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Abstract 

Higher order mining (HOM) [183], which mines over patterns/models derived 

from one or more large and/or complex datasets, has been widely used in a variety 

of ways and provides benefits such as the ability to combine mining strategies 

through the modular combination of components and the development of higher 

order explanations in describing facts about data. Based on the idea of HOM, this 

thesis addresses two important but unanswered issues. 

First, while the discovery of rules that can inform business decision making is the 

ultimate goal of data mining technology, the search for rules that adhere to a 

user’s definition of interesting remains somewhat elusive, in part because rules are 

commonly supplied in a low, instance-level format. In order to tackle this 

problem, this thesis proposes the concept of ruleset patterns to represent complex 

patterns in sets of rules reflecting a user’s definition of interesting and presents a 

proof-of-concept system, Horace, for efficient ruleset pattern discovery. Since 

frequent pattern or prefix trees are (generally speaking) isomorphic with the 

resulting ruleset, Horace employs a novel tree-based approach to searching such 

intermediate data structures for patterns. Experimental results show the approach 

is both usable and efficient to search for rules that are sought by users. 

Second, the detection of unusual or anomalous data is an important function in 

automated data analysis or data mining. However, the diversity of anomaly 

detection algorithms shows that it is often difficult to determine which algorithms 

might best detect anomalies given any random dataset. This thesis provides a 
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partial solution to this problem by elevating the search for anomalous data in 

transaction-oriented datasets to an inspection of the rules that can be produced by 

higher order longitudinal/spatio-temporal association rule mining. The motivation 

behind the approach is in two aspects. Firstly, the primary or raw data might not 

be always available; thus in some cases, researchers can operate only on the rules 

generated from the source data [183]. Furthermore, since HOM facilitates the 

characterisation of items participating in rulesets in terms of real-world 

descriptions (such as competitor, catalyst and so on), such a technique may 

provide a view of anomalies that is arguably closer to that sought by information 

analysts. In this thesis, two anomaly detection algorithms are proposed to find 

anomalies/outliers and a proof-of-concept prototype has been developed and 

tested. The experimental results demonstrate the soundness and feasibility of the 

proposed approach. 
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Chapter 1  

Introduction 

1.1 Research Context 

We are living in a world with a wealth of data. With the use of computers and 

electronic database packages, the amount of data that is collected doubles 

approximately every twenty months [140]. This explosive growth in data and 

databases generates the need for new techniques and tools that can intelligently and 

automatically transform the data into useful information and knowledge.  

Knowledge discovery in databases (KDD), which has been defined as the non-

trivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data [64], is an evolving research direction to meet this 

challenge. The KDD process is composed of different steps that can be summarized 

in four main phases: 

 Data cleaning and data integration, where real world data from multiple 

sources are cleaned and put in a coherent data store, such as data 
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warehouses and/or data marts. 

 Data pre-processing, where data is transformed or consolidated into forms 

appropriate for analysis (usually termed data mining).  

 Data mining, where various mining techniques are applied over the 

database in order to discover new patterns/knowledge.  

 Post-mining, where evaluation and visualization techniques are utilized to 

present the mined knowledge to the user. 

Association rule mining is one of the most commonly applied techniques of data 

mining. It aims to find interesting relationships among items in a given dataset 

[86]. Initial research into association rule mining was largely motivated by the 

analysis of retail market basket data, the results of which allowed companies to 

understand purchasing behaviour more fully. One example is that “customers who 

purchase computers also tend to buy anti-virus software at the same time”. The 

discovery of association rules can help in many retail business decision-making 

processes, such as cross-selling, shelf layout, and catalogue design. Although 

initially motivated by the desire to analyse large retail transaction databases, the 

general utility of association rules makes them applicable to a wide range of 

different learning tasks. Association rule mining has now been applied in a variety 

of industry sectors including commerce, defence, health, manufacturing, 

exploration and engineering. 

Data mining techniques extract implicit and interesting patterns from large data 

collections. Such data are typically assumed to be primary data captured by some 

application, cleaned and prepared according to the demands of the mining 
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algorithm [183]. However, in many cases, the primary or raw data are not always 

available. For example, in some applications, stream data are not stored and are 

only available for a short time [70]. Also, in some cases, organisations (and 

governments) are willing to provide (by their nature relatively confidential) 

association rules but unwilling to provide access to source data. Thus in some cases 

only association rules generated from the source data are available for the 

researchers to operate over [183]. Furthermore, even for available primary data, 

there are limits on the computation speed that can be achieved – such limits are set 

by hardware and firmware technologies [183]. 

One approach to tackling those issues is to mine over patterns/models derived from 

one or more large and/or complex datasets, which can be termed higher order 

mining (HOM) [183]. For example, Lent et al. [124] have shown how association 

rules may be clustered. Gupta et al. [80] extended this work by looking at distance-

based clustering of association rules, and Perrizo and Denton [170] outlined a 

framework based on partitions to unify various forms of data mining algorithms.  

Compared with traditional data mining techniques which have largely focused on 

the extraction of knowledge directly from the source data, HOM discovers patterns 

from non-primary data and has the following benefits [128]: 

 the ability to combine mining strategies through the modular combination 

of components. 

 the development of higher order explanations in describing facts about 

data, particularly those describing changes over time, location or some 

other dimension. 
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 a comparatively faster execution time due to reduced volumes of data. 

1.2 Research Objectives 

HOM opens a window for changes in perspective about knowledge discovery, from 

the analysis of data to the analysis of patterns. Although there have been many 

advances in this paradigm, the overall potential of HOM is still largely unexploited 

and worthy of further research [183].  

Based on the idea of HOM, this thesis addresses two important but unanswered 

issues: 1) the discovery of patterns in association rules which represent the higher 

order knowledge sought by users; 2) the discovery of anomalies in association 

rules that are produced by higher order longitudinal/spatio-temporal association 

rule mining. 

1.2.1 Discovering Patterns in Association Rules 

Since the early work of Agrawal, Srikant and others, association rule mining has 

become a mature field. It has provided very powerful mining algorithms, with the 

capacity to discover rapidly sets of co-occurring items or events in very large 

databases. A variety of extensions have been proposed that enable, for example, 

 temporal [7, 127, 175] and spatial [87, 115] semantics to be 

accommodated, 

 closed sets to be identified [165, 232], 

 fuzzy and incomplete data to be handled [49, 119], 

 the accommodation of domain-specific concept hierarchies [54, 66, 84, 

190], and 
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 the application of visualisation techniques [154]. 

However, the search for patterns/knowledge which adhere to a user’s definition of 

interesting, remains somewhat elusive [74], in part because rules are generally 

supplied in an instance level format such as  

                        {𝑚𝑖𝑙𝑘} ^ {𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑}  𝜎(0.20)  𝛾(0.65)                     (1) 

where the   (support) and γ (confidence) values are examples of some quality 

metric for the rule. Such low-level rules, while useful, provide knowledge only 

about the coincidence of elementary values and can be termed zero-order rules. 

Higher order semantics can be derived when sets of rules are inspected to 

determine patterns of interest between rules. 

Example 1.1 Given a set of rules such that: 

{𝑎} => {𝑐}          𝜎(𝑥)                                                       (2) 

{𝑏} => {𝑐}          𝜎(𝑦)                                                       (3)                 

                                    {𝑎, 𝑏} => {𝑐}      𝜎(𝑧)                                                       (4) 

                         𝑤ℎ𝑒𝑟𝑒 𝜎(𝑧) ≪ 𝜎(𝑥) × 𝜎(𝑦)                                                        (5)            

We might find two competitor items 𝑎 and 𝑏 from the above three rules as the 

observed value for Eq. (5) is considerably lower than one would have expected 

with independent items.  

Studies of patterns reveal that users are often interested in such types of 

knowledge. For example, a supermarket manager may be interested in finding 

products that churn with each other. Analysts looking to reduce hospital costs may 

look for situations where potential alternatives exist, that is, pairs of items which 

rarely occur together but almost always occur with the same other items.   

In the past, specific algorithms have been developed to search for individual cases 
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of such patterns. For example, Teng [206] outlined a mechanism for learning 

dissociations (aka competitors) from source data. However, direct current work on 

the discovery of patterns in rules is limited and there are several questions which 

remain unanswered: 

 What are patterns in rules? How can we define them based on a user’s 

definition of interesting?  

 How can we efficiently search patterns from the discovered set of rules? 

 Users need to specify high-level (i.e. user-oriented) descriptions of the 

patterns they are interested in. Can we develop a pattern language to 

enable users to create, update and retrieve such patterns? 

This thesis provides some answers to the above questions.  The thesis provides a 

formal definition of patterns in rules, based on which it proposes the Horace 

framework for pattern searching [130]. Horace consists of a pattern library and its 

associated pattern language which allows users to define, retrieve and maintain 

patterns in rules based on their own definition of interesting [129]. At the core of 

Horace is a tree-based approach to searching for patterns in rules. Since frequent 

patterns or prefix trees are (generally speaking) isomorphic with the resulting 

ruleset, Horace expresses the ruleset patterns using a novel ruleset pattern tree (RP-

tree) and utilizes a set of algorithms to search such data structures for patterns 

efficiently and directly [130].   

1.2.2 Discovering Anomalies in Longitudinal Association Rules 

The popularity of data mining, together with mounting recognition of the value of 

temporal and spatial data, spatio-temporal data modelling and databases has 
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resulted in the prospect of mining spatial and temporal rules from both static and 

longitudinal, temporal and spatial data. Longitudinal and spatio-temporal data 

mining has the capacity to [128]: 

 analyse activity rather than just states and to infer relationships of 

locational and temporal proximity, some of which may also indicate a 

cause-effect association, and  

 mine the behavioural aspects of objects as opposed to simply mining rules 

that describe their states at a point in time.  

In many domains, the value of knowledge obtained by analysing the changes to 

phenomena over time and space, as opposed to the situation at an instant or at a 

single location, has been recognized and a number of temporal and spatial data 

mining techniques have been developed [182, 61]. For example, spatio-temporal 

association rules can indicate movement, trends and/or patterns that static rules 

cannot show. 

Anomaly detection is an important problem for many domains, particularly those 

with a high level of pre-existing domain knowledge. Within medicine, for example, 

it is commonly the exceptions that provide insight into a problem. It is important to 

be able to detect statistically significant anomalies from a series of multiple, large 

and semantically complex snapshots or single location datasets, such as those that 

could be collected by an organization as part of routine archival operations or 

statutory reporting. Efficiently solving this problem would enable the more rapid 

development of knowledge discovery systems capable of uncovering hidden spatio-

temporal trends and correlations which might, in some cases, act as a real time 
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alerting mechanism [128].  

In the past, there have been few efforts to address this problem. For example, 

spatio-temporal outlier detection techniques [30, 53] have been proposed to find 

spatial outliers over several time periods. Mooney and Roddick [148] tackled this 

problem by running an association mining algorithm over sets of rules which they 

themselves generated from association rule algorithms.  

Clearly, anomalies in a single data item can be found using standard statistical 

techniques. This thesis is primarily concerned with the following question: “Can 

anomalies be detected through an inspection of association rules generated from the 

source data?”  

To illustrate, consider the following example. 

Example 1.2 Assume Table 1.1 contains information about the patients who 

suffered from stroke on a given day, including their name, age, blood pressure and 

the time stroke occurred.  

Table 1.1: Stroke Patients Details 

Patient Name Age Blood Pressure Time 

patient-a 60 150 2:00am 

patient-b 69 170 2:00am 

patient-c 78 165  8:00pm 

patient-d 80 180 8:00am 

patient-e 65 130 12:00pm 

(rest of data omitted) … … … 

Let A represent the antecedent (age = [60…80]) ^ (blood pressure [130…180]) and 

B represent the consequent (stroke = yes). Table 1.2 shows some of the association 

rules which might be generated based on the data stored in Table 1.1. Those rules 

have the same rule body but a different timestamp, revealing the relationship 
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between the age and blood pressure of a patient and the possibility of suffering 

stroke at different times. 

Table 1.2: Sample Association Rules 

Rule Name Support Confidence Time Stamp 

A=>B 0.20 0.55 2:00am 

A=>B 0.21 0.64 4:00am 

A=>B 0.23 0.53 6:00am 

A=>B 0.58 0.54 8:00am 

A=>B 0.25 0.50 10:00am 

A=>B 0.20 0.52 12:00pm 

A=>B 0.21 0.58 14:00pm 

A=>B 0.26 0.51 16:00pm 

(rest of data omitted) … … … 

 

 

Figure 1.1: An Example of Anomalies in Association Rules 

Figure 1.1 illustrates the data in Table 1.2, where the X axis is the timestamp and 

the Y axis is the support value. As shown in Figure 1.1, there is one normal region 

N since the support values of most of the rules are between 0.2 and 0.26 during the 

24-hour period. Point O1 which represents the rule occurred at 8am has a support 

value of 0.58 which is sufficiently far away from the region. If we define points in 

region N as normal, then point O1 can be treated as an anomaly. It reveals that older 

patients (60 ≤ age ≤ 80) with high blood pressure (130 ≤ 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤
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180) have an unexpectedly high rate of stroke at 8am.   

This above example shows the possibility of detecting anomalies through an 

inspection of association rules generated from the source data. Motivated by this 

example, this thesis proposes an approach to elevating the search for anomalous 

data in transaction-oriented datasets to an inspection of the rules that can be 

produced by higher order longitudinal/spatio-temporal association rule mining.  

