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Abstract 

Recently, renewable energy resources and battery energy storages are broadly 

used in Australian residential sector to decrease the electricity cost. The installed 

renewable energy resources, such as solar photovoltaic and wind turbine, supply the 

loads of the residential consumer and export the extra power to the main grid, with 

a certain feed-in-tariff rate. The recent feed-in-tariff rates are, however, not 

significant so that make a high profitability by the renewable energy resources. On 

the other hand, the electricity generation of renewable energy resources is accounted 

as an uncertainty which may not match with the electricity profile of consumers. 

Adding battery energy storage to the renewable energy resources in residential sector 

is, therefore, becoming a key component to reach higher profitability with higher 

usage of renewable power in the residential. Since the costs of renewable energy 

resources and battery energy storages are still heavy for the consumers and there is 

no specific guideline to show that what capacity of components should be purchased, 

a practical optimal sizing and subsequently an accurate guideline are crucial.  

This thesis develops optimal sizing frameworks for renewable energy 

resources and battery energy storages in grid-connected and standalone Australian 

residential sector. The main aim of optimal sizing is to minimise the cost of 

electricity of electricity consumers. Actual data set of electricity profiles, weather 

data such as wind speed and solar insolation, market prices of renewable energy 

resources and battery energy storage, as well as electricity prices in Australian 

context are used as input data for optimal sizing. Rule-based home energy 

management systems are conducted for the operation of the systems.  

A practical guideline is rendered for the consumers to purchase the right 

capacity of solar photovoltaic and battery energy storage to minimise their electricity 

cost. This guideline is generated based on the household’s average daily electricity 

consumption and available rooftop area for solar photovoltaic installation. An 



 

vii 

appropriate annual cash flow analysis is conducted for grid-connected households 

with solar photovoltaic and battery energy storage. A home energy management 

system is developed for grid-connected households with wind turbine, battery energy 

storage, and electric vehicle. A novel demand side management strategy is 

developed to decrease the optimal capacity of battery energy storage for standalone 

residential households in South Australian remote areas. The demand side 

management strategy is based on the state-of-charge level of battery energy storage 

and day-ahead forecasts of solar insolation and wind speed. The core of the demand 

side management is a fuzzy logic method which decides for efficient load shifting 

and/or load curtailment. A multi-objective optimal sizing of wind turbine, solar 

photovoltaic and battery energy storage is conducted based on triple objectives: (1) 

cost of electricity, (2) grid dependency, and (3) total curtailed energy. The developed 

optimal sizing framework depends on a long-period operation of the system by 

considering battery degradation, stochastic behaviour of renewable generation and 

electricity profile, as well as updated electricity price. 
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Chapter 1                                   

Introduction 

This chapter presents the research background and motivation for this thesis, 

as well as the research objectives, contributions and publications, and the thesis 

outline. 

1.1 Research Background and Motivation 

Electricity demand is increasing in the global market. Figure 1-1 shows the 

global electricity demand by region from 2000 to 2018 [1]. The electricity demand 

is increased by about 72% from 2000 to 2018 in which the annual growth is around 

4%. The global electricity demand at the end of 2018 was more than 23,000 TWh. 

Most of the electricity demand increment is observed in China and the other 

developing countries. This is the result of industrialization development, boosting of 

the human comfort level, and population increment [1]. As the electricity demand 

grows, the fossil fuels are decreasing in a way that they may not last for more than a 

few decades. Furthermore, the cost of petroleum products is rising. The request for 

renewable energy as a prominent alternative for fossil fuels is, therefore, increasing 

rapidly in the world.  
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Figure 1-1. Global electricity demand by region [1]. 

Renewable energies are valuable sources in terms of sustainability since they 

can reduce the green-house gases worldwide. Recently, distributed renewable energy 

sources (RESs) are installed in residential sector for electricity generation. Taking 

advantages of compact design, simple structure, portability, low noise and 

reasonable capital cost, small wind turbine (SWT) is an appropriate candidate for 

distributed renewable generators in GCHs [2]. The installed SWT can supply the 

household load and export the excess power, if any, to the grid at a feed-in-tariff 

(FIT) rate to reduce the annual electricity cost of the household. An excellent and 

popular distributed RES for residential sector is rooftop solar PV. Solar PV systems 

take advantages of absence of rotating parts, convenient accommodation in rooftops, 

and less maintenance cost. Like SWTs, solar PV systems in a grid-connected house 

would supply the load and export the extra power to the main grid with FIT.  

Integration of solar PV and SWT in a grid-connected residential sector would 

decrease the electricity bill, grid dependency, emission, and so forth. In recent years 

there has been an increased deployment of PV in residential sector. Rooftop solar 

PV systems are increasingly integrated in Australian households. According to an 

Australian clean energy report [3], five rooftop solar PV systems were installed in 

each hour of 2018. At the end of June 2019, more than one-third of Australian 

dwellings had rooftop solar PV systems [4]. Such a high penetration of PV systems 

in Australia is the result of high retail price (RP), falling PV system costs, and 

incentives from the government in forms of FIT and rebates [5]. 

There are several challenges for further deployment of PV and SWT systems 
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in GCHs. First, the FIT rates are considerably decreasing in the countries with high 

penetration of renewable energy systems [6]. Second, the intermittency of solar PV 

and SWT generations would be a challenge in the recent electricity markets when 

the time-of-use (TOU) and real time pricing (RTP) are used. To overcome these 

challenges, the manifest destiny in GCHs is the integration of battery energy storage 

(BES) into the system [7]. The BES is a qualified technology to absorb the extra 

power of distributed RESs after feeding the load, and then release the saved power 

to supply the load when there is no renewable generation.  

Renewable-battery systems are also used to supply the loads for off-grid rural 

areas especially for remote area residential sector. In those standalone systems, the 

capacity of BES  

On the other hand, Australia is planning to ban the sale of internal combustion 

engine (ICE) vehicles by 2035 and that will increase the growth of electric vehicle 

(EV) significantly in near future [8]. Hence, if the homeowner owns an EV, the 

installed distributed RESs can also charge the EV and reduce the electricity cost 

further by reducing the imported electricity from the grid. In the standalone 

households, the battery of EV can be used as an alternative to supply the loads by 

the vehicle-to-home (V2H) technology. These topics need further investigations to 

attain proper energy managements while doing the optimal sizing.  

Currently, battery energy storage (BES) is an expensive technology and its 

viability for economic integration in households needs investigation [9]. Rooftop PV 

system, if not selected optimally, may not offer economic benefits [10]. There are 

not adequate studies to investigate the optimal sizing of SWT for GCHs to achieve 

the minimum cost of electricity. Thus, the selection of optimal capacity of PV, SWT, 

and BES is a crucial task for grid-connected and standalone households to achieve 

the maximum technical and economic benefits.  

1.2 Research Questions 

Based on the provided literature review, the following research questions can 

be extracted: 

• How to achieve more practical and accurate capacity of renewable and battery 

components for residential households? 

• How to generate practical guidelines for residential customers to invest the 

right money for the components? 
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• How the capacity of PV, WT and BES change if the homeowner owns an 

electric vehicle?  

• How to develop new demand response strategies for standalone households 

with renewable-battery system? And what is the effect of demand response on 

the optimal capacity of components? 

• How to generate new multi-objective optimal sizing for residential customers 

by considering a long period operation and battery degradation? 

1.3 Research Objectives 

The main research objectives of this thesis  

• To achieve practical optimal renewable-battery systems for residential sector 

with the lowest electricity cost.  

• To generate guidelines for residential customers to select the optimal capacity 

of PV and BES. 

• To investigate the impact of EV on optimal sizing problem. 

• To decrease the capacity of battery in standalone residential systems by 

development of new demand response strategies.  

• To develop a comprehensive design framework for optimal sizing of 

renewable-battery system under long period operation 

1.4 Contributions  

This thesis addresses the problem of optimal sizing of renewable energies 

(solar PV and WT) and BES for residential sector in urban and rural areas. It is 

notable that this PhD thesis considers the optimal renewable and battery system for 

Australian residential sector. Hence, the load of electrified heating is considered in 

the total load of the system, and it is not separated. The main contributions of this 

thesis can be classified as follows: 

• A practical optimal sizing of rooftop solar PV and BES for grid-connected 

households is conducted. Actual data of solar insolation, ambient temperature, 

electricity consumption, components data, as well as electricity prices and grid 

constraint for residential consumers in South Australia are conducted. The 

results of the optimal sizing model are evaluated by conducting an uncertainty 

analysis of solar insolation and ambient temperature using 10 years real data. 

A practical guideline is presented for the consumers to select the right 
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capacities of PV and BES based on the average daily electricity demand and 

the available rooftop space for PV installation. 

• A practical capacity optimisation model is developed for WT and BES in a 

GCH with/without an EV by analysing all uncertainties associated with wind, 

load, and EV. Novel rule-based HEMSs, with grid constraints, are developed 

for all possible cases (with/without BES as well as with/without EV) of the 

GCH. All uncertainties of EV’s arrival/departure time and initial SOC are 

incorporated in the optimal sizing model. The optimal results are evaluated by 

analysing stochastic SWT power generation and load consumption using 10-

year of real wind speed data and load uncertainty.  

• A new DSM strategy is adopted for a comprehensive and practical optimal 

sizing of standalone renewable-battery systems. A fuzzy-based DSM strategy 

developed based on day-ahead forecasted renewable generation and battery 

state-of-charge (SOC) level. All essential parameters like operating reserve, 

salvation cost and battery capacity degradation are considered. A certain level 

of operating reserve based on the day-ahead forecasted errors of renewable 

generation and load consumption is maintained in the standalone system. Three 

system configurations: PV-BS, WT-BS and PV-WT-BS are optimally sized 

and compared.  

• An optimisation framework is developed based on a long-period operation for 

a GCH with PV, WT and BES by incorporating real data. The solar PV and 

battery capacity degradations are incorporated in the long-period operation of 

the residential GCH. The capacities of PV, WT and BES are optimised based 

on electricity cost, grid dependency and curtailed energy. The long-period 

optimal sizing framework is compared with short-period optimisation. 

1.5 Thesis Outline 

The remaining chapters of this thesis are organized as follows: 

Chapter 2 presents a literature review on the topic of optimal sizing of 

distributed RES and BES for residential sector. The review is conducted on four 

aspects of optimal sizing. First, existing studies on practical optimal sizing of PV 

and battery in grid-connected households are investigated. Second, a literature 

review is presented on optimal sizing of WT and battery for EV-owner grid-

connected households. Third, the studies on capacity optimisation of renewable-
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storage systems for standalone households, when demand response incorporated, are 

reviewed. Four, a review on multi-objective optimisation for sizing of hybrid energy 

systems is conducted.    

Chapter 3 determines the optimal capacity of rooftop solar PV and BES for 

grid-connected households in South Australia and other Australian states and 

territories. This chapter, at first, presents rule-based HEMS for two system 

configurations, (1) only PV, and (2) PV-BES. Then, the optimisation formulation for 

sizing of PV and BES is presented. The initial optimal sizing results are first 

presented, and then various sensitivity analyses are indicated to study the effects of 

PV and battery costs, as well as the electricity consumption and grid constraint on 

the COE of the household. The effects of solar insolation and load consumption 

uncertainties on COE are also investigated. Chapter 3 provides a practical guideline 

for the consumers to purchase the right capacity of PV and BES to minimise their 

electricity cost.  

Chapter 4 investigates optimal sizing of WT and BES for grid-connected 

households with and without an EV. In this chapter, a novel rule-based HEMS is 

developed to manage the power flow between WT, grid, BES, EV, and load. The 

effects of uncertainties of wind speed, load, availability time of EV in the household, 

and the initial SOC of EV’s battery when arriving home are considered in the 

capacity optimisation problem. Chapter 4 compares the operating cost of EV in the 

optimal sizing problem with an internal combustion vehicle. 

Chapter 5 presents a demand side management strategy to contribute to 

optimal sizing of solar PV, WT, and BES for a standalone household in remote area. 

This chapter, at first, describes the system model including the controllable loads in 

the household. Then, the DSM strategy by forecasting day-ahead renewable 

generation and electricity demand is presented. The NPC of electricity is selected as 

the objective function by considering capital, maintenance, replacement, and 

salvation costs of components. Chapter 5 applies the developed optimal sizing for 

three system configurations, (1) PV-BES, (2) WT-BES, and (3) PV-WT-BES. The 

optimal results of these systems are compared with each other, an actual system in 

South Australia, and two recently published articles. 

Chapter 6 develops a new optimal sizing framework for multi-objective sizing 

of a PV-WT-BES system based on a long-period operation. The capacities of WT, 

solar PV, and BES are optimised by considering triple objectives: (1) cost of 
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electricity, (2) grid dependency, and (3) total curtailed (dumped) energy. The 

battery’s capacity, as well as purchase and sell back electricity prices are updated for 

each year of long-period operation during the project lifetime. In this chapter, the 

proposed optimisation technique is applied to a grid-connected household in South 

Australia by incorporating long-period (10 years) real data of wind speed, solar 

insolation, ambient temperature, and load consumption. Chapter 6 compares the 

renewable-battery electricity system optimised by the long-period data to the same 

system optimised by short-period data (one year). 

Chapter 7 presents the overall conclusion and summary of the main findings 

from this research. This chapter also exhibits the recommendations and future 

perspectives. 
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Chapter 2                                       

Literature Review 

The main focus of this thesis is on optimal sizing of renewable-battery systems 

for grid-connected and standalone households in residential sector. A comprehensive 

literature review is, therefore, conducted on this topic. The literature review is 

presented in three aspects:  

• Optimal sizing of PV and BES for grid-connected households 

• Capacity optimisation of remote area electricity supply systems 

• Multi-objective optimal sizing of hybrid standalone/grid-connected 

electricity systems 

The contributions of this chapter are presented in three published review 

papers.  
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2.1 Review on Optimal Sizing of PV and BES in Grid-Connected 

Households  

Integration of solar PV and battery storage systems is an upward trend in 

residential sector to achieve various targets like minimising the electricity bill, grid 

dependency, emission and so forth. In recent years there has been an increased 

deployment on PV and battery installation in residential sector. In this regard, 

optimal planning of PV-battery systems is a critical topic for the designers, 

consumers, and network operators due to the high number of parameters which affect 

the optimisation problem. This review chiefly aims to presents a comprehensive and 

critical survey on the effective parameters in the optimal planning process of solar 

PV and battery storage systems for grid-connected residential sector. The most 

important parameters in process of optimal planning for PV-battery system are 

recognized and explained. These parameters involve economic and technical data, 

objective functions, energy management systems, design constraints, optimisation 

algorithms and electricity pricing programs. A timely review on the state-of-the-art 

studies in PV-battery optimal planning is presented. The challenges, trends and latest 

developments in the field are investigated. At the end, scopes for future studies are 

developed. It is found that new guidelines should be provided to the customers based 

on various electricity rates and demand response program. Also, several design 

considerations like grid dependency and resiliency need further investigation in the 

optimal planning of PV-battery systems. 

The contribution of this review is presented in one published review paper.  

R. Khezri, A. Mahmoudi, and H. Aki, “Optimal Sizing of Solar Photovoltaic and 

Battery Storage Systems for Grid-connected Residential Sector: Review, Challenges 

and New Perspectives,” Renewable and Sustainable Energy Review, 2021. 

The student has developed the conceptualization and necessity of this review 

study. Analysis and review of research data has been done by him and the co-author. 

The student prepared a draft of the review paper. Revisions and comments were 

provided by the co-author so as to contribute to the interpretation. 

2.1.1 Background and Motivation of the Review 

Electricity demand is increasing in the global market. The electricity demand 
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is increased by about 72% from 2000 to 2018 in which the annual growth is around 

4%. The global electricity demand at the end of 2018 was more than 23,000 TWh. 

Most of the electricity demand increase is observed in China and the other 

developing countries. This is the result of industrialization development, boosting of 

the human comfort level, and population increment [1]. As the electricity demand 

grows, the fossil fuels are decreasing in a way that they may not last for more than a 

few decades. Furthermore, the cost of petroleum products is rising. Therefore, the 

request for renewable energies as prominent alternatives for fossil fuels is increasing 

rapidly in the world [2].  

Renewable energies are valuable sources in terms of sustainability since they 

can reduce the green-house gases worldwide. In addition, the falling cost of 

renewable energies such as solar photovoltaic (PV) has made them an attractive 

source of electricity generation [3]. Solar PVs take advantages of absence of rotating 

parts, convenient accommodation in rooftops and less maintenance cost. Fig. 2-1 

illustrates the global solar PV capacity and its annual addition [4]. The total 

worldwide installed solar PV electricity generation capacity exceeded 625 GW at 

the end of 2019 compared to only 23 GW at 10 years earlier [5]. The annual addition 

of solar PV capacity was more than 115 GW in 2019 compared to only 8 GW in 

2009. According to the estimations, solar PV electricity generation would supply 

3,518 TWh and 7,208 TWh by 2030 and 2040, respectively [6].  

 

Figure 2-1. Global solar PV capacity and annual addition. 

Solar PV is the most popular renewable energy resource in residential sector. 

A solar PV system in a grid-connected system would supply the load and export the 

extra power to the main grid with feed-in-tariff (FIT). Integration of solar PV in a 

grid-connected residential sector (GCRS) would decrease the electricity bill 
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(because of the FIT), grid dependency, emission and so forth. In recent years there 

has been an increased deployment of PV in residential sector. 

There are several challenges for further deployment of PV systems in GCRS. 

First, the FIT rates are decreasing in the countries with high penetration of rooftop 

solar PV systems [7-8]. Second, the intermittency of solar PV generation would be 

a challenge in the recent electricity markets when the time-of-use (TOU) and real 

time pricing (RTP) are used. To overcome the challenges, the manifest destiny in 

GCRS is the battery energy storage (BES) integration into the system. The BES is a 

qualified technology to absorb the extra power of PV (after feeding the load), and 

then supply the load when there is no renewable generation. Several applications of 

the PV-battery system have been reported such as energy arbitrage, resiliency 

improvement and time-shifting [9-10]. However, the high price of BES technology 

is an impediment for efficient integration. Thus, further investigations are required 

for PV and BES integration in grid-connected systems in terms of planning, 

operation, and control. In this regard, optimal sizing of PV and BES is the utmost 

critical challenge for the consumers and network analyzers due to the high number 

of the parameters which can affect the optimisation problem. 

Literature survey indicates plenty of review studies on solar PV and battery 

storage systems in power systems. In [11], the standards for grid-connected solar PV 

systems were investigated. Grid integration of small-scale solar PV systems was 

introduced in [12]. Technical specifications of solar PV systems were discussed in 

[13]. In [14], a review was conducted on the solar PV technologies. The potential 

problems and technical issues in grid-connected solar PV systems were described in 

[15] and [16], respectively. The inverter technology development in solar PV 

systems was reviewed in [17-18]. Self-consumption of solar PV system was 

investigated in [19]. The technical and economic aspects of solar PV for grid-

connected homes was investigated for Palestine, Brazil, and South Africa in [20-22], 

respectively. However, the above-mentioned review studies did not investigate 

integration of the battery storage for the PV systems. 

An overview on current developments of PV-battery systems for grid-

connected buildings was conducted in [23]. The PV-battery architectures for 

residential sectors were investigated in [24]. The economic viability of PV-battery 

systems for residential buildings was surveyed in [25]. The economic aspects of solar 

PV and battery integration in residential sector was reviewed in [26]. In [27], an 
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economic analysis was conducted for residential solar PV systems with battery in 

the United States. A review on the application of distributed solar PV system with 

battery was presented in [28]. Energy management of small-scale PV-battery 

systems in residential households was reviewed in [29]. The Australian consumers 

motivations for installing PV-battery system in their households was overviewed in 

[30]. Various battery discharge strategies for PV-battery in grid-connected 

households were compared in [31]. However, none of these studies investigated 

optimal planning of PV systems with or without battery. 

Application of artificial intelligence methodologies for optimal sizing of solar 

PV system was investigated on [32]. In [33], a review was conducted on optimal 

sizing of energy storage and solar PV in standalone power systems. A review on 

optimal planning of solar PV for water pumping systems was conducted in [34]. In 

[35-37], optimal sizing of hybrid systems with PV and BES was surveyed. Optimal 

allocation of BES in renewable energy systems and distribution networks was 

investigated in [38] and [39], respectively. Although, numerous review papers were 

conducted on optimal planning, but to the best of authors’ knowledge, the PV-battery 

optimal planning in GCRS was not investigated by the existing studies. This is a very 

critical area that should be broadly reviewed. In other word, a review study on 

optimal planning of PV and BES in GCRS is much important because of the large 

deployment of rooftop solar PV and BES systems in residential sector worldwide. 

An efficient optimal planning of PV and battery for grid-connected residential 

customers may result in decreasing electricity bills. The recent high penetration of 

residential solar PV in distribution network has created serious challenges for the 

network operators by increasing the voltage level at noon time and hardening the 

voltage and frequency control. A strategical optimal planning of PV and battery can 

resolve the network problems.   

2.1.2 PV-Battery Optimal Sizing Overview 

A general schematic diagram of a GCRS with solar PV and BES is 

demonstrated in Fig. 2-2. The energy management system monitors and controls the 

energy flow between the PV, BES, grid and GCRS based on the data from 

forecasting, smart meter, and available loads for demand response. The effective 

parameters on optimal sizing of PV-battery for grid-connected residential sectors are 

discussed in this section.  



Chapter 2: Literature Review 

 

13 

BES

Bidirectional 

ConverterGrid

Smart Meter

Demand Response

InverterDumped 

Power

PV

Residential Sector

Energy Management System

 

Figure 2-2. A general schematic of a GCRS with solar PV and BES. 

A) Input Data 

The input data used in optimal sizing of PV-battery system for grid-connected 

residential sector are illustrated in Fig. 2-3. Three groups of input data are needed: 

(1) financial data, (2) periodic data and (3) technical data.  
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Figure 2-3. Important input data for optimal sizing of PV-battery systems in grid-connected 

residential sectors. 

Financial data contains the installation costs of PV and BES, interest/discount 

and escalation/inflation rates, as well as the electricity rates. Mostly, all these data 

depend on the country of the case study. Since the optimal planning is a long-term 

problem, periodic data is used for electricity consumption, solar radiation, and 

ambient temperature. The periodic data can be realistic data or probabilistic data. 

The periodic data can be collected for very-short-period (e.g., one day of each 

season), short-period (e.g., one year) and long-period (e.g., ten years). The data can 

be arranged in hourly basis or high temporal resolution (e.g., 5 min). Technical data 

involves PV, BES, and grid data. The grid technical data is mostly associated with 

the limitations on export/import power to/from the main grid. The components’ 
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technical data are related to the lifetime, efficiency and other data of PV and BES. 

The array tilt angle, temperature coefficient and insolation at standard test conditions 

are among the important factors of technical data for solar PV system [40].  

Table 2-1 lists the specifications of different solar PV technologies [41]. The 

first generation of solar PV technology is produced by semiconducting p–n junctions 

from silicon. In most of the cases, the payback period of the first generation takes 5-

6 years. The main idea for the development of the second generation is to decrease 

the price of the first generation in the market. The used thin-film solar cell (TFSC) 

in second generation takes benefits from compatibility with low cost substrates, 

variety of deposition process, and low material usage. The TSFC technology has 

different types like copper–zinc-–in–sulfide (CZTS), amorphous silicon (a-Si) solar 

cells, and copper–indium–gallium–diselenide (CIGSe) [41]. The main aim of 

development of the third generation of solar PV cells is to improve the average 

electrical performance while maintaining a low cost of the technology.  

Table 2-1. Specifications of different solar PV technologies [41]. 

Generation First generation Second generation Third generation 

Feature Cristal silicon solar cells Thin film solar cells 

Perovskite, 

organic, multi-

junction solar cells 

Type 

Mono-

crystalline 

cells 

Multi-

crystalline 

cells 

CdTe cells 
Amorphous 

silicon cells 
CIGS cells 

Multi-junction 

solar cells 

Efficiency 18%~25% 17%~21% 18%~22% 13.4% 20%~23% 45% 

Price High Low Medium 

Discussion 

accounted for 89.6% of 

commercial production 

in 2007 

already entered into the commercialization 

stage nearly 10 years ago 
still in progress 

Table 2-2 lists the technical characteristics of battery energy storage 

technologies that are suitable for solar PV systems in grid-connected residential 

sector. These battery energy storages technologies are lead-acid (LA) battery, 

lithium-ion battery (LIB), sodium sulphur (NaS) battery, and vanadium redox battery 

(VRB) [42-44]. As illustrated in Table 2, the LIBs have higher efficiency and 

lifetime compared to other technologies. However, the LA batteries are traditionally 

used in electrical systems and their cost is low. It is notable that the LA and LIB are 

generally used in residential systems. 
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Table 2-2. Characteristics of four types of battery energy storage technologies available in the 

market [42-44]. 

Energy 

storage 

technology 

Capital 

cost 

($/kWh) 

Power 

rating 

(MW) 

Discharge 

time 

Power 

density 

(W/l) 

Energy 

density 

(Wh/l) 

Efficiency 

(%) 

Lifetime 

(years) 

Lifetime 

(cycles) 

LA 300-600 0-20 s-h 90-700 50-80 50-90 3-15 
250-

1500 

LIB 
700-

3000 
0-100 s-h 

1300-

10,000 
200-400 85-95 5-20 

600-

1200 

NaS 
1000-

3000 

0.05-

40 
s-h 

120-

160 
15-300 80-90 10-15 

2500-

4500 

VRB 
600-

1500 
0.03-3 1-10h 0.5-2 20-70 80-90 5-10 12,000+ 

 

1.1. Objective Functions 

Objective function is the most important parameter in an optimal sizing 

problem. Fig. 2-4 shows the two groups of applicable objective functions for optimal 

sizing of PV and BES in GCRS. Objective functions should be maximised or 

minimised using the optimisation algorithms. The problems can be defined with one 

or more objective functions. If more than one objective function is assumed, then the 

problem is a multi-objective optimisation challenge in which the results will be 

shown in terms of set of non-dominated solutions in Pareto-fronts.  
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Figure 2-4. Applicable objective functions for optimal sizing of PV-battery system in grid-

connected residential sectors. 

a) Financial  

The financial objective functions are the important group of targets for 

residential customers. There are five commonly used financial objective functions: 

(1) net present value (NPV), (2) cost of electricity (COE), (3) annual profit (AP), (4) 

payback period (PP), and (5) internal rate of return (IRR). Each objective function is 

sufficiently discussed in this sub-section.  

b)  Technical 

The technical objective functions mostly depend on the targets of the designer. 

The commonly used technical objective functions are: (1) autonomy of the GCRS, 

(2) dumped energy (DE), (3) loss of power supply (LPSP), (4) customer satisfaction 

(CS), and (5) carbon emission (CE).  

B) Design Constraints 
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The most important constraint is the power balance between generation and 

consumption sides of the GCRS. The import/export power from/to the main grid is 

generally limited in the distribution networks. As realistic examples, the single-phase 

and three-phase GCRS are not allowed to export more than 5 kW and 30 kW power 

to the main grid using rooftop solar PVs in South Australia. The constraint associated 

with the battery is the state-of-charge (SoC) level which should deviate between 

maximum and minimum rates. The rooftop availability to install the solar panels is 

another constraint for the optimal sizing in GCRS. In fact, the maximum capacity of 

solar PV should be selected based on the rooftop availability of the residential 

building. The budget limit for the component’s investment is the next constraint. The 

optimisation model should consider the maximum budget to obtain the capacity of 

the components. The countries policies for installation of rooftop solar PV and BES 

should be considered as a constraint in the optimisation model. The renewable factor 

is considered as a constraint for the optimal sizing problems where higher load 

supply from the solar PV is preferable. Resiliency and flexibility are two new metrics 

that can be considered as constraints. The resiliency constraint is used to boost the 

robustness of the GCRS system with PV and BES against extreme events with low 

probability and high impact. The other metric is to increase the operation flexibility 

of the power system to manage the variability of renewable energies. 

C) Electricity Pricing Programs 

Electricity pricing programs are: (1) flat price, (2) TOU, (3) stepwise tariff, (4) 

critical peak pricing, and (5) RTP. Using the flat rates, the import/export power is 

charged by a constant price. In the TOU pricing, the electricity rates are usually 

divided into two or three time periods during a day. Higher rates are assigned to peak 

load times of the day. In the stepwise tariff, the electricity rate is increased due to 

increasing the electricity consumption of the GCRS. The critical peak pricing is 

based on the wholesale market. Once the utilities anticipate critical events in the 

power market, they may call for high prices during a time period. In RTP, the 

electricity rate is changed dynamically in an hourly basis. This means that the 

electricity rate is assigned by the operator based on the market price. The type of 

electricity pricing in the system is very important to develop the energy management 

to make the highest profit. 

D) Home Energy Management Systems 

Energy management system (EMS) is essential to monitor and control the 
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power flow between generation and consumption sides in a PV-battery GCRS. The 

main target with EMS is a safe power supply while minimising the electricity cost. 

The EMS monitors the electricity rates, existent appliances for demand response, 

forecasted solar PV generation, battery’s SOC and loads of the GCRS. Then, based 

on the monitored data, the EMS decides efficient energy management.   

E) Optimisation Algorithms 

The applicable optimisation algorithms are probabilistic, artificial intelligence, 

iterative, analytical, sensitivity analysis, and intuitive approaches. The probabilistic 

methods can observe the stochastic model of uncertainties and then solve the 

problem analytically. The artificial intelligence methods can efficiently overcome 

the nonlinearity of the optimisation model. The artificial intelligence methods can 

be used for single-objective and multi-objective optimisation problems. Particle 

swarm optimisation (PSO) method and genetic algorithm (GA) are two worthy 

examples of single-objective artificial intelligence approaches. The multi-objective 

(MO) artificial intelligence methods solve the problem in its nature by considering 

all objective functions and producing set of Pareto-fronts. The non-sorting genetic 

algorithm II (NSGA-II) and multi-objective particle swarm optimisation (MOPSO) 

are some substantial examples of these approaches. 

In optimal planning by the iterative methods, optimisation problem should be 

repeated multiple times by random initial conditions. Methods based on sensitivity 

analysis can achieve the most sensitive capacities to the objectives. In classical 

mathematical methods, the computational and mathematical model of the system are 

used for the optimisation. These methods ensure the convergence of the solution to 

the optimal result. The intuitive methods are useful when exact information and data 

about the system are not available. The optimisation algorithm should be selected 

due to defined objective functions and the system model.  

F) Software Tools 

Software tools can be used for operation analysis, techno-economic analysis 

and optimal sizing of PV and BES in grid-connected residential sector. Some of the 

important software are: HOMER [46], TRNSYS [47], RETScreen [48], HYBRID2 

[49], iHOGA [50] and Sunny Design [51] which can be used for sizing of PV and 

BES in GCRS. A comprehensive review on software tools is provided in [52]. The 

pros and cons of software tools are investigated in [53]. 
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2.1.3 Present Status and Technical Challenges in PV-battery Optimal Planning  

The present status of the existing studies and technical challenges in PV-

battery optimal planning for GCRS are investigated in this section. 

A) Present Status: Review of the Existing Studies 

A review on state-of-the-art studies on optimal planning of PV-battery for 

GCRS are investigated in this section. The studies are classified into three groups: 

(1) optimal planning of only solar PV system, (2) optimal planning of only BES, and 

(3) optimal planning of PV and BES. Each group is investigated based on the 

objective function, design constraints, optimisation method, type of electricity rates, 

input data and the country in which the study was conducted. The first group is 

important for the households which are not equipped with solar PV. The second 

group of studies represents the optimal capacity of BES for the households who 

already equipped with PV panels. The third group of studies presents the optimal 

sizing of PV-battery for the households without any renewable resources.  

According to the literature review, more than 80 studies were performed on 

optimal sizing of PV and BES for GCRS in all journals and conferences. Fig. 10 

shows the number of publications per year from 2008 to 2020 in PV-battery optimal 

planning for GCRS. As illustrated in Fig. 2-5, the number of publications has 

increased from 2016. In 2017, the number of publications was 13 as the highest 

number per year. 

0

2

4

6

8

10

12

14

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

N
u

m
b

e
r 

o
f 

p
u

b
li

c
a

ti
o

n
s

Year  

Figure 2-5. Number of publications per year from 2008 to 2020 in PV-battery optimal planning for 

grid-connected residential sector. 

a) Optimal Planning of Only Solar PV System 

Table 2-3 lists the reference number, optimisation method, objective function 

and design constraints, electricity tariff and the studied country for optimal sizing of 

only PV in GCRS. Several studies not only optimised the PV capacity but also 
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optimised the other factors associated with the solar PV system. Various factors such 

as tracking system [54], inverter type [58], inverter capacity [61] and tilt angle [60]-

[62]-[64] are optimised along with PV capacity. HOMER software, as the most used 

simulation tool, was employed by four studies to optimise the capacity of solar PV 

[54, 56, 60-61]. Other software tools like TRNSYS [55] and Sunny Design [63] are 

also used for optimal sizing. Although the NPV was used as the objective function 

by most of the studies, a few papers applied COE [55], IRR [65] and PV system 

energy [58] as the objective function. The flat electricity pricing program was 

considered in most of the studies. TOU and stepwise electricity pricing programs 

were only used by [54] and [56], respectively.   

Table 2-3. Characteristics of studies on optimal planning of only solar PV for grid-connected 

residential sectors. 

Ref. 
Decision 

Variable 

Optimisation 

Method 

Objective 

Function 
Design Constraints 

Electricity 

Tariff 
Country 

[54] 

PV capacity 

and its tracking 

system 

HOMER Net present value 
Power balance, PV 

size 
Time-of-use 

Saudi 

Arabia 

[55] PV capacity TRNSYS Cost of electricity Energy balance Flat 
United 

Kingdom 

[56] PV capacity HOMER Net present value Not specified Stepwise Malaysia 

[57] PV capacity GA and PSO Net present value 
Power outage 

schedules 
Flat Lebanon 

[58] 

PV module 

technology and 

inclination, the 

inverter type 

and the location 

Energy approach PV system energy Not specified Flat France 

[59] PV capacity PSO and GA Net present value Not specified Flat Greece 

[60] 

PV capacity 

and slop of 

array 

HOMER Net present value Not specified Flat Australia 

[61] 
PV array and 

inverter size 
HOMER Net present value Not specified Flat 

Saudi 

Arabia 

[62] 

Number, tilt 

angle and 

arrangement of 

PV modules, 

and inverters 

GA 

Net present value 

Payback period 

Internal rate of 

return 

Not specified Flat Greece 

[63] PV capacity Sunny Design Net present value Not specified Flat Morocco 

[64] 

number, tilt 

angle and 

placement of 

PV modules 

MOPSO Net present value Not specified Flat Greece 

[65] PV capacity Self-developed 
Internal rate of 

return 
Not specified Flat Austria 

[66] PV capacity Weighted Sum 

Net present value 

Payback period 

Energy saving 

Budget and rooftop 

limits 
Not specified 

South 

Africa 

 

b) Optimal Planning of Only BES System 

Table 2-4 lists the characteristics of studies on optimal sizing of only BES for 

grid-connected residential sector with PV. In [67-68], the system operation was also 
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optimised alongside the BES capacity optimisation. The software simulation tools 

are not used for battery optimal sizing. Most of the studies developed the 

optimisation code using MATLAB or GAMS. In [67], a multi-objective optimal 

sizing was developed by considering NPV and self-efficiency ratio as the objective 

functions. In [78], the optimal planning of PV and battery was examined for three 

types of batteries known as lead-acid, lithium-iron-phosphate, and lithium-nickel-

manganese-cobalt. The results of their study showed that the lithium-iron-phosphate 

has the best economic results for the GCRS if the customer has 6 kW solar PV and 

a load demand of higher than 6 MWh per year. In [81], various objective functions 

were optimised using NSGA-II. The constraints of power balance and SOC of 

battery were applied in most of the studies. Unlike the studies for only PV optimal 

sizing (Table 2-3), the TOU pricing program was frequently used for BES capacity 

optimisation. The studies mostly conducted for developed countries like Australia, 

Germany, etc. 

Table 2-4. Characteristics of studies on optimal planning of only battery storage for grid-connected 

residential sectors. 

Ref. Decision Variable 
Optimisation 

Method 

Objective 

Function 

Design 

Constraints 

Electricity 

Tariff 
Country 

[67] 
BES capacity and 

operation 
NSGA-II 

Net present value 

Self-sufficiency 

ratio 

Power balance, 

SOC of battery 
Time-of-use Sweden 

[68] 

BES capacity and 

Charging/discharging 

regime 

Stochastic 

mixed integer 

nonlinear 

programming 

Annual 

electricity cost 
Not specified Flat 

Not 

specified 

[69] BES capacity Not specified 
Internal rate of 

return 
Not specified Flat Germany 

[70] 
BES and converter 

capacities 
Not specified 

Self-

consumption 
Not specified Flat Germany 

[71] BES capacity GAMS Net present value 
Power balance, 

SOC of battery 
Time-of-use 

United 

States 

[72] BES capacity 

Mixed integer 

linear 

programming 

CPLEX 

Net present value 

SOC and energy 

of BES, peak 

shaving limit 

Time-of-use 
United 

States 

[73] BES capacity 
Self-developed 

in MATLAB 
Net present value Not specified Flat 

Italy 

Switzerland 

UK 

[74] BES capacity 

Convex 

programming in 

MATLAB 

Net present value 

Power balance, 

SOC of battery, 

import/export 

power 

Time-of-use 
United 

States 

[75] BES capacity 
Self-developed 

in MATLAB 
Net present value 

Power balance, 

SOC of battery, 

purchase/sell 

power 

Time-of-use Australia 

[76] BES capacity 

Stochastic 

simulation using 

Monte Carlo 

Lifecycle cost Not specified 
Not 

specified 

United 

Kingdom 

[77] BES capacity 
Off-line linear 

programming 

Return of 

investment 

Power balance, 

SOC of battery, 

Not 

specified 

Not 

specified 
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in MATLAB import/export 

power 

[78] BES capacity 

Dual-simplex 

algorithm in 

matlab 

Net present value 
Power balance, 

SOC of battery 
Flat Germany 

[79] BES capacity 

Mixed integer 

programming 

with ILOG 

CPLEX 

Annual net 

payment 

Power balance, 

SOC of battery 
Flat Luxembourg 

[80] BES capacity 

Mixed integer 

programming 

with CPLEX-

MATLAB 

Total annual cost 

Bidirectional 

power flow and 

SOC of BES 

Flat 

Time-of-use 
Australia 

[81] BES capacity 
TRNSYS and 

NSGA-II 

Net present value 

CO2 emission 

PV efficiency 

Load cover ratio 

Power balance, 

SOC of battery 
Time-of-use China 

c) Optimal Planning of PV-battery System 

Table 2-5 lists the characteristics of studies on optimal sizing of PV and BES 

for grid-connected residential sector. A few studies considered the optimisation of 

operation [82], dispatch [83], energy scheduling [84] and energy flow [89] alongside 

the PV-battery optimal sizing. Genetic algorithm was used as the optimisation 

algorithm in [86]. Mixed-integer linear programming (MILP) was frequently used 

for optimal sizing. While financial objective functions were used in most of the 

studies, only in [90], maximising the amount of power fed back to the grid was 

considered as the objective function. Various design constraints such as power 

balance, battery, and grid limitations, as well as renewable factor were conducted in 

the existing studies. The flat and TOU were the most applied electricity pricing 

programs. Again, most of the PV-battery optimal sizing studies were conducted for 

developed countries. 

