $\begin{array}{lllllllll}7 B & \overline{81} & 14 & 79 & \underline{43} & \overline{44} & 79 & \overline{16} & 93\end{array}$

$8 C$ \& 2 \& $\frac{73}{17}$ \& $7 B$ \& 62 \& 80 \& $7 B$ \& 12

$8 D$ \& $\frac{3}{1}$

$8 D$ \& 19 \& 17 \& $8 B$ \& 52 \& 58 \& $8 B$ \& 78

\hline

 $\begin{array}{lllllllll}9 \mathrm{E} & 87 & \underline{69} & 9 \mathrm{~A} & 84 & 74 & 9 \mathrm{~A} & 58 & \underline{25}\end{array}$ 9F $\underline{22} \quad \overline{22} \quad$ AC $14 \quad \underline{92} \quad$ AC $65 \quad 79$ $\begin{array}{llllllll}\text { AC } & \underline{45} & 25 & \text { BD } & \underline{64} & 67 & \text { BD } & 0 \\ \text { AE } & \underline{40} \\ 96 & \text { CE } & 33 & \underline{11} & \text { CE } & \underline{26} & \underline{97}\end{array}$ BD $8787 \quad$ CF $49 \quad 1 \overline{16}$ CF 4263 $\begin{array}{lllllllll}\mathrm{BF} & 27 & \frac{4}{4} & \mathrm{DE} & 26 & 86 & \mathrm{DE} & 99 & 69 \\ \mathrm{CF} & 76 & 7 & \mathrm{DF} & 9 & 56 & \mathrm{DF} & 19 & 34\end{array}$ $\begin{array}{lllll}225 & 2131 & 226 & 2098 & 227 \\ 01 & 73 & 83 & 015344 & 01\end{array}$ $\begin{array}{llllllll}02 & 67 & 68 & 02 & \underline{30} & 33 & 02 & \underline{2} \\ 96\end{array}$ $\begin{array}{llllllll}03 & 30 & \underline{14} & 03 & 42 & \underline{23} & 03 & 18 \\ 74\end{array}$ $\begin{array}{llllllll}12 & 1 & \overline{65} & 12 & 63 & 25 & 12 & 67 \\ 13 & 4 & 78 & 13 & 27 & 47 & 13 & 2\end{array}$ $\begin{array}{llllllllll}13 & \underline{4} & 78 & 13 & \underline{27} & 47 & 13 & 2 & \frac{20}{21} \\ 24 & 30 & \underline{9} & 24 & \underline{20} & 81 & 24 & 65 & 21\end{array}$

35 \& 47 \& 43 \& 35 \& $\overline{19}$ \& 66 \& 35 \& 78

\hline 11
\end{tabular} $\begin{array}{lllllllll}46 & 29 & \frac{56}{66} & 46 & \underline{9} & 52 & 46 & 77 & \frac{72}{2} \\ 47 & 45 & 66 & 47 & 34 & 62 & 47 & \underline{36} & \frac{56}{}\end{array}$

59	92	$\underline{84}$	59	$\underline{43}$	72	59	28
6							

2082085	
01	5962
02	$46 \quad 26$
03	2032
	9277
13	3344
24	$95 \quad 18$
35	5657
46	8559
47	9513
58	3013
59	5181
67	3887
6A	9098
7B	1669
8C	4429
	1210
9E	4746
	1022
AC	$93 \quad 6$
AE	3618
	4877
	$96 \quad 37$
	6786
DE	7443

2102201 $01-24$ $0258 \underline{69}$ 035573 $12 \quad 266$ $13 \quad 2939$ $\begin{array}{llll}24 & 71 & 19 \\ 35 & 37 & 66\end{array}$ $\begin{array}{lll}35 & \underline{37} & 66 \\ 46 & 61 & \underline{78}\end{array}$ $4753 \frac{78}{52}$ $\begin{array}{llll}58 & 80 & 77 \\ 59 & 90 & 95\end{array}$ $6773 \underline{29}$ $6 A \quad 78 \overline{81}$

7B	58	21
1		

8D 1355
$\begin{array}{lll}9 E & 98 & 100 \\ 9 F & 59 & 10\end{array}$
AC $93 \quad 10$
AE $\quad \underline{91} \quad 76$
$\begin{array}{llll}\text { BD } & 36 & 44 \\ \text { BF } & 18 & 35\end{array}$
$\begin{array}{lll}\text { CF } & 18 & 37 \\ \text { DE } & 59 & \underline{2}\end{array}$

121	2201
015164	01 9 81
022156	027626
03164	0391 5
$1288 \underline{22}$	$12 \underline{49} 2$
13858	135062
245678	$24 \underline{17} 81$
351787	$35 \quad 32 \quad 67$
465892	466593
479778	$47 \quad 364$
585662	589427
$59 \underline{48} 53$	5939
68	$6858 \underline{44}$
6 A 81	6 A 7518
794732	7914
7B $79 \underline{72}$	7B 6613
8B 5383	8B $23 \underline{27}$
9A 2815	9 A 88
AC 7363	AC 8110
BD $0 \underline{10}$	BD $78 \underline{23}$
CE $2 \underline{2} 76$	CE 11
CF $54 \underline{44}$	CF 59
DE $67 \underline{44}$	DE $84 \quad \underline{2}$
DF 7682	DF 9558
EF 1618	EF 4841

2292148

013163 $02 \quad 188$ 038582 $\begin{array}{lll}12 & 16 & 95 \\ 13 & 33 & 76\end{array}$ $13 \quad 3376$ $\begin{array}{lll}24 & 64 & \underline{1} \\ 35 & \underline{41} & 42\end{array}$ 4610095 $4783 \underline{51}$ $58 \underline{15} 23$ $59 \quad 2319$ 6A 2468 6B $\quad 24 \quad 81$ 7C $53 \underline{20}$ | $7 D$ | 6446 |
| :--- | :--- |
| $8 A$ | 33 | 8C 3478 9E $14 \quad 3$ 9F 1422 $\begin{array}{lll}\text { AD } & 1 & 54 \\ \text { BC } & 11 & 98\end{array}$ BC 11 BE 8751

DF 8878 EF $86 \quad 1$ $0145 \quad 1$ $02 \quad \underline{6} 54$ 038168 127293 $1355 \quad 35$ $35 \quad 96$ $\begin{array}{ll}4642 & 24 \\ 47 & 48 \\ 97\end{array}$ $58 \quad 34 \quad 10$ $59 \quad 17 \quad 29$ $\begin{array}{llll}68 & \underline{50} 89 \\ 64 & 98\end{array}$ $7985 \underline{19}$ $\begin{array}{ll}7 B & 85 \\ 8 B & 98 \\ 32\end{array}$ 9A $87 \quad 15$ AC $22 \quad 33$ $\begin{array}{lll}\text { BD } & 38 & 91 \\ \text { CE } & 78 & 10\end{array}$ CF 548 $\begin{array}{lrr}\text { DE } & 5067 \\ \text { DF } & 7 & 42\end{array}$ EF 5033 0188 $02 \quad 40 \quad 25$ 036352 $\begin{array}{llll}12 & 85 & 56 & 12 \\ 64 & 40\end{array}$ $13 \quad 98 \quad 15 \quad 13 \quad 30 \quad 32$ $\begin{array}{llllll}24 & 69 & 90 & 24 & 61 & 12 \\ 35 & 57 & 59 & 35 & 33 & 69\end{array}$ $\begin{array}{llllll}46 & \underline{2} & \overline{63} & 46 & 39 & 22 \\ 47 & 46 & 52 & 47 & 29 & 44\end{array}$ $\begin{array}{lllll}58 & 52 \quad 51 & 58 & 17 & 5\end{array}$ $\begin{array}{llllll}59 & 41 & 46 & 59 & 72 & 91\end{array}$ $\begin{array}{lllllll}6 A & 53 & 37 & 6 A & 27 & 78 \\ 6 B & 65 & 37 & 6 B & 10 & 74\end{array}$ $\begin{array}{lllll}7 C & 20 & 45 & 7 C & 28 \\ 3\end{array}$ $\begin{array}{llllll}7 \mathrm{D} & 49 & 72 & 7 \mathrm{D} & 99 & 100 \\ 8 \mathrm{~A} & 44 & \underline{81} & 8 \mathrm{~A} & \underline{30} & 95\end{array}$ 8C $77 \quad \begin{array}{llll}86 & 8 C & 29 & 21\end{array}$ $\begin{array}{llllll}9 E & 19 & 33 & 9 E & 78 & 92 \\ 9 F & 55 & 18 & 9 \mathrm{~F} & 97 & 19\end{array}$ $\begin{array}{llllll}\text { AD } & 58 & \frac{18}{55} & \text { AD } & 37 & \frac{19}{19}\end{array}$ BC $\underline{20} 57$ BC $\underline{74} 13$ $\begin{array}{rrrllll}\text { BE } & 73 & 85 & \text { BE } & \overline{66} & 90 \\ \text { DF } & 8 & 83 & \text { DF } & 43 & 52\end{array}$ EF 5786 EF 8421

\section*{2312074} 013794 $0265 \quad 8$ | 12 | 28 | 42 | 12 | 31 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | $\begin{array}{llllll}13 & \underline{2} & 86 & 13 & 64 & \underline{84}\end{array}$ $\begin{array}{llllll}24 & 28 & \frac{60}{} & 24 & 11 & \frac{81}{32}\end{array}$ $35 \quad \underline{41} \quad 73 \quad 35 \quad 80 \quad 32$ $\begin{array}{llllll}46 & 40 & \underline{47} & 46 & 94 & \underline{51}\end{array}$ $\begin{array}{llllll}47 & 28 & \overline{89} & 47 & 72 & 72\end{array}$ $58 \underline{37} 17$ $\begin{array}{llllll}59 & 25 & 99 & 59 & 31 & 11\end{array}$ $\begin{array}{llllll}6 \mathrm{~A} & 48 & 47 & 6 \mathrm{~A} & 43 & \underline{6}\end{array}$ $\begin{array}{llllll}6 B & 91 & 97 & 6 B & 94 & 93\end{array}$ | $7 C$ | 18 | 11 | $7 C$ | 37 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | $\frac{28}{7}$ | | | | $\begin{array}{llllll}7 \mathrm{D} & 83 & \underline{6} & 7 \mathrm{D} & 60 & 78 \\ 8 \mathrm{~A} & 88 & 43 & 8 \mathrm{~A} & 77 & 50\end{array}$ 8C $\quad \overline{45} \quad 59 \quad 8 \mathrm{C} \quad \overline{33} 94$ $\begin{array}{llllll}9 E & 74 & 8 & 9 E & 81 & 54\end{array}$ $9 \mathrm{~F} \quad \underline{26} 13 \quad 9 \mathrm{~F} 44 \quad \underline{9}$ $\begin{array}{lllllll}\mathrm{AD} & \overline{7} & 57 & \mathrm{AD} & 75 & 87\end{array}$ $\begin{array}{lllllll}\text { BC } & 18 & 43 & \text { BC } & 45 & 48 \\ \text { BE } & 49 & \underline{86} & \text { BE } & 53 & 48\end{array}$ $\begin{array}{lllll}\text { BE } 49 & 86 & \text { BE } 53 & 48 \\ \text { DF } 82 & 97 & \text { DF } & 13 & 26\end{array}$ EF 2391 EF 8649

\section*{2412072} $\begin{array}{llllll}01 & 85 & 8 & 01 & \underline{26} 50\end{array}$ | 02 | 3 | 97 | 02 | 73 |
| :--- | :--- | :--- | :--- | :--- |
1	80				$\begin{array}{llllll}03 & 86 & \underline{73} & 03 & 98 & \underline{57}\end{array}$ $\begin{array}{llllll}12 & 70 & \overline{19} & 12 & 14 & 45\end{array}$ $\begin{array}{llllll}14 & \underline{5} & \overline{61} & 14 & \overline{86} & 67\end{array}$ $\begin{array}{llllll}25 & 19 & 82 & 25 & 84 & 64 \\ 34 & 51 & 77 & 34 & 95 & 44\end{array}$	36	70	88	36	73	
11					$\begin{array}{llllll}47 & \underline{45} & 21 & 47 & 9 & \underline{4}\end{array}$ $\begin{array}{llllll}56 & \underline{28} & 64 & 56 & 42 & 61 \\ 58 & 99 & \underline{64} & 58 & 56 & 67\end{array}$ $\begin{array}{lllll}69 & 68 & 59 & 69 & \underline{16} 63\end{array}$ $\begin{array}{llllll}7 \mathrm{~A} & 13 & 3 & 7 \mathrm{~A} & 31 & 83 \\ 7 \mathrm{~B} & 31 & 9 & 7 B & 71 & 19\end{array}$	$7 B$	$\frac{31}{1}$	9	$7 B$	71	19
:---	:---	:---	:---	:---	:---						
8	100	40	$8 C$	56	50	$\begin{array}{llllll}\text { 8C } & 100 & 40 & \text { 8C } & 26 & 50 \\ \text { 8D } & 99 & 7 & \text { 8D } & 54 & 67\end{array}$ 9E $18 \quad 84$ 9E 9661 $\begin{array}{llllll}9 F & \underline{9} & 24 & 9 F & \underline{54} & 72\end{array}$ $\begin{array}{lllllll}A C & 78 & 7 & A C & 32 & \frac{39}{81}\end{array}$ $\begin{array}{lllllll}\text { AE } & \frac{37}{17} & \overline{1} & \text { AE } & 78 & \overline{81}\end{array}$ BD $\overline{87} 72$ BD $\overline{75} \quad \underline{8}$ BF $6891 \quad$ BF 3585 CF $57 \underline{16}$ CF $63 \underline{21}$ DE $93 \underline{40}$ DE $42 \quad 87$					

$2512129 \quad 2522180$

 $0182 \quad 37 \quad 01 \quad 95 \quad 52$ $\begin{array}{lllll}02 & 38 & \boxed{84} & 02 & \underline{21} \\ 85\end{array}$ $\begin{array}{llllll}03 & \underline{5} & 31 & 03 & 33 & \underline{20}\end{array}$ $\begin{array}{llllll}12 & 57 & \frac{30}{} & 12 & 76 & \underline{45} \\ 14 & 50 & 92 & 14 & 95 & 60\end{array}$ $\begin{array}{lllll}25 & 10 & \underline{52} & 25 & 98 \\ 75\end{array}$ $\begin{array}{lllll}34 & 73 & \frac{52}{47} & 34 & 48 \\ 37\end{array}$ $\begin{array}{llllll}36 & \underline{12} & 75 & 36 & 52 & 70 \\ 94 & 75 & 47 & \underline{3 n}\end{array}$ $47 \overline{94} \quad \underline{75} \quad 47 \quad \underline{43} \quad \overline{38}$ $\begin{array}{llllll}58 & 78 & 37 & 58 & \underline{7} & 89\end{array}$ $\begin{array}{llllll}59 & 95 & 25 & 59 & 77 & 34\end{array}$ $67 \quad 54 \quad \overline{33} \quad 67 \quad 56 \quad 32$ $\begin{array}{llllll}6 \mathrm{~A} & 79 & 44 & 6 \mathrm{~A} & 39 & 76\end{array}$ 7B $4072 \quad 7 \mathrm{BB} \quad 21 \quad 3$ 8С $\quad 31 \quad 60 \quad 8 \mathrm{C} 71 \quad 13$ 8D $63 \quad 12 \quad 8 \mathrm{D} 8950$ $9 \mathrm{E} 41 \underline{32} \quad 9 \mathrm{E} 2359$ 9F $55 \quad 85 \quad 9 F 91 \quad \underline{54}$ AE $\underline{51} \quad 37$ AE $89 \underline{14}$ BD $\underline{39} \quad 3 \quad$ BD $\underline{56} \overline{47}$ $\begin{array}{lllllll}\mathrm{BF} & 36 & 72 & \mathrm{BF} & 95 & 53 \\ \mathrm{CF} & 70 & 59 & & \mathrm{CF} & 58 & 43\end{array}$ DE 6983 DE $\quad \underline{5} 72$
 $\begin{array}{lll}01 & 21 & 22 \\ 02 & 22 & 25 \\ 03 & 50 & 65\end{array}$ $\begin{array}{lll}03 & 50 & 65 \\ 12 & 92 & \underline{2}\end{array}$ 144235

25 $\begin{array}{lll}25 & 94 & \frac{91}{18} \\ 34 & 47 & \underline{18}\end{array}$ $\begin{array}{lll}36 & 13 & \overline{67} \\ 47 & 48 & 12\end{array}$ $\begin{array}{lll}56 & 45 & 85 \\ 58 & 81 & 63\end{array}$ $69 \underline{77} \frac{63}{16}$ $\begin{array}{llllll}7 \mathrm{~A} & 73 & 92 & 7 \mathrm{~A} & \overline{86} & 43\end{array}$ $\begin{array}{llllll}\text { 7B } & 11 & 13 & 7 B & 37 & 27 \\ 8 C & 40 & 77 & 8 C & & 68\end{array}$ | 8C | 40 | 77 | $8 C$ | 88 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8D | 93 | $\underline{36}$ | $8 D$ | 3 | $\underline{59}$ | $9 \mathrm{~F} \quad 59 \quad 71$ 9F 8457 $\begin{array}{llll}\text { AC } & \underline{52} & 12 \\ \text { AE } & 49 & 77\end{array}$ BD 7948 BF 87

CF 13
13 $\begin{array}{lll}\text { CF } 13 & 16 \\ \text { DE } & 56\end{array}$ 2532081 015411 $02 \underline{23} 1$ 031863 $\begin{array}{lll}12 & 74 & 37 \\ 14 & 11 & 35\end{array}$ $1411 \quad 35$ $\begin{array}{llll}25 & 51 & 33 \\ 34 & 9 & 38\end{array}$ $\begin{array}{ll}36 & 88 \\ 96\end{array}$ 479886 $\begin{array}{ll}58 & 31 \\ 53\end{array}$ $59 \quad 1 \quad 62$ $6741 \quad 49$ 6A 5097 7B $\overline{87} \quad 17$ 8C $78 \quad \frac{31}{32}$
8D 66 9E 5921 9F $21 \quad 9$ AC 5247 AE 8063 BD 7029 $\begin{array}{lrl}\mathrm{BF} & 8 & 14 \\ \mathrm{CF} & 59 & 52\end{array}$ DE $\underline{51} 49$

$0247 \quad \underline{10}$ 034530 $\begin{array}{ll}128414 \\ 14 & 68\end{array}$ 146849 $\begin{array}{llll}25 & 1 & \frac{56}{82} \\ 34 & 50 & \underline{82}\end{array}$ $\begin{array}{lll}35 & 31 & 43 \\ 46 & 32 & 35\end{array}$ 571481 689743 697673 $\begin{array}{lllllllll}7 \mathrm{~A} & 50 & \underline{4} & 7 \mathrm{~A} & \underline{47} & 78 & 7 \mathrm{~A} & 62 & \frac{38}{89}\end{array}$ $\begin{array}{llllllll}7 B & 77 & 82 & 7 B & 2 & 46 & 7 B & \underline{7} \\ 87\end{array}$ $\begin{array}{llllllll}8 D & 57 & \underline{80} & \text { 8D } & \underline{69} & 76 & 8 D & 0 \\ 44\end{array}$ $\begin{array}{lllllllll}9 E & 38 & 45 & 9 E & 99 & \frac{7}{7} & 9 E & 42 & 36 \\ 9 F & 29 & 47 & 9 F & 7 & 49 & 9 F & 92 & 14\end{array}$ AC 4298 AC $\underline{18} 78$ AC 5790 AE 3173 AE $\overline{87} 35$ AE $85 \quad \underline{57}$ $\begin{array}{lllllllll}\mathrm{BD} & \underline{41} & 79 & \mathrm{BD} & 31 & 95 & & B D & 32 \\ \mathrm{BF} & 7 & 24 & \mathrm{BF} & 85 & \underline{6} & \mathrm{BF} & \underline{0} & 92\end{array}$ CF $72 \underline{18}$ DE $\underline{25} 43$