Since HOM facilitates the characterization of items participating in rulesets in 

terms of real-world descriptions (such as competitor, catalyst and so on), we argue 

that such a technique may provide a view of anomalies that is arguably closer to 

that sought by information analysts. In addition, it provides an alternative approach 

for anomaly detection if primary sources are not available but only rules generated 

from the source data the researchers can operate.  

In this thesis, two anomaly detection algorithms have been developed and the 

experimental results have demonstrated the soundness and feasibility of the 

proposed approach [128]. 

1.3 Contribution 

This thesis makes the following contributions to the domain: 

 The concept of the ruleset pattern is developed, which represents patterns 

in rules. Also, a framework, called Horace, is proposed for ruleset pattern 

discovery. Since frequent pattern or prefix trees contain the complete set 

of information held in a database relevant to frequent pattern mining, 

Horace employs a tree-based approach to searching such data structure 
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directly for matches of given ruleset patterns. 

 The thesis proposes a novel data structure, a ruleset pattern tree (RP-tree), 

to represent patterns in rules. Two tree searching algorithms are presented 

to search the frequent pattern tree (FP-tree) efficiently for matches of the 

RP-tree.  

 A ruleset pattern language (RPL) has been developed, which consists of a 

ruleset pattern definition language (RPDL) and a ruleset pattern query 

language (RPQL). RPL enables users to create, alter and retrieve patterns 

from a ruleset pattern library. 

 Two anomaly detection methods have been presented which can identify 

anomalies in a set of longitudinal association rules. 

 Prototypes for ruleset pattern discovery and anomaly detection in 

longitudinal association rules have been built and tested. The experimental 

results demonstrate the capacity of the proposed approach to find 

patterns/anomalies that cannot be identified by traditional data mining 

techniques.  

1.4 Thesis Organization                

The remainder of the thesis is structured as follows: 

Chapter 2 presents a systematic literature review of related work, with a focus on 

association rule mining and HOM. 

Chapter 3 introduces the concept of ruleset patterns together with some specific 

patterns, including the competitor pattern, twoway-catalyst pattern, and threeway-
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catalyst pattern. Also, the Horace framework of ruleset pattern discovery is 

explored in this chapter. 

Chapter 4 presents two novel algorithms for searching FP-trees for ruleset patterns. 

The details of a prototype and experiment results are also supplied. 

Chapter 5 describes RPL, the ruleset pattern language. Detailed description of its 

two components: the ruleset pattern definition language (RPDL) and the pattern 

query language (RPQL) have been provided. The evaluations of RPL queries as 

well as the experimental results are also discussed in this chapter. 

Chapter 6 presents an approach for detecting anomalies in a set of longitudinal 

rules. Two anomaly detection algorithms have been proposed. A prototype for 

anomaly detection and experimental results are also explored. 

Finally, the thesis concludes in Chapter 7, where recommendations are made 

regarding possible future research and development activities. 



Chapter 2  

Literature Review and Background 

This chapter presents an in-depth review of the topics, areas and research related to 

the work presented herein. The chapter sections are arranged as follows. Section 

2.1 provides an overview of knowledge discovery in databases and data mining. 

Section 2.2 reviews the formal definition of association rule mining and the Apriori 

algorithm. Section 2.3 and 2.4 discuss the improvements in frequent itemset 

generation and rule generation respectively while Section 2.5 provides an overview 

of some extensions of association rule mining. A survey of HOM is provided in 

Section 2.6 with a focus on mining over association rules. Section 2.7 concludes 

the chapter.   

2.1 Knowledge Discovery in Databases and Data Mining 

Since the 1960s, with the advances in computer science and databases, the volume 

of information stored in databases has been growing exponentially. For example, 

the National Aeronautics and Space Administration’s (NASA’s) Earth Observing 
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System of orbiting satellites and other space borne instruments sends one terabyte 

of data to receiving stations every day [218]. It has become a real and universal 

challenge to find actionable knowledge from such large amount of data. The field 

of knowledge discovery in databases (KDD) has been designed to meet this 

challenge.  

 

KDD concerns the complex process of identifying valid, novel, potentially useful 

and ultimately understandable patterns in data [64]. Data mining refers to a 

particular step in the KDD process and is the automatic extraction of implicit and 

interesting patterns from large data collections [109]. Figure 2.1 presents the main 

steps of the KDD process, including data cleaning and data integration, data pre-

Data warehouse 

Selected data 

Patterns 

Knowledge 

Cleaning and integration 

Data selection and 
transformation 

Data mining 

Evaluation and 
presentation 

Databases 

Figure 2.1: The KDD Process 
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processing, data mining, and post-processing.  

Real-world data tend to be incomplete, noisy and inconsistent [86]. The first step 

consists of two pre-mining tasks: data cleaning which is used to fill in missing 

values, remove noise and correct inconsistent data, and data integration which is 

utilized to bring data from multiple sources into a coherent data store, such as a 

data warehouse and/or data mart(s).  

During the data pre-processing step, the data warehouse developed during the data 

cleaning and data integration phase is verified. Data are re-cleaned if needed. Data 

selection is then performed where data relevant to the analysis task are retrieved 

from the data store. Finally, data are transformed or consolidated into forms 

appropriate for mining.  

The data mining step is essential in the KDD process. In this step intelligent 

methods are applied over data to extract interesting patterns. Some important data 

mining techniques include [86]: 

 Classification and prediction, two forms of data analysis that can be used 

to extract models describing important data classes or to predict future 

data trends.  

 Clustering, a process of grouping a set of physical or abstract objects into 

classes of similar objects.  

 Association rule discovery, a technique to find interesting associations 

among sets of items in transaction databases or other data repositories  

 Anomaly detection, a process of identifying data objects that do not 

comply with the general behaviour or model of the data. 
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The final step of the KDD process is post-processing or post-mining. In this step, 

users are able to evaluate the patterns, that is, to determine the importance of the 

extracted patterns, using several user-driven methods or statistical database 

oriented methods. Visualization and knowledge representation techniques are also 

integrated in this step to present the mined knowledge to the user. 

2.2 Association Rule Mining  

Association rule mining, which was introduced by Agrawal et al. [3], is one of the 

most well-known techniques of data mining. Association rule mining searches for 

interesting relationships among items in a given dataset [86]. An example of such 

an association is that if a customer buys bread and butter then that customer is 

likely to also buy milk in the same transaction. Although initially motivated by the 

desire to analyse large retail transaction databases, association rule mining has been 

applied to a variety of industry sectors including commerce, defence, health, 

manufacturing, exploration and engineering. 

2.2.1 Formal Definition of Association Rule Mining 

Let us consider 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} a set of 𝑚  binary attributes, called items. An 

itemset is a non-empty subset of 𝐼. An itemset that contains 𝑘 items is a 𝑘-itemset. 

Let 𝐼 = {𝑡1, 𝑡2, … , 𝑡𝑛}   be a set of 𝑛  transactions, where each transaction 𝑡𝑖 

represents a binary vector, with 𝑡𝑖[𝑘] = 1 if 𝑡𝑖  contains the item 𝑖𝑘 , and 𝑡𝑖[𝑘] =

0 otherwise. A unique identifier is assigned to each transaction, called 𝑇𝐼𝐷.  
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Definition 2.1 (Association Rule) An association rule is an implicit expression of 

the form  

𝑋 => 𝑌, 

where 𝑋, 𝑌  I and 𝑋 ∩ 𝑌 = ∅. We call 𝑋 the antecedent and 𝑌 the consequent of 

the rule. 

Definition 2.2 (Support) Support of an association rule is defined as the 

percentage of transactions that contain 𝑋 ∪ 𝑌  compared to the total number of 

transactions in the database. Support is calculated by the following formula: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑂𝑓𝑋𝑌

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
. 

Definition 2.3 (Confidence) Confidence of an association rule is defined as the 

percentage of the number of transactions that contain 𝑋 ∪ 𝑌 to the total number of 

records that contain 𝑋. If the percentage exceeds the threshold of confidence, an 

interesting association rule 𝑋 => 𝑌 can be generated. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋|𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
 

Given a set of transactions 𝐷, the task of mining association rules is to generate all 

association rules that have support and confidence greater than the user-specified 

minimum support (called 𝑚𝑖𝑛𝑠𝑢𝑝) and minimum confidence (called 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 ) 

respectively. 

The task of association rule mining can be broken into two steps [3]: 1) find all 

frequent itemsets that hold transaction support above the minimum support 

threshold; 2) generate the desired rules from the frequent itemsets if they also 

satisfy the minimum confidence threshold.  
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2.2.2 Apriori: Classic Association Rule Mining  

The Apriori algorithm was proposed by Agrawal and Srikant [6]. It is regarded as 

the classical association mining algorithm [47]. 

The Apriori algorithm provides an approach for frequent itemset generation, where 

the key idea lies in the Apriori property of the support, that is, if an itemset has 

minimum support, then all its subsets also have minimum support. Thus, any subset 

of a frequent itemset must also be frequent while any superset of an infrequent 

itemset must also be infrequent. 

Algorithm 2.1: Apriori Itemset Generation [6] 

1:Input: Database 𝐷 

2:Output: The set 𝐿 of itemsets 

3: 𝐿1= {1-itemsets} 

4: for all (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin 

5:  𝐶𝑘 = apriori-gen (𝐿𝑘−1) 

6:         for all transactions 𝑡 ∈ 𝐷 do begin 

7:    𝐶𝑡 = subset (𝐶𝑘, 𝑡) 

8:   for all candidates 𝑐 ∈ 𝐶𝑡 do 

9:    𝑐. 𝑐𝑜𝑢𝑛𝑡 + + 

10:                   end for 

11:  end for 

12: 𝐿𝑘 = {𝑐 ∈ 𝐶𝑘|𝑐. 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑠𝑢𝑝} 

13: end for 

14: apriori-gen (𝐿𝑘−1) 

15:  for all itemsets 𝑐 ∈ 𝐶𝑘 do begin 

16:   for all (𝑘 − 1)-subsets 𝑠 of 𝑐 do begin 

17:    if (𝑠 ∉ 𝐿𝑘−1) then 

18:         delete 𝑐 from 𝐶𝑘 

19:   end for 

20:       end for 

As shown in Algorithm 2.1, the process of frequent itemset generation works as 

follows. Let 𝐿𝑘  be the frequent k-itemset and 𝐶𝑘 be the candidate k-itemset. As 

shown in line 3, the frequent 1-itemsets are generated in the first pass over the data, 
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as denoted by 𝐿1. Lines 4 to 13 show the process of k-itemsets generation. Starting 

from 𝐿𝑘−1 which is generated in the previous step, the function apriori-gen (line 

14) generates new 𝐶𝑘 which are validated during a new pass over data when the 

support of each candidate is computed. During the process, the Apriori property is 

used as follows: if any (k-1)-subset of a candidate k-itemset is not in 𝐿𝑘−1, then the 

candidate cannot be frequent and can be removed from 𝐶𝑘 . The algorithm ends 

when no further frequent itemsets are generated. 

Example 2.1 Given a transaction database (𝐷) as shown in Figure 2.2(a) and 

minimum support of 3, Apriori finds the complete set of frequent itemsets as 

follows: 

 Scan 𝐷 once to find frequent items, namely a, c, d, f, to form a 𝐿1  (as 

shown in Figure 2.2 (b)). 𝐶2  is generated from 𝐿1  using the Apriori 

heuristic to prune the candidates: only those candidates that consist of 

frequent subsets can be potentially frequent.  

 Scan 𝐷 once more to count the support of each itemset in 𝐶2. The itemsets 

in 𝐶2 passing the support threshold form the 𝐿2, as shown in Figure 2.2 

(c). 

Similarly, 𝐶3 is generated from 𝐿2 and 𝐷 is scanned to identify the support count of 

each itemset in 𝐶3 . 𝐿3  is then derived which consists of itemsets passing the 

support threshold (as shown in Figure 2.2 (d)). The process stops when no 

candidate can be derived or no candidate is frequent. 
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TID Items 

100 a, b, c 

200 a, c, d, e, f 

300 d, e, 

400 a, b, c, f 

500 a, c, d, f 

(a) Transaction Database D 

C2 L2 

Itemset Support 

Count 

Itemset Support 

Count 

{a, c} 4 {a, c} 4 

{a, d} 2 {a, f} 3 

{a, f} 3 {c, f} 3 
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{c, f} 3   

{d, f} 2   

(c) Result of C2 & L2 
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Itemset Support 
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Itemset Support 
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{a} 4 {a} 4 

{b} 2 {c} 4 
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(b) Result of C1 & L1 

C3 L3 

Itemset Support 

Count 

Itemset Support 

Count 

{a, c, f} 3 {a, c, f} 3 

(d) Result of C3 & L3 

 

Figure 2.2: Illustration of Apriori 

Algorithm 2.2: Apriori Rule Generation [6] 

1:Input: Set of itemsets 𝑙 
2:Output: Set of association rules 𝑅𝑢𝑙𝑒𝑠  

3: for all itemsets 𝑙𝑘, 𝑘 ≥ 2 do 

4:  call genrules(𝑙𝑘, 𝑙𝑘); 

5: end for 

6: genrules(𝑙𝑘: 𝑘-itemset, 𝑎𝑚: 𝑚-itemset) 

7:  𝐴 = {(𝑚 − 1) − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑎𝑚−1|𝑎𝑚−1 ⊂ 𝑎𝑚} 

8:  for all 𝑎𝑚−1 ∈ 𝐴 do begin 

9:        𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑘)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎𝑚−1)
  

10:        if (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓) then 

11:     𝑅 = 𝑎𝑚−1 => (𝑙𝑘 − 𝑎𝑚−1)  

12:     if (𝑚 − 1 > 1) then 

13:           call genrules(𝑙𝑘, 𝑎𝑚−1) 

14:           𝑅𝑢𝑙𝑒𝑠 = 𝑅𝑢𝑙𝑒𝑠 ∪ 𝑅  

15:                     end if 

16:             end if 

17:       end for 

18:  return 𝑅𝑢𝑙𝑒𝑠 

After the generation of frequent itemsets, the second step of association rule mining 

is to derive rules from those itemsets which satisfy the minimum confidence 
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threshold. That is, for each frequent itemset 𝑙, generate a rule for every non-empty 

subset 𝑠 of 𝑙 [86]: 

𝑠 => (𝑙 − 𝑠), 𝑖𝑓
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑙)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑠)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓. 