Table 2-5. Characteristics of studies on optimal planning of solar PV and battery for grid-connected 

residential sectors. 

Ref. 
Decision 

Variable 

Optimisation 

Method 
Objective Function Design Constraints 

Electricity 

Tariff 
Country 

[82] 

PV-BES 

capacity and 

operation 

Mixed integer 

programming 

with CPLEX-

GAMS 

Net present value 

Power balance, 

charging/ 

discharging and 

SOC limits of 

battery 

Flat 
Not 

specified 

[83] 

PV-BES 

capacity and 

dispatch 

NREL’s 

Renewable 

Energy 

Optimisation 

(REopt) model 

Life cycle cost Power balance Time-of-use 
United 

States 

[84] 

PV-BES 

capacity and 

energy 

schedule 

Mixed integer 

programming, 

CPLEX 

Net present value Not specified Time-of-use Australia 

[85] 
PV-BES 

capacity 

Mixed integer 

programming, 

GAMS 

Net present value Not specified Flat Australia 
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[86] 
PV-BES 

capacity 
GA Net present value 

Numbers of PV 

and BES 

Renewable factor 

Not specified Australia 

[87] 
PV-BES 

capacity 

Mixed integer 

programming, 

CPLEX 

Net present value Not specified Time-of-use Australia 

[88] 
PV-BES 

capacity 
HOMER Cost of electricity Not specified Time-of-use India 

[89] 

PV-BES 

capacity and 

energy flow 

Mixed integer 

programming, 

Python 

Net present value 
Power balance 

Budget 
Time-of-use 

Australia 

Germany 

[90] 
PV-BES 

capacity 

Probabilistic-

based sizing tool 

Maximise amount 

of power fed back 

to the grid 

Not specified Not specified 
United 

States 

[91] 
PV-BES 

capacity 

Self-developed in 

MATLAB 
Cost of electricity 

SOC of battery 

Budget 
Not specified 

United 

Kingdom 

[92] 
PV-BES 

capacity 

DICOPT solver 

in GAMS 

Annual operation 

cost 

Power balance 

SOC of battery 

Import/export 

power 

Time-of-use 

Stepwise 

Real time 

pricing 

China 

[93] 
PV-BES 

capacity 
Not specified 

Self-consumption 

Annual electricity 

cost 

Not specified Flat Germany 

[94] 
PV-BES 

capacity 

Direct search 

method 
Net present value Not specified Time-of-use Australia 

[95] 
PV-BES 

capacity 
Sensitivity tool Life cycle cost Not specified Not specified Turkey 

[96] 
PV-BES 

capacity 

Mixed-integer 

linear 

optimisation 

Operating and 

investment costs 

Power balance 

SOC of battery 
Flat Germany 

[97] 
PV-BES 

capacity 

Stochastic mixed 

integer 

optimisation 

in GAMS 

Operating and 

investment costs 

Power balance, 

charging/ 

discharging and 

SOC limits of 

battery 

Time-of-use 
United 

States 

[98] 
PV-BES 

capacity 

Hybrid MILP and 

a heuristic 

optimisation 

algorithm 

Electricity cost 
Power balance 

SOC of battery 
Flat Germany 

[99] 
PV-BES 

capacity 

Self-developed in 

MATLAB 

Annual electricity 

cost 

Power balance, 

SOC of battery, 

grid limits, 

renewable factor 

Flat 
Not 

specified 

B) Technical Challenges 

Although several papers have conducted studies on optimal sizing of PV and 

BES for grid-connected residential sector, there are multiple technical challenges in 

the present status. The flat and TOU electricity rates were frequently used by most 

of the studies. The stepwise electricity rate was employed only in two studies [56] 

and [92]. The RTP was used only in [92]. Please note that application of stepwise or 

RTP pricing is not a challenge alone. But new energy management systems should 

be developed to control the power flow in the GCRS based on the electricity price 

variations. For example, in a RTP program, the electricity price changes hourly or 

half-hourly. Hence, new EMSs should have the capability to receive the forecast data 

of solar insolation and load consumption to achieve the most efficient operation. 

Hence, the optimal sizing of PV and BES for GCRS under stepwise, dynamic, and 
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critical peak pricing electricity rates should be adequately analyzed. The energy 

management systems were developed in several studies. A few of the developed 

EMS considered the demand side management [67]. The load shifting and 

curtailment as well as incentive demand response need further investigations. 

Several objective functions like grid dependency, dumped energy and customer 

satisfaction were neglected by the existing studies. Battery capacity degradation 

model in optimal planning is an important factor which was not adequately studied 

in the literature. Most of the studies are conducted based on hourly arranged yearly 

data. Investigations of long-period data (e.g., 10 years) or high resolution (e.g., 5 

minutes) was not addressed. A high-resolution data can assist the designers to not 

only examine the planning but also validate dynamic performance at the meantime 

to achieve the most practical results. The robust optimisation and novel metaheuristic 

approaches were not examined for PV-battery optimal sizing in GCRS.  

2.1.4 Recent Developments in Optimal Planning 

A) Guideline for Customers  

Guidelines can be provided for the customers to advise them to purchase the 

optimal capacity of solar PV and battery systems. Flat electricity rate can be 

considered for import/export energy from/to the main grid. The guidelines can be 

developed based on the available rooftop area and the average daily electricity 

consumption of residential households. It was shown that as the daily electricity 

demand of the household increases the integrated capacity of PV boosts. Based on 

the guidelines, it is understandable that the recent BES market price is not 

economically efficient for integration in the grid-connected households. Such 

guidelines are very helpful for customers to render the most economic capacity of 

PV and BES for their households in urban area. Guidelines based on the other 

electricity rates such as TOU or RTP are neglected in the literature.  

B) Robust Optimal Planning  

In [100], an adaptive robust optimal planning and operation was proposed for 

PV-BES in grid-connected homes. The polyhedral sets were used to model the 

uncertainties of solar PV generation and load consumption. The developed robust 

planning was based on the worst-case realization of uncertain parameters. The 

optimisation problem was solved by an outer min challenge known as "here-and-

now" decisions for PV and BES sizing and an inner max-min challenge to determine 
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the operation variables known as "wait-and-see" decisions. It was approved that the 

main features of robust optimisation for PV and BES sizing over conventional 

methods like scenario generation, Monte Carlo simulation, K-means data clustering 

and probability distribution functions are reliability and tractability of the method. 

The robust optimisation approach solves the planning problem based on bounded 

interval of uncertainty sets which eliminates the requirement of scenario generation. 

Robust planning based on the uncertainty in RTP is not studied in the literature. 

C) Multi-objective Optimal Planning Considering the Autonomy 

In [101], the MOPSO methodology was used for multi-objective optimal 

sizing of solar PV and BES in grid-connected households. Energy autonomy, power 

autonomy, payback period and lifetime capital cost were considered as the objective 

functions. The methodology optimally achieved the azimuth angle of PV panels and 

capacity of PV and BES. The lifetime of battery was estimated based on total 

capacity fade during the operation. Such multi-objective studies are very useful for 

the customers to not only consider the cost as an objective function, but also check 

the autonomy of the system operation for various capacities of PV and BES. 

D)  Detailed Model of Lead-acid Battery Lifetime Estimation 

In [102], the optimal design conducted for a residential microgrid with lead-

acid battery and solar PV based on the minimisation of COE. The decision variables 

were selected as the number of BES and PV panels, as well as the optimal value of 

battery depth-of-discharge (DOD) and the tilt angle of the photovoltaic panels. This 

paper deployed a detailed model of lead-acid battery based on the battery voltage, 

current and SOC performance. The developed model then considered the 

replacement of BES (battery lifetime estimation), in the project lifespan, based on 

the discharge current, SOC impacts, acid stratification, number of cycles and the 

sulfate-crystal structure. The study considered an annual loss of power supply based 

on the grid-interruptions to maximise the reliability of the designed PV-battery 

system. Because optimal planning problem is a long-period challenge, such studies 

are very useful to achieve an accurate lifetime of battery during the project lifespan. 

Based on the estimated lifetime of battery, more accurate economic results are 

attainable for the project. 

E) Optimal Planning by Considering the Operation of Water Heater 

In [103], a net zero energy home was investigated to optimally capacity the 

battery based on electric water heater operation. Based on the developed model with 
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scheduling the charging/discharging of BES and power consumption of electric 

water heater, GCRS could operate like a dispatchable load or generator in the grid. 

Multiple objective functions including 1) minimising battery energy capacity, 2) 

minimising variations in grid output power, 3) maximising the rated power of 

battery, and 4) maximising the financial profit for the customer were considered. The 

results of the study showed that by coordinating the battery storage and electric water 

heater with the generated power of solar PV, smaller capacities of BES are attained 

for the customers.  

2.1.5 Potential Direction for Research Works 

Based on the aforementioned technical challenges and recent developments, 

the directions for future work are discussed in this section.  

A) Demand Response and Optimal Planning 

Demand response is an impressive factor in optimal sizing of a PV-battery 

system for GCRS. Forecasts of solar insolation, load consumption and electricity 

rates are important to render useful insights for the demand response action. Efficient 

demand response programs can effectively decrease the capacity of the PV and 

battery, and hence decrease the cost of the system. However, the DR programs 

diminish the satisfaction of the customers for the electricity availability. Objective 

function like customer satisfaction (i.e., user’s convenience/comfort level) is very 

helpful to be considered in the optimal sizing with a DR framework [104]. The CS 

objective function shows that how much the customers are satisfied by the demand 

response program. To achieve a maximum CS in GCRS, three strategies can be 

conducted (1) the time for load shifting can be minimised, (2) the load curtailment 

can be minimised, and (3) the incentive payments for contribution in DR program 

can be maximised. A multi-objective optimal planning of PV-battery system for a 

GCRS by considering the NPV and customer satisfaction is strongly recommended. 

B) Dynamic Electricity Rates and Optimal Planning 

Dynamic electricity rate (i.e., RTP) forces the customers to develop efficient 

energy management systems. In this case, demand response and 

charging/discharging of battery are of much important aspects in the energy 

management under RTP. The main aim is to maximise the profits by monitoring and 

controlling the energy flow in the GCRS based on the market prices [105]. This trend 

completely affects the optimal capacity of PV and BES for residential sector. A bi-
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level optimisation model is recommended to optimise (1) the capacity of PV and 

BES, and (2) the operation (energy management system) of the system.    

C) Resilient PV-Battery Planning 

A resilient PV-battery optimal planning is an opportunity to strengthen the 

load supply probability using the PV-battery system in grid outages [106]. Natural 

disasters are the main reasons for grid outages which can jeopardize the resiliency 

of the network. Since the natural disasters are mostly unpredictable, considering 

probability distribution functions based on the type of the disaster can be integrated 

into the optimal sizing problem. This can enhance the resiliency of the designed PV-

battery system. New design factors like a limitation for the maximum load supply 

during the grid outage can be accounted for the resiliency in GCRS. 

D) Grid Dependency in Optimal Planning 

The customers tend to decrease their dependency on the main grid by the 

installed PV-battery system. In such condition, grid dependency (GD) can be 

identified as a new objective function. Grid dependency is the fraction of imported 

electricity from the main grid over the total electricity demand by the residential 

sector. It is notable that when the GD is zero, it means that the GCRS operates as a 

standalone system with PV and battery. Increasing the capacity of PV and BES can 

decrease the GD of the GCRS; however, this trend increases the system costs. Hence, 

a trade-off between the cost of electricity and grid dependency is important from the 

customer point of view.   

E)  Distribution Network Considerations in Optimal Planning 

Increasing the number of embedded solar PV panels in low voltage distribution 

feeders may cause new challenges. One of the main challenges is voltage increase, 

which may result in restriction of the solar PV hosting capacity by the distribution 

feeders. Some remedies are efficient management of the battery storage and demand 

response in the GCRS [107]. Therefore, optimal sizing by considering the voltage 

increase crisis in distribution network is a new trend for the future studies. 

F) Aggregator Viewpoint Optimal Planning 

Aggregator entities have facilitated the participation of small-scale PV-battery 

system (e.g., in households) in electricity markets. In this case, customers are needed 

to control their power consumption based on the aggregator’s requirements for 

demand response. In some cases, aggregators may encourage the customers in a 

localized area to use a central battery storage. Based on the contracts with the 
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aggregators, the optimal capacity of PV and BES may be changed in GCRS.  

G) Strategies for Planning in Households with EV 

Recently, electric vehicles (EVs) have become popular transportation fleet due 

to environmental concerns. The EVs could be charged at the premises of the 

households. This would increase the electricity bill of the residential customer. When 

the EV is charged at home, the energy management system and subsequently the 

optimal planning of PV and BES are affected. Since the EV arrives home at evening 

time, the PV generation is not available and hence the BES can be discharged to not 

only supply the loads of the home but also charge the EV’ battery. Hence, a larger 

capacity of the BES may be required for the residential households with EV. In 

addition, a higher capacity of PV may be needed to charge a large battery. On the 

other side, the vehicle-to-grid (V2G) and vehicle-to-home (V2H) capabilities of EV 

may increase the profitability of the PV-battery system in the GCRS. This makes the 

EMS of the household with EV more complicated. Therefore, the future studies can 

examine the consideration of EVs in the household while implementing the optimal 

planning of PV and BES. 

2.1.6 Conclusion on the PV-Battery Optimal Sizing Review    

This review investigated a survey on the state-of-the-art optimal sizing of solar 

PV and BES for GCRS. The problem was overviewed by classifying the important 

parameters which can affect the optimal capacity of PV and BES in a GCRS. The 

applied electricity pricing programs, objective functions, design constraints, home 

energy management systems, optimisation methodologies and input data were 

investigated. The existing studies were classified based on the decision variables: (1) 

only PV sizing, (2) only BES sizing, and (3) PV-BES sizing. The technical 

challenges were identified, and recent research developments were explained. The 

future directions were introduced to the researchers.  

The main implications of this review are as follows:  

• Practical guidelines would be useful for the customers in residential sector to 

purchase the optimal capacity of PV and battery based on all practical factors. 

However, only one practical guideline was published in the existing studies 

which provided the guideline based on Flat electricity price. More guidelines 

should be generated for the customers with other electricity prices. 

• While several studies have been published on optimal planning by considering 
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Flat and TOU electricity prices, the variable tariffs have been rarely investigated. 

By the advancement of smart grid facilities, optimal planning of PV and battery 

needs careful investigation under real time pricing for electricity exchange 

between the customer and the network.  

• Practical demand response strategies would be useful for customers to reduce the 

capacity of PV and battery and hence the costs of the system. This would be 

possible by load shifting or curtailment of controllable loads such as heating, 

ventilation, and air conditioning (HVAC) loads in the households. 

• Optimal planning of the grid-connected customers with electric vehicle would 

be a hot topic for the researchers. This is a major implication because of the 

growing penetration level of EVs in the residential sector.  

• New factors like grid dependency, distribution network limitations, and 

resiliency are among the hot topics recently. The customers would like to see 

how much autonomy could be achieved by different capacity of PV and battery 

in their household. In addition, which capacity of PV and battery could give them 

a resilient system against grid outages. The distribution networks face several 

challenges due to high penetration of rooftop solar PV systems.  
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2.2 Capacity Optimisation of Remote Area Electricity Supply 

Systems 

Optimal sizing of a remote area electricity supply (RAES) system is a vital 

challenge to achieve a reliable, clean, and cost-effective system. Diesel generators, 

renewable energy resources, and energy storage systems are essential components 

for RAES systems. This review presents an overview on the fundamental of optimal 

sizing procedure in RAES systems by considering the important parameters, 

methods, and data. It is necessary to summarise the lessons from the existing studies 

on RAES optimal sizing and detect future opportunities for researchers. Hence, a 

timely review on the state-of-the-art is presented and the applied objective functions, 

design constraints, system components, optimisation algorithms, type of system and 

studied country are specified for the existing studies. The existing challenges in the 

field are recognized and discussed. Recent trends and developments on the problem 

are explained in detail. Eventually, this review paper renders the recommendations 

of the future scopes for researchers intending to explore the optimal sizing of 

components in RAES systems. 

The contribution of this review is presented in one published review paper.  

R. Khezri, A. Mahmoudi, H. Aki, and SM Muyeen, “Optimal Planning of Remote 

Area Electricity Supply System: Comprehensive Review, Recent Developments and 

Future Scopes,” Energies, 2021. 

The student has developed the conceptualization and necessity of this review 

study. Analysis and review of research data has been done by him and the co-author. 

The student prepared a draft of the review paper. Revisions and comments were 

provided by the co-author so as to contribute to the interpretation. 

2.2.1 Introduction 

Globally, it is estimated that 17% of the world’s population (about 1.2 billion 

people) lacks access to national electricity [1]. Around 1.1 billion of these people 

live in Asia and Africa. The remaining 0.1 billion live in the Middle East, Latin 

America, and the developed countries. In Asia, 512 million people suffer from 

electricity inaccessibility, where 244 million live in India, 41 million in Indonesia, 

and 11 million in Philippines [1]. Worldwide, deploying remote area electricity 
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supply (RAES) systems is the main solution to provide and maintain electrification 

of remote areas [2]. Indeed, a RAES system is a desirable alternative for national 

grid extensions. Fig. 2-6 shows important sites with the necessity to develop RAES 

systems. The community or villages, residential buildings, islands, and rural areas 

are in essential need to provide the human welfare by electrification. 

Telecommunication, water pumping system, desalination, and agriculture are the 

requirements for people in remote areas that can be considered for electrification by 

distributed RAES systems. Mining sites and railways in remote areas also need to be 

equipped by RAES systems. 

Types of Remote 
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 Supply Systems

Community 

or Village

Residential 

Building

Rural areas

Islands 

Mining 
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Telecommu

nication

Railways

Water 

Pumping 

System
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Agriculture 

 

Figure 2-6. Important sites with the necessity to develop RAES systems. 

Conventionally, the RAES systems are designed based on diesel generators 

[3]. Reserves of fossil fuels are, however, limited and depleted rapidly which need 

urgent attention and appropriate manners to eschew potential energy crisis in the 

future [4]. In addition, the harmful emission of fossil, including greenhouse gasses 

(GHGs), contributes to the global warming challenge [5]. Furthermore, the 

petroleum price is severely fluctuating, especially after the COVID-19 pandemic. 

National grid’s inaccessibility, air pollution and high cost are the other challenges. 

Generally, remote areas are located far from capital cities. Hence, fuel transportation 

is another major concern to deliver on time and with the lowest cost. Reliability is 

the other challenge since the current RAES systems are mostly run with diesel 

generators as a single source system.  
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To overcome the aforementioned challenges, distributed renewable energy 

resources (DRERs) are competent options. The DRERs use the straight environment 

resources to generate power which will not run out. The DRERs emit little to no 

greenhouse gases or pollutants into the air. In most cases, DRERs require less 

maintenance than conventional generators which use traditional fuel sources. On the 

other side, using DRERs not only decreases the maintenance cost but also reduces 

the operation cost of the system. Despite all the advantages, DRERs suffer from 

higher upfront cost, geographic limitations, and high intermittency [6]. Even though 

the market prices are dropping for DRERs, energy storage systems (ESSs) are 

essential to overcome the intermittency problem [7]. It is worth noting that the ESS 

cost is not in a favourable range yet especially when a high capacity is needed in 

large-scale renewable power plants. Hence, a hybrid diesel generator-DRER-ESS 

configuration is recommended to achieve an environmental-friendly system with a 

low cost. A hybrid RAES system with multiple components is, however, a 

complicated system and optimal sizing of the system is the utmost important part.  

Literature survey indicates several review papers on hybrid energy systems 

(HESs). In [8], the developments of HESs with diesel generators, solar PV, WT, and 

ESS were reviewed. The study investigated the types of converters and controllers 

without highlighting the methodology and software for solving the problem. In [9], 

the PV-WT hybrid renewable systems were reviewed without highlighting any 

technical challenges in the field. Software tools for hybrid systems based on DRERs 

were discussed in [10] without highlighting the methodologies. In [11], only the 

optimisation techniques for HES were investigated without any system challenges. 

The energy management systems of HESs were explained in [12]. However, it was 

not addressed that how the management systems can be integrated with optimal 

sizing. Configurations and control of HESs were investigated in [13] and [14] with 

less focus on sizing. A comprehensive review on storage options and architectures 

for HESs was provided in [15] without highlighting their role in RAES. In [16], the 

HESs were investigated by addressing the model of components without addressing 

the sizing basics. Microgrid planning by focusing on operation strategies was studied 

in [17]. However, these studies did not consider HESs for remote areas. The RAES 

systems should receive greater attention due to critical electrification issues.  

Several studies have specifically focused on standalone and remote area 
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systems. In [18], standalone systems with solar PV, WT, and fuel cell (FC) 

technologies were interrogated for energy management systems. The role of diesel 

generator, which is highly integrated in RAES systems, was neglected. Applications 

and technologies of components for RAES were analyzed in [19]. The benefits of 

designing a HES for off-grid systems was discussed in [20] by briefly describing the 

models. Different configurations of HESs for off-grid systems with describing the 

available components were introduced in [21]. Modelling, applications, and control 

of HESs for electricity supply in standalone systems were considered in [22]. The 

benefits of decentralized electrification of rural areas were described in [23] by 

discussing the electricity demand in remote communities. In [24], the development 

and classification of HESs for electrification in rural areas were discussed. The 

implementation of HESs in small communities was reviewed in [25]. Performance 

evaluation of HES in rural areas was conducted in [26]. The optimisation techniques 

suitable for HESs in standalone systems were discussed in [27] without addressing 

the advantages and disadvantages of each technique. The mathematical and artificial 

intelligence methods for optimising the HESs were studied in [28]. However, none 

of those studies investigated the optimal sizing issue.  

In [29], the configuration and sizing of standalone systems were discussed 

without addressing any critical challenges. In [30], the optimisation process and 

algorithms were studied. A comprehensive review for topologies, methods, and 

models was presented in [31]-[32]. In [33], a complimentary review was conducted 

on the HOMER software tool for optimal sizing. Multi-objective optimal sizing of 

system components in HESs was overviewed in [34]. Optimal allocation of 

distributed generation (DG) units were reviewed in [35]-[36]. Reviews on optimal 

sizing and siting of ESS in distribution networks were conducted in [37] and [38]. 

Capacity determination of ESS in renewable energy systems and microgrids was 

reviewed in [39] and [40], respectively. The planning and operation of remote area 

power supply was discussed in [41]. However, the study in [41] focused more on the 

control levels of the system without discussing the sizing challenges, trends, and 

developments.  

2.2.2 Overview on Optimal Sizing of RAES Systems 

Optimal sizing problem of RAES systems is to determine the best capacity of 

system components (decision variables) by minimising/maximising objective 
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functions considering feasibility constraints. The optimal sizing algorithms for 

RAES system design are commenced with input data of the system. Then, the system 

configuration of the RAES system should be specified. Optimisation algorithm 

initializes the sizing problem. The operation of the RAES system is evaluated in the 

next step. Satisfaction of the feasibility constraints is checked after the operation of 

the RAES system. If all the constraints are satisfied, the objective function is 

calculated to finalize the optimisation problem. 

The first factor to be assigned is the generation and storage components of the 

system. The necessary input data to start the optimisation needs to be designated. 

Then, the objective of the project and feasibility constraints should be clearly 

identified and formulated. Based on the components and constraints, the operation 

strategy should be developed as an important item. Efficient optimisation 

methodology should be selected based on the formulated problem. All these items 

will be deeply discussed in this section. 

A) System Components 

 There are several system components that can be utilized for power supply in 

remote areas. Fig. 2-7 classifies the components into three groups: (1) fuel-based 

components, (2) renewable energy components and (3) energy storage components. 

The fuel-based components like diesel generators or gas generators generate power 

using fossil fuels and they have high impact on greenhouse gas emission. Recently, 

there is a variety of renewable energy components that can be integrated with RAES 

systems. Solar PV, WT, hydropower, tidal power, and biogas generator are the most 

available and applicable components which can be applied in RAES. However, their 

application highly depends on the geographical location of the studied site [42]. For 

example, using tidal power is appropriate for islands. Solar PV systems have a wider 

application because of sun availability in most locations, easy installation on 

rooftops, and availability in different scales (from W to MW). The WT systems need 

a wide land with an acceptable wind to be installed. Hydro power needs to be 

installed in a location that we have access to dams or almost we can pump water 

from rivers to reservoirs. Biogas generators will receive higher attention soon 

because of biomass availability in remote areas [43]. The applicable storage 

components in RAES systems are battery energy storage (BES), hydrogen energy, 

thermal storage, and flywheel. The characteristics of different types of ESSs were 
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well explained in the literature [44]. 
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Figure 2-7. System components in remote area electricity supply systems. 

B) Input Data 

 Technical and economic data of system components are needed based on the 

availability in the market of the studied country. The economic data contains the 

capital cost, maintenance cost and replacement cost of the components. Technical 

data involves the specifications like the capacity and efficiency of the components. 

The electricity demand should be available for a long period. The available loads for 

demand response should be specified in the case system if it contains demand side 

management [45]. Weather data contains the ambient temperature, solar irradiance, 

wind speed, water availability in the reservoir and wave speed, which like electricity 

demand, should be available for a long period. Project data for the study involves the 

project lifespan, interest/discount rate and escalation rate of fuel. All data should be 

properly arranged to achieve an accurate optimal sizing study. Any improper input 

data may result in a nonreliable and expensive system.  

C) Objective Functions 

The most important objective functions for RAES optimal sizing problem are 

demonstrated in Fig. 2-8. Financial and reliability objective functions are the major 

types of targets which have been considered. The other objective functions are 

related to emission and some technical issues. Selection of the objective function 

depends on the type of study. In most of the cases, financial objective functions are 

the priorities. Reliability is another concern if the project financial is limited. In some 
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cases, emission is under high attention. Due to different natures of the objectives, 

optimal sizing in RAES systems can be done by solving a single-objective or 

sometimes multi-objective optimisation problem. In multi-objective problems, the 

results are shown in the form of Pareto-fronts and a compromise between the 

objective functions need to be done. 
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Figure 2-8. Objective functions for optimal sizing of RAES systems. 

a) Financial Objective Functions 

Net present cost (NPC), levelised cost of electricity (LCOE), total annual cost 

(TAC), simple payback period (SPP) and internal rate of return (IRR) are the 

functions that can be used as financial objectives. The NPC is the summation of total 

present costs of capital, maintenance, replacement, and salvage of components, as 

well as the present cost of fuel consumption in the case that diesel generator is 

integrated. The LCOE is calculated by multiplication of NPC by capital recovery 

factor over the annual energy demand of the system. The TAC is the sum of annual 

capital and maintenance costs and annual fuel cost. The SPP is the number of years 

to pay back the capital cost of components by the annual profits. The IRR is the 

discount rate that makes the NPC of all cash flows equal to zero.  

b) Reliability Objective Functions 

Loss of power supply probability (LPSP) expected energy not supplied 

(EENS), loss of load expectation (LOLE), and loss of energy expectation (LOEE) 

are the most common measures and objective functions for the reliability of RAES 
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systems. The LPSP is the probability of the unmet load over the total energy demand 

of the RAES. The EENS is the expected energy that is not supplied by the RAES 

system. The number of hours of the year in which the RAES load exceeds the 

generation system is known as LOLE or loss of load probability (LOLP). The LOEE 

is the total energy not supplied by the RAES system.  

c) Emission and Technical Objective Functions 

The other groups of objective functions are emission and technical objectives 

which contain renewable factor (RF), carbon emission (CE), battery lifetime (BL), 

customer comfort level (CCL) and dumped energy (DE). The RF shows that how 

much of the energy demand in RAES system is supplied by renewable resources. 

The CE is the amount of carbon emission by the designed RAES system during the 

project lifetime. The BL is the lifetime of the integrated battery in RAES which is 

affected by the degradation. A suitable operation strategy should be developed to 

decrease the degradation of battery and hence increase its lifetime. The CCL is 

applied when demand response is integrated in the optimal sizing problem. The extra 

energy of the DRERs and diesel generators after supplying the load is known as DE 

which should be curtailed by inverter or dumped by resistors. It is notable that 

formulation of CCL depends on the demand response solution in the study. For 

example, if load shifting is examined, then the number of hours in which the load 

shifting applied can be minimised to reach the maximum CCL. The EFR can be 

formulated by considering the control system of inverters to minimise the power 

fluctuations and hence the minimum disruption in power supply.   

D)  Feasibility Constraints 

There are two major types of feasibility constraints: (1) constraints associated 

with components, (2) technical constraints of the system.  

The components constraints can be related to diesel generators, DRERs or 

ESSs. The constraint can be applied on the number of the components based on their 

unit capacity. Land availability is an important constraint to install PVs, WTs and 

ESSs. The diesel generator’s output power must be constrained between minimum 

and maximum generation limits. The fuel consumption and tank capacity can be 

considered as a constraint to limit the obtained emission from diesel generators. Hub 

height and blade diameter are considered as constraints to limit the size of WT. The 
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constraint of PV panel’s tilt-angle is considered to extract higher power. There are 

several constraints on ESSs like the energy of pump-storage hydro, energy at 

hydrogen tank, as well as battery SOC and power limits. 

The most important technical constraint is the power balance of RAES system 

which means that the equilibrium between load and generation should be maintained. 

The power reserve of the RAES system should always be maintained using diesel 

generators or ESSs. The budget of the project to invest in the system components is 

an important constraint. The LPSP index can be used as a constraint to limit the 

amount of load curtailment. A part of the load can be limited to be supplied using 

the renewable generation; this is the renewable energy fraction. In some cases, the 

sizing of RAES systems is constrained by the countries policies. If DR is applied, 

then constraints should be considered to limit the DR strength. 

E)  Operation Strategies 

The essence of the operational strategy is to control the power flow between 

components and loads in the RAES system. The main aim of the operation strategies 

is to achieve a reliable and clean energy supply while reaching the minimum cost. 

The operation strategy can receive the forecasting data of renewable generation and 

load consumption, the state-of-charge (SOC) of battery and the amount of remained 

fuel in the site to decide for the best operation in the system. It can change the load 

consumption using demand side management approaches [46]. 

F) Solving the RAES Optimal Sizing  

Optimal sizing problem of RAES systems can be solved using a wide range 

of optimisation algorithms. The most applied methods are metaheuristic algorithms. 

Using software to solve the problem is also conducted in the literature.   

a) Metaheuristic Methods 

The metaheuristic methods are powerful optimization algorithms which can 

handle the nonlinearity and complexity of optimisation problems [47]. Another 

advantage of metaheuristic is the ability to use for optimal sizing of single-objective 

and multi-objective optimisation problems. A wide range of metaheuristic methods 

is developed by the researchers. Some of the best-known metaheuristic methods are 

particle swarm optimisation (PSO) algorithm, genetic algorithm (GA) and artificial 

bee colony (ABC). 
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b) Other Optimisation Methods 

Probabilistic, sensitivity analysis, classic mathematical, and iterative 

algorithms are the other methods that have been used for optimal sizing of 

components in RAES systems. Probabilistic methods have the capability to consider 

the unpredictability of the parameters in the optimisation model [48]. The methods 

based on sensitivity analysis measure the sensitivity of the component’s capacities 

against the defined objective functions in the problem [49]. In classic methods, the 

optimisation problem is mathematically solved [50].  

c) HOMER Software 

Hybrid Optimisation Model for Electric Renewables (HOMER) software is 

one of the most powerful tools for optimal sizing of components in energy systems. 

HOMER was developed by National Renewable Energy Laboratory (NREL) [51]. 

The software includes a broad range of components like PV, WT, converters, diesel 

generator, BES, etc. To solve the optimal sizing problems, HOMER minimises the 

net present cost of the energy systems. HOMER software shows a wide range of 

results like optimal sizes, sensitivity analysis, cash flows, and other economic and 

technical analysis.   

2.2.3 Review on Existing Studies and Technical Challenges  

A review on the existing studies is conducted in this section. The studies are 

first classified based on their conduced case system: (1) hybrid, and (2) clean RAES 

systems. Then, each category is classified based on the optimisation model: (i) 

HOMER software optimisation, (ii) metaheuristic methods, and (iii) non-

metaheuristic (i.e., mathematical, iterative, probabilistic, etc.) methods. All the 

existing studies are investigated by specifying system components, the type of RAES 

system (i.e., rural areas, building, etc.), the used objective functions, feasibility 

constraints, country, and publication year. 

A) Hybrid RAES Systems with/without ESS 

The hybrid RAES systems are based on diesel generator power plants and 

renewable energy sources. The energy storage systems can also be integrated. These 

systems have a higher level of reliability because of the controllability of 

dispatchable diesel generator units. However, the emission and high cost are the 

main challenges. Several studies are developed for optimal sizing of hybrid RAES 



Chapter 2: Literature Review 

 

43 

systems. The studies are reviewed based on HOMER software as well as 

metaheuristic and other methods. 

a) HOMER Software for Hybrid RAES Systems 

Two studies were conducted on optimal sizing of hybrid RAES systems 

without ESS for Saudi Arabia [52]. Optimal sizing of diesel generator-PV-BES 

system was investigated in [53] for remote communities. Optimal sizing of diesel 

generator-PV-WT-BES system was developed for islands [54], remote agriculture 

[55], telecommunication [56], and off-grid villages [57]. The Diesel generator-PV-

WT-FC system was optimally sized in [58] for a village and mining site. In [59], 

hydropower was used alongside Diesel generator-PV-WT system for optimal sizing 

of a rural area in Iraq. A hybrid energy storage system (BES with hydro) was 

optimally sized with Diesel generator-PV-WT in [60]. In [61], a biogas generation 

unit is optimised for a hybrid RAES system with Diesel generator-PV-WT-BES in a 

remote community of Bangladesh. 

b) Metaheuristic Methods for Hybrid RAES Systems 

The metaheuristic methods are widely used for optimal sizing of hybrid RAES 

systems. The existing studies of metaheuristic methods are classified based on 

single- and multi-objective optimisation studies. Table 2-6 shows the reference 

number, applied methods, system components, RAES type, objective functions, and 

feasibility constraints, as well as the country and publication year of the existing 

studies on single-objective optimal sizing of hybrid RAES with metaheuristic 

methods. A range of metaheuristic methods was used for optimal sizing in RAES 

systems. In some studies, the applied method was compared with other 

methodologies. The hybrid Diesel generator-PV-WT-BES system was mostly sized 

by metaheuristic methods. All the applied objective functions are the economic type 

like NPC, LCOE, TAC and life cycle cost. The number of components and power 

balance between generation and consumption were the most used feasibility 

constraints. In some studies, like [95], the LPSP was considered as a constraint to 

improve the reliability. The constraints related to renewable energy were considered 

as a contribution by renewable factor [98], and renewable energy portion [100]. 
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Table 2-6. Characteristics of studies on single-objective optimal sizing for hybrid RAES systems. 

Ref. 
Applied 

Method 

System 

Components 

RAES 

Type 

Objective 

Function 

Feasibility 

Constraints 
Country Year 

[62] 

Levy flight-

based 

particle swarm 

optimisation 

Diesel 

generator-PV 
Not Specified NPC 

Output Power of 

Diesel generator, 

available area for 

PV, LPSP 

Iran 2017 

[63] 
Particle swarm 

optimisation 

Diesel 

generator-PV-

BES 

Island 
Total 

system cost 

Power balance, node 

voltage, number of 

components 

Indonesia 2018 

[64] 
Several 

algorithms 

Diesel 

generator-PV-

WT-BES 

Remote village LCOE 
LPSP, power 

balance, SOC 
Egypt 2019 

[65] 

Hybrid 

simulated 

annealing–tabu 

search 

Diesel 

generator-

Biodiesel-PV-

WT-BES-FC 

Educational 

Institute 
LCOE 

Initial cost, unmet 

load, capacity 

shortage, fuel 

consumption, 

renewable factor, 

components’ size 

Greece 2012 

[66] 
Particle swarm 

optimisation 

Diesel 

generator-PV-

BES-EV 

Residential 
Lifetime 

cost 

Size of components, 

unit commitment 

constraints 

India 2019 

[67] 
Crow search 

algorithm 

Diesel 

generator-PV-

FC 

Remote area 

community 
NPC 

LPSP, renewable 

energy portion 
Iran 2020 

Table 2-7 shows the reference number, applied methods, system components, 

RAES type, objective functions, and feasibility constraints, as well as the country 

and publication year of the existing studies on multi-objective optimal sizing of 

hybrid RAES with metaheuristic methods. The multi-objective optimal sizing of 

RAES systems was investigated by 18 papers. A range of objective functions were 

used along with economic objectives to optimise the capacity of components. The 

emission and reliability related objective functions were the most applied after 

economic objectives. The grid voltage deviation as a technical objective function 

was applied in [73]. A tidal power generator was used in [70] for Flinders Island in 

Australia.  

Table 2-7. Multi-objective capacity optimisation for hybrid RAES with metaheuristic methods. 

Ref. 
Applied 

Method 

System 

Components 

RAES 

Type 

Objective 

Function 

Feasibility 

Constraints 
Country Year 

[68] 

Multi-objective 

crow search 

algorithm 

Diesel 

generator-PV-

FC 

Not specified 
NPC and 

LPSP 

Number of 

components, tank 

energy 

Iran 2019 

[69] 

Multi-objective 

particle swarm 

optimisation 

Diesel 

generator-PV-

WT-BES 

Remote 

community with 

15 houses 

COE, 

LPSP, 

renewable 

factor 

Not specified Iran 2014 

[70] 

Multi-objective 

grey wolf 

algorithm 

Diesel 

generator-PV-

WT-Tidal-BES 

Flinders island 
LCOE, 

emission 

Number of 

components, 

operating reserve 

Australia 2018 

[71] 

Multi-objective 

genetic 

algorithm 

Diesel 

generator-PV-

BES 

Remote village 

LCOE, 

carbon 

footprint of 

energy 

Not specified Russia 2015 

[72] 
Fuzzy artificial 

bee colony 

Diesel 

generator-PV-
An edge region 

Annualized 

cost, 

Number of 

components, 
USA 2020 
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optimisation 

mechanism 

WT-BES emission battery’s energy 

[73] 

Non-dominated 

sorting genetic 

algorithm II 

Diesel 

generator-PV-

BES 

Island 

LCOE, CE, 

grid voltage 

deviation 

Number of 

components, 

battery’s energy 

Indonesia 2018 

c) Non-Metaheuristic Optimisation Algorithms for Hybrid RAES Systems 

The existing studies which optimised the capacity of components based on 

methodologies rather than metaheuristic and HOMER for hybrid RAES systems are 

categorised in Table 2-8. The applied method is specified for each study and the 

other characteristics are represented in Table 6. As illustrated in the table, various 

optimisation techniques were used for optimal sizing. In [78], a dynamic 

programming algorithm was used for optimal sizing of vanadium redox battery in a 

Diesel generator-PV-BES system. The dynamic programming algorithm was 

utilized to overcome the challenge of optimal scheduling by considering the 

operating and efficiency characteristics of vanadium redox battery. In [79], a 

stochastic mixed integer non-linear programming (MINLP) optimisation was 

conducted for optimal sizing which was solved with GAMS software. 

