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Summary 

In this research, a simple and novel solution is designed to reduce the smoke and haze 

effect on imagery acquired using consumer grade Digital Single Lens Reflex (DSLR) 

cameras that, after modification, might be mounted on unmanned aerial vehicles, 

manned aircraft or be captured from the ground. The presence of substantial amounts 

of haze or gaseous smoke particles, caused for example by an active bushfire at the time 

of data capture, dramatically reduces image visibility and quality due to electromagnetic 

radiation being scattered by atmospheric particulates. Although most modern 

hyperspectral and thermal imaging sensors can capture a large number of narrow range 

bands of the shortwave and thermal infrared spectral range, and therefore have the 

ability to penetrate smoke and haze well, the resulting images do not contain sufficient 

spatial detail to enable important objects to be located or to assist in search and rescue.  

First, this research investigates the limitations of existing methods for penetrating 

smoke, and image visibility enhancement techniques. For example, many recently 

developed algorithms exploit the differences between two or more images of the same 

scene that have different properties. These approaches require exact co-registration of 

the images captured using multiple sensors which is a non-trivial step in the processing 

workflow and therefore are not applicable to dynamic scenes in airborne applications 

where ground objects and smoke particles can move quickly relative to each other. 

Secondly, it examines multispectral, thermal and visible wavelength images collected 

over bushfire smoke to simulate and evaluate the main hypothesis of this research, i.e., 

the feasibility of using DSLR camera sensors for smoke penetration. The results from 

this simulation phase confirmed the research hypothesis and helped form the future 

research design methodology and structure. 

Thirdly, based on achieved feasibility confirmation and results from previous sections 

the research investigates and verifies the spectral sensitivity of unmodified and 

modified DSLR camera sensors by taking measurements in a controlled laboratory 

environment with a spectroradiometer. The results show that DSLR camera sensors, 

after modification, can collect enough information between 700 nm – 1100 nm (the near 
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infrared) that the resulting image data will, theoretically, be less affected by smoke and 

haze based on Rayleigh scattering theory.  

Fourthly, an optical filter was designed to preserve the semi-natural colour appearance 

of the captured photographs while collecting near infrared radiation simultaneously 

with visible blue and green light. A custom-designed filter was manufactured so that it 

would allow visible blue, visible green and infrared radiation between 950 nm and 1100 

nm to pass. Its spectral responsivity was verified and confirmed using laboratory 

spectroradiometry. The custom-designed filter enabled the camera to collect these three 

bands simultaneously without any co-registration requirement or any major negative 

effects on the visual appearance of the captured imagery. 

Finally, a smoke penetration algorithm (SPA) was developed to enable effective scene 

visibility enhancement by eliminating or minimizing the smoke effect from collected 

data. This modified camera and custom-designed filter were used to collect data on the 

ground and on an aircraft flown over areas covered by smoke and results processed 

using the SPA. The final processed results as an outcome of SPA, show significant 

improvements in visibility confirming the efficiency of the proposed method. 
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 Introduction 

1.1. Background 

Optical airborne sensors are being widely used for collecting aerial images and spatial 

information for a wide array of applications. Data collected using this technology is 

being used for surveillance, topographic mapping, monitoring and many other 

applications. However, this technology is not easily applied to a non-clear atmosphere 

that is polluted by optically active substances such as gaseous smoke particulates in 

(Figure 1.1). Smoke from wildfires, also known as bushfires in Australia, can affect 

people, animals and plants. Fire is important natural phenomena in ecosystems 

throughout the planet. In certain climate zones, seasonal moisture accelerates the lush 

growth resulting in regular burn, whilst in some other zones, because of a scarcity of 

fuel, fires are infrequent. Its importance is underlined by the estimate that if there were 

no fire, forest cover could increase to over 50 percent of the vegetated land surface 

(Bond et al. 2004; Bowman 2005).  

 

 

Image has been removed due to copyright restriction. 

Figure 1.1. An aerial image captured by a typical consumer-grade digital camera from the Mt. Bolton Bushfire 

Victoria, February 2016 that shows how smoke can impact visibility. (The Courier 2016). 

 

 

Major bushfires emit considerable quantities of trace gases and contaminants (Michel 

et al. 2005; Giglio et al. 2006; Chelsea et al. 2016), and such emissions are thought to 

greatly influence the chemical makeup of the air (Voulgarakis & Field 2015) along 

with the planet's climate system. The vast variety of emitted gases are generated by fire 

and these include carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), 

nitrogen oxide (NO), non-methane volatile organic carbon compounds (NMVOCs) 

and nitrogen oxides (NOx): as well as fine particulate matter including organic carbon 

(OC) and white black carbon (BC) (Crutzen & Andreae, 1990; Andreae & Merlet, 

2001). Bushfire emissions contribute to air pollution and can impair visibility (Hyde et 
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al. 2017) by raising the quantity of pollutants (NWCG 2014), and can impact safe 

driving conditions on the ground. The quantity and chemical composition of these 

emissions coupled with fire plume dynamics and meteorological conditions can also 

impact the air quality (Hyde et al. 2017). Smoke from burning bushland is therefore a 

complex combination of aerosols and gases. The quantity and composition of the 

emissions is dependent on a vast range of factors associated with fuel characteristics 

(e.g., fuel form, structure, loading, chemistry, moisture) and fire behaviour (Religious 

et al. 2003). 

 

Records of bushfires in Australia extend back to 1850, with over 700 fatalities having 

been recorded since in approximately a century and a half (Blong 2005). With the 

advances in optical digital camera technology to collect high spatial resolution 

imagery, there is both a need and an opportunity for effective exploitation of data from 

bushfires (and industrial and house fires). Hence, image processing technologies need 

to be developed concurrently in order to provide the best possible intelligence for 

decision makers in emergency situations such as these 

 

1.2. Problem Statement  

Fire is regarded as an oxidizing agent that produces a new kind of matter by combining 

another lump of matter with oxygen (Connelly & Geiger 1996). This rapid process 

generates additional heat that is enough to sustain the fire until all the fuel is consumed. 

During a bushfire, vegetation can release the solar energy collected over many years in 

just few minutes; this rapid decomposition produces carbon compounds because carbon 

dioxide combines with water (Thomas & McAlpine 2010, p. 3). 

Depending on the size, morphology, orientation and distribution of smoke particles the 

light pathways can be changed considerably (Qiyuan et al. 2007).  Light scattering is 

one of the major physical processes that contributes to the visible appearance of the 

captured image and its properties can be computed using the Maxwell’s equation 

(Mishchenko, Travis & Lacis 2002). According to the Maxwell’s electromagnetic 
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theory, the shape of small particles has a direct influence on the light scattering 

properties. Figure 1.2. shows photographs of smoke particles captured by a scanning 

electron microscope (SEM) and shows that smoke particles from four different 

materials are typically distributed as a chain-like string. Each string is comprised of 

many primary spherical-shaped particles and this contributes to the light scattering 

model. The combustion style and fuel type affect the reflective index of smoke particles 

and are also major contributor to the light scattering phenomena (Smyth & Shaddix 

1996). 

 

Image has been removed due to copyright restriction. 

Figure 1.2. SEM photographs of smoke particles generated from a: a) pyrolyzing wood fire, b) smouldering 

cotton fire, c) polyurethane foam fire, and d) flaming heptane fire. (Qiyuan et al. 2007) 

 

Based on independent measurements by various researchers (e.g., Qiyuan, Hongyong, 

Liwei 2007; Xiang et al. 2014) smoke particle diameters range from 0.01 to 1.3 μm. 

This indicates that smoke particles will have a lesser impact on the sensors exploiting 

longer wavelengths in visible and infrared parts of the EMS. In the past few years, 

advances in airborne remote sensing technologies have made it possible to image 

beyond the limitation of optical sensors by utilizing short wave infrared (SWIR) from 

1400 nm – 3000 nm, middle wave infrared (MWIR) from 3000 nm – 8000 nm or long 

wave infrared (LWIR) from 8000 nm – 15000 nm (Byrnes 2009). Although this 

capability allows sensors to penetrate smoke, clouds, fog and to see through other 

particles; some of the merit points in utilizing these sensors for seeing through smoke 

are listed as follows: 

• Relatively low achievable spatial resolution 

• Mono-colour imaging sensor 

• Complex postproduction requirement 

• Narrow field of view and ground coverage 
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• Accessibility and relatively high cost  

The presence of substantial gaseous smoke particles, caused for instance by an active 

bushfire, at the time of data capture using a typical DSLR camera dramatically reduces 

the image visibility and quality. The large volumes of smoke and ash dispersed into 

the atmosphere complicate aerial missions, e.g., search-and-rescue operations and 

targeted aerial water bombing, due to diminished visibility. The ability to have high 

spatial resolution vision through gaseous smoke emanating from an active fire to the 

ground beneath is a critical factor for successful remote sensing applications such as 

quick disaster recovery, detecting and locating humans and flames (fire fronts) or 

locating smouldering trees. 

 

This study evolved from my research and development work back in 2012 when I was 

working as a remote sensing specialist and photogrammetrist in a local engineering 

company in Adelaide, Australia. The organization was incorporating a particular NIR 

camera in an UAV framework that was created in-house created, and which was 

additionally the platform for a consumer-grade DSLR camera. The point of this 

incorporation was to simultaneously collect NIR and natural colour images to extract 

NDVI data from vineyards. One of the difficulties after data collection was to precisely 

align and co-register pixels between the two sensor images, and another issue was 

carrying two separate cameras on a lightweight UAV framework. These issues 

inevitably drove me to examine the likelihood of altering the DSLR camera by 

extending its spectral range to collect the data required for NDVI calculation. The 

modified camera collected red, green and NIR light and produced sensible NDVI 

information. To confirm its precision, Airborne Research Australia (ARA) 

recommended I setup the camera on one of their manned light aircraft that also had a 

multi spectral sensor, to verify the modified camera. At that time, I met with Prof. Jörg 

Hacker, the Chief Scientist of ARA (which at that time was part of the School of the 

Environment at Flinders University) who encouraged and inspired me to apply for a 

research higher degree at Flinders University on part-time basis while I was working 

for my employer. After a year I left the company and became a full-time student. At 
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that time, high winter rainfall over a number of years in South Australia had led to 

much vegetation growth. This was trailed by a dry session during which various 

bushfires destroyed roughly 5.58 million hectares of land (CFS 2015). Smoke from 

these bushfires postponed aerial firefighting operations because of the low visibility 

conditions. This issue highlighted the importance of my underlying research objectives 

and goals which are discussed in the following section. 

 

 

1.3. Research aims, objectives and question 

1.3.1. Aim 

 

The aim of this study is to produce a new method for seeing through gaseous smoke 

using a consumer-grade digital camera without compromising spatial resolution or 

image colour. 

 

1.3.2. Objectives 

 

The following specific objectives will be pursued to achieve the aim above: 

 

1. To study and verify the sensitivity of a DSLR camera sensor in the near 

infrared region of the spectrum (700 nm – 1100 nm).   

2. To develop and examine a custom optical filter for reducing light scattering 

effects. 

3. To develop an image visibility enhancement algorithm for the images 

obtained using the custom-designed filter on a DSLR camera.  

      

1.3.3. Research Questions 

 

To address this research aim and to achieve the research objectives, the following 

research questions emerged:  
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1. Can images acquired by DSLR cameras, after modifications to full spectra, 

penetrate smoke? This question emanates from the first objective.  

2. Is it feasible to design an optical filter to minimize the scattering effect on DSLR 

camera images without compromising true-colour? This question emanates from 

the second objective. 

3. Can an image visibility enhancement algorithm be developed to improve smoke 

penetration from a modified camera setup? This question emanates from the 

third objective of this research. 

 

 

1.4. Thesis structure 

This research consists of six chapters which are described as below. 

 

Chapter 1, Introduction: explores the background and states the problem, objectives, 

aims and research questions. 

 

Chapter 2, State of knowledge: reviews previous studies and highlights gaps in 

knowledge that this study attempts to fill. 

 

Chapter 3, Methods: discusses methods utilized to achieve the aim and objectives of 

this research, including the research framework, hardware and software development, 

data collection and analysis. 

 

Chapter 4, Hypothesis validation: confirms the main hypothesis of this research which 

emanates from the first and second research questions and examines them using 

historical multispectral, thermal and optical imagery collected over a bushfire smoke. 

 

Chapter 5, Optical filter design: discusses the key factors in designing a custom-filter 

and the tests conducted to confirm its spectral response using calibrated materials and 

spectrometry. 



8 

 

 

Chapter 6, Measuring the camera and filter responses: verifies the spectral response of 

the custom-designed optical filter and modified camera at different wavelengths using 

a FieldSpec4® Hi-Res spectrometer. 

 

Chapter 7, Algorithm development: explains the image processing workflow and 

develops an algorithm for minimizing smoke effect on captured images using the 

custom-designed filter and modified DSLR camera. 

 

Chapter 8, Conclusions and Recommendations: revisits the research problem, aim, 

objectives and questions; and discusses how each of these is addressed. It also 

summarizes the research findings and discusses future directions. 

 

 

And appendices include two published papers with custom-designed filter spectral 

response graphs using reference materials. 

 

 

1.5. Chapter Summary  

This chapter discussed the foundations of the research and introduced the research 

problem, aim, objectives and questions. The research problem highlighted that images 

collected by a digital consumer-grade camera in an environment covered by haze or 

bushfire smoke are less than optimal for identifying fine objects and seeing through 

smoke due to the greatly degraded image quality and visibility. It also discussed that 

existing thermal, multispectral or similar sensors with longer wavelengths can penetrate 

gaseous smoke but because of their limitations as per listed in section 1.3, are not ideal 

in situations where natural image colour and spatial resolution is critical. The next 

chapter reviews the state of knowledge based on the research objectives.
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 State of Knowledge 

2.1. Introduction  

Over the past decade research projects have been conducted in the field of enhancing 

visibility of the remotely sensed digital images from non-clear environments caused by 

haze, fog or gaseous particles. Digital camera technology has also dramatically 

advanced in recent years with the use of higher quality sensors with millions of small 

pixel arrays, hence spatial image resolution has been significantly increased.  

 

This chapter provides a comprehensive review of the state of knowledge on bushfire 

and smoke formation and detection, light scattering by smoke particles, and 

improvements in image visibility in atmospheric conditions where there are many 

gaseous molecular particles. The first section provides background on, and an historical 

overview of bushfire formation, its anatomy and smoke detection. The second section 

discusses the theory of EMR and EMS as well as examining the pathways of EMR 

through atmosphere and EMR interactions with molecular particles. In particular, it 

focuses on the light scattering effect. The next section reviews the particle size and 

characterization of smoke particles. This is followed by a review of the effects of smoke 

particulates in TIR and SWIR imagery. Although there is no previous research directly 

related to the specific research area of this thesis to the author’s knowledge, two next 

two sections of this chapter discuss related studies in the context of the removal of haze 

from single and multiple images collected by a single or multiple sensors respectively. 

The chapter concludes with a section focusing on the spectral sensitivity of digital 

camera sensors and their application in remote sensing. 
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2.2. Wildland Fire Formation and Development  

Bushfires can start as a result of applying heat to a fuel source by natural phenomena 

such as lightening or by humans setting fires. After applying heat, for instance, to a 

piece of wood, there are three phases in the formation of a fire: pre-ignition, ignition 

and combustion. In the pre-ignition phase, when heat is applied to a wood surface any 

water molecules stored in the fuel will absorb the energy and increase the temperature. 

Water molecules at the surface of the fuel are evaporated as the heat level rises and the 

surface temperature is maintained around 100 °C. Drier surfaces will get hotter than 

more moist ones because the temperature is no longer maintained by water evaporation 

and, as a result, terpenes, oils and resins in the wood begin to vaporize and create a haze 

of ignitable gases over the fuel. As the fuel temperature gets to around 130 – 190 °C 

wood begins to collapse chemically and at over 260 °C the cellulose in the wood creates 

a charred surface and a grey smoke emanates. At 280 – 500 °C, flammable gases from 

the lignin in the wood are released. In the ignition phase, the flammable gases are ignited 

as a result of piloted or unpiloted flames as the temperatures rise. For piloted ignition, 

the temperature of flammable gases should increase to around 320 – 500 C°, but for 

unpiloted ignition the temperature must be around 600 C° (Gann & Friedman 2013, 

p.134).  

 

The process of chemical fuel decomposition and release of a gaseous cloud in absence 

of oxygen is known as pyrolysis (McGrattan et al. 2009). This process is maintained by 

the radiated heat from combustion and cloud of gases build up over the fuel which will 

eventually burn and then ignite any unburnt fuels. During flaming combustion, the gases 

released by pyrolysis start to burn the wood surface. The flame is comprised of an inner 

core of unburnt gases enclosed by a thin flaming envelope where enough oxygen 

combines with the gases and leads to combustion. As the fire gets hotter, greater 

amounts of burnable gas develop, and flame become longer as they move to incorporate 

more oxygen to maintain the burn (Thomas & McAlpine 2010, p.28). Therefore, fuel, 

heat and oxygen are the three essential elements for a flame to develop. Most of the 

carbon is released from a fire is in the form of carbon dioxide; the rest comprises a 
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complex combination of gases and soot mixed with water vapor. Soot is mainly formed 

by fragments of carbon and tar that clump around small components of unburnt fuel to 

create lumps that are less easily burnt. They absorb heat from the surrounding area and 

form the orange to red colours in the center of a fire. When unburnt soot molecules 

above the flame cool down, black coloured smoke is formed above the flame. Char and 

ash keep building up in an upper layer of the fuel surface as it burns and although 

pyrolysis is yet continuing, it is normally not adequate to sustain the flames and 

therefore fire combustion stops, and the flames die down. Yet, when the oxygen 

interacts with the surface of that type of fuel, the released heat begins burning in the 

form of a slow and flameless combustion process known as smouldering combustion. 

Inside the fuel, carbon monoxide will be produced instead of carbon dioxide due to the 

lack of oxygen. When the flame goes out, the glowing combustion keeps burning the 

fuel without any flame and the energy discharged by the smouldering combustion 

transfers the heat to any nearby unburnt fuel and produces grey smoke. This develops 

large volume of smoke and carbon (Drysdale 2011). 

 

The process of transferring the heat contributes to spreading the flame from a single 

location to other regions with unburned fuel, thermally deteriorates the unburnt fuels, 

and creates a flammable mix in front of the flame. Ignition of this flammable mixture 

spreads the flame to a larger region (Haseli 2012). Heat transfer happens in three forms; 

radiation, convection and conduction (Morvan, Méradji & Accary 2008). Radiated heat 

from burning fuel preheats the fuel ahead of the flame. As the fire spreads, radiation 

moves in all directions. Convection is the process of hot air movement, e.g., as blown 

by wind, which is vital in heating the crowns or plants on steep ground. Conduction 

accelerates the heat transfer process if there is any close contact between the fuel 

particles. If there is enough heat to evaporate the fuel moisture pyrolysis can happen, 

hence the amount of moisture stored within a solid fuel can affect the fire behaviour. 

 

Fire will generally spread slowly against the wind direction (known as back-fire), very 

rapidly with the wind direction (head fire); and at intermediate rates elsewhere, i.e. at 

the flanks. These differences in spread rates create an elliptical shaped fire (Thomas & 
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McAlpine 2010, p.37). Nonetheless, the speed of spread of the head fire, and it’s 

intensity and the severity are the key characteristics of a burning fire.  Fires can also be 

categorized into ground fires, crown fires and surface area fires (Paysen 2000). Ground 

fires are the slow fires that happen under the soil surface, roots and ground fuels above 

the soil. These fires penetrate the underlying deep minerals and are sensitive to soil 

moisture levels. They can burn for years and are one of the most challenging types of 

fire to control. When ground fuels are ignited, they burn gradually downwards and to 

the sides from the glowing combustion which produces carbon monoxide. This process 

may happen in an atmosphere with less than 20% oxygen levels of an ordinary 

atmosphere, as a result the fires can burn underground. However, to generate carbon 

dioxide at least 16% oxygen is required (Rein 2016).  

 

Most of wildland fires start and end up as surface area fires that burn recently fallen 

leaves and branches, and lichens, shrubs, grasses and bushes. This potentially creates a 

big fire (Porterie et al. 2007). These fires are accountable for almost all large bushfires 

burning close to the ground but not those in tree canopies, which as known as crown 

fires. Crown fires take place when fire reaches the canopy of trees and they ignite. They 

can end up as huge fires that progress through the treetops with massive fire walls. 

Because of the leaves and small dead wood that is normally associated with these fires, 

they usually take place in woodlands and forests with combustible fuels; for example, 

Boreal and Cool Temperate coniferous forests and Eucalypt woodlands in Australia. 

Typically, canopies are designed to withstand ignition due to their large amount of 

moisture or fire-resistant.  

 

Most massive fires spread out through surface fuels so comprehensive physical 

descriptions of surface fuel elements is required for managing these fires (Keane 2015). 

Surface fuel particles can be alive or dead and are typically different throughout the 

surface fuel. For example, herbaceous particles have different properties than fallen 

wood. There are a set of surface area fuel components that are common contributors to 

many fires and that are present in the majority of surface fuel beds of the world, 

particularly forests with fallen dead wood, shrubs, an herbaceous layer and litter. Dead 
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woody fuels present in the surface fuel layers of all forest and woodland environments 

consist of twigs, branches and boles of fallen woody plants. They are primarily cellulose 

and lignin (Lutes et al. 2009).  Freshly fallen fuels are known as litter and they varying 

considerably since they may include a broad range of fallen vegetation, e.g., conifer 

cones, bud scales and grass blades.  Since the litter components are normally thin, they 

can dry out rapidly and easily ignite. The plant elements in the litter also usually have 

a heterogeneous spatial distribution and highly dissimilar fuel properties (Duff et al. 

2017).  

 

The surface fuel layer may contain shrubs which comprises woody and foliage 

components Shrubby fuels therefore vary in terms of dimension, form, and fuel particle 

distribution. Bushlands of Australia, as one of the world’s major shrub environments, 

have a background of regular burning and many of the shrub types have developed 

unique adaptations for withstanding fire (Cruz et al. 2018). 

 

In Australia, herbaceous plants are extensive and comprise a range of unique grass fuel 

categories in both seasonal and annual grasslands. Many grassland vegetation 

communities also have either tall (2 – 5 m high) shrubs or low (< 10 m high) trees, for 

example, species of Acacia, Allocasuarina or Eucalyptus (Mott and Groves 1994, pp. 

369–392). In terms of the herbaceous components, rushes, grasses and sedges have long 

and straight leaves with high surface to volume ratios which develop strongly ignitable 

fuel surfaces (Fateh et al. 2014). Meanwhile, ferns and forbs may have large leaves and 

a structural skin that can protect them against sparking. Most herbaceous plants 

ultimately die over time and the quantity of biomass created by them are typically 

controlled by climate and morphologically harmonized for ignition and fast spreading 

wildland fires (Heaton et al. 2008).  
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2.3. Smoke Formation, Detection Techniques and Platforms 

Bushfire smoke is comprised of a combination of gases and particulates with more than 

100 detected substances including a range of aldehydes, phenolics and polynuclear 

aromatic hydrocarbons (Radojevic 2003). The main substances are carbon dioxide and 

carbon monoxide (Delichatsios 2005; Lyon & Quintere 2007; McAllister 2013). Most 

of these substances are produced by glowing and low intensity flaming fires and vary 

depending on the fuel composition, combustion type and fuel moisture (Werf et al. 

2006). Smoke can degrade air quality, impair exposure, and impact visibility or the 

effective range at which firefighters could see through smoke (Torero & Simeoni 2010). 

Smoke particles can also affect wind and weather patterns. In the context of this research 

they also reduce the amount of the EMR reaching the ground, which can also affect 

weather. Small particles <10 mm diameter comprise less than 10% of the total weight 

of smoke particles but are the most crucial for human health (Karthikeyan et al. 2006). 

Fine particulate matter (<2.5 mm in diameter and known as PM2.5) are drawn deep into 

the lungs (Sastry 2002). These are the particles which travel the furthest and remain in 

the air for weeks. Fires of great intensity, i.e., with longer flames, produce 

proportionately bigger smoke particles than smouldering fires. Particle size also has the 

many effects on visibility in the environment.  

 

Smoke plumes can cover large areas, crossing the borders countries and reaching over 

oceans from land sources. They impact large-scale weather condition patterns by 

affecting the quantity of solar energy reaching the ground surface by simply scattering 

and absorbing of the EMR. Lyons et al. (1998) showed that some smoke plumes were 

larger than 3,300,000 km2, slightly less than half the area of the Australia. Figure 2.1 

shows how smoke plumes cover very large areas. Although much of the plume in tie 

figure would be nearly invisible from the ground, the particles in it will still be 

interacting with ground weather patterns, visibility and atmospheric chemicals. Such 

plumes can move a thousand kilometers in a couple of days and persist for weeks 

(Fromm 2000; Voiland 2014). 
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Image has been removed due to copyright restriction. 