The process is described in Algorithm 2.2. 

Example 2.2 Let us consider the transaction database in Figure 2.2(a). Given 

minimum support count 3 and minimum confidence 0.60, there is a frequent 

itemset 𝑖 = {𝑎, 𝑐, 𝑓} as shown in Figure 2.2(d). To get the rules from 𝑖, we first 

have the following possible rules: {𝑎} => {𝑐, 𝑓} ,  {𝑐} => {𝑎, 𝑓} , {𝑓} => {𝑎, 𝑐} , 

{𝑎, 𝑐} => {𝑓} , {𝑎, 𝑓} => {𝑐} , {𝑐, 𝑓} => {𝑎} . We then need to calculate the 

confidence of each possible candidate. For example, to compute the confidence of 

{𝑎} => {𝑐, 𝑓}, we use the support of the complete itemset {𝑎, 𝑐, 𝑓}, and the support 

of the antecedent {𝑎}. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒({𝑎}|{𝑐, 𝑓}) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝑎, 𝑐, 𝑓})

𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝑎})
=

3

4
= 0.75 

Since the confidence 0.75 is greater than the minimum confidence, it is deemed a 

valid rule. 

2.3 Improvements in Frequent Itemset Generation  

The entire performance of association rule mining is mainly determined by the step 

of frequent itemset generation [6]. Therefore, in the last few decades, how to 

improve the efficiency of frequent itemset generation has attracted a lot of attention 

from the data mining community.  
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2.3.1 Candidate Generation Algorithms  

Candidate generation algorithms identify candidate itemsets before validating them 

with respect to incorporated constraints, where the generation of candidates is 

based upon previously identified valid itemsets [47]. The core algorithm of this 

genre is Apriori.  

The Apriori algorithm has the effect of reducing the number of candidate itemsets 

and thus reducing computation, Input/Output (I/O) and memory costs [86].  

However, it has two major drawbacks. One is that it requires multiple scans of the 

dataset residing in the disk and the other is that the candidate generation process is 

complex and resource consuming [236]. To overcome these issues, a number of 

important Apriori-based algorithms were designed with modifications focusing on 

two aspects: reducing the number of passes over the whole database and employing 

various pruning techniques to produce smaller candidate itemsets. 

Apriori-TID [6], which was proposed by Agrawal and Srikant, only needs one scan 

of the database.  A set 𝐶𝑘 is constructed during the first pass of the database and 

each member of the set 𝐶𝑘  is of the form < 𝑇𝐼𝐷, 𝑋𝑘 > , where each 𝑋𝑘 is a 

potentially large k-itemset present in the transaction with identifier 𝑇𝐼𝐷. The set 𝐶𝑘 

is used for counting support. Since the size of 𝐶𝑘 is smaller than the database, this 

saves much reading effort [6].  

Another approach, AprioriHybrid [6], combines the best features of Apriori and 

Apriori-TID, where Apriori is used in the initial passes and then Apriori-TID is 

utilized if it is expected that the set 𝐶𝑘 at the end of the pass will fit in memory. 

Although there is the cost of switching, it has been shown empirically that 
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AprioriHybrid is significantly faster than both Apriori and Apriori-TID [6]. 

Further improvements of Apriori-Hybrid were proposed by Hipp, Güntzer and 

Nakhaeizadeh [95] who employed a hash-tree like structure to contain pointers to 

𝑇𝐼𝐷  list sets instead of counters. A further revision developed to find a better 

approach to determining when to switch from Apriori to Apriori-TID was presented 

by Bodon [31]. Bodon’s work proposed Apriori-Brave which keeps track of 

memory need and stores the amount of the maximal memory need. After the 

generation of (k+1)-itemsets, the (k+2)-itemset candidates are generated only when 

the memory need does not exceed the maximal memory need [31]. 

Savasere et al. [189] proposed a partition algorithm which requires only two 

database scans. The algorithm consists of two phases. In the first step, the 

algorithm divides the database into small non-overlapping partitions that can be 

processed independently and efficiently in memory to find their frequent itemsets. 

In the second step, only one scan of the database is required to find the frequent 

itemsets from the candidates. The partition sizes and the number of partitions are 

chosen to ensure that each partition can be accommodated in the main memory and 

the partitions are read only once in each phase.  

Brin et al. [39] proposed the DIC (Dynamic Itemset Counting) algorithm. DIC 

utilizes a dynamic itemset counting technique in which the database is partitioned 

into blocks marked by start points. DIC reduces the number of passes over the 

database by introducing an original idea, namely that (k + 1) candidates are 

computed from the k pass. When a k-itemset is considered frequent, all the (k+1)-

itemset candidates that the latter can produce are generated. 
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In addition to the efforts to reduce the number of database scans, another approach 

to improving the efficiency of Apriori is the utilization of different pruning 

techniques to generate a smaller number of candidate itemsets. DHP (Direct 

Hashing and Pruning) [164] uses a hashing technique to filter out unnecessary 

itemsets for the generation of the next set of candidate itemsets. Instead of 

including all the k-itemsets from 𝐿𝑘−1 × 𝐿𝑘−1 into 𝐶𝑘 in the Apriori algorithm, a k-

itemset is added into 𝐶𝑘 only if that k-itemset passes the hash filtering, that is, k-

itemset is hashed into a hash entry if its value is larger than or equal to the 

minimum support [164]. Such hash filtering can drastically reduce the size of 𝐶𝑘. 

Further improvements of DHP were proposed in PHP (Perfect Hashing and 

Pruning) [158]. In this approach, a hash table with size equal to the distinct items in 

the database is created during the first pass where each distinct item in the database 

is mapped to different location. The prune method of the hash table prunes all the 

entries whose support is less than the minimum support. 

2.3.2 Pattern Growth Algorithms 

Pattern growth techniques eliminate the need for candidate generation by 

constructing complex hyper-structures that contain representations of the itemsets 

within the dataset [47]. Generally, a hyper-structure is composed of two principal 

structures [47]: 

 Pattern frame - represents a tree-based or array-based structure containing 

items with their support which is constructed in a database pass by using 

each transaction. 

 Item list - contains the list of frequent items. Each item is linked to the 
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first element in the pattern frame that contains it. 

2.3.2.1   FP-Growth Algorithm 

The fundamental pattern growth algorithm, FP-growth, was proposed by Han et al. 

[88]. In their work, a frequent pattern tree (FP-tree) is used for storing compressed, 

crucial information about frequent patterns. An FP-tree consists of one root 

(labelled “null”), a set of prefix subtrees as the children of the root and a header 

table. Each node in the sub-tree has three fields: item-name, support count and 

node-link. Each entry in the header table has two fields: item-name and the head of 

the node-link 

There are two steps to construct an FP-tree. At the first step, an initial scan of the 

database is conducted to identify the frequent 1-itemsets and an ordered list of 

frequent items is generated. The ordered list is sorted by their frequency and is 

stored in the header table. At the second step, an FP-tree is constructed as follows.  

Firstly, a second complete scan of the dataset is performed. For each transaction 

read, only the set of frequent items present in the header table is collected and 

items are sorted in descending order according to their frequency. These sorted 

transaction items are inserted into the FP-tree as follows: for the first item on the 

sorted transactional dataset, check if it exists as one of the children of the root. If it 

exists then increase the support count for this node by 1. Otherwise, add a new 

node for this item as a child of the root node with 1 as support count. Then, 

consider the current item node as the new temporary root and repeat the same 

procedure with the next item on the sorted transaction. To facilitate tree traversal, 

during the process of adding any new item-node to the FP-tree, a link is maintained 
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between this item-node in the tree and its entry in the header table. 

TID Items 

T1 a, b, c, d 

T2 a, b, d, e 
T3 a, c, d 
T4 a, b, c 
T5 a, b, c 
T6 a, c, d 
T7 a, b, e 
T8 a, b, d 

(a) Transaction Database 

Item Support Count 

a 8 

b 6 

c 5 

d 5 

e 2 
(b) All Items 

 

(c) Frequent 1-itemset 
 
 

Figure 2.3: Sample Data and Frequent 1-itemset 

  

 

Example 2.3 For illustration, let us take an example with transactions shown in 

Figure 2.3(a). Figure 2.3(b) shows all items with their support count. Given the 

minimum support threshold is 4, the non-frequent item is removed, which is e. 

Finally, all frequent items are sorted according to their support count to generate 

the sorted frequent 1-itemset, as shown in Figure 2.3(c). 

During the tree construction process, frequent items in the first transaction (a, b, c, 

d) are sorted according to their support count and then inserted into the root, as 

Item Support Count 

a 8 

b 6 

c 5 

d 5 
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Figure 2.4: FP-Tree Construction 
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shown in Figure 2.4(a). When inserting the second transaction, the sorted frequent 

item list (a, b, d) shares the same prefix (a, b) with an existing path on the tree. The 

support counts of item-nodes (a and b) are increased by 1 and a new sub-path is 

created with the remaining items on the list (d) all with support equal to 1 (as 

shown in Figure 2.4(b)). During the process, a link is established between the two 

nodes with item-name d.  The same procedure occurs until all transactions shown 

in Figure 2.3(a) have been inserted. Figure 2.4(c) shows the resultant FP-tree. 

FP-growth employs a divide-and-conquer technique for frequent itemset generation 

which is based on one important concept: conditional pattern base [88, 89]. Given a 

frequent itemset, a conditional pattern base consists of a set of prefix paths in the 

FP-tree co-occurring with that itemset. A conditional FP-tree is constructed based 

on the conditional base. Starting from each frequent length-1 pattern (as an initial 

suffix pattern), the pattern growth is achieved by the concatenation of the suffix 

pattern with the frequent patterns generated from a conditional FP-tree [88, 89]. 

Example 2.4 To illustrate, let us take the FP-tree in Figure 2.4(c) as an example. 

Let the minimum support threshold be 2. The process to generate frequent itemsets 

is as follows. 

FP-growth starts with item d which is the last item in the header table. A set of 

branches is obtained through the node link from the FP-tree. The paths in those 

branches are (a, b, c, d: 1), (a, b, d: 2) and (a, c, d: 2) (the number after “:” 

represents the support count of the nodes in a FP-tree branch). Considering d as a 

suffix, the corresponding three prefix paths are (a, b, c: 1), (a, b: 2) and (a, c: 2), 

which form the conditional pattern base. The conditional FP-tree is constructed as 
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shown in Figure 2.5(a), which generates a set of itemsets: {a, d}(5), {b, d}(3), {c, 

d}(3), {a, b, d}(3), {b, c, d:1},{a, c, d}(3) and {a, b, c, d}(1) (the number in “()” 

represents the support count of an itemset). Since {a, b, c, d} and {b, c, d} has a 

support count less than the minimum support, they are pruned out. 

 

FP-growth then moves to the next item, c, in the header table. The item has two 

prefix paths for the conditional pattern base, namely, (a, b, c:3) and (a, c:2), which 

generates a single branch conditional FP-tree (a, b), as shown in Figure 2.5(b). The 

sets of frequent itemsets are: {a, c}(5),{b, c}(3) and {a, b, c}(3), which are all 

frequent as their support counts are greater than the minimum support. Similarly, 

FP-growth processes the rest of the items in the header table to generate all 

frequent itemsets. 

The FP-tree is usually smaller than the original database and, thus, saves costly 

database scans in the mining process. Furthermore, FP-growth uses a divide-and-

conquer technique that considerably reduces the size of the subsequent conditional 

FP-tree. However, the FP-growth algorithm still suffers some drawbacks. First, it is 

difficult to use in an interactive mining system [236]. During the interactive mining 

process, users may change the threshold of support in response to the rules 

Figure 2.5: Sample Conditional FP-Tree 
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produced, potentially leading to repetition of the whole mining process. Second, 

the FP-tree algorithm is not suitable for incremental rule mining [236]. In addition, 

the size of the tree usually increases exponentially as the number of unique items 

increases [47]. 

2.3.2.2   FP-Growth Based  Algorithms 

A number of FP-tree/FP-growth based algorithms have been developed and 

brought improvements to the FP-growth algorithm. One such effort is to employ 

array-based structures to facilitate the searching process. For example, FP-Growth* 

[78] uses an extra array-based structure to decrease the number of traversals of the 

tree, which saves time during general traversal of the tree and also enables direct 

initialization of the next level of the FP-tree.  