2452056	246	2472003
018751	0188	0188
024952	021699	0219
31	031323	$03 \underline{17}$
1287	121756	1241
5868	$1412 \underline{20}$	1464
$35 \underline{44}$	251818	2556
$34 \underline{52} 91$	348084	3410
361492	$3619 \underline{24}$	3654
2943	4769 39	4756
5666	$56 \quad \underline{23} 72$	5666
58916	583674	5897
$6992 \underline{43}$	6957	6929
$7 \mathrm{~A} \quad \underline{7} 93$	7A $89 \underline{31}$	7A 39
7B 8382	7B 9540	7B 40
8C 2190	8C 5310	8C
8D 7472	8D 13	8D 98
$9 \mathrm{E} 87 \underline{68}$	$9 \mathrm{E} \underline{70} 81$	9E 78
9F 2061	$9 \mathrm{~F} 92 \quad \underline{6}$	9F 55
AC 8467	AC 4062	AC
AE 7354	AE $77 \underline{20}$	AE $\underline{34}$
BD 1671	BD $91 \underline{54}$	BD 6229
BF $67 \underline{81}$	BF 2285	BF 89
CF 1139	CF 3623	CF $\underline{44}$
DE $\quad \underline{5} 5$	DE 8115	DE 33

\section*{$2562176 \quad 2572062$} $0122 \underline{20} \quad 01 \quad \underline{25} 52$ $\begin{array}{lllllll}02 & \underline{8} & 4 & 02 & 67 & 15\end{array}$ $039796 \quad 031193$ $\begin{array}{llllrl}12 & 73 & 47 & 12 & 77 & 90 \\ 14 & 36 & 80 & 14 & 7 & 37\end{array}$ $\begin{array}{llllll}14 & 36 & 80 & 14 & \underline{7} & 37\end{array}$ $\begin{array}{llllll}25 & 29 & 82 & 25 & 43 & 58 \\ 34 & 71 & \underline{74} & 34 & 92 & 32\end{array}$ $\begin{array}{llllll}36 & 48 & 51 & 36 & 13 & 63 \\ 47 & 83 & 20 & 47 & \underline{23} & 73\end{array}$ $\begin{array}{lll}47 & \underline{23} & 73 \\ 58 & 91 & 76\end{array}$ $\begin{array}{lll}58 & 91 \\ 59 & 12 & \frac{76}{6}\end{array}$ 6A 8559 6B 6650 7C $\underline{39} 59$ | $7 D$ | 65 |
| :--- | :--- |
| 89 | 46 |
| 9 | | 8E 7976 9F $1 \quad \underline{6}$ AC $47 \underline{58}$ $\begin{array}{llll}\text { AE } & 0 & 97 \\ \text { BD } & \mathbf{8 8} & 95\end{array}$ BF $\frac{15}{26} \quad 20$ CF 2635 DE 27 58

238	2039	
01	4	84
02	23	$\frac{84}{90}$
03	$\frac{38}{}$	90
12	$\underline{10}$	75
14	81	48
25	22	79
34	$\underline{43}$	74
36	23	82
47	$\underline{26}$	31
56	81	$\underline{23}$
58	$\frac{58}{69}$	69
69	9	14
$7 A$	$\frac{58}{53}$	53
$7 B$	6	99
$8 C$	$\underline{2}$	1
$8 D$	79	92
$9 E$	86	$\underline{30}$
$9 F$	77	77
AC	83	61
AE	$\underline{6}$	79
BD	$\underline{29}$	57
BF	58	13
CF	$\underline{5}$	68
DE	79	63
248	2070	
	21	81

2581998

 $0110 \quad 6$ $02 \quad 27 \quad 83$ $03 \quad 9316$ $\begin{array}{lll}12 & 18 & 53 \\ 14 & 13 & 20\end{array}$ $\begin{array}{lll}14 & 13 & \frac{20}{86}\end{array}$ $34 \overline{55} 88$ $36 \quad \underline{2} \quad 31$ $47 \quad 65 \quad 12$ $\begin{array}{lll}58 & 14 & 12 \\ 59 & 25 & 87\end{array}$ 6A $10 \quad 42$ 6B 8489 $7 \mathrm{C} 63 \quad 71$ $\begin{array}{lll}7 D & 12 & 53 \\ 89 & 72 & 14\end{array}$ 8E 6365 9F 4996 AC $\underline{17} 86$ AE 6851 BD 4556 $\begin{array}{llr}\mathrm{BF} & 62 & \underline{5} \\ \mathrm{CF} & 78 & 61\end{array}$ DE 1598| 11 | 24 |
| :---: | :---: |
| 014654 | 0148 24 |
| 026016 | 025858 |
| 036495 | 038797 |
| 26162 | 1278 0 |
| $14 \quad 121$ | 147954 |
| $2542 \quad 32$ | 2514 |
| 347517 | 3489 |
| $6 \underline{87} 95$ | 3669 30 |
| 8066 | 47 33 |
| 562327 | 5699 |
| 583540 | 5869 |
| $69 \underline{42} 88$ | $6961 \underline{54}$ |
| 7 $48 \underline{41}$ | $7 \mathrm{~A} \underline{13}$ |
| 2399 | 7B 41 |
| $8 \mathrm{C} 16 \underline{55}$ | 8 C 70100 |
| 8D 9147 | 8D 11 3 |
| 9 7266 | $9 \mathrm{E} 43 \underline{28}$ |
| 3978 | 9F 7454 |
| 2428 | AC 1277 |
| E $89 \underline{25}$ | AE 25 |
| BD 62 | BD 1499 |
| 2558 | BF $35 \underline{49}$ |
| 6721 | CF 37 |
| DE 4886 | DE |
| 2128 | 250 |
| 012084 | 012848 |
| 026183 | 025326 |
| $03 \quad 793$ | 0325 |
| 129773 | 1251 |
| 37 | $14 \underline{42} 89$ |
| $25 \underline{52} 47$ | 2525 |
| $34 \quad 7$ | 342693 |
| 3640 | 368 |
| 78342 | $47 \quad 1642$ |
| 9268 | 5850 |
| 594967 | 5981 |
| 679425 | 673063 |
| 6 A 9716 | 6 A 93 |
| 137 | 7B 10 |
| 8C $\underline{42} 34$ | 8C 4689 |
| 8D 3253 | 8D 8 |
| $9 \mathrm{E} \underline{53} 73$ | $9 \mathrm{E} \underline{10}$ |
| 68 | 9F 99 |
| C 4525 | AC 52 |
| AE 8682 | AE 17 |
| D 5527 | BD 64 |
| 5789 | BF $\underline{25}$ |
| 1590 | CF 91 |
| DE 7581 | DE 34 |
| 2592164 | 2602180 |
| $01 \quad 270$ | 019781 |
| 024655 | 026818 |
| 035186 | 0315 |
| 6966 | 122683 |
| $14 \underline{28} 92$ | 1489 67 |
| 588 6 | 255981 |
| 34180 | 345464 |
| $3675 \quad 35$ | 3696 |
| $47 \underline{85} 83$ | 479292 |
| 589218 | 584547 |
| 95669 | 598161 |
| 6 A 2971 | 6A $17 \quad \underline{9}$ |
| 6B 6242 | 6B $\underline{24} 35$ |
| 7C 7888 | 7C 1761 |
| 7D 9738 | 7D $36 \underline{54}$ |
| 893368 | $8992 \underline{9}$ |
| 8E 48 7 | 8E 9312 |
| $9 \mathrm{~F} \quad 3 \mathrm{3} 70$ | $9 \mathrm{~F} 83 \underline{89}$ |
| AC $82 \underline{45}$ | AC 450 |
| AE 5418 | AE $25 \quad \underline{6}$ |
| BD $\underline{84} 90$ | BD $\underline{63} 98$ |
| BF 3315 | BF 6528 |
| CF 45 | CF 2793 |
| DE 3294 | DE 59 |

2612264 $0153 \quad 38$ $02 \quad \underline{86} \quad 5$ $0347 \quad 37$ $\begin{array}{llllll}14 & 88 & 97 & 14 & 11 & 5\end{array}$ $14 \quad 879$ $34 \frac{33}{53} 77$ $36 \quad 80 \quad 90$ $47 \overline{82} 95$ $58 \quad \underline{79} \quad 97$ $\begin{array}{lll}59 & 67 & 27\end{array}$ 6A 3488 6B $\quad 89 \quad 94$ 7 C $60 \quad 39$ $\begin{array}{llllll}7 D & 87 & 24 & 7 D & 9 & \frac{47}{65}\end{array}$ $\begin{array}{llllll}89 & \underline{43} & 35 & 89 & \underline{37} & 9\end{array}$ $8 \mathrm{E} 52 \quad 24 \quad 8 \mathrm{E} \quad 56 \quad 93$ 9F 4579 9F $\quad \underline{8} 19$ AC 7358 AE $86 \quad \underline{3} \quad$ AE 5987 BD $\frac{10}{34} 94 \quad$ BD $97 \quad 20$ $\begin{array}{lllllr}\text { BF } & 34 & 48 & & \text { BF } & 42 \\ \text { CF } & 42 & 10 & & 42 \\ \text { CF } & 25 & 5\end{array}$ DE $23 \quad 3$

\section*{2712026} $\begin{array}{lll}01 & 18 & 17 \\ 02 & 92 & 64\end{array}$ 026245 $\begin{array}{llllll}12 & 83 & \frac{25}{1} & 03 & \frac{13}{98} & 80\end{array}$ $\begin{array}{llllll}12 & \frac{31}{51} & 41 & 12 & \frac{98}{82} & 53\end{array}$ $\begin{array}{llllll}14 & 51 & 77 & 14 & 82 & \frac{35}{78}\end{array}$ $\begin{array}{rrrrrr}25 & 90 & 94 & 25 & 4 & 78 \\ 34 & 9 & 1 & 34 & 53 & 92\end{array}$ $\begin{array}{llllll}36 & 14 & 52 & 36 & 34 & 34\end{array}$ $\begin{array}{llllll}47 & 64 & \underline{8} & 47 & 85 \quad 71\end{array}$ $\begin{array}{llllll}58 & 81 & \underline{3} & 58 & 12 & \underline{6}\end{array}$ $\begin{array}{lllllll}59 & \underline{80} & 80 & 59 & \underline{22} & 78\end{array}$ $6 \mathrm{~A} \quad 89 \quad 10 \quad 6 \mathrm{~A} \quad 88 \quad 3$ 6 B $\quad 24 \quad 22 \quad 6 \mathrm{~B} \quad \frac{65}{10} 91$ $7 \mathrm{C} \quad 10 \quad 8 \quad 7 \mathrm{C} \quad 93 \quad 86$ $\begin{array}{rrrrrr}7 \mathrm{D} & 66 & 48 & 7 \mathrm{D} & 98 & 56 \\ 8 \mathrm{~A} & 81 & 59 & 8 \mathrm{~A} & 2 & 97\end{array}$ 8C $60 \quad 24 \quad 8 \mathrm{C} \quad 4898$ 9B $42 \quad 16 \quad 9 \mathrm{E} \quad 41 \quad 63$ 9E $41 \quad 29 \quad 9 F \quad 76 \quad 5$ AF $59 \quad \frac{51}{64} \quad$ AD $46 \quad \frac{2}{0}$ | BC | $\mathbf{3 2}$ | 64 | BC | $\underline{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| 9 | 0 | | | | $\begin{array}{llllll}\mathrm{DE} & 39 & 45 & \text { BE } & 59 & 78 \\ \mathrm{DF} & 49 & \mathrm{DF} & 73 & 19\end{array}$ $\begin{array}{llllll}\text { DF } & \underline{49} & 93 & \text { DF } & 73 & 19 \\ \text { EF } & 64 & 80 & \text { EF } & 43 & 79\end{array}$ $2812237 \quad 2822071$ $0194 \quad \underline{23} \quad 01 \quad 73 \quad \underline{2}$ $02 \quad \underline{84} \quad 93 \quad 02 \quad 71 \quad 37$ $\begin{array}{llllll}03 & 45 & 2 & 03 & 31 & 57\end{array}$ $\begin{array}{lllll}12 & 64 & 44 & 12 & 29\end{array}$ $14 \quad 92 \quad 38 \quad 14 \quad 72 \quad \overline{24}$ $25 \quad 96 \quad 89 \quad 25 \quad 100 \quad \underline{68}$ $\begin{array}{llllll}34 & \underline{59} & 8 & 34 & 19 & 10\end{array}$ $\begin{array}{lllllll}36 & 44 & \underline{30} & 36 & 58 & 10\end{array}$ $\begin{array}{llllll}47 & 32 & 96 & 47 & 12 & 66\end{array}$ $\begin{array}{llllll}58 & 82 & 99 & 58 & 49 & \underline{27}\end{array}$ $\begin{array}{llllll}59 & \underline{28} & 72 & 59 & 51 & 94\end{array}$ $\begin{array}{llllll}6 A & 21 & 15 & 6 A & \underline{1} & 14\end{array}$ 6B $96 \quad 98 \quad 6 \mathrm{~B} \quad 91 \quad \underline{23}$ 7 C $\quad 79 \quad 26 \quad 7 \mathrm{C} \quad \underline{43} \quad 8$ 7D $\overline{97} \quad \underline{5} \quad 7 \mathrm{D} 93 \quad 27$ $\begin{array}{llllll}8 A & 17 & 9 & 8 A & 26 & 25\end{array}$ 8C $61 \quad 77 \quad 8 \mathrm{E} \quad 45 \quad 11$ $9 \mathrm{E} \quad 16 \quad 59 \quad 9 \mathrm{~B} \quad \underline{32} \quad \overline{65}$ $\begin{array}{lllllll}9 F & 81 & 76 & 9 F & 86 & \underline{23}\end{array}$ AD 4258 AF $26 \quad 93$ BC 7485 BE 8031 $\mathrm{BE} \quad \underline{2} \quad 33 \quad \mathrm{CD} \underline{32} 62$ DF 2458 CE 6469 EF 2649 DF 7472

2632150 $0155 \underline{12} \quad 0182 \quad 60$ $\begin{array}{lll}02 & \frac{59}{95} & \frac{12}{17} \\ 03 & 68\end{array}$ $\begin{array}{ll}03 & 95 \\ 12 & 21 \\ 15\end{array}$ $1480 \quad 7$ $25 \quad 15 \quad 3 \overline{3}$ $34 \underline{78} 88$ $36 \overline{83} \underline{56}$ 473581 584994 $59 \quad 7174$ 6 A $27 \underline{55}$ 6B 2659 7C 6795 7D $\quad 48$ $89 \quad 87 \quad \underline{7}$ 8E 3593
$9 F$
92
72 AC $63 \underline{61}$ AE $23 \quad \overline{69}$ BD $21 \quad 1$ BF $\quad \begin{array}{lll}58 & 64\end{array}$ CF $96 \underline{31}$ DE 4185 2732066 016874 029146 $03 \quad 24 \quad \underline{5}$ $1255 \underline{19}$ $14 \quad 29 \quad 29$ $2554 \quad \underline{28}$ $3423 \quad \underline{35}$ $36 \quad 5194$
$4792 \quad 35$ $58 \quad 8610$ $59 \quad 33 \underline{23}$ 6 A $78 \underline{84}$ 6B $\quad 19 \quad \overline{55}$ 7C $26 \quad 20$ $\begin{array}{lll}\text { 7D } & 17 \quad 51 \\ 8 A & 22 & 59\end{array}$ 8C 7197 9E $97 \quad 26$ 9F 5576 AD 1967 BC $\underline{92} 52$ $\begin{array}{lrl}\mathrm{BE} & 5 & 63 \\ \mathrm{DF} & 13 & 56\end{array}$ EF $\overline{87} \underline{34}$ 2832113 $01 \quad 679$ $0264 \quad 13$ 034088 12723 $14 \quad 9 \quad 80$ $25 \quad 12 \quad 93$ $3489 \underline{28}$ $\begin{array}{lll}36 & 18 & 31 \\ 47 & 27 & 80\end{array}$ 588585 $5951 \quad \underline{54}$ 6A $36 \stackrel{95}{95}$ 6B 1656 7C $92 \underline{84}$ 7D 1675 8A $53 \underline{50}$ 8E $64 \quad 86$ 9B $32 \quad 10$ 9F 9588 AF $68 \frac{32}{17}$ BE $71 \underline{17}$ CD $94 \overline{84}$ CE 5198 DF 1984
$0280 \quad \frac{60}{42}$ 035885 $12 \overline{87} \quad \frac{81}{53}$ $1468 \overline{53}$ $\begin{array}{lll}25 & 9 & 13 \\ 34 & 8 & 58\end{array}$ $34 \quad 8 \quad 58$ 367894 $47 \quad \underline{38} \quad 54$ $\begin{array}{lll}58 & 6 & 60\end{array}$ $59 \quad 40 \quad 33$ $\begin{array}{lll}6 \mathrm{~A} & 47 & 45 \\ 6 \mathrm{~B} & 30 & \underline{39}\end{array}$ 7C $46 \quad 97$ $\begin{array}{lrr}7 D & 34 & 96 \\ 89 & 63 & 7\end{array}$ 8E $35 \quad 24$ 9F $62 \underline{25}$ AC 3471 AE 9867 $\begin{array}{lll}\text { BD } & 77 & 12 \\ \text { BF } & 63 & 39\end{array}$ CF 513 DE 48 $\underline{5}$

2086

 $01 \quad 5534$ 025471 $03 \quad 7 \quad 55$ $12 \underline{41} \quad 3$ 147658 $\begin{array}{lll}25 & \underline{27} & 86 \\ 34 & 69 & 15\end{array}$ $36 \quad 53 \quad \overline{29}$ $47 \quad 93 \quad 57$ $\begin{array}{lll}58 & 86 & 54 \\ 59 & 25 & 67\end{array}$ 6 A 7818 $\begin{array}{lll}6 \mathrm{~B} & 9 & 62 \\ 7 \mathrm{C} & 99 & 78\end{array}$ 7D $72 \quad 75$ $8 \mathrm{~A} \quad 10 \quad 13$ 8C $78 \quad 8$ 9E 5197 9F 7992 $\begin{array}{lll}\text { AD } & 71 & 56 \\ \text { BC } & 53 & 85\end{array}$ BE 2568 DF $16 \underline{23}$ EF 4381
2842060