Figure 2.1. Active wildfire captured by MODIS on September 2015 in eastern Sumatra, Indonesia. The smoke 

plume covers a relatively large area and has emanated in from the active fire fronts outlined by red (Voiland 2014). 

 

Over the past decade a number of techniques have been developed to detect, locate and 

monitor smoke emitted from wildfires. These techniques are either based on satellite 

remote sensing or ground based detection methods.  Smoke detection has prospective 

applications in air quality analysis, and fire detection and behaviour analysis (San-

Miguel-Ayanz 2005), e.g., detection of small and smouldering fires (Wang et al. 2007) 

and reduction of the process of fire spread (Liu 2013). Remote sensing-based large-

scale smoke detection has been a common method since satellite remote sensing has 

supplied worldwide observations of the Earth's surface. For example, the Moderate 

Resolution Imaging Spectroradiometer (MODIS) with 36 spectral channels captures 

data in the visible to far infrared parts of the EMS and can acquire abundant spectral 

information compared to many other space-based sensors, e.g., the Advanced Very 

High-Resolution Radiometer (AVHRR). However, smoke has no characteristic spectral 

reflectance signature because of the variability of the chemical composition. This 

combined with a large overlap of the spectral signal between smoke and other cover 

types such as cloud, water and plants, makes the accurate smoke detection process 

difficult (Li 2001). Among the numerous methods for space-based smoke detection, one 

of the most common methods is to merge three bands in satellite data to form a colour 

composition image (Chrysoulakis & Opie 2004) for visual smoke detection. These 

colour-based techniques only provide general details about smoke but fail when applied 

in the automated smoke detection techniques. There are other techniques for automatic 

and accurate smoke detection methods which are usually known as multi-threshold 

methods. These techniques are based on distinguishing the physical properties of smoke 

and other particles and use a set of thresholds to automatically examine all image pixels 

to filter non-smoke pixels progressively (Zhao & Ackerman 2010). They used MODIS 

images to analyses the spectral and spatial threshold along with some similarity 
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structure filtering. Chrysoulakis et al. (2007) proposed a multi-temporal change 

detection method using two AVHRR images (one is acquired during the fire and the 

other without smoke e collected before fire) over the same area. The irregularities in 

NDVI and infrared radiances were used to recognize the plume locations.  

 

Most of satellite-based methods for successful smoke detection can be influenced by 

the poor spatial resolution (Gong et al. 2006) and typically have infrequent revisit 

periods. Furthermore, it may take several hours to receive and use the data from 

satellites. Climate and specifically cloud coverage are other factors that compromise the 

collection of visually useful images from most satellites.  

 

Airborne platforms have been suggested to fill the gaps between ground-based and 

satellite-based image acquisition. These platforms can be classified by aircraft type, 

sensor type, and manned and unmanned piloting. Manned aircraft platforms can carry 

large sensors including LIDAR, SWIR, multispectral, optical or thermal cameras with 

no payload restrictions as opposed to unmanned aerial vehicles (UAVs). LIDAR is an 

encouraging instrument for forest-fire monitoring and smoke detection, due to its high 

spatial resolution and sensitivity. While it typically has highly reliable smoke detection 

outcomes in locating small smoke plumes throughout the day and night (Utkin et al. 

2003), the considerable effort required in implementing and mobilizing LIDAR sensors 

coupled with their high cost have made this option less popular than others. The type of 

imaging sensor to meet the fire intelligence requirements is very important. For 

example, it is essential that fire intelligence data from these sensors be supplied at the 

required spatial resolution with no considerable time lag.  Aircraft with high-altitude 

flying capability can supply an extensive overall image of large regions but similar to 

satellite sensors are subject to cloud obscuration for collecting visible or IR images 

(Kaufman, Kleidman & King 1998).  Moderate and low-altitude flying aircraft, such as 

small UAVs and suppression aircraft, are used to overcome this limitation.   

 

UAVs are considered as a lightweight flying equipment similar but different to manned 

aircraft since they do not require a pilot on-board. The majority of them can be launched 
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and operated remotely using a ground control station and a telemetry communication 

link (Allison et al. 2016). Based upon the take-off type, UAVs are classified as fixed-

wing or VTOL (Vertical Take-off and Landing) (Watts, Ambrosia & Hinkley 2012). 

Originally UAVs were utilized for military applications such as reconnaissance and 

surveillance. Overtime, they have become widely used in civil remote sensing 

applications in agriculture, utility inspection, mapping, and natural resources and 

environmental applications (Colomina & Molina 2014). Advances in sensor systems 

and image processing have increased applications of the UAVs in many other sectors.  

 

Most UAVs are equipped with optical sensors to capture the visible red, green and blue 

region of the EMS as a standard imaging payload. However, other sensors such as IR, 

TIR, SWIR and LIDAR sensors can be used as additional payloads for remote sensing 

applications (Zahawi et al. 2015). Lightweight remote sensing sensors on-board UAVs 

can provide high spatial, temporal and spectral resolution imagery (Yuan, Zhang, Liu 

2015). In Australia firefighters have successfully trailed small quadcopters to collect 

infrared imagery from an overnight bushfire (Werner 2015). Zajkowski et al. (2016) 

used small UAVs equipped with thermal cameras and alive video feed above a 

prescribed burn area to evaluate the feasibility of using these new technologies in a 

complex operational environment.  

 

UAVs can fly at low altitudes to supply extremely high spatial resolution images (Yuan, 

Zhang & Liu 2015) which can be used in applications such as cadastral work, urban 

planning, vegetation species categorisation and yield estimate (Colomina & Molina 

2014; Gaitani et al. 2017). The expense of information collection and post-processing 

using UAVs is lower than that of equivalent approaches that supply the same accuracy 

(Puliti et al. 2015). Another advantage of using UAV platforms is the low energy 

consumption rate of electric and gas fuels (Banu et al. 2016). In addition, their safe 

operation does not risk lives since no human is directly engaged during the operation. 

Nonetheless, the feasibility of using UAVs in wildfire and forestry applications needs 

further evaluation to better understand the risks and benefits (Banu et al. 2016).  
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Due to the short flight time of the UAVs they must be launched and used nearby the 

fire area. The flight time of the aircraft above a fire is a key concern and a major 

challenge for most small UAV platforms (Ollero 2011). NASA and the US Forest 

Service have performed several small UAV tests to address the flight time issue in 

particular (Hinkley & Zajkowski 2011). In addition to flight time, the aerospace 

regulation and certifications to allow UAVs to fly in controlled airspace and beyond 

line of sight are still major issues in deploying these platforms effectively. Sensor 

stabilization, flying altitude and image motion (Chabok 2013), coordination, mission 

planning and image georeferencing are typically very challenging for these types of 

operations because the flight path design is limited by operational requirements and is 

not suitable for conventional airborne imaging, georeferencing and mapping missions.  

 

Ground-based, especially video-based, systems are popular methods for wildfire 

monitoring and smoke detection and have been proven to be an effective method in the 

past decade (Utkin et al. 2003; Ko, Park & Nam 2013; Jakovcevic, Stipanicev & 

Krstinic 2013; Çetin et al. 2013). One of the significant benefits of video-based 

detection is that it has the ability to cover larger regions which is useful for long-range 

smoke detection in bushlands or forests where the origin of smoke origin may be few 

kilometers from the camera location; for example, a zoom video camera can cover up 

to 100 km2 from a lookout tower (Çetin et al. 2013). Monitoring systems based upon 

CCD sensors are frequently utilized in smoke detection and are generally installed on 

the lookout towers which are taller than the surrounding trees and structures. While 

other sensors, such as IR and thermal cameras (Arrue, Ollero & De Dios 2000; Gade & 

Moeslund 2014), may be more capable in detecting smoke and flames and provide more 

reliable and useful data (Martinez-de et al. 2008), video-based monitoring systems are 

still an appealing method due to their low cost, ease of use and low maintenance 

requirements (Berie & Burud 2018).  

 

The sizes of particles produced by wildfire smoke and its characteristics play an 

important role in success of remote sensing for fire and smoke detection and monitoring 

techniques. This aspect of the research is discussed in the next section.  
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2.4. Particle Size and Characterization 

Wildfire smoke consists of microscopic particles known as aerosols which have the 

potential to impact both the environment and human health (Maynard & Kuempl 2005; 

Maynard et al. 2006). Figure 2.2 shows how the dimensions of particles of interest in 

aerosol behaviour vary from molecular arrays of 0.001 µm to dust particles as large as 

100 µm (Kouimtzis & Samara 1998, p.3). Aerosols can be categorized according to 

their physical shape, size and the processes by which they are produced. Dust is a solid 

particle that develops by mechanical fragmentation of a source object, for instance, in 

industry by crushing or milling, or in the natural environment by erosion processes. 

Physicochemical processes such as combustion produces heat and water vapour. 

Burning as an oxidation process produces smoke. Fog and haze are fluid aerosols 

generated by the fragmentation of liquid or vapour combustion; while smog, a mixture 

of smoke and fog, includes solid and fluid particles created as a result of photochemical 

reactions and ‘vog’ is a mixture of volcanic ejecta and fog. 

 

Image has been removed due to copyright restriction. 

 

Figure 2.2 Range of aerosol particle size starting from 0.001 µm for molecular particles to large particles up to 

1000 µm. Smoke particle size ranges from 0.01 µm to 100 µm (Kouimtzis & Samara 1998). 

 

As soon as aerosols are in the atmosphere, their size, number and chemical 

arrangements can be changed through several mechanisms before they are eventually 

removed by natural processes. There are normally three groups of particles in terms of 

particle size d measurement; nucleation, accumulation and coarse form (Wilson and 

Suh 1997). Nucleation consists of particles < 0.2 µm diameter which are formed by the 

condensation of hot vapour or by gas to particle transformation. Accumulation form 

aerosol particle diameters ranges from 0.2 – 2 µm and grow from the nucleation mode 

by vapour condensation. They typically represent much of the surface area of aerosols 

in the atmosphere and a substantial part of their volume. Coarse form particles of > 2 
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µm diameter are primarily created by physical attrition; dust from rock and soil erosion, 

industrial dusts and water spray are the main components of coarse form particles. 

 

Chemical composition has been identified as a function of particle size. Hao et al. 

(2013) and Wu et al. (2013) consider the differences between the fine (< 2.5 µm) and 

coarse (2.5 – 15 µm) forms. The primary elements of the fine portion of atmospheric 

aerosols are sulphates, nitrates, lead, carbonaceous products and thick organic matter. 

The coarse particulate portion comprises mainly crustal materials (Corbitt 1989, p.115). 

Aside from the contrast between the size and chemistry of aerosols, organic and 

anthropogenic sources provide a dissimilarity. Many causes leading to aerosol 

production are natural, e.g., volcanic eruptions, while others are anthropogenic, e.g., 

industrial discharges. However, there are some origins of aerosols in which the contrast 

between natural and anthropogenic is more difficult to make, e.g., dust emissions from 

soil and burning biomass.  

 

In particle characterization, almost all the methods that have been designed to deal with 

the complexities caused by the polydispersity of particle systems, i.e., particles with a 

large variation in size (Caho et al. 2017). In the case where all of the components of the 

system have similar attributes, there is barely be any requirement for such complex 

characterization techniques. An overall particle population where all the aerosol 

particles possess the similar dimension are known as monodispersed particles. The 

actual particle dimension, in both monodispersed and polydispersed aerosols, includes 

a particle size distribution across a specific range. Numerous techniques that have been 

designed and implemented in particle characterization, particularly where particles sizes 

range from nanometers to millimeters. The dimension, quantity (Wang et al. 2011) and 

surface area concentration (Asbach et al. 2009) are the key criteria in defining aerosol 

particles. Particle size distribution is an important parameter for the assessment of 

particle density in atmosphere (Manigrasso et al. 2013) The method of quantitatively 

characterizing particle size distribution is to create a frequency histogram of the mass 

of particles in consecutive size intervals. In a constant distribution, i.e., monodispersed, 

the histograms create a smooth constant curve (John 2011, pp. 41–54).  
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In the past few years various techniques that include sun photometers (Queface et al. 

2011), satellite data (Tesfaye et al. 2011) and ground-based Raman Lidar systems 

(Giannakaki et al. 2015) have been used as tools to measure particles (Wang et al.  

2018). Specifically, they have been implemented to precisely measure the aerosol 

particle size, and their geometrical and optical characteristics. In fact, satellite remote 

sensing continually supplies accurate worldwide measurements of Aerosol Optical 

Thickness (AOT) (Kokhanovsky et al. 2010; Holzer-Popp et al. 2013).  

 

Raman Lidar is an active remote-sensing tool which uses light from UV lasers light to 

measure the height and time-related properties of aerosols, the water vapour mixing 

proportion, temperatures and cloud optical properties. It operates by passing short 

pulses of UV light through the atmosphere. A small portion of the UV light energy is 

backscattered to the lidar transceiver in which it is captured and compiled as a time-

related signal. By measuring the delay between the outbound pulse and the 

backscattered signal, it derives the distance to the scattering volume. Raman (1928) 

showed that light is inelastically scattered by atmospheric N2, O2 and H2O particles. A 

Raman Lidar utilizes an array of narrow-band recognition channels particularly tuned 

to pick up the Raman backscatter from these particles. The raw signals coming from 

these detection channels are incorporated and refined to measure the aerosol backscatter 

coefficient, water vapour mixing percentage, the temperature level and the 

depolarization percentage. Giannakaki et al. (2016), conducted an extensive study to 

measure smoke aerosol particles from fire using a combination of Raman Lidar and 

satellite-based observations to identify the origin of raised aerosol layers and precisely 

measure the lidar and the depolarization ratios for biomass burning and mixtures of 

aerosols. They noticed a large range of lidar and depolarization ratios and microphysical 

properties for biomass burning aerosols that imply distinctions in the chemical structure 

of the various fuels that were burning. Their study showed that aerosol diameters from 

industrial pollution ranges from 0.07 – 0.16 µm, those from biomass burning are in the 

0.11 – 0.28 µm range, while mixed aerosols ranges from 0.09 – 0.19 µm.  Although UV 

absorption or satellite-based methods provides data on a variety of aerosol properties 
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(Torres et al. 2007; Dubovik et al. 2011), variable background reflectance above land 

surface areas makes the data collection process challenging, particularly at low optical 

densities. 

 

 

NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de 

Normalisation Satellitaire) have collaboratively established a global network of ground-

based remote sensing systems, known as AERONET (AErosol RObotic NETwork), to 

supply regular and easily available public domain data on aerosol optical, radiative and 

microphysical properties for aerosol analysis and characterization. AERONET delivers 

more effective aerosol measurements compared to other systems since the observations 

are influenced less by surface area reflectance factors and are accumulated from semsor 

operating at different angles (Holben et al. 1998). These observations are often used for 

satellite data validation (Holzer-Popp et al. 2013). AERONET aerosol characterizations 

have been computed using the average values from a series of stations. A single record 

from one of the AERONET stations, for instance near a boreal forest, most likely will 

include smoke observations of trees of various ages and source. Therefore, research has 

been conducted to identify the origin and age for AERONET smoke observations, 

concentrating on individual burning activities using atmospheric transport modelling 

and satellite data (O'Neill et al. 2002; Eck et al. 2009; Dahlkötter et al. 2013). Sayer et 

al. (2014) classified collections of AERONET stations from biomass burning areas into 

near and remote origin to examine the ageing impacts on optical and microphysical 

smoke properties. Nikonovas, North & Doerr (2015) conducted research to measure the 

smoke aerosol properties using the AERONET networks near northern temperate and 

boreal forests for the period 2002–2013. They compared 629 fire attributions and 

noticed significant variations in the size distribution and optical particle properties 

between smoke plume age and various land cover types. They observed a 0.143 μm 

median radius for smoke plumes from burning cropland, 0.157 μm for grassland fires, 

0.193 μm for Eurasian mixed forests, 0.185 μm for smoke plumes from shrubland with 

sparse tree cover, and 0.184 μm for woody savannas. The difference in size distributions 

relates to irregularities in plume distribution between the land cover types. They also 
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noticed substantial distinctions between daytime and nighttime emissions, with former 

having larger particle sizes; as well as showing that smoke that was older than four days 

had a median radius of 0.02 μm compared to larger radius for fresh smoke plumes. 

 

Light scattering is the most efficient method for investigating the properties of 

particulate matter and particularly for the measurement of particulate size (Jones 1999). 

The relationships between the size and optical properties of aerosols and the scatter the 

incident light, which is known as extinction of EMR, is discussed in the next section. 

 

2.5. Pathways of EMR through Atmosphere and Light Scattering 

When Isaac Newton was exploring a single stream of sunlight ray in 1666, he placed a 

glass prism in the light direction and noticed that it decomposed into a rainbow of 

colours: red, orange, yellow, green, blue, indigo and violet. He showed that every colour 

refracted at different angles which can be calculated and measured by a prism. He also 

noticed that objects appeared in the same colour as the illuminated light colour and that 

the reflection or refraction does not change the colour of illuminated light. Thus, he 

concluded that colour is not property of objects but is a property of light which is 

reflected from the objects. He also considered that light is a radiation of particles which 

are nowadays known as photons. The discovery of the colour spectrum by Newton was 

the beginning of the science of spectroscopy (Lenoble, Remer and Tanre 2013, p.138). 

In 1800, William Herschel used thermometers to measure the temperatures of the colour 

spectrum that had been discovered by Newton, he noticed temperatures increased from 

visible violet to visible red and that it increased further in regions beyond visible red, 

thus he discovered infrared light. A year later in 1801, when Johann Ritter was 

experimenting with a photographic plaque made of silver chloride, he noticed that it 

reacted intensively beyond visible violet, and hence discovered the ultraviolet range of 

EMS. In 1801, Thomas Young showed that light may also be considered as traveling 

waves. He diffracted sunlight through a small slit and then projected the light rays that 

emanated from the slit onto screen with two small slits. Light passing through these slits 

was then re-projected onto another screen, which was close to the slits, and formed two 
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overlapping patches on the screen. When Young reduced the size of slits and placed 

them side by side, the light projected onto the screen formed a distinct band of colours 

separated by dark regions. To describe these bands, he coined the term ‘interference 

fringes’ term and measured the wavelengths (Kipnis 1991, pp. 122-124). Maxwell, in 

1873, explained the electromagnetic nature of radiation and showed that 

electromagnetic waves consist of electric and magnetic fields that move in space until 

absorbed by matter. In 1885, Heinrich Hertz verified Maxwell's electromagnetic theory 

and created electromagnetic waves in his laboratory. He used two small brass 

conductors, placed a few millimeters apart and connected to induction coils, to make an 

electrical oscillator. He passed a high-tension current through this circuit and noticed 

that the spark jumped as a result of accumulating the electrical charges. He noted that 

another spark jumped simultaneously in an antenna in the shape of a loop which was 

located few meters away. This experiment confirmed Maxwell’s hypothesis and 

demonstrated that electromagnetic waves can transmit energy in space without the aid 

of a physical conductor. These Hertz waves were later renamed radio waves (Norton 

2000, p. 83).  

 

In 1895, Wilhelm Conrad Röntgen noticed that when an electric current pass through a 

bulb in which the air pressure is low, the bulb produces rays which can penetrate objects 

including the human body. As the nature of these rays was unknown at that time, he 

named them x-rays. They were quickly adopted in radiography. In 1912, Max Von Laue 

experimentally diffracted x-rays using a crystal and showed that they had extremely 

short wavelengths beyond the ultraviolet region of spectrum. Later Henri Becquerel in 

1896, Marie Curie in 1898 and Paul Villard and Ernest Rutherford in 1900 discovered 

there were even shorter wavelengths in the EMS – gamma rays. During the Second 

World War, with identification of microwave radiation, long range radio detection and 

ranging (radar) was developed to detect moving objects at longer distances by 

measuring reflected radio waves from their surface. Thus, by this time all the possible 

frequencies and wavelengths of electromagnetic radiation had been discovered. 

Gamma-rays with extremely short wavelengths in one end of spectrum contain very 
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high frequency and have high energy levels, whereas radio waves in the other end, have 

very long wavelengths, lower frequency and very low energy levels. (Figure 2.3). 

 

Figure 2.3. The full range of the electromagnetic spectrum and the correlations between wavelengths, frequency 

and energy (Courtesy of NASA GSFC Astronomer’s Toolbox). 

 

Although there are many forms of EMR across the spectrum from gamma-rays to the 

radio waves, only visible light as a small portion of the spectrum can be sensed by our 

eyes.  Fortunately, the development of ultra-sensitive detectors allows us to capture 

invisible radiation and to translate it and visualize its affects. For example, a digital 

television remote controller uses a light emitting diode which is invisible to the human 

eyes but can be seen by holding it in front of a digital camera, this means that a digital 

camera is sensitive to infrared light.  The Sun, as the source of EMR, emits radiation 

across most of the EMS, though gamma rays which contain super high energy photons 

that result from nuclear fusion are converted to a lower energy photon before reaching 

the Sun’s surface and therefore are not emitted into space. However, x-ray, ultraviolet, 

visible, infrared and radio waves are emitted from the Sun.  The distribution of the EMR 

energy emitted by the sun peaks in the visible light range (Figure 2.4).  

 

Image has been removed due to copyright restriction. 

 

Figure 2.4. Absolute solar spectral irradiance shows distribution of the EMR energy versus its wavelength. It can 

be seen that the maximum emitted energy from the sun is in the range of visible spectrum at λ~450 nm (Thuillier 

et al. 1998). 

 

When EMR travels through the space, only a few forms of EMR can pass through the 

atmosphere.  The major components of the Earth’s atmosphere create selective 
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transmission of various forms of EMR. For example, it is mostly closed to incoming 

UV radiation, long wavelength radio waves and long wavelength infrared. The primary 

components that effectively absorb electromagnetic energy are water vapour (H2O), 

carbon dioxide (CO2) and ozone (O3) (Joseph 2015, p.45). Though different aerosols 

absorb EMR at different wavelengths. For example, water vapour strongly absorbs 

EMR between 5.5 – 7 µm and at > 27 µm.  Carbon dioxide effectively absorbs EMR in 

the mid and far infrared region between 13 – 17.5 µm and ozone absorbs strongly the 

UV portion of the spectrum (Figure 2.5).  

 

Image has been removed due to copyright restriction. 

 

Figure 2.5. Various forms of EMR that are transmitted or absorbed as a result of interaction with atmosphere, 

note that visible light is less absorbed and more transmitted to the ground surface (Joseph 2015, p.45). 

 

Areas of EMS with minimal or no absorption of EMR are known as atmospheric 

windows. As discussed above (cf. Figure 2.4), most of emitted energy from the Sun is 

in visible and infrared regions with a small amount of UV. This is known as incoming 

solar radiation or insolation. Insolation can be partially scattered, absorbed or reflected. 

Absorption happens when incoming solar radiation encounters a gas or particular object 

but not released directly by that object.  Scattering is a process in which incoming solar 

radiation is redirected by particulate or atmospheric gases and its distribution is 

changed. Reflection occurs when solar radiation interacts with the ground surface and 

is redirected back through the atmosphere (Figure 2.6).   

 

The interaction of EMR with the atmosphere may prevent it from reaching the ground 

due to the processes of scattering or absorption. The absorbed illumination energy 

which emerges as the excitation energy of particles will be dissipated primarily by its 

transformation into heat or will lost through radiative decay. Because many substances 

exhibit high absorption in the infrared and ultraviolet regions, which considerably 

minimizes scattering magnitude, most light scattering measurements are carried out 

utilizing visible illumination. Scattering is only detected when a substance is 
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heterogeneous, either as a result of regional density variations in the pure component or 

because of the optical heterogeneity for spread particles in a medium (Xu & Scarlett 

2002, p.57). The extent to which absorption and scattering take place depends upon the 

atmospheric conditions, the length of the path through the atmosphere and is wavelength 

dependent. These effects happen due to the interaction of the EMR with particles 

created by air pollution, dust or water molecules suspended in the atmosphere in fog or 

in clouds. Each of these have different effects on the radiation that passes through the 

atmosphere and affects how much of the radiation reaches the earth surface.   
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Figure 2.6. EMR can be scattered, absorbed, transmitted or emitted when encountering clouds, aerosols, gas 

molecules and ground objects (USGS 2017). 

 

Figure 2.7 illustrates a basic scheme for light scattering geometry. In this figure, which 

for illustration purposes is simplified, the polarization direction is assumed to be either 

parallel to a hypothetical plane, called horizontally polarized (Eh), or perpendicular to 

the plane in the Z direction, called vertically polarized (Ev). While the incident light is 

passing through the scattering media it will be transmitted, unless the particles are 

highly absorbing or the particle density is so high, in which case multiple scattering will 

occur. If multiple scattering does occur, the scattered light from one particle acts as the 

incident light of another particle. Encountered incident light by the particles will be 

scattered unevenly in all directions. 