H-Mine [168] also uses an array-based structure which is constructed in a manner 

similar to FP-growth. In H-Mine, global frequent items are identified during the 

first scan and then a hyper-linked data structure (called H-struct) is created from 

those items in the second scan. The advantage of H-Mine over FP-growth is that it 

uses the same pattern frame structure with semantics changed through pointer 

manipulation, rather than the creation of conditional FP-trees as required in FP-

growth [47].  

ITL-Mine [76] is an optimization of H-Mine. It needs one scan of the 

database/dataset which creates the underlying structures that are similar to H-struct, 

except that the header tables maintain all items. These extra links avoid the 

progressive recalculation of linkage during processing which occurs in H-Mine. A 

further improvement of ITL-Mine is CT-ITL [201], which uses a compressed 
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pattern frame structure to reduce the storage space/memory required and also 

lessen traversal overheads. Although it requires two database/dataset scans, CT-ITL 

is considered to be more scalable than ITL-Mine, especially as the size of the 

database increases [202]. 

Liu et al. [137] proposed a hybrid pattern growth algorithm known as Opportunistic 

Projection, which opportunistically chooses between array-based or tree-based 

structures to represent projected transaction subsets. The algorithm heuristically 

decides to build an unfiltered pseudo-projection or to make a filtered copy 

according to features of the subsets to achieve the maximized efficiency and 

scalability. Later, PatriciaMine [171]  proposed a compressed trie (Patricia trie) 

which alleviates the need to swap between trie and array-based data structures 

based upon dataset density as proposed in H-Mine and Opportunistic Projection.  

Wang et al. [216] proposed TD-FP-Growth, a top-down variation to the FP-growth 

approach. This approach is said to alleviate the need or demand to generate/build 

conditional pattern bases and physical projections of the trie. Similarly, COFI [59] 

was proposed to provide an efficient pattern growth algorithm that uses a top-down 

non-recursive technique. 

Lin et al. [131] proposed IFP-growth, which employs an address-table structure to 

lower the complexity of forming the entire FP-tree and a new structure called FP-

tree+ to reduce the need to build conditional FP-trees recursively. By using an 

address-table and FP-tree+, the proposed algorithm has less memory requirement 

and better performance in comparison with FP-tree based algorithms. 
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2.4 Improvements in Rule Generation 

One main issue related to association rule mining is that classical techniques 

produce a high number of rules which are often unusable by the user [86]. 

Consequently, intensive research has been conducted to reduce the number of 

extracted rules or improve their quality, for example: 

 Interestingness measures. They are either objective or subjective.  

Objective interestingness measures, such as support and confidence, as 

well as others measures such as lift/interest, Laplace correction and chi-

square statistics, are used to rank the obtained rules to allow users to select 

rules in which they are more interested [74, 204]. Subjective measures are 

based on subjective factors controlled by the user. Most of the subjective 

approaches, such as unexpectedness and actionability involve user 

participation in order to express which rules are of interest [132].  

 Pattern visualization. Visualization techniques are utilized to present 

mining results in order to exploit the natural human pattern recognition 

capability [154]. Commercial KDD products and many prototypes have 

incorporated methods for the visualization of results [183].  

 Condensed representations. Algorithms, such as disjunction-free sets [44], 

deduction rules [45], counting inference [27] and closed itemset 

algorithms [215, 169], have been developed to produce a reduced result 

set from which valid patterns can be derived.  

 Integration of domain knowledge. Domain knowledge consists of 

information that is not explicitly presented in the database rather it is made 



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND                                                   32 

 

available from a domain expert. When a set of rules is generated from the 

dataset, pre-conceived knowledge about the domain can help the user to 

determine how well these rules match or contradict the user’s existing 

knowledge. Less interesting rules can be ignored, thus reducing the 

number of rules in focus [77, 229, 220, 114]. 

Among those available techniques, here the focus is on constraint-based association 

rule mining techniques and the reduction of redundant rules. 

2.4.1 Constraints-Based Association Rule Mining 

Constraint-based association rule mining allows the user to impose a set of 

constraints over the content of the discovered rules, and therefore only generate 

those association rules that are interesting to them individually. These constraints 

can be knowledge type constraints, data constraints, dimension/level constraints, 

interestingness constraints and rule constraints [86].  

Rule constraints define the form of rules to be mined and can be specified using a 

high level declarative data mining language. For example, Shen et al. [192] 

proposed meta query, a technique to specify the form of rules to be discovered in 

data mining. Furthermore, several data mining query languages, such as DMQL 

[85] and MSQL [99, 100] have been proposed for this purpose. 

There have been several approaches to applying rule constraints to the mining 

process. One of these is meta-rule guided mining [67]. A meta-rule is one kind of 

constraint that is based on the user’s experience, expectations or intuition regarding 

the data, or can be generated from the data schema. A meta rule is a rule template 

of the form 
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𝑃1^ 𝑃2^ … ^ 𝑃𝑙 =>  𝑄1^ 𝑄2^ … ^ 𝑄𝑟 

where 𝑃𝑖(𝑖 = 1, … , 𝑙)  and 𝑄𝑗(𝑗 = 1, … , 𝑟)  are either instantiated predicates or 

predicate variables.  

Meta-rules allow users to specify the syntactic form of the rules they expect. For an 

example, a meta-rule can be 𝑋, 𝑌 => 𝑍, where 𝑋, 𝑌 and 𝑍 represent any items in 

the database. According to this meta-rule, only frequent 3-itemsets can produce this 

kind of rule, which in turn makes the algorithm more efficient as early pruning can 

be done.   

Another approach was proposed by Bayardo et al. [29] where consequent 

constraint is applied to the consequent of all the rules to a certain itemset and 

minimum improvement constraint (𝑚𝑖𝑛𝑖𝑚𝑝) is used to prune uninteresting rules. 

In their approach, a proper sub-rule is defined as a simplification of the rule formed 

by removing one or more conditions from its antecedent. The 𝑚𝑖𝑛𝑖𝑚𝑝 prunes any 

rule that does not offer a significant predictive advantage over its proper sub-rules. 

This increases efficiency and presents the user with a concise set of predictive rules 

that are easy to comprehend [29]. 

Furthermore, Ng et al. [151] and Srikant et al. [200] proposed algorithms 

incorporating item constraints on the process of generating frequent itemsets, from 

which association rules are derived. The item constraints restrict the items and 

combination of items that are interesting to the user. 

2.4.2 Removing Redundant Rules  

Association rule mining may produce a large number of redundant rules, the 

definition of which varies. For example, Jaroszewicz and Simovici [101] regarded 
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a rule as redundant if its true confidence is close to the estimate while Bastide et al. 

[26] defined redundant association rules based on a decision rule that compares the 

confidence or support of an association rule to similar rules. For instance, rule 

𝑋 => 𝑌 is a “minimal non-redundant association rule” if there is no rule 𝑋′ => 𝑌′ 

with 𝑋′ ⊆  X, 𝑌 ⊆ Y′  such that 𝑠𝑢𝑝𝑝(𝑋𝑌) == 𝑠𝑢𝑝𝑝(𝑋′𝑌′) and 𝑐𝑜𝑛𝑓(𝑋 => 𝑌) =

= 𝑐𝑜𝑛𝑓(𝑋′ => 𝑌′) . Another definition was given by Zaki [232] based on the 

concept of frequent closed itemsets. A set is called closed if it has no proper 

superset with the same support. Given a non-closed set X, any set 𝑌 in its closure, 

and a rule 𝑋 => 𝑍 , rules of the form 𝑋𝑌 => 𝑍  and 𝑋 => 𝑌𝑍  are treated as 

redundant if their frequencies and confidences are identical with the rule 𝑋 => 𝑍.  

Redundant rules contain information or knowledge that is less interesting to the 

user. It becomes a crucial problem when the data is dense or correlated (such as in 

statistical datasets) [166]. Eliminating redundant rules has received a great deal of 

attention from various research communities [232, 233, 166, 223, 224, 75].  

Zaki [232, 233] proposed an algorithm to remove redundant rules based on the 

concept of minimal generators. A generator 𝑋′  of an itemset 𝑋  is a subset of 

𝑋(𝑋′ ⊂ 𝑋) that has the same support as 𝑋(𝑠𝑢𝑝𝑝(𝑋) = 𝑠𝑢𝑝𝑝(𝑋′)). A generator of 𝑋 

which has no subset generator of 𝑋 is called minimal generator of 𝑋. Then, each 

minimal generator can be the left part or, respectively the right part of a non-

redundant association rule.  

Further to the work by Zaki, Pasquier et al. [166] introduced two condensed 

association bases to represent non-redundant association rules: Min-max 

Approximate Basis and Min-max Exact Basis. Both Pasquier et al.’s and Zaki’s 
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approaches are based on frequent closed itemsets with Zaki using the mathematic 

framework of Formal Concept Analysis (FCA), while Pasquier et al.’s approach 

was based on Galois closure. 

Xu and Li [223] improved the definitions suggested by Pasquier et al., proposing a 

condensed representation called Reliable Exact Basis for exact association rules. 

The rules in the Reliable Exact Basis are not only non-redundant but also more 

succinct than the rules in Min-max Exact Basis. However, their work is focused on 

reducing the redundancy in rules that have a confidence value of one, which only 

offers a small reduction in redundancy for rules which have a confidence of less 

than one. 

Later, Xu, Li and Shaw [224] extended this work by introducing the concept of 

approximate association rules, which are rules with confidence less than one. In 

their work, they present a concise representation basis called Reliable Approximate 

Basis to extract non-redundant approximate rules. They claimed that no 

information or knowledge is lost and all approximate association rules can be 

deduced from the Reliable Approximate Basis [224].  

Another approach proposed to deal with redundant rules is based on the extraction 

of non-derivable association rules [75]. The idea behind this approach is that if the 

lower and upper bounds of a rule coincide and the confidence is uniquely 

determined by the subrules, the rule can be pruned as redundant, or derivable, 

without any loss of information. In this approach, proposed redundancy is tested by 

deriving the absolute bounds of the rule’s confidence instead of estimating them as 

is done in other approaches [75].   
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2.5 Extensions of Association Rule Mining 

With the advances of association rule mining, a variety of extensions have been 

proposed, such as the mining of spatio-temporal association rules [7, 127, 175, 87, 

115], multi-level association rules [54, 66, 84, 190], negative association rules 

[188, 221, 38] and fuzzy association rules [119]. This section reviews some of the 

extensions of association rule mining, which are the main interests for this thesis, 

including quantitative association rule mining, multi-level association rule mining 

and temporal association rule mining. 

2.5.1 Quantitative Association Rule Mining  

The initial work on mining association rules introduced by Agrawal et al. [6, 3]  

targeted databases consisting of categorical attributes only, that is, attributes 

containing discrete and typically unordered data (e.g., gender, brand). Later, Srikant 

and Agrawal [199] extended the categorical definition of association rules (which 

are termed Boolean association rules (BARs)) and introduced quantitative 

association rules (QARs) which involve either quantitative attributes or categorical 

attributes. An example of a quantitative association rule would be: 

{𝑎𝑔𝑒 = [25,35], 𝑔𝑒𝑛𝑑𝑒𝑟[𝑓𝑒𝑚𝑎𝑙𝑒]} =>  {𝑠𝑎𝑙𝑎𝑟𝑦 = [$50,000, $85,000]} 

(𝜎 =  0.03, 𝛾 =  0.8)  

QARs are more expressive and informative than BARs due to their ability to 

represent a wide variety of real-life attributes. In the last decade, a lot of research 

has been proposed aiming to improve the efficiency for mining such rules. 

One common approach to mining QARs is to transform the task into conventional 

BAR mining where values of quantitative or categorical attributes are mapped to 
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Boolean attributes and then algorithms are applied to mine QARs. In this approach, 

a discretization process is often utilized to partition the values of attributes into 

intervals and then combine adjacent intervals as necessary [124, 217, 147, 199]. 

Another QAR mining approach is based on statistical methods, in which the 

consequent of a rule is a statistical measure (e.g., mean, variance) or an aggregate 

(e.g., min, max) of a quantitative attribute. This type of rule is derived mainly to 

provide a statistical view of the attributes, rather than giving the interval 

information of the attributes. For instance, Aumann and Lindell [14] considered the 

distribution of continuous data via standard statistical measures and provided a new 

definition of quantitative association rules where the right-hand side (RHS) of a 

rule expresses the distribution based measures of interestingness, such as the mean 

or variance of the values of numeric attributes. One example of such a rule would 

be:  

𝑆𝑒𝑥 = 𝑓𝑒𝑚𝑎𝑙𝑒 𝑎𝑛𝑑 𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟 𝐷𝑒𝑔𝑟𝑒𝑒 = 𝑦𝑒𝑠 => 𝑚𝑒𝑎𝑛 𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000, 

which states that the average salary for females with bachelor degrees is $50,000. 

Webb [219] further extended this framework to include other statistical measures 

such as minimum (min), maximum (max) and count. Furthermore, Zhang et al. 

[234] introduced the concept of statistical quantitative rules (SQ rules) in which the 

RHS can be any quantitative statistic that can be computed for the subset of data 

satisfying the left-hand side (LHS) of a rule.  