 $0161 \quad \underline{2}$ $02 \quad 23 \quad 7$ 039234 128766 143291 $25 \quad 5 \quad 59$ $34 \quad 7 \overline{7} 12$ $\begin{array}{lll}36 & 74 & 58 \\ 47 & \underline{15} & 36\end{array}$ $58 \quad 15 \quad 31$ $59 \quad 3748$ 6A $97 \quad 36$ 6B $98 \quad 3$ 7C 7767 $\begin{array}{llll}7 D & 50 & 74 \\ 8 A & 12 & 15\end{array}$ 8E 2577 9B $50 \quad \underline{7}$ 9F $39 \quad 78$ AF 5852 BE 3188 $\begin{array}{llr}\text { CD } & 75 & \underline{5} \\ \text { CE } & 28 & 27\end{array}$ DF 5769$01 \quad 65 \quad 92 \quad 2662049$ $02 \quad 69 \quad 29 \quad 01 \quad 19 \quad 44 \quad 01 \quad 10 \quad 53$ $024294 \quad 0233 \quad \underline{56}$ $1259 \quad \frac{5}{5} \quad 12 \quad 84 \quad \frac{23}{98} \quad 03 \quad 8 \quad 87$ $\begin{array}{lllllllll}14 & 9 & 3 \overline{3} & 14 & 50 & 17 & 14 & 55 & 74\end{array}$ $\begin{array}{lllllllll}25 & 47 & \frac{63}{2} & 25 & 13 & 50 & 25 & 19 & \frac{67}{17} \\ 34 & 57 & 93 & 34 & 51 & 40 & 34 & 46 & 17\end{array}$ $\begin{array}{lll}34 & 57 & 93 \\ 36 & 58 & 17\end{array}$ $\begin{array}{llllllllll}47 & \underline{45} & 31 & 47 & 55 & \underline{56} & 47 & 77 & 29\end{array}$ $\begin{array}{lllllllll}58 & 94 & 69 & 58 & \underline{28} & 34 & 58 & 32 & \frac{38}{1}\end{array}$ $\begin{array}{llllllll}59 & 40 & \frac{35}{2} & 59 & 24 & 33 & 59 & 48 \\ 74\end{array}$ $\begin{array}{lllllllll}6 \mathrm{~A} & 9 & \underline{68} & 6 \mathrm{~A} & 16 & \underline{3} & 6 \mathrm{~A} & \underline{17} & 1\end{array}$ $\begin{array}{lrrllrlll}6 B & 23 & 17 & 6 B & 56 & 74 & 6 B & 81 & 71 \\ 7 \mathrm{C} & 80 & 9 & 7 \mathrm{C} & 23 & 2 & & 7 \mathrm{C} & 2\end{array}$ $\begin{array}{lllllllll}7 D & 32 & 41 & 7 D & 97 & 33 & 7 D & 50 & 15\end{array}$ $\begin{array}{lllllllll}8 \mathrm{~A} & 89 & 94 & 8 \mathrm{~A} & \underline{4} & 84 & 8 \mathrm{~A} & 23 & 94\end{array}$ $\begin{array}{lllllllll}8 C & 18 & 83 & & 8 C & 16 & 51 & & 8 C \\ 89 & 89 & 74 \\ 9 B & 70 & 14 & 9 B & 2 & 84 & 9 B & 43 & 52\end{array}$
 AF $31 \frac{52}{5}$ AF $68 \quad \frac{23}{83}$ AF $\underline{\underline{41}} 80$ $\begin{array}{llllllllll}\mathrm{BC} & 0 & \frac{59}{} & \text { BC } & \frac{38}{28} & 28 & \text { BC } & 49 & \frac{33}{} \\ \mathrm{DE} & \underline{62} & 69 & \text { DE } & 92 & 86 & \text { DE } & 74 & 67\end{array}$ DF 7160 DF $2691 \quad$ DF 3212 EF 7987

2752081

 $01 \quad 26 \quad 14 \quad 01 \quad 7867$ $\begin{array}{lllllllll}02 & 86 & \underline{4} & 02 & 90 & 11 & 02 & 65 & 65\end{array}$ $\begin{array}{llllllll}03 & 11 & 22 & 03 & 65 & \underline{35} & 03 & \underline{66}\end{array} 62$ $\begin{array}{llllllllll}14 & 92 & \frac{18}{5} & 14 & 22 & 42 & 14 & 15 & 11\end{array}$ $\begin{array}{llllllll}34 & 89 & 44 & 34 & 80 & \underline{39} & 34 & 93 \\ 12\end{array}$ $\begin{array}{rrrrrrrrr}36 & 79 & 64 & 36 & 52 & 24 & 36 & 20 & 59 \\ 47 & 62 & 65 & 47 & 46 & 1 & 47 & 54 & 59\end{array}$ $\begin{array}{llllllllll}58 & \underline{25} & 96 & 58 & \underline{71} & 70 & 58 & \underline{59} & 49\end{array}$ \begin{tabular}{lllllll}
59 \& $\overline{94}$ \& $\frac{10}{20}$ \& 59 \& $\overline{67}$ \& $\frac{96}{11}$ \& 59

\hline 9 \& 46

 $\begin{array}{lllllllll}6 A & 23 & 20 & 6 A & 38 & 11 & 6 A & \underline{6} & 94\end{array}$ $\begin{array}{lllllllll}6 B & 36 & \underline{26} & 6 B & 10 & 33 & 6 B & 23 & 41 \\ 7 \mathrm{C} & 31 & \underline{73} & 7 \mathrm{C} & 80 & \underline{79} & 7 \mathrm{C} & 53 & 61\end{array}$ $\begin{array}{lllllll}7 D & 36 & \overline{69} & 7 D & 48 & \overline{97} & 7 D \\ 40 & 35\end{array}$ $\begin{array}{lllllllll}8 \mathrm{~A} & 53 & 33 & 8 \mathrm{~A} & \underline{5} & 29 & 8 \mathrm{~A} & 40 & 98\end{array}$

8C \& $\underline{74}$ \& 15 \& \& 8 C \& 45 \& 74 \& \& 8C \& $\underline{32}$

\hline \& 88

9 E \& 52 \& 14 \& $9 E$ \& 88 \& $\underline{52}$ \& 9E \& 93 \& 48
\end{tabular} $\begin{array}{lllllllll}9 F & 28 & 24 & 9 F & 76 & 22 & 9 F & 93 & 28\end{array}$ $\mathrm{AD} \underline{46} 94 \quad \mathrm{AD} 90 \quad 87 \quad \mathrm{AD} \frac{36}{80}$ BC 7569 BC $3252 \quad$ BC $51 \quad \underline{59}$ $\begin{array}{lllllllll}\text { BE } & 23 & 30 & \text { BE } & 42 & 61 & \text { BE } & 21 & 37 \\ \text { DF } & 14 & 45 & \text { DF } & 4 & 57 & \text { DF } & 94 & 61\end{array}$ EF $\overline{29} 16$ $2852163 \quad 2862082 \quad 2872123$ $01 \quad 65 \quad \underline{39} \quad 01 \quad \underline{67} 78 \quad 01 \quad \underline{34} 93$ $0221 \quad 5 \quad 02 \quad 93 \quad 20 \quad 02 \quad \overline{64} \quad \underline{7}$ $\begin{array}{lllllllll}03 & \underline{36} & 90 & 03 & 69 & \underline{52} & 03 & 85 & 83\end{array}$ $\begin{array}{lllllllll}12 & 74 & 73 & 12 & 12 & 15 & 12 & 19 & 42 \\ 14 & 25 & 87 & 14 & 94 & 68 & 14 & 15 & 24\end{array}$ $\begin{array}{llllllllll}14 & 25 & 87 & 14 & 94 & 68 & 14 & 15 & 24 \\ 25 & 11 & \underline{34} & 25 & \underline{81} & 68 & 25 & 77 & \underline{79}\end{array}$ $34 \quad \underline{61} \quad \overline{62} \quad 34 \quad 4 \quad 38 \quad 34 \quad 2 \quad \overline{50}$ $\begin{array}{lllllllll}36 & 65 & 95 & 36 & 92 & 37 & 36 & 18 & 42 \\ 47 & \underline{43} & 51 & 47 & 81 & \underline{96} & 47 & 32 & 94\end{array}$ $58 \quad 76 \quad 37$ $\begin{array}{lll}59 & 13 & 11 \\ 64 & 31\end{array}$ 6 A 3153 $\begin{array}{lllllllll}7 C & 75 & 84 & 7 C & 52 & 87 & 7 C & 84 & 6\end{array}$ $\begin{array}{llllllll}7 D & 20 & 51 & 7 D & 91 & 19 & 7 D & 60\end{array} 64$ $\begin{array}{lllllllll}8 \mathrm{~A} & 22 & \underline{26} & 8 \mathrm{~A} & \underline{27} & \overline{44} & 8 \mathrm{~A} & 36 & 80\end{array}$ $\begin{array}{llllllllll}8 E & 17 & 33 & 8 E & 35 & 23 & 8 E & 10 & 93 \\ 9 B & 61 & 39 & 9 B & 65 & \underline{3} & 9 B & 93 & \underline{69}\end{array}$ $\begin{array}{lllllllll}9 F & 49 & 16 & 9 F & 8 & 12 & 9 F & 94 & 90\end{array}$ $\begin{array}{lllllllll}\text { AF } & 96 & \overline{83} & \text { AF } & 49 & 75 & \text { AF } & 24 & 79 \\ \text { BE } & 69 & 95 & \text { BE } & 59 & 89 & \text { BE } & 37 & 17\end{array}$ $\begin{array}{lllllllrl}C D & 69 & \frac{46}{} & C D & 15 & 37 & C D & 9 & \frac{86}{41} \\ \text { CE } & 38 & 69 & C E & 86 & 13 & C E & 30 & \frac{13}{41}\end{array}$ CE 3869 DF 865

268	2037	
01	14	63
02	14	27
03	91	68
12	$\underline{56}$	47
14	86	94
25	$\frac{34}{}$	1
34	93	$\underline{56}$
36	$\underline{16}$	75
47	13	18
58	89	80
59	13	75
$6 A$	73	62
$6 B$	$\frac{52}{}$	74
$7 C$	97	96
$7 D$	32	18
$8 A$	$\underline{4}$	61
$8 C$	10	$\underline{20}$
$9 B$	96	77
$9 E$	$\underline{27}$	14
AF	$\frac{28}{27}$	53
BC	$\underline{27}$	37
DE	85	$\underline{54}$
DF	9	60
EF	43	71
278	1997	

	2183	2702158
	3820	017075
02	4398	0215
03	$99 \quad 57$	0372
12	$95 \underline{22}$	12
14	7591	1490
25	1470	2523
34	9018	3440
36	328	36
47	750	47
58	81	5874
59	7963	5993
6A	6994	$6 \mathrm{~A} \underline{52}$
6B	9840	6B 91
7 C	$\underline{45}$	7C 96
7D	9681	7D 82
8A	4891	A
8C	$73 \quad 35$	80
9B	1482	B 48
9 E	1889	9E 42
AF	$67 \quad 22$	38
BC	74	69
DE	6919	DE 83
DF	8545	DF 93
EF	1879	54
	1982	2802085
01	1381	0194
02	37	0268
03	$45 \quad 32$	0324
12	5772	2112
14	1310	145789
25	4081	$2536 \underline{20}$
34	4965	3437
36	$7 \quad 1$	$36 \quad \underline{6} 90$
47	$\underline{47}$	4778
58	1375	5865
59	1163	5982
6 A	61	6 A
6B	8268	6B 100
7 C	4969	7 C 82
7D	46	7D 37
8 A	76	8A 57
	3687	BC 66
9 E	3417	9E 48
9 F	$94 \underline{26}$	F 40
AD	35	AD 59
	$75 \underline{42}$	BC 68
	$\underline{26} 25$	BE
DF	2491	48
	$\underline{42} 43$	22
	2075	
	37	1930
02	8561	0216
03	$47 \quad 5$	0386
12	4245	128496
14	1552	1492
25	1780	2594
34	$47 \underline{21}$	3419
36	6865	3661
47	$60 \underline{91}$	474420
58	$78 \quad 28$	582418
59	5352	5943
6 A	48	6 A 65
6B	9645	6B $94 \quad 37$
7	51 0	C $\underline{22}$
7D	6999	7D $56 \underline{53}$
	7775	A
	$\underline{53} 87$	8E 5282
9B	3983	9 B 8678
	5848	9F 826
	1250	AF 5662
	$86 \underline{36}$	BE $27 \underline{69}$
	$87 \underline{11}$	CD 5372
	4224	CE 3499
	36	DF 22

2911993 016889 $0281 \quad 17$ 0214100 $3 \quad \underline{63} \quad 50 \quad 03 \quad 595$ $\begin{array}{lllll}12 & 88 & 90 & 12 & 74 \\ 97\end{array}$ $1442 \quad 23 \quad 1421 \quad 31$ $\begin{array}{lllll}25 & 43 & \underline{7} & 25 & \underline{2}\end{array}$ $\begin{array}{llllll}34 & \underline{20} & 34 & 36 & \underline{72} & 45\end{array}$ $\begin{array}{llllll}36 & 42 & 14 & 37 & 97 & 37\end{array}$ $\begin{array}{llllll}47 & 14 & 9 & 46 & 26 & \underline{19}\end{array}$ $\begin{array}{llllll}58 & 93 & 43 & 47 & 29 & 61\end{array}$ $\begin{array}{llllll}59 & 77 & \underline{5} & 58 & 68 & 64\end{array}$ $\begin{array}{llllll}6 A & 57 & 31 & 59 & 39 & 31\end{array}$ 6B $11 \overline{50} \quad 6 \mathrm{~A} \quad 28 \quad 86$ $\begin{array}{llllll}\text { 7C } & \underline{9} & 61 & 7 B & 54 & \underline{0} \\ \text { 7D } & 8 & 13 & 8 C & 82 & \underline{27}\end{array}$ $\begin{array}{rrrrrr}7 \mathrm{D} & 8 & 13 & 8 \mathrm{C} & 82 & \frac{27}{7} \\ 8 \mathrm{~A} & 23 & 65 & 8 \mathrm{D} & 3 & 29\end{array}$ 8E $95 \underline{21}$ 9E $39 \underline{24}$ $\begin{array}{llllll}9 B & 15 & \underline{9} & 9 F & \underline{27} & 13\end{array}$

 $\begin{array}{lllll}\mathrm{AF} & 72 & 22 & \mathrm{AE} & 98 \\ 69\end{array}$ BE 9272 BD 234 | CD | 93 | 66 | BF | 23 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | CE $\begin{array}{llllll}51 & 56 & \text { CF } & 10 & 79\end{array}$ DF $58 \underline{90}$

3011974

 $\begin{array}{llllll}02 & 2 & 53 & 02 & 7 & 17\end{array}$ $03 \quad 40 \quad \underline{32} \quad 03 \quad 20 \quad 15$ $1242 \quad \underline{45} \quad 12 \quad 51 \quad 95$ $\begin{array}{lllll}14 & \underline{94} & 38 & 14 & \underline{2} \\ 71\end{array}$ $\begin{array}{llllll}25 & 71 & 62 & 25 & 79 & 19 \\ 36 & 95 & 1 & 36 & 18 & 28\end{array}$ $\begin{array}{llllll}37 & 73 & 12 & 12 & 37 & \underline{42}\end{array}$ $469365 \quad 46 \quad 15 \quad 15$ $47 \underline{22} 67 \quad 489993$ $\begin{array}{llllll}58 & 41 & 43 & 56 & 18 & 71\end{array}$ $\begin{array}{llllll}59 & \frac{3}{7} & 55 & 59 & 94 & \frac{69}{86}\end{array}$ $\begin{array}{llllll}6 \mathrm{~A} & \overline{7} & 60 & 7 \mathrm{~A} & 93 & \overline{86} \\ 7 \mathrm{~B} & 2 & 25 & 7 \mathrm{~B} & 49 & 33\end{array}$ $\begin{array}{llllll}8 \mathrm{C} & 9 & 60 & 8 \mathrm{C} & 72 & 96\end{array}$ 8D $96 \underline{43}$ 8D $79 \underline{25}$ 9E $47 \quad 20 \quad 9 \mathrm{E} 69 \quad 78$ 9F $77 \quad 20 \quad 9 \mathrm{~F} 51 \quad \underline{61}$ AC $\quad \underline{4} 54 \quad$ AC $13 \quad 27$ $\begin{array}{llllll}\mathrm{AE} & 38 & 1 & \mathrm{AE} & \overline{75} & \frac{61}{1}\end{array}$ $\begin{array}{llrllll}\mathrm{BD} & \underline{8} & 66 & \mathrm{BD} & \underline{66} & 11 \\ \mathrm{BF} & 28 & 4 & \mathrm{BF} & 75 & 73\end{array}$ CF $27 \quad 99 \quad$ CF $\quad \underline{54} 90$ DE $76 \quad 60 \quad$ DE 3887
$3112113 \quad 3122114$

$01 \quad \underline{53} 91 \quad 01 \quad 3 \quad \underline{12}$ $02 \quad 83 \quad 6 \quad 02 \quad 75 \quad 17$ $03 \quad 43 \quad 10 \quad 03 \quad 1 \quad 94$ $12 \quad \underline{59} \quad \overline{34} \quad 12 \quad 62 \quad \underline{30}$ $\begin{array}{lllll}14 & 47 & 78 & 14 & 88 \\ 82\end{array}$ $25 \underline{52} 67 \quad 25 \quad 25 \quad \underline{60}$ $\begin{array}{llllll}36 & 41 & \underline{34} & 36 & \underline{30} & \overline{87}\end{array}$ $\begin{array}{llllll}37 & 80 & \overline{29} & 37 & 98 & 74\end{array}$ $46 \quad \underline{45} 82 \quad 46 \quad 4 \quad 35$ $\begin{array}{llllll}48 & 5 & 71 & 48 & 23 & 96\end{array}$ $59 \quad \underline{8} \quad \overline{65} \quad 59 \quad \overline{77} \quad 36$ $\begin{array}{llllll}5 \mathrm{~A} & 19 & 62 & 5 \mathrm{~A} & 95 & 98\end{array}$ $679891 \quad 67 \underline{46} 23$ $7 \mathrm{~B} \quad \underline{4} \quad 58 \quad 7 \mathrm{~B} \quad \underline{66} \quad 50$ $\begin{array}{llllll}8 \mathrm{C} & 8 & \underline{26} & 8 \mathrm{C} & \underline{60} & 78\end{array}$ 8D $83 \overline{47}$ 8D $\overline{65} 70$ $9 \mathrm{C} 86 \quad 30 \quad 9 \mathrm{C} 34 \quad 11$ $9 \mathrm{E} \quad \underline{6} \quad 7 \quad 9 \mathrm{E} \quad 61 \quad 95$ AD $60 \quad \underline{25}$ AD $60 \quad \underline{6}$ AF 6996 AF $94 \quad 7$ BE 6937 BE 2048 $\begin{array}{llllll}\mathrm{BF} & 39 & 78 & \mathrm{BF} & 1 & 88 \\ \mathrm{CF} & \underline{95} & 15 & \mathrm{CF} & 100 & 92\end{array}$
DE $45 \underline{66}$ DE $88 \underline{19}$

2932185 017325 $02 \quad 25 \underline{29}$ 039591 122150 $14 \underline{49} 85$ $25 \overline{86} \underline{20}$ $36 \quad 39 \quad 22$ $37 \underline{37} 85$ $46 \underline{20} 66$ $\begin{array}{ll}475677 \\ 58 & 66 \quad 69\end{array}$ 595569 6A $24 \quad \overline{97}$ 7B 5749 8C $\quad 1 \quad 36$ 8D 5839 9E 2673 9F $82 \quad 36$ AC 2294
AE 4296 AE 4296 $\begin{array}{llll}\text { BF } & 82 & 51\end{array}$ CF 9177 DE $57 \quad \underline{7}$

2942172 016870 $02 \overline{51} \underline{92}$ 033841 122167 $1425 \quad 3$ $\begin{array}{llll}25 & \overline{67} & \underline{12} \\ 36 & \underline{33} & \underline{68}\end{array}$ 3 $4663 \quad 52$ $\begin{array}{lll}47 \quad 19 & 10 \\ 58 & 82 & 46\end{array}$ $5988 \quad 83$ $\begin{array}{lll}6 A & 22 \\ 7 B & 94 \\ 74\end{array}$ 8C $78 \quad 32$ 8D 7375 $\begin{array}{lll}9 E & 25 & 97 \\ 9 F & 71 & 87\end{array}$ AC 2660 AE 4455 $\begin{array}{lll}\text { BD } & 48 & 72 \\ \text { BF } & \underline{34} & 10\end{array}$ CF $63 \underline{22}$ DE $85 \underline{65}$ 3032056 $02 \quad 39 \quad 39$ 034431 127384 $14 \quad 17 \quad \underline{54}$ 256858 $3663 \quad 39$ $37 \quad 18 \quad 82$

$46 \quad 42 \quad 40$ $48 \quad 53 \quad 17$ $56 \quad 7 \quad 96$ $5971 \quad \underline{50}$ $\begin{array}{lll}7 A & 21 & 24 \\ 7 B & 9 & 58\end{array}$ 8C $96 \underline{37}$ 8D $67 \quad 30$ 9E $75 \quad 23$ 9F 5479 AC $35 \quad 3$ AE $\overline{27} 88$ BD $\underline{9} 41$ | BF 38 |
| :--- |
| CF 42 |
| 16 | DE 1681