 

Image has been removed due to copyright restriction. 

 

Figure 2.7. Light scattering geometry in a laboratory environment (Xu  & Scarlett 2002) 

 

In Figure 2.7, Ko is the wave vector of the incident light traveling along the X axis in 

vacuum. Its magnitude (Ko =2π/λ) is the wavenumber of the incident light for each given 
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wavelength (λ) and λ = λ0/n0 (where n0 is the reflective index of the medium). For 

polarized light this vector is oriented in a specific direction but for non-polarized light 

it is oriented randomly. Both the intensity of scattering and intensity variations are a 

function of both the incident light and the scattering direction. Typically, the scattering 

direction is defined as the direction that is at an angle θ from the X axis, which is known 

as the scattering angle, and an angle φ from the Z axis, which is known as the azimuthal 

angle. The propagation directions of the incident scattered and transmitted light forms 

a plane which is known as the scattering plane. In figure 2.7, the azimuthal angle is 

presumed to be 90°, Io is intensity and Ks is the wave vector of scattered light, 

respectively. The scattering vector or so-called momentum-transfer vector is defined as 

the momentum transfer between a particle and the incident light (K= | Ks – Ko |) which 

is defined as Equation (2.1): 

 

𝐾 = √(|𝐾𝑜 − 𝐾𝑠|)2 =  √𝐾0
2 + 𝐾𝑠

2 − 2𝐾𝑜 . 𝐾𝑠         (2.1) 

 

=̃ √4𝐾0
2𝑆𝑖𝑛2 (

𝜃

2
) = 4𝜋𝑛0 sin (

𝜃

2
) /λ0 

 

In the light scattering process, an incident light source located at a distance much larger 

than the particles size, illuminates the medium. Since scattering intensity is determined 

at a far distance between the sensor and particles, both scattered and incident light act 

as a plane-wave. The cross section in between the viewing cone of the sensor and 

incident light defines the scattering volume in which there may be only one particle or 

a lot of particles. Scattering happens as a result of the electric field alteration by all 

particles in the scattering volume when illuminated by the incident light. Because light 

scattering is omnidirectional, the intensity acquired by the sensor is proportional to its 

sensing area and inversely proportional to the square of its radius from the scattering 

medium. While the suspension scatterer (air or homogeneous liquid) can also scatter 

light, its magnitude can be ignored when compared to the magnitude of the scattering 

from other particles. There are a few exceptions to this, for example when the volume 
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of the particle is similar to that of the medium molecules or if the medium used is not 

homogeneous (Xu & Scarlett 2002, pp. 60-63). 

 

Light scattering properties can be computed by directly solving Maxwell's equations 

(Mishchenko, Travis & Lacis 2002, p.60). The T-matrix solution, known as the most 

effective algorithm for calculating light scattering properties for non-spherical particles, 

introduced by Waterman (1971); Waterman (1995); Wielaard, Mishchenko, Macke & 

Carlson (1997) and Mishchenko, Travis & Lacis (2002). In this technique, which is also 

known as null filed method, the incident and scattered electric fields are stated in 

spherical vector wave function (Equations 2.2 – 2.3). 
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𝐸𝑖𝑛𝑐(𝑟) = ∑∞
𝑛=1 ∑ [𝑎𝑚𝑛𝑅𝑔𝑀𝑚𝑛(𝑘𝑟) + 𝑏𝑚𝑛𝑅𝑔𝑁𝑚𝑛(𝑘𝑟)]𝑛

𝑚=−𝑛         (2.2) 

 

and 

 

𝐸𝑠𝑐𝑎(𝑟) = ∑∞
𝑛=1 ∑ [𝑝𝑚𝑛𝑀𝑚𝑛(𝑘𝑟) + 𝑞𝑚𝑛𝑁𝑚𝑛(𝑘𝑟)]𝑛

𝑚=−𝑛             (2.3) 

 

 

 

where k is the wavenumber for each given wavelength (λ). Rg Mmn and Rg Nmn from 

Equation 2.2 and Mmn and Nmn in Equation 2.3 are regular and propagating spherical 

vector wave functions respectively, pmn and qmn are the expansion factors of the 

scattered field and are primarily unknown, whereas amn and bmn are computed by simple 

analytical expressions. Since the Maxwell's equations are linear therefore there is a 

linear relationship between the expansion factors of the scattered and incident fields.  

Since the elements of the T-matrix are not related to the scattered and incident fields 

and only depends on the refractive index as well as morphological parameters of the 

scattering particle, therefore, the T-matrix must be estimated in advance for a given 

scattering particle (Mishchenko, Travis & Lacis 2002). The Stokes vector, defined 

by George Gabriel Stokes in 1852, are a series of values that used to describe the 

elements of scattered and incident light which describe either the indicative of the 

physical characteristics or provide direct measure of the scattering medium. Equation 

2.4 shows the transformation matrix between the incident and scattered light. 

 

 

 

 

(2.4) 

https://en.wikipedia.org/wiki/George_Gabriel_Stokes
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Where (I, Q, U, V) are the Stocks vector parameters of the incident and scattered light, 

r is the distance from the detector to particles, k is a wave number and Fi (θ) describe 

various properties of the scattered light, for example, total intensity of incident light, 

degree of polarization and non-sphericity factor of particles (Hovenier et al. 2003). 

Using the T-matrix approach, the angular alignment of the elements of Stokes scattering 

matrixes can be calculated for randomly distributed and oriented particles. Several 

studies have been conducted on the light scattering process caused by smoke particles. 

Aggarwal & Motevalli (1997) used the spherical model as the shape approximation of 

smoke particles to study the light scattering effect, however, the SEM micrographs of 

smoke mixtures show that they are actually not spherical but more branched in chains. 

It was argued by other researchers (Manickavasagam & Menguc  1979; Liu & 

Mishchenko 2005; Klusek, Manickavasagam & Menguc 2003; Qiyuan et al. 2007) that 

the spherical model by itself cannot illustrate morphologic properties of smoke mixtures 

such as particle alignment hence cannot lead to a considerable improvement of 

extinction and scattering related to those measured from the Mie theory. Therefore, the 

impacts of smoke agglomeration and array morphology with in-depth frameworks of 

smoke mixtures were considered to study.  Qiyuan et al. (2007) discussed that although 

the individual smoke particles are almost spherical, the combination of smoke particles 

in a chain-like shape is clearly non-spherical. He used spheroid models to approximate 

the shape of smoke particles for studying the effects of the non-spherical morphology 

of smoke mixtures in light scattering.  Smyth & Shaddix (1996) In addition to the size 

distribution and alignment of the smoke particles, their refractive index is an important 

parameter to consider in light scattering, this index depends on the type of burning fuel 

and also combustion form as discussed at section 2.3. Smyth & Shaddix (1996) showed 

that the imaginary portions of smoke particles refractive indexes produced by flaming 

fires are bigger than those from smouldering fires.  Qiyuan et al. (2007) used this 

method to measure the light scattering from smoke particles caused by smouldering and 

flaming fires. They concluded that the non-spherical property of grey smoke particles 

generated from smouldering fires has considerable effects on their light scattering than 

those produced by flaming fires which is a function of the wavelength of the incident 

light and spectral sensitivity of the imaging sensor. 
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Three types of scattering occur: 

 

• Rayleigh scattering 

• Mie scattering 

• Non-selective scattering or Mie scattering of large particles 

 

The first type of scattering is called Rayleigh or molecular scattering which occurs when 

atmospheric particles are considerably smaller than the wavelength of radiation (< 1/10 

λ) these are mainly gaseous molecules. The amount of Rayleigh scattering is inversely 

proportional to the fourth power of wavelength. As a result, shorter wavelengths are 

affected more than longer wavelengths. This explains the blue appearance of a clear 

sky, as visible blue radiation (λ ~ 400 nm) has five times greater scattering from visible 

red radiation (λ ~ 600 nm). 

   

Mie scattering occurs when the diameter of the particles in the atmosphere are 

approximately the same as the wavelength. Dust and water vapour are important agents 

for Mie scattering. In Mie scattering more of the intensity of the scattering goes in 

forward direction in a single dimension (Figure 2.8). If EMR interacts with particles 

that are several times larger than the radiated wavelength, then Non-selective scattering 

occurs with strong forward scattering peak and smaller degree of backscattering. Large 

smoke particles, water droplets and dense clouds are the important non-selective 

scattering agents. 

 

In cases of Rayleigh or Mie scattering, imaging sensors receive the energy reflected by 

atmospheric particles as well as the energy reflected from ground objects. Energy 

reflected from molecular particles in the atmosphere is known as path radiance or 

atmospheric light. By estimating this component, the image visibility can be enhanced 

using the advanced image processing techniques, this is broadly discussed at Section 

7.3. 
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Figure 2.8. Mie and Rayleigh scattering pattern (Hungate, Watkins & Borengasse 2007, p. 34). 

 

 

Unlike scattering which reflects the EMR and degrades the captured image, atmospheric 

absorption affects the amount of energy in certain wavelengths. Absorption relatively 

degrades the reflected energy from ground objects before reaching the imaging sensor. 

Similar to scattering, the absorption effect can be corrected by comparing simultaneous 

measurements made at several bands.  Interaction of EMR with ground objects is also 

important in remote sensing but is not relevant to the context of this research, therefore 

is not reviewed in this chapter.   

 

2.6. Smoke particles effect on multi-spectral and TIR imaging 

Sensor systems such as multi-spectral and thermal cameras that have formerly been 

limited to utilize due to the high-cost and technology aspects, are now becoming 

commonly available and economical. Similarly, new airborne sensor platforms, 

especially small, unmanned aircraft, are helping new applications for airborne remote 

sensing. Multi-spectral sensors systems incorporate multiple spectral bands for 

sophisticated fire monitoring and detection. For example, most recently an advanced 

multi-spectral geostationary operational environmental satellite (GOES-16) was 

launched by NASA and become operational on December 2017 for real-time detection 

and monitoring of wildfires. GEOES-16 utilizes an advanced baseline imager (ABI) 

technology for imaging Earth’s environment and has 16 spectral bands (two visible 

channels, four near-infrared, and ten infrared bands from 0.45 – 13.6 µm) with 

extremely high temporal resolution from 30 seconds to 15 minutes) and relatively good 

spatial resolution from 0.5 – 2 km. In July 2017, southern California faced a record-

breaking heatwave which triggered two large wildfires and captured by GEOES-16 

satellite (Figure 2.9).  
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Figure 2.9. GEOES-16 red band (0.64 µm) (left image) showing the smoke plumes and the same scene collected 

with shortwave IR (3.9 µm) band (right image) showing transparent smoke plumes with identified hot spots in 

reds (Courtesy of NASA). 

While this newly launched satellite sensor has very high temporal resolution, its spatial 

resolution is not enough for detecting targets and small objects. There is a trade-off 

between temporal and spatial resolution for satellite sensors. For example, WorldView-

3 multi-spectral sensor with sensitivity from 0.45 µm – 2.365 µm and spatial resolution 

of 3.7 m at SWIR bands can revisit the same area of interest every 4.5 day with 20 

degree or less off-nadir angle (DigitalGlobe 2018).  

 

Images from these multi-spectral sensors can be affected by environmental conditions 

such as presence of aerosols, fog, haze and smoke particles in atmosphere as well as 

variations in the sun illumination while imagery is being captured, which degrade the 

image visibility and lead to loss of spatial resolution. Several models have been 

developed over the past decades to compensate for the atmospheric conditions in remote 

sensing (Hadjimitsis et al. 2010). Richter (1996) introduced a new method focusing on 

individual spectral band and matching the histograms between haze regions and clear 

areas to correct haze in SPOT HRV and Landsat TM satellite images. Chun et al. (2004) 

adopted a homomorphic filter to enhance the image visibility for ASTER data. Du, 

Guindon and Cihlar (2002) used the wavelet transformation to enhance the spatially 
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varying haze with decomposed images. Liu et al. (2011) used virtual cloud point method 

with the background suppressed haze thickness index to enhance the image visibility 

for high spatial resolution satellite imagery. Chavez (1995) took the band correlation 

property of atmospheric scattering into account and used the dark-object subtraction 

method to minimize the effect of uniform haze. Makarau, Richter, Muller and Reinartz 

(2014) calculated the haze thickness by taking channel correlation property into account 

to enchase randomly distributed haze on satellite imagery. WorldView-3 uses an 

additional atmospheric sensor as part of its payload with slightly wider swath to detect 

the atmospheric particulates at 31m resolution, therefore estimates the exact 

atmospheric conditions for every captured image. Figure 2.10 shows an image captured 

by Worldview-3 sensor over an active fire after applying the atmospheric corrections. 

 

To address both low temporal and low spatial resolution space-based multi-spectral 

imaging, airborne multi-spectral cameras are developed to collect high-spatial 

resolution imagery by flying at lower altitudes. For example, the autonomous modular 

sensor (AMS) has been developed by NASA and actively used for wildfire monitoring 

and remote sensing. It can be deployed on manned or unmanned aircraft and is able 

collect 12 spectral bands from 0.42 to 11.26 µm (Ambrosia et al. 1999). Between 2006 

and 2010 the AMS was used on the Ikhana unmanned aircraft (Figure 2.11) and 

NASA’s B-200 King Air to evaluate its capabilities and operational readiness to provide 

support to national emergency demands for wildfire data. NASA has updated the AMS  
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Figure 2.10. left image captured by WorldView-3 optical sensor over an active wildfire with smoke and cloud, 

right image captured using the same sensor at 2215 nm band which has passed through smoke and cloud with 

clear fire location (Courtesy of NASA).  

 

 

 

Figure 2.11. NASA’s IKHANA unmanned aircraft equipped with AMS multi-spectral sensor to collect and 

transmit remotely sensed data from wildfires in near real-time to the command centre with 20 hours endurance 

and up to 40,000 feet flight altitude (Courtesy of NASA Ames research centre). 
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with new firmware and improved remote command control system which has been 

initially tested in January 2018 and is subject to more flight test by the end of 2018 

(NASA 2018). 

 

Figure 2.12 shows an image captured by NASA AMS sensor using the IKHANA UAV 

over the Basin Fire Complex in California on July 2008.  

 

 

Figure 2.12. Multi-spectral AMS image captured over an active fire in California and overlaid onto elevation data 

within Google Earth. The yellow sections represent active fire regions with purples and reds showing burned areas 

(Courtesy of NASA and Google). 

There are other imaging sensors such as thermal cameras which can be used on 

lightweight and low-cost UAVs or hand-held devices which are mainly used in 

firefighting for identifying hot spots, seeing through smoke, locating and rescuing 

people, safe navigation during rescue missions and many other industrial applications. 

Unlike optical cameras in which reflected radiation is measured by the sensor, thermal 

cameras measure the emitted radiation from objects and convert the intensity of the 

recorded energy to a visible image. Atmospheric windows in the thermal region of 

spectrum are from 3 – 5 µm and 8 – 14 µm (Sabins 1996) which define therefore the 

typical operational ranges for thermal cameras (Figure 2.3). As discussed in section 2.3, 
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depending on the wavelength of the incident light and particle size, light can be scattered 

in three forms: Rayleigh, Mie and Non-selective scattering. This means cameras 

operating at longer wavelength of the EMS, such as thermal cameras, are less prone to 

the effects of scattering process compared to cameras operating at visible wavelengths, 

therefore thermal cameras can see through smoke particles due to significantly reduced 

scattering.  

 

In bushfires, in addition to the dense smoke in the vicinity of a fire front, large areas up 

to several kilometers away can be affected by gaseous smoke in the lower atmosphere 

(Dennekamp et al. 2011), and visibility levels significantly drop in such areas. In these 

situations, having high-spatial resolution insights to detect small objects such as road 

signs and ideally a true colour vision from the scene is crucial. The lack of visibility 

may cause series injuries or death. Although advanced multi-spectral and TIR sensors 

can penetrate smoke and provide valuable information such as hotspots and temperature 

variations objects, due to their monochromatic imaging sensor and low-spatial 

resolution, visual interpretation of captured images is very challenging. Figure 2.13 

shows how visibility can be dramatically degraded by gaseous smoke particles in areas 

located further away from the fire source.  

 

The spatial resolution of a TIR sensor is dependent on its total field of view (TFOV) 

and also its instantaneous field of view (IFOV). TFOV, is described as the projection 

of the camera sensor at the target surface, and IFOV is defined as the field of view of a 

single pixel in the sensor’s detector array (Kaplan 2007, pp. 40-43). As discussed in 

section 2.2, the amount of photon energy decreases as the wavelength increases, 

therefore, to ensure that enough energy reaches the detector, thermal sensors have larger 

IFOVs and as a consequence have coarser spatial resolution. Thermal camera 

manufacturers publish the spatial resolution of the thermal sensors as a constant number 

in radiance which is used for calculating the IFOV of the thermal detector at any given 

distance. TOFV depends on the focal length or angular field of view of the camera lens.  

Figure 2.14 shows how IFOV is calculated at a given distance.  For example, for a 
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thermal camera with published spatial resolution of 0.002 radians the IFOV at 500-

meter distance would be: 0.002*500=1 meter.  

 

 

Image has been removed due to copyright restriction. 

 

Figure 2.13. low visibility in areas located 12km away from the 2006 Victorian Alps bushfire in Australia. Road 

travel in these areas will be hazardous due to low visibility. (Courtesy of Country Fire Authority- CFA, 

Melbourne). 

 

Different objects with various colours, shapes and sizes may appear in an airborne or 

space-borne image, some of these objects may be easily interpreted and identified by 

human brain while others may not.  Visual image interpretation is defined as a practice 

of seeing, identifying and communicating the information. Three important aspects that 

aid the visual interpretation of airborne or space-borne images are: the vertical 

perspective of features, frequent use of non-visible wavelengths for image collection  

 

 

 

Image has been removed due to copyright restriction. 

 

Figure 2.14. TFOV of a thermal camera sensor which effectively is the total projection of the camera sensor at 

given distance d, and IFOV is the field of view of a single detector component or pixel at that distance (Kaplan 

2007, p.41). 

 

and, finally, the scale and resolution of the features (Campbell and Wynne 2011). The 

experience of the image interpreter and image properties such as quality, texture, tone, 

shadow, pattern, association, shape and size are some of the main elements that 

contribute to successful visual image interpretation (Lillesand,  Kiefer and  Chipman  

2015, pp. 59-62). There are some other issues utilizing TIR or multi-spectral sensors 

for collecting, processing and analysing the collected data over a large area as follows.  

Low-cost TIR and multi-spectral cameras contain some undesirable anomalies such as 

horizontal banding noise and non-homogeneous radiometry (Fernández-Guisuraga, 

https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Thomas+Lillesand%22&source=gbs_metadata_r&cad=4
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Ralph+W.+Kiefer%22&source=gbs_metadata_r&cad=4
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Jonathan+Chipman%22&source=gbs_metadata_r&cad=4
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Sanz-Ablanedo, Suárez-Seoane and Calvo L., 2018). Additionally, to collect high-

spatial resolution TIR imagery, a large volume of raw data has to be captured, for 

instance using a low-altitude UAV to cover a large area. Handling, processing and 

managing this large volume of data is labour-intensive and requires powerful computer 

resources to generate the final usable multi-spectral data for further analysis. 

 

Figures 2.15.a and 2.15.b show two aerial images captured by ARA using a thermal and 

a DSLR camera simultaneously over the same area, in a clear smoke-free atmospheric 

conditions, to compare the effects of spatial resolution. Comparing these two images 

shows that due to the greatly coarser spatial resolution and black and white appearance 

of thermal image, the human brain can easily misinterpret the contents of the thermal 

image.   

 

 

                                 (a)                                                                            (b) 

Figure 2.15. (a) Grayscale image represents the temperatures of the objects captured using a FLIR thermal camera 

and (b) a true colour image captured by a Canon DSLR camera at 500-meter height.  

 

In remote sensing, in order to use multi-resolution and multi-source data, image fusion 

trajectory have been developed as part of digital image processing techniques to extract 

high quality information from imagery (Pohl and Genderen 2015). These techniques 

have been used by researchers to improve the spatial resolution of thermal images by 

merging information from another high-resolution image which is usually from the 
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visible part of the EMS. (Rodriguez et al. 2011; Zhao et al. 2013; Poujol et al. 2016). 

One of the main requirements for thermal image fusion is a good image registration 

between the high spatial resolution visible and the low spatial resolution thermal image. 

Since images are captured using two different sensors, feature matching between two 

sources can be challenging (Sonn, Bilodeau & Galinier 2013). For example, image 

fusion fails or gives very poor results if the visible image is covered by smoke and 

image visibility is degraded. Improving the scene visibility for the images captured by 

a single digital camera is discussed in the next section. 

 

2.7. Single image visibility enhancement  

Haze and Smoke in the atmosphere at the time of image acquisition, scatters or absorbs 

radiation as travels from ground objects to the sensors. These processes degrade image 

contrast and quality. Thus, identification of ground features becomes difficult and is 

sometimes impossible (Narasimhan & Nayar 2002). Over the past decades, many 

different approaches to minimize the effects of haze in visible imagery and enhance 

scene visibility have been developed, e.g., Vincent (1972), Chavez (1988), Guindon & 

Zhang (2002) and Fattal (2008).  

 

Liu et al. (2011) introduced a three-step haze removal technique from high resolution 

satellite imagery comprising haze detection, haze modelling and haze removal. In this 

method, a background haze thickness index is used to estimate relative haze thickness 

for haze reduction. This technique requires a clear region of the image without haze for 

calculating the background haze thickness. Human intervention is also required during 

the entire process using this technique.  He, Sun & Tang (2011) presented a new 

technique based on a dark channel prior method. They observed that in clear 

atmospheric conditions at least one colour channel of a captured image has some pixels 

with very low intensities. Their work was inspired by the dark object subtraction (DOS) 

method introduced by Chavez (1988) for correcting atmospheric scattering effects in 

optical data. The DOS method attempts to identify several pixels with very low 

reflectance. Due to the presence of haze, these identified pixels are not completely dark 
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and therefore their DNs are not zero and are considered as a measure of haze thickness. 

Assuming constant haze over the entire image, subtracting the haze thickness from 

initial image provides a haze-free image. He, Sun & Tang (2011) improved the DOS 

method by searching for dark objects in local and non-overlapping patches instead of 

the whole image. They showed that in an image covered by haze, the path radiance or 

amount of the light scattered by the particles contribute in estimated dark channel values 

which can then be used for estimation of a haze transmission map.  

 

Long et al. (2014) improved the speed and performance of He, Sun & Tang’s (2011) 

method by introducing a low-pass Gaussian filter instead of the initial soft matting 

method used by He, Sun & Tang (2011) to eliminate the halo artefacts and also verified 

that the dark channel prior method is a suitable technique in remote sensing. They 

collected one thousand haze-free remote sensing images and then calculated the dark 

channel images based on He, Sun & Tang’s (2011) method for each of them. The 

intensity histogram of the computed dark channels for all the sample images showed 

that the intensity of >74 percent of the pixels in the dark channels was less than 25; thus, 

confirming the validity of this method in remote sensing. Based on this, the pixels 

covered by haze will have higher intensity in areas with denser haze and this can be 

used for estimating the haze thickness over the entire image and restoring a haze-free 

image. 

 

In the last two years Zhai & Ji (2015) and Jiang et al. (2016) have developed new 

optimized methods for haze removal from a single image using a combination of 

techniques.  Zhai & Ji introduced a further scene transmission optimization compared 

to He, Sun & Tang (2011) by implementing a total variation (TV) regularization 

technique which is a common method in digital image processing for noise removal. 

TV-regularization is based on the principle that reducing the total variation of a signal 

with a close similarity to the original signal, removes unwanted noise and preserves 

important details (Rudin, Osher & Fatemi 1992).    

 



44 

 

Jiang et al. (2016) argued that because there is a high correlation between visible red 

and visible blue channel DNs under a clear sky condition, a direct line can be defined 

in two-dimensional blue and red space. The direction of this line depends on physical 

characteristics of the scene, such as, amount of haze. The amount of haze in any pixel 

has a direct correlation with its distance from this line, this makes it possible to estimate 

a haze map to be subtracted from the original image for haze-free image restoration. 

Figure 2.16 shows a sample image that partially covered by haze and optimized by this 

method. 

 

Image has been removed due to copyright restriction. 

 

(a)                                                                        (b) 

Figure 2.16. Efficiency of eliminating the haze from a single optical image (a) using the proposed method by 

Jiang et al. Because there are clear regions in the entire scene, the haze-free image (b) can successfully be 

restored (Jiang et al. 2016). 