Table 2-8. Hybrid RAES system optimal sizing studies with non-metaheuristic methods. 

Ref. 
Applied 

Method 

System 

Components 

RAES 

Type 

Objective 

Function 

Feasibility 

Constraints 
Country Year 

[74] 
MILP with 

CPLEX 

Diesel 

generator-WT-

BES 

Island 

Cost over the 

project 

lifetime 

Power balance, 

Diesel generator 

output power, 

operating reserve, 

power, and energy 

of BES 

Vietnam 2018 

[75] 
CPLEX optimiser 

in JAVA 

Diesel 

generator-PV-

BES 

Ten 

households in 

rural area 

Capacity of 

battery 

SOC, Diesel 

generator’s output 

power 

Australia 2018 

[76] 

Reformed electric 

system cascade 

analysis 

Diesel 

generator-PV-

WT-BES 

Residential 

community 

with 100 

homes 

Defined 

based on 

constraints 

Final Excess 

Energy, Renewable 

Energy Fraction, 

LPSP, Annual 

System Cost 

USA 2019 

[77] 

MINLP in 

GAMS using 

BARON solver 

Diesel 

generator-PV-

BES 

A remote 38-

bus 

distribution 

network 

Annualized 

costs 

Power flow, active 

and reactive power 

mismatch 

constraints, system 

frequency 

Not 

specified 
2019 

[78] 

Dynamic 

programming 

algorithm 

Diesel 

generator-PV-

BES 

Not specified 
Total cost per 

day 

Power and energy 

of BES 
USA 2015 

[79] 

Stochastic 

MINLP 

optimisation with 

GAMS 

Diesel 

generator-PV-

WT-BES 

Not specified NPC 

Power balance, 

Diesel generator 

constraints, 

operating reserve, 

BES constraints, 

budget constraint 

Not 

specified 
2018 

B) Clean (Renewable-Storage) RAES Systems  

In clean power systems, all the electricity demand will be supplied using 
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renewable energies and ESSs, hence, there is no diesel generator unit.  

a) HOMER Software for Renewable-Storage RAES Systems 

The optimal sizing of renewable-storage RAES systems using HOMER 

software was conducted by 13 papers. The NPC was the only objective function, and 

the feasibility constraints were not specified in most of the studies. The PV-WT-BES 

system was the most considered system for clean RAES [80]. FC, supercapacitor 

(SC), biogas, and hydro were the other technologies which used along with PV and 

WT in clean RAES. In [81], optimal sizing of PV-FC system was investigated for 

small communities. Hybrid energy storage systems for clean RAES systems was 

broadly examined. In [82], a hybrid FC-SC storage system was employed with solar 

PV for a remote commercial load in South Africa. A combination of BES and FC 

was optimally sized with PV and WT in [83]. Biogas generation unit was used with 

PV-WT-BES system to build a clean hybrid system with higher flexibility in 

electricity supply [84]. The application of biogas generation units with hydropower 

in clean RAES systems was also investigated by HOMER in [85]. 

b) Metaheuristic Methods for Renewable-Storage RAES Systems 

The metaheuristic methods are applied as single-objective and multi-objective 

for optimal sizing of clean RAES systems. However, due to the lack of diesel 

generators in clean RAES systems, the emission objective functions are eliminated 

in the optimal sizing. Hence, the number of objective functions is limited. Table 2-9 

presents the characteristics (applied method, system components, type of RAES, 

objective functions, feasibility constraints, country, and publication year) of the 

existing studies on single-objective optimal sizing of clean RAES with metaheuristic 

methods. A wide range of studies have investigated the optimal sizing problem of 

clean RAES systems using metaheuristic methods. Like Table 1, the particle swarm 

optimisation was the most applied algorithm. In [96], a PV-WT-PHS system was 

designed to supply the loads in a coastline community. Such a system is very 

efficient in coastline communities due to water availability for PHS.     
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Table 2-9. Single-objective metaheuristic capacity optimisation for clean RAES systems. 

Ref. 
Applied 

Method 

System 

Components 

RAES 

Type 

Objective 

Function 

Feasibility 

Constraints 
Country Year 

[86] 
Particle swarm 

optimisation 

PV-WT-Tidal-

BES 
Remote house NPC 

Number of 

components, 

reliability, SOC 

France 2019 

[87] 

Hybrid grey 

wolf optimiser-

sine cosine 

algorithm 

PV-WT-FC 

Residential-

commercial 

center 

lifespan 

cost of 

hybrid 

system 

Load interruption 

probability, number 

of components, 

energy at tank 

Iran 2020 

[88] 
Genetic 

algorithm 
PV-WT-BES 

Forty 

households 

Total cost 

of 

ownership 

Number of 

components, tilt 

angle of PV, height 

of WT 

New 

Zealand 
2016 

[89] 
Improved bee 

algorithm 

PV-WT-BES-

FC-Reverse 

Osmosis 

Desalination 

Desalination 

systems and 

community load 

Total life 

cycle cost 

LPSP, energy at 

hydrogen tank, 

SOC, number of 

components 

Iran 2018 

[90] 

Simulated 

annealing 

algorithm 

PV-WT-BES-

FC 
Remote region 

Total life 

cycle cost 

SOC, number of 

components, energy 

in tank 

Iran 2018 

[91] 
Particle swarm 

optimisation 
PV-WT-BES Single house NPC 

Power balance, 

number of 

components 

Australia 2019 

[92] 
Particle swarm 

optimisation 

Biogas-PV-

BES 
Residential LCOE 

Constraint on 

deficit power of PV 
Kenya 2017 

[93] 
Artificial bee 

colony 
PV-Biomass Rural area LCOE 

Number of 

components, output 

power of biogas 

India 2016 

[94] 

Whale 

optimisation 

algorithm 

PV-WT-FC-

Tidal 
Remote region NPC 

Load deficit 

probability 

Size of components 

Iran 2020 

[95] Four algorithms 
PV-WT-BES-

PHS 
Remote island NPC 

Number of 

components, 

battery’s energy 

and SOC 

China 2020 

[96] 
Genetic 

algorithm 
PV-WT-PHS 

Coastline 

communities 

Life cycle 

cost 
Not specified Nigeria 2020 

The existing studies on RAES optimal sizing with multi-objective methods 

are categorised based on applied method, system components, type of RAES, 

objective functions, feasibility constraints, country, and publication year. Table 2-10 

presents the classification of the existing studies. Multi-objective particle swarm 

optimisation algorithm was the most applied method for optimal sizing of clean 

RAES systems. In [98], the PV-WT-BES system was combined with pumped hydro 

storage (PHS). A combination of FC and BES was considered in [99]. In [97], a PV-

WT-BES system was optimised for electricity supply to a rural telecom tower in 

India. A range of economic and reliability objective functions were applied. Only 

two studies were conducted for multi-objective optimal sizing of RAES systems with 

more than three components: PV-WT-BES-FC in [99] and PV-WT-BES-PHS in 

[98]. 
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Table 2-10. Clean RAES systems optimal sizing with multi-objective metaheuristic methods. 

Ref. 
Applied 

Method 

System 

Components 

RAES 

Type 

Objective 

Function 

Feasibility 

Constraints 
Country Year 

[97] 

Multi-objective 

grey wolf 

algorithm 

PV-WT-BES 
Rural telecom 

tower 

COE, LPSP, 

DE 
SOC India 2020 

[98] 

Multi-objective 

grey wolf 

algorithm 

PV-WT-BES-

PHS 

Isolated 

farmstead 
COE, LPSP 

Energy of battery 

and pump-storage 

hydro 

Algeria 2019 

[99] 

Multi-objective 

genetic 

algorithm 

PV-WT-BES-

FC 
Not specified 

NPC, excess 

energy, life 

cycle 

emission 

Number of 

components, 

energy of tank 

Australia 2015 

[100] 

Multi-objective 

genetic 

algorithm 

PV-WT-BES 

A residential 

home with four 

occupants 

Life cycle 

cost, 

embodied 

energy, LPSP 

SOC USA 2014 

[101] 

Multi-objective 

particle swarm 

optimisation 

PV-WT-FC Not specified 
TAC, LOEE, 

LOLE 

Energy at tank, 

number of 

components, 

PV tilt angle 

Not 

specified 
2016 

[102] 

Non-dominated 

sorting genetic 

algorithm II 

PV-BES-FC 
Residential (10 

houses) 

LPSP, 

system cost, 

potential 

energy waste 

Number of 

components 
China 2019 

[103] 

Mutation 

adaptive 

differential 

evolution 

PV-BES Rural area 

Life cycle 

cost, LOLP, 

LCOE 

SOC Malaysia 2020 

c) Non-Metaheuristic Optimisation Algorithms for Renewable-Storage RAES 

Systems 

Table 2-11 lists the characteristics of the studies on capacity optimisation for 

clean RAES systems with other methods rather than HOMER and metaheuristic 

methods. To solve the multi-objective problem by the methods rather than 

metaheuristic approaches iterative technique [106] and power pinch analysis [107] 

were developed by the existing studies. Most of the optimal sizing studies were 

conducted on PV-WT-BES system. 

Table 2-11. Studies on optimal sizing of clean RAES systems with non-metaheuristic methods. 

Ref. 
Applied 

Method 

System 

Components 

RAES  

Type 

Objective 

Function 

Feasibility  

Constraints 
Country Year 

[104] 
Sensitivity 

analysis 

PV-WT-BES-

PHS 
Remote island 

Life cycle 

cost 
Not specified 

Hong 

Kong 
2014 

[105] 
Simulink Design 

Optimisation 
PV-BES-FC Not specified Cost Not specified Spain 2013 

[106] 
Iterative 

technique 
PV-WT-BES 

Remote 

residential 

household 

LPSP and 

LCOE 

SOC, number of 

components 
Algeria 2011 

[107] 
Power Pinch 

Analysis 
PV-BES 

Remote 

community 
Cost Not specified Bhutan 2017 

[108] 
Object-Oriented 

Programming 
PV-WT-BES Not specified NPC LPSP, SOC Algeria 2014 

[109] 
Iterative 

simulation-

PV-WT-BES-

FC 
Not specified LCOE LOLE Iran 2016 
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optimisation 

[110] MILP PV-WT-BES 
Remote area 

mountain lodge 
NPC 

Energy of BES, 

power balance 
Italy 2020 

[111] 
An iterative 

method 
PV-WT-BES 

Ten houses in a 

remote island 
NPC LPSP, COE China 2019 

[112] Logical approach PV-WT-BES 
Remote 

community 
NPC 

Number of 

components 

South 

Korea 
2016 

[113] 
Enumerative 

method 
PV-BES House LCOE 

Unmet load 

percentage, number 

of days of autonomy 

Spain 2018 

[114] 
Sensitivity based 

method 

PV-WT-FC-

PHS 
University RES fraction Not specified Cyprus 2020 

C)  Discussion  

Regarding the used objective functions in the existing studies, the priority 

goes to cost objectives in most of the studies. Then, the reliability objectives have 

obtained more attention than the emission aims because of grid absence in remote 

areas systems. Finally, due to global concern, emission objective functions have been 

attained enough attention by the researchers after cost and reliability targets. The 

number of publications per continent for RAES optimal sizing is demonstrated in 

Fig. 2-9. It is observed that most of the studies (about 100 papers) were conducted 

for Asian case studies. After Asia, optimal sizing for African case studies was 

attracted the highest attention with more than 30 papers. Fig. 2-16 also shows the 

number of publications per country in Asia. It is observed that a high contribution of 

studies was developed in Iran and India. China is the next country with about 15 

studies on RAES optimal sizing. 
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Figure 2-9. Number of publications per countries for RAES optimal sizing. 

D) Discussions on Methods and Uncertainties 

Metaheuristic methods have been broadly used for optimal sizing of RAES 

systems because of good potential to escape from local optimal point, freeness from 

gradient calculation, and simple implementation. These methods could effectively 
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prevail over the nonlinearity and complexity of optimisation formulation. The other 

merit of these algorithms over the classical optimisation methods is the possibility 

of reaching/finding the global optima solution and capability to deal with non-

convex optimal sizing problems that is hardly possible when classical methods are 

utilized. For optimal sizing problems of RAES systems, the metaheuristic methods 

have the capability to reach the near-optimal solutions effectively. Since the problem 

of optimal sizing for RAES systems with several components deal with a fact that 

many results may be found as possible solutions, it may not be required to find the 

exact optimal result and hence the near-optimal result by satisfying the design 

constraints can be a potential solution. Literature has reported that more than 70% 

of the existing papers have used metaheuristic methods for RAES optimal sizing. 

Particle swarm optimisation has the highest contribution among the applied methods 

for single-objective optimal sizing.  

As the number of objectives is increased, solving the optimal sizing problem 

of RAES system in a multi-objective basis becomes more popular. On the other 

hand, the number of constraints is also increased, and the types of constraints become 

more complicated. Hence, the multi-objective metaheuristic methods can be used as 

an appropriate method for such problems. These methods are able to generate several 

solutions in form of Pareto-front in each run of simulation. This is the main 

advantage of multi-objective metaheuristic methods over the classic methods. The 

multi-objective genetic algorithm is the most applied method for optimal sizing. 

In optimal sizing of RAES systems with HOMER software, NPC is the only 

objective function which was considered by all existing studies. This is one of the 

main deficiencies of using HOMER for optimal sizing that the objective function 

cannot be changed. The design constraints are generally improvised in the block of 

the components in HOMER and the designer cannot define new constraints or 

models. This is the main reason that the design constraints are not specified in most 

of the studies by the HOMER. Another deficiency by HOMER is the incapability to 

run multi-objective optimisation. 

Among the non-metaheuristic methods, solving the RAES optimal sizing 

problem with MILP using commercial software was the most utilized one. In such a 

method, the mathematical formulation of the problem is modelled. High 

computational burden and inability to handle the nonlinearities are the main 
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shortcomings of such classic methods. The iterative methods may trap in local 

solutions and hence the global optimal solution may not attain. To overcome this 

challenge, the iterative approach should be repeated multiple times by random initial 

conditions. Hence, the best local solution obtained by the approach is chosen as the 

optimal solution. It should be noted that repeating the simulation for different initial 

conditions increases the calculation time of the approach.  

Analytical approaches evaluate the performance of the system for a set of 

feasible configurations for the specific capacity of the components in the RAES 

system. Then, the best system configuration is selected by evaluating single or 

multiple performance indices. Probabilistic methods develop suitable models for the 

generation of resources and/or load demand and they create a risk model by a 

combination of the developed models. Using the probabilistic methods for sizing of 

RAES systems was conducted by a few studies. This is because the probabilistic 

methods cannot characterize the dynamic changing nature of hybrid RAES systems. 

E) Technical Challenges 

Due to the intermittency of renewable energy, a large mismatch may happen 

between generation and consumption in clean RAES systems. To compensate the 

power deficiency, a large capacity of BES is required. This high capacity of battery 

is a technical challenge due to the high cost of the battery. To reduce the capacity of 

the battery, demand response programs should be developed. Although the DR 

strategies have been developed for grid-connected systems, the application of DRs 

in optimal sizing of remote areas systems was neglected. Due to high intermittency 

of renewable energies and load, a robust optimal sizing of a clean RAES system can 

guarantee the energy supply. However, a robust optimal sizing in the RAES system 

was neglected. Guidelines for customers in RAES systems to purchase PV, WT, and 

BES was neglected in the existing literature. If the customers are equipped with 

renewable-storage systems, the high pressure of energy supply can be efficiently 

reduced in RAES systems. Only limited studies considered some distribution 

network indices in the sizing process. However, the distribution network constraints 

like voltage and frequency constraints can highly affect the optimal sizing problem. 

2.2.4 Recent Developments in Optimal Sizing 

Recently, some research developments have been performed for optimal 
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sizing of RAES systems which are discussed in this section. 

A) EV Charging Stations and Diesel Generator 

In [115], an optimal sizing methodology was developed for allocation of EV 

charging station and DGs in a remote community. A multi-objective optimisation 

problem was developed to minimise emission and cost of the microgrid. It was 

assumed that by substituting EVs with fossil-fuelled vehicles, the pollutant emission 

from driving would be zero. It was found that it will be both economic and clean for 

investors to construct EV charging stations in remote communities.  

B)  Integrated Energy System with Solar PV and Biogas  

In [116], optimal sizing of an integrated energy system with solar PV, battery, 

and biogas was proposed for a remote area residential load. The main purpose of 

adding the biogas system was in twofold: 1) to decrease the capacity of the battery, 

and 2) to design a system for thermal, electricity, and gas supply in remote areas. 

The study showed that the proposed system resulted in a low LCOE for the case 

study. Such studies by considering a multi-energy system for remote areas are highly 

recommended to not only supply the electricity but also thermal and gas demands.  

C) Hybrid Energy Storage and PV 

In [117], a standalone system was developed based on solar PV, ice-thermal 

energy storage (TES), and BES for an islanded building. This study achieved 

valuable developments in twofold. First, optimal sizing of a RAES system. Second, 

deployment of the dynamic model of the system to show the system operation in a 

real-time simulation on the OPAL-RT platform. A coordinated operation between 

BES and TES was proposed to decrease the capacity of BES. It was found that the 

system based on hybrid energy storage is more economical than the system with only 

BES. Such studies are valuable to validate both the sizing and operation.  

D) Optimal Configuration  

In [118], optimal sizing of standalone microgrids was modelled with full 

identification of the system topology. In this model, the optimal type of microgrid 

(AC, DC, or hybrid AC/DC) as well as the capacity optimisation of the DGs, 

storages, capacitors, and the power electronic converters were assigned by 

minimising the total sizing cost. If a hybrid topology was found as the best, the model 
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calculated the optimal size of interlinking converters. Such studies by considering 

control, sizing, and topology of the RAES system is in interest. 

E) Accurate Battery Lifetime Estimation and Technology Selection 

In [119], a two-stage methodology was developed to determine the optimal 

capacity, maximum depth of discharge, and the service lifetime in years of BES for 

a remote microgrid. The different performance of full and half cycles was 

investigated. It was found that the higher capacity of BES results in lower DODs and 

hence a higher estimated lifetime for RAES microgrids. 

F) Concentrating Solar Power Plant 

In [120], a renewable-storage system was proposed for a remote area 

electricity and water supply system based on WT, concentrating solar power (CSP) 

plant and BES. By using the CSP plant, superheated steam was generated to run 

generators to produce electricity. The low/medium temperature exhaust steam of the 

CSP was used in desalination units to produce freshwater. A TES was also 

considered in the CSP plant to reduce the BES capacity. Integrated CSP-desalination 

unit could be very useful for RAES systems. Such a system would give more 

flexibility for energy scheduling.  

G) Cooperation of Diesel Generator and Flywheel with Incentive DR 

In [121], flywheel (FW) was examined for optimal sizing of RAES system. 

The authors optimised a Diesel generator-FW-PV-WT-BES system by considering 

an incentive DR program. The FW reduced the number of offline diesel generators 

to supply the loads. By the incentive DR, customers received a financial benefit to 

contribute to load shedding. The study has opened some good views on the optimal 

sizing problem; however, a flat incentive was selected. 

2.2.5 Potential Directions for Research Works on RAES Optimal Planning 

This paper facilitates future scopes on optimal sizing of RAES systems.  

A) Distribution network constraints  

Optimal sizing of RAES systems by considering distribution network 

constraints obtains more practical results. Generally, the households are located far 

from each other in remote and rural areas which causes long distribution lines 

between customers in RAES systems. Hence, the distribution network in RAES 
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system needs higher attention due to power losses as well as voltage and frequency 

deviations [122]. The optimal sizing should be accomplished by considering all 

distribution constraints. Optimal allocation of components should be investigated in 

by considering the distribution network and components requirements. 

E)  Guidelines for RAES Customers  

Guidelines in RAES systems should be rendered for the customers to purchase 

renewable-storage systems. The guidelines can help electricity consumers to invest 

the right cost on solar PV, WT and BES for their properties. The guideline can be 

based on the budget, the available area for PV and WT installation, and the 

possibility of DR application. Such guidelines can reduce the electricity cost and 

increase the reliability of the electricity supply of customers in RAES systems. 

F) Feed-in-tariff in RAES  

An effective incentive for the customers in RAES systems is to assign feed-

in-tariff for exporting electricity from their PV and WT systems to the distribution 

network. The feed-in-tariff can be based on flat rate or time-of-use rates [123]. When 

the feed-in-tariff is assigned, the customer exports the power to supply the electricity 

demand of the other electricity consumers in the system. Using feed-in-tariff, the 

electricity bill of the customers is reduced and the high pressure of electricity supply 

by the main grid will be lifted. An efficient feed-in-tariff program for customers in 

RAES systems is a good policy in the future. 

G) Robust Optimal Sizing  

To achieve a clean reliable RAES system to supply the load uninterruptedly, 

a robust optimisation is essential. Optimal sizing with robust strategies can overcome 

the intermittency of consumption and generation sides as well as the demand 

variations subjected by population change. The robust strategies can consider the 

worst-case scenario of renewable generation and load consumption to generate the 

optimal capacities [124]. Due to robustness of these methods, the designed system 

can supply the load in the days with lower renewable generation and higher load 

variations. Robust optimal sizing is an efficient future direction. 

2.2.6 Conclusion on the Review for RAES Optimal Planning 

This paper investigated the state-of-the-art optimal sizing of remote area 
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electricity supply (RAES) systems. A problem identification was accomplished to 

highlight the most important aspects of optimal sizing in RAES systems. These 

aspects included the type of components, necessary input data, objective functions, 

feasibility constraints, operation strategies and optimisation methods. The existing 

studies on the field were classified based on hybrid or clean systems, optimisation 

methodologies or software (HOMER) optimisation, and single- or multi- objective 

problem. The existing challenges were explained and the latest developments in 

optimal sizing of RAES systems were discussed. The future perspectives were 

introduced to highlight the potential research ideas for the researchers. It was found 

that feed-in-tariffs and guidelines should be introduced for customers in RAES 

systems in order to reduce of the electricity cost. New software tools are necessary 

to optimise the capacity of components based on various objective functions. 
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2.3 Multi-Objective Optimal Sizing of Hybrid Standalone/Grid-

Connected Electricity Systems 

Integration of renewable and energy storage components in standalone/grid-

connected energy systems, which results in hybrid energy systems, is increasing 

nowadays. Optimisation of hybrid energy systems is an essential matter for 

economic, clean, convenient, and reliable energy supply. Since the optimal design 

should satisfy multiple objectives, application of multi-objective optimisation is 

preferred rather than single-objective solution. By multi-objective optimisation, a 

trade-off among different objectives can be obtained. This review presents a timely 

survey on the state-of-the-art in multi-objective optimal design of hybrid 

standalone/grid-connected energy systems. The existing literature is categorised by 

various indices: (1) standalone or grid-connected mode, (2) number and type of 

objective functions, (3) completely renewable-based or diesel-renewable-based 

hybrid systems, and (4) multi-energy systems. The applied objective functions, 

design constraints and decision variables in optimisation of hybrid energy systems 

are addressed.  

The contribution of this review is presented in one published review paper. 

R. Khezri, and A. Mahmoudi, "Review on the state-of-the-art multi-objective 

optimisation of hybrid standalone/grid-connected energy systems," IET Generation, 

Transmission & Distribution, vol. 14, iss. 20, pp. 4285–4300, Oct. 2020. 

The student has developed the conceptualization and necessity of this review 

study. Analysis and review of research data has been done by him and the co-author. 

The student prepared a draft of the review paper. Revisions and comments were 

provided by the co-author so as to contribute to the interpretation. 

2.3.1 Background and Motivation for Hybrid Energy System Research  

Integration of distributed renewable energy resources (DRERs) in standalone 

and grid-connected energy systems is developed worldwide. Feed-in-tariffs in grid-

connected systems, fuel delivery troubles for standalone remote area systems, and 

air pollution problems are some significant reasons for such a high-level 

development of renewable energy system [1]. However, the uncertain nature and 

high initial cost of DRERs are the main challenges for reliable and cost-effective 
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power supply in standalone and grid-connected electrical systems. The uncertainty 

of renewable energies is compensated by diesel generators (DGs) integration in 

standalone systems, and the main grid in grid-connected systems. However, high 

fuel cost, green-house gas emission and high electricity cost are the barriers to use 

only DGs for renewable energies. The alternative remedies for the integration of 

DRERs are energy storage and demand response [2]. 

Energy storage systems (ESSs), as significant remedies, store the extra power 

of DRERs and release it whenever required by the power system. They improve the 

reliability of standalone system by discharging at the times that the DRERs do not 

generate power. In addition, ESSs can increase the profitability of DRERs in grid-

connected systems by saving the extra energy at the periods that electricity price is 

low and sell it back to the main grid at the periods that electricity price is high. 

However, the price of energy storage systems is still high for a beneficial integration 

[3]. 

The other remedy for DRER integration is demand response (i.e., demand side 

management). By demand response, the customer’s power consumption can be 

rescheduled or curtailed to match with the DRERs output power. The demand 

response can make the renewable energies more profitable by using the generated 

power of DRERs in high electricity price periods.     

The electrical systems with DGs, DRERs, ESSs and demand response in 

standalone or grid-connected modes are known as hybrid energy systems (HESs). 

The HES is a complex system with various components and complex energy 

management. High investigations should be provided in terms of operation, control 

and optimisation of standalone/grid-connected HESs. There are numerous review 

and survey papers on generation and transmission expansion planning [4], hybrid 

renewable energy systems [5], mathematical modelling [6], hybrid energy storage 

application [7], software tool for modelling [8], and development [9] of HES. 

Several review papers have studied the optimisation aspect like optimal operation 

[10], optimisation of distributed energy systems [11], microgrids optimisation [12], 

and application of artificial intelligence [13] for HES.  

Among the various topics associated with HESs, optimal sizing of the 

components is an important subject for researchers to explore the optimal design of 
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the system. Such a decision-making problem can be accomplished to achieve a range 

of objectives: decreasing the costs of HES, reducing the air pollution, increasing the 

reliability, boosting the customer satisfaction, decreasing the excess energy in the 

system, etc. Considering the variety of objectives, the HES optimisation problem has 

been solved by single-objective or multi-objective algorithms in the literature.   

In a primary level, studies have investigated the optimal sizing problem with 

a single-objective optimisation model. Several review papers investigated the 

optimal sizing problem for standalone HES [14], DRERs [15], planning of microgrid 

[16] and power system [17], different configurations of HES [18], and ESS in 

distribution network [19]. The single-objective optimisation suffers from 

considering only one target to maximise or minimise. Although the single-objective 

optimisation is a useful tool to render insights into the nature of the problem for the 

decision makers, but generally cannot render a set of alternative solutions that trade 

various objectives against each other. 

In a multi-objective optimisation model, which consists of conflicting 

objectives, there is no single optimal solution. The interaction among different 

objectives is shown as a set of compromised solutions, mostly known as the trade-

off, non-dominated, non-inferior or Pareto-optimal front solutions. There is only one 

review study for multi-objective optimisation in HES [20]. The main deficiencies in 

[20] are: (i) only standalone HES is investigated, (ii) only the evolutionary 

algorithms were investigated, (iii) overall optimisation (not only optimal sizing) of 

HESs was investigated, and (iv) only a few studies were considered.   

A) Objective Functions 

a) Energy cost 

The most important objective function in the first group (minimisation) is the 

electricity cost of the HES. The electricity cost can be applied using the net present 

cost (NPC), annual energy cost, and cost of energy (COE) or levelised cost of energy 

(LCOE).  

b) Air Pollution 

Minimisation of air pollution depends on the mode of the HES (standalone or 

grid-connected). In standalone HES, the air pollution can be minimised by 

decreasing the fuel consumption of the diesel generators (DGs). The concept is 
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different in grid-connected HES. Since most of the electricity in the grid-connected 

HES is supplied through large-scale fossil fuel generators, the air pollution can be 

minimised by decreasing the imported energy from the grid. In both modes, 

renewable factor (RF) is an important factor to decrease the air pollution.  

c) Dumped Energy 

Dumped energy, also recognised as excess energy, has different definitions in 

standalone and grid-connected HES. In the standalone HES, dumped energy is the 

remaining energy of renewable energies after feeding the loads and charging the 

energy storages. However, the dumped energy in the grid-connected HES is the 

excess energy after feeding loads, charging energy storages, and selling electricity 

to the main grid.  

d) Supply Reliability 

The supply reliability objective function is generally used in standalone HES. 

Since the customers are supplied through the main grid in the grid-connected HES, 

the supply reliability is not a concern as an objective function for such systems. 

Maximising the supply reliability means to reduce the supply interruptions in the 

system. To supply entire loads in the standalone HES, the system needs high capacity 

of energy storages to be used alongside the renewable energies. Supply interruption 

is used to decrease the capacity of energy storages and decrease the cost of HES. 

Conventionally, this objective function is used with cost of system to reach a trade-

off between cost and reliability in the standalone energy systems. 

The most common ways for considering this objective function are 

minimising loss of power supply probability (LPSP), and loss of load probability 

(LOLP). 

e) Autonomy 

Grid autonomy can be used as an objective function for the grid-connected 

HES. There are two factors for grid autonomy, known as energy autonomy and 

power autonomy, which can be used in the optimisation.  

B) Design Constraints 

The constraints are categorised based on their applications for standalone, 

grid-connected or both standalone/grid-connected HESs. 
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Grid constraints should be considered based on the limitations on 

import/export power from/to the grid for the grid-connected HESs. If demand 

response is considered in the optimisation of grid-connected HES, then load 

limitations should be applied to allow a specified value of load to contribute to 

demand response. Power balance between generation and consumption of HES is 

the main constraint during the optimisation of standalone HES. Then, reliability 

constraints can be considered to allow for a specified load reduction to decrease the 

system costs.  

There are several common constraints between standalone and grid-connected 

HESs. Battery, which is widely considered in both systems, has a limitation on the 

state-of-charge (SoC). SoC of battery should remain in an interval between the 

minimum and maximum SoCs. The land and rooftop availability are important 

constraints for WT and PV installation due to the swept area by these components. 

Investment limitations in the HES design projects are considered as budget limits. 

The policies enforced by countries are the other possible constraints. Master 

planning of the areas is the other limitation in urban areas which should be 

considered as a constraint in optimal sizing of power systems. Technical constraints 

are the other types of common limitations in the optimal sizing procedure. Scalability 

factor is a technical constraint which can be considered to make the optimal sizing 

scalable. Resiliency constraints are applied to increase the robustness of the designed 

system against extreme disturbances such as grid outage or natural disasters. 

Flexibility in operation is an important index because of high penetration of 

renewable energies in the power systems.   

C) Decision Variables 

The decision variables in optimisation of HES are the capacities of the 

components. There are different components which have been considered for the 

HES design: DG, WT, PV, BSS, super-capacitor (SC) and fuel cell (FC). The 

decision variables should be optimised to reach the minimum/maximum objective 

functions. In general, constrains are applied to the size of components (as the 

decision variables) in the optimisation problem to restrict the capacities.  

D) Multi-objective Optimisation Principles 

The problem formulation, dominance concept, Pareto-optimal front, and 
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solution algorithms in multi-objective optimisation problems are discussed in this 

section. A multi-objective optimisation problem can mathematically be presented as 

follows: 

Minimise/Maximise    𝑭𝒎(𝑿𝒊), 𝒊 = 𝟏, 𝟐,… ,𝑴                       

Subject to:    {

𝑮𝒌(𝑿𝒊) ≥ 𝟎,   𝒌 = 𝟏, 𝟐,… ,𝑲

𝑯𝒋(𝑿𝒊) = 𝟎,   𝒋 = 𝟏, 𝟐,… , 𝑱

𝑿𝒊 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)

 

where 𝑭𝒎 and M are the mth objective function and the number of objectives, 

respectively. 𝑮𝒌 and K are the kth inequality constraint and the number of inequality 

constraints, respectively. 𝑯𝒋 and J are the jth equality constraint and the number of 

equality constraints, respectively. 𝑿𝒊 is the ith decision variables vector and n is the 

number of decision variables.  

Optimisation problems with a single-objective are definitely solvable by 

finding the best solution (minimum or maximum objective function). Inversely, the 

multi-objective optimisation problems do not have an individual solution and there 

are a set of optimal solutions. In such a condition, a new concept known as 

dominance needs to be defined. Once the following two conditions are true, it can 

be concluded that a solution b is dominated by a solution a:  

Solution b is dominated by a solution a:   𝒂 ≼ 𝒃                       

if :    {
∀ 𝒊 ∶   𝒂𝒊 ≤ 𝒃𝒊
∃ 𝒊 ∶   𝒂𝒊𝟎 < 𝒃𝒊𝟎

 

It means that b is not better than a in all objectives and a is better than b in at 

least one objective. When the dominance concept is applied for a solution in a 

coordinate table, four different areas can be defined. Fig. 2-10 demonstrates the 

dominance condition of solution X compared to four different areas.  
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Figure 2-10. Dominance condition of solution X compared to four different areas. 

• All the solutions in area A are dominated by the solution X.  

• Solution X is dominated by all the solutions in area C. 

• Solutions in areas B and D are indifferent to the solution X. 

Pareto-optimal Front 

 Pareto-optimal front is a set of non-dominated solutions to the multi-objective 

optimisation problem [21]. Generally, it is a curve based on the non-dominated 

solutions. The solutions in the Pareto-optimal front set are the optimal solutions; 

means that any improvement is impossible in one objective without losing in any 

other objectives. The Pareto-optimal front curve should be determined based on the 

objective functions. The Pareto-optimal front is generally divided into four 

categories based on the trade-offs between the objective functions. Fig. 2-11 shows 

a Pareto-optimal front curve for a Max-Min compromise between two objective 

functions. The other three compromises (Max-Max, Min-Min and Min-Max) can be 

obtained by translating “max” into “-min” and vice versa [22].  The yellow zone 

shows the infeasible region of the problem. The solutions placed on the Pareto-

optimal front curve are known as “non-dominated solutions” which are not 

dominated by the other solutions.  
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Figure 2-11. Pareto-optimal front curves a Max-Min compromise between two objective functions. 

Practically, it is impossible to find all the solutions on the Pareto-optimal front 

of the optimisation problem. Because of that, a subset of the Pareto-optimal front set 

is generally sought. Hence, as much as solutions on the Pareto-optimal front should 

be found for solving a multi-objective optimisation problem; and these solutions 

should satisfy accuracy and diversity based on the Pareto-optimal front. Fig. 2-21 

illustrates four different conditions of accuracy and diversity of solutions considering 

the Pareto-optimal front. 

E) Solving Methods  

Solving a multi-objective optimisation problem means finding an appropriate 

Pareto-optimal front based on the objective functions [22]. Fig. 2-12 shows that, in 

general, the multi-objective optimisation problems (finding the Pareto-optimal 

fronts) can be solved by two types of methods: (1) by converting the problem into a 

single-objective problem, and (2) by directly solving as a multi-objective problem 

(evolutionary algorithms). Some of the most applied decomposition methods and 

evolutionary algorithms are shown in Fig. 2-13. 
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Figure 2-12. Four different conditions of the accuracy and diversity of solutions considering the 

Pareto-optimal front. 
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Figure 2-13. Solving methods for multi-objective optimisation problems. 

In the first group, decomposition methods are used to convert the problem into 

a single-objective optimisation model [23]. The first group of methods are known as 

classic or conventional methods. The applied approaches for the classic method are 

weighted sum [24], goal programming [25], goal attainment [26], and epsilon-

constraint [27]. The main advantage of these methods is that the problem is finally 

solved as a single-objective problem. However, there are some drawbacks within 

these methods: (i) the decomposition methods give an individual solution by each 
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run; then, it needs to run the system many times to have an appropriate Pareto-

optimal front, and (ii) Such methods require expert knowledge and prior information 

about the system.  

In the second group, evolutionary algorithms are used to solve the problem in 

a multi-objective optimisation model. Generally, solving multi-objective 

optimisation problem by the evolutionary algorithms overcome the deficiencies of 

the first group. For instance, each run of evolutionary algorithms results in a bunch 

of solutions in the Pareto-optimal front. Multi-objective particle swarm optimisation 

algorithm (MOPSO) and non-sorting genetic algorithm II (NSGA-II) are the most 

common multi-objective evolutionary algorithms applied for grid-

connected/standalone HESs. 

2.3.2 Multi-objective Optimisation of Hybrid Standalone/Grid-Connected Energy 

Systems 

Multi-objective optimisation of standalone/grid-connected HES has been 

done by previous studies to make a trade-off between different objective functions. 

In all the previous studies, energy cost is considered as the main objective function 

and the other objectives are selected based on the requirements of the system model. 

It is illustrated that minimisation of HES cost is conflicted with all the other objective 

functions except the dumped energy which has a design dependent relationship with 

the system cost. Maximising the HES reliability has a conflicting relationship with 

emission. The relationships between the objective functions show that the multi-

objective optimisation of HES is a challenging problem.  

The literature review shows that this challenging problem has been 

investigated for standalone/grid-connected HES by around 69 publications. Fig. 2-

14 demonstrates the number of publications per year from 2006 to 2020 in multi-

objective optimisation of standalone/grid-connected HES. This shows that most of 

the publications per year is for 2018, and the topic is more studied in the recent years 

between 2014 and 2020. 
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Figure 2-14. Number of publications per year from 2006 to 2020 in multi-objective optimisation. 

The previous studies on electrical HESs are categorised into three groups for 

grid-connected and standalone HES: (1) two-objective HES optimisation problems, 

(2) three-objective HES optimisation problems, and (3) four-objective HES 

optimisation problems. Each group is discussed for grid-connected and standalone 

modes in separate. The studies on standalone mode are also divided in renewable-

diesel and completely-renewable based systems. 

The existing studies on multi-objective optimal planning of HES by 

considering multi-energy (electricity, thermal, gas, etc.) system concept are also 

reviewed in this section. 

A)  Two-objective Optimisation of HES 

The two-objective (or bi-objective) HES optimisation studies have 

investigated a compromise between electricity cost and another objective function. 

These studies have been categorised into two groups: grid-connected and standalone. 

Grid-connected Hybrid Energy Systems 

Table 2-12 shows the applied methods, design constraints, components 

(decision variables), and objective functions for two-objective optimisation 

problems of grid-connected HES. CO2 emission, availability, reliability, customer 

satisfaction, and grid absorption probability are the objective functions that have 

been maximised/minimised alongside the cost minimisation.  

Table 2-12. Two-objective optimisation studies on grid-connected HES. 

