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Summary 
 

The geomicrobiological cycle of gold has been widely studied in an effort to improve gold 

exploration techniques and gold recovery in mining processes. But these studies and the 

basic understanding of how aqueous gold behaves are largely based on chemical speciation 

modelling (indirect speciation), as current direct speciation techniques are limited by their 

poor sensitivity and interferences from real matrices.  

 

This study describes the development of a HPLC-ICP-MS method for the determination of 

Au(I)-cyanide, Au(I)-thiosulfate, Au(III)-chloro-hydroxyl and Au(III)-bromo-hydroxyl 

complexes in mine waters and groundwaters. A systematic study of the HPLC variables led 

to the final mobile phase: a buffer of 1 mM tetrabutylammonium chloride and 5 mM sodium 

dihydrogen phosphate/disodium hydrogen phosphate prepared in 6: 17.5: 76.5 v/v/v 

isopropanol: acetonitrile: water. The detection limits for the gold species ranged from 0.081-

0.58 g L
-1

.  

 

Sixty two water samples (from mine waters, groundwaters and environmental monitoring 

bores) were collected from around Australia and analysed with the developed method. Trace 

amounts of Au(I)-cyanide were detected in a few environmental monitoring bores (~0.7 – 11 

µg L
-1

), of which the proximity to tailings dams and other mining processes suggests that the 

Au(I)-cyanide arose from leached mining processes. Unexpectedly, Au(III) was detected in a 

near-neutral, saline groundwater (~0.4 µg L
-1

), even though Au(III) is predicted to be 

thermodynamically unstable at those conditions. Chemical analysis of saline groundwater 

samples revealed an apparent correlation between manganese and Au(III) and led to an 

investigation into the effect of manganese on the speciation of gold.  

 

Preliminary studies investigating the ability of various natural manganese oxides (pyrolusite, 

birnessite, tokodorite, cryptomelane, lithiophorite/ vernadite/ goethite, chalcophanite/ 

hetaerolite and coronadite) and manganese complexes (Mn-1,4,7-triazacyclononane, 

[(bpy)2Mn
III
(-O)2Mn

IV
(bpy)2](NO3)3, (bpy = 2,2’-bipyridyl)) to oxidise Au(I) or Au(0) to form 

aqueous Au(III) under non-acidic, surface conditions (similar to the saline groundwaters 

collected). Synthetic analogues of manganese oxides (including pyrolusite and potassium 
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permanganate) were also tested. These reactions comprised of stirring ~0.0001 M Mn-oxide 

and 0.1 M Cl
-
 with either Au(I)-thiosulfate ([Au] = 1 mg L

-1
) or Au(0) powder ([Au] = 50 mg L

-1
) 

made up to 100 mL with water. 

 

The formation of aqueous Au(III) from Au(I) was not observed with natural or synthetic 

manganese minerals under circumneutral to alkaline conditions, but was observed for 

permanganate (at pH 6.9) and [(bpy)2Mn
III
(-O)2Mn

IV
(bpy)2]

3-
 (pH 4.7). Both compounds 

were also observed to oxidise Au(0) powder to aqueous Au(III). These preliminary studies 

support previous hypotheses by Boyle [1] and Emmons [2] that gold can be mobilised by 

manganese in the environment, and may have provided further details on the mechanism for 

the mobilisation of gold by manganese in the environment. We propose that the presence of 

O2 is necessary for the oxidation of Au(0) to Au(I), and the reduction or disproportionation of 

the manganese oxide followed by the adsorption of Au(I) appears to be necessary for the 

oxidation of Au(I) to Au(III). 

 

In summary, due to the limited techniques able to directly speciate gold at environmentally 

relevant concentrations, the development of a sensitive and direct speciation method to 

enhance current understanding of the geomicrobiological cycle of gold is required. The 

research presented here may advance the use of HPLC-ICP-MS as a technique for mineral 

exploration, in studies on the fate of gold in mine wastes and bioremediation processes, and 

in studies on the effect of organic matter, microorganisms and minerals on the speciation of 

gold.  
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