The third approach of QAR mining is optimization-based where numeric attributes 

are optimized during the mining process. The term optimization was first used by 

Fukuda et al. [69], who proposed an optimization criterion called gain. Gain takes 



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND                                                   38 

 

into account both the support and confidence of a rule and is defined as follows: 

𝐺𝑎𝑖𝑛(𝐴 => 𝐵) = 𝑆𝑢𝑝𝑝(𝐴𝐵) − 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 × 𝑆𝑢𝑝𝑝(𝐴) 

The authors also defined an association rule 𝑅 that has the form 𝐴𝑖 ∈ [𝑙𝑖, 𝑢𝑖] ^ 𝐶𝑝 =

>  𝐶𝑞, where 𝐴𝑖 is the i
th

 numeric attribute in the rule template from the left to the 

right, and  [𝑙𝑖, 𝑢𝑖] represents the whole domain of the i
th

 numeric attribute.  𝐶𝑝 and 

 𝐶𝑞  contain only instantiated conditions. They proposed schemas to determine 

values for variables 𝑙𝑖 and 𝑢𝑖 such that the confidence, support or gain of the rules 

is maximized.  

Later, the authors extended their work to handle rules containing two un-

instantiated numeric attributes on the LHS of a rule [68]. Furthermore, they 

addressed the optimized support problem and optimized gain problem to allow 

association rules to contain up to k disjunctions over uninstantiated numeric 

attributes [180, 40].   

In addition, Mata et al. [143] presented a tool to discover association rules in 

numeric databases without the necessity of discretizing a priori, the domain of the 

attributes while Ruckert et al. [184] proposed approaches to represent quantitative 

association rules based on half spaces. Recently, QuantMiner [186] was introduced 

which can dynamically discover “good” intervals in association rules by optimizing 

both the support and the confidence. 

2.5.2 Multi-level Association Rule Mining         

Traditionally, association rule mining has been performed at the level of a single 

concept or abstract [84, 83, 82]. However, in practice, transaction databases may 

contain data with a hierarchical structure. One example is shown in Figure 2.6.  
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Figure 2.6: Example Food Hierarchical Structure 

Given such a food hierarchical structure, it might be difficult to find strong 

associations among data items at low or primitive levels of abstraction. For 

instance, a strong association between items “fat free milk” and “bread” may not be 

found as they may occur in a very small fraction of the transactions.  However, 

consider the generalization of “fat free milk” to “milk”. It might be easier to find a 

strong association rule like: {milk} => {bread}. Such rules, which reveal 

relationships between items or attributes at different levels of conceptual hierarchy, 

are termed multiple-level or multi-level association rules [86]. As shown in the 

above example, multi-level association rule mining has the potential to discover 

knowledge which may be ignored by the single-level approach. 

There are two main issues regarding multi-level association rule mining. First, it is 

often difficult to choose the proper support threshold(s) to determine frequent 

itemsets for each level. One straightforward approach is using a uniform minimum 

support for all levels. However, since items at lower levels of abstraction are 

unlikely to occur as frequently as those at higher levels of abstraction,  setting the 
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support too low or too high may result in interesting associations being missed at 

either high or low abstraction levels [86]. Second, the rules discovered through 

multi-level association rule mining are dependent on the taxonomy that is built or 

used. However, it is not trivial to choose or build a suitable ontology/taxonomy for 

the database [84, 82].   

In the literature, there have been a lot of works proposed aiming to improve the 

efficiency of multi-level association rule mining, including Apriori based 

approaches [198, 83], FP-growth based approaches [141, 155] and others, such as 

those techniques based on statistics [160] and fuzzy set theory [97, 96, 107]. 

Sirkant and Agrawal [198] introduced a simple algorithm called “Basic” to mine 

multi-level association rules. “Basic” utilizes the Apriori approach by adding the 

ancestors of each item in a transaction into that transaction and then performing the 

mining process across the expanded transactions. “Basic” is a slow algorithm and 

the authors proposed two further algorithms to overcome this deficiency: Cumulate 

and EstMerge. The Cumulate algorithm only adds ancestors that are in one (or 

more) of the candidate itemsets being counted in the current pass and the EstMerge 

algorithm utilizes sampling techniques to estimate the support of the candidate to 

determine whether it is necessary to calculate their actual support [198]. 

Srikant and Agrawal’s approach [198] uses the support threshold across all the 

levels, which may generate uninteresting rules if the threshold is set low or exclude 

interesting rules at low levels if the threshold is set high [83]. To overcome this 

drawback, Han and Fu [83]  employed a different strategy which applies a variable 

support count at different levels. In their work, they extended the Apriori algorithm 
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to generate strong multi-level association rules which are defined as follows [83]: 

Definition 2.4 (Strong Multi-level Association Rule) A pattern is frequent in set 𝑆 

at level 𝑙 if its support is no less than the 𝑚𝑖𝑛𝑠𝑢𝑝 for the corresponding level. Then 

a rule “𝐴 => 𝐵/𝑆” is strong for a set 𝑆 if it satisfies the following conditions:  

 all ancestors of 𝐴 and 𝐵 are frequent in their corresponding level.  

 the support of 𝐴 ^ 𝐵 is frequent in the current level. 

 the rule confidence is no less than the threshold in the current level. 

The Apriori approaches for multi-level association rule mining suffer the same 

bottlenecks as the original Apriori [6, 3], as discussed in Section 2.3.1. To 

overcome the drawbacks, Mao [141] proposed an FP-growth based approach, 

called Adaptive FP-growth (Ada-FP), which pushes various support constraints 

into the mining process and is able to discover both inter-level frequent patterns 

and intra-level frequent patterns. Furthermore, Ong et al. [155] proposed FP’-Tree, 

which extends FP-growth to mine multi-level association rules with recurrent 

items. Unlike Ada-FP, this approach builds a separate FP-tree for each concept 

level that is being mined. 

2.5.3 Temporal Association Rule Mining   

With the mounting recognition of the value of temporal data, data modelling and 

databases, an important research area has been how to mine temporal association 

rules from both static and longitudinal/temporal data. A temporal association rule 

(TAR) can be represented as a pair < AR, TE >, where AR is an association rule 

and TE is a time expression belonging to AR [51].  

Temporal association rule mining has the ability to mine the behavioural aspects of 
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(communities of) objects as opposed to simply mining rules that describe their 

states at a point in time [128]. One example TAR is < "short of breath ~ asthma", 

Days.Hours (6:10) >, which indicates that patients with symptoms of shortness of 

breath will have symptoms of asthma from 6 to 10 o’clock every morning. 

Several kinds of TARs have been proposed in the literature, some of which are 

discussed in more detail in the following section.  

2.5.3.1   Interval-Based Temporal Association Rule 

In large databases, products may not necessarily exist throughout the whole time 

when a database is gathered. Ale and Rossi [7] introduced the concept of lifetime 

of members of an itemset. Each rule has an associated time frame, corresponding to 

the lifetime of the items participating in the rule. Furthermore, Lee, Lin and Chen 

[120] employed the concept of maximal common exhibition period (MCP) in their 

Progressive-Partition-Miner (PPM) algorithm to discover general temporal 

association rules in a publication database. Their algorithm first partitions the 

publication database in light of exhibition periods of items and then progressively 

accumulates the occurrence count of each candidate 2-itemset based on its intrinsic 

partitioning characteristics. In addition, Rainsford and Roddick [175] proposed a 

method to add temporal features to association rules by associating a conjunction 

of binary temporal predicates that specify the relationships between the timestamps 

of transactions. 

2.5.3.2   Cyclic Temporal Association Rule  

Association rules may also display regular hourly, daily, weekly, etc., variations 

that have the appearance of cycles. For example, Hanau [90] discovered that every 
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18-24 months a big supply of pork for low prices was followed by a low supply for 

high prices in the pig market in Europe in 1927.  

Ozden et al. [157] defined a cyclic association rule as a rule which has the 

minimum support and confidence at regular time intervals. Based on this definition, 

a cyclic rule does not hold for the entire transactional database, but only for 

transactional data in a particular periodic time interval. The authors proposed two 

algorithms to mine cyclic rules. One is a sequential algorithm which uses existing 

algorithms to discover association rules, utilizing several techniques to reduce the 

running time, including cycle-pruning, cycle-skipping and cycle-elimination [157]. 

Another is an interleaved algorithm which consists of two steps [157]. In the first 

step, the search space for large itemsets is reduced using cycle-pruning, cycle-

skipping and cycle-elimination and then in the second phase, the cyclic association 

rules are calculated using the cycles and the support of the itemsets without 

scanning the database. 

2.5.3.3   Calendar-Based Temporal Association Rule   

Ramaswamy et al. [177] considered the discovery of association rules that hold 

during the time intervals described by a calendar algebraic expression. Later, Li et 

al. [127] proposed a calendar schema to define a set of simple calendar-based 

patterns. For example, given a calendar schema (year, month, day), a calendar-

based pattern within the schema might be (*, 6, 30), which represents the set of 

time intervals each corresponding to the 30th day of a June. The notation * is a 

wildcard denoting every arbitrary integer in the domain of the accordant attribute, 

in this case, a year. 
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Based on the definition of calendar schema, a calendric association rule is defined 

as follows. 

Definition 2.5 (Calendric Association Rule) A calendric association rule over 

calendar schema 𝑅 is a pair (𝑟, 𝑒), where 𝑟 is an association rule and 𝑒 is a calendar 

pattern on 𝑅.  

Li et al. introduced two classes of calendric association rules [127]: Temporal 

association rules w.r.t. full match which requires the rules to hold during every 

interval in 𝑒, and temporal association rules w.r.t. relaxed match which requires the 

rules to hold during a significant fraction of these intervals. In their work, they 

extended the Apriori algorithm and developed two optimization techniques to 

discover both classes of temporal association rules. 

2.6 Mining over Association Rules 

2.6.1 Overview of Higher Order Mining 

The data used for data mining are typically assumed to be primary or raw data 

captured by some application, cleaned and prepared according to the demands of 

the mining algorithms [183]. For example, barcode scanning technologies are 

widely employed to collect transactional data for market data analysis, while with 

the advances of cloud technology, web browsing history data are stored and utilized 

for data mining tasks, such as fault detection. However, primary data might not 

always be available for data mining routines for the following reasons: 

 Data ownership. Cooperating institutions that are interested in sharing 

knowledge may not be willing to disclose their primary data. Thus in some 



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND                                                   45 

 

cases the rules are all that the researchers have on which to operate [183].  

For example, Prodromidis et al. [173] pointed out that in fraud detection in 

financial information systems, financial institutions are not willing to 

disclose their own proprietary data due to competitive and confidentiality 

considerations. 

 Temporary or transient data. In some applications, primary data are only 

available for a short time, such as stream data which are not stored. They 

are encountered, processed in real time and deleted [70].  

 Legal or confidentiality restrictions. There might be legal obligations or 

confidentiality considerations applied to primary data, such as regulations 

determining when the data records can be disclosed.  

Further complexity is added by many data mining routines becoming heavily I/O 

bound due to the fact that the volume of data requiring analysis is growing 

disproportionately to the comparatively slower improvements in I/O channel 

speeds which limit many of the benefits of the technology [128]. Methods of 

reducing the amount of data have been discussed in the literature and include 

statistical methods, such as sampling or stratification, reducing the dimensionality 

of the data by, for instance, ignoring selected attributes, or by developing 

incremental maintenance methods by analysing the changes to data only [55, 56]. 

However, these add to the processing complexity and cost thus achieving little 

beyond transferring the problem to a later stage.  

Based on the above observations and motivated by the increasingly frequent need 

to define and practice data mining without the luxury of primary data, Roddick et 
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al. [183] introduced the paradigm of higher order mining (HOM) which is a form 

of data mining that is applied over non-primary, derived data or patterns.  

Definition 2.6 (Higher Order Mining) Let 𝑃𝑖  be a set of patterns or models 

derived from a dataset 𝐷𝑖 . Given 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}, where 𝑛 > 1, higher order 

mining discovers any new pattern or model 𝑃′ from 𝑃  through the use of data 

mining methods. 

As shown in the definition, HOM is the sub-field of knowledge discovery 

concerned with mining over patterns/models derived from one or more large and/or 

complex datasets. Since HOM discovers patterns from non-primary data, it thus 

avoids several problems that traditional data mining techniques encounter and has 

the following benefits [128]: 

 the ability to combine mining strategies through the modular combination 

of components 

 the provision for the development of higher order explanations in 

describing facts about data, particularly those describing changes over 

time, location or some other dimension 

 the comparatively faster execution time due to reduced volumes of data. 

Higher order mining opens a window for changes in perspective for knowledge 

discovery, from the analysis of data to the analysis of patterns [183]. There have 

been many advances in this paradigm, including in the areas of pattern clustering 

[80, 124, 34], pattern classification [11, 65, 72, 134], trend detecting [13, 48, 2, 91, 

106, 145, 195, 196, 63], pattern change detection [73, 71, 72, 25] and pattern 

maintenance [54, 55]. The following sections provide general descriptions of 
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related works on HOM over association rules. 

2.6.2 Clustering Association Rules 

Association rules, such as {𝑚𝑖𝑙𝑘} ^ {𝑏𝑢𝑡𝑡𝑒𝑟}  => {𝑏𝑟𝑒𝑎𝑑} , are derived from 

transactional databases. For non-transactional data, a record might be in a form like 

(attribute = value) where the attribute is defined in the database schema and can be 

either categorical or non-categorical. For example, we might have a rule like  

{𝑎𝑔𝑒 = 40} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000}  => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠} 

However, when mining association rules from this type of non-transactional data, 

we may find hundreds or thousands of rules corresponding to specific attribute 

values. For example, the following three rules 

{𝑎𝑔𝑒 = 40} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000}  => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠} 

{𝑎𝑔𝑒 = 45} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $55,000}  => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠} 

{𝑎𝑔𝑒 = 50} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $60,000}  => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠} 

might be better described as  

{𝑎𝑔𝑒 = [40 − 50]} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = [$50,000 − $60,000]}  => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠} 

To handle this case, Lent et al. [124] introduced a clustered association rule as a 

rule that is formed by combining similar, adjacent association rules to form a few 

general rules where the set of (attribute = value) equalities are replaced by the set 

of value ranges using inequalities. 