Reference Method Design constraint 
Components 

(decision variables) 

Objective 

functions 

[28] MOPSO - Capacity of components PV 
- NPV 

- CO2 emission 

[29] MOGA 
- Available area 

- Imported power from grid 
PV+WT+BSS 

- Cost 

- Availability 
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- Power balance 

[30] MOPSO 
- Capacity of components 

- LPSP 
PV+WT+BSS 

- Annualized cost 

- Imported energy 

[31] NSGA-II - Not specified PV+BSS 

- Life-cycle cost 

- Carbon 

emission 

[32] MOPSO - Limitations on BSS BSS 
- Total cost 

- Reliability 

[33] NSGA-II - Not specified DG+PV+BSS 
- Cost 

- Emission 

[34] Weighting sum - Not specified PV 

- Total life cycle 

cost 

- LPSP 

     

In [28], using a multi-objective genetic algorithm (MOGA), an availability 

index has maximised alongside minimising the cost of a grid-connected microgrid. 

Availability is defined as a fraction of the time when energy is available.  

Standalone Hybrid Energy Systems 

Studies on bi-objective optimisation of standalone HESs are classified into 

renewable-diesel based and completely renewable-based systems. 

Renewable-Diesel Based Standalone HES 

Table 2-13 shows the two-objective optimisation of renewable-diesel 

standalone HESs. These types of optimisation problems are the major parts of the 

literature for the multi-objective studies on hybrid energy systems. Various 

optimisation methods have been applied, such as mixed method [35], robust multi-

objective (RMO) methodology [36], strength Pareto evolutionary algorithm (SPEA) 

[37], multi-objective self-adaptive differential evolution algorithm (MOSADEA) 

[38], multi-objective crow search algorithm (MOCSA) [39], and multi-objective 

evolutionary algorithm (MOEA) [42].  

Table 2-13. Two-objective optimisation studies on renewable-diesel based standalone HES. 

Reference Method Design constraint 
Components (decision 

variables) 

Objective 

functions 

[35] 
MODE-NBI-

DEA 
- Not specified PV+DG 

- LCOE 

- CO2 emission 

[36] RMO - Not specified PV+WT+DG 
- Cost 

- Reliability 

[37] SPEA - Not specified PV+WT+BSS+DG 
- LCOE 

- CO2 emission 

[38] MOSADEA - Renewable Factor PV+WT+BSS+DG 
- COE 

- LPSP 

[39] MOCSA 
- Capacity of 

components 
PV+FC+DG 

- NPC 

- LPSP 

[40] MOPSO - Renewable Factor PV+WT+BSS+DG 
- LCOE 

- LPSP 

[41] NSGA-II - Not specified PV+WT+BSS+DG 
- NPC 

- Emission 

[42] MOEA - Not specified PV+WT+BSS+DG - NPC 
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- Unmet load 

[43] NSGA-II 
- Limits on the BSS 

- Unmet load 
DG+WT+BSS 

- Internal rate of 

return 

- Generation cost 

[44] MOPSO - Not specified DG+PV+WT+BSS 

- LPSP 

- Price of 

electricity 

[45] MOPSO - Not specified DG+PV+WT 
- Cost 

- Emission 

     

In [35], a mixture design of experiments (MDOE) methodology is used to 

define the model of objective functions. Normal boundary intersection (NBI) is 

employed to generate the Pareto-optimal front for the optimisation problem. Data 

envelopment analysis (DEA) is then applied for the decision making between the 

optimal non-dominated results. 

Completely Renewable Based Standalone HES 

The second type of two-objective optimisation problems for standalone HESs 

is a completely renewable-based energy system. Since the renewable energies are 

intermittent and unreliable resources, energy storage systems play an important role 

for such systems. In general, the optimal design of completely renewable-based 

standalone HES results in a high capacity of energy storage. Several types of energy 

storages are examined in the design process, such as BSS, FC and SC. Table 2-14 

demonstrates the two-objective optimisation studies on completely renewable-based 

standalone HES.  

Table 2-14. Two-objective optimisation studies on completely renewable based standalone HES. 

Reference Method Design constraint 
Components (decision 

variables) 

Objective 

functions 

[46] MOPSO - Not specified PV+WT+BSS 
- Cost 

- Reliability 

[47] NSGA-II - Limits on the BSS PV+WT+BSS 
- Cost 

- Reliability 

[48] 
ε-constraint 

method 

- Limits on the BSS 

- Limits on the 

hydrogen 

PV+WT+BSS+FC 
- Cost 

- Reliability 

[49] NSGA-II - Limits on the BSS PV+WT+BSS 
- Cost 

- Reliability 

[50] MOPSO - Not specified PV+WT+BSS+FC 
- Cost 

- Reliability 

 

B) Three-objective Optimisation of HES 

Generally, 3D representation or 2D curves of the Pareto-optimal front for 

different objective functions are analyzed for the tri-objective optimisation 

problems. The tri-objective optimisation problems are divided into grid-connected 
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and standalone systems.   

Grid-connected Hybrid Energy Systems 

Based on the literature review, there are only six studies on the three-objective 

optimisation for grid-connected HESs (Table 2-15). In [51], a modified PSO known 

as constrained mixed-integer MOPSO is used for optimal sizing of the components 

of a hybrid generation system. In [52], the optimal capacities of PV and WT are 

analyzed by adopting different multicriteria decision analysis (MCDA) optimisation 

approaches. A new objective function known as social acceptability, which shows 

the social resistance to the installation of PV and WT, is included as a social 

performance evaluation criterion. 

Table 2-15. Three-objective optimisation studies on grid-connected HES. 

Reference Method Design constraint 
Components (decision 

variables) 

Objective 

functions 

[51] Modified PSO 

- Power balance 

- Bounds of design 

variables 

PV+WT+BSS 

- Cost 

- Reliability 

- Emission 

[52] MCDA - Total energy lost PV+WT 

- Economic 

- Emission 

- Social 

[53] NSGA-II 

- Load flow 

- Components 

- DG constraint 

PV+WT+BSS 

- Investment cost 

- EENS 

- Power loss 

[54] NSGA-II 

- Power flow 

- Voltage limits 

- Active power ramp 

- Storage constraints 

BSS 

- Total cost 

- Reliability 

- Self-adequacy 

 

Standalone Hybrid Energy Systems 

The tri-objective optimisation problems of standalone HESs are divided into 

renewable-diesel- and completely renewable based studies.  

Renewable-Diesel Based Standalone HES 

Table 2-16 shows that most of the studies on three-objective optimisation of 

renewable-diesel based standalone HES have considered cost of system, emission 

and reliability as the objective functions. 

Table 2-16. Three-objective optimisation studies on renewable-diesel based standalone HES. 

Reference Method Design constraint 
Components 

(decision variables) 

Objective 

functions 

[55] MOCSA - Not specified PV+DG 

- Cost 

- Reliability 

- Emission 

[56] MOGA - Power balance PV+WT+BSS+DG - Life cycle cost 
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- Dumped energy 

- CO2 emission 

[57] MOPSO - Not specified PV+WT+BSS+DG 

- LCOE 

- LPSP 

- Renewable factor 

[58] MOEA - Not specified 
PV+WT+BSS+ 

FC+DG 

- Cost 

- Environmental 

- Reliability 

[59] MOPSO 

- Limits on the BSS 

- Limits on the hydrogen 

- Type of the components 

PV+WT+BSS+ 

FC+DG 

- Cost 

- LPSP 

- CO2 emission 

[60] 

Response 

surface 

methodology 

- Power balance 

- Reserve capacity 

DG+PV+WT+BSS 

+FC 

- Load curtailment 

- Operation cost 

- Emission 

 

Completely Renewable Based Standalone HES 

Studies on three-objective completely renewable based standalone HES are 

shown in Table 2-17. Since these systems are completely renewable based, the 

emission is not considered as the objective function. In [63], a multi-objective grey 

wolf algorithm (MOGWA) is applied to optimise the size of components for efficient 

electricity supply of rural telecom towers.   

Table 2-17. Three-objective optimisation studies on completely renewable based standalone HES. 

Reference Method Design constraint 
Components 

(decision variables) 

Objective 

functions 

[61] NSGA-II - Capacity of components PV+FC 

- Cost 

- Reliability 

- Potential energy 

waste possibility 

[62] NSGA-II - Not specified PV+WT+BSS 

- Cost 

- Excess energy 

- Reliability 

[63] MOGWO - Not specified PV+WT+BSS 

- Cost 

- Excess energy 

- Reliability 

[64] 
Improved 

NSGA-II) 

- Capacity of components 

- Limits on the BSS 
PV+WT+BSS 

- Cost 

- Environmental 

- Reliability 

[65] 

Iterative filter 

selection 

approach 

- Limits on the BSS 

- Swept area by the PV and 

WT 

PV+WT+BSS 

- Total Cost 

- Reliability 

- Dump power 

[66] NSGA-II - Limits on the BSS PV+BSS 

- LOLP 

- COE 

- Battery index 

 

C) Four-objective Optimisation of HES 

The studies on quad-objective optimisation of HESs are very limited. Same 

as the tri-objective problems, these studies used both 2D and 3D representations of 

objective functions to analyze the non-dominated Pareto-optimal front solutions.  

Grid-connected Hybrid Energy Systems 
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Table 2-18 shows the considered objective functions, components, 

constraints, and applied methodologies in the four-objective optimisation studies. In 

[67], a multi-objective artificial bee colony (MOABC) algorithm is used for optimal 

sizing of WT, PV and FC in a grid-connected HES. The results of the MOABC have 

shown a better diversity in Pareto-optimal front compared to NSGA-II and MOPSO. 

The MOPSO approach is used in [68] to optimise the size of PV and BSS in 

residential buildings based on different objective functions. 

Table 2-18. Four-objective optimisation studies on grid-connected HES. 

Reference Method Design constraint 
Components 

(decision variables) 

Objective 

functions 

[67] MOABC 

- Active and reactive power 

generation constraint 

- Bus voltage limitation 

- DG penetration level limitation 

- Thermal limit 

- Reliability 

PV+WT+FC 

- Total power loss 

- Total cost 

- Emission 

- Voltage stability 

index 

[68] MOPSO - Not specified PV+BSS 

- Energy autonomy 

- Power autonomy 

- Payback period 

- Lifetime cost 

 

Standalone Hybrid Energy Systems 

Table 2-19 lists the previous studies on four-objective optimisation problem 

of standalone HESs. Multi-criterion decision making (MCDM) and normalized 

weighted constrained multi-objective (NWCMO) algorithms are used for optimal 

sizing of components in standalone HESs in [142]. 

Table 2-19. Four-objective optimisation studies on standalone HES. 

Reference Method 
Design 

constraint 

Components (decision 

variables) 
Objective functions 

[69] MCDM - Not specified PV+WT+BSS 

- LCOE 

- Unmet load fraction 

- Wasted energy 

- Fuel consumption 

[70] 

Triangular 

Aggregation 

Model and the 

Levy-Harmony 

Algorithm 

- SOC of battery 

- Number of 

components 

DG+PV+WT+BSS 

- COE 

- LPSP 

- Emission 

- LOLP 

 

 Multi-Objective Optimal Planning in Multi-Energy Hybrid Systems 

 This subsection summarises the application of multi-objective optimal 

planning in multi-energy hybrid systems. The planning problem of energy systems 

is more complexed when the interactions among various energy systems are 
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considered. Multi-energy system is a combination of various forms of energies such 

as electricity, gas, water, thermal, etc. The application of gas turbines in power 

system has increased the interactions between electricity and gas networks. Hence, 

the planning of gas-electricity multi-carrier system has attracted the most attention. 

The planning studies on multi-energy water-electricity systems can investigate the 

interactions between electricity supply, hydropower, water pumping and water 

desalination systems. The interactions between cooling, heating and electricity 

systems are investigated in thermal-electricity multi-energy system  

The multi-objective co-expansion planning of gas and electricity networks 

was investigated by [71]. The decision variables were selected as the transmission 

lines, generation units, as well as gas compressors and pipelines. In gas-electricity 

systems, the total cost, as an objective function, not only considers the electricity 

economics but also the gas operation and investment costs.  

In [72], a multi-objective optimal planning was proposed for an electricity-

water system considering a resilience index to make the system robust against 

earthquakes. In [73], the influence of hydropower unit on downstream riverine 

ecosystem was considered as an objective function for multi-objective design of an 

electricity-water system. In [74], water storage tank was used as a decision variable 

in the optimisation model. In water-electricity systems, cost of water is not an issue 

compared to water storage level/size and ecosystem issues. 

All the studies for electricity-thermal system [75] used NSGA-II as the 

optimisation method. Solar thermal collector, thermal energy storage and fuel cell 

are the additional components considered in electricity-thermal system optimisation. 

In [76], a multi-energy vector was investigated considering electricity, gas, hydrogen 

and syngas energies. The transmission and distribution lines as well as the generation 

units were considered as the decision variables.  

2.3.3 Discussion and New Trends 

Literature survey revealed a diversity in the considered objective functions 

that have been applied in multi-objective optimisation problem of components sizing 

in hybrid energy systems. This section summarises the classification of existing 

studies, shortcomings and limited applications, and potential future directions in 

multi-objective optimal planning of hybrid energy systems. 
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A) Shortcomings and Limited Applications  

Several objective functions in the multi-objective optimisation problem have 

not investigated accurately and sufficiently by the previous studies. For example, the 

objective functions associated with demand response in the HES were neglected by 

the existing multi-objective studies. An objective function, known as customer 

satisfaction, is used for the optimal sizing programs which include demand response 

in the optimisation procedure. However, solving such a problem using an 

evolutionary multi-objective method is neglected in the literature. 

Regarding the demand side management in optimal planning, other objective 

functions like incentive demand response and comfort level of customers are not 

considered by the existing studies. There is a lack of study for these potential 

objective functions since the transition from grid-connected system to standalone 

HES requires an accurate analysis of these indices. Dumped/excess energy is very 

important objective function in a standalone HES. However, the existing studies 

have not used this objective function as significant as it is. Only six studies have 

considered the dumped energy in an optimal planning with three objective functions.  

B) Potential Future Directions 

The existing studies are classified, and the shortcomings are identified. The 

potential future directions are provided based on the deficiencies in multi-objective 

optimal planning of HES. The new trends can be discussed in five categories. 

Due to demand response development in hybrid energy systems, considering 

the customer satisfaction needs more investigation in optimal sizing. The objective 

functions should maximise the satisfaction of the customers who participate in the 

demand response program. Since the demand response is generally modelled by load 

shifting in HESs, the customer satisfaction index should minimise the number of 

times and appliances which are affected by the demand response program. This 

index is also addressed as the user’s convenience/comfort level. On the other hand, 

demand responses with peak shaving needs incentives for the participants. In this 

case, customer satisfaction can be considered by maximising the incentive payment 

to the participants. This conflicts with the total cost minimisation of the HES. 

Therefore, a compromise is required between customer satisfaction and total system 

cost as the objective functions.  
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The recent trend in design of grid-connected hybrid energy systems is to 

decrease the dependency on the main grid. For this purpose, a new objective function 

is proposed named “grid-dependency (GD)” which is a fraction of imported energy 

from the grid over the total load demand. Hence, the transition of HES between grid-

connected and standalone modes can be discussed based on the concept of GD. 

Decreasing GD is achievable by integrating distributed renewable energies (PV and 

WT) to supply the load in grid-connected HES. However, because of intermittency 

problem of renewable energies, battery energy storage is required to supply the load 

uninterruptedly. It is notable that as the grid-dependency factor decreases, the size 

of battery increases and hence the cost of system increases. The highest battery 

capacity is required when the HES operates as a standalone system (i.e. GD is zero 

and the transition of HES from grid-connected to standalone mode is completed). A 

multi-objective optimisation based on the cost and GD factor is an interesting topic 

of future research on grid-connected HES.  

The other group of indices, which can be considered in multi-objective 

optimisation, are the battery characteristics. Recently, batteries are widely used as a 

component for the HESs. The battery cost is high, and its lifetime is short. Battery 

lifetime depends on its operation characteristics in the system. It is generally 

measured by the number of cycles and the depth of discharge (DOD) of the cycles. 

Hence, considering the battery operation characteristics to increase its lifetime can 

achieve lower costs in the system.  

2.3.4 Conclusion on the Review of Multi-objective Planning of HES 

This paper has presented a survey on the state-of-the-art multi-objective 

optimisation of hybrid standalone/grid-connected energy systems. The applied 

objective functions, optimisation algorithms and design constraints in the previous 

studies were investigated. The methods to solve multi-objective optimisation 

problems were discussed. The previous studies were categorised by various indices: 

(1) standalone or grid-connected mode, (2) the number and type of objective 

functions, and (3) completely renewable-based or diesel-renewable-based hybrid 

energy systems. It was found that a range of evolutionary algorithms have been 

applied for the multi-objective optimisation problems. MOPSO and NSGA-II are the 

most applied algorithms in the previous studies. The customer satisfaction, grid-

dependency, battery indices and resiliency as the recent objective functions need 
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further investigation in the multi-objective design procedure. 
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Chapter 3                                     

Optimal Capacity of Rooftop Solar PV 

and Battery for Grid-Connected 

Households  

This chapter investigates the optimal sizing problem of rooftop solar PV and 

battery storage for grid-connected households in Australia. Two system 

configurations (PV-only and PV-battery) are optimally sized. Practical guidelines 

are presented for the customers in South Australia to purchase the correct capacity 

of PV and battery based on their available roof area and average electricity 

consumption.  

The contribution of this chapter is presented in one published research article. 

R. Khezri, A. Mahmoudi and M. H. Haque, "Optimal Capacity of Solar PV and 

Battery Storage for Australian Grid-Connected Households," IEEE Transactions 

on Industry Applications, vol. 56, no. 5, pp. 5319-5329, Sept.-Oct. 2020. 

The student has developed the conceptualization. He designed the 

optimisation model. Analysis and interpretation of research data has been done by 

him and the co-authors. A draft of the paper was prepared by the student. Revisions 

and comments were provided by the co-authors so as to contribute to the 

interpretation. 

3.1 Introduction 

Rooftop solar photovoltaic (PV) systems are increasingly integrated in 

Australian households. According to an Australian clean energy report [1], five 

rooftop solar PV systems were installed in each hour of 2018. At the end of June 

2019, more than one-third of Australian dwellings had rooftop solar PV systems [2]. 
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Such a high penetration of PV systems is the result of high retail price, falling PV 

system costs and incentives from the government in forms of feed-in-tariff (FiT) and 

rebates [3]. 

In a grid-connected system, the installed PV system feeds the load and sells 

the excess power to the grid [4]. This reduces the annual electricity bills of the 

household. Since the FiT is much lower than the retail price (RP) in South Australia 

(SA) [5], integration of battery storage in grid-connected households becomes an 

attractive option. With battery integration, the excess power generated by the PV 

during daytime can be stored [6]. The battery then releases the stored energy in the 

evenings during the peak hours [7].  

Currently, battery energy storage (BES) is an expensive technology and its 

viability for economic integration in households needs investigation. Rooftop PV 

system, if not selected optimally, may not offer economic benefits [8]. Thus, the 

selection of optimal capacity of PV and BES is an important issue for a grid-

connected household to achieve the maximum technical and economic benefits.  

The main scope of this chapter is optimal planning of solar PV and battery for 

grid-connected residential households. In this study, two different rule-based home 

energy management system (HEMS) techniques are developed for two 

configurations: PV only and PV with BES. The HEMS techniques ensure the 

accurate operation of the configurations by considering the grid constraint and 

dumped power. The real annual meteorological and load data, PV, and BES capital 

expenditure (Capex) and Opex, and appropriate interest/escalation rates are 

incorporated which makes the model more realistic. The optimisation model for 

optimal sizing of PV and BES is extended for other Australian States. 

The main contributions of this study compared to previous works are 

summarised as follows: 

• Development of a practical optimisation technique for two different 

configurations of grid-connected households to determine the optimal capacity 

of PV and BES using realistic data.  

• Study the effect of grid constraint on the optimal capacity of components and 

cost of electricity (COE). 

• Investigate the effects of electricity demand, RP, FiT, and costs of PV and BES 

on COE and optimal sizing. 
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• Development of annual cash flow analysis for each configuration of a grid-

connected household. 

• Evaluate the optimal results by conducting an uncertainty analysis of solar 

insolation and ambient temperature using 10 years real data.  

• Provide a practical guideline for the consumers to select the right capacities of 

PV and BES based on the average daily electricity demand and the available 

rooftop space for PV installation. 

3.2 Operating Strategies 

Fig. 3-1 shows two different configurations for a grid- connected household. 

In the first configuration, only a PV system is integrated with the household. In the 

second configuration, an ac coupled BES is added in parallel with the PV system. 

Note that a third configuration (series connection of PV and BES) is also 

investigated. However, the corresponding results are found to be economically 

unattractive.  

Pv

~ 
=PV

Load

Pd

Configuration 1: PV Only    

Grid Load

Pd

Pb,ex

Ps
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BES

Pv

~ 
=
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Dumped Power

~ 
=PV Dumped 

Power
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Figure 3-1. Two system configurations of a grid-connected house: (1) PV only, and (2) PV with 

BES. 

The real-time rule-based HEMS of both configurations is shown on right hand 

side of Fig. 3-2 which is discussed in this section. Rule-based HEMSs are easy to 

understand and user-friendly. In this method, all the rules are explicit for the 

designers and customers. These rules can be simply updated if the customers use 

time-of-use or real time pricing tariffs. 
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Figure 3-2. Optimisation flowchart and HEMS for the proposed system configurations. 

3.2.1 Configuration 1: PV Only 

The first configuration supplies power from the rooftop PV to the household. 

When the PV power exceeds the demand of the household, the excess power/energy 

is exported or sold to the grid at feed-in-tariff. In general, there is a maximum export 

power limit Ps,max imposed by the utility. With the notations shown in Fig. 1, the 

export or sold power can be expressed as: 

𝑃𝑠(𝑡) = min (𝑃𝑠,𝑚𝑎𝑥, 𝑃𝑣(𝑡) − 𝑃𝑑(𝑡)) (3-1)             

If the difference between the PV power and the household demand exceeds the 

maximum export power limit, the extra power is dumped using the control system 

of PV. Thus, the dumped power can be written as:  

𝑃𝑢(𝑡) = 𝑃𝑣(𝑡) − 𝑃𝑑(𝑡) − 𝑃𝑠,𝑚𝑎𝑥 (3-2)             

When the PV power is less the household demand, the system imports or 
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purchases power from the grid. Thus, the purchase power can be expressed as:  

𝑃𝑝(𝑡) = 𝑃𝑑(𝑡) − 𝑃𝑣(𝑡) (3-3)             

3.2.2 Configuration 2: PV and BES 

In the second configuration, an ac coupled battery is added in parallel with the 

PV. When the PV power exceeds the household demand, first the BES will be 

charged (if the state of charge (SOC) level and input power of the BES are within 

the limits) and then the extra power, if any, will be exported or sold to the grid. Thus, 

exported or sold power to the grid is: 

𝑃𝑠(𝑡) = min (𝑃𝑠,𝑚𝑎𝑥, 𝑃𝑣(𝑡) − 𝑃𝑑(𝑡) − 𝑃𝑏,𝑖𝑚(𝑡)) 
(3-4) 

Like Configuration 1, the dumped power is: 

𝑃𝑢(𝑡) = 𝑃𝑣(𝑡) − 𝑃𝑑(𝑡) − 𝑃𝑏,𝑖𝑚(𝑡) − 𝑃𝑠,𝑚𝑎𝑥 (3-5) 

If the PV power is less than the household demand, first the BES will discharge 

to meet the demand (if the SOC level and output power of the BES are within the 

limit) and then the shortage power, if any, will be imported from the grid. Thus, the 

import or purchase power Pp can be written as:   

𝑃𝑝(𝑡) = 𝑃𝑑(𝑡) − 𝑃𝑣(𝑡) − 𝑃𝑏,𝑒𝑥(𝑡) (3-6)             

The SOC of battery in each time interval is calculated by: 

𝑆𝑂𝐶(𝑡 + ∆𝑡) =       

𝑆𝑂𝐶(𝑡) +
𝑃𝑏,𝑖𝑚(𝑡). 𝜂𝑏,𝑖𝑚 − 𝑃𝑏,𝑒𝑥(𝑡)/𝜂𝑏,𝑒𝑥

𝐸𝑏/h
  

    

(3-7)            

The available input and output power for charging/discharging of BES are 

calculated as: 

𝑃𝑏,𝑖𝑛(𝑡) = min (𝑃𝑏,𝑚𝑎𝑥 , (𝐸𝑏/h). (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶(𝑡))) (3-8) 

𝑃𝑏,𝑜𝑢𝑡(𝑡) = min (𝑃𝑏,𝑚𝑎𝑥 , (𝐸𝑏/h). (𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑚𝑖𝑛)) (3-9) 

3.3 Optimisation Model 

This section describes the optimisation model for the planning problem. The 

optimisation process is shown in a flow chart on left hand side of Fig. 3.2. The 

formulated problem can be solved using different solvers (available in MATLAB 

optimisation toolbox), but the particle swarm optimisation approach is used in this 



Chapter 3: Optimal Capacity of Rooftop Solar PV and Battery Storage 

 

88 

study. The PSO algorithm is successfully applied to solve the power system 

optimisation problems [9]. Among the evolutionary algorithms, PSO is a well-

known method due to its suitable convergence rate, simplicity, less requirement of 

storage and minimum initial points dependency [10]. To guarantee the global 

optimal solution by the PSO algorithm, high number of populations (300) and 

generations (500) are considered in this study. In addition, the PSO optimisation has 

been done in 20 runs to achieve global optimal results for the systems. 

3.3.1 Objective Function 

The net present cost (NPC) over 20-year project lifespan is considered as the 

objective function. It is calculated from the components (PV and BES) net present 

cost and the electricity net present cost. The total NPC is: 

𝑁𝑃𝐶𝑡 = 𝑁𝑃𝐶𝑠 +𝑁𝑃𝐶𝑒 (3-10) 

The components net present cost is calculated as follows: 

𝑁𝑃𝐶𝑠 = 𝑁𝑏 ∙ (𝑃𝐶𝑥(𝑏) + 𝑃𝐶𝑦(𝑏) + 𝑃𝐶𝑧(𝑏)) + 

𝑁𝑣 ∙ (𝑃𝐶𝑥(𝑣) + 𝑃𝐶𝑦(𝑣) + 𝑃𝐶𝑧(𝑣)) 
 (3-11) 

Indices b and v represent BES and PV, respectively. The present cost for a 

series of fixed annual maintenance over the component’s lifetime at an interest rate 

i is calculated by: 

𝑃𝐶𝑦 = 𝐶𝑦.
(1 + 𝑖)𝑀 − 1

𝑖(1 + 𝑖)𝑀
 (3-12)             

The present cost of a component replacement, every 𝑌 years of the system 

lifetime is: 

𝑃𝐶𝑧 = 𝐶𝑧 . ∑
1

(1 + 𝑖)𝑡𝑌

𝑡𝑌<𝑀

𝑡=1

 (3-13)             

It is considered that electricity cost escalates at a rate (𝑒) above the interest 

rate i. Thus, the real interest rate is:  

𝑟 =
𝑖 − 𝑒

1 + 𝑒
 (3-14) 

The net present cost for an annual electricity cost is: 

𝑁𝑃𝐶𝑒 = 𝐶𝑒 .
(1 + 𝑟)𝑛 − 1

𝑟(1 + 𝑟)𝑛
 (3-15) 
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𝐶𝑒 = ∑ 𝑅𝑃(𝑡). 𝑃𝑝(𝑡). ∆𝑡

8760

𝑡=1

− ∑ 𝐹𝑖𝑇(𝑡). 𝑃𝑠(𝑡). ∆𝑡

8760

𝑡=1

 (3-16) 

3.3.2 Design Constraints 

Design constraints are considered as follows:  

0 ≤ 𝑃𝑣(𝑡) ≤ 𝑃𝑣,𝑚𝑎𝑥 (3-17) 

0 ≤ 𝑃𝑏,𝑖𝑚(𝑡), 𝑃𝑏,𝑒𝑥(𝑡) ≤ 𝑃𝑏,𝑚𝑎𝑥 (3-18) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (3-19) 

𝑃𝑏(𝑡) + 𝑃𝑣(𝑡) + 𝑃𝑝(𝑡) − 𝑃𝑠(𝑡) ≥ 𝑃𝑑(𝑡) (3-20) 

0 ≤ 𝑃𝑠(𝑡) ≤ 𝑃𝑠,𝑚𝑎𝑥 (3-21) 

Equations (3-17) and (3-18) are the constraints on PV and BES output powers, 

respectively. Equation (3-19) is the SOC constraint of battery. Equation (3-20) is a 

constraint for power balance at each time period. Equation (3-21) is the grid 

constraint to limit the export power from the PV to the grid. 

3.3.3 Cost of Electricity 

The cost of electricity (COE) is the ratio of net annual payment to the net 

annual electricity consumption. The COE (¢/kWh) is calculated based on the 

components and electricity net present costs, associated capital recovery factor 

(CRF), and the annual load demand: 

COE =
𝑁𝑃𝐶𝑠. CRFs + 𝑁𝑃𝐶𝑒 . CRFe

𝐸𝑎𝑛𝑛𝑢𝑎𝑙
 (3-22) 

CRF𝑠 =
𝑑(1 + 𝑑)𝑛

(1 + 𝑑)𝑛 − 1
 (3-23) 

CRF𝑒 =
𝑞(1 + 𝑞)𝑛

(1 + 𝑞)𝑛 − 1
 (3-24) 

E𝑎𝑛𝑛𝑢𝑎𝑙 = ∑ 𝑃𝑑(𝑡). ∆𝑡

8760

𝑡=1

 (3-25) 

It is to be noted that d and q are the same as i and r, respectively.  

The COE is typically used to compare the cost of different electricity systems. 

In the absence of PV and BES, the COE of the household is the same as the RP.  
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3.4 Case Study 

The developed HEMSs and optimisation model are general and can be applied 

to all standard networks. In this chapter, a grid-connected household in SA is 

considered as the case study to investigate the proposed optimisation model. Input 

data used in the case study is explained in this section. This includes two different 

data sets: (1) economic and technical data of components and main grid; (2) load and 

meteorological data. 

3.4.1 Economic and Technical Data 

Table 3-1 lists the component costs and parameters, RP and FiT of electricity, 

and the interest and escalation rates. The above values are selected based on the 

actual market price in SA. In this study, all prices are in Australian dollar. The project 

lifespan is considered as 20 years. The degradation of the BES due to aging is 

indirectly included by considering the round-trip efficiency as 76% during the 

project lifespan. 

Table 3-1. System components costs, electricity prices and economic rates. 

PV  

[12] 

Capital cost = $1,500/kW 

Replacement cost = $300/kW 

Maintenance = $50/kW/year 

PV lifetime = 25 years 

Inverter lifetime = 10 years 

Solar cell efficiency = 20% 

BES 

[13] 

Capital cost = $700-1,000/kWh  

Replacement cost = $400/kWh 

BES lifetime = 10 years 

SOCmin = 20% 

SOCmax = 100% 

Electricity 

prices 

Retail price = 48 ¢/kWh  

Feed-in-tariff = 17 ¢/kWh  
Economic rates 

i = 8% 

e = 2% 

 

In 2017, SA power network imposed the maximum export power limit of 

single-phase households to 5 kW [11]. By the grid constraint, the local electricity 

networks can be protected from overloading problem. 

3.4.2 Load Profile and Meteorological Data 

The box plot of load consumption for a typical household in SA is shown in 

Fig. 3-3 [3]. The maximum and average load consumptions during a year are 1.647 

kW and 0.651 kW, respectively. Daily average and annual energy consumptions are 

15.63 kWh and 5,704.9 kWh, respectively.  
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Load consumption of a typical household in SA

Solar insolation in urban area of SA Ambient temperature in urban area of SA

Min.  0.32 kW

Max. 1.647 kW

Avg.  0.651 kW

Min.  0.5 kWh/m
2
/day

Max. 7.5 kWh/m
2
/day

Avg.  5.4 kWh/m
2
/day

Min.  2.2 °C

Max. 41.9 °C

Avg.  17.9 °C

 

Figure 3-3. Daily box plot of the load, insolation, and temperature of a typical household in SA. 

In Australia, the annual solar radiation is around 58 million peta-joules (PJ) 

which is approximately 10,000 times of the Australia’s annual energy consumption 

[14]. The daily average solar insolation and ambient temperature in SA are 5.4 

kWh/m2/day and 17.9°C, respectively [15]. This results in 4.3 kWh daily generation 

for a 1 kWp PV system. Daily box plot of solar insolation and ambient temperature 

in urban area of SA in 2018 are also shown in Fig. 3.3. 

3.5 Results and Discussions 

The proposed optimisation technique is applied to a typical grid-connected 

household in SA. Various simulation results obtained for both configurations (as 

shown in Fig. 1) are discussed. The results of sensitivity analysis, cash flows 

analysis, and uncertainty analysis are also presented. A practical guideline is 

presented for the customers in SA. 

3.5.1 Rooftop PV and BES Capacity Optimisation 

Table 3-2 lists the optimal capacity of PV and BES, NPCt, COE, annual 

dumped energy (ADE), annual export energy to grid (AEEG), and annual import 

energy from grid (AIEG) for both configurations. For the first configuration, the 

optimised PV capacity is found as 9 kW. The COE is obtained as 28.08 ¢/kWh that 
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means 42% reduction compared to the case of without any solar PV. Since there is 

no battery in this configuration, the extra power of PV after feeding the demand is 

sold to the grid. By a 9 kW PV, 11.13 MWh energy is sold to the main grid. The 

AIEG is 3.21 MWh which means that the solar PV supplies 2.49 MWh of the annual 

electricity demand of the household. Because of relatively large capacity of PV, there 

is an annual dumped energy of 0.52 MWh.  

Table 3-2. Optimisation results for both System configurations. 

Configuration 
PV 

 (kW) 

BES 

(kWh) 

NPCt 

($) 

COE 

 (¢/kWh) 

AIEG  

(MWh) 

AEEG 

(MWh) 

ADE 

 (MWh) 

   Only PV 9  - 15,113 28.08 3.21 11.13 0.52 

   PV-BES         9 

(BES cost: $350/kWh) 
11  12,021 24.73 0.59 7.76 0.42 

 

For the second configuration, the proposed optimisation technique provided a 

zero BES capacity indicating that the current BES price ($700-1000/kWh) is not 

economically viable. Thus, the results of this configuration are the same as that of 

the first configuration. However, the SA government is currently providing a subsidy 

of $500-600/kWh of BES capacity to some eligible customers [16]. With the above 

subsidy, the present market price of BES is around $350/kWh. When the proposed 

optimisation technique is applied to the second configuration with a BES price of 

$350/kWh, the optimal battery size is found as 11 kWh. Other optimised results of 

the system are shown in Table 3-2 (last row). In this case, the COE reduction is 

around 48% compared to the system without any PV. The AEEG is decreased by 

3.37 MWh compared to configuration 1. However, the PV-BES configuration 

supplies around 90% of the household demand. The effect of BES price on COE is 

separately shown in sensitivity analysis.   

3.5.2 Annual Payment Cashflow Analysis 

Annual payment cash flow analysis illustrates the customer payment in each 

year during the project lifetime. In SA, the capital/replacement costs of the inverter, 

BES, and PV are generally sourced from a financial institution in a low interest rate. 

The total annual payment (TAP) of the household is:  

𝑇𝐴𝑃 = 𝐴𝑃𝐶𝑎𝑝𝑒𝑥 + 𝐴𝑃𝑂𝑝𝑒𝑥 + 𝐴𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦  (3-26) 

For the grid-connected household without any solar PV, the annual electricity 

bill (i.e., annual energy consumption at RP) is the total annual payment. The annual 
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benefit (AB) and the total benefit (TB) of each system configuration (SC) are then 

calculated as follows: 

𝐴𝐵𝑠𝑐 = 𝑇𝐴𝑃𝑔 − 𝑇𝐴𝑃𝑠𝑐  (3-27) 

𝑇𝐵𝑠𝑐 =∑𝐴𝐵𝑠𝑐(𝑦)

20

𝑦=1

  (3-28) 

Fig. 3-4 shows the 20-year annual payment cash flow analysis results for both 

configurations. Replacement loan payment (for the BES and inverter) from the 10th 

year has increased the TAP for both configurations. In both configurations, the 

annual revenue from selling electricity to the grid is higher than the annual payment 

for the purchased electricity from the grid. The TAP of both configurations is much 

lower than that of the grid alone system. The differences between the blue and red 

lines demonstrates the annual benefits of each system.  

The annual and total benefits of the household with PV only, and PV-BES are 

shown in Fig. 3-4. The annual benefits for each year during the project lifetime are 

more than $1,500 (for the PV only system) and $2,000 (for PV-BES system). The 

average of TAP difference in 20-year is $2,100 for the PV only system, and $2,500 

for the PV-BES system. This means that the customer can save an average of $2,100 

and $2,500 for the annual payment with configurations 1 and 2, respectively. The 

total benefit in PV-BES system is $7,735.65 more than that of the PV only system. 

Configuration 1: PV Only    Configuration 2: PV-BES   
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Figure 3-4. Cash flow during the project lifetime including the annual and total benefits for both 

studied system configurations. 

3.5.3 Daily Operational Analysis  

The power flow of both configurations needs to be investigated to analyse the 

operation of the systems. Fig. 3-5 shows the variation of various power (solar PV, 
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load, grid, battery and dumped) in four sample days: (1) two consecutive sunny days 

(48 hr) in summer, and (2) two consecutive cloudy days (48 hr) in winter. During 

the sunny days of summer, there is no import power from 9:00 am to 5:00 pm, and 

PV feeds the total load and sells the extra power to the grid in both configurations. 

As shown, most of the PV power is exported to the grid and the export power does 

not exceed the maximum allowable limit 5 kW at any time. 

Configuration 1: PV Only      

Configuration 2: PV-BES   

P
o

w
e
r
 (

k
W

)

Hour

0 12 24 36 48

Summer     Winter

Summer     Winter

P
o

w
e
r
 (

k
W

)

Hour

0 12 24 36 48

Hour

0 12 24 36 48

P
o

w
e
r
 (

k
W

)

Hour

0 12 24 36 48

Hour

P
o
w

er
 (

k
W

)

Hour

Hour Hour

6

4

2

0

-2

-4

P
o

w
e
r
 (

k
W

)
P

o
w

er
 (

k
W

)

6

4

2

0

-2

-4

P
o

w
e
r
 (

k
W

)
P

o
w

er
 (

k
W

)

6

4

2

0

-2

-4

P
o

w
e
r
 (

k
W

)
P

o
w

er
 (

k
W

)

6

4

2

0

-2

-4

Load power Export power Import power

Dumped power PV power Battery power

Ev = 15.8 kWh
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Es = 10.4 kWh

Ech = 22.4 kWh

Edis = 27.2 kWh
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E: Energy in the sample days
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Edis = 11.2 kWh
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v, d, u, p, s, ch, dis: Indices for PV, demand, dumped, purchased, sold, charging 

and discharging, respectively.
 