In summary, He, Sun & Tang’s (2011) method is the most efficient way for single image 

haze removal and is commonly used as the basis for other related research for increasing 

scene visibility.  However, a basic requirement that is common to all of these methods 

is to identify the parts of the image with no or minimal haze contamination in order to 

estimate the haze map and restore the haze-free image. Therefore, if the entire scene is 

covered by smoke or haze, these methods would lose their effectiveness. If an area 

sensed is entirely covered by haze and there are no clear regions, the restored image 

using He, Sun & Tang’s (2011) method does not provide any additional details. 

 

2.8. Multi-image visibility enhancement 

In addition to single sensor image visibility enhancement discussed in the previous 

section, the use of multiple imagery has also been considered by researchers for scene 

visibility enhancement. Schechner and Karpel (2005) introduced a method for scene 

visibility enhancement by using a polarization filter on a camera that enabled it two 

images to be captured at different angles. The method is based on the fact that scattered 

atmospheric light is partially polarized, and by taking this into account the image 

formation process is modelled and used to invert the process and remove haze. Since 
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this method relies on the partial polarization of the atmospheric light, it will be less 

effective as the degree of polarization decreases. For example, it may fail in conditions 

of fog or dense haze. Liang et al. (2015) proposed a new method aiming at handling 

dense haze and optimizing scene visibility in which four images are collected at 

different polarization angles. However, polarized-based methods using two or more 

images from the same scene at different angles are not applicable for dynamic scenes 

in which haze particles move rapidly, such as bushfires, compared to the rotation speed 

of the polarized filter. 

 

Another approach to multi-image visibility enhancement is to use a pair of cameras, one 

acquiring NIR imagery and the other colour visible imagery. Because of relatively lower 

scattering of NIR radiation compared to visible radiation, NIR images can capture more 

details than a visible image in a hazy environment. This spectral difference property 

between two different images has been widely exploited in computer vision for 

improving image quality and eliminating haze effects. Schaul, Fredembach & Susstrunk 

(2009) showed that in outdoor photography using digital colour cameras, distant objects 

are usually blurred and hard to see. They proposed a solution in which fusion was 

applied to a pair of NIR and visible images based on a weighted least square 

multiresolution decomposition method. This method requires multiresolution fusion 

criteria for maximizing the contrast of each individual pixel to improve the haze effect. 

Feng et al. (2013) used the stronger penetration capability factor of the NIR light to 

minimize the scattering effect in visible light to unveil details of distant features in 

landscape photography. In their method, they used a pair of NIR and visible images. 

The NIR image was used to find clear regions of the image for haze thickness and 

atmospheric light estimation. They then used He, Sun & Tang’s (2011) developed 

method for estimating the haze thickness and path radiance. Vanmali, Kellar & Garde 

(2015) introduced an optimized method for removing the haze from a pair of visible 

and NIR image with less complexity and computation time compared to other proposed 

methods. They refined the dark channel prior method proposed by He, Sun & Tang 

(2011) to improve the accuracy of atmospheric light estimation. Figure 2.17 illustrates 
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results from the application of their method and shows the improvement in the contrast 

and in vivid colour perception. 

 

Image has been removed due to copyright restriction. 

 

Figure 2.17. Pairs of images that illustrate haze removal using Vanmali, Kellar & Garde’s(2015) method. The 

images on the left are hazy images and those on the right are the same images after the application of the method. 

(Vanmali, Kellar & Garde 2015). 

In the research on NIR-guided visibility enhancement, all of the methods proposed are 

based on a pair of NIR and visible image acquired simultaneously with the implicit 

assumption that the pair of images are well aligned and accurately co-registered. Image 

alignment is critically important in making sure that every pixel from one image is 

precisely aligned with the corresponding pixel in the other image. It is the main 

requirement before image fusion algorithms can be applied. These methods cannot be 

easily adopted and used in challenging environments with dynamic backgrounds 

caused, for instance, by the motion of smoke particles; or if the cameras or other sensors 

are mounted on moving platforms such as UAVs or manned aircraft.  Therefore, the 

following section reviews the possibility of collecting NIR data simultaneously with 

other visible bands without using multiple cameras. 

 

2.9. Spectral response of DSLR camera sensors 

With recent advances in optical sensor technology, high-resolution DSLR cameras that 

are deployable on manned and unmanned or any airborne and ground-based platform, 

are being increasingly used in remote sensing for applications that include 

environmental studies (Levin, Ben-Dor & Singer 2005), crop monitoring (Sakamoto et 

al. 2012), agricultural studies (Yang et al. 2014) and crop identification (Zhang et al. 

2016). These studies have shown that a DSLR camera can be used in collecting 

radiometric information that can be used in analysis for a range of environmental 

applications. Images captured by a DSLR camera have many advantages over satellite 

imagery such as lower cost, near-real-time data capture and higher spatial resolution. 

The sensors used inside DSLR cameras are either of the charge-coupled device (CCD) 



47 

 

or complementary metal-oxide-semiconductor (CMOS) types. These sensors collect 

true colour information by employing a Bayer filter which arranges RGB colour filters 

across the pixel array of the camera sensor and collects one of the three main colours 

for each pixel. The processor in the camera then applies various de-mosaicking 

algorithms and interpolates a co-registered red, green and blue values for each 

individual pixel. This is explained in more detail in section 4.3. The spectral resolution 

of a DSLR camera describes the relative efficiency of EMR detection by the colour 

filters used in the camera’s detector.  

 

Mangold, Shaw & Vollmer (2013) conducted a comprehensive study on the physics of 

NIR photography using DSLR cameras. DSLR camera sensors contain millions of light 

detectors made of silicon, which converts incident light to an electric signal. Silicon-

based detectors have a typical sensitivity response curve (Figure 2.18). This spectral 

response curve means that a typical DSLR camera has the potential to detect NIR 

radiation. They found that silicon-based DSLR camera sensors have high sensitivity 

from the visible to the NIR regions of the EMS (400 nm – 1100 nm). In human eye, 

stimulation of long, middle and short wavelength-sensitive cones with light generates 

the visual sensation. Because human visual sensation is limited to the visible regions of 

the EMS, the NIR part of EMR is usually blocked in DSLR cameras using an IR cut-

off filter so that image colours can match the human visual sensation. This cut-off filter 

does not alter the camera sensor’s sensitivity to NIR light but just filters out the 

incoming EMR in NIR region of the EMS. Therefore, if the cut-off filter is removed, a 

DSLR camera will capture an image that also contains the response of NIR radiation.  

 

 

 

Image has been removed due to copyright restriction. 

 

Figure 2.18. Typical sensitivity curve of a silicon sensor starting from 250 nm (UV) to above 1100 nm (NIR). S-

cones, M-cones and L-cones are respectively short, middle and long wavelength cones perceivable by humans 

from 400 nm – 700 nm (Sadeghipoor et al. 2013). 
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Indeed, Rabatel, Gorretta & Labbe (2011) showed that a DSLR camera sensor can be 

modified to simultaneously collect red and NIR light in one image by removing the NIR 

cut-off filter. They used the data obtained from the modified camera to calculate a 

normalized difference vegetation index (NDVI) for crop monitoring applications. 

Figure 2.19 shows spectral response of a typical DSLR camera sensor. It is clear that 

the sensitivity of each of the red, green and blue channels also encroaches into the NIR. 

Therefore, it can be argued that R, G and B respectively are in fact R+NIR, G+NIR and 

R+NIR.  By modifying the camera by adding a custom filter to block blue light, the NIR 

component of blue light would be collected in blue channel. This finding is an aid to 

designing custom filters with desired wavelengths for specific applications. Rabatel, 

Gorretta & Labbe (2011) obtained highly satisfactory results for computed NDVI 

values using a modified camera sensor and showed that a typical DSLR camera senor 

has more potential in remote sensing than simply obtaining photographs in the visible 

wavelengths.  

 

Image has been removed due to copyright restriction. 

 

Figure 2.19. The spectral response of red, green and blue channels of a typical silicon sensor used in DSLR 

cameras. (Rabatel, Gorretta & Labbe 2011). 

 

2.10.  Chapter Summary 

In this chapter wildfire formation, combustion stages and fuel types was reviewed 

followed by a discussion of smoke particulate components and techniques for detecting 

them. Smoke particle size and characterization methods were also discussed, and it was 

shown that incoming solar radiation can be partially scattered, absorbed or reflected and 

that the magnitude of EMR scattering is a function of morphological and optical 

properties of aerosols as well as total intensity of incident light, degree of polarization 

and the non-sphericity factor of particles.  

 

Multi-spectral and TIR imaging sensors mounted on various platforms such as satellites, 

manned or unmanned aircraft are subject to image visibly degradation due to the 
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presence of aerosols in the atmosphere. The visibility issue, caused by for instance 

wildfire smoke, is not noticeable in the SWIR and TIR region of EMS. However, 

although imaging cameras utilizing TIR or SWIR sensors can penetrate wildfire smoke, 

they are not capable of providing true colour, high-resolution images for detecting small 

targets such as people. In Section 2.3 the fact that although small UAVs by potentially 

fly at low altitudes to capture high-spatial resolution multi-spectral and TIR imagery 

was discussed. However, powerful computer resources and skilled operators are 

required to process the large volume of collected raw data to final deliverables for 

further analysis. Another issue in using TIR or SWIR imagery is their mono-colour or 

false-colour composite image outcomes. Although with image processing techniques 

such as image fusion and pan-sharpening using a pair of high and low-spatial resolution 

images it is possible to improve the quality of a low-resolution image, these techniques 

could fail to provide the outcomes required if the high-spatial resolution images are 

covered by smoke.  

 

Consumer-grade DSLR cameras can capture high-spatial resolution colour imagery but 

can be degraded by smoke particles if captured in an environment in which smoke is 

present. In Section 2.7 research on scene visibility enhancement using single colour 

images collected by DSLR cameras was reviewed. Attention was paid to the limitations 

of using a single image. Following that discussion, research on improving the visibility 

of a hazy image using multiple images, such as NIR and visible image pairs, from the 

same scene was reviewed. It was concluded that multi-image-based solutions require 

very careful image alignment and registration before further processing can be 

attempted, and that sometimes this will require special equipment and cameras. 

Therefore, they cannot be considered as an easy-to-use, practical solution, this leads to 

an unambiguous knowledge gap in studying feasibility of collecting high spatial-

resolution imagery over smoke-covered areas which is the focus of this thesis. 
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Research Design and Methods 
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 Research Design and Methods 

3.1. Introduction 

This chapter consists of two main parts, the first of which explains the main framework 

that was developed to address the research problem. The second part presents the 

approaches and methodologies that were applied. 

 

3.2. Main Framework 

Existing solutions and methods for penetrating smoke particulates in airborne remote 

sensing, as well as pertinent developments in different domains including image 

enhancement and haze removal methods were reviewed and discussed in the previous 

chapter. Although existing thermal or multi-spectral imaging sensors can penetrate 

smoke, the following problems were identified and highlighted in using such sensors in 

the context of this research: 

 

• Monochromatic imaging sensors often have a too coarse spatial resolution to 

identify small, important objects 

• When sensors are deployed on low altitude UAVs to address the spatial 

resolution issue, their effective ground coverage is relatively small due to the 

small FOV. Therefore, a very high number of images need to be collected to 

cover the entire scene which increases the required flight time 

• Complex post-processing requirements in terms of skilled operators and 

powerful computers with specialized image processing software tools are 

normally required to process and produce usable data from these sensors  

 

To recap from Chapter 1, following research questions were outlined:  

 

4. Can images acquired by DSLR cameras, after modifications to full spectra, 

penetrate smoke? This question emanates from the first objective.  
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Research Context 

Penetrating through smoke particulates using a consumer-grade 

DSLR camera 

 

5. Is it feasible to design an optical filter to minimize the scattering effect on DSLR 

camera images without compromising true-colour? This question emanates from 

the second objective. 

6. Can an image visibility enhancement algorithm be developed to improve smoke 

penetration from a modified camera setup? This question emanates from the 

third objective of this research. 

 

Based on these questions a research design framework was developed (Figure 3.1) 

which outlines the steps required to develop a new method to penetrate smoke 

particulates at fine spatial resolution in a non-monochromatic image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The research design framework, the numbers refer to the sections of this chapter. 

Research problem Research questions Research aims 

Camera modification (3.2.2) 

Optical filter design and test (3.2.3) 

Testing camera spectral responses (3.2.4) 

Data analysis and algorithm development (3.4) 

Synthesis and discussion 

M
eth

o
d
s  

Data collection (3.3) 

Hypothesis validation (3.2.1) 
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3.2.1. Hypothesis validation 

The very first action prior starting this research was to confirm the feasibility of the 

main hypothesis, which originates from the first and second research questions. 

Consumer-grade DSLR cameras are affordable and typically available with high-spatial 

resolution and large sensor size, i.e., a large ground footprint as opposed to TIR or multi-

spectral SWIR sensors. However as discussed in Section 1.3, the existence of substantial 

numbers of smoke particulates in atmosphere at the time of data capture, caused for 

instance by an active bushfire, can minimize the spatial resolution and visibility of the 

images captured by DSLR cameras. 

 

The spectral response of a typical DSLR camera sensor was discussed in Section 2.9 

and it was shown that the silicon-based sensors used inside these cameras are naturally 

sensitive to the visible and NIR part of EMS but, because of the fact that human vision 

is limited to the visible EMS, the NIR radiation is intentionally blocked by camera 

manufacturers. The filter used to block IR radiation is known as an IR cut-off filter. 

Many images have been captured by DSLR cameras over smoke but as explained above 

they contain no information at IR wavelengths and hence they not suitable for further 

analysis for this research. 

 

Required dataset for hypothesis validation must have these specifications: 

 

• Collected from a bushfire smoke area 

• Contain at least three main visible bands (400 -700 nm)  

• Contain at least one NIR band between 700 – 1100 nm  

 

For this purpose, following multi-sensor dataset was identified and sourced from ARA 

archive imagery which was captured over a bushfire using their research aircraft (Tables 

3.1 – 3.3): 
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• Hyperspectral aerial imagery captured by an AISA EAGLE (Specim Limited, 

Oulu, Finland) hyperspectral scanner with 244 spectral bands (400 nm – 970 

nm). 

• TIR images collected by an FLIR A615 (FLIR Systems, Inc. USA) thermal 

camera with 7.5 µm – 13 µm spectral sensitivity. 

• Optical images captured by a Canon EOS1D consumer-grade DSLR camera with 

three spectral bands (RGB from 400 nm – 700 nm)  

 

All of these images were captured simultaneously over the same area.  

 

Table 3.1 AISA EAGLE Hypesrspectral camera specifications   

Detector Type  Progressive scan CCD camera 

Spectrograph High efficiency transmissive imaging 

spectrograph.  

Spectral Range 400 – 970 nm 

Number of spectral bands 244 

Spectral sampling/band 2.3 nm 

Spectral resolution 3.3 nm 

Spatial Resolution 0.52m @1000m AGL 

Frame Rate  50 Hz 

Dynamic Range  12‐bit 

 

 

Table 3.2 FLIR A615 thermal camera specifications  

Detector Type  Uncooled microbolometer 

Image size  640 × 480 pixels 

Spectral Range 7.5 µm – 13 µm 

Spatial Resolution  1.3m @ 1000m AGL and 13mm focal length 

Detector Pitch  17 μm 

Frame Rate  50 Hz 

Dynamic Range  16‐bit 

Standard Temperature Range  ‐20°C to 2000°C  

Accuracy  ± 2°C or ±2% of Reading 
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Table 3.3 Canon EOS-1D camera specifications  

Detector Type  CMOS APS-H (27.9 x 18.6 mm) 

Spectral Range 400 – 650 nm 

Number of spectral bands 3 

Image Size 4896×3264 

Spatial Resolution 0.28m @1000m AGL and 20mm focal length  

Dynamic Range  12‐bit 

 

 

The AISA EAGLE hyperspectral camera utilizes a silicon-based imaging sensor, like 

that used in consumer-grade DSLR cameras but with narrower bands and higher 

spectral sensitivity. Data from the AISA EAGLE camera was processed and each 

individual band was analysed to examine the light scattering effects in visible (400 nm 

– 700 nm) and NIR (700 nm – 970 nm) wavelengths. For this process, accurate position 

and IMU data captured by RT4000 (Oxford Technical Solutions, Oxford, UK) inertial 

and dual-GPS navigation system used in NAVGRAPH software (Oxford Technical 

Solutions, Oxford, UK) were used for image geo-referencing. The geo-referenced 

imagery was used to analyse and simulate light scattering effects at different 

wavelengths. 

 

Images from the DSLR camera were used to study the effect of smoke particulates in 

the context of spatial resolution and how this can affect scene visibility spatially in 

automated image matching and feature detection applications. In this case 

PhotoScanPro ver. 1.4.4 (Agisoft LLC, St. Petersburg, Russia) was used for pixel 

correlation. Both TIR and DSLR imagery were captured with adequate overlap (> 70%) 

for geo-rectification and image mosaicking.  These data were collected over an active 

bushfire located 20 km north east of the Parafield Airport in South Australia (Lat: -34° 

42´, Long: 138° 50´) on November 2013 (Figure 3.2). 

 

The ECO-Dimona manned aircraft owned by ARA was flown at 600m AGL over a 130 

ha area. As mentioned earlier it was equipped with AISA EAGLE spectral imaging 
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senor, a FLIR A615 TIR camera and a Canon EOS1D optical DSLR camera. Figure 3.3 

shows the aircraft pod with ASIA EAGLE hyperspectral sensor and its storage unit.   

 

 

Figure 3.2 Green lines show the flight path of the ARA aircraft taking-off from the Parafield airport, flying over 

bushfire area in nine flight lines, and then returning to the airport (Courtesy of ARA and Google Earth). 

 

Figure 3.3. The AISA EAGLE hyperspectral sensor with high power data acquisition system and storage unit on 

ECO-Dimona aircraft pod. 
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The AISA EAGLE is a push broom scanner with a focal length of 17 mm and 1024 

spatial pixel counts with 2.3 nm spectral sampling per pixel. It can scan the ground 

across a flight line with 0.7 m-ground resolution at 1000 m altitude (AGL) collecting 

244 spectral bands per each pixel and up to 50 images per second. The spatial resolution 

of the data collected over the bushfire was 0.5 m at 600 m AGL with a swath width of 

410 m on the ground. In this camera, each band includes radiometric calibration 

metadata for computing radiance of the ground features using the CaliGeo program 

(Specim Limited, Oulu, Finland) as a plug-in to ENVI image processing software 

(Exelis Visual Information Solutions, Inc. USA). The FLIR A615 camera acquires data 

over a 640×480 pixel area at a focal length of 13.1 mm. It was used to collect TIR 

imagery simultaneously over the bushfire with 0.8 m-spatial resolution at 600 m AGL. 

The Canon DSLR EOS1D camera acquires a 4896×3264-pixel image and has a 20 mm 

focal length. It was used to collect RGB images (400 nm – 700 nm) at 20 cm image 

resolution over a 900×600 m ground coverage for each image at 600 m AGL. These 

datasets were processed radiometrically and geometrically in further analyses to 

simulate the smoke pentation capability of a silicon-based imaging sensor in the NIR 

region of EMS using ENVI image processing software. Chapter 4 will discuss the 

(satisfactory) outcome of this verification exercise and how it led into the modification 

a consumer-grade DSLR camera sensor to detect a full spectrum between 400 nm – 

1100 nm, and how a custom optical filter was designed to address the objectives of this 

research.  

 

3.2.2. Camera modification 

In Chapter 1 the light scattering effects of smoke, fog, haze and other particles in the 

atmosphere were discussed along with how they can potentially compromise the quality 

and visibility of digital images, particular reference was made to images captured by 

DSLR cameras. Rayleigh's scattering law states that the amount of radiation scattering 

by particles in the atmosphere is inversely proportional to the fourth power of 

wavelength, which means that the scattering effect is more apparent in the blue end of 
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the visible spectrum. In contrast, NIR is less scattered than visible radiation and as a 

consequence NIR images are less affected by smoke, haze and fog than RGB images.  

 

DSLR camera sensors are made of silicon, which is inherently sensitive to the visible 

and shortwave IR regions of the EMS between 400 and 1100 nm. The response curve 

of a silicon sensor is usually measured by recording the output from the sensor for 

illumination by EMR at a number of different wavelengths. Figure 3.4 shows a typical 

response curve plot of silicon sensors. 

 

Image has been removed due to copyright restriction. 

 

Figure 3.4. Spectral response curve of a typical silicon sensor (Darmont 2009). 

 

As discussed in Section 2.9, most DSLR cameras use a NIR cut-off filter, a so-called 

hot-mirror, in front of the sensor to prevent radiation between 700 nm – 1100 nm 

contaminating the visible (400 nm – 700 nm) image. However, the camera’s spectrum 

can be easily modified by removing the cut-off filter. Modifying the camera and 

enabling it to capture NIR light was an essential step toward achieving objectives of 

this research. The camera modification for this research was conducted by an optical 

and laser manufacturing company (Maptek Pty Ltd. SA, Adelaide). The modification 

involved removing the IR filter and replacing it with neutral glass which made it 

possible to take advantage of the full EMS region of the silicon sensor and enabled the  

desired EMR wavelengths to pass through the lens using screw-in optical filters in front 

of the camera lens. The reason for using a neutral glass as a replacement for the hot-

mirror filter was to avoid altering the lens focal length. This modification (Figure 3.5) 

can be commonly done for any DSLR camera by certified technicians at a reasonably 

low cost.   
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Image has been removed due to copyright restriction. 

 

Figure 3.5. Removing the hot-mirror filter from a DSLR camera sensor (Kolarivision 2017). 

  

 

With the DSLR camera modified to full spectra (200 nm – 1100 nm, i.e., parts of the 

ultra-violet, visible and NIR spectra), external screw-in optical filters can be used to 

selectively filter UV, visible and SWIR radiation to capture required wavelengths. 

Before discussing the methodology used in external filter design, the internal 

components of a typical consumer-grade digital camera are illustrated at Figure 3.6.  

 

Image has been removed due to copyright restriction. 

 

Figure 3.6. Components of a digital camera sensor (Golowczynski 2016). 

 

The items labelled in Figure 3.4 are: 

 

A – Bayer filter array 

Most consumer-grade digital cameras use the Bayer filter array for colour 

determination.  

B – Anti-aliasing filter 

Determines the frequency of light passing through and normally results in minor 

blurring of the image, though it prevents the aliasing effect or the distortion of 

pixels. The blurring effect typically is rectified by manufacturers using a 

sharpening filter. 

C – Infrared cut-off filter (hot mirror) 

A cut-off or hot mirror filter is located in between the lens and the anti-aliasing 

filter that blocks the NIR radiation and only allows visible radiation to pass 

through to the sensor.  
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D – Charge pump circuit 

Charge pump circuit enables signal amplification at each pixel location and 

converts charge to voltage. 

E – Pixel 

When radiation falls onto a camera sensor, pixels measure the amount of light 

(photons) and release electrons from the silicon, which creates a charge at each 

photosite. 

F – Microlenses 

Microlenses increase the sensitivity of the sensor by funnelling light into each 

pixel.  

G – Black pixels 

There are some pixels on the sensor that are not exposed by radiation and are 

typically shielded from light. This allows the camera to measure the amount of 

dark current during an exposure with no illumination and enables the camera to 

estimate how much dark current has built up in the active pixels. Therefore, by 

subtracting this value from them, the amount of noise in the image captured can 

be reduced. 

 

3.2.3. Optical filter design and spectral response test 

There are commercially available optical filters used in photography that allow visible 

light in a specific region of spectrum to pass through the filter while wavelengths are 

blocked. A custom-filter was required for this study as it had to transmit blue and green 

light (450 – 600 nm), filter red and some portion of the IR (600 – 950 nm) and pass 

anything > 950 nm. This filter was custom made for this research project by 

Wavelength-Tech (Wavelength Opto-Electronic Pte. Ltd., Singapore) in January 2015 

and took six months to build as a separate production line had to be developed by 
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Wavelength-Tech with the result that the filter was almost ten times more expensive 

than a typical optical filter. The custom-made filter was delivered in July 2015 and a 

series of spectral analyses using a FieldSpec4® Hi-Res ASD was conducted to validate 

its spectral response. Table 3.4 shows the technical specification of this spectrometer. 

For these tests, a white panel and nine other different materials (Table 3.5) with various 

spectral responses were selected and used with and without the custom-designed filter 

to measure their spectral signature. Spectral response curves from this experiment 

compared against each other to verify the spectral response of the filter. Chapter 5 will 

discuss these experiments and the results in more details. 