304	2125	
01	45	$\underline{20}$
02	19	56
03	$\underline{44}$	24
12	58	$\frac{81}{59}$
14	78	59
25	17	$\underline{28}$
36	$\underline{58}$	96
37	83	88
46	48	$\underline{8}$
48	10	54
56	87	66
59	44	$\underline{39}$
$7 A$	$\underline{45}$	62
$7 B$	57	55
$8 C$	18	94
$8 D$	75	59
$9 E$	93	$\underline{22}$
$9 F$	81	78
AC	46	37
AE	$\underline{2}$	63
BD	59	$\underline{95}$
BF	70	93
CF	$\underline{0}$	65
DE	46	71

$\begin{array}{llllll}02 & \underline{8} & \frac{60}{82} & 02 & 16 & 49\end{array}$ $03 \quad 3286 \quad 03 \quad 53 \quad 1$ $\begin{array}{lllll}12 & 43 & 51 & 12 & 9 \\ 90\end{array}$ $\begin{array}{lllll}14 & 78 & 72 & 14 & 82 \\ 54\end{array}$ $\begin{array}{llllll}25 & \underline{82} & 98 & 25 & \underline{7} & 88\end{array}$ $\begin{array}{llllll}36 & \overline{47} & \underline{23} & 36 & 66 & 68\end{array}$ $\begin{array}{llllll}37 & 14 & 11 & 37 & 48 & 42 \\ 46 & 39 & 81 & 46 & 51 & 30\end{array}$ $\begin{array}{llllll}48 & 56 & 89 & 48 & \underline{94} & 46\end{array}$	56	$\underline{32}$	87	56	$\underline{67}$	57
99	22	59	$\frac{27}{23}$	17		$\begin{array}{llllll}7 A & 17 & 15 & 7 A & 74 & 51\end{array}$ $\begin{array}{llll}7 B & 12 & 82 & 7 B \\ 37 & 84\end{array}$ $\begin{array}{llllll}8 \mathrm{C} & \underline{7} & 95 & 8 \mathrm{C} & \underline{9} 70\end{array}$ 8D $52 \quad 11$ 8D 5370 $\begin{array}{lrllll}9 \mathrm{E} & 17 & \underline{40} & 9 \mathrm{E} & 95 & 48 \\ 9 \mathrm{~F} & \underline{6} & 35 & 9 \mathrm{~F} & 54 & 89\end{array}$ AC 2886 AC $39 \underline{64}$ AE $\underline{68} 35$ AE $\quad \underline{3} \quad 41$ BD $\underline{31} 15$ BD $\underline{29} 100$ $\begin{array}{llllll}\mathrm{BF} & 64 & 20 & \text { BF } & 37 & \frac{5}{1} \\ \text { CF } 88 & 23 & & \text { CF } & 64 & 71\end{array}$ DE 4311 DE 10055 CF 5057 DE $71 \quad \underline{2}$

3182081

 013167$02 \quad 26 \quad 97$
03 $03 \quad 3 \quad 83$ $\begin{array}{lll}12 & 36 & 56 \\ 14 & 63 & 23\end{array}$ $1463 \underline{23}$ $\begin{array}{llll}25 & 81 & 46 \\ 36 & 89 & 49\end{array}$ $37 \underline{12} 85$ $46 \quad \overline{87} 75$ 4859100 593750 5A $72 \quad 8$ $6787 \underline{44}$ 7B $93 \quad \overline{44}$ $\begin{array}{lll}\text { 8C } 16 & \underline{5} \\ \text { 8D } & 41 & 96\end{array}$ 9C $\underline{20} 44$ 9E 5197 AD 5164 $\begin{array}{lll}A F & 22 & \frac{5}{-} \\ \text { BE } & 75 & 10\end{array}$ BE $75 \underline{10}$ $\begin{array}{llll}\text { BF } & 42 & 17 \\ \text { CF } & 50 & 89\end{array}$ DE 5056

2087	300
019621	019680
029460	$0217 \underline{26}$
$03 \quad 29 \quad 14$	$03 \underline{30}$
127769	121169
14 7	144561
$25 \quad 3468$	255536
368144	361827
3737	379272
$46 \quad \underline{0} 67$	466465
475061	4796
58 38 16	$58 \underline{47} 30$
$59 \quad 994$	$5942 \quad 21$
6 A 1262	6A 9454
7B 6565	7B $62 \underline{62}$
8С 9760	8C 25
8D 1267	8D 7976
9E $\underline{34} 69$	9E 7288
9F 3971	9F 29
AC 1451	AC $75 \underline{32}$
AE 7830	AE 4574
BD $96 \underline{58}$	BD 98
BF 8974	BF 75
CF 3189	CF 3744
DE 6877	DE 60
2083	3102170
$01 \underline{5617}$	019474
029111	0245
$0368 \quad 25$	$03 \underline{82} 36$
$12 \underline{83} 56$	126278
143923	143743
$25 \quad \underline{5} 79$	2562 10
$3637 \quad 5$	367358
$3712 \underline{1}$	3776
466016	469857
481121	4874
$6 \underline{25} 90$	594194
598538	5A $47 \underline{44}$
7 A 9311	$67 \quad 717$
7B $82 \underline{22}$	7B 88
8C 2859	8C 8690
8D 4690	8D $6 \underline{41}$
9 E 8194	$9 \mathrm{C} 59 \underline{50}$
9F 3869	9E 2293
AC $26 \quad 34$	AD 18
AE 8580	AF 5843
BD 6494	BE 96
BF 6915	BF $8 \underline{54}$
CF 1685	CF $15 \underline{60}$
DE $66 \underline{15}$	DE 55
3192019	3202151
$01 \underline{32} 79$	01140
0285	027451
0379 5	$03 \underline{21} 41$
121696	1279
148036	$14 \underline{23} 88$
$25 \quad 054$	2564 38
3678 38	$36 \underline{54} 56$
371244	375174
466296	$48 \underline{41} 89$
$48 \quad 455$	496372
599638	5A 3215
5A 5157	5B $27 \underline{48}$
675646	$67 \underline{36} 73$
7B $91 \underline{27}$	6C 9499
8C 5935	7D 9071
8D 2388	896414
$9 \mathrm{C} 25 \underline{47}$	8E 3848
9E 6693	9F $81 \underline{22}$
AD 4597	AC 778
AF 48 3	AE $57 \underline{29}$
BE $46 \underline{39}$	BD $63 \underline{49}$
BF 21	BF 8393
CF 93 -	CF 5369
DE 3812	DE 2558

\section*{3212031} $0177 \quad 55$ $02 \quad 4 \quad \frac{64}{64}$ 036566 $\begin{array}{lllll}12 & 26 & 96 & 12 & 71 \\ 14 & 40 & \frac{5}{6}\end{array}$ $\begin{array}{llllll}14 & 40 & 46 & 14 & \frac{38}{78} & 7 \overline{6}\end{array}$ $\begin{array}{lrlllll}25 & \underline{4} & 19 & 25 & 78 & 34 \\ 36 & 25 & 90 & 36 & 8 & 85\end{array}$ $\begin{array}{llllll}37 & \frac{25}{89} & 17 & 37 & 47 & \underline{47}\end{array}$ $\begin{array}{llllll}48 & 94 & \underline{26} & 48 & \underline{14} & 4\end{array}$ $\begin{array}{llllll}49 & 40 & 10 & 49 & 74 & 83\end{array}$ $5 A \underline{41} \quad 1 \quad 5 A \quad 89 \quad 8$ $\begin{array}{llllll}\text { 5B } & \overline{66} & 53 & 5 B & \frac{29}{18} & 18\end{array}$ $\begin{array}{llllll}67 & 80 & 23 & 67 & 18 & 38\end{array}$ | 6 C | $\underline{9}$ | 76 | 6 C | $\underline{7}$ | 76 |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 7 D | 31 | 41 | | 7 D | 96 | $\begin{array}{llllll}7 D & 31 & 41 & 7 D & 96 & 18 \\ 89 & 67 & 10 & 89 & 58 & 0\end{array}$ $\begin{array}{llllll}8 \mathrm{E} & 6 & 34 & 8 \mathrm{E} & 30 & 54\end{array}$ $9 \mathrm{~F} \underline{32} \overline{73} \quad 9 \mathrm{~F} \overline{91} \underline{10}$ AC 9070 AC $70 \underline{69}$ AE $42 \quad 38 \quad$ AE $47 \quad \overline{72}$ BD 4 $29 \quad \mathrm{BD} 883$ $\begin{array}{llllll}\mathrm{BF} & 20 & \frac{57}{80} & \text { BF } & 40 & 94\end{array}$ DE 1933 $\begin{array}{lllll}331 & 2038 & 332 & 2029\end{array}$ $\begin{array}{llllll}01 & 13 & \underline{30} & 01 & 64 & 92\end{array}$ $\begin{array}{llllll}02 & 91 & 70 & 02 & 32 & 36 \\ 03 & 16 & & 03 & 95 & \end{array}$ $03 \quad 16 \quad 42 \quad 03 \quad 95 \quad \overline{85}$ $\begin{array}{lllll}12 & 82 & 1 & 12 & \underline{41} \\ 74 & 33\end{array}$ $\begin{array}{llllll}14 & 89 & 7 \overline{6} & 14 & 74 & 65\end{array}$ $\begin{array}{llllll}25 & 29 & 71 & 25 & 12 & 96 \\ 36 & 80 & 71 & 36 & 72 & 28\end{array}$ $\begin{array}{llllll}36 & 80 & 71 & 36 & 72 & \underline{28}\end{array}$ $\begin{array}{llllll}37 & \underline{22} & 21 & 37 & \underline{4} & 95\end{array}$ $48 \quad \underline{\underline{27}} 42 \quad 48 \quad 60 \quad 90$ $\begin{array}{llllll}49 & 2 & 14 & 49 & 12 & \frac{26}{2}\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 57 & \underline{4} & 5 \mathrm{~A} & 46 & \underline{20}\end{array}$ 5B $\quad 79 \quad 7 \overline{8} \quad 5 B \quad \frac{25}{9} \quad 9$ $\begin{array}{lllllr}67 & 47 & 20 & 67 & 21 & 2 \\ 6 C & 94 & 26 & 6 C & 88 & 33\end{array}$ 7D $69 \quad \overline{80}$ 7D $48 \quad \overline{33}$ 8 A $41 \quad 53 \quad 8 \mathrm{~A} \quad 5914$ $8 \mathrm{C} \quad 12 \quad 62 \quad 8 \mathrm{C} \quad \underline{4} 99$ 9D $92 \quad 59 \quad 9 \mathrm{D} \quad 33$ 9E $74 \quad 10 \quad 9 \mathrm{E} \quad 53 \quad \underline{52}$ AD $69 \underline{45}$ AD $99 \quad \overline{29}$ BE $61 \quad 9 \quad$ BE $46 \quad 74$ $\begin{array}{lllll}\mathrm{BF} & 72 & 49 & \text { BF } & \frac{17}{5} \\ 30\end{array}$ CF $\overline{47} 72$ CF $\overline{53} 61$ EF $77 \underline{11}$ EF $41 \quad \underline{1}$

\section*{$\begin{array}{llll}341 & 2149 & 342 & 1997\end{array}$} $\begin{array}{llllll}01 & 31 & 81 & 01 & 60 & 44\end{array}$ $\begin{array}{llllll}02 & 88 & 47 & 02 & 11 & 74\end{array}$ $\begin{array}{lllllll}03 & 81 & 70 & 03 & 31 & \underline{8}\end{array}$ $\begin{array}{llllll}12 & 59 & 30 & 12 & 93 & 40\end{array}$ $\begin{array}{llllll}14 & 8 & 85 & 14 & 32 \quad 45\end{array}$ $\begin{array}{llllll}25 & 20 & 98 & 25 & 55 & 92\end{array}$ $\begin{array}{llllll}36 & 16 & 79 & 36 \quad 92 & 31\end{array}$ $\begin{array}{llllll}37 & 65 & 38 & 37 & 90 & 37 \\ 48 & 27 & 78 & 48 & 92 & \frac{85}{2}\end{array}$ $\begin{array}{llllll}49 & 4 & 33 & 49 & 97 & \underline{6}\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 58 & 61 & 5 \mathrm{~A} & 28 & 89\end{array}$ 5B $87 \quad \underline{57} \quad 5 B \quad \underline{25} 70$ $\begin{array}{llll}68 & 77 & \overline{41} & 68 \\ 55 & 12\end{array}$ $6 \mathrm{~A} \quad \underline{7} 100 \quad 6 \mathrm{~A} \quad 18 \quad \overline{91}$ $\begin{array}{lllllll}79 & 99 & 86 & 79 & 55 & 88\end{array}$ $\begin{array}{llllll}7 C & 40 & 71 & 7 C & 79 & \underline{24}\end{array}$ 8D $15 \quad 52$ 8D $81 \quad \underline{18}$ | $9 A$ | 57 | $\underline{24}$ | $9 A$ | 36 |
| :--- | :--- | :--- | :--- | :--- |
| 19 | | | | | BE $86 \quad 7 \quad$ BE $35 \quad 77$ BF $10087 \quad$ BF $91 \quad 5$ CE 73 б \quad CE 5282 CF 86 63 CF 9340 DE 1799 DE $80 \underline{44}$ DF 5473 DF 8249

323	2038	3242080
01	$\underline{4} 91$	013448
02	53 2	$0275 \underline{59}$
03	6670	037694
12	$26 \quad 2$	1278
14	3676	$14 \underline{22} 98$
25	5295	259174
36	$82 \quad 14$	369264
37	$\underline{25} 73$	$37 \underline{23} 41$
48	96	483781
49	$\underline{27} 75$	$49 \underline{29}$
5 A	5272	5A $53 \quad 39$
5B	5614	5B 3892
67	5879	674015
6 C	$70 \quad 37$	6C 3413
7 D	1657	7D $\underline{1} 91$
89	$40 \quad 29$	894363
8E	2824	8E 4291
9 F	7561	9F 1533
AC	4346	AC 4524
AE	$17 \underline{50}$	AE $36 \underline{44}$
BD	$6 \underline{26}$	BD 9
BF	$\underline{6} 52$	BF 7981
CF	9277	CF 3717
DE	52	DE 4996

3252072	3262049	3272152	3282081
016160	016611	01 1 95	011978
029633	$02 \underline{9} 85$	022469	026240
$03 \quad 677$	039624	0371 29	0333 38
121955	122067	12 29 41	$12 \quad 889$
1489 29	146257	144655	14626
259084	$25 \underline{24} 87$	254034	$25 \underline{53} 40$
36863	$3618 \quad 37$	366266	$3657 \underline{47}$
377211	379245	$3727 \quad 32$	377466
4810035	485469	$4887 \quad 36$	486412
4963	495066	496741	$49 \quad 941$
5 A 5498	5A 8355	5A 4299	$5 \mathrm{~A} \quad \underline{5} 87$
5B 1482	5B 9549	5B 9177	5B 2952
$67 \quad 3687$	67265	$67 \underline{22} 7$	678158
6C $64 \underline{24}$	6C $\underline{2} 12$	6C $81 \underline{52}$	6C 8445
7D 3533	7D 78 3	7D 7389	7D 2426
89 9 60	893167	899831	895740
8E 371	8E 372	8E 9743	8E 22 53
9F 2680	9F 8 81	9F 1356	9F 414
AC 3197	AC $50 \underline{23}$	AC 5790	AC 7178
AE 1266	AE 259	AE 4010	AE 6794
BD 9171	BD $\underline{51} 76$	BD 9253	BD $78 \underline{42}$
BF 1622	BF 7432	BF 8154	BF 2445
CF 3938	CF 1617	CF 3673	CF 5935
DE 4132	DE 8765	DE $43 \underline{23}$	DE 8870

\section*{$\begin{array}{llllllll}335 & 2050 & 336 & 1966 & 337 & 2043 & 338 & 2112\end{array}$} $\begin{array}{lllllllll}01 & 80 & 6 & 01 & 96 & 40 & 01 & 64 & 29 \\ 02 & 97 & 79 & 02 & 17 & 78 & 02 & 96 & 8\end{array}$ $\begin{array}{lllllllllll}02 & 97 & 79 & 02 & 17 & 78 & 02 & 96 & 8 & 02 & 31\end{array} 92$ $\begin{array}{llllllllllll}03 & \underline{54} & 28 & 03 & 47 & 64 & 03 & \underline{47} & 69 & 03 & \underline{23} & 52\end{array}$ $\begin{array}{rrrrrrrr}12 & 1 & \frac{15}{2} & 12 & 74 & \frac{48}{} & 12 & 71 \\ 14 & 97 & 72 & 14 & 9 & 94 & 14 & 80 \\ 28\end{array}$ $\begin{array}{lllllllll}25 & 77 & 94 & 25 & 23 & 35 & 25 & 86 & 99\end{array}$ $\begin{array}{rrrrrrrrr}36 & 91 & 61 & 36 & 93 & \frac{3}{1} & 36 & \frac{77}{} & 21 \\ 37 & 9 & 17 & 37 & 9 & 10 & 37 & 46 & 58\end{array}$ $\begin{array}{lrrrrrrrr}37 & \underline{9} & 17 & 37 & \underline{9} & 10 & 37 & 46 & 58 \\ 48 & 66 & \underline{30} & 48 & \underline{10} & 10 & 48 & 0 & \underline{12}\end{array}$ $\begin{array}{lllllllll}49 & \underline{24} & 84 & 49 & 60 & 63 & 49 & \underline{50} & 76 \\ 5 \mathrm{~A} & 45 & \underline{41} & 5 \mathrm{~A} & 19 & \underline{6} & 5 \mathrm{~A} & 46 & \underline{80}\end{array}$ $\begin{array}{lllllllll}5 A & 45 & \underline{41} & 5 A & 19 & \underline{6} & 5 A & 46 & \underline{80} \\ 5 B & 10 & 95 & 5 B & \underline{9} & 92 & 5 B & 19 & 21\end{array}$ $\begin{array}{lllllllll}67 & 64 & 32 & 67 & 12 & 98 & 67 & \frac{62}{} & 92 \\ 6 \mathrm{C} & 45 & 32 & 6 \mathrm{C} & 39 & 68 & 6 \mathrm{C} & 9 & 8\end{array}$ $\begin{array}{llllllll}7 D & 77 & 49 & 7 D & \underline{35} & \frac{89}{2} & 7 D & \underline{2} \\ 89\end{array}$ $\begin{array}{lllllllll}8 \mathrm{~A} & 61 & 60 & 8 \mathrm{~A} & 5 & 91 & 8 \mathrm{~A} & 51 & 80\end{array}$ | 8C | 29 | $\underline{22}$ | 8C | 31 | 77 | | $8 C$ | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | | | | | | | | |
| $9 D$ | $\underline{67}$ | 5 | $9 D$ | 24 | $\underline{68}$ | $9 D$ | 37 | 58 | $\begin{array}{lllllllllllll}9 E & 80 & 38 & 9 E & 79 & 65 & 9 E & 45 & 24\end{array}$ $\begin{array}{llllllllr}\mathrm{AD} & 94 & \frac{40}{} & \mathrm{AD} & 76 & 29 & \mathrm{AD} & 96 & 8 \\ \mathrm{BE} & 36 & 90 & \mathrm{BE} & 41 & 24 & \mathrm{BE} & 14 & 44\end{array}$ $\begin{array}{lllllllll}\text { BE } & \frac{36}{5} & 90 & \text { BE } & \frac{41}{4} & 24 & \text { BE } & \frac{14}{5} & 44 \\ \text { BF } & 53 & 69 & \text { BF } & 45 & 66 & \text { BF } & 59 & 56\end{array}$ $\begin{array}{lllllllll}\mathrm{CF} & 56 & 75 & \mathrm{CF} & 55 & 33 & \mathrm{CF} & 20 & 10 \\ \mathrm{EF} & 19 & 61 & \mathrm{EF} & \underline{5} & 9 & \mathrm{EF} & 19 & 33\end{array}$