Definition 2.7 (Clustered Association Rule) A clustered association rule is an 

expression of the form  

𝑋𝑐 => 𝑌𝑐 

where 𝑋𝑐 and 𝑌𝑐 are items of the form (attribute = value) or (𝑏𝑖𝑛𝑖 ≤ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 <
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𝑏𝑖𝑛𝑖+1) where a 𝑏𝑖𝑛 is the interval between attribute partitions and 𝑏𝑖𝑛𝑖 denotes the 

lower bound for values in the 𝑖𝑡ℎ 𝑏𝑖𝑛. 

 

Figure 2.7 shows the process of clustering association rules [124]. In this approach, 

source data are taken in tuple form and the values of attributes from a continuous 

domain are partitioned. Then a set of association rules is generated through a single 

pass over the data using an association rule engine. Finally, all those two-attribute 

association rules are clustered where the RHS of the rules satisfies its segmentation 

criteria [124]. Lent et al.’s approach to the clustering problem is heuristic and 

produces an efficient linear time approximation to an optimal solution. However, 

Figure 2.7: Architecture of the Association Rule Clustering System 
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one drawback of this application is that it is limited to rules with two attributes in 

the set of antecedents. 

Toivonen et al. [210] proposed another approach for clustering association rules, 

which defines the distance between two association rules as the number of rows 

where the rules differ. The distance measure is then used to group all the rules into 

appropriate clusters. In their work, the set of rules can be pruned by forming rule 

covers, which are subsets of the original set of rules such that for each row in the 

relation there is an applicable rule in the cover if and only if there is an applicable 

rule in the original set. One of the limitations of this approach is that the distance 

measures selected for rule clustering are somewhat arbitrary [211]. Moreover, it is 

not clear how to describe the rule cluster concisely to the end-user since rules 

belonging to the same cluster may have substantially different structures. 

To improve upon the metric proposed by Toivonen et al. [210], Gupta et al. [80] 

presented a new distance metric, called the conditional market-basket probability 

(CMPB) distance, based on which an agglomerative clustering algorithm is 

introduced for rule clustering. In their approach, the rules are embedded in a vector 

space by multi-dimensional scaling and clustered using a self-organizing map 

(SOM).  

One of the domains for clustering association rules has been explorative mining. 

Tuzhilin and Adomavicius [211] utilized the rule clustering techniques in the 

analysis of microarray data in bioinformatics. In their approach, association rules 

are clustered based on gene hierarchies (as specified by the domain expert) where 

every rule cluster is uniquely represented by its aggregated rule (common to all 
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rules in that cluster). Also, unlike the traditional clustering methods, where the user 

has only a limited control over the structure and sizes of resulting clusters, a 

biologist has an explicit control over the granularity of the resulting rule groups 

[211]. 

2.6.3 Classification of Association Rules 

Associative classification (AC) integrates association rule mining and classification 

to construct rule-based prediction models. Studies show that associative 

classification can be used effectively to classify resources and achieve a high 

precision compared with other sophisticated classifiers, like decision tree (DT), 

C4.5, naive Bayes (NB) and support vector machine (SVM) [228]. Moreover, many 

of the rules found by associative classification methods cannot be discovered by 

traditional classification techniques [134].  

In general, an AC algorithm operates in three main phases [227]:  

 Rule generation. Association rules are generated using various association 

rule mining techniques.  

 Rule ranking. Rules are ranked according to defined parameters such as 

confidence and support. The output of the second phase is the set of 

classification association rules (CARs) which represent the final classifier 

model. 

 Classifier building and rule pruning. The classification model is utilized to 

predict the class values on new unseen dataset (test data). 
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2.6.3.1   Rule Generation  

Liu et al. [134] proposed one of the first algorithms to bring up the idea of using an 

association rule for classification, which is called CBA. CBA uses an iterative 

method which is similar to the Apriori algorithm to generate CARs with 

consequents restricted to a class attribute [6]. The biggest drawback of this 

approach is that since the database needs to be scanned many times, so the number 

of rules increases exponentially, and more system resources are consumed. 

Several AC algorithms have been proposed to overcome the deficiencies of CBA. 

CBA (2) [136] tackles the problem of not generating CARs for minority class 

labels in the training dataset while ACAC [98] employs support and all-confidence 

[153] measures to select both frequent and mutual associated itemsets which 

contribute to classification. ACN [117] extends the Apriori algorithm to mine a 

relatively large set of negative association rules and then uses both positive and 

negative rules to build a classifier.  Kundu et al. [118] proposed a new CBA-like 

algorithm called CARGBA, which merges rules generated from two steps. At the 

first step, a set of high confidence rules of smaller length with support pruning is 

generated using the Apriori algorithm, while at the second step rules with high 

confidence and rules of higher length with support below minimum support are 

also produced by using the Apriori algorithm but in a reverse manner. 

Other approaches to improve the efficiency of CARs generation include ACCF 

[126] which uses the frequent closed itemset approach to improve the searching for 

frequent itemsets and ACCR [152], a metric measure of rules called “compactness” 

that stores rule items with low support but high confidence to ensure that high 
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quality rules are kept.  Furthermore, Quinlan and Cameron-Jones [174] proposed 

the First Order Inductive Learner (FOIL). This learning strategy produces rules for 

each class of cases in the training data. Yin and Han [228] proposed a greedy AC 

algorithm called CPAR, which adopts the FOIL algorithm in generating the rules 

from datasets. CPAR selects multiple literals and builds multiple rules 

simultaneously. Also, it uses expected accuracy to evaluate rules and the best k 

rules in prediction. 

FP-growth like approaches are also employed in the classified rule generation 

process. CMAR [125] adopts a variant of FP-growth to find the rules and stores 

them efficiently in a prefix tree structure, namely the CR-tree. Baralis and Garza 

[18] proposed a variation of the rule extraction part of the CMAR algorithm, 

utlizing lazy pruning techniques in their 𝐿3(Live and Let Live) algorithm. Later, 

they proposed 𝐿𝐺
3  which is an extension of 𝐿3 and can provide a wider selection of 

rules obtained by allowing lower support thresholds [17]. 

2.6.3.2   Rule Ranking  

Ranking generated rules is crucial since usually rules with higher ranks are tested 

first when predicting test cases and the resulting classifier accuracy depends 

heavily on rules used during the prediction phase. Most of the AC algorithms order 

the generated rules using a group of parameters such as confidence and support, 

where rules with high confidence and support receive higher ranks.  

In CBA [134], rules are sorted according to antecedent length as well as confidence 

and support, that is, if two rules have the same confidence and supports, their 

antecedent lengths are compared and the rule with lower antecedent length receives 



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND                                                   53 

 

a higher rank. This sorting procedure is utilized by many AC algorithms such as 

CBA (2) [136], CARGBA [118] and ACCF [126]. 

In addition to the parameters that are used in the CBA algorithm, Thabtah et al. 

[207] proposed a new parameter called class distribution which represents the  

number of times a class occurs in the training dataset. Baralis and Garza [18] 

introduced a different sorting procedure in their 𝐿3 lazy AC algorithm where the 

rules are sorted in decreasing length order, which is the opposite of the CBA rule 

ranking procedure.  

2.6.3.3   Building Classifiers and Pruning 

Lastly, the classification model is utilized to predict class values on new unseen 

datasets (test data). In AC, a classifier consists of a set of rules that is built from the 

training dataset. A major concern about AC algorithms is that they produce a 

relatively high number of rules that build the classifier [125], which slows the 

classification process. Also, some of these rules may be useless for the classifier 

and redundant. Redundant rules need to be discarded to increase the effectiveness, 

efficiency and accuracy of the classifier. 

Liu et al. [134] proposed a database coverage technique to reduce the size of the 

classifier space. The technique checks whether each rule covers at least one object 

of the training dataset. If so, the rule is added to the classifier and its corresponding 

training object is deleted from the training dataset.  This method has been utilized 

by many AC algorithms, including CBA (2) [136], CMAR [125], CAAR [222], 

ACN [117], and ACCF [126]. 

In the database coverage technique, since the objects covered by the rules are all 
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deleted, the selection of other rules derived from the deleted objects may be 

affected. To overcome this problem, Jiang et al. [103] proposed a rule pruning 

algorithm based on indiscernibility relationship. Baralis and Garza [18] introduced 

further improvements in rule pruning where a lazy pruning technique is utilized to 

discard from the classifier only the rules that do not correctly classify any training 

case. Antonie and Zaïane [11] introduced the concept of conflicting rules, which is 

defined as follows. Given two rules 𝑅1: 𝑋 => 𝐶1 and 𝑅2: 𝑋 => 𝐶2, 𝑅1 and 𝑅2 are 

conflicting rules because they hold the same antecedent (𝑋) and belong to different 

class labels 𝐶1and 𝐶2. In their approach, all these duplicates or conflicting rules are 

eliminated. 

Thabtah et al. [208] introduced the Looking at the Class (LC) prediction method, 

which selects the class with the highest average confidence value among the set of 

rules in the classifier for prediction. Abu-Mansour et al. [1] evaluated the 

correctness of the rule’s class with that of the training data when covering the 

training case. Their test results show that the number of rules generated by the 

developed pruning procedure is usually less than those of lazy pruning and 

database coverage heuristics. 

2.6.4 Rule Changing Monitoring 

The world around us changes constantly. In recent years, methods and techniques 

have emerged to monitor the changes in association rules over time or location to 

help businesses to detect, assess and respond to changing conditions rapidly and 

intelligently.  
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2.6.4.1   Frameworks 

Several frameworks have been proposed that can handle changes in association 

rules. Ganti et al. [73, 71, 72] presented a framework for measuring changes via 

two models. The difference between the two models is quantified as the amount of 

work (e.g., difference in supports) required to transform one model into the other. 

Spiliopoulou and Roddick [197] provided a framework for modelling higher order 

association rules as temporal sequences of conventional rules obtained from 

different mining sessions. Mining sessions are defined as a 6-tuple, providing a 

signature to which higher order reasoning algorithms can refer. Higher order 

mining routines are then able to operate over temporal sequences of rulesets. 

Later Baron and Spiliopoulou [21] proposed a temporal rule model, generic rule 

model (GRM), to model both the content and the statistics of a rule as a temporal 

object. A rule 𝑅 is a temporal object with the following signature [21]: 

𝑅 = (𝐼𝐷, 𝑞𝑢𝑒𝑟𝑦, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑠𝑡𝑎𝑡𝑠, 𝑏𝑜𝑑𝑦, ℎ𝑒𝑎𝑑) 

where 𝐼𝐷 is an identifier, ensuring that rules with the same 𝑏𝑜𝑑𝑦 (antecedent) and 

ℎ𝑒𝑎𝑑 (consequent) have the same 𝐼𝐷. The 𝑞𝑢𝑒𝑟𝑦 is the data mining query, while 

the 𝑠𝑡𝑎𝑡𝑠  (statistics) depend on the rule type. For example, an association rule 

A => B with an identifier ID𝑖 , support σ = 0.10  and confidence γ = 0.60 

produced by query Q at time stamp τ is modelled as  

R = (ID𝑖 , Q, τ, [σ = 0.10, γ = 0.60], A, B). 

Using the GRM to represent patterns, Baron, Spiliopoulou and Günther [24] 

proposed a general framework for pattern monitoring and change detection. In their 

work, the KDD process is divided into two phases: the mining phase and the 
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monitoring phase. In the mining phase, data from the first period is mined and 

interesting rules and patterns are identified. In the monitoring phase, rules to be 

monitored are firstly identified and statistics of those rules are then extracted and 

compared to predefined thresholds. If the statistics of a rule violate the user given 

thresholds, it is removed from the rule base [24].  

Furthermore, based on the GRM, Baron and Spiliopoulou [22] introduced Pattern 

Monitor (PAM), a framework for observing changes to the behaviour of a web 

site’s visitors. In PAM, a change detector mechanism is employed to identify 

changes to a rule’s statistic which exhibit a particular strength. Statistical 

significance is used to assess the strength of pattern changes.  

Based on the idea of detecting interesting changes in a dataset by analysing the 

support and confidence of association rules along the time axis, Böttcher et al. [33] 

presented a framework that pro-actively and automatically discovers interesting 

trends and stabilities in the support and confidence histories of association rules. In 

this approach, a time stamped dataset is partitioned into intervals along the time 

axis. Association rule discovery is then applied to each of these subsets. This yields 

sequences or histories of support and confidence for each rule, which can be 

analysed further in three layers: structural analyser, change analyser and 

interestingness evaluator, respectively [33]. 

2.6.4.2   Representation and Interpretation of Discovered Rules 

The changes in rules can be represented and interpreted in different forms based on 

the nature of data and the requirements of the data mining task. 

Active data mining [4] attempts to represent and query the history pattern of the 
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discovered association rules which are continuously generated at a desired 

frequency. The discovered rules from different time periods are collected into a rule 

base. The history, that is, ups and downs in support or confidence over time, is 

represented and defined using shape operators. The user can then query the rule 

base by specifying some history specifications. 