 

Table 3.4 FieldSpec4® Hi-Res ASD technical specification  

Wavelength  350 – 2500 nm 

Resolution 3 nm @ 700 nm and 8 nm @ 1400/2100 nm 

Scanning time 100 milliseconds 

Wavelength accuracy 0.5 nm 

Channels 2151 

VNIR detector (350-1000 nm) 512 element silicon array 

SWIR1 and 2 detectors (1001-1800 nm) & (1801-2500 nm) 

Graded Index InGaAs Photodiode, TE Cooled 
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Table 3.5. Target materials used for measuring the response curve of the custom-

designed spectral filter. 

Target name Type of material 

White panel with 100% reflectance  polytetraflouroethylene (PTFE) and 

cintered halon 

Brick Brown clay 

Concrete  Grey concrete pavier  

Steel Galvanized iron sheet 

Garden Mulch Milled pine 

Green Leaves Eucalyptus sp.  

Marble Grey Purbeck Marble 

Sand Beach sand 

Timber Cedar construction timber 

Tree Bark Eucalyptus sp. bark 

 

 

3.2.4. Camera response test methodology  

Considering the design principles of the filter it was anticipated that it would allow 

natural colour images to be captured when used with the modified camera. Number of 

photographs were captured with the modified camera equipped with the custom-

designed filter and compared with the photographs captured by a non-modified 

consumer-grade camera from the same scene. The results were satisfactory, and the 

camera-and-filter combination produced acceptable colour images compared to a non-

modified DSLR camera, even after the visible red has been blocked and replaced with 

NIR radiation between 950 nm – 1100 nm.   

 

In addition to visual comparisons between photographs, further tests were carried out 

with the FieldSpec4® Hi-Res ASD spectrometer in a laboratory environment under 

controlled lighting conditions using homogenous black, grey and white cards (Figure 

3.7) with uniform reflectance. These cards have very low, medium and high light 

reflectance factors that allow the full reflectance characteristics of the camera sensor 

to be investigated.  

https://en.wikipedia.org/wiki/Purbeck_Marble
https://en.wikipedia.org/wiki/Purbeck_Marble
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Image has been removed due to copyright restriction. 

 

Figure 3.7. Black, white and grey targets used for studying the reflectance characteristics of the camera 

(Courtesy of Mikonava.com). 

 

Images collected from these three targets were analysed in Photoshop CC2015 to 

extract their digital numbers (DN) and were compared to the corresponding DN values 

obtained using the FieldSpec4® Hi-Res ASD spectrometer from the same targets using 

a bivariate linear regression model.  Since the camera consists of three bands each with 

a 100 nm range (400 nm – 500 nm, 500 nm – 600 nm, 600 nm – 700 nm), the 

FieldSpec4® Hi-Res ASD output were statistically standardized to 1 nm intervals to 

sample every 100 readings to make the comparison with the corresponding bands of 

the camera (cf. Section 6.2.1). 

 

 

3.3. Data collection instruments 

In previous sections of this chapter, the methods used to design a custom spectral filter 

and modify a DSLR camera were introduced. In this section the data collection methods, 

materials, hardware and software tools are discussed. As discussed in Section 3.2.1 an 

archive multi-sensor data acquired over a bushfire were collected from ARA. These 

were used for initial analyses and hypothesis validation. To study and analyse imagery 

from the combination of camera-and-filter three datasets were collected (Table 3.6): 

 

 

 

• The first was collected by taking hand-held photographs from a small burn-off 

area on October 2015.  

 

• A second set was gathered by collecting airborne data over a prescribed burn on 

November 2016. Controlled burning or burning-off is a common practice on 

Australian farms for disposing of agriculture and forestry waste or reducing the 
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bushfire hazard and generates substantial amount of smoke. There are stringent 

safety regulations in Australia for controlled burns, the area must be cleared for 

four meters and a person must attend all times with enough water available to 

readily extinguish the fire (CFS n.d.).  

 

• A new series of data were collected from a large prescribed burn area on March 

2018 in Belair National Park on the fringes of South Australia (SA) (Figure 3.8). 

The prescribed burn carried out by Department of Environment and Water 

(DEW) as part of the Mount Lofty Fire Cooperative Prescribed Burn Program 

and affected about 7 hectares of the national park. The delivery of the prescribed 

burning program in the Mount Lofty Ranges is organized by the Mount Lofty 

Ranges Fire Cooperative in collaboration with representative and volunteers 

from Country Fire Service (CFS), DEW, Forestry SA and SA Water. The aim of 

this burn was to minimize potential bushfire fuels in the area to protect 

communities and also for ecological reasons such as regeneration of plant 

species. Entire prescribed burn operation took about 8 hours with significant 

smoke column developed during the burn which was visible in nearby areas 

several days after that.      

 

 

 

 

 

 

 

Table 3.6 summarizes the data collection details with exact location.  

 

Table 3.6. Data collection methods, sensors and details of burns. 

 Camera Type and 

Model 

Spectral 

Filter 

Geographic 

coordinates 

Burn type 

and 

materials 

Date 
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of the test 

area 

Archive 

data 

collection 

AISA EAGLE hyper 

spectral camera, 

FLAIR A615 and 

CANON EOS 1D 

(c.f. section 3.2.1) 

NA -34.7171, 

138.8311 

Natural 

Bushfire 

13 

November 

2013 

Ground 

data 

collection 

Modified Sony 

DSLR RX1 400-

1100 nm, 

6000*4000 pixel, 

35mm-focal length 

lens 

Custom-

designed 

filter  

-34.7667, 

138.7703 

Agriculture 

and 

forestry 

waste 

disposal 

26 October 

2015 

Aerial data 

collection 

Modified Canon 

DSLR EOS 6D, 400-

1100 nm, 

5472*3648 pixel, 

50mm focal length 

lens 

Custom-

designed 

filter  

-35.1051, 

138.7867 

Prescribed 

burn  

30 

November 

2016 

Ground 

data 

collection 

Modified Canon 

EOS 6D 1100 nm, 

400-1100 nm, 

5472*3648 pixel, 

50mm focal length 

lens 

Custom-

designed 

filter  

-34.7667, 

138.7703 

Agriculture 

and 

forestry 

waste 

disposal 

18 March 

2018 
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Figure 3.8. Safety briefing before starting control burn (top image) and collecting ground-based photos from 

burn area (bottom image) in Belair National Park, South Australia 18 March 2018. 

 

 

For the aerial data collection, the camera-and-filter combination was mounted in an 

underwing pod of one of the ECO-Dimona aircraft owned by ARA. The pilot on this 
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flight was my co-supervisor Assoc. Prof. Jörg Hacker. I accompanied him in the second 

seat (Figure 3.9) and aircraft flight altitude was 600 m AGL.  

 

 

(a) 

 

(b) 

Figure 3.9.(a) The ECO-Dimona aircraft before take-off for aerial data collection equipped with the proposed 

modified camera and custom-designed filter, (b) The camera setup in an underwing pod. 
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3.4. Data analysis and image processing methods 

To address the issue of reduced image visibility and clarity under hazy conditions 

several haze and atmospheric correction methods have been introduced over the past 

two decades (cf. Sections 2.7 – 2.8). These methods are based on the principle of dark 

object subtraction in which the darkest pixels in the image are identified and spatially 

homogeneous haze is reduced by subtracting a constant value corresponding to the dark 

pixels identified This technique has been optimized by later researchers. 

 

In this research, a new method for removing the smoke effect in the photos captured 

using custom-designed filter and camera system has been developed (Figure 3.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Image processing steps for minimizing the smoke effect. 

 

As illustrated in Figure 3.10, the technique first builds up the image density for the 

visible blue and green channels using the NIR channel and then implements the 

atmospheric correction based on an improved dark object subtraction method in which 

very low intensity pixels in local patches across the image are identified. In an image 
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covered by smoke, the dark pixels provide an estimation of the smoke transmission and 

modelling. This allows a high-quality smoke-free or a minimal smoke image to be 

recovered. Algorithm development and its implementation was done in C-Sharp 

(Microsoft Corporation, US. 2015). Chapter 7 will discuss this in detail with 

experiments conducted and the results acheived. 

 

3.5. Chapter Summary 

In this chapter, the framework of this research was introduced; the methods for data 

collection and analysis were explained and the instruments and software utilized were 

discussed.  Initial research design was based on analysing evidences to confirm 

feasibility of the research objectives. This was conducted by examining an archive of 

multi-sensor imagery from a bushfire to simulate and study light scattering effects on 

the visibility at specific wavelengths. DNs of selected regions covered by smoke in 

archived imagery were further analysed with image processing software to validate the 

main hypothesis of this research.  

 

Although the camera modification made is a known modification that has been widely 

been implemented in variety of applications, this was a necessary component of this 

research therefore its modification methods are briefly discussed. After camera 

modification, the specifications of a custom-filter to selectively transmit specific 

regions of EMS to the camera sensor was discussed, and the methods and materials used 

for analysing camera and filter spectral responses were further elaborated.  

 

For this research, data collection had to be conducted in bushfire or similar situations 

where there was smoke in atmosphere. Given the fact that there are highly restricted 

fire ban seasons in South Australia, organizing an experiment in the open to generate 

smoke from a controlled fire was logistically complicated. Therefore, the research 

capitalised on a natural bushfire in November 2016 that I was able to overfly using one 

of ARA’s research aircraft to collect some aerial data using the modified camera and 

filter combination. In addition, collection of ground photography of a controlled burn 
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area in natural woodland vegetation was organized with the state CFS as part of the 

Mount Lofty Fire Cooperative Prescribed Burn Program to collect data from the 

controlled burn in Belair National Park early in 2018.   

 

Finally, data analysis and the workflow for designing a smoke penetration algorithm 

(SPA) were discussed. The next chapter will examine how the archive data collected in 

2013 were used to validate the research objectives.  
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Chapter 4 

Hypothesis Validation  
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 Hypothesis Validation 

4.1. Introduction 

This chapter attempts to examine and validate the main hypothesis of this research 

which emanates from the first research question. As discussed in Section 3.2.1, three 

types of archive airborne data were accessed and post-processed for this purpose. These 

data were collected simultaneously over a bushfire using an AISA EAGLE hyper-

spectral push-broom scanner, a FLIR A615 TIR camera and a Canon EOS1D consumer-

grade DSLR camera.  

 

The AISA EAGLE data were acquired between 400 nm and 970 nm in 244 narrow (2.3 

nm) spectral bands and were a vital component in simulating light scattering effect at 

those wavelengths.  The wavelength range of this sensor is very close to that of a typical 

consumer-grade DSLR camera but with higher spectral sensitivity. In addition, with a 

combination of bands from the AISA EAGLE imagery it was possible to form a colour 

composite image and study the visual appearance of the resulting image. In this chapter 

data processing and analysing details used for each of hyperspectral, TIR and DSLR 

archive imagery are discussed.  

 

4.2. Hyperspectral data pre-processing  

Figure 4.1 shows how an AISA EAGLE hyperspectral camera scans the ground across 

flight path with its 1024-pixel spectrograph each with 244 bands and 2.3 nm spectral 

sampling.  Geo-referencing and radiometric calibration need to be applied to pushbroom 

hyperspectral imagery to prepare them for further analysis. In airborne pushbroom line 

scanning sensors the image is built line by line using a linear array of CCD detectors 

perpendicular to the flight line as aircraft moves forward. Every pixel of a given line 

has its own position and orientation in sensor-space and must be transformed to the 

object space by geo-referencing. Geo-referencing of pushbroom imagery is more 

complicated than for frame-based imagery as it requires instantaneous attitude and 

accurate position at each line of captured imagery. Therefore, a precise GPS/IMU 
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system is required onboard the aircraft to determine these parameters. GPS and IMU 

systems must be fully integrated with the hyperspectral sensor with precisely 

synchronized timing for each scanned line. Figure 4.2 shows the procedures required 

for post-processing and preparing the pushbroom hyperspectral imagery. 

 

 

Image has been removed due to copyright restriction. 

 

 

Figure 4.1. ASIA EAGLE hyperspectral camera scans the ground objects across direction of flight using a 

spectrograph with 1024 pixels and 244 band per each pixel from 400 nm (Blue) to 970 nm (NIR). 

(Geoinformatics 2018) 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. ASIA EAGLE hyperspectral data processing workflow.  
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The raw data from AISA EAGLE are typically stored as a pair of ENVI BIL format 

including ‘. raw’ and ‘.hdr’ files (Sensors 2018). The radiometric calibration normalizes 

the data to remove internal electrical system noise (Oppelt and Mauser 2007) and 

transforms the DN numbers to physical radiometric values or radiance (Warren, Taylor, 

Grant and Shutler 2014).  

 

Accurate position and orientation data was captured by a RT4000 inertial and dual-GPS 

navigation system with 250HZ position and attitude output supplied by Oxford 

Technical Solutions, Oxford, UK. The RT4000 GPS/IMU system was connected to the 

AISA Eagle camera to time-tag the beginning of each line acquisition with GPS time. 

These raw GPS data were post-processed using a PPP (Precise Point Positioning) 

technique in NAVGRAPH software (Oxford Technical Solutions, Oxford, UK). This 

technique removes GNSS system errors and provides sub centimetre positioning 

accuracy. Any minor angular error in accurately aligning the GPS/INS system and the 

hyperspectral camera, which is known as boresight miss-alignment, could cause a 

significant error depending on the distance between the camera and the ground. The 

RT4000 GPS/IMU system was precisely aligned and calibrated with the AISA EAGLE 

camera by ARA engineers.  

 

Using accurate position and orientation data every individual scanned line was geo-

referenced and geo-rectified utilizing a 1" global digital elevation model (DEM) in 

ENVI software. DEM is not essential as ENVI software can use an ellipsoid surface for 

geo-rectification, but this would cause a large error in mountainous and hilly terrain 

without accurately projecting the image pixels to the ground surface. Using the dark 

subtraction method (Chavez 1988), atmospheric correction was applied in ENVI 

software to remove the effects of atmospheric scattering before producing the geo-

referenced and calibrated hyperspectral data (Figure 4.3). 
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Figure 4.3. (a) Data collected by AISA EAGLE data and a spectral response curve before geo-referencing and 

radiometric correction, (b) Image and spectral reflectance curve after applying radiometric correction and geo-

referencing. After applying corrections, the spectral reflectance at >750 nm is improved, this indicates the 

effectiveness of applying atmospheric corrections in reducing smoke scattering effect.  

  

Figure 4.4 shows the hyperspectral orthomosaic as a three-band true colour RGB 

composite image (400 nm – 700 nm). This image shows how smoke plumes from 

bushfire obscure scene visibility. 
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Figure 4.4. Orthorectified AISA EAGLE hyperspectral data produced as a true colour composite image and 

overlaid on Google Earth imagery. Smoke plumes are visible and obscure the ground view. 

 

4.3. Thermal and DSLR image processing: 

Collected TIR imagery using a FLIR A615 thermal sensor with 14-bit raw DNs, which 

represent at-sensor radiance, were processed with ENVI image processing software and 

stored as 16-bit ENVI single band files. A set of quick overview images in JPG format 

were created simultaneously to visually check of image quality. Since the DNs do not 

cover the full 14-bit dynamic range, a contrast stretch was applied to the TIR imagery. 

A linear contrast stretch was applied based on maximum and minimum threshold of the 

histogram to cover full dynamic range of the scene.  A custom developed TIR image 

processing script by ARA was used in ENVI to create a file containing the TIR frame 

number and the frame time in seconds to three decimal places. It uses the lens and 

camera model file with GPS/IMU navigation data as well as a DEM model to geo-

rectify and mosaic the TIR imagery (Figure 4.5).  After mosaicking, DN values were 

converted to absolute temperatures in ENVI software based on the empirical line 

correction method (Smith and Milton 1999).  

 

https://www.tandfonline.com/author/Smith%2C+Geoffrey+M
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Figure 4.5. Orthorectified TIR imagery from a bushfire with transparent smoke plumes, overlaid on GoogleEarth. 

It illustrates heat distribution as a grayscale image where black to white colours with various levels of grey in 

between represents the temperature difference. In this image bright pixels show the hot spots or flaming fire. 

 

Thermal imagery represents the level of radiated heat from objects and as a result the 

distinction between fine ground features is challenging. Due to the small sensor size a 

of a thermal camera and relatively small ground coverage of a single image, a large 

number of overlapping photographs need to be collected and mosaicked to cover a large 

area. A typical workflow for image mosaicking starts with aerial triangulation and pixel 

matching between overlapping photographs, which is required to establish geometrical 

relationships between multiple imagery. A fully automatic pixel matching process 

extracts common features and key points to match images.   

 

Since none of the thermal, DSLR and hyperspectral camera sensors that had been used 

to acquire the images in the archived dataset were mounted on a stabilized camera 

mount, forward and sideways motion of the aircraft at the time of exposure had some 
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impact on the pixel quality and image geometry.  The resulting motion blur effect can 

be calculated using the equation 4.1 (Chabok  2013). 

 

b =
𝑣 × 𝑡 × 𝑓

c × h
 × 1000                     Equation 4.1 

 

                      

 

where  

 

l = motion size in pixel  

v = ground speed in km/h at the time of exposure 

t = exposing time in seconds 

f = focal length in mm  

h = flying height above ground in meter  

c = camera sensor pixel size in micron 

 

This values of b for the thermal and DSLR imagery are therefore calculated using 

equation 4.2 as follows: 

 

b _thermal =
180 × 0.01 × 24.5

600 × 17
× 1000 = 4.3 𝑝𝑖𝑥𝑒𝑙𝑠 

 

 

 

b _DSLR =
180 × 0.001 × 50

600 × 5
× 1000 = 3 𝑝𝑖𝑥𝑒𝑙𝑠 

 

 

Those numbers show that during the exact exposure time aircraft motion will have 

caused a 4.3-pixel blur for thermal imagery and a 3-pixel blur for the DSLR camera 

image. Image quality will be degraded accordingly. This motion also creates a 

geometrical instability over the entire frame (Figure 4.6) which is elaborated in more 

detail in Appendix 3. 

 

Figure 4.6. (a) shows image pixels as regular grid without any camera motion and (b) illustrates how pixels can 

be randomly distorted due to the camera motion (Chabok 2013). 
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These effects degrade the spatial resolution of any imagery acquired and also influence 

the quality of pixel matching and image mosaicking which is more sensible for thermal 

imagery than DSLR. Images from the DSLR camera were processed using PhotoScan 

software and key points representing common pixels in overlapping images were 

extracted.  Figure 4.7 shows three overlapping images with extracted key points in blue 

dots. Areas covered by smoke do not contain any key points as the pixel quality in those 

areas are greatly degraded. 

  

 

 
Figure 4.7. Pixel correlation and key points extraction on three overlapping DSLR camera images captured over 

a bushfire smoke.  

 

Orthorectification and mosaicking of these images requires a 3D elevation model 

(DEM) which can be either reconstructed from the same frames or an existing DEM 

model can be used. In this research, a DEM model was generated using the same image 

frames in PhotoScan. To generate a DEM model, PhotoScan uses pair-wise depth map 

reconstruction that computes relative depths for each pixel of an image and generates 

dense point clouds (Aiger, Mitra & Cohen-Or 2008).   

 

Dense point clouds generated from the images used at previous step included many 

noises and outliers around smoke area caused by smoke particulates. These data were 

visualized in 3D in PhotoScan to highlight the noise and artificial objects (Figure 4.8). 
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Figure 4.8. Smoke particulates effect on image matching and generating dense point clouds. Grey artificial 

points on the left and in the centre show noises caused by smoke particulates. 

 

These point clouds used as a basis for DEM generation in PhotoScan for image 

orthorectification. Final mosaicked image contained a gap as per illustrated in Figure 

4.9 because of unsuccessful image matching around smoke area. 

 

 

 

Figure 4.9. Smoke particulates effect on mosaicking DSLR camera imagery which creates a large data gap (grey 

pixels) in the centre of the image. 

 

 

4.4. Smoke penetration analysis on hyperspectral imagery 

Orthomosaiced hyperspectral data from AISA EAGLE sensor was analysed in ENVI 

image processing software at each individual wavelength from 400 nm – 970 nm to 

study the effect of light scattering on image visibility. Figure 4.10 shows an area 

covered by smoke in hyperspectral imagery at different wavelengths and how image 

visibility is enhanced with an increase in the wavelength. For illustration purposes only 
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20 subsets of 244 are displayed in Figure 4.10, however all of the 244 bands were 

analysed in ENVI software to study smoke visibility effect at different wavelengths. In 

these images, 24 randomly selected pixels were identified in areas completely covered 

by smoke, which are marked as red crosses in Figure 4.10. Statistics of the DNs for 

these points were computed in ENVI for each of the 244 individual bands. Table 4.7 

summarises these statistics in terms of minimum and maximum values and means and 

standard deviations. 

 

Figure 4.10 Twenty subsets of AISA EAGLE hyperspectral image between 400 nm to 970 nm. It is clear that 

image visibility improves as wavelength increases. Red crosses indicate where DNs were extracted for each 

individual band (see Table 4.7). 

 

The hyperspectral camera data were extremely useful in visualizing light scattering 

effects at different wavelengths and informed the design of an optical filter to block and 
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transmit specific regions of EMS to meet the objectives of this research. A visual 

inspection of wavelengths shows that starting from about 750 nm onwards smoke 

particulates become ‘transparent’ and that this effect is more pronounced above 900 

nm. To identify this inflection point the spectral profile of the selected points (cf. Table 

4.7) were plotted (Figure 4.11). 

 

Table 4.1 Statistical summary of the reflectance values for highlighted pixels in Figure 4.10  

Band  Min Max Mean Std Dev 

400 – 450 nm  0.0650 0.1136 0.0983 0.0112 

450 – 475 nm 0.0983 0.1730 0.1517 0.0159 

475 – 500 nm 0.1061 0.1962 0.1709 0.0191 

500 – 525 nm 0.1007 0.1895 0.1647 0.0186 

525 – 550 nm 0.0986 0.1951 0.1705 0.0200 

550 – 575 nm 0.0895 0.1827 0.1608 0.0197 

575 – 600 nm 0.0846 0.1777 0.1571 0.0199 

600 – 625 nm 0.0727 0.1618 0.1418 0.0191 

625 – 650 nm 0.0657 0.1511 0.1298 0.0183 

650 – 675 nm 0.0627 0.1449 0.1261 0.0182 

675 – 700 nm 0.0606 0.1332 0.1157 0.0160 

700 – 730 nm 0.0629 0.1194 0.1064 0.0128 

730 – 760 nm 0.0370 0.0627 0.0565 0.0060 

760 – 790 nm 0.0792 0.1384 0.1244 0.0137 

790 – 810 nm 0.0586 0.1021 0.0896 0.0095 

810 – 850 nm 0.0677 0.1145 0.1008 0.0106 

850 – 890 nm 0.0697 0.1163 0.1012 0.0103 

890 – 910 nm 0.0531 0.0792 0.0709 0.0066 

910 – 940 nm 0.0256 0.0372 0.0329 0.0030 

940 – 970 nm 0.0614 0.0926 0.0810 0.0074 

 

 

This analysis was computed using data from the 24 randomly distributed points above 

smoke-affected region for 244 bands. Table 4.1 shows minimum and maximum 

reflectance value for the selected points with the mean and standard deviation. The 

standard deviation decreases as the wavelength increases which indicates lower 

reflectance at higher wavelengths. To better demonstrate this effect a spectral profile of 

the selected pixels using ENVI software was generated (Figure 4.11). A lower 

reflectance shows that smoke has minimal effect on pixel values which only happens at 
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wavelengths beyond 950 nm, i.e., when the smoke is ‘transparent’. Therefore, this 

wavelength was selected as the lowest infrared wavelength at which EMR would be 

transmitted in the custom-designed filter to be used in this research (Section 5.2).   

 

 

Figure 4.11 Spectral profile of the highlighted pixels in Figure 4.7 from 400 to 970 nm for 244 bands. From 400 

to 700 nm there is a high reflection caused by smoke particulates whereas from 700 to 950 nm this reflection 

decreases and gets minimal beyond 950 nm wavelength. 

 

4.5. Chapter Summary 

Multi-sensor airborne data from a bushfire in the ARA image archive, which included 

multiband hyperspectral, single-band thermal and three-band optical DSLR camera 

imagery, was explored to study the feasibility of achieving the objectives of this 

research and also to validate the main hypothesis.  

 

The post-processing steps were undertaken to prepare these sensor data for this analysis 

were discussed and it was concluded that although thermal imagery penetrates smoke, 

there are some issues that need to be addressed. First, for large areas many images would 

need to be collected to create a uniform mosaic due to the small ground coverage of a 
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single thermal image. Second, monochromatic pixels coupled with pixel blur caused by 

aircraft motion can affect image matching techniques and can degrade the spatial 

resolution. For DSLR camera imagery, the presence of smoke caused a data gap in 

image mosaicking with was accompanied by artificially created noise.   