Figure 3-5. Daily power flow for both studied system configurations in four sample days (two 

sunny days in summer and two cloudy days in winter). 

In the evening, the load power is supplied through import power from the grid 

for configuration 1. However, in configuration 2, the BES supplies the load power 

in the evening time and the import power from the grid is almost zero. The PV energy 

during the summer is higher than the demand of the household (it operates like a 

zero net energy home). In winter, the PV generation is limited to a few hours and the 

import power is increased for configuration 1. However, BES supplies most of the 

remaining load and the import power from the grid is less for configuration 2. 
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3.5.4 Sensitivity Analysis 

In SA, as well as other Australian States, there is a maximum export power 

limit from a residential home to the grid. It is important to analyse the effect of a 

range of export power limit on the COE and capacities of PV and BES. Fig. 3-6 

shows the variation of optimal capacity of system component(s) and COE against 

the export power limit for both configurations.  

A 2-kW solar PV is the optimal capacity in Configuration 1 when the PV is 

prohibited of exporting power to the grid (point A). When the BES is added (in 

Configuration 2), the optimal PV capacity is increased to 4 kW (point B) without 

exporting any power. In both configurations, the optimal PV capacity increases, and 

the value of COE decreases with the increase in export power limit. In Configuration 

1, the annual dumped energy fluctuates between 0.21 MWh and 1.18 MWh for 

different values of export power limit. However, the use of BES in Configuration 2 

reduces the dumped energy fluctuation between 0.34 MWh and 0.93 MWh. 
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Figure 3-6. Sensitivity analysis for the limitation on the export power to the grid. 

The effects of various factors (such as, a range of PV and BES costs, daily 

average electricity demand, PV and BES capacities, RP and FiT) on the COE are 

also investigated. Fig. 3-7a shows the value of COE (colour bars) of configuration 1 

when the PV cost and the daily average electricity demand are changed. In this case, 

PV installation is more beneficial with low electricity demand. For example, in a 

household with 10 kWh of daily electricity demand and a PV cost of $1200/kW 

(point A), the customer can collect some revenue by exporting more power to the 

grid. Fig. 3-7b shows the effect of RP and FiT on the COE of configuration 1. It is 

found that the minimum COE occurs where the RP is minimum, and the FiT is 

maximum (point B). In other words, for a given FiT, COE increases with the increase 

of RP. Inversely, for a given RP, COE decreases with the decrease in FiT. 
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Figure 3-7. Sensitivity analysis of COE. (a) Average electricity demand per day versus PV cost. (b) 

Average electricity demand per day versus BES cost. (c) RP versus FiT for the typical household. 

(d) BES capacity versus PV capacity for the typical home. 

Fig. 3-7c shows the value of COE (colour bars) for Configuration 2 when the 

cost of BES and the household daily average electricity demand are changed. For 

BES price of more than $400/kWh, the optimal size of BES is found as zero 

indicating that BES is not economically beneficial. When the BES price varies 

between $350 and $400/kWh, BES is not much effective in reducing the value of 

COE. For BES price of less than $350/kWh, both the BES capacity and COE 

increase with the increase in daily average electricity demand. For example, for a 

daily average demand of 25 kWh and a BES cost of $300/kWh (point C), the optimal 

capacity of BES is found as 20 kWh and the corresponding COE is 30 ¢/kWh.   

Fig. 3-7d shows the effect of BES and PV capacities on the COE for a typical 

household in SA (daily average energy of 15.6 kWh). The value of COE, for a given 

PV capacity, is very insensitive to the variations in BES capacity. For example, a 4 

kW PV system with a 1 kWh BES (point D) has almost the same value of COE with 

a 6 kWh BES (point E). On the other hand, for a given BES capacity, COE decreases 

significantly with the increase of PV capacity.  

3.5.5 Uncertainty Analysis Based on 10-Year Real Data 

To investigate the robustness of the proposed methodology, an uncertainty 
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analysis is conducted. The uncertainty in solar insolation and ambient temperature 

on the optimal capacities is investigated using real data in SA urban area over a 

period of 10 years (2009-2018). Fig. 3-8a shows the annual average ambient 

temperature and the daily average solar insolation for the above period. The optimal 

capacities of PV (in Configurations 1 and 2) and BES (in Configuration 2) found by 

the proposed method are shown in Fig. 3-8b. It can be noticed in Fig. 8b that the 

optimal PV capacity in Configuration 1 is obtained as 7 kW for three years, 8 kW 

for three years, and 9 kW for four years. In Configuration 2, the optimal capacity of 

PV is found as 9 kW for five years, 8 kW for four years and 7 kW for only one year. 

The optimal BES capacity (with a battery price of $350/kWh) is obtained as 11 kWh 

for nine years and 10 kWh for one year. The above analysis confirms that the optimal 

capacities obtained in section V.A are reasonable for a typical household with a daily 

average energy consumption of 15.6 kWh/day. 
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Figure 3-8. Uncertainties analysis from 2009-2018. (a) Ambient temperature and solar insolation. 

(b) Optimal capacities for each year based on the data. 

3.5.6 Practical Guideline  

This study facilitates a practical guideline for a residential consumer in SA to 

select optimal capacities of rooftop PV and BES to reduce the electricity cost. The 

practical guideline is based on the available rooftop space and daily average 

electricity demand for the customers without PV as well as the customers with an 

existing fixed size PV but need only BES. The maximum PV capacity for a given 

rooftop area can be calculated based on the solar cell efficiency as follow: 

𝑃𝑣,𝑚𝑎𝑥 = 1kW m2 × 𝐴(m2) × 𝜂𝑣⁄  (3-29) 

Fig. 3-9 shows the practical guideline for the residential customers in SA. First 

it is checked whether the household already has a PV or not.  If the PV is already 

installed, the capacity of BES needs to be optimised with the existing PV capacity. 

This is shown with green lines in Fig. 3-9a. It is found that for a given PV capacity, 
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the BES capacity increases when average daily load demand is increased. However, 

for a given electricity demand, BES size is less sensitive to PV size (beyond a certain 

capacity). For example, a household with 15 kWh daily load demand and a 5 kW PV 

(point A), needs the same BES capacity for a household with the same daily load 

demand and an 11 kW PV (point B).  

 

Figure 3-9. Practical guideline for a costumer in SA. (a) Customer already has PV and needs BES. 

(b) Customer needs PV-BES. (c) Customer only needs PV. 
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For customers without a PV system, the guideline advises whether the 

customer needs PV only, or PV with BES, or has no idea and needs a 

recommendation. In this case, the optimal capacities of PV and BES are determined 

based on the average daily electricity demand, available rooftop space for PV 

installation, as well as RP and FiT. If the customer has no idea, the recommendation 

is the only PV system because the BES cost (without subsidy) is not economical for 

the integration in grid-connected households.  

Fig. 3-9b shows the practical guideline for the customers who need both PV 

and BES. For a limited rooftop space, the PV capacity is almost constant when the 

daily load demand increases. However, the BES capacity increases with the increase 

in daily load demand. For example, a household with 30 m2 available rooftop space 

and 10 kWh daily load demand (point C), needs the same PV capacity for a 

household with same rooftop and 20 kWh daily load demand (point D). However, 

the optimal BES capacity for household (point C) is 7 kWh less than the BES for 

household (point D). Fig. 3-9c demonstrates the optimal capacity of PV for the 

customer who only needs PV. For a given daily load demand, the PV capacity 

increases with the increase in available rooftop space. 

3.6 Optimal Systems in Australian States  

The proposed optimisation technique with system configurations is also 

applied to the households of different Australian States (New South Wales (NSW), 

Queensland (QLD), South Australia (SA), Tasmania (TAS), Victoria (VIC), and 

Western Australia (WA)). The optimisation technique used real data of the 

respective state including solar insolation, air temperature, RP and FiT in urban area 

[4]. Table 3-3 lists the average solar insolation, air temperature, RP and FiT for 

Australian States. TAS has the minimum RP of 25 ¢/kWh, and the WA has the 

minimum FiT of 7 ¢/kWh.  SA has the highest RP among all states. The FiT is almost 

the same for SA and QLD. The annual average solar insolation is the highest in SA 

and QLD (5.4 kWh/m2), and the annual average ambient temperature is the highest 

for QLD (25°C). Thus, SA and QLD are likely to get more benefit from PV 

installation. 
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Table 3-3. Real metrological data and electricity rates in Australian States. 

 Daily average 

temperature (°C) 

Daily average solar 

insolation (kWh/m2) 
RP (¢/kWh) FiT (¢/kWh) 

NSW 18.6 5 31 13 

QLD 25 5.4 33 16 

SA 17.9 5.4 48 17 

TAS 15.9 4.6 25 9 

VIC 16.4 4.7 26 12 

WA 20.1 5.5 26 7 

 

Fig. 3-10 shows the comparison of optimal PV size and COE of configuration 

1 for various states. The lowest PV capacity is obtained in WA, since the state has 

the minimum FiT. Solar PV has the minimum effect on the COE in TAS and VIC, 

because of lower solar insolation. The lowest COE is found in QLD (22 ¢/kWh) but 

the highest COE reduction occurred in SA (from 48 to 28 ¢/kWh). Because of 

relatively high solar insolation and RP, SA is the best state for PV installation. 

 

Figure 3-10. COE comparison of configuration 1 for different Australian States. 

In configuration 2 (when the BES is added), optimisation results illustrate that 

the current market price of BES in Australia is not economic for none of the states. 

The minimum cost of BES for an efficient integration to the grid-connected 

household of Australian States is shown in Table 3-4. For NSW, the minimum cost 

of BES for economic integration is found as $190/kWh which is one-fourth of the 

current market price of battery. SA has the highest potential for BES integration 

among the other states. Therefore, it is more appropriate to install the BES for grid-

connected households in SA in near future. 

Table 3-4. Efficient BES cost for economic integration in different states. 

State NSW QLD SA TAS VIC WA 

BES Cost ($/kWh) 190 300 350 220 200 240 
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3.7 Conclusions  

This chapter determined the optimal capacity of solar PV and BES for grid-

connected households in Australia. The optimal results are obtained for two different 

configurations: (a) PV only, and (b) PV with BES, using the real annual data of load 

consumption, solar insolation, and ambient temperature. For a typical home in SA, 

the optimal capacity of the PV system is found as 9 kW that can decrease the COE 

by about 40%.  

In SA, the current market price of battery is found to be unattractive for 

economic integration of BES in a grid-connected household. The battery price 

should decrease to $350/kWh to become economically attractive. The total benefit 

from the PV only and the PV-BES (with a BES cost of $350/kWh) systems during 

the project lifespan was found around $42,000 and $50,000, respectively.   

The uncertainty analysis based on 10-year real data confirmed that the 

optimised PV (9 kW) and BES (11 kWh) capacities remain almost the same over a 

period of 10 years. A practical guideline was also presented for the households in 

SA to invest on the right capacity of PV and BES. It was found that the optimal PV 

capacity should be determined based on not only the available rooftop space but also 

on daily energy consumption. For a typical household (5,705 kWh electricity 

demand per year), 9-kW is the most optimal capacity of solar PV system. 

Optimal system capacities for two different configurations were also 

investigated for various states of Australia and it was found that the PV only system 

(without battery subsidy) is the most beneficial for households in SA because of 

highest RP. SA has the highest potential for BES integration among the other states.  

Nomenclature 

A. Parameters: 

𝐴 Available rooftop area (m2) 

𝐶𝑦 Annual maintenance cost of components ($) 

𝐶𝑧 Replacement cost of components ($) 

𝐶𝑅𝐹𝑠 Components capital recovery factor 

𝐶𝑅𝐹𝑒 Electricity capital recovery factor 

𝑒 Escalation rate (%) 

ℎ Hour  

𝑖, 𝑑 Interest/discount rates (%) 

𝑀 Component’s lifetime (year) 
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𝑛 Project lifetime (year) 

𝑃𝑏,𝑚𝑎𝑥 Maximum allowable power of battery (kW) 

𝑃𝑠,𝑚𝑎𝑥 Maximum export power limit to the grid (kW) 

𝑃𝑣,𝑚𝑎𝑥 Maximum allowable power of PV (kW) 

𝑃𝐶𝑥 Capital present cost of components ($) 

𝑃𝐶𝑦 Maintenance present cost of components ($) 

𝑃𝐶𝑧 Replacement present cost of components ($) 

𝑟, 𝑞 Electricity interest/discount rates (%) 

𝑆𝑂𝐶𝑚𝑎𝑥, 𝑆𝑂𝐶𝑚𝑖𝑛 Maximum and minimum SOC of battery (%) 

𝑦 Year 

∆𝑡 Time interval (hr) 

𝜂𝑏,𝑖𝑚, 𝜂𝑏,𝑒𝑥 Import/export efficiency of battery (%) 

𝜂𝑣 Solar cell efficiency (%) 

B. Variables: 

𝐴𝐵𝑠𝑐  Annual benefit of system configurations ($) 

𝐴𝑃𝑐𝑎𝑝𝑒𝑥  Annual payment for the loan of Capex ($) 

𝐴𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 Annual electricity payment ($) 

𝐴𝑃𝑜𝑝𝑒𝑥 Annual payment for the loan of Opex ($) 

𝐶𝑒 Annual cost of electricity trade with grid ($) 

𝐸𝑏 Battery capacity (kWh) 

𝐸𝑎𝑛𝑛𝑢𝑎𝑙 Annual electricity demand (MWh) 

𝑁𝑏 Number of batteries 

𝑁𝑣 Number of PVs 

𝑁𝑃𝐶𝑠 Net present cost of components ($) 

𝑁𝑃𝐶𝑒 Net present cost of electricity trade with grid ($) 

𝑁𝑃𝐶𝑡 Total net present cost of system configurations ($) 

𝑃𝑏,𝑖𝑚, 𝑃𝑏,𝑒𝑥 Import/export power of battery (kW) 

𝑃𝑏,𝑖𝑛 , 𝑃𝑏,𝑜𝑢𝑡 Available input/output power of battery (kW) 

𝑃𝑑 Load power (kW) 

𝑃𝑠, 𝑃𝑝 Export/import power to/from grid (kW) 

𝑃𝑢 Dumped power (kW) 

𝑃𝑣 Output power of solar PV (kW) 

𝑇𝐴𝑃𝑔 Total annual payment with only grid ($) 

𝑇𝐴𝑃𝑠𝑐 Total annual payment of configurations ($) 

𝑇𝐵𝑠𝑐  Total benefit of configurations ($) 
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Chapter 4                                       

Impact of Optimal Sizing of Wind 

Turbine and Battery for a Grid-

Connected Household with and 

without an Electric Vehicle  

This chapter investigates the capacity optimisation problem of small wind 

turbine and battery storage for grid-connected households with and electric vehicles.  

The contribution of this chapter is presented in one submitted research article. 

R. Khezri, A. Mahmoudi, and M. Haque, “Impact of Optimal Sizing of Wind 

Turbine and Battery Energy Storage for a Grid-Connected Household With/Without 

an Electric Vehicle,” IEEE Transactions on Industrial Informatics, Under 

Revision, 2020. 

The student has developed the conceptualization. He designed the 

optimisation model. Analysis and interpretation of research data has been done by 

him and the co-authors. A draft of the paper was prepared by the student. Revisions 

and comments were provided by the co-authors so as to contribute to the 

interpretation. 

4.1 Introduction 

Integration of renewable distributed generators to grid-connected households 

(GCHs) is an effective way of reducing the electricity cost. Taking advantages of 

compact design, simple structure, portability, low noise and reasonable capital cost, 

small wind turbine (SWT) is one of the appropriate candidates for distributed 
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generators in GCHs [1]. The installed SWT can supply the household load and export 

the excess power, if any, to the grid at a feed-in-tariff (FiT) rate to reduce the annual 

electricity cost of the household. The FiT rate is considerably lower than the retail 

price (RP) for residential customers in most of the developed countries like 

Australia. Therefore, integration of battery energy storage (BES) in GCHs with SWT 

may become an economically attractive solution.  On the other hand, Australia is 

planning to ban the sale of internal combustion engine (ICE) vehicles by 2035 and 

that will increase the growth of electric vehicle (EV) significantly in near future [2]. 

Hence, if the homeowner owns an EV, the SWT can also charge the EV and reduce 

the electricity cost further by reducing the imported electricity from the grid.  

The SWT and BES may not offer economic benefits if their capacity is not 

selected optimally. To achieve the maximum economic and technical benefits, 

selection of optimal capacities of SWT and BES is very important. The 

determination of optimal capacities in a GCH depends on various factors: (1) real 

data of economic factors and wind-load profiles, (2) technical factors such as grid 

constraint and components data, (3) energy management system (EMS) and (4) 

uncertainty of EV, load and renewable. 

The key contribution of this chapter is to develop a practical capacity 

optimisation model for SWT and BES in a GCH with/without an EV by analysing 

all uncertainties associated with wind, load and EV. The optimisation model 

minimises the actual electricity cost of two different configurations of the GCH: (i) 

with only SWT, and (ii) with SWT and BES. Novel rule-based home EMSs 

(HEMSs), with grid constraints, are developed for all possible cases (with/without 

BES as well as with/without EV) of the GCH. All uncertainties of EV’s 

arrival/departure time and initial SOC are incorporated in the optimal sizing model. 

While the proposed method is very general and applicable to any system, the actual 

data (real annual wind speed and load profile, components cost, and electricity rates) 

in South Australian context are used in this study to make the optimisation model 

more realistic. Effects of household load, costs of SWT, BES, RP, FiT, and grid 

constraint on the optimal sizing and COE are also investigated. 

4.2 Home Energy Management Systems 

Two different configurations of the GCH, as shown in Fig. 4-1, are 

investigated in this study. In the first configuration, only SWTs are connected to the 
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GCH and in the second configuration, both SWTs and BES are connected to the 

GCH. Both configurations are then investigated for two cases: with and without an 

EV in the premises of the GCH. The operation strategies are developed for these 

system configurations. Fig. 4-2 shows the rule-based HEMSs for the GCH with and 

without EV of both configurations. 

For the GCH with an EV, it is assumed that the charging of the EV will start 

immediately after arrival until the battery is fully charged. It may be mentioned here 

that flat rates are considered for electricity tariffs. It is also assumed that the EV does 

not operate in V2H or V2G mode. 

4.2.1 Configuration 1  

As mentioned, only SWTs are integrated to this configuration of the GCH, and 

the composite system is then analysed for two cases – with and without an EV in the 

premises. The energy management systems of both cases are briefly described in the 

following.  
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Figure 4-1. Two configurations of a GCH: (1) SWT only (with/without EV), and (2) WT-BES 

(with/without EV). 
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Configuration 1: SWT Only (with/without EV) Configuration 2: SWT-BES (with/without EV) 
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Figure 4-2. Optimisation procedure and rule-based HEMS for both configurations with/without EV. 
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A) Without an EV 

In the absence of an EV, any power produced by the SWT first feeds the load 

and then exports the excess power, if any, to the grid within the export power limit 

at a FiT rate. Thus, the export power Pe can be written as: 

𝑃𝑒(𝑡) = min(𝑃𝑒
𝑚𝑎𝑥, 𝑃𝑤

𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡))      (4-1)           

where 𝑃𝑤
𝑎𝑐𝑡 is the actual power generated by all wind turbines. 

𝑃𝑤
𝑎𝑐𝑡(𝑡) = 𝑁𝑤. 𝑃𝑤(𝑡) (4-2) 

In this study, it is assumed that any excess power beyond the export power 

limit will be dumped using the inverter control system of the SWTs. The excess 

power of the SWT can be controlled using a voltage feedback loop in the control 

system of the inverter [3]. This means that no physical dump load is considered in 

the designed system. The dumped power can be calculated as: 

𝑃𝑑(𝑡) = 𝑃𝑤
𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑒

𝑚𝑎𝑥      (4-3)         

If the SWTs’ power is less than the load, the power shortage is imported from 

the grid. Thus, the imported power is: 

𝑃𝑖(𝑡) = 𝑃𝑙(𝑡) − 𝑃𝑤
𝑎𝑐𝑡(𝑡)      (4-4)        

B) With an EV 

In the presence of an EV, the operation of HEMS depends on the availability 

of the EV (an uncertain parameter). In this case, the excess power of SWT (after 

feeding the load) first charges the EV within the charging power limit of the EV 

battery, if the EV in the premises. Any further excess power is then exported to the 

grid within the maximum export power limit.  

𝑃𝑒(𝑡) = min(𝑃𝑒
𝑚𝑎𝑥 , 𝑃𝑤

𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑒𝑣
𝑐ℎ𝑎(𝑡))    (4-5)             

In this case, the dumped power is calculated as: 

𝑃𝑑(𝑡) = 𝑃𝑤
𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑒𝑣

𝑐ℎ𝑎(𝑡) − 𝑃𝑒
𝑚𝑎𝑥    (4-6)       

When the SWT power is less than the sum of load and EV charging power, the 

shortage power is imported from the grid.  

𝑃𝑖(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑒𝑣
𝑐ℎ𝑎(𝑡) − 𝑃𝑤

𝑎𝑐𝑡(𝑡)      (4-7)        

The SOC of EV (when parked at home) in each time interval is calculated as: 
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𝑆𝑒𝑣(𝑡 + ∆𝑡) = 𝑆𝑒𝑣(𝑡) +
𝑃𝑒𝑣
𝑐ℎ𝑎(𝑡). 𝜂𝑒𝑣

𝑐ℎ𝑎 . ∆𝑡

𝐸𝑒𝑣
     (4-8)            

The available input power limit (which is basically inverter size) for EV 

charging is considered as follows: 

𝑃𝑒𝑣
𝑖𝑛𝑝(𝑡) = min(𝑃𝑒𝑣  , (𝐸𝑒𝑣/∆𝑡). (𝑆𝑒𝑣

𝑚𝑎𝑥 − 𝑆𝑒𝑣(𝑡)) )     (4-9)            

Since it is assumed that the EV is not discharged in the premises of the GCH, 

the discharging power of EV and hence its effect on the SOC is not considered in the 

optimisation model. 

4.2.2 Configuration 2  

In this configuration, SWT and BES are integrated to the GCH, and the 

composite system is again analysed for two cases – with and without an EV in the 

premises.  

A) Without an EV 

In the absence of an EV, any power produced by the SWTs first feeds the load 

and then the excess power, if any, is used to charge the BES (within the charging 

power limit and the maximum SOC level). Any further excess power is exported to 

the grid within the maximum export power limit. Thus, Pe can be expressed as: 

𝑃𝑒(𝑡) = min (𝑃𝑒
𝑚𝑎𝑥 , 𝑃𝑤

𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑏
𝑐ℎ𝑎(𝑡))      (4-10) 

In this case, the dumped power is calculated as: 

𝑃𝑑(𝑡) = 𝑃𝑤
𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑏

𝑐ℎ𝑎(𝑡) − 𝑃𝑒
𝑚𝑎𝑥 (4-11) 

When the power of the SWTs is less than the load, first the BES will discharge 

(if its power and SOC level are within the limits) to meet the load. Any further 

shortage of power will then be imported from the grid. Thus, the imported power is: 

𝑃𝑖(𝑡) = 𝑃𝑙(𝑡) − 𝑃𝑤
𝑎𝑐𝑡(𝑡) − 𝑃𝑏

𝑑𝑖𝑠(𝑡)  (4-12)             

The SOC and available input/output powers for charging/discharging of BES 

are calculated as: 

𝑆𝑏(𝑡 + ∆𝑡) = 𝑆𝑏(𝑡) +
(𝑃𝑏

𝑐ℎ𝑎(𝑡). 𝜂𝑏
𝑐ℎ𝑎 − 𝑃𝑏

𝑑𝑖𝑠(𝑡)/𝜂𝑏
𝑑𝑖𝑠). ∆𝑡

𝐸𝑏
𝑚𝑎𝑥      (4-13)            

𝑃𝑏
𝑖𝑛𝑝(𝑡) = min (𝑃𝑏

𝑚𝑎𝑥  , (𝐸𝑏
𝑚𝑎𝑥/∆𝑡). (𝑆𝑏

𝑚𝑎𝑥 − 𝑆𝑏(𝑡)))     (4-14)            
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𝑃𝑏
𝑜𝑢𝑡(𝑡) = min (𝑃𝑏

𝑚𝑎𝑥  , (𝐸𝑏
𝑚𝑎𝑥/∆𝑡). (𝑆𝑏(𝑡) − 𝑆𝑏

𝑚𝑖𝑛))     (4-15)            

The maximum charging/discharging power and maximum energy of the BES 

are calculated as follows: 

𝑃𝑏
𝑚𝑎𝑥 = 𝑁𝑏 . 𝑃𝑏 , 𝐸𝑏

𝑚𝑎𝑥 = 𝑁𝑏 . 𝐸𝑏        (4-16)      

B) With an EV 

In the presence of an EV, the excess power of the SWTs (after feeding the 

load) first charges the EV and then charges the BES within their respective charging 

power limits. Any further excess power is exported to the grid within the maximum 

export power limit.  

𝑃𝑒(𝑡) = min (𝑃𝑒
𝑚𝑎𝑥, 𝑃𝑤

𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑏
𝑐ℎ𝑎(𝑡) − 𝑃𝑒𝑣

𝑐ℎ𝑎(𝑡))  (4-17)             

Dumped power is calculated as follows: 

𝑃𝑑(𝑡) = 𝑃𝑤
𝑎𝑐𝑡(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑏

𝑐ℎ𝑎(𝑡) − 𝑃𝑒𝑣
𝑐ℎ𝑎(𝑡) − 𝑃𝑒

𝑚𝑎𝑥 (4-18)       

When the power of the SWTs is less than the sum of the load and EV charging 

power, the BES will be discharged (within its power and SOC limits) to meet the 

shortfall. Any further shortfall will then be imported from the grid.  

𝑃𝑖(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑒𝑣
𝑐ℎ𝑎(𝑡) − 𝑃𝑤

𝑎𝑐𝑡(𝑡) − 𝑃𝑏
𝑑𝑖𝑠(𝑡)     (4-19)            

4.3 Optimisation Model 

This section presents the problem formulation and the optimisation process. 

4.3.1 Problem Formulation 

The cost of electricity (COE) is calculated through the net present cost (NPC) 

and capital recovery factors (CRFs) of system components and electricity as well as 

the annual electricity demand.  

𝐶𝑂𝐸 =
𝑁𝑃𝐶𝑐. CRFc + 𝑁𝑃𝐶𝑔. CRF𝑔

𝐸𝑙
 

𝐸𝑙 =∑𝑃𝑙(𝑡). ∆𝑡

𝑇

𝑡=1

 

 

(4-20) 

The CRF depends on discount rate and de-escalation factor, and can be 

expressed as: 
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CRF𝑐 =
𝑑. (1 + 𝑑)𝑛

(1 + 𝑑)𝑛 − 1
,     CRF𝑔 =

𝑞. (1 + 𝑞)𝑛

(1 + 𝑞)𝑛 − 1
 

𝑞 =
𝑑 − 𝑗

1 + 𝑗
 

 

(4-21) 

The total NPC of the system is calculated as: 

𝑁𝑃𝐶𝑡 = 𝑁𝑃𝐶𝑐 + 𝑁𝑃𝐶𝑔 (4-22) 

The NPC of components can be calculated as follows: 

𝑁𝑃𝐶𝑐 = 𝑁𝑤 ∙ (𝑃𝐶𝑤
𝑐𝑎𝑝 + 𝑃𝐶𝑤

𝑚𝑎𝑖 + 𝑃𝐶𝑤
𝑟𝑒𝑝) + 

𝑁𝑏 ∙ (𝑃𝐶𝑏
𝑐𝑎𝑝 + 𝑃𝐶𝑏

𝑚𝑎𝑖 + 𝑃𝐶𝑏
𝑟𝑒𝑝) 

(4-23) 

The present value of maintenance and replacement costs of the components 

are given by: 

𝑃𝐶𝑚𝑎𝑖 = 𝐶𝑚𝑎𝑖 .
(1 + 𝑖)𝑀 − 1

𝑖(1 + 𝑖)𝑀
 (4-24) 

𝑃𝐶𝑟𝑒𝑝 = 𝐶𝑟𝑒𝑝. ∑
1

(1 + 𝑖)𝑡𝑦

𝑡𝑦<𝑀

𝑡=1

 (4-25) 

The net present cost of electricity trading with grid is:  

𝑁𝑃𝐶𝑔 = 𝐶𝑔.
(1 + 𝑟)𝑛 − 1

𝑟(1 + 𝑟)𝑛
 

𝑟 =
𝑖 − 𝑒

1 + 𝑒
 

(4-26) 

 

The annual electricity trading cost with grid is calculated as: 

𝐶𝑔 =∑𝑅𝑃(𝑡). 𝑃𝑖(𝑡). ∆𝑡

𝑇

𝑡=1

−∑𝐹𝑖𝑇(𝑡). 𝑃𝑒(𝑡). ∆𝑡

𝑇

𝑡=1

 (4-27) 

The objective function and the design constraints of the optimisation problem 

are as follows:  

𝑓 = Minimise(𝐶𝑂𝐸) (4-28) 

Subject to:  

0 ≤ 𝑁𝑤 ≤ 𝑁𝑤
𝑚𝑎𝑥 (4-29) 

0 ≤ 𝑁𝑏 ≤ 𝑁𝑏
𝑚𝑎𝑥 (4-30) 

𝑃𝑤
𝑎𝑐𝑡(𝑡) + 𝑃𝑖(𝑡) + 𝑃𝑏

𝑑𝑖𝑠(𝑡) − 𝑃𝑒(𝑡) − 𝑃𝑏
𝑐ℎ𝑎(𝑡) − 𝑃𝑒𝑣

𝑐ℎ𝑎(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑑(𝑡) (4-31) 
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S𝑏
𝑚𝑖𝑛 ≤ 𝑆𝑏(𝑡) ≤ S𝑏

𝑚𝑎𝑥 (4-32) 

S𝑒𝑣
𝑚𝑖𝑛 ≤ 𝑆𝑒𝑣(𝑡) ≤ S𝑒𝑣

𝑚𝑎𝑥 (4-33) 

0 ≤ 𝑃𝑒(𝑡) ≤ 𝑃𝑒
𝑚𝑎𝑥 (4-34) 

𝑆𝑏(𝑇) ≥ 𝑆𝑏(𝑡 = 0) (4-35) 

𝑆𝑒𝑣(𝑡 = 𝑑𝑒𝑝) ≥ S𝑒𝑣
𝑚𝑎𝑥 (4-36) 

Eqn. (4-28) represents that the COE of the GCH is selected as the objective 

function. Eqns. (4-29) and (4-30) represent the size constraints on SWT and BES. 

Eqn. (4-31) represents the power balance equation. Eqns. (4-32) and (4-33) represent 

the SOC constraints of BES and EV, respectively. Eqn. (4-34) represents the grid 

export power constraint. Eqn. (4-35) ensures that the SOC of BES at the end of time 

horizon is higher than that at the beginning of the project. Eqn. (4-36) ensures that 

the SOC level of EV at the departure time is at the maximum value. 

4.3.2 Optimisation Process 

The optimisation process for the optimal sizing of SWT and BES is shown in 

the top right corner of Fig. 4-2. The optimisation process starts with input data which 

is discussed in next section. The operation of the HEMS for different configurations 

(as shown in top and bottom parts of Fig. 4-2) is then inserted between points 1  and 

2 . Finally, the optimisation model is implemented to obtain the optimal capacity of 

components. The numbers of SWT and BES are the decision variables of the 

optimisation model. It may be mentioned here that the main aim of this study is to 

determine the optimal size of system components and analyse the steady-state 

performance of various system configurations. Thus, the dynamic analysis like 

control strategy, proof of stability, and control robustness are not investigated. 

While the formulated problem can be solved using different solvers in 

MATLAB software, the particle swarm optimisation (PSO) approach is used in this 

study. The PSO method has been successfully implemented to solve the optimal 

sizing problems of power systems. Hence, comparison of the performance of PSO 

with other methods is not within the scope of this study. The main advantages of the 

PSO compared to other methods are appropriate rate of convergence, minimum 

dependency on initial points, low storage requirement, and simplicity. In the PSO 

optimisation procedure, it has been ascertained that selecting higher numbers of 
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population, generation, and runs can ensure the optimality of the results [4]. Hence, 

in this study, 300 populations and 500 generations are considered. In addition, the 

PSO approach has been repeated in 20 runs to obtain global optimal results for the 

configurations. It may be noted that the same results are obtained for all 20 runs of 

the simulation. 

4.4 Case Study 

The proposed technique described in Sections II and III is then applied to a 

grid-connected household in South Australia (SA). The various input data including 

technical and financial parameters required for this purpose are discussed in the 

following sub-sections. 

4.4.1 Load Consumption and Wind Speed 

Fig. 4-3a shows the actual hourly load pattern of a typical GCH in SA [5]. The 

daily average and annual energy consumption of the house are 15.6 kWh and 5,705 

kWh, respectively. The actual wind speed data of Adelaide airport (urban area of SA 

capital city) at a height of 10 m is collected for the entire year of 2018 [5] and its 

hourly pattern is shown in Fig. 4-3b. Using the above wind speed, the annual energy 

generated by a 1-kW wind turbine is found as 2,146.2 kWh. 

4.4.2 Electricity Rates and Grid Constraint 

In this study, flat electricity tariffs are considered as most of the residential 

houses in SA are under this tariff structure. However, the optimisation model 

described in this chapter can also be used for other tariff structures. The RP and FiT 

are considered as 48 ¢/kWh and 17 ¢/kWh, respectively [5]. Note that all prices in 

this study are in Australian dollar.  

SA Power Network has a restriction of maximum export power limit of 5 kW 

for customers with a single-phase inverter [6].  
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Min. 0    Max. 16.6 m/s

Avg. 5.3 m/s

(a)

Min. 0.28 kW     Max. 1.74 kW

Avg. 0.65 kW

Days Days

Arrival time Departure time

Min. 15         Max. 21         Avg. 18

Min. 5         Max. 10         Avg. 8 Min. 20%    Max. 85%     Avg. 50%

(b)

(c) (d)  

Figure 4-3. Annual data. (a) Electricity demand. (b) Urban area wind speed. (c) Stochastic 

arrival/departure time of EV. (d) Stochastic initial SOC level of EV. 

4.4.3 Battery Energy Storage and Small Wind Turbine 

Lithium-ion batteries are widely used for residential applications in South 

Australia. The market price of the battery is around $700/kWh. However, a subsidy 

of $300-400/kWh has recently been introduced by the SA government to customers 

[7]. Table 4-1 lists the cost and characteristics of the BES used in this study. The unit 

size of BES is considered as 0.5kW/1kWh. The charging and discharging 

efficiencies are considered as the square root of the round-trip efficiency. The total 

energy throughput of the battery is used to measure the BES lifetime. The estimated 

lifetime of BES, which does not exceed the calendar lifetime, is calculated as: 

𝐿𝑏(year) = min (𝐶𝐿𝑏 ,
𝐸𝑇𝑡𝑜𝑡
𝐸𝑇𝑏𝑠

) (4-37) 

The calendar lifetime and total energy throughput of lithium-ion battery are 

obtained from [8].  

Roof mounted SWTs are used in this study. Table 4-1 also lists the cost and 

lifetime of the roof mounted SWT.  

Table 4-1. Battery Energy Storage and Small Wind Turbine Data. 

BES 
Capital cost = $300-400/kWh  

Replacement cost = $300/kWh 

𝑆𝑏
𝑚𝑖𝑛 = 20% 

𝑆𝑏
𝑚𝑎𝑥  = 95% 

Round-trip efficiency=90% 

SWT 

Capital cost = $3,000/kW 

Inverter replacement cost = $300/kW 

Maintenance = $50/kW/yr 

   SWT lifetime = 20 yr 

   Inverter lifetime = 10 yr 
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4.4.4 Electric Vehicle Data 

Renault Zoe 22-kWh (2016) EV with a 3-kW charging power (single-phase) 

is considered in this study. The stochastic models of EV’s availability at the premise 

(arrival and departure times) and initial SOC level at arrival are obtained from a 

truncated Gaussian distribution [9]. Table 4-3 lists the stochastic parameters of 

probability distributions for the EV’s availability and initial SOC. Figs. 4-3c and 4-

3d illustrate the generated stochastic data of EV. The maximum/minimum SOC 

levels and efficiency of the EV battery are the same as that of the BES. 

Table 4-2. Stochastic Parameters for Probability Distributions of Electric Vehicle Availability and 

Initial SOC Data. 

 Mean Standard deviation Min. Max. 

Arrival SOC of EV (%) 50 30 20 85 

Arrival time (h) 18 3 15 21 

Departure time (h) 8 3 5 10 

 

4.4.5 General Parameters 

The project lifetime is considered as 20 years. For the GCH with an EV, it is 

considered that the homeowner owns the EV during entire lifetime of the project. 

The interest/discount and escalation/de-escalation rates are considered as 8% and 

2%, respectively. The maximum capacities of SWT and BES are considered as 10-

kW and 20-kWh, respectively. The simulation time interval is 1-hr. 

4.5 Results and Discussions  

The simulation results obtained by the proposed method for both 

configurations are described in the following.  

It may be mentioned that, without the SWT, the GCH imports all its energy 

from the grid. In such a case, the COE, NPCt and annual imported energy from grid 

(AIEG), without the EV, are 48¢/kWh, $31,710 and 5.7MWh, respectively. 

However, with the EV, the COE, NPCt and annual imported energy from grid 

(AIEG) are 48¢/kWh, $52,928 and 9.52MWh, respectively.   

4.5.1 Configuration 1  

Table 4-3 lists the optimal capacity of SWT, and the COE found by the 

proposed technique for both cases (with and without an EV) of configuration 1. The 

respective NPCt, AIEG, annual exported energy to grid (AEEG), and annual dumped 
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energy (ADE) are also shown in the Table.  

Table 4-3. Optimisation Results for Configuration 1 With/Without EV. 

Configuration 1 

(Only SWT) 

SWT 

(kW) 

COE 

(¢/kWh) 

NPCt 

($) 

AIEG 

(MWh) 

AEEG 

(MWh) 

ADE 

(kWh) 

Without EV 6 31.07  16,618 2.50  9.68  5.69  

With EV 6 34.81  34,517 5.39  8.74 5.65  

The results of Table 4-3 indicate that the optimal capacity of the SWT is 6 kW 

for both cases (with and without the EV). The SWT reduces the COE of the GCH by 

16.93¢/kWh (without the EV) and 13.19¢/kWh (with the EV). Without the EV, most 

of the energy generated by the SWT is exported to the grid and only 3.2 MWh of 

annual energy generated by the SWT is used to meet the demand of the GCH. In the 

presence of the EV, the annual exported energy is reduced by 0.94 MWh and the 

annual imported energy is increased by 2.89 MWh to meet the additional demand of 

the EV. The annual dumped energy in both cases (with and without the EV) is very 

insignificant and less than 6 kWh.   