Liu et al. [133] attempted to detect “fundamental changes” in a set of association 

rules, that is, changes that are responsible for all changes seen in the set. The 

proposed approach first generates rules and in the second phase it identifies 

changes (rules) that cannot be explained by the presence of other changes (rules).  

In their work, a statistical 𝑋2 test for homogeneity of support and confidence is 

employed to evaluate rule changes. 

Liu et al. [135] counted the significant rule changes across the temporal axis.  The 

dataset is first partitioned into a few blocks or sub-datasets corresponding to the 

time periods (e.g., years, months or weeks) in which they were collected. Then 

association rules are mined from each block. Finally, the supports and confidences 

of the rules in these time periods are inspected to find various types of important 

rules, including [135]: 

 stable rules - rules that do not change a great deal over time and, thus, are 

more reliable and can be trusted 

 trend rules - rules that indicate some underlying systematic trends of 

potential interest. 

Similarly, Au and Chan [13] defined three types of an association rule based on the 

changes of support or confidence value of each rule, including: 
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 a changed rule, if its support (confidence) in the period is different from its 

support (confidence) in the previous period  

 a perished rule, if its support and/or confidence become less than the user-

specified thresholds in the period, and 

 an added rule, if its support and confidence become greater than or equal 

to the user-specified thresholds in the period.  

In their work, they used linguistic variables and linguistic terms to represent the 

changes in discovered association rules and used fuzzy decision trees to discover 

the changes [13]. The fuzzy decision trees can then be converted to fuzzy meta-

rules which are used to predict any change in the association rules in the future. 

Chen and Petrounias [52] focused on the identification of valid time intervals for 

previously discovered association rules. They proposed a methodology that finds 

all adjacent time intervals during which a specific association holds, and 

furthermore all interesting periodicities that a specific association has. 

2.6.5 Rule Maintenance  

Data change over time, such as the continuous changes due to addition, deletion 

and modification of the contained data. Therefore, rules at a point in time may 

become invalid while new rules may come into existence and wait to be detected.  

It is challenging to maintain and update discovered association rules if the database 

where the rules are generated is updated. Algorithms for efficiently updating the 

association rules have been proposed in the literature [55, 56, 187, 209, 25, 139]. 

These algorithms take the set of association rules in the old database into account 

and use this knowledge to remove itemsets that no longer exist in the updated 
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database and to add new itemsets which were not in the set of old transactions but 

now exist in the updated database. 

Updating association rules was first introduced by Cheung et al. [54, 55]. They 

proposed the FUP (Fast UPdate) algorithm to deal with insertion of new transaction 

data. FUP is based on the Apriori algorithm and achieves significant efficiency 

because it avoids re-computations for itemsets which were already found to be 

large during mining of the database. 

There are two main drawbacks of FUP. One is that it can only handle insertion of 

new transaction data and the other is it scans a database multiple times. The first 

issue has been ameliorated by Cheung et al. [56], who extended the work from FUP 

to handle deletion as well as addition. In order to reduce the number of database 

scans, Ayan et al. [15] proposed the Update With Early Pruning (UWEP) algorithm 

which scans the existing database at most once and the new database exactly once. 

It employs a dynamic look-ahead pruning strategy in updating the existing large 

itemsets by detecting and removing those that will no longer remain large after the 

contribution of the new set of transactions. This results in a much smaller number 

of candidates in the computation of new large itemsets.  

When to update rules is an important question. Lee and Cheung [121] proposed an 

algorithm to estimate the difference between the association rules in a database 

before and after it is updated. The estimated difference can then be used to 

determine whether to update the mined association rules. If the estimated difference 

is sufficiently large, then it is time to update the mined association rules to discover 

and learn the new rules and discard the old ones. If the estimated difference is 
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considered small, then there is no need to spend the resources to update the rules, 

as the rules in the original database are still a good approximation for those in the 

updated database. Similarly, DELI (Difference Estimations for Large Itemsets) 

determines when to update rules using approximate upper/lower bounds on the 

amount of changes in the set of newly introduced association rules, where a low 

bound denotes small changes in association rules which require no maintenance 

[122].  

Rainsford et al. [176] proposed a temporal windowing technique for incremental 

maintenance of association rules, which regards transactions outside a user-defined 

time window as too old and thus uninteresting. Their approach finds strong and 

near-strong association rules based on definitions of strong support and near-strong 

support threshold levels as well as the corresponding strong and near-strong 

confidence levels. Those near-strong rules might be become strong association 

rules during the next time window. 

2.7 Summary 

This chapter described the Knowledge Discovery in Databases (KDD) process and 

data mining. More particularly, it focused on association rule mining and higher 

order mining techniques. 

Association rule mining is a data mining technology used to discover knowledge 

about patterns and associations between items of transactions in a database. 

Association rule mining is a two-stage process: the frequent itemset discovery stage 

and the rule generation stage. This chapter detailed different algorithms developed 

for rapid and efficient frequent itemset generation. Also, various methods have 
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been proposed in the literature to increase the efficiency of the rule generation 

process. Two of them were studied in this chapter: constraint-based association rule 

mining and redundancy rule reduction.  Furthermore, this chapter reviewed some of 

the extensions of association rule mining, including quantitative association rule 

mining, multi-level association rule mining and temporal association rule mining. 

Being a sub-field of data mining, HOM is concerned with mining over 

patterns/models derived from one or more large and/or complex datasets. This 

chapter explored HOM techniques briefly with a focus on works related to mining 

over association rules, including rule clustering, rule classification, rule change 

monitoring and rule maintenance.   

HOM opens a new window for knowledge discovery from mining from the source 

to mining from the patterns/models. However, the overall potential of HOM is still 

largely unexploited and worthy of further research [183]. 



Chapter 3  

Ruleset Pattern and Horace 

Since the search for rules that can inform business decision making is the ultimate 

goal of data mining technology, problems such as the interpretation of 

interestingness for discovered rules is an important issue. However, as discussed in 

Chapter 1, association rules are commonly supplied in a low, instance-level format. 

Such low-level rules, while useful, provide knowledge only about the coincidence 

of elementary values and can be termed zero-order rules. Higher order semantics 

can be derived when sets of rules are inspected to determine patterns of interest 

between rules.  

This chapter provides formal definitions of patterns in discovered association rules 

and presents Horace, a novel approach for ruleset pattern discovery.  
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3.1 Preliminaries  

Given a rule 𝑟𝑖 with antecedent 𝑋, consequent 𝑌, support 𝜎 and confidence 𝛾, it is 

denoted as: 

𝑟𝑖: 𝑋 => 𝑌(𝜎, 𝛾) 

where 𝑟𝑖 is the name of the rule and 𝑋 ∪ 𝑌 the itemset of 𝑟𝑖. For brevity, there are 

the following notations: 

 𝑟𝑖. 𝑎𝑐: the antecedent of 𝑟𝑖, i.e., 𝑟𝑖. 𝑎𝑐 = 𝑋 

 𝑟𝑖. 𝑐𝑠: the consequent of 𝑟𝑖, i.e., 𝑟𝑖. 𝑐𝑠 = 𝑌  

 𝜎(𝑟𝑖): the support of 𝑟𝑖 

 𝛾(𝑟𝑖): the confidence of 𝑟𝑖 

 𝑃(𝑋 ∪ 𝑌): the number of transactions containing the itemset of 𝑟𝑖 

Definition 3.1 (Parent and Sibling Rule) Given two rules 𝑟𝑖  and 𝑟𝑗 , if 𝑟𝑖. 𝑐𝑠 =

𝑟𝑗 . 𝑐𝑠 ^ 𝑟𝑖. 𝑎𝑐 ∩  𝑟𝑗 . 𝑎𝑐 = ∅, that is, they have the same consequent but disjointed 

antecedent, 𝑟𝑖  is a sibling of 𝑟𝑗  and vice versa. These are denoted as 𝑆𝑖𝑏(𝑟𝑖, 𝑟𝑗). 

Given multiple sibling rules, they are denoted as 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛).  

If 𝑟𝑖. 𝑐𝑠 = 𝑟𝑗 . 𝑐𝑠 ^ 𝑟𝑖. 𝑎𝑐   𝑟𝑗 . 𝑎𝑐 , that is, they have the same consequent but the 

antecedent of 𝑟𝑗 contains the antecedent of 𝑟𝑖, 𝑟𝑗 is the parent of 𝑟𝑖, and 𝑟𝑖  a child of 

𝑟𝑗, which are denoted as 𝑃𝑎𝑟(𝑟𝑗, 𝑟𝑖).  

Given a parent rule 𝑟𝑝 with a set of sibling rules as its children, 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛), 

they are denoted as 𝑃𝑎𝑟(𝑟𝑝, 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛)). 
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Example 3.1 To illustrate, consider the ruleset below:  

𝑟1: {𝑎} => {𝑐}(𝜎 = 0.60, 𝛾 = 0.80)   

𝑟2: {𝑏} => {𝑐}(𝜎 = 0.70, 𝛾 = 0.75) 

  𝑟3: {𝑎, 𝑏} => {𝑐}(𝜎 = 0.10, 𝛾 = 0.60) 

|𝐷| = 1000 

Figure 3.1: Sample Ruleset 

Since 𝑟1. 𝑐𝑠 = 𝑟2. 𝑐𝑠 = {𝑐} , 𝑟1. 𝑎𝑐 ∩ 𝑟2. 𝑎𝑐 = {𝑎} ∩ {𝑏} = ∅,  𝑟1  and 𝑟2  are two 

siblings. Also, since 𝑟1. cs = 𝑟3. cs = {c} , 𝑟1. ac = {a} ⊂ 𝑟3. ac = {a, b} , 𝑟3  is the 

parent of 𝑟1. Similarly, we find that 𝑟3 is a parent of 𝑟2. Therefore, the three rules in 

Figure 3.1 can be denoted as 𝑃𝑎𝑟(𝑟3, 𝑆𝑖𝑏(𝑟1, 𝑟2)). 

Definition 3.2 (Relative Support) Given a set of sibling rules 

𝑅 = 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛), the relative support
1
 𝜌 of rule 𝑟𝑖 ∈ 𝑅  is defined as follows: 

𝜌(𝑟𝑖) =
𝑃(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑐𝑠) − 𝑄(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑐𝑠)

|𝐷|
 

where 𝑄(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑎𝑐)  denotes the number of transactions containing the 

antecedent and consequent of other rules in 𝑅  in all transactions containing the 

antecedent and consequent of 𝑟𝑖.   

Relative support represents the occurrence of the antecedent of a sibling rule 

without the existence of other sibling rules’ antecedents, when occurring together 

with their consequent. To illustrate, let us take the following example. 

Example 3.2 Consider the relative support of the two sibling rules 𝑟1 and 𝑟2 in the 

example shown in Figure 3.1. According to the definition of support, we have: 

                                                      
 
1
 This concept builds on the work by Shillabeer and Pfitzner[193]  
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                                           𝜎(𝑟1) =
𝑃(𝑟1.𝑎𝑐∪𝑟1.𝑐𝑠)

|𝐷|
                                            (1) 

                                           𝜎(𝑟2) =
𝑃(𝑟2.𝑎𝑐∪𝑟2.𝑐𝑠)

|𝐷|
                                            (2) 

                                           𝜎(𝑟3) =
𝑃(𝑟3.𝑎𝑐∪𝑟3.𝑐𝑠)

|𝐷|
                                            (3) 

Thus, we have 

𝑃(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) = 𝑃({𝑎, 𝑐}) 

                                = 𝜎(𝑟1) × |𝐷| 

                                                                       = 0.60 × 1000 = 600                  (4) 

Similarly, 

       𝑃(𝑟2. 𝑎𝑐 ∪ 𝑟2. 𝑐𝑠) = 700                                           (5) 

       𝑃(𝑟3. 𝑎𝑐 ∪ 𝑟3. 𝑐𝑠) = 100                                           (6) 

Result (4) shows there are 600 transactions containing items 𝑎 and 𝑏, which are the 

antecedent and consequent of 𝑟1 respectively. In order to calculate 𝜌(𝑟1), we need 

to calculate 𝑄(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) which is the number of transactions containing the 

antecedent and consequent of its sibling, 𝑟2, from result (4). Since 𝑟2. 𝑎𝑐 = {𝑏}, 

𝑟2. 𝑐𝑠 = {𝑐} and result (4) contains all transactions with {𝑎, 𝑐}, it is clear that  

                                     𝑄(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) = 𝑃({𝑎, 𝑏, 𝑐}) = 100                          (7) 

and therefore,  

     𝜌(𝑟1) = 0.5                                                      (8)  

     𝜌(𝑟2) = 0.6                                                      (9) 

That is, item 𝑎  occurs in 50% of transactions together with item 𝑐  without the 

existence of item 𝑏 , and 𝑏  occurs in 60% of transactions together with item 𝑐 

without the existence of item 𝑎. 

3.2 Defining Patterns in Rules 

Let 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} where 𝑛 > 1 be a set of rules. A pattern in 𝑅 is denoted as  
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𝑅𝑃 = {𝑅𝑠𝑒𝑡|𝑃},  

where 𝑅𝑠𝑒𝑡 = {𝑟|𝑟 ∈ 𝑅}, 𝑃 is the condition(s) the 𝑅𝑠𝑒𝑡 holds. For brevity, we call 

𝑅𝑃 a ruleset pattern. 