$\begin{array}{lrr}325 & 2072 \\ 01 & 61 & 60 \\ 02 & 96 & \frac{33}{} \\ 03 & \frac{6}{7} & 77 \\ 12 & 19 & 55 \\ 14 & 89 & 29 \\ 25 & 90 & 84 \\ 36 & 86 & 3 \\ 37 & 72 & 11 \\ 48 & 100 & 35 \\ 49 & 6 & 3 \\ 5 A & 54 & 98 \\ 5 B & 14 & 82 \\ 67 & \frac{36}{} & 87 \\ 6 C & 64 & 24 \\ 7 D & 35 & 33 \\ 89 & \underline{9} & 60 \\ 8 E & 3 & 71 \\ 9 F & 26 & 80 \\ \text { AC } & 31 & 97 \\ \text { AE } & 12 & 66 \\ \text { BD } & 91 & 71 \\ \text { BF } & 16 & 22 \\ \text { CF } & 39 & 38 \\ \text { DE } & \underline{41} & 32\end{array}$ 3332096 025040 $03 \quad 56 \quad 83 \quad 03 \quad 7399$ $\begin{array}{llllll}12 & \frac{68}{2} & 54 & 12 & 8 & 18 \\ 14 & 34 & 62 & 14 & 4 & 70\end{array}$ $\begin{array}{llllll}25 & 74 & 22 & 25 & 35 & 80 \\ 36 & 86 & 24 & 36 & 37\end{array}$ $\begin{array}{lll}36 & 86 & 24 \\ 37 & 81\end{array}$ | 48 | 92 | 24 |
| :--- | :--- | :--- | $\begin{array}{llllll}49 & 35 & 53 & 49 & 64 & 17 \\ 5 A & 13 & 34 & 5 A & 96 & \underline{47}\end{array}$ 5B 9163 $\begin{array}{llllll}67 & 38 & \overline{45} & 67 & 88 & 48 \\ 6 C & 58 & \overline{52} & & 6 C & 63\end{array}$ $\begin{array}{llllrr}7 D & 77 & \underline{24} & 7 D & \underline{0} & 73 \\ 8 A & 86 & 33 & 8 A & 49 & 86\end{array}$ 8C 79

$9 D$
61 $\underline{59}$ 9D $61 \quad \overline{13}$ 9D 2041 $9 \mathrm{E} \quad \underline{0} \quad 61 \quad 9 \mathrm{E} \quad 3 \quad \underline{9}$ $\begin{array}{llllll}\mathrm{AD} & \frac{2 \overline{4}}{} & 82 & \mathrm{AD} & 46 & \frac{12}{2} \\ \mathrm{BE} & \overline{47} & 25 & \mathrm{BE} & 28 & 77\end{array}$ $\begin{array}{llllll}\text { BF } & 53 & 14 & \text { BF } & 67 & \frac{20}{3} \\ \text { CF } & 48 & 75 & \text { CF } & 74 & 36\end{array}$ EF 1162 EF 5979 3482213 $\begin{array}{lll}01 & \underline{63} & 62 \\ 02 & 77 & \underline{44}\end{array}$ $0346 \overline{81}$ $\begin{array}{lll}12 & 95 & 61 \\ 14 & 43 & 63\end{array}$ $2546 \quad \underline{5}$ $36 \quad 57 \quad 50$ $\begin{array}{lll}37 & 84 & 48 \\ 48 & \underline{79} & 12\end{array}$ $4998 \quad 21$ $\begin{array}{lll}5 \mathrm{~A} & 72 & 92\end{array}$ $\begin{array}{lll}5 B & 20 & \frac{24}{65}\end{array}$ $6 \mathrm{~A} \quad \underline{7} 28$ 7C 4080 7D $61 \quad 37$ 8E 1180 $9 \mathrm{C} 84 \quad 81$ $\begin{array}{lll}9 F & 97 & 95 \\ \text { AF } & \underline{51} & 20\end{array}$ BD 7647 $\begin{array}{lll}\text { BE } & 48 & 67 \\ \text { CF } & 83 & 18\end{array}$ DE $30 \overline{65}$

3292095	3302094
019626	012839
$02 \quad 2197$	025324
038427	034292
129936	127373
147651	145661
$25 \quad 4312$	254084
$36 \quad 310$	3698 1
$3715 \quad 26$	377976
488980	486093
495497	491645
5A 56 92	$5 \mathrm{~A} \quad \underline{5} 53$
5B 1395	5B 1410
677763	6710045
6C 5783	6C 39 9
7D 10011	7D 6910
$8 \mathrm{~A} 33 \underline{44}$	$8 \mathrm{~A} 52 \underline{55}$
8C 2121	8C 7346
9D 5956	9D 2645
9E $77 \quad 24$	9E 6478
AD 2152	AD 8443
BE 4529	BE 3341
BF $53 \underline{37}$	BF 51 5
CF 2859	CF 1145
EF 9379	EF 1042
3392082	3401998

$\begin{array}{llllll}01 & 23 & 13 & 01 & 1 & \underline{77} \\ 02 & & 17 & 02 & 31 & 1\end{array}$ $\begin{array}{llllll}02 & 94 & 17 & 02 & \frac{31}{} & 1 \\ 03 & 78 & 92 & 03 & 52 & 59\end{array}$ $\begin{array}{llllll}12 & 51 & 74 & 12 & 76 & 31\end{array}$ $\begin{array}{lrrrrr}14 & 4 & 9 & 14 & 79 & \frac{14}{75} \\ 25 & 89 & \underline{67} & 25 & \underline{16} & 75\end{array}$ $36 \quad \underline{57} \quad \overline{62} \quad 36 \quad \overline{14} \quad 42$ $\begin{array}{lllllr}37 & 97 & \underline{28} & 37 & 63 & 8 \\ 48 & \underline{14} & 33 & 48 & 81 & \underline{18}\end{array}$ $\begin{array}{rlllrl}49 & 96 & 29 & 49 & 74 & 38 \\ 5 \mathrm{~A} & 20 & \underline{12} & 5 \mathrm{~A} & \underline{9} & 42\end{array}$ 5B $10 \quad 97$ $\begin{array}{llllll}68 & 82 & 88 & 68 & \underline{18} & 19\end{array}$ $\begin{array}{lllll}6 A \quad 93 & 79 & 6 A 12 & 38\end{array}$ $\begin{array}{llllll}79 & 67 & 63 & 79 & 8 & 12 \\ 7 C & 14 & 33 & 7 C & 39 & 10\end{array}$ $\begin{array}{lllllll}7 C & 14 & 33 & 7 C & 39 & 10\end{array}$ $\begin{array}{lrrrrr}8 \mathrm{D} & \underline{5} & 7 & 8 \mathrm{D} & 89 & 93 \\ 9 \mathrm{~A} & \underline{78} & 84 & 9 \mathrm{~A} & 98 & \underline{4}\end{array}$ BE $\underline{51} 69$ BE $85 \underline{45}$ $\begin{array}{lllll}\text { BF } & \overline{44} & \frac{54}{4} & \text { BF } & 67 \\ \text { CE } & 73 & 95 \\ 4 & & \text { CE } & 91 & 36\end{array}$ $\begin{array}{rrrrrr}\text { CF } & 35 & 73 & \text { CF } & 11 & 80 \\ \text { DE } & 36 & 15 & D E & \frac{87}{87} & 25\end{array}$ DF $\underline{35} 38$ DF $84 \quad \underline{3}$
$3492086 \quad 3502060$ $\begin{array}{llllll}01 & 32 & 6 & 01 & 16 & 49\end{array}$ $\begin{array}{lllllll}02 & 16 & 77 & 02 & 6 & 45\end{array}$ $\begin{array}{llllll}03 & 86 & 94 & 03 & 47 & \underline{6}\end{array}$ $\begin{array}{llllll}12 & 40 & 51 & 12 & 42 & 64\end{array}$ $\begin{array}{llllll}14 & 90 & 86 & 14 & \underline{36} & 49\end{array}$ $\begin{array}{llllll}25 & 10 & 57 & 25 & \overline{18} & 22\end{array}$ $36 \quad \overline{45} \quad \underline{2} \quad 36 \quad \overline{57} \quad \underline{36}$ $\begin{array}{llllll}37 & 28 & 25 & 37 & 73 & 22 \\ 48 & 97 & 98 & 48 & 50 & 78\end{array}$ $\begin{array}{lllll}49 & 49 & 18 & 49 & 57 \\ 86\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 48 & 30 & 5 \mathrm{~A} & \underline{84} 96\end{array}$ 5B $\quad 7 \quad 64 \quad$ 5B 2961 $\begin{array}{llllll}68 & 59 & 16 & 68 \quad 26 \quad 61\end{array}$ $\begin{array}{llllll}6 \mathrm{~A} & 89 & \overline{41} & 6 \mathrm{~A} & 85 & \underline{55}\end{array}$ $\begin{array}{llllll}7 C & 27 & 97 & 7 C & 30 & 79 \\ 7 D & 12 & 19 & 7 D & 69 & 28\end{array}$ $\begin{array}{llllll}\text { 8E } & 95 & 93 & & 8 \mathrm{E} & \frac{41}{} \\ \text { 9C } & 92 & \frac{29}{29} & 9 \mathrm{C} & 58 & 66\end{array}$ $\begin{array}{lllllll}9 F & 38 & 31 & 9 F & 55 & \underline{27}\end{array}$ AF $98 \quad 36 \quad$ AF $31 \quad 91$ BD $\quad \underline{8} 48$ BD 170 $\begin{array}{llllrl}\mathrm{BE} & 88 & 37 & \mathrm{BE} & 79 & 31 \\ \mathrm{CF} & \underline{46} & 30 & \mathrm{CF} & 1 & 52\end{array}$ DE $87 \quad 32$ DE 5922
$3512119 \quad 3522160$ 016023016178 $02 \quad 68 \quad 77 \quad 02 \quad 88 \quad \underline{31}$ $03 \quad \underline{6} 93 \quad 03 \quad 13 \quad 72$ $\begin{array}{llllll}12 & 24 & 83 & 12 & 77 & 58\end{array}$ $\begin{array}{llllll}14 & 79 & 51 & 14 & 72 & 67\end{array}$ $25 \quad \underline{79} \quad \overline{70} \quad 25 \quad \overline{91} \quad \underline{39}$ $36 \underline{\underline{17}} 90 \quad 36 \quad \underline{57} \quad 4$ $37 \overline{32} 69$ $4873 \quad 8$ $\begin{array}{llll}49 & 25 & 99 \\ 5 A & 41 & 86\end{array}$ 5B $\underline{82} 39$ $68 \underline{48} 13$

 $\begin{array}{llllll}7 \mathrm{C} & \underline{1} & 56 & 7 \mathrm{C} & \underline{28} & 59\end{array}$ $\begin{array}{llllll}7 D & 2 & \underline{2} & 7 D & 50 & \underline{49}\end{array}$ 8E $1681 \quad 8 \mathrm{E} 8135$ $9 \mathrm{C} \quad 8 \quad \underline{41} \quad 9 \mathrm{C} 60 \quad 84$ $9 F \quad 58 \quad 84 \quad 9 F \quad 25 \quad 24$ AF $\overline{69} \quad \frac{50}{23} \quad A F \quad \overline{39} \quad 19$ | BD | 94 | $\overline{23}$ | BD | $\underline{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| 87 | | | | | $\begin{array}{llllll}\text { BE } & 21 & 71 & \text { BE } & 41 & 21 \\ \mathrm{CF} & 73 & 17 & \mathrm{CF} & 83 & 30\end{array}$ DE 72 31 DE 9969

36119963622020

 $01 \quad \underline{0} \quad 65 \quad 01 \quad \underline{90} 65$ $\begin{array}{lllll}02 & 37 & 29 & 02 & \overline{97}\end{array} 46$ $\begin{array}{llllll}03 & 77 & \underline{48} & 03 & 34 & \underline{34}\end{array}$ $\begin{array}{llllll}12 & 62 & 23 & 12 & 4 & 73 \\ 14 & 3 & 86 & 14 & 64 & 87\end{array}$ $\begin{array}{llllll}14 & \underline{3} & 86 & 14 & 64 & 87\end{array}$ $\begin{array}{llllll}25 & \frac{39}{} & 60 & 25 & 7 & 28 \\ 36 & 28 & 100 & 36 & 35 & 19\end{array}$ $\begin{array}{llllll}37 & 18 & 30 & 37 & 32 & 28 \\ 78 & \end{array}$ $48 \quad 12 \quad \overline{78} \quad 48 \quad 33 \quad \overline{68}$ $\begin{array}{llllll}49 & \underline{47} & 76 & 49 & 96 & \frac{52}{36}\end{array}$ $\begin{array}{llllll}5 \mathrm{~A} & 36 & 94 & 5 \mathrm{~A} & 96 & 75\end{array}$ $\begin{array}{lllllll}5 B & 18 & 93 & 5 B & 19 & 35\end{array}$ $\begin{array}{llllll}68 & 26 & 57 & 68 & 94 & 27 \\ 6 \mathrm{C} & 9 & 19 & 6 \mathrm{C} & 49 & 85\end{array}$ $\begin{array}{llllll}79 & 87 & \frac{19}{34} & 79 & 69 & 57\end{array}$ $\begin{array}{lrllll}\text { 7D } & 62 & \underline{3} & 7 D & 72 & 20 \\ \text { 8D } & \underline{1} & 1 & 8 D & 68 & 77\end{array}$ $\begin{array}{llllll}9 C & 89 & 73 & 9 C & 82 & 54\end{array}$ AE $\frac{32}{62} 75$ AE $95 \quad 94$ $\begin{array}{llllll}A F & 66 & 40 & A F & 15 & 4\end{array}$ BE $59 \overline{45}$ BE $\underline{6} 50$ $\begin{array}{llllll}\mathrm{BF} & 79 & 49 & \mathrm{BF} & 78 & 23 \\ \mathrm{CE} & \frac{13}{13} & 11 & \mathrm{CE} & 19 & 23\end{array}$ DF $58 \quad \underline{64}$ DF $78 \quad \underline{8}$
$3712029 \quad 3722177$

$\begin{array}{llllll}01 & 47 & 28 & 01 & 85 & 72\end{array}$ $02 \quad 76 \quad 57 \quad 02 \quad 44 \quad 75$ $03 \quad 93 \quad \underline{0} \quad 038173$ $\begin{array}{lllll}12 & 84 & 60 & 12 & \underline{4} 96\end{array}$ $\begin{array}{lllll}14 & \underline{4} & 62 & 14 & 92 \\ 88\end{array}$ $\begin{array}{lllll}25 & 85 & 24 & 25 & 96\end{array} 46$ $36 \quad 95 \quad \overline{38} \quad 36 \quad \overline{85} \quad 72$ $\begin{array}{llllll}37 & 43 & 64 & 37 & 53 & \frac{23}{1}\end{array}$ $\begin{array}{llllll}48 & 50 & 78 & 48 & 11 & 78\end{array}$ $49 \quad$| 48 | 48 | 49 | 89 | 28 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}5 \mathrm{~A} & 36 & \underline{57} & 5 \mathrm{~A} & 59 & 79\end{array}$ 5B $\quad 4 \quad \overline{84} \quad 5 \mathrm{~B} \quad \underline{1} 51$ $\begin{array}{llllll}68 & 30 & 18 & 68 & 98 & 78\end{array}$ 6C $95 \overline{90} \quad 6 \mathrm{C} \quad \underline{78} 71$ $\begin{array}{llllll}79 & 29 & 11 & 79 & 13 & 41\end{array}$ 7D $\underline{53} 68$ 7D $26 \underline{28}$ 8E $97 \underline{26} \quad 8 \mathrm{E} 7965$ $\begin{array}{lllllll}9 F & \underline{6} & 19 & 9 F & 97 & 14\end{array}$ AC $63 \quad 30 \quad$ AC $87 \quad 35$ $\begin{array}{llllll}A F & 17 & 36 & \text { AF } & \underline{8} & 4\end{array}$ BD $39 \quad \underline{5} \quad$ BD 2594 $\begin{array}{lllllll}\text { BE } & 16 & 41 & \text { BE } & 18 & 87 \\ \text { CF } & 75 & 67 & C F & \underline{81} & 53\end{array}$ CF $\overline{75} \quad 67 \quad$ CF $\overline{81} 53$ DE 9157 DE 8563

3532120 013855 $02 \quad 4 \quad 50$ 037168 125497 149480 $\begin{array}{lll}25 & \frac{35}{71} \\ 36 & \overline{72} & 97\end{array}$ $37 \quad 39 \quad 23$ $4869 \quad \frac{23}{64}$ $\begin{array}{lll}49 & 30 & \underline{28} \\ 5 A & 55 & 36\end{array}$ 5B $43 \quad 82$ $68 \quad \underline{2} 33$ 6A $82 \quad 1$ 7C 9916 7D $93 \underline{63}$ 8E $62 \quad 34$
9 C
88 9F 58 38 AF $62 \overline{65}$ $\begin{array}{lll}\text { BD } & 10 & 81 \\ \text { BE } & 51 & \underline{41}\end{array}$ CF $23 \underline{68}$ DE 5377 $\begin{array}{lllllll}363 & 2012 & 364 & 2152 \\ 01 & \underline{24} & 34 & 01 & 0 & \underline{75} \\ 02 & 41 & 42 & 02 & \underline{61} & 79 \\ 03 & 6 & \underline{44} & 03 & 99 & 84 \\ 12 & \underline{34} & \underline{69} & 12 & 40 & 77 \\ 14 & \underline{92} & 1 & 14 & 99 & \underline{47} \\ 25 & \frac{56}{21} & 21 & 25 & \underline{22} & 20 \\ 36 & 70 & \underline{14} & 36 & 23 & 97 \\ 37 & 55 & 18 & 37 & \underline{35} & 75 \\ 48 & 68 & \underline{6} & 48 & \underline{60} & 16 \\ 49 & \underline{44} & 83 & 49 & 92 & \underline{44} \\ 5 A & \underline{38} & 4 & 5 A & \underline{85} & 39 \\ 5 B & 53 & 87 & 5 B & 89 & 93 \\ 68 & 34 & 0 & 68 & \underline{11} & 58 \\ 6 C & 41 & 54 & 6 C & 39 & \frac{82}{8} \\ 79 & 74 & \underline{8} & 79 & \underline{11} & 85 \\ 7 D & 74 & 11 & 7 D & 41 & 93 \\ 8 D & 68 & \underline{7} & 8 E & \underline{25} & 13 \\ 9 C & 37 & 98 & 9 F & 1 & 58 \\ \text { AE } & 90 & 40 & \text { AC } & 66 & 88 \\ \text { AF } & 61 & 94 & \text { AF } & \underline{22} & 60 \\ \text { BE } & \underline{0} & 41 & \text { BD } & 98 & \underline{19} \\ \text { BF } & 25 & 88 & \text { BE } & 44 & 70 \\ \text { CE } & 89 & \underline{0} & \text { CF } & 20 & \underline{6} \\ \text { DF } & 51 & \underline{22} & \text { DE } & 56 & \underline{7}\end{array}$