4.5.2 Configuration 2 

When the proposed optimisation technique is applied to the GCH of 

configuration 2 with a battery cost of $300-400/kWh (as shown in Table 4-1), the 

optimal battery size for both cases (with and without the EV) is found as zero. This 

indicates that the current battery price even with SA government subsidy is not 

economically viable. However, with some repeated simulations, it was found that 

the battery price should reduce to 250/kWh for its economic integration to the GCH. 

Table 4-4 shows various optimal results obtained by the proposed optimisation 

technique with the reduced battery cost. The optimal capacity of the SWT in this 

case is found to be the same as that of configuration 1 for both cases (with and 

without the EV). The optimal battery size, at a cost of $250/kWh, with and without 

the EV is found as only 1 kWh and 2 kWh, respectively. Because of smaller battery 

sizes, the change in the rest of results (COE, NPCt, AIEG, AEEG and ADE) is not 

significant compared to that of configuration 1.      

Table 4-4. Optimisation Results for Configuration 2 With/Without EV. 

Configuration 

2 (SWT-BES) 

SWT 

(kW) 

BES 

(kWh) 

COE 

(¢/kWh) 

NPCt 

($) 

AIEG 

(MWh) 

AEEG 

(MWh) 

ADE 

(kWh) 

    Without EV                    6 

(BES cost: $250/kWh)            
2 30.87 16,367 2.24 9.39 5.53 

     With EV                        6 

(BES cost: $250/kWh)            
1 34.80 34,451 5.28 8.62 5.53 
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4.5.3 Additional Results of Both Configurations 

Some additional results of both configurations are presented in the following. 

A) Computational Time 

The computational time for optimisation changes when the system 

configuration changes. Table 4-5 lists the required computational time for solving 

the optimal sizing problem for 1 and 20 runs implemented on Intel® Core™ i7-7700 

CPU @ 3.60 GHz, RAM 16.0 GB computer. It is notable that MATLAB uses only 

one core of CPU to execute the user-written codes. Configuration 2 with EV requires 

the highest computational time due to complexity of the developed home energy 

management system in the proposed configuration. 

Table 4-5. Computational Time for Optimisation of Each Configuration. 

System 

Configurations 

Configuration 1 

without EV 

Configuration 1 

with EV 

Configuration 2 

without EV 

Configuration 2 

with EV 

Computational time 

(for 1 run) 
43.874 s 133.819 s 106.880 s 140.574 s 

Computational time 

(for 20 run) 
832.451 s 2,611.229 s 2,096.411 s 2,778.664 s 

B) Daily Operation for Five Successive Sample Days 

The daily operation of the GCH for various possible scenarios is investigated 

for five successive days (days 1-3 with low wind and days 4-5 with high wind). Fig. 

4-4 shows the hourly power variation of SWT, BES, EV, and load, as well as 

import/export power and dumped power for both configurations with/without an EV. 

The negative power of BES indicates the charging state of the storage. The dumped 

energy is almost zero in all sample days. Fig. 4-4a shows that the SWT power of 

configuration 1 (without EV), after feeding the load, is completely exported to the 

grid. Point A in day-1 of configuration 1 (with EV) shows that when there is no 

output power of the SWT, both the load and EV demand are supplied by the imported 

power from the grid. Point B in day-3 of configuration 2 (without EV) shows that 

the BES is efficiently charged by the SWT when its power exceeds the load. Fig. 4-

4d shows that the BES charging power is less than 1 kW, and the EV charging power 

does not exceed 3 kW because of the maximum charging power limit of the EV.  
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Figure 4-4. Daily operation of the GCH for five sample successive days. (a) Configuration 1 

without EV. (b) Configuration 1 with EV. (c)  Configuration 2 without EV. (d)  Configuration 2 

with EV. 

C) Sensitivity Analysis 

In SA, the maximum export power limit to the grid is applied to all residential 

customers. The impacts of various export power limits on the optimal capacity of 

SWT and BES as well as the COE of the GCH without the EV is shown in Fig. 4-5. 

In case of zero export power limit, the optimal capacity of SWT for configuration 1 

is found as only 1 kW (point A) and the corresponding COE is around 40 ¢/kWh 

(point B). When the export power limit is increased to 10 kW, the optimal capacity 

of SWT increases to 10 kW (point C) and the COE decreases to 30 ¢/kWh (point D). 

In configuration 2, it was found the optimal battery capacity is very insensitive to 

the export power limit, but the optimal SWT capacity increases and the COE 

decreases as the export power limit is increased. 

 The impacts of SWT cost and daily electricity demand of the household as 

well as retail price and feed-in-tariff on the COE and optimal SWT capacity are also 

investigated for the first configuration of the GCH without an EV and the results 

found are shown in Fig. 4-6. The optimal SWT capacity is shown by dotted line. It 

can be seen in Fig. 4-6a that, for a given SWT cost, the value of COE decreases with 

the decrease in electricity demand. In fact, for a daily electricity demand of 6 kWh 

and SWT cost of $200/kW, the optimal capacity of SWT was found as 6 kW for 

which the value of COE is -10¢/kWh (point A). On the other hand, Fig. 4-6b 

indicates the value of COE decreases with the decrease in retail price and increase 

in feed-in-tariff. Point B shows the minimum COE, and it occurs at the lowest retail 
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price and the highest feed-in-tariff.  

The impacts of BES cost and daily electricity demand as well as SWT and 

BES capacities on the COE and battery size are also investigated for the second 

configuration of the GCH without an EV and the results are shown in Fig. 4-7. The 

optimal BES capacity is shown by dotted line in Fig. 4-7a. Fig. 4-7a indicates that, 

for a battery cost of $300-$700/kWh, the optimal battery capacity was found as zero. 

For a battery cost of $250-$300/kWh, installation of battery is not very effective in 

reducing the COE. Fig. 4-7a also indicates that, at a lower battery cost, the optimal 

battery capacity increases with the increase of daily electricity demand. On the other 

hand, Fig. 4-7b indicates that, for a given BES capacity, the value of COE for a 

typical GCH (with daily electricity demand of 15.6 kWh) decreases with the increase 

in SWT capacity.     

D) Uncertainty Analysis Based on 10-Year Real Data 

To check the robustness of the proposed optimisation models, the impact of 

uncertainties in wind speed, load consumption, and EV data on the optimal capacities 

is investigated for 10 different scenarios. The actual wind speed data in an urban area 

of SA over a period of 10 years (2009-2018) is used for this purpose. The 

uncertainties of EV’s availability at the premise (arrival and departure times) and 

initial SOC level at arrival are separately generated for each scenario in the 

configurations with EV. The load in the above scenarios (or years) are obtained by 

adding an uncertainty as follows:  

𝑃𝑙
𝑦
(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑙(𝑡). 𝛽. 𝑟𝑎𝑛(𝑡)  (4-38) 

where 𝑃𝑙
𝑦

 is the randomly generated load profile for yth year, β is a deviation factor 

and ‘ran’ is a random number generator. The value of β is in the range of 10%-50% 

and the range of the random numbers is considered in between -1 and +1. 

Fig. 4-8 shows the annual average value of wind speed and load data for 24 

hrs over the period of 10 years (2009-2018). The optimal capacity of SWT and the 

corresponding COE found by the proposed method for the first configuration of the 

GCH with and without EV is shown in Fig. 4-9a for all scenarios. Without the EV, 

the optimal capacity of SWT is found as 6 kW for five years, 5 kW for two years, 

and 4 kW for three years. With the EV, the optimal capacity of SWT is obtained as 

6 kW for six years, 5 kW for three years, and 7 kW for one year. In all cases, the 

COE varies between 30¢/kWh and 44¢/kWh.  
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 The BES capacity and price for economic integration in the second 

configuration of the GCH, with and without EV, are shown in Fig. 4-9b. It is seen 

that, for economic integration of BES without an EV, the price of BES should reduce 

to $300/kWh for three years, $250/kWh for six years, and $200/kWh for one year. 

On the other hand, the average battery cost and optimal BES capacity, with the EV, 

are found as $250/kWh and 1 kWh, respectively. The above uncertainty analysis 

confirms that the optimal capacities obtained in Section V.A are reasonable for a 

GCH with a daily average energy consumption of 15.6 kWh. 

E) Comparison of Operating Cost of EV and ICE Vehicle  

Consider that the house owner has an option of selecting either an EV or an 

ICE type vehicle. The approximate operating cost of the above two vehicles are 

compared in this sub-section. It is assumed that the EV (Renault Zoe) can travel 7 

km of distance using 1 kWh of energy [10]. In configurations 1 and 2, the cost of 

energy (COE), with an EV, was found as 34.81¢/kWh and 34.75¢/kWh, respectively. 

Thus, the operating cost of the EV is around 5¢/km. However, in the absence of 

SWT, the EV needs to charge from the grid at a retail price of 48¢/kWh and that 

would provide an operating cost of the EV as 6.86¢/km. On the other hand, the fuel 

consumption of the ICE vehicle is assumed as 13 km/liter. With the average fuel cost 

$1.30/liter in SA, the operating cost of an ICE vehicle is 10¢/km. Thus, the operating 

cost of an EV, when the premise has an optimal size SWT, is about 50% lower than 

that of an ICE vehicle.    

F) Analysis of Available EVs in the Market 

  It is important to present an economic analysis and optimal capacity of SWT 

and BES for GCHs with other available EVs. The most popular EVs in Australian 

market for 2020 were BMW i3 (2019), Nissan Leaf (2019), Renault Zoe R135 

(2019), and Tesla Model 3 (2020) [13]. Table 4-6 lists the battery capacity and 

charging power for those EVs.  

Table 4-6. Type, Battery Capacity, and Charging Power for Most Popular EVs in Australian Market 

EV Type 
BMW i3 

(2019) 

Nissan Leaf 

(2019) 

Renault Zoe 

(2019) 

Tesla Model 3 

(2020) 

Battery Capacity 42 kWh 62 kWh 54 kWh 75 kWh 

Charging power 7.4 kW 6.6 kW 7.4 kW 7.4 kW 

Table 4-7 lists the optimal capacity of SWT and BES, COE, and total NPC for 

both system configurations with different EV types. The capacity of SWT is obtained 
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as 7 kW for Nissan Leaf and Tesla Model 3 because of higher capacity of their 

batteries. However, the capacity of SWT is 6 kW for BMW i3 and Renault Zoe. As 

the battery capacity of EV increases, the total NPC and COE increase. For example, 

the COE and total NPC of a GCH with Tesla Model 3 are about 1.64 ¢/kWh and $ 

28,259 higher than those of GCH with BMW i3 for configuration 1. The capacity of 

BES is obtained as 1 kWh for all EV types in the second configuration.  

Table 4-7. Optimisation Results for Configuration With EV. 

System 

Configurations 

EV 

 Type 

SWT 

(kW) 

BES 

(kWh) 

COE 

(¢/kWh) 

NPCt 

($) 

Configuration 1 

(Only SWT) 

BMW i3 6 - 38.17 53,599 

Nissan Leaf 7 - 39.01 69,928 

Renault Zoe R135 6 - 38.96 64,209 

Tesla Model 3 7 - 39.81 81,858 

Configuration 2 

(SWT-BES) 

BMW i3 6 1 38.16 53,555 

Nissan Leaf 7 1 38.99 69,891 

Renault Zoe R135 6 1 38.95 64,147 

Tesla Model 3 7 1 39.80 81,822 

 

4.6 Conclusion  

A method of determining the optimal capacity of SWT and BES system for a 

GCH, with and without EV, to minimise the overall COE has been proposed in this 

chapter. New rule-based HEMS have been developed for the optimisation model. 

The EV’s arrival/departure time, and initial SOC (when arriving at home parking) 

are modelled with uncertainty. Actual annual load and wind speed profiles, 

electricity tariff rates, and grid constraints in South Australian context are used in 

the optimisation process. The optimisation method and the HEMS are applied to a 

South Australian GCH with two configurations: (a) integrated with SWT only, and 

(b) integrated with SWT and BES. The effects of stochastic behaviour of SWT power 

generation and load consumption on the optimal capacities of SWT and BES are also 

investigated.   

 It was found that a 6-kW wind turbine is the optimal capacity for a typical 

GCH in SA. The optimal size SWT can decrease the COE by 35% (without an EV) 

and 27% (with an EV). The current BES price is unable to reduce the COE further. 

To obtain any further financial benefit, the net BES price, after the SA government 

subsidy, should reduce to 250 $/kWh. Using load uncertainty in SA and actual wind 
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speed data for 10 years, it was found that the optimal capacity of both SWT and BES 

remains almost the same over the above period. It was found that when the GCH has 

an optimal capacity of SWT, the operating cost of an EV is about 50% lower than 

that of an internal combustion engine vehicle. 

     Nomenclature 

A. Superscripts: 

𝑎𝑐𝑡 Actual 

𝑎𝑟𝑖 Arrival 

𝑐𝑎𝑝 Capital 

𝑐ℎ𝑎 Charging 

𝑑𝑒𝑝 Departure 

𝑑𝑖𝑠 Discharging 

𝑖𝑛𝑝 Input 

𝑚𝑎𝑖 Maintenance 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 

𝑟𝑒𝑝 Replacement 

𝑜𝑢𝑡 Output 

B. Parameters: 

𝐶 Annual cost ($) 

𝐶𝐿𝑏 Battery calendar lifetime (year) 

𝐶𝑅𝐹𝑐 Components capital recovery factor 

𝐶𝑅𝐹𝑔 Grid capital recovery factor 

𝑒, 𝑗 Escalation/de-escalation rates (%) 

𝐸𝑒𝑣 Nominal capacity of EV (kWh) 

𝐸𝑇𝑡𝑜𝑡 Nominal battery total energy throughput (kWh) 

ℎ Hour (hr) 

𝑖, 𝑑 Interest/discount rates (%) 

𝑀 Component lifetime (year) 

𝑛 Project lifetime (year) 

𝑃𝐶𝑏 Present cost related to battery ($) 

𝑃𝐶𝑤 Present cost related to SWT ($) 

𝑟, 𝑞 Real interest/ discount rates (%) 

𝑇 Total hours of a year (hr) 

𝑦 Year 

∆𝑡 Time interval (hr) 

𝜂𝑏 Efficiency of battery (%) 

𝜂𝑒𝑣 Efficiency of EV (%) 

C. Variables: 

𝐶𝑔 Annual cost of electricity trade with grid ($) 
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𝐸𝑏 Nominal battery capacity (kWh) 

𝐸𝑙 Annual electricity demand (MWh) 

𝐸𝑇𝑏𝑠 Annual energy throughput of battery (kWh) 

𝐿𝑏 Actual lifetime of battery (year) 

𝑁𝑏 Number of batteries 

𝑁𝑤 Number of wind turbines 

𝑁𝑃𝐶𝑐 Net present cost of components ($) 

𝑁𝑃𝐶𝑔 Net present cost of electricity exchange with grid ($) 

𝑁𝑃𝐶𝑡 Total net present cost of system configurations ($) 

𝑃𝑏 Nominal power rating of the battery inverter (kW) 

𝑃𝑒𝑣 Nominal power rating of the EV inverter (kW) 

𝑃𝑙 Load power (kW) 

𝑃𝑒 , 𝑃𝑖 Export/ import power to/ from grid (kW) 

𝑃𝑑 Dumped power (kW) 

𝑃𝑤 Active power of wind turbine (kW) 

𝑆𝑏 State-of-charge of battery (%) 

𝑆𝑒𝑣 State-of-charge of EV (%) 
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Chapter 5                                                

A Demand Side Management 

Approach for Optimal Sizing of 

Standalone Renewable Battery 

Systems 

Demand side management is an efficient strategy to reduce the electricity cost 

in residential sector. This is implemented by shifting or curtailing some of the loads 

in the household according to energy and cost forecasts. In this chapter, the effect of 

demand side management on cost of electricity of standalone households is 

investigated. For this purpose, a novel DSM strategy is proposed to reduce the 

electricity demand in the days with lower generation from renewable energy sources.   

The contribution of this chapter is presented in one published research article. 

R. Khezri, A. Mahmoudi, and M. Haque, “A Demand Side Management Approach 

for Optimal Sizing of Standalone Renewable-Battery Systems,” IEEE Transactions 

on Sustainable Energy, Early Access, May 2021. 

The student has developed the conceptualization. He designed the 

optimisation model. Analysis and interpretation of research data has been done by 

him and the co-authors. A draft of the paper was prepared by the student. Revisions 

and comments were provided by the co-authors so as to contribute to the 

interpretation. 
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5.1 Introduction 

Worldwide, 1.2 billion people do not have access to grid electricity as they 

live in remote areas and extension of national grid to such areas is not economically 

feasible [1]. Around 93% of this population is in Asia and Africa. The remaining 7% 

is located in Latin America, the Middle East, and the developed countries [1]. In 

Australia, as a developed country, remote area electricity supply (RAES) comprises 

5% of annual electricity demand [2]. In South Australia (SA), the RAES covers a 

wide geographical area in which the farthest system is 1,600 km away from the 

capital city (Adelaide) [3]. In these areas, RAES supplies electricity to 

approximately 3,400 customers in 13 remote towns (15GWh/year) and 11 aboriginal 

communities (9GWh/year) [3].  

The RAES systems are predominantly supplied by diesel generators (DGs). 

The main problems with DGs are air pollution, difficulty in fuel transportation and 

centralized supply. Distributed renewable energy (RE) sources, such as wind turbine 

(WT) and solar photovoltaic (PV) are attractive options of supplying clean energy to 

remote communities. Intermittency is one of the main concerns with renewable 

sources. However, this problem can be addressed by using suitable battery storage 

(BS). To obtain a reliable power supply, a large capacity of BS may be needed. 

However, the BS capacity and hence the total cost of the RAES system can be 

reduced by implementing an appropriate demand side management (DSM) strategy. 

Therefore, designing a clean RAES system is a complicated process which integrates 

BS with renewable energy sources and implements DSM to obtain a reliable and 

cost-effective energy system.  

From a practical point of view, this chapter addresses a timely topic of 

practicing engineering problem for a real case study. The main novelty of this 

chapter is to develop a new practical DSM strategy for a comprehensive and practical 

optimal sizing of standalone renewable-battery systems. A new fuzzy-based DSM 

strategy is developed based on day-ahead forecasted renewable generation and 

battery state-of-charge (SOC) level. All essential parameters like operating reserve, 

salvation cost and battery capacity degradation are considered. A certain level of 

operating reserve based on the day-ahead forecasted errors of renewable generation 

and load consumption is maintained in the standalone system. Three system 

configurations: PV-BS, WT-BS and PV-WT-BS are optimally sized and compared. 
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The objective is to minimise the net present value (NPV) of the system and hence 

the levelised cost of energy (LCOE) over the project lifespan. Salvation cost of 

components is applied in the calculation of NPV. Two cases, with and without DSM 

strategy, are considered and compared for all system configurations. The optimal 

planning is investigated by considering capacity degradation of the battery based on 

the annual operation. A standalone household in South Australia is considered as the 

case study by incorporating real annual meteorological and load data, as well as real 

market price of system components. 

5.2 System Model 

This section describes the studied system configurations, model of various 

components, and household load. 

5.2.1 System Configurations 

 Three different system configurations of electricity system of a standalone 

household with various combinations of PV, WT and BS are considered. Fig. 5-1 

shows the studied system configurations: (1) PV-BS, (2) WT-BS and (3) PV-WT-

BS. In all configurations, a DC interface is considered. That is, the above 

components are connected to a common DC bus. A DC interface has been chosen 

for the studied system configurations as it has some beneficial features, such as easy 

interconnection between components, high efficiency, acceptable reliability, lower 

cost, and absence of synchronization problems [4]–[5]. The AC loads of the 

household are connected to the DC bus through an inverter (INV). 

BS

Load

BS

Inverter

~ =

PV WT

Load

~ ==
=

BSWT

Load

~ =
PV
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=
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Controller

Dumped
Inverter

~ =

Inverter
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==

====
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Dumped

 

Figure 5-1. Three studied renewable-storage system configurations based on the PV, WT and BS 

for a remote area standalone household. 
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5.2.2 Solar Photovoltaic 

The output power of a single PV module (𝑃𝑝) is calculated as [6]: 

𝑃𝑝(𝑡) = 𝜂𝑝𝑃𝑝,𝑟𝐼𝑐(1 − 0.004(𝑇𝑎 − 25)) (5-1) 

where 𝑇𝑎(℃) is the ambient temperature, 𝐼𝑐 (kW m2⁄ ) is the solar insolation on the 

PV module collector, 𝑃𝑝,𝑟  is the rated output power of the PV module, and 𝜂𝑝 is the 

PV converter efficiency including losses in the cable. 

5.2.3 Wind Turbine 

The output power (𝑃𝑤) of a WT is considered as a piecewise function of wind 

speed 𝑣 [6]: 

𝑃𝑤(𝑡) =

{
 
 

 
 0 𝑣 < 𝑣𝑐  𝑜𝑟  𝑣 > 𝑣𝑓

𝑃𝑤,𝑟 (
𝑣 − 𝑣𝑐
𝑣𝑡 − 𝑣𝑐

)
3

𝑣𝑐  ≤ 𝑣 < 𝑣𝑡

𝑃𝑤,𝑟  𝑣𝑡  ≤  𝑣 ≤ 𝑣𝑓

 (5-2) 

where 𝑣𝑐, 𝑣𝑡 and 𝑣𝑓 are the cut-in, rated and cut-out wind speeds, respectively, and 

𝑃𝑤,𝑟 is the rated power of the WT.   

5.2.4 Battery Storage 

When the power generated by the renewable sources exceeds the load power, 

the excess power is used to charge the battery. On the other hand, when the power 

of the renewable sources is less than the load power, the shortage of power is met by 

discharging the battery. The SOC level of the battery at each time interval depends 

on the SOC level of the previous time interval and the amount of charging or 

discharging energy of battery [7]. By considering ∆𝑡 as the simulation time interval, 

the SOC of battery at time 𝑡 + ∆𝑡 can calculated by: 

𝑆𝑂𝐶(𝑡 + ∆𝑡) =  𝑆𝑂𝐶(𝑡) + ∆𝑆𝑂𝐶(𝑡)     (5-3) 

∆𝑆𝑂𝐶 is the deviation of SOC due to charging/discharging of battery which 

can be calculated as follows: 

∆𝑆𝑂𝐶(𝑡) =
𝐸𝑐ℎ(𝑡).𝜂𝑐ℎ

𝐸𝑏
𝑚𝑎𝑥  , when BS is charging.    
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∆𝑆𝑂𝐶(𝑡) = −
𝐸𝑑𝑖𝑠(𝑡)

𝐸𝑏
𝑚𝑎𝑥.𝜂𝑑𝑖𝑠

 , when BS is discharging.  

where 𝐸𝑐ℎ, 𝐸𝑑𝑖𝑠 and 𝐸𝑏
𝑚𝑎𝑥 are the charging, discharging and rated energy of the 

battery, respectively. 𝜂𝑐ℎ and 𝜂𝑑𝑖𝑠 are the charging and discharging efficiencies, 

respectively. 

The 𝐸𝑐ℎ and 𝐸𝑑𝑖𝑠 are calculated based on the operational strategy of the 

selected configuration and will be discussed with system operation in next section. 

In general, the charging or discharging energy depends on the charged or discharged 

power. In addition, the amount of charged or discharged power is limited based on 

the available battery input power. The available BS input power limit (𝑃𝑏,𝑖) at each 

time interval cannot exceed the maximum rate of charge/discharge power of battery 

(𝑃𝑏
𝑚𝑎𝑥) and it is calculated as: 

𝑃𝑏,𝑖(𝑡) = min (𝑃𝑏
𝑚𝑎𝑥  , (𝐸𝑏

𝑚𝑎𝑥/∆𝑡)(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶(𝑡))) (5-4) 

𝑆𝑂𝐶𝑚𝑎𝑥 is the maximum SOC level of the battery. 

5.2.5 Household Loads 

Two types of loads are considered for the household: controllable and 

uncontrollable. The uncontrollable loads should be supplied uninterruptedly. The 

controllable loads are inferred to the appliances that have adjustable operating time, 

or rarely curtailed, if required. Table 5-1 shows various controllable appliances 

including their energy consumption, usage frequency, duration, and operating 

window. There are six appliances for which the operating time can be adjusted. Only 

the dish washer (DW) is used daily, and the rest are used once or twice a week.  

Table 5-1. Controllable loads characteristics. 

Appliance Energy (kWh) Usage Frequency Duration (h) Operation window 

Washing machine 0.8 Twice a week 1 [09:00−23:00] 

Cloth dryer 1.1 Twice a week 1 [09:00−23:00] 

Dish washer 1.2 Every day 2 [15:00−23:00] 

Electric oven 2.1 Twice a week 1 [11:00−21:00] 

Iron 1.0 Once a week 1 [11:00−20:00] 

Vacuum cleaner 0.7 Once a week 2 [10:00−19:00] 

 

5.3 Methodology 

The day-ahead forecasting method, operating reserve, DSM strategy, system 
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operation, and battery capacity degradation are discussed in this section. 

5.3.1 Day-ahead Forecasting Method 

In this study, an artificial neural network (ANN) is used to forecast both the 

solar insolation and wind speed. A feed-forward neural network is developed with a 

back-propagation mechanism using Levenberg-Marquardt optimisation [8].  

For solar insolation forecasting, the time of the day, day of the month, 

historical irradiance (for two years), and ambient temperature are used as input data 

to the input layer. The output layer provides the forecasted solar insolation for the 

studied/candidate day. For wind speed forecasting, two years of historical wind 

speed data is used as input. The output layer provides the forecasted wind speed for 

the studied day.   

Once the day-ahead forecasted data for wind speed and solar insolation are 

generated, the output powers of the PV and WT are calculated from eqns. (1) and 

(2), respectively. The forecasting error in terms of mean absolute percentage error 

(MAPE) is then evaluated as [9]: 

MAPE (%) =
100

𝐾
∑|

𝑃𝑓
𝑗
− 𝑃𝑎

𝑗

𝑃𝑎
𝑗

|

𝐾

𝑗=1

 (5-5) 

Here, 𝑃𝑎 is the actual generation, 𝑃𝑓 is the forecasted generation, and K is the 

data size. 

5.3.2 Operating Reserve 

Since renewable energy is stochastic and household load demand is 

unpredictable, an operating reserve must be maintained by the available discharging 

power of the battery. Using the forecasting errors, the operating reserve (𝑃𝑟) is 

calculated as follows: 

𝑃𝑟(𝑡) ≥ MAPE𝑤. 𝑃𝑤(𝑡) + MAPE𝑝. 𝑃𝑝(𝑡) + 𝛿. 𝑃𝑙(𝑡) (5-6) 

where, 𝑃𝑙 is the household load demand (sum of controllable and uncontrollable 

loads), and 𝛿 is the load forecasting error. MAPE𝑤 and MAPE𝑝 are the forecasting 

errors of WT and PV, respectively. 
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5.3.3 Demand Side Management 

The main aim of DSM in this study is to reduce the electricity consumption 

for the days with low energy generation from PV and WT. The SOC of battery, 

which shows the amount of remained charge in the BS, can also be effective in 

making decision for DSM. This can be achieved by designing a DSM strategy which 

uses not only the day-ahead forecasts of PV and WT but also the SOC of BS. 

Fig. 5-2 shows the DSM and operating strategies deployed in this study. The 

DSM strategy is developed based on the day-ahead forecasts of wind speed and solar 

insolation, as well as the received data from battery power conditioning system. So, 

the total day-ahead generation of renewable resources (𝐸𝑝𝑤,𝑑ℎ) is calculated and the 

battery SOC level is monitored. To identify the days with low renewable generation, 

the average daily generation (𝐸𝑝𝑤,𝑎) of the site by PV and WT is first obtained based 

on the historical data. The days for which the forecasted renewable generation are 

less than the half of 𝐸𝑝𝑤,𝑎 are then considered as low generation days. By monitoring 

the SOC, two threshold values 𝑆𝑂𝐶𝑡𝑠1 and 𝑆𝑂𝐶𝑡𝑠2 (where 𝑆𝑂𝐶𝑡𝑠1 > 𝑆𝑂𝐶𝑡𝑠2) are 

considered. The level of DSM decision is decided based on all these parameters.  

A fuzzy logic method is used as the core of the DSM strategy for decision 

making. The fuzzy logic receives the 𝐸𝑝𝑤,𝑑ℎ and 𝑆𝑂𝐶 as inputs and generates the 

demand response strategy for the day-ahead as the output. Fig. 5-3 illustrates the 

fuzzy characteristics (membership functions and rules table) for the developed DSM 

strategy.  
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Figure 5-2. Demand side management strategy and system operation. 
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Figure 5-3. Fuzzy logic membership functions and rules table for DSM. 

The fuzzy logic first compares the 𝐸𝑝𝑤,𝑑ℎ with the average daily generation 

of the site (𝐸𝑝𝑤,𝑎) at 12am. If the total day-ahead generation is higher than half of 

the average daily generation, no demand response is required (path ‘a’ in Fig. 5-3). 

If the 𝐸𝑝𝑤,𝑑ℎ is less than half of 𝐸𝑝𝑤,𝑎, SOC of the battery should be analysed. If the 

SOC of battery is higher than the 𝑆𝑂𝐶𝑡𝑠1, only operation of the DW will be shifted 
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from day-ahead to two-day ahead (path ‘b’ in Fig. 3): 

{
𝑃𝑙,1𝑑ℎ(𝑡) = 𝑃𝑙(𝑡) − 𝑃𝑑𝑤,1𝑑ℎ(𝑡)

𝑃𝑙,2𝑑ℎ(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑑𝑤,1𝑑ℎ(𝑡)
 (5-7) 

where 𝑃𝑙,1𝑑ℎ and 𝑃𝑙,2𝑑ℎ are one day-ahead and two day-ahead loads of the household, 

and 𝑃𝑑𝑤,1𝑑ℎ is the DW load demand in the day-ahead. 

If the SOC of battery is in between the 𝑆𝑂𝐶𝑡𝑠1 and 𝑆𝑂𝐶𝑡𝑠2, all the shiftable 

loads in day-ahead (𝑃𝑠,1𝑑ℎ) will be shifted from day-ahead to two-day ahead (path 

‘c’ in Fig. 3): 

{
𝑃𝑙,1𝑑ℎ(𝑡) = 𝑃𝑙(𝑡) − 𝑃𝑠,1𝑑ℎ(𝑡)

𝑃𝑙,2𝑑ℎ(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑠,1𝑑ℎ(𝑡)
 (5-8) 

Finally, if the SOC is lower than the 𝑆𝑂𝐶𝑡𝑠2, all shiftable loads in day-ahead 

will be curtailed (path ‘d’ in Fig. 5-3): 

{
𝑃𝑙,1𝑑ℎ(𝑡) = 𝑃𝑙(𝑡) − 𝑃𝑠,1𝑑ℎ(𝑡)

𝑃𝑙,2𝑑ℎ(𝑡) = 𝑃𝑙(𝑡)
 (5-9) 

 The above demand response strategies represented by eqns. (5-7)-(5-9) are 

activated by the output of the fuzzy logic as shown in Fig. 5-3. 

5.3.4 System Operation  

In all three system configurations, if the generated power by renewable 

sources (𝑃𝑝𝑤) is greater than the load, the extra power of renewable sources charges 

the battery within the input power limit of the BS (𝑃𝑏,𝑖). Hence, the battery charging 

power (𝑃𝑏.𝑐ℎ) can be written as: 

𝑃𝑏,𝑐ℎ(𝑡) = min (𝑃𝑏,𝑖(𝑡), 𝑃𝑝𝑤(𝑡) − 𝑃𝑙(𝑡)) 
(5-10) 

𝑃𝑝𝑤(𝑡) = 𝑃𝑝(𝑡) + 𝑃𝑤(𝑡) (5-11) 

If the extra power is more than the battery input power limit, the surplus power 

is dumped. Thus, the dumped power (𝑃𝑢) can be expressed as: 

𝑃𝑢(𝑡) = 𝑃𝑝𝑤(𝑡) − 𝑃𝑙(𝑡) − 𝑃𝑏,𝑐ℎ(𝑡) (5-12) 

If the generated power by renewable sources is less than the load, the battery 
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supplies the shortfall. The discharging power (𝑃𝑏,𝑑𝑖𝑠) of the battery can be written 

as:  

𝑃𝑏,𝑑𝑖𝑠(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑟(𝑡) − 𝑃𝑝𝑤(𝑡) (5-13) 

In this case, the BS must have adequate stored energy to supply not only the 

shortfall but also maintain the operating reserve. 

5.3.5 Battery Capacity Degradation 

The battery CD and subsequently battery lifetime can be calculated based on 

the number of cycles and associated depth of discharge (DOD) of each cycle. At the 

end of annual operation, the annual SOC of the battery is extracted. The number of 

charge/discharge cycles and the corresponding DOD (= 1 − SOC) of the battery are 

then obtained using Rainflow Counting Algorithm (RCA) [10]. The Li-ion battery 

is used in this study for which the CD in each full cycle can be calculated as: 

𝐶𝐷(𝑐) =
20

33000. 𝑒−0.06576.𝐷𝑂𝐷(𝑐) + 3277
 (5-14) 

The RCA extracts the number of full cycles and half cycles in the DOD of the 

battery. It is assumed that the CD is half of eqn. (14) for the half cycles. A filtering 

procedure is implemented on the SOC to disregard the adjacent local max/min points 

below a threshold (<1Wh) [11]. The annual capacity degradation (ACD) of battery 

can be calculated by: 

𝐴𝐶𝐷 =∑𝐶𝐷(𝑐)

𝒞

𝑐=1

 (5-15) 

where 𝒞 is the total number of cycles of the year obtained by the RCA. Once the 

total CD of battery exceeds 20%, the battery should be replaced.  

5.4 Optimisation Model 

The optimisation model investigates the objective function, design constraints 

and optimisation algorithm. Decision variables of the optimisation model are the 

capacities of PV, WT, BS, and INV. 

5.4.1 Problem Formulation 

The NPV of the system over the project lifespan is a function of capital present 
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value (𝐶𝑎), replacement present value (𝐶𝑒), maintenance present value (𝐶𝑚) and 

salvation value (𝐶𝑠) of the system components.  

NPV = (𝐶𝑝
𝑎 + 𝐶𝑝

𝑚 − 𝐶𝑝
𝑠). 𝛼𝑝 + (𝐶𝑤

𝑎 + 𝐶𝑤
𝑚). 𝛼𝑤 

+(𝐶𝑏
𝑎 + 𝐶𝑏

𝑒 + 𝐶𝑏
𝑚 − 𝐶𝑏

𝑠). 𝛼𝑏 + (𝐶𝑣
𝑎 + 𝐶𝑣

𝑒). 𝛼𝑣 

(5-16) 

Eqn. (5-16) represents the NPV of the system where 𝛼 is the number of 

components as the decision variables. Subscripts p, w, b, and v represent PV, WT, 

BS, and INV, respectively.  

The capital payment of components takes place at the beginning of the project 

and is the same as capital present value  𝐶𝑎. The present value of maintenance cost 

𝐶𝑚 is calculated from annual maintenance cost (𝑀), interest rate (𝑖), and project 

lifespan (𝑛). 

𝐶𝑚 = 𝑀
(1 + 𝑖)𝑛 − 1

𝑖(1 + 𝑖)𝑛
 (5-17) 

The replacement cost is applicable to only those components that have lower 

lifetime (less than project lifespan). Thus, replacement cost is not applicable to PV 

and WT as their lifetime is higher than or equal to the project lifespan. The present 

value of replacement cost 𝐶𝑒 is calculated from component replacement cost (𝑅), 

interest rate (i) and component replacement year (G). 

𝐶𝑒 = 𝑅
1

(1 + 𝑖)𝐺 
 (5-18) 

The salvation value 𝐶𝑠 is the remaining value of the component at the end of 

the project lifespan and is applicable to only solar PV and battery.  

𝐶𝑝
𝑠 = 𝐶𝑝

𝑎.
𝐻𝑝

𝐿𝑝
  ,                𝐶𝑏

𝑠 = 𝐶𝑏
𝑒 .
𝐻𝑏
𝐿𝑏

 (5-19) 

where 𝐿𝑝 and 𝐿𝑏 are the lifetime of PV and BS, respectively. 𝐻𝑝 and 𝐻𝑏 are the 

remaining life (in years) of PV and BS, respectively, at the end of project lifespan. 

Once the NPV is obtained, the levelised cost of electricity (LCOE) can be 

calculated: 
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𝐿𝐶𝑂𝐸 =
𝑁𝑃𝑉

𝐸𝑙
. (

𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
)

⏞          
𝐶𝑅𝐹

 
(5-20) 

where 𝐸𝑙 is the annual load of system and CRF is the capital recovery factor. 

The objective function and design constraints of the optimisation problem are 

formulated as follows: 

𝑓 = minimise (NPV ) (5-21) 

Subject to: 

0 ≤ 𝛼𝑘 ≤ 𝛼𝑘
𝑚𝑎𝑥,        𝛼𝑘𝜖{𝛼𝑝, 𝛼𝑤, 𝛼𝑏 , , 𝛼𝑣} (5-22) 

𝑃𝑤(𝑡) + 𝑃𝑝(𝑡) + 𝑃𝑏,𝑑𝑖𝑠(𝑡) = 𝑃𝑙(𝑡) + 𝑃𝑢(𝑡) + 𝑃𝑏,𝑐ℎ(𝑡)  (5-23)   

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (5-24) 

𝑆𝑂𝐶(𝑇) ≥ 𝑆𝑂𝐶(𝑡 = 0) (5-25) 

Eqn. (5-21) represents the NPV as the objective function. Eqn. (5-22) ensures 

that the number of system components (𝛼𝑘) are within their maximum limits. Eqn. 

(5-23) represents the power balance constraint. Eqn. (5-24) guarantees that the 

battery SOC level is within the upper and lower limits. Finally, eqn. (5-25) ensures 

that the SOC of BS at the end of time horizon is higher than the initial SOC of BS at 

the beginning of project. 

5.4.2 Optimisation Algorithm 

In real-world applications, the capacity of battery is degraded due to system 

operation. The capacity is not updated by consumer or operator as it is in the nature 

of the battery that the initial capacity will not be available due to degradation. When 

the capacity degradation reaches 20% of the initial capacity, the battery should be 

replaced. The most efficient method to calculate the battery degradation is the 

degradation per cycle. However, the cycles and their associated DODs are not 

available at the beginning of project (before the system operation), and they are 

different for various system configurations. For example, in a WT-BS system, the 

battery may experience lower charging/discharging cycles with lower DODs and 

thus lower degradation can be obtained. In contrary, the number of 
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charging/discharging cycles and their DODs may increase for another system and 

hence higher degradation can be obtained. To overcome this challenge in our study, 

the system is first operated for one year and then the DOD data is extracted. After 

that, the Rainflow cycling algorithm is used to extract the number of cycles from the 

annual DOD data. Finally, an experimental method, stated in equation (14), is 

adopted to calculate the degradation due to each cycle of battery.  