 

The hyperspectral pushbroom scanner image did not have any of these issues because 

of its integrated onboard direct geo-referencing which created a large mosaic for the 

entire bushfire area after image orthorectification and radiometric correction. The geo-

rectified image from the hyperspectral sensor was used to analyse smoke transparency 

at wavelengths from 400 nm to 970 nm.  A statistical summary of spectral reflectance 

values for distributed pixels spread across a selected region of the hyperspectral image, 

that was completely covered by smoke, was computed for all 244 bands. By comparing 

the standard deviation of the reflectance values, significant improvements in image 

visibility and low reflectance were found at wavelengths > 950 nm.  

 

From these analysis from ARA archive data it can be posited that using a DSLR camera, 

which also has a silicon-based sensor with 400 – 1100 nm wavelength sensitivity, it 

may be possible to penetrate smoke as was the case with these hyperspectral images. 

This analysis also validates the main hypothesis. However, to accomplish this 

modification to a consumer grade DSLR is required and a custom-filter has to be 

designed to selectively transmit IR light above 950 nm in one of the selected bands of 

the DSLR camera sensor. The next chapter will discuss design criteria for this and how 

a specific band was selected to collect IR light, along with the results of the performance 

tests of the custom-designed filter.  
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Chapter 5 

 

Optical Filter Design and Evaluation 
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 Optical Filter Design 

5.1. Introduction 

In 1802, Thomas Young suggested that colour vision is a result of activities of three 

distinct receptors in the brain and that the eye contained different wavelength-sensitive 

cells. Helmholtz developed Young's hypothesis and showed that the cone receptors of 

the eye were either short wavelength (blue), medium wavelength (green) or long 

wavelength (red). He additionally suggested that the quality of the detected signals by 

the receptor cells influences the brain in colour interpretation. Helmholtz found that 

people with ordinary colour vision require three wavelengths of light to see serious of 

colours. He found that people could not recognize the colours if they only used two 

wavelengths (Goldstein 2009). 

 

Based on Helmholtz finding, at least three wavelengths of light have to be transmitted 

directly or via an optical filter to the camera sensor, so it can form a recognizable colour 

image for human eyes. A typical DSLR camera image sensor contains an array of 

photosensitive components that form detector arrays (cf. E in Figure 3.6). These arrays 

collect light (photons) from a scene and convert them into an electrical signal, which is 

digitized and processed. Each pixel must contain three primary colours to generate a 

colour image. Bayer (1970) showed that a colour filter array (CFA) pattern allows the 

formation of all the colours of a scene captured by a single photograph. This CFA 

pattern (cf. A in Figure 3.6) is known as a ‘Bayer pattern’ and is used in most consumer-

grade digital camera systems. After an image has been captured, each pixel only 

contains single colour information. However, information for all three primary colours 

is needed to construct a colour image. The missing information is interpolated using the 

information collected by the neighbouring pixels. The colour interpolation process 

constructs a natural colour image, the quality of which depends on the spectral 

characteristics of the optics, quantum efficiencies of the sensor and filters (OnSemi 

2015). The quality of the final image depends on the interpolation algorithm used. 
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Because the blue and green bands in a typical CMOS sensor can potentially sense NIR 

radiation, once the camera is modified to capture full spectra, the wide dynamic range 

of NIR (700 nm – 1100 nm) will strongly contaminate the blue, green and red channels. 

Figure 5.1 shows how blue, green and red channels are sensitive to NIR radiation with 

varying spectral sensitivity, this will cause a red appearance in the image captured. 

Figure 5.2 shows two images captured by a non-modified and a modified consumer-

grade DSLR camera and how the resulting image after modification is affected by NIR 

radiation. To avoid this effect in this research, a custom optical filter was designed to 

only allow radiation of λ >950 nm to pass through it. This NIR range (950 nm – 1100 

nm) has a very low Quantum Efficiency (QE). The fraction of photon flux that 

contributes to the photocurrent arrays in a camera sensor is known as QE (Fowler et. al 

1999). This low QE minimizes the effect of NIR light in the blue and green bands. 

Therefore, the custom-designed filter only allows visible blue and green light to pass 

plus NIR radiation > 950 nm. This allows the NIR radiation > 950 nm to be recorded in 

the red channel of the CFA without affecting the blue and green channels. As a result 

image captured will look more natural when viewed by the human eye. 

 

Image has been removed due to copyright restriction. 

 

Figure 5.1. Spectral response and quantum efficiency of a typical silicon-based sensor with CFA filter (OnSemi 

2015).  
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Figure 5.2. Images from a non-modified consumer-grade DSLR camera image on the left, and a modified 

camera image without any external filter on the right. The second image shows how NIR radiation contaminates 

the blue, green and red channels in the CFA. 

 

5.2. Design criteria  

Optical filters are devices that can transmit selected radiation in a specific range 

of wavelengths while blocking all other wavelengths (Madsen and Zhao 1999).  In 

designing the custom optical filter for this research, in addition to transmitting at least 

three wavelengths of EMR as argued by Helmholtz and discussed in previous section, 

two more conditions were considered: 

 

• to capture NIR radiation in the same digital image as visible light; and  

• the preservation of natural colours in resulting photographs. 

 

They are commonly used in photography and many other types of optical instruments 

to restrict the transmission of EMR to particular wavelengths of interest. The frequency 

responses of the optical filters describe their characteristics and specify how the 

magnitude of each frequency component of incident light is modified by the filter 

(Madsen and Zhao 1999). The actual blocking provided by a filter is determined not 

only by the part of the EMS it is designed for, but also by any physical imperfections 

of the filter. Surface and mounting imperfections can cause scattered light to pass 

through the filter due to a high transmission region of spectrum via unblocked paths 

near the edges or mounting (Prabhat n.d.). Therefore, it is important to evaluate the 

https://en.wikipedia.org/wiki/Wavelength
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blocking performance of an optical filter, whether an off-the-shelf standard or custom-

designed; as is the case in this research.  

 

Figure 5.3 shows the spectral transmission curve of the custom-designed filter used in 

this research, which allows EMR between 400 and 600 nm (visible blue and green) to 

pass, blocks radiation in the range 600 nm – 950 nm and the allow radiation at λ > 950 

nm to pass. This custom-designed filter used with a modified camera to capture series 

of photographs to verify if preserver original colours. A non-modified camera was used 

to capture photographs from the same scenes as a reference (Figure 5.4).  

 

Figure 5.3.Spectral transmission curve of the custom-designed optical filter used in this research derived from 

spectrometry measurements. 

 

Results of this comparison showed that images captured with the combination of 

custom-filter and modified camera produce almost the same quality colour images as a 

non-modified DSLR camera. The difference is a slight colour loss in the yellow to red 

parts of the EMS caused by replacing the red band of the camera with the a NIR (950 – 

1100 nm) band. However, this slight colour loss does not create any major perception 

changes nor visual image interpolation issues for natural scenes.  
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In addition, the combination of the custom-designed filter and modified camera can 

potentially capture less scattered light in the red band of the CFA because of Rayleigh 

scattering (Figure 5.5).  

 

 

 

Figure 5.4. The left-hand images in each pair were captured by a non-modified camera, while those to the right 

were captured by the modified consumer-grade DSLR camera with the custom-designed filter.  
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Image has been removed due to copyright restriction. 

 

Figure 5.5. Rayleigh-type scattering curve, for particle sizes <λ/10 scattering is inversely proportional to λ4 

(Bucholtz 1995). 

 

5.3. Measuring the Spectral Response of the Optical Filter 

The performance of the custom-designed filter was studied using a spectrometer as a 

laboratory reference instrument to test the response of the filter for a range of materials 

(cf. Section 3.2.3). Spectrometers measure spectral radiance or irradiance for various 

spectral ranges and consists of four basic sections (Bentham 1997):  

1) the input optics which collect radiation at a given FOV and transmit it to a 

monochromator; 

2) a monochromator that divides the radiation into wavelength ranges;  

3) a detector that measures the radiation in each wavelength range; and   

4) a control and storage system to define the data and logs it.   

High specification spectrometers are frequently used to measure the transmission 

properties of optical filters.   

 

The FieldSpec4® Hi-Res ASD spectrometer used in this research is based on a bare 

fibre bundle, with optional collecting optics, which has a variable FOV. It measures 

either reflected or emitted irradiance from the objects located in the FOV. In this 

research, the materials in the FOV were illuminated and reflected light was measured. 

The collected spectral power is measured by three linear detector arrays in three 

different spectral regions (400 nm – 1000 nm, 1001 nm – 1800 nm and 1801 nm – 

2500 nm) with spectral sampling at 3, 5 and 8 nm respectively. The device is calibrated 

so that it converts the read-out signal in digital numbers (DN with 16-bit binary digit) 

to spectral irradiance.  
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5.3.1. Laboratory setup and spectral analysis of the custom-designed filter 

The following steps show the laboratory setup used to verify the spectral response of 

the optical filter with the FieldSpec4® Hi-Res ASD spectrometer: 

 

1) An ASD Illuminator halogen-based 12v, 50W lamp, with a correlated colour 

temperature of 3000 𝐾o  (equivalent to 11000 candle power) was used as the light 

source. 

2) The lamp beam angle was set to 12o. 

3) The distance from the light source to the target sample was set at 66 cm. 

4) The incident angle was set to 65 o. 

5) The distance from the tip of the fibre optic cable to the target was set at 15cm and 

the FOV was 22 o. 

 

The FieldSpec4® Hi-Res ASD was used to measure the frequency response of the 

custom-designed filter and its performance in terms of the passing/blocking band and 

transmittance of the filter. This type of accurate measurement is critical in 

understanding the response from deep blocking to high transmission over a very short 

range of wavelengths, thus leading to steep and deep spectral edges. This filter was 

designed for a consumer grade digital camera, so the wavelength range of interest is 

400 nm to 1100 nm.  

 

To perform spectral analysis of a source, monochromatic light at a wide range of 

wavelengths is required to create a spectral response or spectral signature of the 

illuminant. A monochromator is used to sample the wavelengths reflected from the 

source and produce a monochromatic signal. A monochromator is basically a variable 

filter that specifically isolates and transmits a particular wavelength or range of 

wavelengths from the full range of measured light and blocks light that falls outside 

that wavelength or range of wavelengths. It typically accomplishes this using passage 

and exit slits, collimating and focus optics, and a wavelength-dispersing component; 

for example, a diffraction grating or prism. 
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In modern spectrometers, charge coupled device (CCD) and linear locator arrays have 

facilitated the improvement and development of fixed grating spectrometers. As the 

incident radiation hits the individual pixels over the CCD, the intensity of each pixel 

shows the region of the spectrum that the internal electronics has translated. While 

photodetectors can be portrayed in a wide range of ways, the most essential differences 

between them is the material the detector is made from. Si (Silicon) and InGaAs 

(Indium-Gallium-Arsenic) are the most typical semiconductor materials used in 

spectrometers. The FieldSpec4® Hi-Res ASD is configured so that it has three separate 

holographic diffraction gratings with three separate detectors. Each detector is also 

covered with the appropriate order separation filters to eliminate second and higher 

order light (BWTek n.d.). 

 

In the spectrometer, the visible and near-infrared (VNIR: 400 nm – 1000 nm) part of 

the EMS is measured by a 512-channel silicon photodiode array (CCD). Each detector 

is geometrically aligned to receive radiation within a narrow range (1.4 nm) and 

converts incident radiation into electrons. This photocurrent is then converted to a 

voltage, and is continually digitized and processed by a 16-bit analog-to-digital 

converter. The spectral data obtained is then passed to the controller unit for further 

analysis (Elvidge et al. 2010). The spectrometer performs the reflectance measurement 

by calculating the ratio between the DN of the new target surface relative to the DN of 

the white reference panel. Therefore, all sets of measurements of different reference 

materials were preceded by measurements of spectrometer white reference panel, 

which is set as the white reference scan in the system software.  

 

5.3.2. Measuring the filter response  

In this research, a range of natural materials commonly found in urban and rural 

environments (cf. Table 3.5) were used to verify the blocking and passing bands of the 

optical filter.  
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Figure 5.6 shows the filter performance on the white reference panel. The panel is 

made of polytetraflouroethylene (PTFE) and cintered halon. Its key characteristics are 

that it is almost 100% reflective within the 350 nm - 2500 nm range, and that it 

uniformly scatters light in all directions within this range. Software supplied by 

FieldSpec4® Hi-Res ASD calculates the ratios for reflectance or transmittance of the 

material being collected by the spectrometer using the reference panel. The blue line 

in Figure 5.6 is almost flat at a reflectance value of 1.0, which equates to 100% 

transmission if we deem air to be a cuvette. The orange curve represents the reflectance 

across the range of wavelengths using the filter developed for this research. To 

minimize the effect of light leakage into the fiber optic, i.e., light bypassing, the filter 

was held close to the fiber optic probe so that it made a very tight contact with the tip 

(Figure 5.7) and eight measurements for each sample were made. Figures 5.8 – 5.9, 

that show the percent transmission plotted against wavelength for green leaves and 

marble, are averages of eight measurements. Percent transmission (%T) is the typical 

unit used to quantitatively measure rate of optical filters light transmission. It is 

measured at a particular wavelength and is the percentage of the ratio of transmitted 

light intensity (I) to incident light intensity (Io):   

 

  %Tλ = I/Io * 100 
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Figure 5.6. The reflectance (transmission percentage) of a white reference panel. Blue and orange lines show the 

reflectance of a white panel without and with the custom-designed filter respectively, performance dips at 1150-

1450nm. 

 

 

 

Figure 5.6. Using the probe of the FieldSpec4® Hi-Res ASD spectrometer to measure the specification of the 

custom-designed filter on a white reference panel. 

 

The filter blocks light from about 600 nm to 950 nm. Reflectance (transmission) starts 

to decrease dramatically at 584 nm (reflectance = 0.94) (Figure 5.6). By 600 nm the 

reflectance (transmission) has dropped to 0.51 and by 615 nm it is only 0.016. Between 

615 nm and 950 nm nearly all light (reflectance = 0.014) is blocked. Beyond 950 nm 

reflectance (transmission) increases to 0.51 at 979 nm and 0.95 at 1007 nm. The 

absorption region at λ = >1200 nm is not relevant to this research and is not discussed.  

Figures 5.8 and 5.9 show the reflectance curves for green leaves and marble. The 

reflectance spectra for the other materials used in this experiment are provided in 

Appendix 1. 
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Figure 5.7. Reflectance curve of green leaves with and without the custom-designed filter. Blue colour represents 

the filter spectral response and how it absorbs the light from 600 – 950 nm wavelength and follows the red curve 

(green leaves reflectance curve without filter) in other regions of EMS. 
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Figure 5.8. Reflectance curve of a marble with and without the custom-designed filter plotted in blue and red 

colours respectively. Beyond 600 – 950 nm absorption area, the filter shows additional absorption of EMR 

between 1200 – 1600 nm wavelength but it follows the marble spectral curve in other regions.  

 

 

There is slight difference between the response curve of the selected materials with 

and without the custom filter, though they all show good filter performance. In addition 

to the quantifiable optical performance of the filter, there are other properties that are 

somewhat more difficult to measure and not related to this research. These are 

associated with the quality of the materials and substrates. Substrates are indicated with 

respect to any optically worked part, such as flatness or curvature of surface, the 

amount of polish and the quality of any coating (Angus 2010, p. 646). These factors 

can potentially cause additional absorption at different wavelengths which is illustrated 

as blue and red lines in Figures 5.8 – 5.9 which demonstrate how EMR is affected after 

passing through a custom-designed. The absorption of EMR does not depend on the 

intensity of the EMR, despite the fact that under certain conditions the transparency of 

the medium can change, and that these changes are subject to the intensity of waves 

going through the medium. In these cases, storable (nonlinear) absorption occurs 

(Stankov 1988).  

 

Attenuation is the reduction in the intensity of a light wave propagating through a 

medium by absorption of its photons (CTI 2016). Comparing Figures 5.8 and 5.9, it 

can be seen that at λ > 400 nm and λ < 600 nm when reflectance is low (e.g., green 

leaves) attenuation is minimal (i.e., the blue and red curves overlap), but when overall 

reflectance is greater (e.g., marble) a gap becomes noticeable between the blue and red 

spectra which indicates absorption is occurring at these wavelengths.  

 

5.4. Chapter Summary  

In VNIR wavelengths, the filter demonstrates acceptable opacity between 615 and 950 

nm. In the remainder of the pass band (i.e., 400 nm – 615 nm and 950 nm – 1100 nm) 

transmission quality is high in that the curve is flat and transmission is >90%. The 
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transmission decreases with increasing light intensity due to non-linear absorption. The 

performance of the filter in the pass regions can be explained by non-linear absorption, 

because greater attenuation occurs at higher reflectance conditions (William 2013).   

Transmission also can vary in different bands because of the energy characteristics of 

particular wavelengths, the minor difference of pass band curves indicates the variation 

between wavelengths is minor and the filter response is acceptable for the aim of this 

study. 
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Chapter 6 

Verification of camera response 
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 Measuring the camera spectral response 

6.1. Introduction 

This chapter reports on the evaluation of the custom-designed optical filter with a 

consumer grade digital camera at different wavelengths and transmission rates using a 

FieldSpec4® Hi-Res spectrometer. While this was an essential prerequisite before the 

remaining research in this thesis could take place, it is also a research element in itself. 

 

6.2. Reflectance response of the camera with custom filter 

Most advanced camera sensors utilize CCD or CMOS technologies that have numerous 

common elements, e.g., comparative structures, materials and basic operations. Both 

type of imagers to convert EMR into electric charge and process it into electronic 

signals. Both of these technologies have both positive qualities and shortcomings 

giving each advantages in different applications. 

 

The CCD sensor is a silicon chip that contains an array of photosensitive elements. The 

term charge-coupled device refers to the technique by which charge parcels are 

transferred from the photosites to readout. Clock pulses make potential wells to move 

charge parcels around on the chip, before being changed over to a voltage by a 

capacitor. In a CMOS sensor, every pixel has its own particular charge-to-voltage 

transformation, and the sensor regularly incorporates amplifiers, commotion 

rectification, and digitization circuits, so that the chip yields digital bits. Sensors make 

digital images by changing over photon energy to electrical energy. The effectiveness 

by which every photon is changed over to an electron is the sensor's Quantum 

Efficiency (QE). The QE is computed by basically dividing the number of electrons by 

the number of photons. On the off chance that no electrons are made, the effectiveness 

is clearly zero, while if every photon makes one electron the productivity is 100%. 

Regularly, a sensor has diverse efficiencies at different light frequencies. For over 10 

years, back-illuminated silicon CCD cameras have been common instrument for NIR 

imaging and spectroscopy because of their high resolution, generally modest cost, and 
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adequate QE in this region of spectrum. However, even the best NIR CCDs do not give 

sufficient sensitivity at λ > 1200 nm (Figure 4.5). Consequently, the spectrometerr 

utilises InGaAs photo-diodes in the 1001 nm – 1800 nm wavelength range (Edmund 

n.d.). 

 

Image has been removed due to copyright restriction. 

 

Figure 6.1. Relative response curves of Si and three different types of InGaAs sensors. Note the good relative 

responsivity between 400 and 1100 nm for the Si sensors, and lack of response beyond 1100 nm (Hamamatsu 

2015). 

A typical digital camera utilizes an array of millions of tiny light photosites to record 

an image. In any case, the photosite would just create a mono colour image. A Bayer 

filter mosaic is a a colour filter array (CFA) for organizing RGB channels on a square 

matrix of photosensors. To capture colour pictures, a filter is put over every pixel so 

that particular wavelengths of EMR are transmitted. For all intents and purposes all 

contemporary digital cameras can only capture one of three essential colours in every 

pixel, thus they dispose of about 66% of the incoming light. Accordingly, the camera 

needs to approximate the other two main colours in order to have full colour in each 

pixel. The raw output of cameras with Bayer filters (Figure 6.2) is alluded to as a Bayer 

pattern image. To conquer the issue due to every pixel being sifted to record just one 

of the three essential colours, and not having the capacity to completely indicate red, 

green and blue, de-mosaicking calculations are utilized to interject the total 

arrangement of colours for every pixel value to get a full-colour picture. These de-

mosaicking algorithms utilize the benefits of encompassing pixels in value estimations 

of every pixel. 

 

Image has been removed due to copyright restriction. 

 

Figure 6.2. Bayer filters split the light in three visible channels - blue, green and red - which are interpolated 

inside the sensor to form a full-colour image (Cheremkhin, Lesnichii & Petrov 2014). 
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It is important to understand the difference between spectrometer and camera sensor 

readings. Table 6.1 shows the key differences between these two sensors. 

 

 

Table 6.1.Key differences between light measurement of the spectrometer and digital camera 

 Function of a system Light detection 

component 

Readout output 

ASD FieldSpec4® 

Hi-Res spectrometer 

Sensing EMR Diffraction grating 

which converts the 

very narrow band 

incident light to 

electrons  

Digitized electrons 

through computer 

Digital Camera Sensing EMR Bayer CFA which 

converts the very 

wide band incident 

light to pixel values 

Blue, green and red 

band colour 

information per each 

pixel 

 

 The basic function of a spectrometer is to sense light, divide it into its spectral 

components, digitize the signal as a function of wavelength, and read it out and display 

to a computer. There are similarities to a digital camera, which also takes in light and 

divides it into red, green and blue bands. The colour (Bayer) filters in the camera act 

like a diffraction grating in a spectrometer, but with huge bandwidth (i.e., very low 

spectral resolution) rather than a narrow bandwidth in a spectrometer, and place the 

right colour in right position through interpolation. A key difference, however, is that 

the output of spectrometer is one-dimensional while that of an image sensor has two 

dimensions. 

 

6.3.  Data collection and analytics 

The main purpose of this experiment within the overall research project is to compare 

the difference in readouts from the two devices on selected samples, and to examine 

are any relationships between them. As shown in Section 5.3.2, the spectrometer test 

for verifying the spectral response of the designed filter was satisfactory. The grey card 
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used in this test is an approximate realization of a Lambertian scatterer and is a flat 

object of a neutral grey colour that derives from a flat reflectance spectrum (in natural 

light). In photography, a major use of grey cards is to provide a standard reference 

object for exposure determination. The white and black cards are considered to be grey 

cards of different reflectance. The black card has 10% reflectance and the white card 

90% across the visible spectrum. The grey card has 50% reflectance. 

 

To compare the performance of the two detectors — the spectrometer and the digital 

camera image – two types of measurements were conducted; one using the camera 

without the custom-designed filter and another using it with the filter. A no colour, 

homogeneous reflective object was sensed so that the image sensor just recorded the 

characteristics of light source. Figure 6.3 shows images of the white reference panel 

taken with and without the filter. The right-hand image appears reddish because after 

removing built-in IR blocking filter, more IR light leaks into the red band than into the 

blue and green bands (cf. section 5.1).  

 

 

 

Figure 6.3. Images acquired with the Sony RX1 DSLR camera of the ASD white reference panel with the 

custom-built filter (left) and without the filter (right). 

 

The images were acquired in RAW file format, i.e., unmodified ‘raw’ pixel information 

from the digital camera's sensor. The auto white balance used in acquiring RAW 

images does not affect DN values. To maintain a constant exposure, the camera was 

set to a fixed f-number so that the shutter speed could be adjusted automatically by the 
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camera. By using a fixed f-number, different light fluxes acted on the sensor but there 

was no linearity related to the shutter speed times and the f-number. A digital number 

(DN) is typically used to describe the attributes of pixels without any physically 

meaningful units. In the experiments conducted at this point, the pixel values do not 

need to be interpreted as physically meaningful, quantitative values; and comparisons 

were made between the DN readouts of the two imaging devices.  

 

To investigate that how the spectrometer performs in the visible light range, DN values 

were cropped for wavelengths between 400 and 700 nm and then divided into three 

bins: 400 nm – 500 nm (visible blue), 500 nm – 600 nm (visible green), and 600 nm – 

700 nm (visible red) bands (see Table 6.2). The average DN value was calculated for 

each of those three bands. The test was then repeated with the 600 nm – 950 nm 

blocking filter (Figure 6.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Raw DN (16 bit) values of the white reference panel with ASD Illuminator light with and without 

the custom-designed filter measured using spectrometer. The radiance of the light source increases as 

wavelength increases within visible range. 
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Table 6.2 shows the average DN values for blue, green and red bands recorded by the 

spectrometer with and without the custom filter. It should be noted that the DN is 16 

bit and ranges from 0 to 65536. The very low DN value in red band can be explained 

by the use of the custom-designed filter, which blocks red light. 

 

 Table 6.2. Average DN values for blue, green and red with and without the custom-designed filter. 