$\begin{array}{lll}01 & 65 & \underline{47} \\ 02 & 82 & 79 \\ 03 & \frac{33}{} & 69 \\ 12 & 62 & 26 \\ 14 & 79 & 78 \\ 25 & 88 & \underline{51} \\ 36 & \frac{59}{93} & 93 \\ 37 & 68 & 90 \\ 48 & 35 & 59 \\ 49 & 68 & \underline{14} \\ 5 A & 29 & \underline{20} \\ \text { 5B } & 45 & 38 \\ 68 & \frac{26}{} & 14 \\ 6 C & 97 & 68 \\ 79 & \underline{54} & 82 \\ 7 D & 92 & \frac{89}{59} \\ \text { 8E } & 10 & 59 \\ 9 F & 64 & 1 \\ \text { AC } & 27 & 84 \\ \text { AF } & 23 & \frac{2}{2} \\ \text { BD } & \underline{7} & 48 \\ \text { BE } & 38 & 63 \\ \text { CF } & \frac{27}{37} & \\ \text { DE } & 97 & 43\end{array}$ $\begin{array}{llllll}375 & 2124 & 376 & 2058 & 377 & 2156\end{array}$ $\begin{array}{lllllllll}01 & 71 & 48 & 01 & \underline{2} & 68 & 01 & 53 & 30\end{array}$ $0241 \quad \overline{13} \quad 02100 \quad 26 \quad 0286 \quad \overline{27}$ $\begin{array}{lllllllll}03 & 81 & 13 & 03 & 28 & \underline{58} & 03 & 67 & 65\end{array}$ $\begin{array}{llllllll}14 & 95 & 85 & 14 & \underline{4} & 3 & 14 & 53 \\ 15 & \frac{19}{9}\end{array}$ $\begin{array}{rrrrrrrrr}15 & 81 & \underline{0} & 15 & 30 & 79 & 15 & 11 & 9 \\ 24 & \underline{2} & 16 & 24 & 44 & 65 & 24 & 18 & 90\end{array}$ $\begin{array}{llllllllll}25 & 70 & 26 & 25 & 80 & 78 & 25 & 86 & \underline{62}\end{array}$ $\begin{array}{lllllllll}34 & 20 & \underline{85} & 36 & 70 & 70 & 36 & 45 & \underline{1} \\ 36 & \underline{11} & \mathbf{3 3} & 37 & 98 & \underline{40} & 37 & \underline{54} & 99\end{array}$ $\begin{array}{llllllll}57 & 42 & \underline{69} & 46 & \underline{8} & 40 & 46 & 87 \\ 50\end{array}$ | 68 | 45 | 71 | 58 | $\underline{20}$ | 63 | 58 | 78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 89 | | | | | | | |

 $\begin{array}{lllllllll}7 \mathrm{~A} & 25 & \frac{31}{1} & 7 \mathrm{~A} & 67 & 21 & 7 \mathrm{~A} & 92 & 66 \\ 7 \mathrm{~B} & 87 & 41 & 7 B & 2 & \underline{31} & 7 \mathrm{~B} & 45 & 43\end{array}$
 8D $\begin{array}{lllllll}62 & \underline{25} & \text { 8D } & \underline{49} & 98 & 8 D & 71 \\ 33\end{array}$ 9E $\quad \underline{6} \quad 51 \quad 9 \mathrm{E} \quad \underline{25} 20 \quad 9 \mathrm{E} 26 \quad 69$ 9F $40 \quad \underline{26} \quad 9 \mathrm{~F} \quad 38 \quad 68 \quad 9 \mathrm{~F} \quad 61 \quad 16$ AC 8499 AE $67 \quad \underline{53}$ BD $85 \stackrel{94}{94}$ BF $\begin{array}{lllllll}71 & 86 & \text { BD } 84 & \underline{3} & \text { BD } 73 & \underline{73} \\ 78\end{array}$ $\begin{array}{llllllllll}\mathrm{BF} & 71 & 86 & \mathrm{BF} & 37 & 14 & \text { BF } & 52 & 18 \\ \mathrm{CF} & 14 & 59 & \mathrm{CF} & 4 & 82 & \mathrm{CF} & 70 & 63\end{array}$ $\begin{array}{llllll}\text { DE } 92 & 73 & \text { DE } & 58 & 70 & \text { DE } \\ 37 & 72\end{array}$

358	2007				
01	64	92			
02	36	40			
03	$\frac{31}{}$	71			
12	$\underline{10}$	37			
14	57	$\underline{29}$			
25	51	48			
36	71	0			
37	38	89			
48	85	81			
49	90	$\underline{51}$			
5A	97	88			
5B	$\underline{2}$	15			
68	$\underline{17}$	28			
$6 C$	86	19			
79	$\underline{2}$	71			
$7 D$	7	$\underline{22}$			
$8 D$	$\underline{19}$	87			
$9 C$	90	74			
AE	$\underline{5}$	49			
AF	33	$\underline{79}$			
BE	66	12			
BF	$\underline{66}$	74			
CE	13	$\underline{15}$			
DF	87	23			
368	2014		$01 \quad 17 \quad 70$ $02 \quad 17 \quad 4$ $0391 \quad \underline{31}$ $\begin{array}{llll}12 & 6 & \overline{48}\end{array}$ 143651 $\begin{array}{lll}25 & 16 & 28 \\ 36 & 34 & 12\end{array}$ $\begin{array}{lll}36 & 34 & 12 \\ 37 & 79 & 64\end{array}$ 489270 $\begin{array}{lll}49 & 32 & \underline{2} \\ 5 \text { A } & 18 & 93\end{array}$ 5B $45 \quad 25$ $\begin{array}{lll}68 & 40 & \underline{29} \\ 6 C & 16 & 93\end{array}$ 799645 7D $\underline{24} 44$ $\begin{array}{lll}8 \mathrm{E} & 5 & \underline{2}\end{array}$ 9F $24 \underline{42}$ $\begin{array}{lll}\text { AC } & 10 & 19 \\ \text { AF } & 72 & 44\end{array}$ BD $43 \quad 86$	BE	38
:---	:---				
CF	99				
16		$\begin{array}{llll}\text { CF } & \overline{81} & 16 \\ \text { DE } & \overline{75} & 87\end{array}$ 3782053 $01 \underline{23} 30$ $02 \quad \underline{66} \underline{19}$ $\begin{array}{lll}03 & 80 & 65 \\ 14 & 65 & 15\end{array}$ $15 \quad 3456$ $\begin{array}{lll}24 & 43 & 6 \\ 25 & 72 & 17\end{array}$ $36 \quad 1622$ $37 \overline{52} \quad 75$ $46 \quad 20 \quad 41$			

$58 \underline{43} \quad 93$ 696172 $\begin{array}{llll}7 A & 95 & \frac{22}{} \\ 7 B & 42 & 87\end{array}$ 8C $\underline{29} 69$ 8D 4298 9E 5216 9F $65 \overline{80}$ AC $75 \quad 51$
AE $83 \quad 20$ BD $\underline{23} 34$ $\begin{array}{lll}\text { BF } & 17 \\ \text { CF } 21 & \frac{49}{82}\end{array}$ DE 36

3591991	360
011242	019878
02	0227
039253	036679
1269	128442
142024	14 33 14
2518	258482
3618 28	$3693 \quad 35$
$37 \quad 3447$	12
481392	65
493586	495276
5A 16	5A 4272
5B 1034	5B 70
6861	683117
6C 3014	6C 4150
798871	7961
7D 8935	7D 1510
8D $2 \underline{37}$	8D 6840
9C $\quad 3615$	$9 \mathrm{C} \quad \underline{6} 51$
AE 1390	AE 9847
AF 5079	$86 \underline{21}$
BE 3999	15
BF 6576	9714
CE 750	CE 13
DF 54	$\underline{63}$
3692076	8
012629	4776
6237	$71 \quad 39$
$0371 \underline{44}$	0385
$12 \quad 898$	$12 \underline{79}$
14356	489
$25 \underline{30} 21$	254832
$3681 \quad 13$	361883
377311	374316
1992	486293
494860	4959
5A 6569	5A 4122
5B 10	5B $10 \quad 31$
681393	$68 \quad \underline{4} 6$
6C 54	6 C 13
$79 \underline{43} 49$	7954
7D $86 \underline{69}$	7D 26
8E 7818	8E 6447
9F 7453	9F 70
6746	AC
7519	AF 7683
BD 1998	BD 5386
BE 1097	36
CF 8311	63
DE $97 \underline{57}$	62
3792080	3801994
0139 93	19423
029384	0276
03899	0313
149655	1487
1543	154560
$24 \underline{44} 65$	$24 \underline{27}$
256855	2552
3678	$36 \underline{91} 96$
$37 \underline{51} 92$	3795
461725	4623
$58 \quad 6 \quad \underline{5}$	583163
695792	$69 \underline{17}$
7A 8719	$7 \mathrm{~A} 31 \underline{49}$
7B 9727	7B 1370
8C 2919	8C $\underline{25} 20$
8D 3815	8D $88 \underline{45}$
$9 \mathrm{E} 62 \underline{34}$	$9 \mathrm{E} \underline{17} 92$
$9 \mathrm{~F} \underline{34} 82$	9F 9435
AC 87 1	AC $73 \underline{19}$
AE 4920	AE 8383
BD 066	BD 5810
BF 88 38	BF $\quad \underline{3} 16$
CF 2157	CF 8289
DE 7517	DE $92 \underline{44}$

3812102	3821996
015765	018261
026157	028347
037742	$03 \quad 3035$
141576	1437
159181	$15 \quad 790$
246265	2479100
$2570 \underline{46}$	$2592 \underline{26}$
366913	3673
$3790 \underline{44}$	377854
$46 \underline{49} 82$	4677
$5857 \quad 10$	58864
$69 \underline{12} 27$	6925 38
7A $47 \underline{19}$	7A $66 \underline{13}$
7B 7394	7B 7563
8C $81 \underline{27}$	8C 23
8D 548	8D 11
$9 \mathrm{E} \underline{59} 89$	9E 62
9F 1451	9F 23
AC 4898	AC 6286
AE 3453	AE 9683
BD $28 \underline{17}$	BD 3833
BF 2390	BF 6330
CF $2 \underline{37}$	CF 43 38
DE $50 \underline{45}$	DE $\underline{23} 16$
3912128	3922033
$0146 \underline{29}$	012890
027898	$02 \quad 3 \quad 86$
$03 \underline{50} 57$	034613
143859	149540
159816	156372
$2454 \underline{25}$	$24 \quad \underline{5} 35$
267322	265399
351052	357467
$37 \underline{41} 42$	$3760 \quad 35$
$4747 \underline{58}$	471924
$58 \quad 7 \underline{44}$	$58 \underline{48} 17$
699625	699634
6 A $\underline{2} 66$	6 A 4226
7B 4037	7B 70
8C 9453	8C 9688
8D $89 \underline{55}$	8D 2440
$9 \mathrm{C} \underline{16} 30$	9C 94
$9 \mathrm{E} \quad 554$	9E $75 \underline{47}$
AD 9335	AD 5143
AF 8133	AF $\underline{9} 59$
BE $\underline{27}$	BE 9589
BF $35 \underline{37}$	BF 9360
CF 3680	CF $58 \underline{23}$
DE 3919	DE 3662

3832143	3842093	385211	3862083	387
9922	018611	016115	018456	$0 \underline{35}$
48	$02 \underline{28} 47$	023116	0230	029820
0335	0361	036259	$03 \underline{49} 23$	031089
3138	$1446 \underline{25}$	14 33 75	141447	1418
$1598 \underline{41}$	$15 \underline{54} 75$	154471	157510	53157
$2466 \underline{57}$	247449	249281	246953	17
7121	$26 \quad 3378$	$2611 \quad 37$	268273	2639 38
8682	$3547 \quad 18$	$35 \underline{25} 43$	$35 \underline{46} 36$	3545
$97 \underline{12}$	363259	365243	362274	363865
8919	8	477335	474125	477777
$5817 \quad 32$	589744	58688	584117	$58 \quad 392$
$69 \quad \underline{9} 65$	$69 \underline{84} 15$	$6975 \underline{28}$	693317	6960 85
9267	7 A 3594	$7 \mathrm{~A} 89 \underline{12}$	$7 \mathrm{~A} 68 \underline{65}$	$7 \mathrm{~A} 39 \quad 26$
9456	7B 6576	B $\quad \underline{0} 76$	7B 2365	7B $85 \underline{24}$
$78 \underline{55}$	8C 87	8C 3473	$8 \mathrm{C} 5 \underline{47}$	$8 \mathrm{C} \quad 1 \quad 17$
8478	8D 745	8D $86 \underline{27}$	8D $\quad 3 \quad 70$	8D 9516
42	9E 6364	9 E 9689	9E 5699	9E 90
3285	9F 1080	9F $14 \quad 80$	9 F 85	9F 27
6989	AC 8722	AC 35	AC 7970	AC $89 \underline{26}$
$44 \quad 24$	5143	AE 66	AE 5881	AE 13
7239	2857	BD 9959	BD 6297	BD $1 \underline{43}$
7335	BF $31 \underline{16}$	BF 6588	BF 2576	BF 3573
47	CF 3695	71	CF 7335	CF 9327
2167	6883	9723	DE 1857	38
2087	2126	952037	62053	3972115
018388	1299	019155	$0171 \quad 37$	$01 \underline{26}$
$51 \underline{47}$	028067	$02 \underline{20} 49$	$02 \underline{38} 75$	82
$03 \underline{23} 43$	037676	0363 35	03756	0322 35
$\underline{24} 73$	141497	145131	146952	$14 \quad \underline{6} \quad 27$
58	153011	594 28	$1577 \underline{42}$	39
2489 36	247758	242291	$24 \underline{14} 49$	86
$26 \quad 587$	$2685 \underline{42}$	$26 \underline{13} 31$	263554	2645
5035	$35 \quad 8 \quad 38$	359293	358153	$3536 \underline{20}$
$37 \quad 188$	371365	373718	$3742 \underline{12}$	375596
6330	3776	475064	47 56 90	58
588965	$58 \underline{52} 82$	587362	58710	$5896 \underline{61}$
6918 82	$696 \underline{49}$	$69 \underline{89}$	691643	6933
$6 \mathrm{~A} \underline{77} 71$	6A 7963	6 A 2044	6 A 4916	4456
$\underline{22} 68$	7B 525	7B 87	7B 9330	$7 \mathrm{~B} \underline{53}$
4976	8C 5179	8C $37 \underline{42}$	8C 5116	8 C 50
8D $49 \underline{81}$	8D 5294	8D 4349	8D 3937	8D 7060
9 C 30110	9C 6616	$9 \mathrm{C} \quad \underline{6} 90$	9 C 7276	9C 9440
9E 6984	9E 7648	9E 3432	$9 \mathrm{E} \quad \underline{5} 71$	9 E 85
AD $\quad \underline{5} 82$	AD $\underline{22} 36$	AD 56	AD $34 \underline{22}$	AD $23 \underline{51}$
AF 7296	AF 2885	AF $\underline{28} 66$	AF 7023	AF $\underline{59} 51$
BE 1297	BE $94 \underline{23}$	BE 69	BE 5780	BE $\underline{37} 79$
F 9291	BF 5393	BF 29 34	BF 1637	BF 98
CF 311	CF 67 39	CF 5482	CF 50 73	CF $74 \underline{20}$
DE 8963	DE 2760	DE 80	DE 4415	DE 34

189	389207	390
011526	01265	01611
022333	029375	17
038441	035083	0383
14686	146819	14
154345	$15 \quad 190$	597
249044	246952	31
266876	2613	$26 \underline{28}$
5216	354271	35
$36 \underline{25} 57$	365383	99
477080	$4786 \underline{26}$	4789
585579	$58 \underline{19} 71$	58 48
6986	$69 \underline{48} 87$	6948
7A 9550	7A 6989	7 A 71
81	7B 80 32	B $\underline{54}$
8C 1055	8C 5354	37
8D $74 \underline{45}$	8D $\underline{2} 37$	8D $\underline{5}$
9E 8697	9E 2953	9E 83
4585	9F 4144	$9 \mathrm{~F} \underline{69}$
AC 4781	AC $16 \underline{34}$	AC 55
AE $96 \underline{53}$	AE 37	AE 55
6896	BD 1189	BD 50
BF 1617	BF 7414	57
CF 3475	CF 90	96
DE 3676	DE 7316	32
3982118	3992167	4002167
$01 \quad 170$	015862	1
0280	024218	0212
037982	033816	$03 \underline{12}$
$14 \underline{34}$	145788	1415
156562	$15 \underline{59} 74$	1570
243459	$24 \underline{23} 35$	38
$26 \quad 286$	$2621 \quad 27$	$\underline{50}$
351566	354776	3596
$3792 \underline{62}$	3773 55	$37 \underline{16}$
$47 \underline{42} 30$	$47 \underline{20} 48$	52
$58 \underline{48} 47$	$58 \underline{28} 81$	5850
691598	699684	69 56
6 A 2910	$6 \mathrm{~A} 28 \underline{40}$	6A 91
7B 4869	7B 8455	7 B 40
8C 3965	8C 6866	8 C
8D $\underline{25} 64$	8D $\underline{81} 62$	8D 50
9C 9274	9C $17 \underline{46}$	9C 99
$9 \mathrm{E} \underline{61} 25$	9E 8798	9E 29
AD $49 \underline{24}$	AD 7634	AD 49
AF 8760	AF 7841	AF 94
BE 7067	BE $73 \underline{21}$	BE 95
BF 1385	BF 4998	BF 16
CF $17 \underline{31}$	CF 10017	CF $78 \underline{68}$
DE 239	DE $\underline{27} 11$	DE 38

Appendix C

Implementation of graph reduction algorithm

This appendix gives a complete implementation of Algorithms 3.1 to 3.4 for GNU Octave / MATLAB. All graph inputs should be adjacency matrices. The function graph_reduction returns a cell vector of function handles, which may be passed as the first argument to apply_reduction. The function handles in this vector may be one or more of red_cut, red_cycle, red_diamond, red_forced, red_hcycle, red_H, red_I, red_NH, red_path, red_pinwheel, red_radial and red_triangle. The functions eorbits, config and nauty_write are used to calculate the edge orbits as necessary by executing dreadnaut from the nauty software package [55].

For convenience, the source code is distributed under the GNU General Public License and may be downloaded from the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website: http://fhcp.edu.au. To use the implementation it is necessary that a correct path to dreadnaut be set in config.m. The current URL for nauty is http://pallini.di.uniroma1.it/.