Fig. 5-4 shows the flowchart of the optimisation procedure. In this study, the 

operation of the system is carried out in two stages. At the first stage, the optimisation 

of the system is carried out and the value of ACD is extracted from eqn. (15). At the 

second stage, the obtained ACD from the first stage is used to update the BS capacity 

and repeat the calculations. The battery lifetime is calculated based on the obtained 

ACD of the second stage. This is a simple way to obtain a more realistic battery CD 

during the operation.  
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Figure 5-4. Optimisation procedure for optimal sizing of components. 

Different solvers, available in MATLAB optimisation toolbox, can be used to 

solve the formulated problem. Particle swarm approach is used in this study because 

of its simple concept, suitability in rate of convergence, computational efficiency, 
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easy implementation, and minimum dependency on initial points [6]. This algorithm 

is extensively used to solve the optimal sizing problems in power systems. To 

guarantee of global optimal result achievement by the algorithm, high number of 

populations (300) and generations (500) have been run in 20 repetitions.  

5.5 System Data 

A typical household in SA is considered as the case study. It is assumed that 

the project lifespan is 20 years. The financial/technical parameters of system 

components as well as load and weather data are discussed in this section. 

5.5.1 System Components Data 

Table 5-2 shows the capital cost, replacement cost, and maintenance cost of 

various system components [12]. All prices are in Australian dollar (AUD). The 

lifetimes of PV, WT and INV are assumed as 25, 20 and 10 years, respectively. 

Table 5-2. Capital, Replacement, and Maintenance Costs of PV, WT and BS [12]. 

Component  Unit size Capital cost Replacement cost Maintenance cost 

PV 1 kW $ 1,200/kW N/A  $25 

WT 1 kW $ 2,500/kW N/A $50 

BS 0.3kW/1kWh $ 500/kWh $ 350 $10 

INV 1 kW $ 1,000/kW $ 500 N/A 

 

The round-trip efficiency of BS is considered as 92%. The values of 𝑆𝑂𝐶min 

and 𝑆𝑂𝐶max are considered as 20% and 95%, respectively. The initial value of SOC 

at the beginning of simulation is assumed as 60%. It may be mentioned here that a 

lower value of initial SOC cannot supply the load uninterruptedly. The higher value 

of initial SOC does not affect the optimisation results. The value of  𝑆𝑂𝐶𝑡𝑠1 and 

𝑆𝑂𝐶𝑡𝑠2 are considered as 60% and 35%, respectively. 

An annual capacity degradation of solar PV is considered as 0.95% over its 

lifetime. The cut-in, cut-out and rated wind speeds of the WT are considered as 3m/s, 

22m/s, and 8m/s, respectively. 

5.5.2 Load and Weather Data 

The operation of the controllable appliances is randomly distributed during 

the year according to their operating time window and usage frequency (as shown in 

Table II). The annual, maximum daily, and average daily energy demands of the 

household are 6,205 kWh, 24 kWh and 17 kWh, respectively. The forecasted data 
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has only generated for renewable generation in this study. It is, however, not that 

simple to generate the forecasted data of customers electricity consumption due to 

some main reasons which can be described by several factors. The availability of 

historical data is the first factor. For this study, the load data of the standalone 

household was only available for one year. On the other hand, residential load 

forecasting depends on several other factors like customer lifestyle, working hours, 

days of the week, and the number of people in the household. These factors vary 

from one household to another, and it is not easy to access them. Therefore, the day-

ahead load forecast error in literature is used in this study. The considered load 

forecasting error (𝛿 = 25%) is taken from [9].  

The actual wind speed and solar insolation data of Nundaroo (31.48 S, 131.84 

E), a remote town located along the South Australian coast, are used to analyse the 

annual operation of the systems [7]. The average solar insolation and wind speed of 

the site are found as 5.4 kWh/m2/day and 4.3 m/s, respectively. The average daily 

generation of a 1-kW PV and a 1-kW WT are calculated as 4.7 kWh and 6.9 kWh, 

respectively [7].  

The MAPE for WT and PV generation forecasts of the site are obtained as 

10.8% and 8.2%, respectively. Fig. 5-5 shows the comparison of actual and ANN-

based forecasted day-ahead wind speed and solar insolation of the site for the first 

week of July. By considering the forecast errors, the average daily generation (𝐸𝑝𝑤,𝑎) 

of the site for various system configurations is updated as follows: 

PV-BS system:  𝐸𝑝𝑤,𝑎 = (1 −𝑀𝐴𝑃𝐸𝑝/100) × 4.7 (5-26) 

WT-BS system:  𝐸𝑝𝑤,𝑎 = (1 −𝑀𝐴𝑃𝐸𝑤/100) × 6.9 (5-27) 

PV-WT-BS system: 𝐸𝑝𝑤,𝑎 = ((1 −𝑀𝐴𝑃𝐸𝑝/100) × 4.7 + (1 −𝑀𝐴𝑃𝐸𝑤/

100) × 6.9) /2 

(5-28) 
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Figure 5-5. Actual and forecasted wind speed and solar insolation. 

5.6 Results and Discussion  

To demonstrate the benefits of the proposed DSM strategy, various results of 

all three system configurations of Fig. 5-1 are evaluated using the proposed DSM 

and compared with that found without using the DSM. Some of the results (NPV, 

LCOE and CO2 emission) of the best configuration are compared with that reported 

in [6] and [7], as well as the actual electricity rate in SA. 

5.6.1 Without DSM  

The optimal capacity of various system components and the corresponding 

economic results of all three configurations are evaluated without considering the 

DSM and the results found are summarised in Table 5-3. The third configuration 

(PV-WT-BS) is the best system as it has the lowest value of NPV and LCOE. This 

system is supplied by 8 kW of PV and 2 kW of WT and has the lowest capacity of 

BS (35 kWh). The second configuration (WT-BS) is the most expensive system as 

it has the highest capacity of battery (193 kWh). The results (NPV, LCOE and BS 

capacity) of the first configuration (PV-BS) are in between that of the second and 

the third configurations.  

Table 5-3. Optimal Capacity and Economical Results Without DSM. 

System 
Components’ capacities  

NPV ($) LCOE (¢/kWh) 
PV (kW) WT (kW) BS (kWh) INV (kW)  

PV-BS 10 - 83 4 73,807 123 

WT-BS - 12 193 4 125,321 210 

PV-WT-BS 8 2 35 4 38,659 65 

 

The battery capacity in WT-BS system is found to be much higher than that of 

other configurations. This is because of the stochastic variations of wind speed and 
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successive days of low wind speed (or low wind energy). It has been observed that, 

for some months of the year, the wind generation was less than 1 kWh for four 

successive days and that requires higher battery capacity to supply the load 

uninterruptedly. However, in the PV-BS and PV-WT-BS systems, the PV system 

did not have low generation for more than two successive days and thus required 

lower battery capacity. 

The annual generated energy can be divided into three components: feeding 

the load directly, charging the battery, and dumping by the inverter control. The pie 

charts of the above components of all configurations are shown in Fig. 5-6. The PV-

WT-BS system used the highest percentage (27%) of its generated energy to feed 

the load directly followed by the PV-BS system (22%) and the WT-BS system 

(14%). The percentage of generated energy used to charge the battery varies between 

11% (for the WT-BS system) and 26% (for the PV-BS system). A high percentage 

of generated energy is dumped (52% for the PV-BS system, 58% for the PV-WT-

BS system and 75% for the WT-BS system). The WT-BS system has the highest 

annual renewable generation (25.17 MWh) and hence the highest annual dumped 

energy (almost 75% of the renewable generation). It may be mentioned here that the 

dumped energy is basically uncollected energy by the inverters but not physically 

dumped to a resistor. 
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Figure 5-6. Breakdown of generated energy without DSM. 

5.6.2 With DSM 

The optimal capacity of system components and economic results for all 

configurations with the proposed DSM strategy are listed in Table 5-4. In this case, 

the capacity of renewable energy sources (PV and WT) is found to be the same as 

that of without DSM. However, the battery capacity for all configurations has 

reduced due to the implementation of DSM. For the PV-BS system, the BS capacity 

has decreased by 13 kWh and that reduces the value of NPV and LCOE by $8,900 

and 14 ¢/kWh, respectively. The lowest LCOE (57 ¢/kWh) is found for the PV-WT-
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BS system for which the BS capacity is reduced by 11 kWh.  

Table 5-4. Optimal Capacity and Economical Results by Considering DSM. 

System 
Components’ capacities  

NPV ($) LCOE (¢/kWh) 
PV (kW) WT (kW) BS (kWh) INV (kW)  

PV-BS 10 - 70 4 64,907  109 

WT-BS - 12 179 4 119,191 200 

PV-WT-BS 8 2 24 4 34,120 57 

 

The fraction (or percentage) of energy used to charge the battery and feeding 

the load as well as dumped by the inverters is shown in Fig. 5-7. Comparison of Figs. 

5-6 and 5-7 indicates that the proposed DSM has very little effect on the distribution 

of energy among the above three components. 
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Figure 5-7. Breakdown of generated energy with DSM. 

Fig. 5-8 shows the annual CD and lifetime of BS for all configurations. The 

BS lifetime is calculated from its ACD [8]. The shortest and longest lifetimes of the 

BS are found as 10 years (PV-BS system) and 15 years (WT-BS system), 

respectively. The BS lifetime for the optimal system (PV-WT-BS) is found as 13 

years.   
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Figure 5-8. Battery CD and lifetime of all three system configurations with DSM. 

The effects of the proposed DSM on load shifting and load curtailment are 

shown in Table 5-5. It can be noticed in the table that, for the optimal system 

configuration (PV-WT-BS), the DSM causes to shift loads for 21 days per year (as 
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the day-ahead forested generation was less than half of daily average generation). 

The annual load shifting was only 66.5 kWh. However, there were only 6 days (out 

of 21 days of load shifting) for which load shifting was not adequate to maintain the 

energy balance and a drastic action or load curtailment was required. The annual 

load curtailment was only 22.7 kWh. The main reason for higher load curtailment in 

the PV-WT-BS system is the low capacity of battery. As seen in Table VI, the 

number of the days with low generation of renewable energies is 27 days (the days 

with load shifting and load curtailment). However, due to the low capacity of battery, 

only 6 out of those 27 days the SOC of battery is lower than 35% which is the 

threshold of SOC for load curtailment. This means that in those 6 days the available 

charge of battery is lower than 35% of its optimal capacity (24 kWh). For the other 

two system configurations, even though load shifting is required for a greater number 

of days, the annual load curtailment and the corresponding number of days are less 

because of the use of much higher capacity of BS.  

Table 5-5. Load Shifting and Load Curtailment Caused by the DSM. 

System 
Number of days for  

load shifting 

Amount of load 

shifting (kWh) 

Number of days for 

load curtailment 

Amount of load 

curtailment (kWh) 

PV-BS 43 131.9 3 12.2 

WT-BS 24 75.1 1 4.3 

PV-WT-BS 21 66.5 6 22.7 

 

5.6.3 Effects of Salvation Value and Battery Degradation 

It is important to investigate the effects of salvation value and battery 

degradation on optimal sizing of system configurations. In this context, Fig. 5-9 

demonstrates the impacts of salvation value and battery CD on LCOE and BS 

capacity of the studied system configurations. All results are obtained for the systems 

with the proposed DSM strategy. By neglecting the salvation value, the LCOE of 

system configurations has increased, however, the BS capacity is almost the same as 

the proposed models of this study. It is illustrated that when the battery CD is 

neglected, lower capacity of BS is obtained with slightly lower LCOE. However, 

degradation is the natural process of batteries, and it causes capacity drop during the 

operation. Hence, it is found that if the salvation value or battery degradation is 

neglected in the optimisation model, the optimal sizing results may not be accurate 

and reliable.   
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Figure 5-9. Comparison of the proposed model with the systems without considering salvation 

value and battery CD. 

5.6.4 Comparison with Actual and Previously Studied Systems  

In order to demonstrate the effectiveness of the proposed method, some of the 

results obtained in this study (for the optimal configuration) are compared with that 

of the actual (or existing) system as well as found by two previous studies [6] and 

[7]. The actual system is based on diesel generators (DG) which has a LCOE of 70-

78 ¢/kWh (with an average of 74 ¢/kWh) [3]. In [7], a hybrid generating system 

consisting of DG-WT-PV-BS was found as the optimal system configuration for a 

standalone community in the same area. In [6], an incentive-based demand response 

was implemented in the above hybrid generating system. For comparison purpose, 

some of the results (NVP and CO2 emission) of the above two methods were 

proportionally converted to match the load demand (6,205 kWh/yr) used in this 

study. Table 5-6 compares the LCOE, NPV and CO2 emission of the above-

mentioned systems. The systems investigated in this study (with and without DSM) 

are 100% renewable and thus have no CO2 emission. The actual REAS system is 

100% fossil fuel (or DG) based and thus has the highest CO2 emission of 5.83 

tonne/yr. The CO2 emission of the hybrid systems is about half the DG-based system. 

It can be noticed in the table that actual DG-based system has the highest LCOE and 

NPV because of high fuel cost. The lowest value of LCOE and NPV is found for the 

proposed PV-WT-BS system with DSM. The LCOE and NPV for the hybrid systems 

[6], [7] are slightly higher than that found in this study. However, unlike the present 

study systems, the operating reserve for the renewable generation uncertainty was 

not considered in the previously reported hybrid systems. 
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Table 5-6. Comparison of Results of Various Systems. 

System LCOE (¢/kWh) NPV ($)  CO2 Emission (tonne/year) 

Proposed PV-WT-BS without DSM 65  38,659 0 

Proposed PV-WT-BS with DSM 57  34,120 0 

Actual RAES rate in SA [3] 74  44,217 5.83  

DG-WT-PV-BS without DR [7] 61  36,449 2.47  

DG-WT-PV-BS with DR [6] 59  35,254 2.46  

 

5.7 Conclusion  

In this chapter, a novel practical DSM approach was developed for optimal 

sizing of renewable sources and battery storage. The proposed DSM strategy used 

battery SOC and day-ahead forecasted renewable generation, to implement the most 

efficient load shifting and/or load curtailment. A fuzzy logic technique was used as 

the core of DSM for decision making. The main feature of the developed DSM is its 

easy implementation in households. Three different system configurations (PV-BS, 

WT-BS and PV-WT-BS) have been formed and investigated for a standalone 

household. The optimal results obtained by the proposed method are then compared 

with that found and reported in two recent articles. 

Without the proposed DSM strategy, it has been found that the WT-BS system 

configuration required the highest battery capacity and that caused the highest 

LCOE. However, the battery capacity degradation is found to be the lowest because 

of its less utilization. The PV-WT-BS configuration was found to be the most 

optimal having the lowest value of BS capacity and the LCOE. The LCOE of the 

PV-BS is found to be in between that of the WT-BS and PV-WT-BS configurations. 

When the proposed DSM strategy was applied, the BS capacity of all 

configurations is reduced while the capacity of renewable sources remained the 

same. Because of the reduction of BS capacity, the NPV and hence the LCOE of all 

configurations are decreased compared to that found without applying the DSM. For 

the optimal configuration (PV-WT-BS), the BS capacity is found as 24 kWh (a 

reduction of 11 kWh) and LCOE of 57 ¢/kWh (a reduction of 8 ¢/kWh). In previous 

studies, the LCOE with hybrid generating system is found as 61 ¢/kWh (without 

demand response) and 59 ¢/kWh (with demand response). The actual or existing 

system, based on diesel generator, has a LCOE of 74 ¢/kWh. Note that both hybrid 

and existing systems emit CO2 because of the use of diesel generators. However, the 

optimal configuration found by the proposed method not only has the lowest LCOE 
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but also has no CO2 emission as it is completely renewable-storage based. The lowest 

LCOE is achieved at an expense of annual load shifting of 66.5 kWh for six days 

and an annual load curtailment of 22.7 kWh.  

References 

[1] M. Arriaga, C. A. Cañizares and M. Kazerani, “Northern Lights: Access to Electricity in 

Canada's Northern and Remote Communities,” IEEE Power and Energy Magazine, vol. 12, no. 

4, pp. 50-59, July-Aug. 2014. 

[2] Australian Infrastructure Audit 2019 [Online]. Available: 

https://www.infrastructureaustralia.gov.au/sites/default/files/201908/Australian%20Infrastruct

ure%20Audit%202019.pdf,Accessed on: Jul. 2020. 

[3] Government of South Australia, Department of Energy and Mining. Remote Area Energy 

Supply, [Online]. Available: https://www. 

energymining.sa.gov.au/energy_and_technical_regulation/energy_resources_and_supply/remo

te_area_energy_supply, Accessed on: July 2020. 

[4] M. B. Shadmand and R. S. Balog, “Multi-Objective Optimization and Design of Photovoltaic-

Wind Hybrid System for Community Smart DC Microgrid,” IEEE Trans. Smart Grid, vol. 5, 

no. 5, pp. 2635-2643, Sept. 2014. 

[5] M.D.A. Al-falahi, S.D.G. Jayasinghe, and H. Enshaei, “A review on recent size optimization 

methodologies for standalone solar and wind hybrid renewable energy system,” Energy 

Conversion and Management, vol. 143, pp. 252-274, Jul. 2017. 

[6] M. Combe, et al., “Optimal sizing of an AC-coupled hybrid power system considering 

incentive-based demand response,” IET Gene., Trans. Dist., vol. 13, iss. 15, pp. 3354 – 3361, 

Jun. 2019. 

[7] M. Combe, et al., “Cost effective sizing of an AC mini-grid hybrid power system for a remote 

area in South Australia,” IET Gene., Trans. Dist., vol. 13, iss. 2, pp. 277–287, Jan. 2019. 

[8] M. Yousefi, A. Hajizadeh, and M. N. Soltani, “A comparison study on stochastic modeling 

methods for home energy management system,” IEEE Trans. Indust. Infor., vol. 15, no. 8, pp. 

4799 - 4808, Aug. 2019. 

[9] S. Chen, H. Gooi, and M. Wang, “Sizing of energy storage for micr-ogrids,” IEEE Trans. Smart 

Grid, vol. 3, iss. 1, pp. 142–151, Mar. 2012. 

[10] M. Musallam and C. M. Johnson, “An Efficient Implementation of the Rainflow Counting 

Algorithm for Life Consumption Estimation,” IEEE Trans. Reliability, vol. 61, no. 4, pp. 978-

986, Dec. 2012.  

[11] C. A. Correa, A. Gerossier, A. Michiorri and G. Kariniotakis, “Optimal scheduling of storage 

devices in smart buildings including battery cycling” 2017 IEEE Manchester PowerTech, 

Manchester, 2017, pp. 1-6.  

[12] GenCost 2020-21 – CSIRO [Online]. Available: https://www.csiro.au/-/media/News-

releases/2020/renewables-cheapest/GenCost2020-21.pdf Accessed on: March 2021. 



Chapter 6: Multi-Objective Optimal Sizing Framework  

 

146 

 

 

 

 

Chapter 6                                    

Optimal Design Framework for a 

Residential Grid-Connected 

Renewable Battery System 

This chapter develops a long-term operation model for planning studies of a 

renewable-battery system for a residential grid-connected house. The optimal 

planning is conducted on a multi-objective basis by considering cost of electricity, 

grid dependency, and dumped energy as the objective functions. It is found that the 

developed long-term operation achieves higher accuracy for the obtained results 

compared to those of short-term operation. In addition, the multi-objective sizing 

presents better guidelines for the customers to select the capacity of components 

based on different objective functions.   

The contribution of this chapter is presented in one submitted research article. 

R. Khezri, A. Mahmoudi, and H. Aki, “Optimal Design Framework for a Residential 

Grid-connected Renewable-Battery System,” IEEE Transactions on Industry 

Applications, 2021. 

The student has developed the conceptualization. He designed the 

optimisation model. Analysis and interpretation of research data has been done by 

him and the co-authors. A draft of the paper was prepared by the student. Revisions 

and comments were provided by the co-authors so as to contribute to the 

interpretation.  

6.1 Introduction 
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Integration of renewable energy (RE) and battery storage (BS) systems is 

becoming a viable option for grid-connected households (GCHs). In GCHs with RE 

and BS, optimal planning of components is the utmost important aspect which must 

meet multiple objectives. Minimising cost of electricity (COE) is the main factor for 

the customers [1]. Decreasing dependency on the main grid is the other target in 

GCHs [2]. On the other side, increasing the curtailed energy from REs in GCHs is 

not desirable. Curtailed energy is the wasted energy of RE resources after feeding 

load, charging BS and exporting power to the main grid. Hence, there are several 

objective functions that could be considered for optimal planning of RE sources and 

BS in a grid-connected households. 

Although single- objective scheme has been extensively used for optimal 

sizing, multi-objective (MO) optimal sizing/planning is a valuable substitution that 

can give wider ideas to the designer. In the single- objective sizing, the electricity 

cost is considered as the target and hence this type of optimisation is unable to render 

insights into the trade-offs between objective functions. However, by the MO 

optimisation several objective functions like grid dependency (GD), which shows 

the energy dependency of the GCH, and the curtailed energy can be considered 

alongside the electricity cost.  

Generally optimal planning is a long period problem. On the other hand, the 

lifetimes of components are disparate and may mismatch the project lifespan. 

Considering the salvation cost which is the value of the components at the end of 

project lifespan realizes a precise optimisation model. Capacity degradation (CD) of 

PV and BS is the other challenge for optimal sizing problems. Due to CD, the initial 

capacity of components is not usable during the project lifespan because it degrades 

due to operation or the environmental issues. In addition, the CD may decrease the 

lifetime of BS. There is a lack of study to apply CD for both long-period operation 

and lifetime estimation. Most studies have conducted a short period of operation for 

optimal planning. However, to achieve a realistic model of the operation and 

battery’s CD, as well as stochastic nature of the REs and load, a long-period 

operation is indispensable.  

 Based on the challenges in the literature, this chapter develops a 

comprehensive optimal design framework. The capacities of PV, WT and BS are 

optimised in a residential GCH based on three objective functions: (1) cost of 
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electricity, (2) grid dependency, and (3) total curtailed energy (TCE). An operation 

strategy based on home energy management system and degradations of PV and BS 

is developed. The method uses 10-year data rather than yearly data. While the 

proposed optimisation framework is applicable to any GCH, the actual data (weather 

data, load profile, as well as PV, WT, BS, and electricity prices) in South Australia 

are used for a realistic optimisation study. The results of this study can be used as a 

guideline for: (i) customers to select the capacity of PV, WT and BS based on a 

compromise between COE and GD, (ii) designers to get insights into the BS 

degradation and TCE for various designs. The main contributions of this paper 

compared to previous studies are:  

• Develop an optimisation model based on a long-period (10-year) operation 

for a GCH with PV, WT and BS by incorporating real data. 

• Incorporate solar PV and battery capacity degradations in the long-period 

operation of the residential GCH. 

• Optimise the capacity of PV, WT and BS based on electricity cost, grid 

dependency and curtailed energy. 

• Compare the long-period optimal sizing framework with short-period 

optimisation. 

6.2 Operation of Energy System 

Fig. 6-1 demonstrates the system configuration for a grid-connected 

household. The components (PV, WT and BS) are parallelly connected to the 

household using an AC interface. The energy management system and degradations 

of PV and battery during the project lifespan (10 years) of the GCH are discussed in 

this section. 

Inverter

Curtailed 

Power

BS

Bidirectional 

Converter

Grid

Meter

Load

WT

Inverter

Curtailed 

Power

PV

 

Figure 6-1. System configuration of the studied grid-connected household. 
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6.2.1 Energy Management System 

In this study, a rule-based power management approach is considered for the 

GCH due to user-friendliness, low computational requirement, practicality, and 

simple implement in real-life. The developed power management and optimisation 

model of this study are general and can be implemented to all standard electricity 

rates (e.g., flat rate).  

Fig. 6-2a illustrates the home energy management system of the GCH. The 

energy management commences by comparing the RE generation to the household’s 

load demand. Once the output power of REs exceeds the load, the extra power first 

charges the BS considering the limitations of state of charge (SOC) and available 

input power of the battery.  

𝑃𝛽
𝑐ℎ(𝑡) = min (𝑃𝛽

𝑖𝑛(𝑡), 𝑃𝑟𝑒(𝑡) − 𝑃ℎ(𝑡))      (6-1) 

𝑃𝑟𝑒(𝑡) = 𝑃𝜌,𝑦(𝑡) + 𝑃𝜔(𝑡) (6-2) 

Battery’s SOC at charging time interval and available input power limit are 

formulated as: 

𝑆(𝑡 + ∆𝑡) = 𝑆(𝑡) + (𝑃𝛽
𝑐ℎ(𝑡). 𝜂𝛽

𝑐ℎ)/(𝐸𝛽,𝑦/h)  (6-3) 

𝑃𝛽
𝑖𝑛(𝑡) = min (𝑃𝛽

𝑚𝑎𝑥  , (𝐸𝛽,𝑦/h). (𝑆
𝑚𝑎𝑥 − 𝑆(𝑡))) (6-4) 

 If there is extra power of REs, it will be sold to the main grid considering the 

maximum allowable export power.  
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Figure 6-2. Operation of the electricity system for a grid-connected household. (a) Home energy 

management system, and (b) Battery capacity degradation. 

𝑃𝒿(𝑡) = min (𝑃𝒿
𝑚𝑎𝑥, 𝑃𝑟𝑒(𝑡) − 𝑃ℎ(𝑡) − 𝑃𝛽

𝑐ℎ(𝑡))      (6-5) 

Any excess power of REs will be curtailed using the control system of 

inverters. 

𝑃𝑑(𝑡) = 𝑃𝑟𝑒(𝑡) − 𝑃ℎ(𝑡) − 𝑃𝛽
𝑐ℎ(𝑡) − 𝑃𝒿

𝑚𝑎𝑥 (6-6) 

When the REs output power is lower than the load, the BS starts discharging 

to supply the household demand considering the limits of SOC level and available 

output power of battery.  

𝑃𝛽
𝑑𝑖(𝑡) = min (𝑃𝛽

𝑜𝑢𝑡(𝑡), 𝑃ℎ(𝑡) − 𝑃𝑟𝑒(𝑡))      (6-7) 

Battery’s SOC at discharging time interval and available output power are 

calculated by: 

𝑆(𝑡 + ∆𝑡) = 𝑆(𝑡) − (𝑃𝛽
𝑑𝑖(𝑡)/𝜂𝛽

𝑑𝑖)(𝐸𝛽,𝑦/h)   (6-8) 

𝑃𝛽
𝑜𝑢(𝑡) = min (𝑃𝛽

𝑚𝑎𝑥  , (𝐸𝛽,𝑦/h). (𝑆(𝑡) − 𝑆
𝑚𝑖𝑛)) (6-9) 

If the load is still not fully supplied, then the unmet load is fed by the imported 

power from the main grid.    
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𝑃𝒾(𝑡) = 𝑃ℎ(𝑡) − 𝑃𝑟𝑒(𝑡) − 𝑃𝛽
𝑑𝑖(𝑡) (6-10)             

The output power of solar PV, as well as available input/output powers and 

SOC level are updated after each year based on the capacity degradations. 

6.2.2 Degradation of Components  

In real world applications, the capacity of PV and BS is degraded due to 

system operation and environmental issues. After degradation, the capacities are not 

updated by consumer or operator; but it is in the nature of the components that initial 

capacity will not be available due to degradation. It should be noted that the 

contribution of this paper is not a detailed model of battery or PV degradation, but it 

aims to obtain an accurate model to consider the degradations in a long-period 

operation. 

A) Battery Capacity Degradation 

 The lifetime of battery is estimated based on the capacity degradation. 

Battery’s CD affects the operation of the system in planning studies. The CD of BS 

depends on the number of charge/discharge cycles and their depth of discharge 

(DOD). Fig. 6-2b shows the procedure to calculate battery’s CD and integrate it in 

the operation. The capacity of BS is updated at the end of each year based on the 

calculated degradation from the cycling of the last year. It should be noted that the 

CD can be calculated in shorter timeframes (e.g., monthly). However, the value of 

degradation will be rather small to be incorporated in the system design procedure. 

As the number of cycles in shorter timeframes are lower, smaller battery CD will 

obtain. The impact of smaller battery CD is insignificant and can be neglected for 

short timeframes.  

After the annual operation of the GCH, the SOC of battery is extracted. Then, 

the annual DOD is obtained (DOD = 1 − SOC). Afterwards, the Rainflow Cycle 

Counting Algorithm (RCCA) is used to extract the number of cycles and associated 

DODs [3]. The RCCA is generally used to analyze the fatigue data. In this study, 

this method is conducted to obtain the irregular charging/discharging cycles that the 

battery experiences during the operation. The fundamentals of Rainflow Cycle 

Counting Algorithm to estimate the number of cycles and their DOD are deeply 

explained in [3]. The capacity degradation in each full cycle (φ) of a Li-ion battery 
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is obtained by [4]: 

𝜋(𝜑) =
20

33000. 𝑒−0.06576.𝐷𝑜𝐷(𝜑) + 3277
 (6-11) 

The Rainflow Cycle Counting Algorithm classifies the DOD cycles in 

twofold: full cycles and half cycles. It is assumed that for the half cycles, battery’s 

CD is half of 𝜋(𝜑). To disregard the adjacent local max/min points below a threshold 

(<1Wh), a filtering procedure is implemented on the SOC [5]. The total CD of each 

year can be calculated by (𝜙 is total number of cycles of the year):  

𝜋𝑦 = ∑ 𝜋(𝜑)
𝜙
𝜑=1   (6-12) 

Once the annual CD of battery is obtained after each year of operation, the BS 

capacity is updated for the next year. 

𝐸𝛽,𝑦 = 

[
 
 
 
 
 

𝐸𝛽⏞

𝑦=1
𝐸𝛽,1=

, (1 −
𝜋1
100

)𝐸𝛽,1
⏞        

𝑦=2
𝐸𝛽,2

, (1 −
𝜋2
100

)𝐸𝛽,2
⏞        

𝑦=3
𝐸𝛽,3=

, … , (1 −
𝜋9
100

)𝐸𝛽,9
⏞        

𝑦=10
𝐸𝛽,10=

]
 
 
 
 
 

 

(6-13) 

The total battery CD in 10-year operation is calculated by:  

𝜋𝑌 =∑𝜋𝑦

10

𝑦=1

 (6-14) 

Battery should be replaced once the CD exceeds 20%. 

B) Solar PV Degradation 

The degradation of solar PV is highly associated with the discoloration of the 

PV panels. The degradation depends on weather conditions, and it varies in different 

locations with a range of 0.62%-1.45% per year [6]. In planning studies, it is a 

common practice to consider a constant value for the PV degradation [6], [7]. The 

output power of PV in the operation period by considering the degradation is as 

follows:   
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𝑃𝜌,𝑦(𝑡)

=

[
 
 
 
 
 

𝑃𝜌(𝑡)
⏞  

𝑦=1
𝑃𝜌,1=

, (1 −
𝜎

100
)𝑃𝜌(𝑡)

⏞          

𝑦=2
𝑃𝜌,2=

, (1 −
𝜎

100
)
2

𝑃𝜌(𝑡)
⏞          

𝑦=3
𝑃𝜌,3=

, … , (1 −
𝜎

100
)
9

𝑃𝜌(𝑡)
⏞          

𝑦=10
𝑃𝜌,10=

]
 
 
 
 
 

 
(6-15) 

Equation (6-15) shows the updated solar PV capacity after each year of 

operation. For example, in the second year of project, the solar PV capacity decreases 

to  (1 −
𝜎

100
) of its initial capacity at the beginning of the operation. Please note that 

𝜎 (%) is the annual degradation of solar PV. Since 𝜎 has a constant value during 

whole project lifespan, the capacity degradation of PV system will be (1 −
𝜎

100
)
9

 in 

the last year of operation. 

6.3 Optimisation Framework 

This section presents the problem formulation for optimal sizing of PV, WT 

and BS for the studied grid-connected household. This involves the objective 

functions, system constraints and the optimisation algorithm.  

6.3.1 Objective Functions 

Three important parameters: COE, GD and DE are considered as the objective 

functions. 

A) Cost of Electricity 

The first objective function is COE of the GCH. The COE is calculated based 

on the net present value (NPV), the capital recovery factors and the total load 

demand. 

𝑓1 = min
(𝜃𝑘)

𝐶𝑂𝐸 (ȼ/kWh) =
ℕ𝑘
𝔼ℎ
. 𝜓𝑘 +

ℕ𝑔

𝔼ℎ
. 𝜓𝑔      (6-16)           

𝔼ℎ = ∑ 𝑃ℎ(𝑡). ∆𝑡

87,600

𝑡=1

 (6-17) 

𝜓𝑘 =
𝛾. (1 + 𝛾)𝑌

(1 + 𝛾)𝑌 − 1
,     𝜓𝑔 =

𝜉. (1 + 𝜉)𝑌

(1 + 𝜉)𝑌 − 1
 (6-18) 
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where 𝜓𝑘 and 𝜓𝑔 are the capital recovery factors of components and electricity, 

respectively. The electricity interest rate (𝜉) is a function of interest and escalation 

rates. 

𝜉 =
𝛾 − 휀

1 + 휀
 (6-19) 

NPV of each component in the system is calculated based on the capital, 

replacement, maintenance, and salvage values of the component at present. 

ℕ𝑘 = ∑ (ℂ𝑘
𝑎 + ℂ𝑘

𝑒 + ℂ𝑘
𝑚 − ℂ𝑘

𝑠 ). 𝜃𝑘
𝑘∈(𝜌,𝜔,𝛽)

 (6-20) 

The present values of replacement and maintenance costs are calculated by: 

ℂ𝑘
𝑚 =ℳ𝑘 .

(1 + 𝛾)𝑌 − 1

𝛾(1 + 𝛾)𝑌
 (6-21) 

ℂ𝑘
𝑒 = ℛ𝑘.

1

(1 + 𝛾)𝐿𝑘 
 (6-22) 

The PV and WT components have a constant lifetime. The battery lifetime, 

however, is obtained based on the operation of the system. Thus, the salvation values 

are calculated as: 

For PV and WT: ℂ𝑘
𝑠 = (ℂ𝑘

𝑎 − ℂ𝑘
𝑒).

𝑍𝑘

𝐿𝑘
 

For battery: ℂ𝑘
𝑠 = ℂ𝑘

𝑎.
𝑍𝑘

𝐿𝛽
 

(6-23) 

The NPV of electricity trade with the main grid is calculated based on the total 

imported and exported electricity costs during the project lifespan. 

ℕ𝑔 =∑ ∑ 𝑃𝒾(𝑡). 𝐼𝑦(𝑡). ∆𝑡

8760

𝑡=1

𝑌

𝑦=1

−∑ ∑ 𝑃𝒿(𝑡). 𝒥𝑦(𝑡). ∆𝑡

8760

𝑡=1

𝑌

𝑦=1

 (6-24) 

The import/export electricity rates are updated in each operation year based 

on the real interest rate. 
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𝐼𝑦(𝑡) =

[
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 (6-25) 

𝒥𝑦(𝑡) =

[
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 (6-26) 

B) Grid-Dependency 

The second objective function indicates the dependency of the GCH on the 

main grid. Grid dependency is calculated based on the total imported electricity from 

the main grid over the total electricity demand of the household. 

𝑓2 = min
(𝜃𝑘)

𝐺𝐷 (%) =
𝔼𝒾
𝔼ℎ
× 100      (6-27)           

Grid dependency concept can show the energy autonomy of the consumer. 

Lower percentages of GD show higher energy autonomy of the grid-connected 

households which means higher home energy supply through the PV-WT-BES 

system. 

C) Total Curtailed Energy 

The third objective function is the total curtailed energy of the GCH over the 

10-year project lifespan. The TCE of the household is calculated based on the total 

RE generation plus imported energy from the grid and discharging energy of BS, 

minus the total load demand, exported energy and battery charging energy during 

the project lifespan.  

𝑓3 = min
(𝜃𝑘)

𝑇𝐶𝐸 (MWh) = 𝔼𝑟𝑒 + 𝔼𝒾 + 𝔼𝛽
𝑑𝑖 − 𝔼ℎ − 𝔼𝒿 − 𝔼𝛽

𝑐ℎ     (6-28)           

1. System Constraints 

The following system constraints are considered in the optimisation model.             

0 ≤ 𝜃𝑘 ≤ 𝜃𝑘
𝑚𝑎𝑥 (6-29) 

𝑃𝑟𝑒(𝑡) + 𝑃𝒾(𝑡) + 𝑃𝛽
𝑑𝑖(𝑡) = 𝑃ℎ(𝑡) + 𝑃𝑑(𝑡) + 𝑃𝒿(𝑡) + 𝑃𝛽

𝑐ℎ(𝑡) (6-30) 
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𝑆𝑚𝑖𝑛 ≤ 𝑆(𝑡) ≤ 𝑆𝑚𝑎𝑥 (6-31) 

0 ≤ 𝑃𝒿(𝑡) ≤ 𝑃𝒿
𝑚𝑎𝑥 (6-32) 

The constraint on the number of the components (PV, WT and BS) is indicated 

in equation (6-29). Equation (6-30) represents that the power balance between 

generation and consumption sides should be maintained at any time. Equation (6-

31) represents that the SOC of BS should vary in a specified range. The main grid 

constraint to limit the export power from the GCH is indicated in equation (6-32). 

6.3.2 Optimisation Algorithm 

The multi-objective optimisation approaches are broadly categorised as 

evolutionary (metaheuristic) methods and mathematical optimisation [8]. 

Simultaneous deal with a set of possible optimal solutions (namely the population) 

is the main advantage of the multi-objective evolutionary methods (MOEMs). 

Hence, the MOEMs can attain several solutions of the Pareto-optimal front in each 

single run. However, a series of separate runs are mandatory in mathematical 

optimisation to achieve a set of optimal solutions. Moreover, the MOEMs take 

advantage of lower sensitivity to the continuity or shape of the Pareto-optimal front. 

Therefore, discontinuity and concavity of Pareto-optimal fronts are not concerns for 

MOEMs and can be easily handled. Furthermore, the MOEMs take benefits of easy 

implementation, ability to run in parallel processing environments, independency 

against the specific knowledge and complexity of the problem [8].  

Based on the abovementioned advantages, one of the well-recognized multi-

objective evolutionary methods, non-dominated sorting genetic algorithm II 

(NSGA-II), is selected for the multi-objective optimisation problem in this study. 

The NSGA-II has high convergence rate, less complexity in computational aspect, 

and diversity preservation mechanism in comparison with other MOEMs.  