 

Average DN 

Wavelength range (nm) 

400-500 500-600 600-700 

Without custom filter 2847 8751 12123 

With custom filter 2690 8346 414 

 

 

DN values from the spectrometer by default are 16 bits (from 0 to 65536) whereas the 

camera readouts are 8 bits (from 0 to 256). For the ease of comparison (Table 6.3), DN 

values of the spectrometer were downgraded to 8 bits. However, when the DN values 

from the two devices are compared initially differentiation between them was difficult, 

indicating more measurements from larger dataset would be needed for statistical 

analysis. 

Table 6.3. Comparison of DN values acquired by the spectrometer and the Sony RX1 DSLR camera for the 

white reference panel with and without the custom-designed filter. 

 400 – 

500nm 

(filter) 

500 – 

600nm 

(filter) 

600 –

700nm 

(filter) 

400 – 500nm 500 – 600nm 600 – 700nm 

Raw DNs from 

spectrometer in 16 

bits 

2690 8346 414 2848 8752 12124 

Spectrometer’s 

DNs converted to 8 

bits 

11 33 2 11 34 47 

Amplify 5 times 53 163 8 56 171 237 

DNs of Sony 

camera images 

65 101 88 100 123 245 
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In the light source spectrum measured by the spectrometer (Figure 6.3), DN values 

consistently increase to approximately 780 nm. The high R-squared value of all three 

trend lines in Figure 6.6 confirms this increase and the slopes of the trend lines comply 

with slopes in visible spectrum in Figure 6.7, i.e., the greatest increase in reflectance 

occurs with the white card and the least with the black. 

 

 

 

Figure 6.5. Raw DN (16 bit) responses of the white, grey and black photographic cards with and without 

custom-designed filter. 

 

The camera readings lose their linearity for all three cards when converted from 16 to 

8-bit indicating that the camera sensor does not behave the same as the detector in the 

spectrometer and, therefore, represents the characteristics of the light source 

differently. Bivariate linear regression was used to model the relationships between X 

and Y for the red, green and blue bands with and without filter (Figures 6.6 and 6.7).  

 

 

4 
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Figure 6.6. Linear regressions model for the white, grey and black cards in the red, green and blue bands, 

without the custom-designed filter. The linear regression model for green and blue DNs implies significant 

association between the two variables. This model for the red band implies weaker correlation between the 

camera and spectrometer readouts. 

 

 

Figure 6.7.Linear regressions models for the white, grey and black cards in the red, green and blue bands with 

the custom-designed filter. High R-square values for red, green and blue bands shows a good linear relation for 

DN values in each band. It indicates how the correlation between the spectrometer and camera readouts is 

significantly enhanced after using the custom-designed filter. 

In undertaking this analysis the FieldSpec4® Hi-Res ASD output was statistically 

standardized to 1 nm intervals to obtain 100 readings that corresponded to the 100 nm 

range of each of the red, green and blue bands, i.e., 400 nm – 500 nm, 500 nm – 600 

nm, 600 nm – 700 nm. 

 

Table 6.4. The regression models between ASD and camera responses with the custom-designed filter 

 Band Regression models with filter 

 Blue 

Green 

Red 

y = 28.482x – 162.14  

 

y = 53.306x – 355.04  

 

y = 2.2563x – 5.7721 

 

where y is 16-bit DN of the spectrometer which has been averaged in each 100 nm bandwidth. X is the DN 

of RGB band in camera RAW image acquired by using Adobe Photoshop CC.  



108 

 

 

 

Figures 6.6 shows that the camera readings without the filter have linear relationship 

with the FieldSpec4® Hi-Res ASD readings for blue and green bands. Figure 6.7 

implies that this relationship is improved when the custom-designed filter is used. 

These results were cross validated using out-of-sample testing to see if the different 

models performed equally well on data that was not used to develop the model. In this 

validation exercise, a standard 18% grey photographic card was used as the target 

sample, but the light source, position of devices and camera settings were not altered. 

The DN values for this target measured by both FieldSpec4® Hi-Res ASD and the 

camera with the filter are presented in Table 6.5.  Then, using the linear regression 

model obtained in previous step, the predicted DNs was compared against the observed 

DNs and the sum of square of residuals between observed and predicted DNs was 

analysed (Table 6.6). Comparing the square of residuals shows the accuracy of 

prediction of the out-of-sample grey card is 93%, 73% and 99% for the red, green and 

blue band respectively when the custom-designed filter was used. This confirms that 

the modified digital camera has acceptable spectral response and could be used further 

in this research. 

 

Table 6.5. Observed and predicted DN value for a grey card with 18% reflectance across the visible spectrum 

(18% grey card) and the custom-designed filter. In this table ASD stands for FieldSpec4® Hi-Res spectrometer 

and Sony refers to the Sony Rx1 DSLR camera. 
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Table 6.6. Sum of squares of the residuals between predicted DN values of the camera and observed DN values. 

Comparing the square of residuals shows the accuracy of prediction on grey card (highlighted by red, green and 

blue) is %93 for red band, %79 percent for green band and %99 for the blue band using the custom-designed 

filter.  

 

 

 

 

6.4.  Chapter Summary 

In this chapter the spectral response of the custom-designed filter as well as the 

relationship between FieldSpec4® Hi-Res ASD and camera sensor readouts were 

examined in order to verify the spectral reflectance characteristics of the modified 

camera.  The custom-designed filter tested in this project has a sharp transition, or cut-

off, between the zones of maximum and minimum transmission (Figure 6.5). This 

indicates strongly that it can be used for scientific and technical work.  

 

The differences in the DN values acquired by the two devices for the same samples 

can be caused by many factors. Though both sensors are based on silicon photodiodes, 

the peripheral components derived from different designs and can significantly affect 

their outputs. Digital camera sensors are inherently sensitive to infrared light. After 

applying the external filter (cf. Appendix 2), λ = 600 nm – 950 nm light was blocked, 

and the DN values recorded by the red band is the response from a small portion of 
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NIR (λ = 950 nm – 1100 nm). Therefore, if the light intensity is strong enough or the 

exposure time is long enough, the camera sensor will present information in this 

frequency range.  

 

As discussed in introductory chapter, longer wavelengths are scattered less than short 

wavelengths which means that the custom-designed filter has the potential to be able 

to penetrate gaseous smoke and other similarly sized particles in its NIR bandwidth. In 

the next chapter, the images obtained using this filter over an atmosphere with gaseous 

smoke from a bushfire and a controlled burn area are analysed, and the algorithms 

developed for image visibility enhancement are introduced. 
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Chapter 7 

Algorithm development and testing  
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 Algorithm Development 

7.1. Introduction 

This chapter explains the development of the image processing techniques applied to 

the data acquired by the modified, digital camera-and-filter system to penetrate gaseous 

smoke. As discussed in Sections 2.7 – 2.8, there are typically two typical methods are 

used to enhance the visibility of haze-affected imagery covered by haze. These are the 

single image and multiple images approaches; both to minimize or eliminate 

atmospheric scattering affects. The multiple images approach requires image data from 

more than one camera simultaneously making it difficult and inefficient to deploy. 

Although the single image approach is therefore the preferred method, and despite the 

fact that it has been evaluated and optimized over the past few years (Section 2.7); it 

has shown that these techniques are not suitable for the scene visibility enhancement if 

the entire scene is covered by smoke particles (Liu et al. 2011).  

 

The method proposed and developed in this research thesis is inspired by both the single 

and NIR-guided image haze reduction methods (He, Sun & Tang 2011; Vanmali, Kellar 

& Garde 2015). As discussed in Section 2.9, the spectral sensitivity of a typical DSLR 

camera allows NIR radiation to be captured as a replacement for one of the three main 

colour (RGB) channels. In this research, the DSLR camera was modified to capture blue 

and green light, and a portion of NIR radiation (λ = 950 nm – 1100 nm) as a replacement 

for the red channel. As discussed in Chapter 5, one of the main criteria in designing an 

optical filter is the selection of a blocking band (from the blue, green and red bands) to 

preserve original image colour as best as possible. Because the red band is the closest 

spectrally to NIR, this band was sacrificed and replaced with NIR. It did not 

significantly degrade the original image colour and enabled a single image to collect 

co-registered blue, green and NIR bands simultaneously while preserving original 

colours as illustrated in Section 5.2. The selected range for the NIR wavelength enables 

the camera to capture EMR with almost 40 times less scattering amount at λ = 1000 nm 

compared to the blue light wavelengtha starting at λ = 400 nm (cf. Figure 5.5). 
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Figure 7.1 illustrates the procedure and workflow for designing the smoke penetration 

algorithm (SPA). 

 

 

 

 

Figure 7.1.Workflow for the development of the smoke penetration algorithm (SPA) and image visibility 

enhancement in the research project. R’ is the modified red channel which senses EMR between λ = 950 nm – 

1100 nm. 

 

As illustrated at Figure 7.1, after un-mixing the input image to three separate bands, the 

blue and green channels are blended by multiplying individual pixels by the 

corresponding pixels from the R’ channel, as R’ exhibits the minimum scattering effect. 

This is a key function in the smoke penetration algorithm (SPA) as builds up the image 

density and enhances the contrast globally. Colour balancing is applied to correct for 

the colour shift effects that may be caused by this blending operation.  The resulting 

image is then divided into smaller windows (patches) so that low intensity pixels (dark 

Input R'GB image

Channel un-mixing : R'GB to R', G and 
B bands

B and G channel blending with R'

Colour balancing

Local patch based dark channel 
calculation

Transmission map estimation

Calculating atmospheric light

Enhanced Image
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pixels) can be identified. The intensity of these dark pixels can be used in accurate 

smoke transmission map estimation (He, Sun & Tang 2011). They also can be used to 

accurately estimate the light scattered by smoke particles or, so called atmospheric light. 

Therefore, by estimating these elements, a smoke-free image with the optimized scene 

visibility can be restored. These steps are discussed in detail in following sections.  

 

7.2. Data used 

Two data sets were collected over smoke, these included ground-based and aerial 

photography from a prescribed burn-off area using a modified DSLR Sony DSLR RX1 

and Canon DSLR EOS-6D camera with the custom-designed filter to test the SPA (cf. 

section 3.3). 

 

In addition to the custom-designed filter, another optical filter was experimentally used 

when collecting aerial imagery to evaluate the efficiency of the developed algorithm. 

That filter blocked blue visible light instead of red light, thereby allowing green and red 

light to pass. As a result, images captured using this experimental filter collected NIR 

radiation (λ= 700 nm – 1100 nm), green and red light. The logic for utilizing this filter 

was to optically limit the light scattering impact on collected images by blocking the 

blue channel which is more prone to light scattering compared to the other two channels. 

This experimental filter did not preserve the original image colour because the green 

and red channels were contaminated by the wide range of NIR wavelengths (cf. Section 

2.9). The results from this use of this experimental filter have been published in 

(Chabok, Millington, Hacker, McGrath 2016)(Appendix 2). 

 

Figure 7.2 provides a collection of some of images used for evaluating the SPA. These 

photos are captured using a modified DSLR camera equipped with the custom-designed 

filter from prescribed burn areas. It also includes an aerial image collected by ARA 

aircraft over a bushfire smoke (cf. Table 3.6). 

 

 

http://spie.org/profile/Andrew.McGrath-53158
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Figure 7.2.  Aerial and ground-based photos from smoke collected using the combination of modified, digital 

camera-and-filter system. Second image from top row was collected using the ARA research aircraft over a 

bushfire smoke and other photos were collected from prescribed burn area. 
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7.3. Algorithm development 

The images used to test the development of the smoke penetration algorithm were 

captured using the modified single DSLR camera and custom-designed filter and 

consist of three bands: visible blue (400 nm - 500 nm), visible green (500 nm - 60 nm) 

and R’ between 950 and 1100 nm (Figure 7.3). These bands are internally co-registered 

inside the camera using the CFA filter and form a uniform single colour image, therefore 

working with separate bands does not require pixel co-registration. However, this would 

be a mandatory step if multiple imaging sensors were used in data collection.  

 

 

(a) 

 

                 (b)      (c)    (d) 

Figure 7.3. (a) Shows the input image captured by a ground-based camera divided into blue (400 nm – 500 nm) 

(b), green (500 nm – 600 nm) (c) and R’ (950 nm – 1100 nm) (d). This image is the top left-hand photograph in 

Figure 7.2 
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7.3.1. Channel blending  

The first task in developing the SPA is to build up the image density. To do this the 400 

nm – 500 nm, 500 nm – 600 nm and 950 nm – 1100 nm bands are extracted from the 

input image and three raster layers created from each of these bands. Given the fact that 

the NIR band exhibits less scattering than the two visible bands, the image density for 

the visible blue and green bands was built up by blending them with the NIR band. 

Equations 7.1 – 7.3 show the formulae used for this operation. 

 

𝐵(𝑖,𝑗)
1 = 𝐵(𝑖,𝑗)

𝑁𝐼𝑅(𝑖,𝑗)

255
    (7.1) 

 

𝐺(𝑖,𝑗)
1 = 𝐺(𝑖,𝑗)

𝑁𝐼𝑅(𝑖,𝑗)

255
   (7.2) 

 

𝑁𝐼𝑅(𝑖,𝑗)
1 = 𝑁𝐼𝑅(𝑖,𝑗)  (7.3) 

 

Where: 

𝐵(𝑖,𝑗)
1 , 𝐺(𝑖,𝑗)

1  and 𝑁𝐼𝑅(𝑖,𝑗)
1 respectively are the new blue, green and NIR values at pixel (i,j) 

after blending with NIR channel, and B is blue channel, G is green channel, and NIR is 

the modified red with wavelength starting from 950 nm to 1100 nm. The result of 

channel blending for the input image is shown i Figure 7.4. 

 

  

(a)                                                                               (b) 

Figure 7.4. (a) Input image, (b) Channel-blended image. This figure also uses the top left-image in Figure 7.2. 
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Applying these equations to an image results in a colour casting effect that offsets the 

image histogram for green and blue channels within the 0 – 255 range (Figure 7.5).  

 

     

(a)                                                                                 (b) 

Figure 7.5. (a) Shows the input image histogram before blending, and (b) after applying blending. It is clear 

from this pair of images that the blue and green channels are shifted after applying the blending operation. 

 

Blending operation shifts the image colour from its original colour arrangement (Figure 

7.4.b). To remove this shifting effect, the maximum and minimum value for each band 

was computed, and then based on Equations 7.4-7.6, colour balancing corrections were 

applied. 

 

 

𝐵(𝑖,𝑗)
2 =

𝐵(𝑖,𝑗)
1 −𝑚𝑖𝑛(𝐵)

𝑚𝑎𝑥(𝐵)−𝑚𝑖𝑛(𝐵)
∗ 255   (7.4) 

 

𝐺(𝑖,𝑗)
2 =

𝐺(𝑖,𝑗)
1 −𝑚𝑖𝑛(𝐺)

𝑚𝑎𝑥(𝐺)−𝑚𝑖𝑛(𝐺)
∗ 255   (7.5) 

 

𝑅′(𝑖,𝑗)
2 =

𝑅′(𝑖,𝑗)
1 −𝑚𝑖𝑛(𝑅′)

𝑚𝑎𝑥(𝑅′)−𝑚𝑖𝑛(𝑅′)
∗ 255     (7.6) 
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Where 𝐵(𝑖,𝑗)
2 , 𝐺(𝑖,𝑗)

2  and 𝑅′(𝑖,𝑗)
2  are the corrected channels after applying colour balancing 

(Figure 7.6). The computed image after the application of Equations 7.4-7.6 was 

renamed to 𝐼  :  where  𝐼(𝑖,𝑗) = (𝐵(𝑖,𝑗)
2 , 𝐺(𝑖,𝑗)

2 , 𝑅′
(𝑖,𝑗)
2

)  . 

 

Figure 7.6. Corrected image histogram after applying colour balancing from 0 – 255 range. 

 

7.3.2. Smoke modelling  

Equation 7.7 shows the physically-based dichromatic model used in atmospheric optics 

for formulating haze (Narasimhan et al. 2002): 

 

𝐼(𝑖,𝑗) = 𝐽(𝑖,𝑗)𝑡(𝑖,𝑗) + 𝑎(1 − 𝑡(𝑖,𝑗))  (7.7) 

 

where 𝐼(𝑖,𝑗) is the DN of the pixel located at (i,j) coordinate from the image covered by 

smoke, 𝐽(𝑖,𝑗) is the DN of the pixel located at (i,j) coordinate from the smoke-free image, 

𝑎 is the path radiance, or atmospheric light, which is emitted by smoke, and 𝑡(𝑖,𝑗)𝜖[0,1] 

is the medium transmission describing the portion of the radiation that is not scattered 

and reached the sensor. The aim in applying this equation is to recover a smoke- and 

haze-free image 𝐽 from the input image 𝐼 by estimating 𝑎 and 𝑡.  

 

For estimating transmission (t), He, Sun & Tang (2011) adopted the dark object 

subtraction technique in which the darkest pixels values are subtracted from the image 

as a single value based on their mean to remove spatially homogeneous haze. They 
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named this technique the dark channel prior (DCP) method, and it is based on the 

statistics of smoke-free images. He, Sun & Tang (2011) used small windows across an 

image and found that on a clear day at least one colour channel had very low intensity 

in some pixels. In other words, there should be a local window located near the point of 

interest with the minimum intensity and in which the pixel has very low DN values. 

DCP-based approaches may fail if entire scene is covered by smoke. Therefore, to 

overcome this issue the blending operation introduced for building-up image density 

based on R’ channel, discussed in the previous section, was used.  Applying blending 

operation enables the DCP-based algorithms to locate and use low intensity pixel values 

from the R’ channel. 

 

7.3.3. Local patch-based dark channel estimation 

To estimate the dark channel values, and input image is divided into smaller patches 

(Figure 7.7a) and the darkest pixel is calculated for each local patch using equation 

7.8. 

 

 

𝐽(𝑖,𝑗)
𝑑𝑎𝑟𝑘 = 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗)(𝐽𝑐(𝑦))) (7.8) 

 

Where 𝐽(𝑖,𝑗)
𝑑𝑎𝑟𝑘 is the dark channel of a colour image 𝐽𝑐for each local patch and Ω(𝑖, 𝑗) is 

a local window of optional size, centered at (i,j) pixel coordinate.  

 

Figure 7.7b shows the calculated dark channel for the input image with the local window 

size of 5 by 5. 
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(a) (b) 

Figure 7.7. (a). The input image, (b) The dark channel image estimated using the equation 7.8, a smoke image is 

brighter than its smoke-free equivalent, and therefore the dark channel of the smoke image has higher intensity in 

regions with more smoke. Red window, Ω(i,j), represents a local patch in which the minimum pixel value is 

calculated for each image channel (R’, G and B).Minimum DN values for the red window on the left and right 

image are (170,230,231) and (107,107,107) respectively. 

 

7.3.4. Transmission mapping 

The intensity of the calculated dark channel introduced in the previous section is used 

to estimate smoke thickness or so-called transmission mapping. Equation 7.9 is 

obtained by applying the ‘minimum’ operation to equation 7.6 in a local patch Ω(𝑖, 𝑗):  

 

 

𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (𝐼(𝑖,𝑗)
𝑐 (𝑦)) = min (𝐽(𝑖,𝑗)

𝑐 (𝑦))𝑡′(𝑖,𝑗) + 𝑎𝑐(1 − 𝑡′(𝑖,𝑗))  (7.9) 

 

Where 𝑡′(𝑖,𝑗) is the medium transmission for the local patch. The other variables are 

defined at equation 7.7, and are independently applied to the three main colour channels 

for each local patch. Therefore equation 7.9 can be rewritten as equation 7.10 below: 

 

 𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (
𝐼(𝑖,𝑗)

𝑐 (𝑦)

𝑎𝑐
) = 𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (

𝐽(𝑖,𝑗)
𝑐 (𝑦)

𝑎𝑐
) 𝑡′(𝑖,𝑗) + (1 − 𝑡′(𝑖,𝑗))  (7.10) 

 

After applying equation 7.10 to the three main channels (G, B, R’), all the pixels located 

in the local patch area, Ω(𝑖, 𝑗), are replaced with the minimum value of these three 

channels as shown at equation 7.11 : 
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𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (
𝐼(𝑖,𝑗)

𝑐 (𝑦)

𝑎𝑐
)) = 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏}  ( 𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (

𝐽(𝑖,𝑗)
𝑐 (𝑦)

𝑎𝑐
))𝑡′

(𝑖,𝑗)
+

(1 − 𝑡′
(𝑖,𝑗))     (7.11) 

 

Where 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏}  takes the minimum operation on three main colour channels. As 

discussed by He, Sun & Tang (2011), the dark channel of a haze-free image should tend 

to zero (Equation 7.12): 

 

𝐽(𝑖,𝑗)
𝑑𝑎𝑟𝑘 = 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗)(𝐽𝑐(𝑦))) = 0      (7.12) 

 

Because the atmospheric light (𝑎𝑐) is always positive equation 7.12 can be rewritten as 

equation 7.13: 

 

𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏}  ( 𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (
𝐽(𝑖,𝑗)

𝑐 (𝑦)

𝑎𝑐
)) = 0         (7.13) 

 

and therefore, by putting this at Equation 7.11, transmission 𝑡′
(𝑖,𝑗) can be estimated as 

below as shown in equation 7.14: 

 

𝑡′
(𝑖,𝑗) = 1 − 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (

𝐼(𝑖,𝑗)
𝑐 (𝑦)

𝑎𝑐
))       (7.14) 

 

In real life conditions, even clear atmospheres contain a very small number of particles 

that cause light scattering and make distant objects in captured images look fuzzy. So, 

if the haze is removed thoroughly, the resulting image may look unnatural. For this 

reason, He, Sun & Tang (2011) introduced an optional constant haze parameter 

(0<ω≤1), see Equation 7.15 and 7.16, to retain a very small amount of haze in the image: 

 

𝑡′
(𝑖,𝑗) = 1 − ω𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑖,𝑗) (

𝐼(𝑖,𝑗)
𝑐 (𝑦)

𝑎𝑐
))       (7.15) 
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Or 

 

𝑡′
(𝑖,𝑗) = 1 − ω𝐽(𝑖,𝑗)

𝑑𝑎𝑟𝑘      (7.16) 

 

Transmission estimations for the individual local patches across an image will contain 

some edge effects for each local patch due to the fact that the transmission is not always 

constant within a patch. To remove this, a 5x5 median filter is applied to each patch, 

which runs through each section of the local patch and replaces each pixel with 

the median of its eight neighbouring pixels (equation 7.17): 

 

𝑡′
(𝑖,𝑗) = 𝑚𝑒𝑑(1 − ω𝐽(𝑖,𝑗)

𝑑𝑎𝑟𝑘)       (7.17) 

 

Figure 7.8b shows the estimated transmission map from the input image. 

 

  

Figure 7.8. (a) The input image, (b) Estimated transmission map. Minimum pixel values for the red window on 

the left and right image are (170,230,231) and (116,116,116) respectively. 

7.3.5. Estimating atmospheric light and restoring image DNs 

Estimation of the atmospheric light, or the amount of the light scattered by smoke 

particles, is required for the production of the transmission map using equation 7.15. 

He, Sun & Tang (2011) found that the brightest pixel DN in the dark channel provides 

a good estimation of atmospheric light: 

 

𝑎 = max (𝐽(𝑖,𝑗)
𝑑𝑎𝑟𝑘) (7.18) 
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To restore the enhanced image, Equation (7.18) can be written as: 

 

𝐽(𝑖,𝑗) =
𝐼(𝑖,𝑗)−𝑎

max (𝑡(𝑖,𝑗),𝑡0)
+ 𝑎 (7.19) 

 

From equation 7.19, if 𝑡(𝑖,𝑗) tends to zero then 𝐽(𝑖,𝑗)𝑡(𝑖,𝑗) will be very close to zero and 

therefore the enhanced image cannot be restored. To avoid this, a minimum value (𝑡0) 

is used to restrict the estimated transmission map from getting close to zero. A minimum 

value for 𝑡0 is set to 0.1 for all the processed images displayed in this thesis. Depending 

upon the lighting conditions of the input image and optional constant haze value (ω) the 

resulting images may seem darker after the image restoration process. Thus, a 

discretionary histogram matching between the input and output images would enhance 

the visual appearance of the resulting image. 

