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Abstract 

This thesis investigated the ecohydrological linkages between native and exotic 

tree species and karstic groundwater systems on Eyre Peninsula, South Australia. 

It focuses on two issues of global importance: the declining status of fresh water 

resources in water-limited environments and the rate of evapotranspiration from 

native and non-native trees encroaching across groundwater recharge areas. The 

work focussed on karstic groundwater systems, a geological setting where the 

water flux dynamics from the surface through to groundwater is a complex 

process involving storage in the unsaturated zone and diffuse and preferential 

recharge pathways. This geological complexity and the processes associated with 

this behaviour are not well understood, despite karst aquifers often being  the 

source of drinking water supplies. As a result, uncertainty regarding the 

ecohydrological processes in this environmental setting remains large. 

In addition to the complex nature of the karst substrate, the presence of vegetation 

growing above the groundwater lens will further influence recharge and discharge 

dynamics. Water use by trees, as well as the partitioning of precipitation into 

interception, stemflow and throughfall, was considered to be an important 

ecohydrological process affecting this groundwater system.  

This study examined whether groundwater level decline could be attributed to 

changes in land cover, reflecting differences in evapotranspiration rates and 

pathways of water flux across morphologically distinct, locally common tree 

species. Pre-European settlement the region was characterised by a grassy 

woodland dominated by Allocasuarina verticillata (Lam.) L. Johnson (drooping 

sheoak). Since the establishment and subsequent cessation of grazing across 



15 

 

groundwater recharge areas, Eucalyptus diversifolia ssp. diversifolia Bonpl. 

(coastal white mallee) has expanded in range. Furthermore, the non-native Pinus 

halepensis Mill. (Aleppo pine), originally planted as a wind-break, has since 

naturalised and invaded significant areas of the rocky, shallow, calcrete soils often 

characteristic of karstic systems. Invasion by an aggressive exotic plant species 

into this water-limited environments was commonly believed to further 

exacerbate water scarcity issues. 

Fundamentally, this thesis seeks to address concerns regarding the effect native 

trees, or encroachment by exotic trees, exerts over groundwater flux in a water-

limited environment. The belief that the vegetation will detrimentally affect the 

groundwater charge rates inevitably attracts debate regarding the ability of active 

management of vegetation to improve water yield. 

I applied both plot-scale and remotely-sensed methodologies to examine total 

evapotranspiration (ET) flux, and used these to construct a water balance for the 

three tree species in question, as well as for a grassland site. Water use strategies 

and ecophysiological characteristics were examined using leaf water potential and 

soil matric potential, and twig water sources were traced using the stable isotopes 

of water. The funnelling of water from canopies via tree surfaces to enhance 

infiltrate around the base of tree boles was explored as a mechanism though 

which soil water content could sustain transpiration during dry periods. Global 

literature suggested that variability in methodological approach significantly 

affected the reported results, which I demonstrated using two years of rainfall 

partitioning data. 
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The results of this study indicated that ET losses from native vegetation 

associations were equivalent to long term precipitation. Despite a shallow 

groundwater depth of < 5 m, use of groundwater to sustain transpiration 

requirements was not clearly demonstrated by the studied tree species, suggesting 

that while recharge will be reduced by the presence of these trees, ET was most 

likely supported by soil water stores rather than groundwater extraction. The 

reliance on soil moisture, rather than groundwater, was further supported by 

actual ET remaining well below (one third of) potential ET, therefore a significant 

constraint was evident on the system. However, the encroachment of the invasive 

Pinus halepensis was considered likely to have contributed to declining 

groundwater levels, based on higher rates of sap flux per unit sapwood area 

compared to the native species. Comparison of ET rates before and after removal 

of P. halepensis suggested an annual water saving of ~ 50 mm; however it was 

recommended more than two years of post-removal data be used to assess the 

likelihood of realising long term water savings. 

Irrespective of stand and morphological differences, the water use characteristics 

of the native E. diversifolia and A. verticillata were remarkably similar , 

demonstrating the evolutionary capacity of these species to maximise the use of 

the available precipitation. Furthermore, rainfall channelled as stemflow is 

believed to play an important ecohydrological role in this environment. 

Infiltration directly adjacent tree root systems provides a water store which can be 

used during times of precipitation deficit. In addition, I suggest that the water 

holding capacity of porous geological substrate has played an important role in 

buffering inter- and intra-annual rainfall variability and needs to be considered 

when characterising karstic groundwater systems. 
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The findings described in this thesis add to our knowledge of evapotranspiration 

rates of vegetation in semi-arid systems. I have demonstrated the value of using 

both plot scale field investigation and remotely sensed data to address important 

knowledge gaps and improve the management of regionally significant 

groundwater supplies. The results of this research are expected to inform water 

resource policy as competition for fresh water increases, expected to intensify 

following predicted climate change scenarios. 