The optimisation algorithm for optimal sizing of components is demonstrated 

in Fig. 6-3. The load profile, weather data and electricity rates in 10 years as well as 

the PV, WT and BS data are used as the input data. NSGA-II is used for optimal 

sizing of PV, WT and BS with the discussed triple objective functions. The core of 

NSGA-II is genetic algorithm by adding two new concepts: (1) non-dominated 

sorting and (2) crowding distance, in order to achieve desirable multi-objective 
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solution [9]. The NSGA-II initializes the optimisation by setting initial population 

for the capacity of components. Then, the energy management of the GCH is 

evaluated over a long-period operation. By the long-period operation, the length of 

the operation period in the project lifetime is clarified, not the time resolution. In this 

study, the input data has been hourly arranged which results in 87,600-time intervals 

for the operation for 10 years. Once the 10-year operation is ended and the 

constraints are satisfied, the selection, crossover and mutation are implemented. 

Children and parent populations are then combined, and the Preto-optimal solutions 

are identified and stored.  

Start

Stop

No

Yes Display the optimal solution

Evaluate the operation for 10 years 

(87,600 hrs) based on Fig. 2

  - 10-year wind speed  

  - 10-year solar insolation 

  - 10-year ambient temperature 

  - 10-year electricity consumption

  - 10-year electricity rates 

  - Economic and technical data of 

components

Input data

Generate population of θk by 

NSGA-II Yes

Last iteration?

Set of non-dominated solutions

Fuzzy satisfying decision making

Selection, crossover, mutation

Combine children and parent 

population

Identify and store Pareto-optimal 

solutions

a
a

Constraints (eqns (29)-

(32)) satisfied?

Calculate the COE, GD and TCE

No
a

 

Figure 6-3. Optimisation algorithm for multi-objective optimal sizing of PV, WT, and BS in the 

grid-connected household. 

The main parameters of NSGA-II are the initial population, iteration, 

crossover rate and mutation rate. Table 6-1 lists the NSGA-II parameters used in the 

optimisation model of this study. These parameters are taken from [10].  

Table 6-1. Parameters of the non-dominated sorting genetic algorithm II. 

Population Iteration Crossover rate Mutation rate 

200 200 0.9 0.01 

When the set of non-dominated solutions is obtained, the fuzzy satisfying 

decision making is used to achieve a final solution based on the user-defined 

conditions. In the fuzzy decision-making strategy, each objective function (𝑓𝑖) in 

solution 𝓍 of Pareto-optimal front is assigned to a membership function (𝒰𝑓𝑖) 
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indicating the satisfaction level as follows: 

𝒰𝑓𝑖(𝓍) =

{
 
 

 
 

0                               𝑓𝑖(𝓍) > 𝑓𝑖
𝑚𝑎𝑥

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖(𝓍)

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
        𝑓𝑖

𝑚𝑖𝑛 ≤ 𝑓𝑖(𝓍) ≤ 𝑓𝑖
𝑚𝑎𝑥

1                              𝑓𝑖(𝓍) < 𝑓𝑖
𝑚𝑖𝑛

      (6-33)           

Based on equation (6-33), the decision maker is fully satisfied when 𝒰𝑓𝑖(𝓍) =

1 and not satisfied when 𝒰𝑓𝑖(𝓍) = 0 . Once the membership functions are defined, 

the decision maker is asked to assign weighting factors 𝓌𝑓𝑖
 to each objective 

function. The following decision-making function (DCM) is then used to achieve the 

final solutions:  

𝐷𝐶𝑀 = min
𝓍 𝜖 𝑋

∑𝓌𝑓𝑖
.

3

𝑖=1

𝒰𝑓𝑖(𝓍)      (6-34)           

In this study, DCM function is minimised using GA optimisation toolbox in 

MATLAB [11]. 

6.4 Case Study 

 The developed optimisation framework is applied to a typical GCH in South 

Australia (SA). In Australia, the householders possess the houses for a period of 

about 10-11 years [12] - [13]. Hence, a 10-year project lifetime has been chosen for 

the planning horizon in this study. 

6.4.1 Load Consumption and Electricity Rates 

The annual load consumption (𝑃ℎ) of a typical household in SA is used. To 

generate the load demand for different years (𝑃ℎ,𝑦) during the project lifespan, a 

random number is added to the annual load as follows: 

𝑃ℎ,𝑦(𝑡) = 𝑃ℎ(𝑡) + 𝑃ℎ(𝑡). ℑ. 𝓇(𝑡)      (6-35)           

where ℑ and 𝓇(𝑡) represent a deviation factor and a random number generator 

function, respectively. It is considered that the value of ℑ changes between 10% and 

50% for different years, and the 𝓇(𝑡) function generates random numbers between 

-1 and +1. Fig. 6-4a demonstrates the hourly-arranged 10-year electricity 

consumption of the household.  
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It is assumed that the GCH uses a time-of-use (ToU) pricing program for the 

retail price (RP) (import electricity rate) and feed-in-tariff (FiT) price (export 

electricity rate). Table III lists the ToU prices with different electricity rates in the 

off-peak, shoulder and peak times of the weekdays, as well as off-peak and shoulder 

prices of the weekends. The RP and FiT in Table 6-2 are assumed as the base rates 

for the first year of project. These values are then updated based on interest and 

escalation rates for 10 consecutive years.  

The interest/discount and escalation/de-escalation rates are considered as 8% 

and 2%, respectively. It is notable that all the prices are in Australian dollar. Based 

on the South Australian power network policy, a maximum of 5 kW export power 

from REs to the grid is allowed for single-phase GCHs, and the same constraint is 

used in this study. 

Table 6-2. Weekly 24–hour ToU electricity rates of South Australia. 

  Time (24–hour) RP (¢/kWh) FiT (¢/kWh) 

Weekdays 

Off-peak 22 – 7 25.41 5.00 

Shoulder 7 – 15 39.93 10.00 

Peak 15 – 22 49.00 18.00 

Weekends 
Off-peak 22 – 7 25.41 5.00 

Shoulder 7 – 22 39.93 10.00 

 

6.4.2 Weather Data 

 The actual hourly data of ambient temperature, solar insolation, and wind 

speed in an urban area of SA over a period of 10 years are used. Figs. 6-4b-4d 

illustrate the hourly-arranged stochastic behavior of wind speed, solar insolation, and 

ambient temperature of realistic data for the location of the case study for 10 years. 
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(b)

(a)

(d)

(c)

Min.  0.09 kW,     Avg.  0.66 kW,    Max. 2.95 kW

Min.  0.00 m/s,      Avg. 5.11 m/s,    Max. 16.67 m/s

Min. 0.00 kWh/m2,  Avg. 0.21 kWh/m2,  Max. 1.33 kWh/m2

Min. 2.21 °C,     Avg. 16.91 °C,     Max. 41.9 °C

 

Figure 6-4. Hourly-arranged 10-year real input data: (a) Electricity consumption, (b) Wind speed, 

(c) Solar insolation, and (d) Ambient temperature. 

6.4.3 Components Data 

Table 6-3 lists the costs and lifetimes associated with each component in the 

system. The minimum and maximum values of battery’s SOC are considered as 20% 

and 95%. The BS charging/discharging efficiency is 95%. The maximum capacity 

of PV, WT and BS are considered as 10-kW, 10-kW, and 50-kWh, respectively. The 

annual degradation of solar PV is considered as 0.95%.  

Table 6-3. Costs and Lifetimes of Wind Turbine, Solar PV and Battery. 

PV 

Unit size= 0.1 kW 

PV lifetime = 25 years 

Inverter lifetime = 10 years 

Capital cost = $150  

Inverter replacement cost = $30 

Maintenance cost= $3/year  

WT 

Unit size= 1 kW 

WT lifetime = 20 years 

Inverter lifetime = 10 years 

Capital cost = $3,000  

Inverter replacement cost = $300 

Maintenance cost= $50/year 

BS 
Unit size= 0.4 kW/ 1 kWh 

Maintenance cost= $50/year 

Capital cost = $600  

Replacement cost = $400  
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6.5 Results and Discussions 

This section presents the set of non-dominated solutions in Pareto-optimal 

front, effects of salvation value, NSGA-II parameters and adding electric vehicle on 

the optimal results, decision making for the system, and the comparison of long- and 

short-period data for optimal sizing. 

6.5.1 Multi-objective Optimisation Results 

Fig. 6-5 shows the set of non-dominated solutions in Pareto-optimal front for 

the trade-offs between objective functions in MO optimisation framework. It is 

evident that the GD of the GCH decreases with the increase in COE. This is 

reasonable as for lower GD percentages, capacity of battery is increased to 

compensate the role of the grid in load supply. There exists a high COE difference 

between the GCHs with low GD percentages (lower than 0.5%). For example, the 

COE difference between GCHs with a GD of 0.5% (Point A) and a GD of 0.01% 

(Point B) is more than 50 ¢/kWh. When the COE varies between 20 ¢/kWh and 40 

¢/kWh, DE is less than 20 MWh. However, for the COEs higher than 40 ¢/kWh, as 

the COE increases, the TCE grows significantly. 

The highest TCE (around 100 MWh) is achieved for the most expensive 

system with the minimum GD (Point C). There is almost no TCE for a GCH with 

the highest GD percentage and low COE value (Point D). 
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Figure 6-5. Set of non-dominated solutions in Pareto-front for optimal sizing. 

 The proposed optimisation model in this study solves the problem with three 
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conflicting objective functions (COE, GD and TCE). Therefore, all objective 

functions are effective in optimal solutions, and it is common to obtain a non-

monotonous Pareto-optimal front for such a problem. Please note that the solutions 

which appear dominated in the GD-COE graph, are indeed nondominated when the 

third objective (TCE), in the color bar, is considered. This can be explained by points 

E and F in Fig. 6-5. Since Point E has higher COE compared to Point F, it is expected 

to obtain lower GD for Point E. However, the GD of Point E is about 0.1% greater 

than Point F. This can be described by comparing the associated TCE of Points E 

and F. As illustrated in Fig. 6-5, the curtailed energy of Point F is higher than Point 

E. Hence, although Point E has greater GD, it has lower curtailed energy compared 

to Point F. 

Fig. 6-6 indicates the impacts of the objective functions on the optimal battery 

capacity (colour bars) and total CD (dashed lines) in 10 years. Fig. 6-6a shows that 

the optimal battery capacity increases with the increase in COE. For the COEs 

between 20 ¢/kWh and 40 ¢/kWh (Interval A), BS capacity is smaller than 15 kWh. 

On the other hand, Interval B shows that the highest BS capacity (50 kWh) occurs 

at the highest COEs (higher than 90 ¢/kWh) and lowest GDs (lower than 5%). It is 

evident that as the GD decreases from 30% to 10%, the capacity degradation of 

battery increases. Fig. 6-6b shows the optimal BS capacity and its total CD versus 

the COE and TCE. It is evident that the total CD increases with the decrease in TCE 

from 100 MWh to 20 MWh. For example, the total battery CD in Point A (where the 

DE is 80 MWh and COE is 100 ¢/kWh) is 3% lower than the total CD in Point B 

(where the TCE is 20 MWh and COE is 45 ¢/kWh). Fig. 6-6c exhibits the impacts 

of GD and TCE on the optimal battery capacity and total CD. It is evident that the 

highest battery capacities are obtained when the GD has a low value and TCE has a 

high value. For example, the BS capacity is about 40 kWh in Point C where the GD 

is 2% and TCE is 80 MWh. However, lower BS capacities are obtained for the low 

percentages of GD and low values of TCE. Point D shows a 15 kWh of BS for the 

GD of 2% and TCE of 20 MWh. 
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Figure 6-6. Optimal results of battery capacity and total CD versus the objective functions. (a) 

COE-GD-Battery, (b) COE-TCE -Battery, and (c) GD-TCE -Battery. 

Fig. 6-7 indicates the optimal WT capacity (colour bars) and PV capacity 

against the objective functions. It is evident that larger capacities of REs (PV and 

WT) are obtained for higher values of TCE and COE, and lower percentages of GD 

in the GCH. Fig. 6-7a shows that the variation range of PV’s optimal capacity is in 

between 6 kW and 2 kW when the COE decreases from 60 ¢/kWh to 28 ¢/kWh 

(Interval A). However, in this interval, the optimal capacity of WT does not exceed 

2 kW. This means that a higher capacity of PV is preferable than higher capacity of 

WT in cost reduction. Fig. 6-7b illustrates that when the optimal capacities of PV 

and WT exceed 8 kW (Interval B), 10-year TCE value is about 100 MWh. Fig. 6-7c 

demonstrates that 10 kW PV and 10 kW WT are needed to achieve the minimum 

GD (Point C). 
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Figure 6-7. Optimal results of PV and WT capacities versus objective functions. (a) COE-GD-RE, 

(b) GD-TCE-RE, and (c) COE-TCE-RE. 

6.5.2 Analysis of GD Variations Between 10% and 30%  

Fig. 6-5 shows that the lowest COE (22 ¢/kWh) is achieved when the GD is 

about 30%. However, when the GD reduces from 30% to 10%, the COE increment 

rate is less than 6 ¢/kWh. A detailed analysis is provided for this critical GD interval 

(30% to 10%). Fig. 6-8 shows the capital expenditure (Capex), operation expenditure 

(Opex), COE, and average of optimal capacities of BS, PV and WT for the critical 

GD interval. Lowering GD in the critical interval increases the capacity of the 

components which increases the Capex; however, Opex value (with a negative sign) 

decreases significantly. This means that higher investments (Capex) for components 

make reasonable profits in this critical GD interval. For example, the customer pays 

a high Capex of k$19.8 (for 8 kWh BS, 6 kW PV and 2 kW WT) to achieve a GD of 

10% and a COE of 28 ¢/kWh. However, a total Opex of k$ -9.7 (this is the profit of 

the system) returns about half of Capex during the project lifespan. Hence, it is 

rational for the customers to pay more for the components to achieve lower GDs in 

the studied critical interval.  
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Figure 6-8. Effects of GD variations between 10% and 30% on optimal capacities, Capex, Opex and 

COE. 

6.5.3 Effect of Salvation Value 

To investigate the effect of salvation cost on the results of the optimisation 

model, the non-dominated solutions in Pareto-front of the systems with/without 

considering salvation cost are demonstrated in Fig. 6-9. As it can be inferred from 

the figure, neglecting the salvation cost efficiently increases the cost of electricity 

and grid dependency in the Pareto-optimal front. It is observed in Zone 1, when the 

salvation cost is neglected, the minimum COE is 9 ¢/kWh greater than the minimum 

COE of the optimal system with salvation cost. In Zone 2, by ignoring the salvation 

cost, the maximum COE increases to around 200 ¢/kWh, while the maximum value 

of COE is just 115 ¢/kWh when the salvation cost is considered. Therefore, it is 

inferred that neglecting the salvation cost result in incorrect Pareto-optimal front. 
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Figure 6-9. Set of non-dominated solutions in Pareto-front for the systems with/without considering 
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salvation cost. 

6.5.4 Adding Electric Vehicle to Load Profile 

 The effect of adding electric vehicle (EV) to the load profile after certain 

number of years is investigated. For this purpose, Renault Zoe is considered as the 

studied EV which has a 22-kWh battery with a 3-kW charging/discharging power 

limit (single-phase). Uncertainties of departure time, arrival time and initial state of 

charge (at arrival) of the EV are produced using a stochastic model for 10 years. 

Table 6-4 lists the parameters of the uncertainties produced by truncated Gaussian 

distribution. 

Table 6-4. Probability Parameters to Produce EV’s Uncertainties. 

 Mean S.D. Min. Max. 

Initial SOC at arrival (%) 50 30 20 85 

Arrival time (hr) 18 3 15 21 

Departure time (hr) 8 3 5 10 

 

It is assumed that the EV can be added to the load profile in different years of 

the operation. For example, a householder may purchase an EV from the beginning 

of the project and another householder may purchase in the ninth year of the project. 

Hence, a proper analysis and guideline is necessary to obtain the Pareto-optimal 

fronts in the presence of EV. For each year of adding EV, the optimisation model is 

run separately. Fig. 6-10 demonstrates the effect of adding EV (in different years of 

the operation) to the load profile on the Pareto-optimal front. If the EV is added to 

the load profile in the final year of the operation (Year 10), the GD cannot be lower 

than 8% in the Pareto-optimal front. This means that by adding the EV to the load 

profile, the electricity demand of the household will increase, and the renewable-

storage system thereupon cannot support a high level of load. It can be seen that by 

decreasing the year of adding EV to the load profile, the level of GD of the household 

increases. For example, when the EV is added in the first year (Year 1), GD cannot 

reach less than 40%. For the Year 9, however, the minimum GD reaches to around 

11%. Adding of EV also affects the maximum GD of the Pareto-optimal front. When 

the household is without EV, the maximum GD is around 33%. Adding of EV in the 

Year 10, however, increases the maximum GD to 40%. In addition, adding of EV in 

the Year 1 increases the maximum GD to around 65%.    
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Figure 6-10. Effect of adding EV (in different years of the operation) to the load profile on the 

Pareto-optimal front. 

6.5.5 Sensitivity Analysis of NSGA-II Parameters 

A sensitivity analysis is provided to assess the effects of NSGA-II parameters 

on the optimal results. Fig. 6-11 illustrates the effects of iteration, population as well 

as crossover and mutation rates on the range of the objective functions in the Pareto-

optimal fronts. The boxplots indicate that almost the same results are obtained for 

150 and 200 iterations. For lower number of iterations (less than 150), the range of 

the variations and the average of the objective functions are higher. Since all 

objective functions should be minimised by the NSGA-II, less than 150 iterations 

will not achieve optimal results for the capacity optimisation problem in this study. 

The number of populations shows the number of the solutions in each iteration. It is 

indicated that by decreasing the number of the population lower ranges of the 

solutions for the objective functions are obtained. Hence, the boxplots are smaller, 

and an accurate analysis cannot be achieved. The sensitivity of crossover and 

mutation rates shows that the results will slightly change when the crossover rate is 

the lowest (0.5) and mutation rate is the highest (0.1). For the other rates, almost the 

same results are obtained.     
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Figure 6-11. Sensitivity of the optimal results against the NSGA-II parameters: Iteration, 

Population, and Rates of Crossover and Mutation. 

6.5.6 Decision Making 

Four design scenarios based on the user-defined conditions are selected: 

• Scenario-1: similar satisfaction level for all objective functions. 

• Scenario-2: higher satisfaction level for COE. 

• Scenario-3: higher satisfaction level for GD. 

• Scenario-4: higher satisfaction level for DE. 

Table 6-5 shows the weighting factors for each objective function in the 

design scenarios to achieve the final solutions. Table 6-6 lists the values of the 

objective functions and the capacity of components in each design scenario. For 

Scenario-1, capacities of PV, WT and BS are 6.6 kW, 2 kW and 11 kWh, 

respectively. For Scenario-2, as a higher weighting factor is assigned to the cost, the 
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COE value is the minimum compared to the other scenarios, however, the GD 

percentage is high. The capacity of BS decreases which shows that higher capacity 

of battery is not economic. For Scenario-3, the GD has the lowest value among the 

scenarios while the COE and BS capacity of GCH increase significantly. Indeed, 19 

kWh BS alongside 3kW WT and 6.5 kW solar PV result in a GD of 1.6% with a 

COE of 46.73 ¢/kWh. The minimum TCE (0.31 MWh) is obtained for Scenario-4 

where the WT capacity is only 1 kW.  

Table 6-5. Four Design Scenarios based on Weighting Factors. 

Design Scenarios 1 2 3 4 

Weighting 

factors 

𝔀𝒇𝟏  0.8 0.8 0.3 0.3 

𝔀𝒇𝟐  0.8 0.3 0.8 0.3 

𝔀𝒇𝟑  0.8 0.3 0.3 0.8 

 

Table 6-6. Optimal Results of GCH for the Studied Four Design Scenarios. 

Design Scenarios 
Objective values Component’s capacity 

COE (ȼ/kWh) GD (%) TCE (MWh) PV (kW) WT (kW) BS (kWh) 

1 31.76 5.01 2.66 6.6 2 11 

2 27.29 10.69 0.62 5.6 2 8 

3 46.73 1.60 4.28 6.5 3 19 

4 31.16 9.36 0.31 6.1 1 12 

 

Fig. 6-12 demonstrates the annual battery CDs and number of 

charge/discharge cycles over the project lifespan for each design scenario. The 

battery CD varies for the design scenarios in each year of operation based on the 

collected SOC of that year. Scenario-2 has the lowest number of cycles (less than 

1.33×104 in each year) and hence the lowest annual CDs compared to other 

scenarios. On the other hand, Scenario-4 has the highest number of cycles in each 

year (>1.65×104) and hence the highest annual CDs. Thus, the higher number of 

cycles results in higher battery CD of design scenarios.   
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Figure 6-12. Battery CD and number of charge/discharge cycles in each year of operation for the 

studied four design scenarios. 

The curtailed power of design scenario 3 (with the highest battery capacity) 

in Table 6-6 is investigated. Fig. 6-13 shows the curtailed power in 10 years for 

design scenario 3. The curtailed power is obtained for 626 hours in 10 years. The 

average value of curtailed power is 0.05 kW with a maximum value of 3.45 kW. As 

illustrated in the figure, the amount of curtailed power is different for each year of 

operation during the 10 years of the project lifespan. 

Min. 0 kW,  Avg. 0.05 kW,  Max. 3.45 kW

 

Figure 6-13. Curtailed power for 10 years operation in design scenario 3. 

6.5.7 Comparison of Long- and Short- Period Operations 

The described optimisation model is applied to the same GCH by considering 

one-year operation against the 10 years operation. It is notable that the weather data 

and load consumption of year 1 in Fig. 6-4 are used for the short-period operation 

optimisation. In the short-period operation, the operation period of the system is only 

one tenth of the project lifespan. The short-period operation has only considered the 

stochastic behavior of weather and load data for one year of the available ten years. 

In addition, the battery degradation cannot be considered since the system is only 
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operated for one year. Furthermore, the same system operation, as year one, is 

considered for project lifespan. Moreover, the initial SOC of battery at the beginning 

of the operation is constant for all years during project lifespan. The deficiencies in 

short-period operation are fully addressed when the system is operated for a long-

period. In long-period operation, the project lifespan and operation period are the 

same. So that the 10-year stochastic behavior of weather and load is fully conducted 

for the system operation. The battery and solar PV degradations are applied, and 

their capacities are updated after each year of operation. The initial SOC of battery 

is updated at the beginning of each year based on the operation of the last year. It 

can be seen that the long-period operation is robust against the variations of load 

consumption and renewable generation of the past 10 years. 

The optimisation results of long- and short- period operations are compared. 

Three cases are investigated: 

• Case-1: short-period operation (one year) without CD 

• Case-2: long-period operation (10 years) without CD 

• Case-3: long-period operation (10 years) with CD 

It is notable that in the short-period operation, CD of battery, which should be 

calculated after annual operation, is not applicable. The non-dominated solutions of 

the trade-off between COE and GD in all three cases are shown in Fig. 6-14. As 

illustrated in Zone 1, a fully grid independent (GD = 0) GCH is not achievable in 

Case-3, and the minimum GD in this case is around 0.05% (Point A). However, a 

fully grid independent GCH is achieved in Case-1 (Point B) and Case-2 (Point C). 

Zone 2 demonstrates that Case-1 and Case-2 result in lower values for the minimum 

COE (Points D and E) compared to Case-3 (Point F). The main reason for lower 

COEs and GDs in Case-1 and Case-2 is the neglecting of battery’s CD in the 

operation of the GCH. The BS operates within its full capacity during the project 

lifespan; thus, the BS has higher capacity to supply the load in Case-1 and Case-2.   
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Figure 6-14. Non-dominated solutions for the trade-off between COE and GD based on long- and 

short- period operations. 

For the sake of robustness analysis, operation of the obtained fully grid 

independent GCH in Case-1 (Point B in Fig. 6-10) is investigated for the other 9 

years separately to check the robustness of the designed GCH against the variations 

of renewable generation and load consumption. The results show that the system is 

only reliable for an uninterruptible supply in 3 years of the provided data. For the 

other 6 years, the system is not reliable since it cannot supply the loads 

uninterruptedly. Hence, the optimal sizing of components based on short-period 

operation is not robust. This is while the long-period operation considers all 10 years 

and achieves robust capacities of components against the variations in load and 

renewable generation. It is notable that considering one scenario (one-year variations 

of load and renewable) with the extreme condition (low generation of RE resources 

and high electricity consumption) may result in a robust operation sometime. 

However, selecting the extreme scenario is not an easy procedure since there are 

wind speed, solar insolation, ambient temperature, and load consumption 

uncertainties in the system. For example, the extreme data of wind speed may not 

satisfy the extreme data of solar PV and load. 

6.6 Conclusion  

This chapter developed a multi-objective optimisation framework for sizing 

of solar photovoltaic (PV), wind turbine (WT) and battery storage (BS) in a grid-

connected household (GCH). A long-period operation was examined by updating 
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the PV and BS capacities at the end of each year based on the degradation in the last 

year. The electricity rates were updated in each year based on interest and escalation 

rates. Three objective functions were selected: (1) cost of electricity (COE), (2) grid 

dependency (GD), and (3) total curtailed energy (TCE). A fuzzy satisfying decision 

making was adopted to achieve the final solutions (capacity of PV, WT and BS) 

based on the user-defined conditions. The optimisation scheme was examined for a 

GCH in South Australia based on 10 years actual weather data and load profiles, as 

well as the technical/ economic data of components and grid in Australian concept.   

Lower percentages of GD increase the values of COE and TCE in the GCH. 

A residential GCH with the minimum GD (0.008%) resulted in a COE of 116 ¢/kWh 

and a TCE of 100 MWh in 10 years. Based on the decision-making procedure, the 

most recommended system to decrease all objective functions for the customers, 

resulted in 6.6 kW, 2 kW and 11 kWh as the optimal capacities for PV, WT and BS, 

respectively. It was found that the optimal sizing based on short-period (one year) 

operation is neither accurate (due to neglecting the capacity degradation of BS) nor 

robust (due to variations of renewable generation and load consumption in each 

year). 

Nomenclature 

A. Sets 

𝑘 Type of component: 𝑘 ∈ {PV, WT, BS} 

𝑋 Set of non-dominated solutions 

B. Superscripts 

𝑐ℎ Charging 

𝑑𝑖 Discharging 

𝑖𝑛 Input 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 

𝑜𝑢 Output 

C. Parameters 

ℂ𝑘
𝑎 Capital cost of components ($) 

ℂ𝑘
𝑒  Replacement present value of components ($) 

ℂ𝑘
𝑚 Maintenance present value of components ($) 

ℂ𝑘
𝑠  Salvation value of components ($) 

𝐿𝑘 Component’s lifetime (year) 

ℳ𝑘 Component’s maintenance cost ($) 

ℛ𝑘 Component’s replacement cost ($) 

𝑇 Total hours of a year (hr) 

𝑦 Year 

𝑌 Project lifespan (year) 

𝜉 Electricity interest/discount rate (%) 

𝜓𝑘 Capital recovery factor of components  

𝜓𝑔 Capital recovery factor of electricity  
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휀 Escalation/ de-escalation rate (%) 

∆𝑡 Time interval (hr) 

𝜂𝛽 Efficiency of battery (%) 

𝜎 Solar PV degradation (%) 

𝛾 Interest/discount rate (%) 

D. Variables 

𝐸𝛽,𝑦 Battery’s capacity at year y (kWh) 

𝔼𝛽
𝑐ℎ, 𝔼𝛽

𝑑𝑖 Total charge/ discharge energy of BS (MWh) 

𝔼ℎ Total electricity demand of household (MWh) 

𝔼𝒾, 𝔼𝒿 Total imported/ exported energy from/to grid (MWh) 

𝔼𝑟𝑒 Total electricity generation by REs (MWh) 

𝐼 𝑦 , 𝒥 𝑦 Import/export electricity rates at year y (ȼ/kWh) 

𝐿𝛽 Battery lifetime (year) 

ℕ𝑘 Net present value of components ($) 

ℕ𝑔 Net present value of electricity trade with grid ($) 

𝑃𝛽 Battery’s power (kW) 

𝑃𝑑 Curtailed power (kW) 

𝑃ℎ Household’s power consumption (kW) 

𝑃𝒾,  𝑃𝒿 Import/export power from/ to main grid (kW) 

𝑃𝑟𝑒 Output power of renewable energy resources (kW) 

𝑃𝜌,𝑦 Solar PV’s output power at year y (kW) 

𝑃𝜔 Wind turbine’s output power (kW) 

𝑆 State-of-charge of battery (%) 

𝑍𝑘 Components remaining lifetime (year) 

𝜋𝑦 Battery CD at the end of each year (%) 

𝜋𝑌 Battery CD at the end of project lifespan (%) 

𝜃𝑘 Number of decision variables (components) 
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Chapter 7                                      

Conclusion and Future Work 

A summary of the main contributions, components, achievements, and key 

findings of this thesis is described in this chapter. The directions for possible future 

works are also presented. 

7.1 Summary 

Optimal sizing of renewable energy sources and battery energy storage system 

for residential sector was conducted in this thesis. All capacity optimisation 

problems were conducted for practical and real case studies in Australia. For this 

purpose, all real data were collected for the case study.  

A practical optimal sizing of solar PV and battery energy storage was 

presented for a grid-connected household. Two system configurations, PV only and 

PV-BES, were considered for the capacity optimisation. Rule-based home energy 

management systems were developed for each system configuration. A case study 

in South Australia was conducted by incorporation of real annual data of solar 

insolation, ambient temperature, and electricity consumption, as well as real 

technical and economic data like electricity prices, interest/inflation rate, and 

components data. The grid constraint to not accept more than a maximum power 

from grid-connected households was considered to achieve a more practical 

optimisation. The operation of each system configuration was investigated for two 

sample days in summer and winter. A cashflow analysis was provided to indicate the 

payment by the customer in each year of the project lifetime. An uncertainty analysis 

was presented based on 10-year real data of solar insolation and ambient 

temperature. Sensitivity analyses were provided based on the cost and capacity of 

components, average electricity demand of the household, as well as the retail price 
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and feed-in-tariff. A practical guideline was provided for the customers in South 

Australia to purchase the correct capacity of components to achieve the minimum 

cost. Capacity optimisation of the two system configurations were also investigated 

for various states of Australia. 

A practical capacity optimisation was conducted for small wind turbine and 

battery energy storage in grid-connected households with/without electric vehicle. 

Novel rule-based home energy management systems were developed, with grid 

constraint, for two different configurations of the grid-connected household: (i) with 

only wind turbine, and (ii) with wind turbine and battery. For each configuration, the 

energy management systems were developed for two cases: with and without an 

electric vehicle in the premises of the grid-connected household. Uncertainties were 

also included in the arrival time, departure time, and initial state of charge (at arrival) 

of the electric vehicle. This technique was then applied to a typical household in 

South Australia using the yearly load profile of the household and actual yearly wind 

speed data at an interval of one hour. To investigate the effects of stochastic nature 

of household load and wind power generation on various results, the optimisation 

process was repeated using 10-year of actual wind speed data and probabilistic load 

uncertainty. The results of several sensitivity analyses of various system parameters 

were also presented. 

A novel and practical demand side management approach was developed to 

incorporate in optimal sizing of solar PV, wind turbine, and battery energy storage 

for a standalone household. The DSM strategy was based on the state-of-charge level 

of battery and day-ahead forecasts of solar insolation and wind speed. The core of 

the DSM was a fuzzy logic method which decided for efficient load shifting and/or 

load curtailment in the household. The day-ahead forecasting errors, obtained by an 

artificial neural network technique, were considered not only in the DSM strategy 

but also in maintaining an operating reserve. All essential parameters like operating 

reserve, salvation cost and battery capacity degradation were considered in the 

optimisation model. The battery capacity degradation was calculated using the 

Rainflow cycle counting algorithm to obtain a realistic battery model and estimate 

its lifetime. A typical household in South Australia was considered as the case study 

by incorporating rea annual data of wind speed, solar insolation, temperature, and 

load profile. Three different configurations (PV-BES, WT-BES, and PV-WT-BES) 

of the electricity supply system were optimised using the proposed method. The main 
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feature of the developed DSM was its easy implementation in standalone 

households. 

A comprehensive and practical design framework was proposed for optimal 

sizing of renewable and battery systems in a grid-connected household. An 

optimisation model based on a long-period (10-year) operation was developed by 

incorporating detailed models of electricity purchase and sell back prices, as well as 

components capacity degradations. The electricity prices were updated based on 

interest and escalation rates for each year of operation. The components capacity 

degradations were estimated to not only obtain the lifetime of battery but also to 

consider their effect on entire project lifetime. Salvation value of components, which 

was rarely considered by the existing studies, was applied to achieve a practical 

model for electricity cost. The capacities of PV, WT and BES were optimised in a 

residential grid-connected household based on three objective functions: (1) cost of 

electricity, (2) grid dependency, and (3) total curtailed energy. A novel rule-based 

operation strategy based on home energy management system and degradations of 

components was developed. The non-dominated sorting genetic algorithm II 

(NSGA-II) was used to cope with the multi-objective problem. A fuzzy decision-

making strategy was developed to attain the final solutions. The proposed 

optimisation technique was applied to a grid-connected household in South Australia 

by incorporating long-period (10 years) real data of wind speed, solar insolation, 

ambient temperature, and load consumption. The PV-WT-BES electricity system 

optimised by the long-period data was compared to the same system optimised by 

short-period data (one year). 

7.2 Concluding Remarks 

After optimisation of the capacity of the renewable and battery components 

for grid-connected and standalone residential sector, the following are some of the 

derived concluding remarks. 

It was realized that a 9-kW solar PV is the optimal capacity to achieve the 

minimum electricity cost in a typical grid-connected household (within 15.6 kWh 

daily electricity demand) in South Australia. With 9-kW solar PV, the COE of the 

household decreased by about 40% compared to the household without PV. The 

current battery cost was not attractive in an economic view to be integrated in the 

household. The battery price should decrease to $350/kWh for an economic 
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integration in which the optimal battery capacity is 11 kWh for that price. The total 

benefit of PV only and PV-battery (with a battery cost of $350/kWh) systems for the 

grid-connected household was about $42,000 and $50,000 respectively, during the 

project lifetime. The uncertainty analysis based on ten-year real data confirmed that 

the optimised PV (9 kW) and battery (11 kWh) capacities remain almost the same 

over a period of ten years. Evaluation of the system configurations optimisation for 

different states in Australia showed that the PV only system (without battery 

subsidy) is the most beneficial for households in South Australia because of the 

highest RP. South Australia has the highest potential for BES integration among the 

other states. In Chapter 3, the practical guideline indicated that the optimal PV 

capacity should be determined based on not only the available rooftop space but also 

on the daily energy consumption. 

It was found that the optimal capacity of wind turbine for a grid-connected 

household is 6 kW which decreases the COE of the household by 35% (without an 

EV) and 27% (with an EV).  The current BES price is unable to reduce the COE 

further. To obtain any further financial benefit, the net battery price, after the 

government subsidy, should reduce to 250 $/kWh. Using load uncertainty and actual 

wind speed data for 10 years in South Australia, it was found that the optimal 

capacity of both wind turbine and battery remains almost the same over the above 

period. It was found that when the grid-connected household has an optimal capacity 

of wind turbine, the operating cost of an electric vehicle is about 50% lower than 

that of an internal combustion engine vehicle. 

It was realized that without DSM strategy, the WT-BES system configuration 

required the highest battery capacity and that caused the highest LCOE for the 

standalone household. However, the battery capacity degradation was found to be 

the lowest because of its less utilization. The PV-WT-BES system configuration was 

found to be the most optimal having the lowest value of BES capacity and the LCOE. 

The LCOE of the PV-BES system is found to be in between that of the WT-BES and 

PV-WT-BES configurations. When the developed DSM strategy was applied, the 

battery capacity of all configurations was reduced while the capacity of renewable 

sources remained the same. Because of the reduction of battery capacity, the NPV 

and hence the LCOE of all configurations were decreased compared to that found 

without applying the DSM. For the optimal configuration (PV-WT-BES), the battery 

capacity was found as 24 kWh (a reduction of 11 kWh) and LCOE of 57 ¢/kWh (a 
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reduction of 8 ¢/kWh). In previous studies, the LCOE with hybrid generating system 

was found as 61 ¢/kWh (without demand response) and 59 ¢/kWh (with demand 

response). The actual or existing system, based on diesel generator, had a LCOE of 

74 ¢/kWh. Note that both hybrid and existing systems emit CO2 because of the use 

of diesel generators. However, the optimal configuration found by the proposed 

DSM strategy not only had the lowest LCOE but also had no CO2 emission as it was 

completely based on renewable and storage systems. The lowest LCOE was 

achieved at an expense of annual load shifting of 66.5 kWh for six days and an annual 

load curtailment of 22.7 kWh. 

It was found that lower percentages of grid dependency increase the values of 

COE and curtailed energy in the grid-connected household. A residential grid-

connected household with the minimum grid dependency (0.008%) resulted in a 

COE of 116 ¢/kWh and a total curtailed energy of 100 MWh in 10 years. Based on 

the decision-making procedure, the most recommended system to decrease all 

objective functions for the customers, resulted in 6.6 kW, 2 kW and 11 kWh as the 

optimal capacities for PV, WT and BES, respectively. It was found that the optimal 

sizing based on short-period (one year) operation was neither accurate (due to 

neglecting the capacity degradation of BS) nor practical (due to variations of 

renewable generation and load consumption in each year). 

7.3 Future Work 

The following research directions are recommended to be considered as future 

work for the researchers:  

• Even though a flat retail price and feed-in-tariff of electricity was used in the 

optimal sizing of components in this thesis, the technique presented in this 

article can be extended for time-of-use and real-time pricing tariffs. For this 

case, new rule-based home energy management systems should be developed 

based on the electricity rate programs. As a result, better guideline can be 

provided for the electricity consumers based on the most economical option 

of flat, time-of-use, or real-time pricing tariffs. 

• Selling electricity from discharging the battery energy storage system in peak 

hours can be investigated as a potential research direction. This can affect the 

optimal sizing of components and may achieve lower cost of electricity for 

customers if appropriate home energy management system is developed. 
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• Considering vehicle-to-home and vehicle-to-grid modes of electric vehicle 

operation in the home energy management system for optimal sizing model 

is another aspect which can be further investigated. To do so, the degradation 

of electric vehicle’s battery should be added to the cost of the system in the 

optimal sizing. As a result, a comprehensive guideline can be provided for 

the customers with an electric vehicle. 

• A resiliency-oriented optimal sizing is an interesting topic for a future study. 

For this purpose, the designed renewable-battery system should supply the 

electricity demand of the residential household during grid outages. In order 

to achieve a practical optimal sizing framework for a resilient optimal sizing, 

a long-period operation can be considered by applying grid outages in 

different times through the project lifetime. 

• Considering feed-in-tariff for customers in remote areas can be a potential 

aspect of research for the future. The customers with PV and WT should be 

able to export their excess energy to the main grid to achieve more cost 

reduction. In this regard, a peer-to-peer electricity sharing is an option in 

which the customer with the PV and WT can sell the extra power to 

neighbours.  

• A peer-to-peer electricity trading between residential customers in a 

relatively large test system, while optimising the size of WT and BES, may 

represent an excellent direction of future studies. In this case, the customer 

can share its energy from the installed WT and BES with other consumers to 

achieve more benefits.  
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