 

7.4. Results 

Figure 7.9a shows the input image and Figure 7.9b shows the final result of applying 

the developed algorithm on the ground-based image introduced at the beginning of this 

chapter (Figure 7.1a). ω (see Equation 7.17) is set to 0.9 for all the images illustrated in 

this chapter. It can be seen that the scene visibility is significantly improved and 

enhanced after applying the SPA in each image.  Figure 7.10 comprises zoomed-in 

sections of the images in Figure 7.9 and illustrate the effectiveness of the SPA 

developed.  
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Figure 7.9. (a) The input image with smoke, (b) enhanced image after applying the SPA.  Statistical summary of 

DNs for the pixels located inside the red window is listed at Table 7.1 

 

Table 7.1. Statistical summary of DN values for the highlighted areas in red from Figure 7.9 

                     Input image (Figure 7.10a)  Output image (Figure 7.10b) 

  Min Max Mean  Min Max Mean 

Red  214 252 232.15  88 229 137.90 

Green 227 248 235.36  94 241 137.75 

Blue 231 248 240.30  94 229 140.60 

 

After applying the SPA, the enhanced image reveal some of the ground features that 

were previously obscured by smoke and emphasize that an image captured by the 
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modified camera and custom-designed filter (Figure 7.9.a) by itself and without 

applying the SPA does not provide an adequate, clarity of vision in a smoke-affected 

scene.  

  

Figure 7.10. Pairs of zoomed-in sections of the images extracted from Figure 7.10. In each pair the left-hand image 

shows the sections covered by smoke, while the right-hand image of each pair shows the enhanced sections after 

applying the SPA. See Table 7.1 for a statistical summary of DNs for the original image. 
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As discussed in Chapter 2, other haze removal methods are less efficient if the entire 

image is covered by smoke (Section 2.7). Figure 7.11 shows the effectiveness of the 

SPA for images covered entirely by smoke. 

  

 

 

 

Figure 7.11. In the left-hand image the scene is mostly obscured by smoke. The right-hand image shows the scene 

after the SPA algorithm had been applied to the image. DNs for all the pixels in the area highlighted in red on 

both images used were extracted to generate statistical summary for minimum, maximum, mean and standard 

deviation of average DNs, which are shown in the graphs below the images. 

 

Figure 7.11 demonstrates how ground features that were entirely covered by smoke and 

almost impossible to detect with the human eye, become visible after applying the SPA. 

For example, by looking at the input image one can hardly detect the trunk as the small 

tree in the left of the image, whereas it can be more clearly seen in the right-hand image. 

The statistical summary graphs of DNs from all the pixels located in the smoke region 

highlighted by the red rectangle confirms that before applying SPA, there was little 
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discrimination between DNs but after applying SPA DNs were recovered and 

discriminated more successfully.  

 

The airborne images displayed at Figure 7.12 were captured at an altitude of 600 m 

above the ground. After applying the SPA, visibility in the regions of gaseous smoke is 

greatly improved. Whereas for those regions that are covered by denser smoke, 

visibility improvement is less. This is because in the areas of dense smoke, there are 

also larger diameter particles that cause Mie and non-selective scattering (Section 2.5) 

in wavelengths between 950 nm – 1100 nm. The distance from the camera to ground 

objects plays a potentially important role in efficiency of the SPA. This is because as 

the distance between the camera and the ground increases the molecular scattering 

effect increases because more gaseous molecules occur along the pathway through the 

lower atmosphere. Figure 7.13 shows zoomed sections of the images from Figure 7.12 

and compares the statistical graph of DNs for the pixels surrounded by red rectangle. 
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Figure 7.12. (a) the aerial imagery collected over a smoke-affected, and (b) the enhanced image after applying 

the SPA. This image was collected using modified CANON DSLR camera equipped with the custom-designed 

filter using the ARA research aircraft (cf. section 3.3). 
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Figure 7.13. Zoomed sections of images from Figure 7.13. The left-hand image shows the situation before 

applying the SPA. The statistical for the red highlighted rectangle are shown below it. The right-hand image shows 

the situation after applying the SPA with the statistical summary below.  

 

The graphs in Figure 7.13 again show SPA that there is minimal discrimination between 

the standard deviation, minimum, maximum and mean DNs of the pixels extracted from 

the image, as demonstrated by the green, red and black lines, before the SPA was 

applied.  Whereas, after applying SPA there is much better discrimination.  

 

Other results from images captured from a prescribed burn area in Belair National Park 

(cf. section 3.3) before and after applying SPA and improvements in the discrimination 

of DN statistics are illustrated in Figures 7.14 – 7.20. 
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Figure 7.14. In the left-hand image the scene is partially obscured by smoke. The right-hand image shows the 

scene after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used 

were extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average 

DNs, which are shown in the graphs below the images for the left-hand and right-hand images respectively. These 

graphs show improved discrimination in the image DNs after applying SPA.  
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Figure 7.15. DNs for all the pixels in the area highlighted in red on both images (before and after applying the 

SPA) were extracted to generate statistical summary for minimum, maximum, mean and standard deviation of 

average DNs, which are shown in the graphs below the images for the left-hand and right-hand images 

respectively. These graphs show improved discrimination in the image DNs after applying SPA. 
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Figure 7.16. In the left-hand image the scene is partially obscured by smoke. The right-hand image shows the 

scene after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used 

were extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average 

DNs, which are shown in the graphs below the images for the left-hand and right-hand images respectively. 

These graphs show improved discrimination in the image DNs after applying SPA. 
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Figure 7.17. In the left-hand image the scene is mostly obscured by smoke. The right-hand image shows the scene 

after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used were 

extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average DNs, 

which are shown in the graphs below the images for the left-hand and right-hand images respectively. These 

graphs show improved discrimination in the image DNs after applying SPA. 
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Figure 7.18. In the left-hand image the scene is mostly obscured by smoke. The right-hand image shows the scene 

after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used were 

extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average DNs, 

which are shown in the graphs below the images for the left-hand and right-hand images respectively. These 

graphs show improved discrimination in the image DNs after applying SPA. 
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Figure 7.19. In the left-hand image the scene is partially obscured by smoke. The right-hand image shows the 

scene after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used 

were extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average 

DNs, which are shown in the graphs below the images for the left-hand and right-hand images respectively. These 

graphs show improved discrimination in the image DNs after applying SPA. 
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Figure 7.20. In the left-hand image the scene is mostly obscured by smoke. The right-hand image shows the scene 

after applying the SPA algorithm. DNs for all the pixels in the area highlighted in red on both images used were 

extracted to generate statistical summary for minimum, maximum, mean and standard deviation of average DNs, 

which are shown in the graphs below the images for the left-hand and right-hand images respectively. These 

graphs show improved discrimination in the image DNs after applying SPA 
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7.5. Chapter Summary 

In this chapter, a novel technique, called the smoke penetration algorithm or SPA, was 

developed for enhancing scene visibility in the presence of smoke particles was 

developed based on improved dark channel prior method, which was proposed by He, 

Sun & Tang (2011). In this technique, blue and green channels are blended using a 

modified red channel. After applying colour balancing, the dark channel of the input 

image and atmospheric light are calculated, and a transmission map is estimated for 

image enhancement.   

 

Two sets of data were used to evaluate the effectiveness of the SPA. One captured from 

a controlled burn using a 24 mega pixel modified DSLR camera and a custom-designed 

filter, and the other captured at 600 m altitude over a prescribed burn area using a 20 

mpixel modified DSLR camera with the same custom-designed filter.   

 

The SPA works effectively in improving scene visibility even in areas thickly covered 

by smoke particles; situations which normally would fail if previously proposed 

methods (Sections 2.6 – 2.7) were applied. As discussed in Section 5.3, smoke density 

and its distribution, distance of the camera from smoke particles and image resolution 

are important factors in successful scene visibility enhancement. The application of the 

SPA illustrated that if smoke particles are greater than the wavelength by a factor of > 

λ/10, then Mie and non-selective scattering come into play and, as a result of these types 

of scattering, the SPA does not provide significant improvements in visibility.    
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Chapter 8 

Conclusions and Recommendations 
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 Conclusions and Recommendations 

8.1. Conclusions 

As discussed in Chapter 1, smoke from bushfires can blanket areas up to hundreds of 

kilometres beyond a fire front depending on the severity of the fire, weather and terrain 

conditions. In general wind can spread dense smoke into a large volume of air which 

results in gaseous smoke and reduces visibility. 

Advances in sensor development and remote sensing applications have enabled image 

capture in the EMS beyond visible light. The important point in the context of this 

research is that sensors with sensitivity to longer wavelengths are less prone to light 

scattering effect and as result can produce more clearer image data in areas covered by 

smoke particulates.  Thermal sensors, as an example, collect radiated heat from objects 

with almost no effect from smoke particulates on the quality of the radiation detected. 

It was argued in this thesis that, although these sensors penetrate smoke, due to their 

relatively low spatial resolution and narrow fields of view, they cannot be utilized to 

detect small objects on the land surface. For example, using a thermal sensor to view 

through thick smoke layers and detecting fire flames makes them as extremely useful 

imaging tools for fire fighters but the monochromatic images that are produced would 

not be a preferred option if colour image interpretation is required. Similarly, if was 

flown over a relatively large area many images should be captured due to a small sensor 

footprint on the ground and often intensive post-processing and computer resources are 

required. 

Therefore, the research reported in this thesis studied feasibility of utilizing a consumer-

grade DSLR camera to penetrate smoke particulates without compromising spatial 

resolution and image colour as explained in Section 1.4. Three research was designed 

around three research questions: 

7. Can images acquired by DSLR cameras, after modifications to full spectra, 

penetrate smoke? This question emanates from the first objective.  



141 

 

8. Is it feasible to design an optical filter to minimize the scattering effect on DSLR 

camera images without compromising true-colour? This question emanates from 

the second objective. 

9. Can an image visibility enhancement algorithm be developed to improve smoke 

penetration from a modified camera setup? This question emanates from the 

third objective of this research. 

The research literature on bushfire formation and development, combustion phases and 

fuel types were reviewed and followed by a review of smoke particle components and 

strategies for detecting them. Smoke particle size and characterization were likewise 

reviewed, and it was shown that incoming solar radiation can be partially scattered, 

absorbed or reflected with various magnitudes as a function of morphological and 

optical attributes of aerosols.  

Low cost multi-spectral and TIR sensors are now available and deployable on small 

UAVs which can fly at low elevation and capture high-spatial resolution imagery 

without being affected by smoke particulates. However due to the narrow swath width 

of these sensors on the ground a large volume of raw imagery has to be captured to 

cover big areas and this requires powerful computing resources, experienced operators 

and specialized remote sensing software. Although with image processing methods 

such as pan-sharpening using a pair of high and low-spatial resolution images it is 

possible to enhance the quality of a low-resolution image (cf. section 2.6), these 

methods could fail if the high-spatial resolution image is covered by smoke.  

Many researchers have worked on improving the clarity of images captured by a DSLR 

camera in hazy conditions (Section 2.7). These methods commonly are based on 

identifying parts of image with no or minimal haze contamination to estimate the haze 

density before attempting to enhance it. However, it is obvious that if there is no clean 

region in a captured image these methods will not effective. To address this, multiple 

image-based haze removal methods were reviewed (Section 2.8), these are based on 

utilizing NIR-sensitive cameras alongside normal consumer-grade colour cameras. 

These methods require very careful image positioning and co-registration prior to 
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analysis, they can be very challenging to deploy and in practice are often very 

complicated to use. 

A novel method based on a single and cost-effective consumer-grade camera to address 

these issues, as well as the main research problem as stated in Section 1.3, was designed, 

developed and executed – this includes the following elements: 

• Modifying a consumer-grade DSLR using a reasonably well-known method; 

• Designing and testing a custom-designed filter; and 

• Developing a smoke penetration algorithm. 

This method assumed that an image captured by a typical consumer-grade DSLR 

camera can potentially penetrate smoke. This assumption was simulated and verified 

using archive airborne hyperspectral, thermal and a consumer-grade camera imagery 

that had been simultaneously collected over an area covered by smoke from a bushfire 

(Section 4.2).  Since the hyperspectral camera used for collecting these data was 

sensitive to EMR between 400 – 970 nm, which is almost same sensitivity range as a 

typical Silicon-based imaging sensor used in consumer-grade cameras, it was a valuable 

dataset to analyse and evaluate the feasibility of this research topic.  Because of very 

high spectral resolution of these imagery (244 bands in the hyperspectral images), the 

light scattering effect and its impact on image visibility was analysed between 400 – 

970 nm; and it was shown that by comparing the standard deviation of the reflectance 

values, significant improvements in image visibility and low reflectance were found at 

wavelengths > 950 nm. This confirmed that the first and second question posed for this 

research are valid; and that they could answered as follows. 

A consumer-grade DSLR camera was modified to full spectra by removing its IR cut-

off filter (Section 3.2.2). This modification enabled the three (red, green and blue) bands 

of the camera to capture NIR radiation. This caused a red appearance in the images 

captured because the blue, green and red bands are also sensitive for NIR exposure as 

illustrated in Figure 5.1. The image looks red because of spectrally mixed channels and 

difficulties in interpolation (Figure 5.2). To avoid this effect, a custom filter was 
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designed that only allowed NIR radiation to be exposed in the red channel. It was shown 

that by transmitting NIR radiation between 950 – 1100 nm, as a replacement for the red 

band of the camera, the resulting images were less contaminated by NIR radiation and 

looked more natural (Figure 5.4). The custom-designed filter was then examined in a 

lab environment using a spectroradiometer and its performance and spectral response 

were confirmed (Section 5.3 and Appendix 1). For this test, a white panel with 100% 

reflectance and nine other materials (cf. Table 3.5) with various spectral response were 

used. The custom-designed filter spectral response test showed that using the filter 

absorbs EMR about 600 nm to 950 nm. Reflectance (transmission) starts to decrease 

dramatically at 584 nm (reflectance = 0.94). By 600 nm the transmission was dropped 

to 0.51 and by 615 nm dropped as low as 0.016. Beyond 950 nm transmission increased 

to 0.51 at 979 nm and 0.95 at 1007 nm. There was performance dip at λ = >1200 nm 

due to the physical characteristics of the custom-designed filter such as flatness or 

curvature of surface, the amount of polish and the quality of coating (Angus 2010, p. 

646).  

The spectral response of the modified camera and custom-filter combination was 

studied further in laboratory experimentation. To verify the spectral response of the 

modified camera and custom-designed filter, first the DN values of white, grey and 

black targets were measured using a FieldSpec4® Hi-Res ASD spectrometer. Then the 

modified camera with and without custom-designed filter was used to capture 

photographs from those targets respectively. Results from the spectrometer reading 

divided into three bins: 400 nm – 500 nm (blue), 500 nm – 600 nm (green), and 600 

nm – 700 nm (red) bands. DN values from the spectrometer and camera readouts 

without custom-designed filter for each individual band were analysed and it was 

noticed that the R-square value of the DNs for red band is lower than that for green 

and blue bands without using the custom-designed filter (Figures 6.6). This linearity 

was significantly improved for red, green and blue bands after using the custom-

designed filter confirming that DN values of the images captured by the modified 

camera and custom-designed filter can be compared and correlated to the DN values 

of the spectrometer (Figure 6.7).  
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To test the modified camera and custom-designed filter further a series of airborne and 

ground-based photos with smoke caused by a bushfire and controlled burn, the details 

of the fire environments and remote sensing methods are discussed in Section 3.3. 

Since the captured photographs contained NIR radiation between 950 – 1100 nm in the 

red band, this was used to develop a smoke penetration algorithm (SPA) to enhance 

the blue and green bands which were exposed more to smoke particulates.   

 

The SPA is based on combination of both single and NIR-guided image haze reduction 

methods from the research literature (Chapter 2) and uses the dark channel prior 

concept. It first attempts to divide the input image into three separate bands, and then 

applies a blending operation by multiplying individual pixels of the blue and green 

bands with the corresponding pixels from the NIR (λ= 950 nm – 1100 nm) band. After 

applying colour balancing to the resulting image, dark pixels from small patches in the 

photographs are identified and used for smoke transmission mapping and path radiance 

estimation to enhance the image visibility. The results achieved after applying the SPA 

show significant improvements in visibility. Evidence for this comes from the DNs of 

both visual and statistical comparisons of selected regions of ‘test’ photographs, which 

was mostly covered by smoke, before and after applying the SPA. 

 

The main limitation of this method, that was introduced in this research, is if entire or 

part of scene is covered by dense smoke there will be almost no visibility improvement 

in those areas. This is because in the areas of dense smoke, there are also larger 

diameter particles cause Mie and non-selective scattering. Mie scattering occurs when 

the diameter of the smoke particles is approximately the same as the incident 

wavelength. If EMR interacts with particles that are several times larger than the 

radiated wavelength, then Non-selective scattering occurs with strong forward 

scattering peak and smaller degree of backscattering (cf. section 2.5). In these cases 

(Mie or Non-selective scattering), imaging sensor does not receive the entire energy 

reflected from ground objects. In case of Rayleigh scattering in which the diameter of 
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smoke particles is much smaller than incident light wavelength (<λ/10), camera sensor 

receives a portion of reflected energy from the ground objects and also from the 

molecular particles in the atmosphere. The proposed method in this research 

successfully estimated the reflected energy from smoke particles which is known as 

path radiance using the developed SPA (cf. section 7.3.2) and effectively enhanced the 

visibility of images captured using the modified camera and custom-designed filter 

combination. 

 

To conclude, this research successfully answered the research questions that were asked 

based on identified research problem and research objectives were fulfilled.  The key 

outcomes are: 

 

1. Development of a custom-designed optical filter and a methodology for 

seeing through gaseous smoke using modified DSLR cameras which 

involved: 

 

a. Identification of the useful regions of the EM spectrum beyond visible 

wavelengths in DSLR camera sensors which effectively can penetrate 

smoke (i.e., > 950 nm). 

b. Preserving original image colour while transmitting NIR radiation > 950 

nm. 

 

2. Development of a smoke penetration algorithm to improve image visibility for 

images captured by a modified camera and custom-designed filter. 

  

The proposed solution could be implemented in near real-time to enhance scene 

visibility as images are captured. For example, an unmanned aircraft equipped with this 

camera and filter, can transmit data to the ground station to be processed with SPA to 

enable decision makers to provide clear, high-resolution insights in fire environments.  
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The results from this study could potentially be used to design a low-cost smoke 

penetration sensor onboard a UAV. Small and lightweight optical cameras can be easily 

modified at relatively low cost to be exposed by EMR beyond the visible spectrum. 

Then, by using the custom-designed filter introduced in this research, collected imagery 

can be transmitted to a remote ground base station through a UAV’s built-in wireless 

communication protocol. Since the developed smoke penetration algorithm does not 

require huge computing resources, a typical transportable field computer can be used to 

run the developed algorithm on received imagery and provide cleaner vision to people 

who need it in near real-time.  

The proposed approach in this research can be improved in number of ways. First, 

further analysis can be carried out on designing an optical filter to use wider spectral 

bands of the CMOS sensors in the NIR region, i.e. not limited to 950 nm – 1100 nm. 

Due to the limited budget for this research only a single custom optical filter was 

designed and examined, which was discussed in detail in Chapter 5. Other optical filters 

with wider bandwidths in the NIR region of the spectrum, 850 nm – 1100 nm, would 

potentially provide more information about the scene and smoke particles. A wider 

bandwidth can only be more efficient if maximum information can be transmitted over 

it. The term spectral efficiency is used to describe the rate of information being 

transmitted over a given bandwidth. Therefore, selecting any other camera and studying 

spectral response of its imaging sensor, especially in the NIR region, would have a 

significant impact on achieving improved results. Secondly, due to the lack of precise 

spectral analysis equipment available for this research such as a monochromator, it was 

impossible to measure the quantum efficiency of the camera sensors used in this 

research. CCD or CMOS sensors inside DSLR cameras have various quantum 

efficiencies which can be measured using a monochromator at any given spectral 

region. This would help in selecting a more suitable camera with higher spectral 

response in the NIR region. Thirdly, although the SPA algorithm developed in this 

research, which was adopted from the DOS method in remote sensing and proven to be 

providing promising results in seeing through smoke, as illustrated in Chapter 7, it  can 

be replaced with any other remote sensing atmospheric correction algorithm. This is 
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because of the fact that nature of the collected images using the modified DSLR camera 

and custom-designed filter contains extra per-pixel information in the NIR band with 

minimal smoke particle scattering effect, so other atmospheric correction algorithms in 

remote sensing and image processing literature could be adopted and examined for 

removing smoke particle effects. 

 

8.2. Contribution to the body of knowledge 

The significant original contribution to the body of knowledge in this thesis emerges 

from the topic and research area itself as a novel application of existing solutions. This 

has been accomplished by creating a synthesis, discussing previous work and providing 

a single original technique to tackle the identified research problem.  The methods 

discussed in this thesis also contribute to the body of knowledge. Although there were 

other previous studies partially related to this research, such as implementing thermal 

or multispectral imaging technologies in addressing the research problem, this research 

introduced a novel methodology by taking a closer and more precise look at CMOS 

imaging sensors used widely in a consumer-grade cameras which was not previously 

studied in the context of this topic. Data collection method, deeper analysis and design 

logic for a custom spectral filter, combined with adopting known image processing 

methods, makes this research and its contribution to the knowledge even more 

outstanding. 

 

The ability to solve a challenging issue in this research, which is a trending problem in 

bushfire literature, a result-oriented approach built round a valid hypothesis add to 

existing knowledge on the research topic. This research contributes to bushfire 

management, particularly in minimizing the risks to fire fighters and other people even 

in prescribed burn scenarios; as background visibility for firefighters is crucial in fire 

management. The findings of this research will contribute significantly when  aerial or 

ground-based high resolution imagery with minimal smoke obstruction can be collected 

and made available in near real-time for fire fighters and rescue teams.   
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Finally, as discussed and illustrated in Chapter 4, the presence of smoke particles in 

collected aerial imagery causes image matching and pixel correlation algorithms to fail 

or produce non-reliable results. There are no previous studies on this specific topic, nor 

on how stereo imagery collected above smoke contaminated regions could be used for 

photogrammetry and topographic data production. Access to up-to-date elevation data 

in fire management to estimate ground slope, tree heights and other information is an 

invaluable source of information. These data cannot be produced using thermal imagery 

because of their low spatial resolution and a monochromic imaging sensor as discussed 

in Chapter 4. However, collecting imagery using a typical optical sensor over a smoke-

affected area would specifically result in incorrect and less reliable elevation data as a 

result of this poor stereo image matching. The results of this research therefore also 

contribute to photogrammetry domain; specifically how the data could be implemented 

and optimized to produce reliable elevation data and large area image mosaics.   
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8.3. Recommendations 

Identified directions for further investigation in improving and conducting follow up 

research include: 

 

• Improved image contrast after applying SPA. After applying SPA resulting 

images may appear darker than the initial input images. This can be managed 

and maintained by applying colour mapping and histogram matching algorithms 

based on statistics of two images or pixel-based colour mapping by developing 

an adaptive colour correction filter. 

 

• Real-time visibility improvement in bad weather conditions and road sign 

detection. Results from this research show that haze particles can be effectively 

removed from input imagery, this could be extended to develop a real-time 

haze and fog removal solution to assist drivers in detecting road signs, people, 

traffic lights and potential roadside hazards. 

 

• Improving efficiency of image matching tools by removing haze and smoke from 

airborne imagery. To study large areas of interest in airborne remote sensing, 

image mosaicking tools are commonly used for stitching individual images 

together based on corrleation between common pixels and image matching 

between two or more overlapping images for constructing the digital surface 

model (DSM) required for image ortho-rectification process. This would simply 

fail or result in gap in the final mosaicked image if images are degraded by haze 

or smoke particles. Outcomes of this research can be applied for improving 

image matching techniques and noise-free 3D reconstruction in 

photogrammetry. 

 

• Deriving soil properties and qualities using images collected by the proposed 

camera and filter in this research. It was illustrated that the modified camera and 

custom-designed filter have acceptable spectral reflectance in infrared region of 
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spectrum with 950 nm< λ<1100 nm. This narrow range of wavelengths, 

combined with blue and green channels, could provide reasonably acceptable 

reflectance indices which can be used for studying soil properties for agricultural 

studies.  
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 Appendices  

 

Appendix 1. Measurement of Optical Filter Spectral Response 

This appendix contains all the spectroradiometric measurements conducted for 

verifying the custom-designed filter in lab environment using reference materials  listed 

in Table 3.5. 
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Appendix 2. Published Papers 

 

This appendix contains two published papers: 

 

Chabok M., 2013, ‘Eliminating and Modelling Non-metric Camera Sensor Distortions Caused by 

Sidewise and Forward Motion of the UAV’, ISPRS - International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, vol. XL-1/W2, pp.73-79 

 

 

Chabok M., Millington A., Hacker J.M, McGrath A.J 2016, ‘Visibility through the gaseous smoke in 

airborne remote sensing using a DSLR camera’, Proc. SPIE, Fourth International Conference on 

Remote Sensing and Geoinformation of the Environment (RSCy2016), vol. 9688. 

 

 

 

 

 

  

http://spie.org/profile/Andrew.McGrath-53158
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