Before listings of the code we give a short example of usage:
>> petersen $=\left[\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right.$
1010001000
0101000100
\qquad
$\begin{array}{llllllllll}1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$ 1000000110 01000000011 0010010001

```
>> P = graph_reduction(petersen)
P =
{
    [1,1] = @red_NH
    [1,2] = @(g) red_forced (g, 9, 4)
    [1,3] = @(g) red_pinwheel (g, 2, 3, 7)
    [1,4] = @(g) red_radial (g, 1, 2, 5, 6)
}
>> reduced = apply_reduction(P, petersen)
reduced =
    0}
    10
```

Code listings are now given in the order they are referenced, starting with the two functions comprising the main interface; graph_reduction and apply_reduction. An index to the files is shown below:
C. 1 graph_reduction.m 206
C. 2 apply_reduction.m 212
C. 3 red.H.m 212
C. 4 red_I.m 212
C. 5 red_NH.m 212
C. 6 red_forced.m 212
C. 7 red_path.m 213
C. 8 red_cycle.m 213
C. 9 red_triangle.m 214
C. 10 red_diamond.m 214
C. 11 red_hcycle.m 215
C. 12 red_cut.m 215
C. 13 red_radial.m 216
C. 14 red_pinwheel.m 217
C. 15 eorbits.m 217
C. 16 config.m 219
C. 17 nauty_write.m 219

Listing C.1: graph_reduction.m

```
% p = graph_reduction(g)
%
% Find a Hamiltonicity-preserving graph reduction
% g should be an adjacency matrix of a simple undirected graph
% degree O vertices will be treated as absent from the graph
% P is a cell vector of function handles which should be applied to g
% P will be empty if no applicable graph reduction was found
%
% Use apply_reduction(P, g) to produce the resulting graph
function P = graph_reduction(g)
if (~issimple(g))
    error('g is not a simple graph')
end
P = {};
while true
        if (length(P) > 1 && isequal(P{1}, @red_NH))
        return
    end
    if (~is2connected(g))
        P = {@red_NH, P{:}};
        return
    end
    n = nvertices(g);
    if (2*nedges (g) == n*(n-1))
        % g}\mathrm{ is complete (and 2-connected as above)
        P = {@red_H, P{:}};
        return
    end
    if (min_nonadjacent_deg_sum(g) >= n)
        % satisfies necessary condition in Ore's theorem
        P = {@red_H, P{:}};
        return
    end
    F = forced_edges(g);
    p = forced_edge_reduction(g, F);
    if (~isequal(p, @red_I))
        P = {p P{:}};
        g = p(g);
        continue
    end
    p = subgraph_reduction(g);
    if (~isequal(p, @red_I))
        P = {p P{:}};
        g = p(g);
        continue
    end
    p = edge_orbit_reduction(g, F);
    if (~isequal(p, @red_I))
        P = {p P{:}};
        g = p(g);
        continue
    end
    % no more reductions found
    return
end
function p = forced_edge_reduction(g, F)
n = nvertices(g);
if (max(sum(F)) > 2)
    % too many forced edges at a vertex
    p = @red_NH;
    return
end
for u = find(sum(F) == 2 & sum(g) > 2, 1)
    p = eval(['@(g) red_forced(g' sprintf(',%d', u, find(g(u,:)-F(u,:))) '')']);
    return
end
H = vsubgraph(g, sum(g)==2);
for c=components(H, sum(g)~=2)
    if (sum(c) > 1)
        if ( }\textrm{n}==3\mathrm{ )
            p = Ored_I;
            return
```

```
        end
        V = trace_path(vsubgraph(H,c));
        if (length(V) > n-2)
                V = V(1:n-2);
        end
        p = eval(['@(g) red_path(g' sprintf(',%d', V) ')']);
        return
    else
        v = find(c);
        V = adjacent(g,v);
        if (g(V(1),V(2)))
            p = eval(['@(g) red_cycle(g' sprintf(',%d', V(1), v, v(2)) ')']);
            return
        end
    end
end
p = @red_I;
function p = subgraph_reduction(g)
if (nvertices(g) <= 4)
    p = @red_I;
    return
end
deg = sum(g);
for t=triangles(g)
    if (all(deg(t) == 3) && length(adjacent (g,t')) == 6)
        p = eval(['@(g) red_triangle(g' sprintf(',%d', t) ')']);
        return
    end
end
for d=diamonds(g)
    % d is already ordered as returned by diamonds
    if (all(deg(d)==3) && length(intersect(adjacent(g,d(1)),adjacent(g,d(4))))==2)
        p = eval(['@(g) red_diamond(g' sprintf(',%d', d) ')']);
        return
    end
end
p = @red_I;
function p = edge_orbit_reduction(g, F)
O = edge_orbits(g);
[C, K] = classify_orbits(0);
n = nvertices(g);
for i=find(C == 'C' & K == 1)
    if (nvertices(O{i}) == n && any(sum(g) > 2))
        % found Hamiltonian cycle
        p = eval(['@(g) red_hcycle(g' sprintf(',%d', trace_path(0{i})) ')']);
        return
        end
end
for i=find(C == 'K' | C == 'P')
    % find_cycle uses degree 2 vertices only so isn't doing any special processing
    cycle = find_cycle(O{i} | F);
    if (length(cycle) == n)
        % found Hamiltonian cycle
        p = eval(['@(g) red_hcycle(g' sprintf(',%d', cycle) ')']);
        return
        end
end
for i=find((C == 'K' | C == 'P') & log2(K) ~= fix(log2(K)))
    % number of disjoint edges or 2-paths with odd divisor
    comps = components(g & ~0{i}, sum(g)==0);
    if (size(comps,2) > 1)
        E = edges(0{i});
        Ecomp = arrayfun(@(v) find(comps(v,:)), E);
        [E, Ecomp] = reorder_edges_by_components(E, Ecomp);
        c1 = Ecomp(end,1);
        c2 = Ecomp(end,2);
        if (mod(nnz(Ecomp == c1),2) == 1)
            E = E(any(Ecomp == c1, 2),:);
        elseif (mod(nnz(Ecomp == c2),2) == 1)
            E = E(any(Ecomp == c2, 2),:);
        else
            continue
        end
        % odd number of edges connecting a component to the rest of the graph
```

```
        p = eval(['@(g) red_cut(g' sprintf(',%d', E') ')']);
        return
    end
end
for i=find(C == 'S' | C == 'X', 1)
    centre = find(sum(0{i}) >= 3, 1);
    p=eval(['@(g) red_radial(g' sprintf(',%d',centre,adjacent(0{i},centre)) ')']);
    return
end
for i=find(C == 'K' | C == 'P')
    cycle = find_cycle(O{i} | F);
    if (~isempty(cycle) && length(cycle) ~= n && ~is_cycle_in(cycle, F))
        cycle = reorder_cycle_break_on_nonforced(cycle, F);
        p = eval(['@(g) red_cycle(g' sprintf(',%d', cycle) ')']);
        return
    end
end
% search for a vertex with a forced edge and two or more edges from the same orbit
for v=find(sum(F)==1)
    Fv = adjacent(F, v);
    for j=find(C ~= 'K')
        Ov = adjacent(O{j}, v);
        A = setdiff(Ov, Fv);
        if (length(A) >= 2)
                p = eval(['@(g) red_pinwheel(g' sprintf(',%d', v, A) ')']);
                return
            end
    end
end
for i=find(C == 'C')
    if (K(i) ~= 1 || nvertices(O{i}) ~= n)
        p = eval(['@(g) red_cycle(g' sprintf(',%d', trace_path(O{i})) ')']);
        return
    end
end
p = @red_I;
```

$\% \%$
function $\mathrm{b}=$ issimple(g)
$\mathrm{b}=$ issymmetric (g) \&\& size(g,1) \&\& nnz(g) \&\& ~any(diag(g)) \&\& isequal(g,logical(g));
function $\mathrm{b}=$ is2connected (g)
if (ncomponents(g) ~= 1)
b = false;
return
end
if (any (sum (g) == 1))
b = false;
return
end
$\mathrm{n}=\operatorname{size}(\mathrm{g}, 1)$;
for $\mathrm{v}=$ find (sum (g) >= 2)
adj $=$ adjacent (g,v);
$\%$ temporarily remove edges
g(v,adj) $=0$;
$\mathrm{g}(\operatorname{adj}, \mathrm{v})=0$;
if (ncomponents(g) ~= 1)
b = false;
return
end
\% restore edges
$g(v, a d j)=1$;
$g(\operatorname{adj}, v)=1 ;$
end
b = true;
function $\mathrm{n}=$ nvertices (g)
$\mathrm{n}=\mathrm{nnz}(\operatorname{sum}(\mathrm{g}))$; \% ignores degree 0 vertices
function $\mathrm{n}=$ nedges (g)
n = nnz(triu(g));
function $c=$ ncomponents(varargin)
$c=\operatorname{size}($ components (varargin\{:\}), 2);

```
function C = components(g, ignore)
n = size(g,1);
c = zeros(1,n);
if (nargin < 2)
        ignore = (sum(g) == 0); % ignore degree 0 vertices
end
c(ignore) = -1;
while nnz(c) < n
    % vector for next component
    v = double(1:n == find(c == 0, 1));
    vnz = 0;
    while nnz(v) > vnz
            vnz = nnz(v);
            v = v + v*g;
        end
        c(v>0) = max (c)+1;
end
nc = max(max(c),0);
C = false(n, nc);
for i=1:nc
        C(:,i) = (c == i)';
end
function s = min_nonadjacent_deg_sum(g)
s = Inf;
n = size(g,1);
for i=1:n
    if (sum(g(i,:)) == 0)
        % ignore degree O vertices
        continue
        end
        for j=i+1:n
            if (sum(g(j,:)) == 0)
                % ignore degree O vertices
                continue
            end
            if (~g(i,j))
                s = min(s, sum(g(i,:))+sum(g(j,:)));
            end
        end
end
function F = forced_edges(g)
n = size(g,1); % include degree 0 vertices
F = zeros(n);
for i=1:n
        for j=i+1:n
            if (~g(i,j))
                continue
            end
            % temporarily remove edge
            g(i,j) = 0;
            g(j,i) = 0;
            if (~is2connected(g))
                    F(i,j) = 1;
                    F(j,i) = 1;
            end
            % restore edge
            g(i,j) = 1;
            g(j,i) = 1;
        end
end
function H = vsubgraph(G, vertices)
H = zeros(size(G,1));
H(vertices,vertices) = G(vertices,vertices);
function V = trace_path(g)
V = [];
if (nnz(g) == 0)
        return
end
[i,j] = find(g, 1);
V = [j, i]; % j < i
g(:,i) = 0;
g(j,:) = 0;
```

```
g(i,V) = 0;
g(V,j) = 0;
while (nnz(g(V(end),:)))
    k = find(g(V(end),:), 1);
    g(: ,k) = 0;
    g(k,V) = 0;
    V = [v, k];
end
while (nnz(g(:,V(1))))
    k = find(g(:,V(1)), 1);
    g(k,:) = 0;
    g(V,k) = 0;
    V = [k, V];
end
if (V(1) > V(end))
    V = fliplr(V);
end
function T = triangles(g)
n = size(g,1);
T = zeros(3,0);
for i=1:n
    if (sum(g(i,:)) == 0)
        continue
    end
    for j=i+1:n
        if (~g(i,j))
            continue
        end
        for k=j+1:n
                if (~g(i,k) || ~g(j,k))
                continue
                end
                T(:,end+1) = [i j k]';
        end
    end
end
function A = adjacent(g, vertices)
n = size(g,1);
A = zeros(1,n);
for i=1:length(vertices)
    A = A + g(vertices(i),:);
end
A = find(A);
function D = diamonds(g)
n = size(g,1);
D = zeros(4,0);
for t=triangles(g)
    i=t(1);
    j=t(2);
    k=t(3);
    for l=i+1:n
        if (l == i || l == j || l == k || sum(g([i, j, k], l)) ~= 2)
            continue
        end
        if (g(i,l) && g(j,l) && l > k)
            D(:,end+1) = [k i j l]';
        elseif (g(i,l) && g(k,l) && l > j)
            D(:,end+1) = [j i k l]';
        elseif (g(j,l) && g(k,l))
            D(:,end+1) = [i j k l]';
        end
    end
end
```

function $0=$ edge_orbits (g)
$\mathrm{n}=\operatorname{size}(\mathrm{g}, 1)$;
[g, vmap] = compact(g);
[orbits, E] = eorbits (g);
norbits = max(orbits);
$\mathrm{E}=$ vertex_map($\mathrm{E}, \mathrm{vmap})$;
0 = cell(1, norbits);
for $i=1$:norbits
$\mathrm{H}=\operatorname{zeros}(\mathrm{n})$;

```
    for edge = E(orbits == i,:)'
        H(edge(1), edge(2)) = 1;
        H(edge(2), edge(1)) = 1;
    end
    O{i} = H;
end
function [g, vmap] = compact(g)
vmap = find(sum(g));
g = g(vmap, vmap);
function E = edges(g)
[i,j] = find(tril(g));
E = [j i];
function M = vertex_map(M, vmap)
f = @(x) scalar_map(x, vmap);
M = arrayfun(f, M);
function x = scalar_map(x, vmap)
x = vmap(x);
function [c, k] = classify_orbits(0)
c = '';
k = zeros(1,length(0));
for i=1:length(0)
    H = O{i};
    degrees = unique(sum(H));
    if (degrees(1) == 0)
        degrees = degrees(2:end);
    end
    a = degrees(1);
    if (length(degrees) == 1)
        b = a;
    elseif (length(degrees) == 2)
        b = degrees(2);
    end
    k(i) = ncomponents(H);
    if (a == 1 && b == 1)
        c(i) = 'K'; % K_2
    elseif (a == 1 && b == 2)
        c(i) = 'P'; % P_2
    elseif (a == 1 && b > 2)
        c(i) = 'S'; % S_n
    elseif (a == 2 && b == 2)
        c(i) = 'C'; % C_n
    elseif (a == b)
        c(i) = 'X'; % X_n
    elseif (a < b)
        c(i) = 'X'; % X_m,n
    end
end
function C = find_cycle(g)
% cycles must be on degree 2 vertices
g = vsubgraph(g, sum(g)==2);
if (nnz(g))
    for c = components(g)
        if (sum(c) >= 3)
            h = vsubgraph(g,c);
            C = trace_path(h);
            if (h(C (end),C(1)))
                return
                    end
        end
    end
end
% no cycle found
C = [];
```

function C = reorder_cycle_break_on_nonforced (C, F)
$\mathrm{n}=$ length (C) ;
shifts=0;
while ($\mathrm{F}(\mathrm{C}(\mathrm{n}), \mathrm{C}(1))$)
$C=\operatorname{circshift}(C,[0-1])$;
shifts = shifts+1;

```
end
function [E, C] = reorder_edges_by_components(E, C)
c1 = min(C(end,:));
c2 = max(C(end,:));
for i=1:size(E,1)
        if (C(i,1) == c2 || C(i,2) == c1)
            % swap
            tmp = C(i,1);
            C(i,1) = C(i,2);
            C(i,2) = tmp;
            tmp = E(i,1);
            E(i,1) = E(i,2);
            E(i,2) = tmp;
        end
end
function b = is_cycle_in(cycle, g)
if (length(cycle) < 3)
        b = false;
        return
end
n = length(cycle);
cycle(n+1) = cycle(1);
for i=1:n
        if (~g(cycle(i),\operatorname{cycle}(i+1)))
            b = false;
            return
        end
end
b = true;
```

Listing C.2: apply_reduction.m
$\% \mathrm{~g}=$ apply_reduction(P, g)
\%
$\% \mathrm{P}$ should be a cell of function handles to be applied to g from last to first $\% \mathrm{~g}$ should be an adjacency matrix

```
function g = apply_reduction(P, g)
```

for $i=n u m e l(P):-1: 1$
$p=P\{i\} ;$
$\mathrm{g}=\mathrm{p}(\mathrm{g}) ;$
end
$g=g(\operatorname{sum}(g)>0, \operatorname{sum}(g)>0) ;$

Listing C.3: red_H.m

```
% g = red_H(g)
```

\% returns a small Hamiltonian graph K_3
function $\mathrm{g}=$ red_H(g)
g = 1-eye(3);

Listing C.4: red_I.m

```
% g = red_I(g)
% identity "reduction" - returns g unmodified
function g = red_I(g)
```

Listing C.5: red_NH.m

```
%g= red_NH(g)
% returns a small non-Hamiltonian graph K_2
function g = red_NH(g)
g = 1-eye(2);
```

Listing C.6: red_forced.m
$\% \mathrm{~g}=$ red_forced $(\mathrm{g}, \mathrm{u}, \mathrm{v} 1, \ldots)$
\% unusable edge reduction
function $g=$ red_forced(varargin)
if (nargin < 3)
error('too few arguments')

```
end
g = varargin{1};
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
end
u = varargin{2};
V = [varargin{3:end}];
if (u < 1 || u > size(g,1) || min(V) < 1 || max(V) > size(g,1))
    error('arguments out of bound')
end
for v=V
        if (~g(u,v))
            error('edge (%d, %d) not in graph', u, v)
        end
end
g(u,V) = 0;
g(V,u) = 0;
```

Listing C.7: red_path.m
\% g = red_path(g, v1, v2, ...)
$\%$ path reduction
function g = red_path(varargin)
if (nargin < 3)
error('too few arguments')
end
$\mathrm{g}=\operatorname{varargin}\{1\} ;$
if (~(issymmetric(g) \&\& size(g,1) \&\& ~any(diag(g)) \&\& isequal(g,logical(g))))
error('bad input graph')
end
$\mathrm{V}=$ [varargin\{2: end\}];
if (min(V) < 1 || max(V) > size(g,1))
error('arguments out of bound')
end
if (length(V) ~= length(unique(V)))
error('repeated arguments')
end
if (any (sum $(\mathrm{g}(:, \mathrm{V})) \sim=2)$)
error('vertices must be degree 2')
end
if (length(V) > nvertices(g)-2)
error('too many vertices in path')
end
for $i=1:$ length(V) -1
if ($\sim \mathrm{g}(\mathrm{V}(\mathrm{i}), \mathrm{V}(\mathrm{i}+1)))$
error('edge (\%d, \%d) not in graph', V(i), V(i+1))
end
end
endpoint $=$ find $(\mathrm{g}(\mathrm{V}(\mathrm{end}),:) . *(1: \operatorname{size}(\mathrm{g}, 1) \sim=\mathrm{V}($ end -1$)))$;
\% remove all but first vertex
dv = V(2:end);
$\mathrm{g}(\mathrm{dv},:)=0$;
$g(:, d v)=0 ;$
\% connect first vertex to endpoint (if not already)
$g(V(1)$, endpoint $)=1$;
$\mathrm{g}($ endpoint, $\mathrm{V}(1))=1$;
function $\mathrm{n}=$ nvertices (g)
n = nnz(sum(g)); \% ignores degree 0 vertices

Listing C.8: red_cycle.m

```
% g = red_cycle(g, v1, v2, v3, ...)
% remove an edge from a short cycle of redundant edges
function g = red_cycle(varargin)
if (nargin < 4)
    error('too few arguments')
end
g = varargin{1};
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
```

```
end
V = [varargin{2:end}];
if (min(V) < 1 || max(V) > size(g,1))
    error('arguments out of bound')
end
n = length(V);
if (n ~= length(unique(V)))
    error('repeated arguments')
end
if (n == nvertices(g))
    error('cycle is not short')
end
% make loop
V(end+1) = V (1);
for i=1:n
    if (~g(V(i),V(i+1)))
            error('edge (%d, %d) not in graph', V(i), V(i+1))
    end
end
% remove edge
g(V(1),V(n)) = 0;
g(V(n),V(1)) = 0;
function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices
```

Listing C.9: red_triangle.m
$\% \mathrm{~g}=$ red_triangle (g, u, v, w)
\% contract degree 3 triangle into single vertex
function g = red_triangle(g, u, v, w)
if (nargin ~= 4)
error('wrong number of arguments')
end
if (~(issymmetric(g) \&\& size(g,1) \&\& ~any(diag(g)) \&\& isequal(g,logical(g))))
error('bad input graph')
end
if (min([u v w]) < 1 || max([u v w]) > size(g,1))
error('arguments out of bounds')
end
if (any (sum $(g(:,[u, v, w])) \sim=3))$
error('vertices are not degree 3 ')
end
if ($\sim \mathrm{g}(\mathrm{u}, \mathrm{v})||\sim \mathrm{g}(\mathrm{u}, \mathrm{w})|| \sim \mathrm{g}(\mathrm{v}, \mathrm{w}))$
error('not triangle')
end
\% find other vertices
$\mathrm{gu}=\mathrm{g}(\mathrm{u},: \mathrm{s})$;
gu([v w]) = 0;
ou $=$ find (gu);
gv = g(v,:);
gv([u w]) = 0;
$\mathrm{ov}=\mathrm{find}(\mathrm{gv})$;
gw = g(w,:);
$\operatorname{gw}\left(\left[\begin{array}{ll}\mathrm{u} & \mathrm{v}\end{array}\right)=0\right.$;
ow = find(gw);
if (ou == ov || ou == ow || ov == ow)
error('triangle does not connect to 3 distinct outside vertices')
end
\% remove v and w
$\mathrm{g}([\mathrm{v} \mathrm{w}],:)=0$;
$\mathrm{g}(:, \mathrm{lv} \mathrm{w}])=0$;
\% connect u to other vertices
$g(u,[o v o w])=1$;
$\mathrm{g}([\mathrm{ov} \mathrm{ow}], \mathrm{u})=1$;

Listing C.10: red_diamond.m
$\% \mathrm{~g}=$ red_diamond $(\mathrm{g}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x})$
\% contract cubic diamond into a single vertex
function $\mathrm{g}=$ red_diamond (g, u, v, w, x)
if (nargin ~= 5)
error('wrong number of arguments')

```
end
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
end
if (min([u v w x]) < 1 || max([u v w x]) > size(g,1))
    error('arguments out of bound')
end
if (any(sum(g(:,[u v w x])) ~= 3))
    error('vertices of diamond are not degree 3')
end
if (~g(u,v) || ~g(u,w) || ~g(v,w) || ~g(v,x) || ~g(w,x) || g(u,x))
    error('not diamond')
end
xn = setdiff(find(g(x,:)),[v w]);
assert(isscalar(xn));
if (g(u,xn))
    error('endpoints of diamond have a common neighbour')
end
% remove v w x
g([v w x],:) = 0;
g(:,[v w x]) = 0;
% connect u to xn
g(u,xn) = 1;
g(xn,u) = 1;
```

Listing C.11: red_hcycle.m

```
% g = red_hcycle(g, v1, v2, ..., vn)
% remove all edges but those in a given Hamiltonian cycle
% v1 ... vn should trace out a Hamiltonian cycle
% n must be the number of vertices in g
function g = red_hcycle(varargin)
if (nargin < 1)
    error('too few arguments')
end
g = varargin{1};
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
end
n = nvertices(g);
if (nargin ~= 1 + n)
    error('wrong number of arguments')
end
V = [varargin{2:end}];
if (min(V) < 1 || max(V) > size(g,1))
    error('arguments out of bound')
end
if (length(unique(V)) ~= n)
    error('repeated arguments')
end
% make loop
V(end+1) = V(1);
for i=1:n
    if (~g(V(i),V(i+1)))
        error('edge (%d, %d) not in graph', V(i), V(i+1))
    end
end
% remove all edges
g(:,:) = 0;
for i=1:n
    % restore Hamiltonian cycle
    g(V(i),V(i+1)) = 1;
    g(V(i+1),V(i)) = 1;
end
function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices
```

Listing C.12: red_cut.m

```
% g = red_cut(g, u1, v1, u2, v2, u3, v3, ...)
% remove an edge from an odd edge cut
function g = red_cut(varargin)
if (nargin < 3 || mod(nargin,2) ~= 1)
    error('wrong number of arguments')
end
g = varargin{1};
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
        error('bad input graph')
end
U = [varargin{2:2:end-1}];
V = [varargin{3:2:end}];
if (min(U) < 1 || max(U) > size(g,1) || min(V) < 1 || max(V) > size(g,1))
        error('arguments out of bound')
end
n = length(U);
if (size(unique(sort([U' V'], 2), 'rows'),1) ~= n)
        error('repeated edges in arguments')
end
h = g;
for i=1:n
        if (~g(U(i),V(i)))
            error('edge (%d,%d) not in graph', U(i), V(i));
        end
        h(U(i),V(i)) = 0;
        h(V(i),U(i)) = 0;
end
C = components(h, sum(g) == 0);
nc = size(C, 2);
if (nc < 2)
        error('not edge cut');
end
for i=1:n
    h(U(i),V(i)) = 1;
    h(V(i),U(i)) = 1;
    if (size(components(h, sum(g) == 0), 2) == nc)
        error('edge cut not minimal');
    end
    h(U(i),V(i)) = 0;
    h(V(i),U(i)) = 0;
end
% remove last edge from cut
g(U(end),V(end)) = 0;
g(V(end),U(end)) = 0;
function C = components(g, ignore)
N = size(g,1);
c = zeros(1,N);
if (nargin < 2)
    ignore = (sum(g) == 0); % ignore degree 0 vertices
end
c(ignore) = -1;
while nnz(c) < N
    % vector for next component
    v = double(1:N == find(c == 0, 1));
    vnz = 0;
    while nnz(v) > vnz
        vnz = nnz(v);
        v = v + v*g;
    end
    c(v>0) = max (c)+1;
end
nc = max(max(c),0);
C = false(N, nc);
for i=1:nc
    C(:,i) = (c == i)';
end
```

Listing C.13: red_radial.m
$\% \mathrm{~g}=$ red_radial (g, u, v1, v2, v3, ...)
\% remove an edge from a star where all the edges are redundant
function g = red_radial(varargin)
if (nargin < 5)
error('too few arguments')

```
end
g = varargin{1};
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
end
u = varargin{2};
V = [varargin{3:end}];
if (u < 1 || u > size(g,1) || min(V) < 1 || max(V) > size(g,1))
    error('arguments out of bound')
end
if (length(V) ~= length(unique(V)))
        error('repeated arguments')
end
for v=V
        if (~g(u,v))
            error('edge (%d, %d) not in graph', u, v)
        end
end
g(u,V(end)) = 0;
g(V(end),u) = 0;
```

Listing C.14: red_pinwheel.m
$\% \mathrm{~g}=$ red_pinwheel(g, u, v1, v2, ...)
\% remove all but one redundant edge where a Hamiltonian edge was found adjacent function g = red_pinwheel(varargin)
if (nargin < 4)
error('too few arguments')
end
$\mathrm{g}=$ varargin\{1\};
if ($\sim($ issymmetric (g) \&\& size $(\mathrm{g}, 1) ~ \& \& ~ \sim \operatorname{any}(\operatorname{diag}(\mathrm{~g})) \& \&$ isequal (g,logical(g)))) error('bad input graph')
end
$\mathrm{u}=\operatorname{varargin}\{2\} ;$
V = [varargin\{3: end\}];
if ($u<1$ || $u>\operatorname{size}(g, 1)| | \min (V)<1 \| \max (V)>\operatorname{size}(g, 1))$
error('arguments out of bound')
end
if (length(V) ~= length(unique(V)))
error('repeated arguments')
end
for $\mathrm{v}=\mathrm{V}$
if ($\sim g(u, v)$)
error('edge (\%d, \%d) not in graph', u, v)
end
end
for $\mathrm{v}=\mathrm{V}(2$:end)
$\mathrm{g}(\mathrm{u}, \mathrm{v})=0$;
$g(v, u)=0 ;$
end

Listing C.15: eorbits.m

```
% [orbits, edges] = eorbits(g)
%
% label edges according to their edge orbits
%
%g should be a simple graph
%
% edges is an Mx2 matrix where M is the number of edges in the graph
% orbits is an Mx1 matrix assigning an integer from 1:N_EDGE_ORBITS to each edge
function [orbits, edges] = eorbits(g)
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
    error('bad input graph')
end
[i,j] = find(tril(g));
edges = [j i];
m = size(edges, 1);
if (m < 1)
    orbits = [];
    return;
end
orbits = [1:m]';
gorders = [];
```

```
generators = autgen(g);
for g=1:length(generators)
    gen = generators{g};
    orders = cellfun(@length, gen);
    order = 1;
    for o=orders
        order = 1cm(order, o);
    end
    gorders(g) = order;
end
for i=1:m
    edge = edges(i,:);
    for g=1:length(generators)
        perm = generators{g};
        for j=1:gorders(g)-1
            edge = apply_cycles(edge, perm);
            edgei = find(edges(:,1) == edge(1) & edges(:,2) == edge(2));
            if (orbits(edgei) == orbits(i))
                continue;
            end
            oidx = orbits == orbits(edgei) | orbits == orbits(i);
            orbits(oidx) = min(orbits(edgei), orbits(i));
        end
    end
end
uniq = unique(orbits);
norbits = length(uniq);
for i=1:norbits
    orbits(orbits == uniq(i)) = i;
end
function edge = apply_cycles(edge, perm)
for i=length(perm):-1:1
    cycle = perm{i};
    order = length(cycle);
    if (order < 2)
        continue;
    end
    ind = find(cycle == edge(1));
    if (length(ind) == 1)
        ind = ind + 1;
        if (ind > order)
            ind = 1;
        end
        edge(1) = cycle(ind);
    end
    ind = find(cycle == edge(2));
    if (length(ind) == 1)
        ind = ind + 1;
        if ind > order
            ind = 1;
        end
        edge(2) = cycle(ind);
    end
end
edge = sort(edge, 2);
function generators = autgen(g)
config();
tmp = tempname;
nauty_write(g, tmp);
fid = fopen(tmp, 'a');
fprintf(fid, 'x\n');
fclose(fid);
[status, output] = system([dreadnaut ' < "' tmp '"']);
delete(tmp);
if (status ~= 0)
    error('dreadnaut failed to run. Output:\n\n%s', output);
end
output = strrep(output, sprintf('\n '), ''); % join split output lines
output = regexprep(output, '\n$', ''); % remove trailing newline
lines = strsplit(output, sprintf('\n'));
```

```
generators = {};
for i=1:length(lines)
    line = lines{i};
    if (line(1) == '(')
            gen = {};
            cycles = strsplit(regexprep(line, '(^\(|\))', ''), '(');
            for j=1:length(cycles)
                gen{end+1} = str2num(['[ ' cycles{j} ']']);
            end
            generators{end+1} = gen;
    else
            grpsize = strfind(line, 'grpsize=');
            if grpsize
                line = line(grpsize+8:end);
                    line = line(1:strfind(line, ';')-1);
            end
    end
end
```

Listing C.16: config.m
\% edit the options here to configure the algorithm
function config()
\% path for dreadnaut
\% download and compile from http://pallini.di.uniroma1.it/
\%
if (isunix)
dreadnaut = 'nauty/dreadnaut';
else \% Windows
dreadnaut = 'nauty/dreadnaut.exe';
end
\% don't edit below this line
if (~(exist(dreadnaut, 'file'))) error('\%s: not found. Please edit dreadnaut path in config.m', dreadnaut); end
assignin('caller', 'dreadnaut', dreadnaut);
Listing C.17: nauty_write.m

```
% nauty_write(g, filename)
%
% save a graph in nauty format
%
% g is the adjacency matrix of a simple undirected graph
% filename is a string, recommended to end in ".dre"
%
% nauty is a program for computing automorphisms of graphs. It can be
% downloaded from http://cs.anu.edu.au/~bdm/nauty/
function nauty_write(g, filename)
if (~(issymmetric(g) && size(g,1) && ~any(diag(g)) && isequal(g,logical(g))))
        error('bad input graph')
end
n = size(g,1);
fid = fopen(filename,'w');
fprintf(fid,'$ 1\n'); % sets nauty to start number vertices from 1
fprintf(fid,'n=%d\n', n); % write the number of vertices
fprintf(fid,'g\n'); % begin the graph
for v=1:n-1
    Nv = find(g(v,v+1:end)) + v;
        if isempty(Nv)
            continue
        end
        fprintf(fid,'%d:', v);
        fprintf(fid,' %d', Nv);
        fprintf(fid,';\n');
end
fprintf(fid,'.\n'); % end writing the graph
fclose(fid);
```


Bibliography

[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman problem: a computational study. Princeton University Press, 2011.
[2] P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rossomakhine. Deterministic "Snakes and Ladders" heuristic for the Hamiltonian cycle problem. Mathematical Programming Computation, 6(1):55-75, 2014.
[3] D. Barnette. Conjecture 5. In W. T. Tutte, editor, Recent Progress in Combinatorics, page 343. Academic Press, New York, 1969.
[4] D. Bauer, S. L. Hakimi, and E. Schmeichel. Recognizing tough graphs is NP-hard. Discrete Applied Mathematics, 28(3):191-195, 1990.
[5] D. Bauer, J. van den Heuvel, A. Morgana, and E. Schmeichel. The complexity of recognizing tough cubic graphs. Discrete Applied Mathematics, 79(1):35-44, 1997.
[6] N. L. Biggs. T. P. Kirkman, mathematician. Bulletin of the London Mathematical Society, 13(2):97-120, 1981.
[7] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Clarendon Press, Oxford, 1976.
[8] G. Birkhoff. Three observations on linear algebra. Universidad Nacional de Tucumán, Revista A, 5:147-151, 1946.
[9] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications, volume 290. Macmillan, London, 1976.
[10] G. Brinkmann and B. D. McKay. Fast generation of planar graphs. MATCH Communications in Mathematical and in Computer Chemistry, 58(2):323-357, 2007.
[11] G. Brinkmann, J. Goedgebeur, and B. D. McKay. Generation of cubic graphs. Discrete Mathematics and Theoretical Computer Science, 13(2): 69-80, 2011.
[12] H. Broersma, V. Patel, and A. Pyatkin. On toughness and Hamiltonicity of $2 K_{2}$-free graphs. Journal of Graph Theory, 75(3):244-255, 2014.
[13] J. A. Carlson, A. Jaffe, and A. Wiles, editors. The millennium prize problems. American Mathematical Society, 2006.
[14] A. Chalaturnyk. A fast algorithm for finding Hamilton cycles. Master's thesis, University of Manitoba, 2008.
[15] V. Chvátal. Tough graphs and Hamiltonian circuits. Discrete Mathematics, 5(3):215-228, 1973.
[16] A. Claus. A new formulation for the travelling salesman problem. SIAM Journal on Algebraic Discrete Methods, 5(1):21-25, 1984.
[17] S. Cook. The P versus NP problem. In The Millennium Prize Problems, pages 87-106, 2006.
[18] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, pages 151-158. Association for Computing Machinery, 1971.
[19] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2(4):393-410, 1954.
[20] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269-271, 1959.
[21] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society, 3(1):69-81, 1952.
[22] V. Ejov, M. Haythorpe, and S. Rossomakhine. A linear-size conversion of HCP to 3HCP. Australasian Journal of Combinatorics, 62(1):45-58, 2015.
[23] D. Eppstein. The traveling salesman problem for cubic graphs. In Workshop on Algorithms and Data Structures, volume 11, pages 307-318. Springer, 2003.
[24] A. Eshragh. Hamiltonian cycles and the space of discounted occupational measures. PhD thesis, University of South Australia, 2011.
[25] L. Euler. Solution d'une question curieuse qui ne paroit soumise à aucune analyse. Mémoires de l'Academie Royale des Sciences et Belles Lettres, Année 1759, 15:310-337, 1766.
[26] G.-H. Fan. New sufficient conditions for cycles in graphs. Journal of Combinatorial Theory, Series B, 37(3):221-227, 1984.
[27] J. A. Filar, M. Haythorpe, and G. T. Nguyen. A conjecture on the prevalence of cubic bridge graphs. Discussiones Mathematicae Graph Theory, 30(1):175-179, 2010.
[28] J. A. Filar, M. Haythorpe, and S. Rossomakhine. A new heuristic for detecting non-Hamiltonicity in cubic graphs. Computers \mathcal{G} Operations Research, 64:283-292, 2015.
[29] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Mathematica, 6:239-250, 1939.
[30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, volume 174. Freeman San Francisco, CA, 1979.
[31] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5(4): 704-714, 1976.
[32] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[33] S. Goodman and S. Hedetniemi. Sufficient conditions for a graph to be Hamiltonian. Journal of Combinatorial Theory, Series B, 16(2):175180, 1974.
[34] L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem: on generalizations of disaggregated Miller-Tucker-Zemlin constraints. Discrete Applied Mathematics, 112(1):129-145, 2001.
[35] F. M. Hall. An Introduction to Abstract Algebra, volume 1. Cambridge University Press, 1966.
[36] M. Haythorpe. Markov chain based algorithms for the Hamiltonian cycle problem. PhD thesis, University of South Australia, 2010.
[37] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126 (1):106-130, 2000.
[38] A. Hertel. A non-Hamiltonicity proof system. Unpublished manuscript, 2006.
[39] D. A. Holton and B. D. McKay. Cycles in 3-connected cubic planar graphs II. Ars Combinatoria, 21(A):107-114, 1986.
[40] D. A. Holton and J. Sheehan. The Petersen Graph. Cambridge University Press, 1993.
[41] T. Hoppe and A. Petrone. Database file for Encyclopedia of Finite Graphs: Simple connected graphs, $n \leq 10$, published electronically at http://doi.org/10.5281/zenodo.11280. Zenodo, 2014.
[42] IBM Corporation. IBM ILOG CPLEX Optimization Studio CPLEX User's Manual 12.5. 2012.
[43] K. Iwama and T. Nakashima. An improved exact algorithm for cubic graph TSP. In International Computing and Combinatorics Conference, pages 108-117. Springer, 2007.
[44] B. Jackson and P. Katerinis. A characterization of $\frac{3}{2}$-tough cubic graphs. Ars Combinatoria, 38:145-148, 1994.
[45] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302-311. ACM, 1984.
[46] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. Springer, 1972.
[47] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all minimal edge cuts of a nonoriented graph. Cybernetics and Systems Analysis, 22(2):156-162, 1986.
[48] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics and Mathematical Physics, 20(1):53-72, 1980.
[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
[50] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys, editors. The Traveling Salesman Problem. John Wiley \& Sons, Ltd., 1985.
[51] J. Lehel, F. Maffray, and M. Preissmann. Graphs with largest number of minimum cuts. Discrete Applied Mathematics, 65(1-3):387-407, 1996.
[52] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2):498-516, 1973.
[53] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences, 25(1): 42-65, 1982.
[54] R. Mathon. A note on the graph isomorphism counting problem. Information Processing Letters, 8(3):131-136, 1979.
[55] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic Computation, 60:94-112, 2014.
[56] M. Meringer. Fast generation of regular graphs and construction of cages. Journal of Graph Theory, 30(2):137-146, 1999.
[57] T. Öncan, İ. K. Altınel, and G. Laporte. A comparative analysis of several asymmetric traveling salesman problem formulations. Computers § Operations Research, 36(3):637-654, 2009.
[58] A. Orbanić, T. Pisanski, M. Randić, and B. Servatius. Blanuša double. Mathematical Communications, 9(1):91-103, 2004.
[59] Ø. Ore. Note on Hamilton circuits. The American Mathematical Monthly, 67(1):55-55, 1960.
[60] M. Padberg and T.-Y. Sung. An analytical comparison of different formulations of the travelling salesman problem. Mathematical Programming, 52(1-3):315-357, 1991.
[61] E. M. Palmer. The hidden algorithm of Ore's theorem on Hamiltonian cycles. Computers \mathcal{E} Mathematics with Applications, 34(11):113-119, 1997.
[62] R. C. Read and R. J. Wilson. An Atlas of Graphs. Clarendon Press, Oxford, 1998.
[63] G. Reinelt. TSPLIB - a traveling salesman problem library. ORSA Journal on Computing, 3(4):376-384, 1991.
[64] R. W. Robinson and N. C. Wormald. Almost all cubic graphs are hamiltonian. Random Structures and Algorithms, 3(2):117-126, 1992.
[65] C. D. Savage and P. Winkler. Monotone Gray codes and the middle levels problem. Journal of Combinatorial Theory, Series A, 70(2):230248, 1995.
[66] H. D. Sherali, S. C. Sarin, and P.-F. Tsai. A class of lifted path and flow-based formulations for the asymmetric traveling salesman problem with and without precedence constraints. Discrete Optimization, 3(1): 20-32, 2006.
[67] N. J. A. Sloane. Number of connected graphs with n nodes, sequence A001349. The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2010.
[68] P. G. Tait. Remarks on the colouring of maps. In Proceedings of the Royal Society of Edinburgh, volume 10, page 729, 1880.
[69] W. T. Tutte. On the 2-factors of bicubic graphs. Discrete Mathematics, 1(2):203-208, 1971.
[70] S. Weber. Spectral Approaches to the Hamiltonian Cycle Problem. Honour's thesis, Flinders University, 2012.
[71] R. T. Wong. Integer programming formulations of the traveling salesman problem. In Proceedings of the IEEE international conference of circuits and computers, pages 149-152. IEEE Press Piscataway, NJ, 1980.
[72] D. R. Woodall. Sufficient conditions for circuits in graphs. Proceedings of the London Mathematical Society, 3(4):739-755, 1972.
[73] N. C. Wormald. Triangles in labelled cubic graphs. In Combinatorial Mathematics, pages 337-345. Springer, 1978.
[74] N. C. Wormald. The asymptotic distribution of short cycles in random regular graphs. Journal of Combinatorial Theory, Series B, 31(2):168182, 1981.
[75] M. Xiao and H. Nagamochi. An exact algorithm for TSP in degree-3 graphs via circuit procedure and amortization on connectivity structure. Algorithmica, 74(2):713-741, 2016.

[^0]: ${ }^{1}$ As DFJ is equivalent to MCF but requires exponentially many constraints, we omit it from further consideration.

[^1]: ${ }^{1}$ These algorithms are designed for the travelling salesman problem but any instance of HCP may be easily expressed as an instance of TSP.

[^2]: ${ }^{2}$ We note that some authors have used the term forced edges as a synonym for Hamiltonian edges. However, in this thesis we make a distinction between the two terms in order to provide an algorithm that can be executed in polynomial time.