A condition in a ruleset pattern is in the following form: 

< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > 𝑜𝑝 < 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > , or 

< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > 𝑜𝑝 < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 

The < 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > is the attribute of the participating rule, including its name, the 

antecedent, consequent, support, confidence, and relative support. 𝑜𝑝 is normally 

one of the operators {=, <, >, ≥, ≤, ≠} . The < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 >  is a constant value 

defined by end users or domain experts. Clauses can be arbitrarily connected by the 

Boolean operators 𝐴𝑁𝐷, 𝑂𝑅and 𝑁𝑂𝑇 to form a general selection condition. 

Definition 3.3 (Competitor Pattern) Given user-specified thresholds 𝑚𝑖𝑛𝐻 and 

𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a competitor pattern is denoted as:  

𝐶𝑜𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗))|  

𝜌(𝑟𝑖) ≥ 𝑚𝑖𝑛𝐻, 

𝜌(𝑟𝑗) ≥ 𝑚𝑖𝑛𝐻, 

𝜎(𝑟𝑝) ≤ 𝑚𝑎𝑥𝐿, 

𝜎(𝑟𝑝) < 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)} 

As shown in the above definition, a competitor pattern contains a parent rule 𝑟𝑝 

with two children rules 𝑟𝑖 and 𝑟𝑗. The pattern requires that the relative support of 

𝑟𝑖 and 𝑟𝑗  is higher than or equal to the user-specified threshold 𝑚𝑖𝑛𝐻  and the 

support of the parent rule is lower than or equal to threshold 𝑚𝑎𝑥𝐿. It also requires 

that the itemsets of rules 𝑟𝑖 and 𝑟𝑗 are statistically negatively correlated. 

The competitor pattern illustrates the relationship between the antecedents of rules 
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𝑟𝑖  and 𝑟𝑗 , where one suppresses the other when occurring together with their 

consequent, resulting in unexpected low support. To illustrate, let us take the 

following example. 

Example 3.3 Given 𝑚𝑖𝑛𝐻 = 0.4, 𝑚𝑎𝑥𝐿 = 0.2 and take the three rules from Figure 

3.1. Since 𝜌(𝑟1) = 0.5 > 𝑚𝑖𝑛𝐻 ,  𝜌(𝑟2) = 0.6 > 𝑚𝑖𝑛𝐻  and 𝜎(𝑟3) = 0.1 < 𝑚𝑎𝑥𝐿 , 

the first three conditions are satisfied. Furthermore, we have  
𝜎(𝑟3)

𝜎(𝑟1)×𝜎(𝑟2)
=

0.1

0.6×0.7
=

0.238 < 1, thus 𝜎(𝑟3) < 𝜎(𝑟1) × 𝜎(𝑟2). So the last condition is also met and we 

have found a matched instance which reveals that items 𝑎  and 𝑏  suppress each 

other when occurring together with 𝑐. 

Definition 3.4 (Twoway-Catalyst Pattern) Given user-specified thresholds 𝑚𝑖𝑛𝐻 

and 𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a twoway-catalyst pattern is denoted as:  

𝐶𝑎2𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗))|  

𝜌(𝑟𝑖) ≤ 𝑚𝑎𝑥𝐿, 

𝜌(𝑟𝑗) ≤ 𝑚𝑎𝑥𝐿, 

𝜎(𝑟𝑝) ≥ 𝑚𝑖𝑛𝐻, 

𝜎(𝑟𝑝) > 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)} 

As shown in the above definition, the first three conditions require that 𝜌(𝑟𝑖) and 

𝜌(𝑟𝑗) are lower than or equal to threshold 𝑚𝑎𝑥𝐿 and the support of the parent rule 

𝑟𝑝 is higher than or equal to threshold 𝑚𝑖𝑛𝐻. The last condition requires that the 

itemsets of the two sibling rules 𝑟𝑖  and 𝑟𝑗  should be statistically positively 

correlated. 

The twoway-catalyst pattern is similar to the competitor pattern except that it 

illustrates a positive relationship between the antecedents of the rules 𝑟𝑖  and 𝑟𝑗 , 
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where one facilitates the other when occurring together with their common 

consequent.  

Definition 3.5 (Threeway-Catalyst Pattern) Given user-specified thresholds 

𝑚𝑖𝑛𝐻 and 𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a threeway-catalyst pattern is denoted as:  

𝐶𝑎3𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗 , 𝑟𝑘))|  

𝜌(𝑟𝑖) ≤ 𝑚𝑎𝑥𝐿, 

𝜌(𝑟𝑗) ≤ 𝑚𝑎𝑥𝐿, 

𝜌(𝑟𝑘) ≤ 𝑚𝑎𝑥𝐿, 

𝜎(𝑟𝑝) ≥ 𝑚𝑖𝑛𝐻, 

𝜎(𝑟𝑝) > 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗) × 𝜎(𝑟𝑘)} 

Threeway-catalyst patterns illustrate the relationship between the antecedents of 

three sibling rules, which seldom occur individually, but more commonly occur 

together with their consequent. 

Table 3.1: Sample Ruleset Patterns 

Pattern Ruleset Description 
Competitor 

Pattern 

{𝑐𝑜𝑙𝑎} => {𝑐ℎ𝑖𝑝𝑠} 

{𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒} => {𝑐ℎ𝑖𝑝𝑠} 

{𝑐𝑜𝑙𝑎, 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒} => {𝑐ℎ𝑖𝑝𝑠} 

 

Customers tend to buy 𝑐ℎ𝑖𝑝𝑠 and 

𝑐𝑜𝑙𝑎 or 𝑐ℎ𝑖𝑝𝑠 and 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒 

individually, but they seldom buy 

𝑐ℎ𝑖𝑝𝑠, 𝑐𝑜𝑙𝑎 and 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒 

together. 

Twoway 

-Catalyst 

Pattern 

{𝑚𝑖𝑙𝑘} => {𝑏𝑟𝑒𝑎𝑑} 

{𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑} 

{𝑚𝑖𝑙𝑘, 𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑} 

 

When customers buy 𝑏𝑟𝑒𝑎𝑑, they 

tend to buy 𝑚𝑖𝑙𝑘 and 𝑏𝑢𝑡𝑡𝑒𝑟 

together but not individually. 

Threeway 

-Catalyst 

Pattern 

{𝑡𝑢𝑟𝑘𝑒𝑦} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠} 

{𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠} 

{ℎ𝑎𝑚} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠} 

{𝑡𝑢𝑟𝑘𝑒𝑦, 𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠, ℎ𝑎𝑚} => 

{𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠} 

𝑇𝑢𝑟𝑘𝑒𝑦, 𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠 and ℎ𝑎𝑚 are 

frequently bought together with 

𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠. 
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These three types of patterns in rulesets widely exist in the real world. Table 3.1 

represents a descriptive list of the patterns. Ruleset patterns may be exhibited 

within many domains, for instance, in human resources where the productivity of a 

team can be affected by internal strife between its members. Also, in medicine, 

exposure to different conditions may result in an increased probability of illness. In 

addition, patterns in rulesets may combine to form more complex patterns. The 

conjunction of ruleset patterns is outside the scope of this thesis. 

3.3 The Horace Approach  

A straightforward approach to finding ruleset patterns is to search for such patterns 

from rules generated from other data mining techniques. However, this approach is 

inefficient for the following reasons.  

Firstly, association rule mining often generates a large number of rules. To tackle 

the problem, support and confidence are used to prune those rules which do not 

meet the thresholds. However, setting too high or too low thresholds of support and 

confidence may not obtain satisfactory rules. If the threshold is set too high, the 

number of rules may be insufficient and some important associations may be 

filtered out. On the other hand, if the threshold is set too low, a huge number of 

rules will be generated and the rule generation process becomes intractable. 

Secondly, the support or confidence might not be required in ruleset patterns. For 

example, confidence is not specified in patterns defined in this chapter. Therefore, 

when searching a ruleset for such patterns, the ruleset is incomplete as it only 

contains rules which satisfy the threshold of minimum confidence, resulting in 

inaccurate results. 
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3.3.1 Overview of Horace 

To overcome the above drawbacks, this thesis proposes a novel tree-based 

approach, called Horace, for efficient and effective ruleset pattern discovery.  

Frequent pattern or prefix trees, also known as tries, are generally used for frequent 

itemset generation [47], such as FP-tree [88, 89], COFI tree [59] and Patricia trie 

[171]. Since the frequent pattern or prefix trees are (generally speaking) isomorphic 

with the resulting ruleset, it is possible and more efficient to search such data 

structures directly for patterns.  

Firstly, there is no need to generate all rules as a preliminary step, which 

significantly reduces the computational complexity and temporal overhead. 

Secondly, once the trees have been built, there is no pruning process required to 

remove rules which do not satisfy the threshold support and confidence. 

Information held in the trees is complete, ensuring the completeness and accuracy 

of searching results. 

 

Source data 
FP-growth or other 
suitable algorithms 

Zero order  
rules 

Higher order 
rules 

 

FP-tree or pre-fix 
trees 

Ruleset pattern 
library 

Pattern language 

Figure 3.2: Overview of Horace 

 

Searching algorithms 
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As shown in Figure 3.2, there are three key parts to the Horace framework: the FP-

tree or pre-fix trees, a ruleset pattern library with an associated pattern language 

and a set of pattern search algorithms. 

 

In this thesis, FP-tree [88] is employed for Ruleset Pattern searching
2
. The ruleset 

pattern library and its associated pattern language, as shown in Figure 3.3, play an 

important part in Horace. The ruleset pattern library stores a set of ruleset patterns, 

which can be defined, retrieved and maintained by end users or domain experts 

through a pattern language. The pattern language, which consists of a rule pattern 

definition language (RPDL) and a ruleset pattern query language (RPQL), provides 

the following functionalities: 

 Pattern creation. Users can define patterns in rules based on their own 

definition of interesting.  

 Pattern retrieval. Patterns can be retrieved from the ruleset pattern library 

                                                      
 
2
 The author of the thesis believes other tree-structures can also be utilized, although further 

experiments are needed to confirm this. 
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Figure 3.3: Overview of Ruleset Pattern and the Pattern Language 
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for viewing, maintenance or pattern searching. 

 Pattern maintenance. This includes functions such as updating existing 

ruleset patterns or deleting unused ruleset patterns. 

At the core of Horace, there is a set of searching algorithms to find all matches of a 

given ruleset pattern held in the frequent pattern or prefix trees. Horace represents 

patterns in rulesets using a novel ruleset pattern tree (RP-tree). A RP-tree has a set 

of prefix subtrees as the children of the root. Each node consists of three fields: the 

item, a node link and a count, where the node link points to the next node 

containing the same item in the RP-tree. Given the structure of the two trees, RP-

tree and FP-tree, the search algorithms search the FP-tree for all matches with the 

RP-tree.  

3.4 Related Work    

With a few notable exceptions, data mining research has largely focused on the 

extraction of knowledge directly from the source data [128]. Current work directly 

in the area of this thesis is relatively limited.  

Roddick et al. [183] discussed higher order mining more generally, proposing a list 

of higher order patterns. The work presented in this thesis differs from their work in 

the following aspects. Firstly, higher order patterns describe patterns from the 

previously induced patterns and models, such as association rules, clusters, 

classification rules and so on. In contrast, this thesis focuses on patterns in 

association rules only. In addition, in their work, higher order patterns are 

indicative and loosely described. In contrast, this thesis provides formal definitions 
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for patterns in association ruleset. Also, a tree-based approach for ruleset pattern 

discovery which cannot be handled by their work is proposed in this thesis.  

Association rule mining can be performed under the guidance of various kinds of 

constraints provided by the user [67, 29, 159, 151, 199, 200]. For example, meta-

rules allow users to specify the syntactic form of the rules they expected. The work 

presented in this thesis is different from constraint-based association rule mining. 

Firstly, ruleset patterns reveal interesting relationships in the antecedents or 

consequents of participating rules. They are not constraints to be applied to the rule 

generation process. Secondly, in constraint-based association rule mining, 

association rules are generated based on constraints specified, while in the process 

of ruleset pattern discovery, the phase of association rule generation is not required. 

Rule templates were first studied by Klemettinen et al. [108]. In their work, a rule 

template is defined by users to specify what items are in a rule, and what 

restrictions are applied on support and/or confidence. Those rules which do not 

match the template are uninteresting and thus are pruned out. Klemettinen’s work is 

different from the work presented in this thesis as rule templates are employed to 

find interesting rules from source data, while this thesis defines patterns of interest 

between sets of rules. 

Teng [206] studied disassociation rules, which are rules that capture the negative 

relationship between two set of items. For example, the presence of X and Z is not 

a good predictor for the presence of Y. Dissociation rules are close to the 

competitor pattern as this chapter defined it. However, Teng’s work focuses on the 

mechanism for learning dissociation from source data while the work presented 
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here aims to define and facilitate searching of patterns in rules.  

In data mining, the usefulness of association rules is strongly limited by the huge 

amount of delivered rules. Post-processing methods, like pruning, summarizing, 

grouping, or visualization, are proposed to improve the selection of discovered 

rules [142, 16, 237]. The work presented in this thesis is different from those post-

processing methods as ruleset patterns are normally defined before the mining 

process starts. Also, in the work presented herein, Horace searches the frequent 

pattern or prefix trees for ruleset patterns and therefore rule generation and post-

processing are not involved.  

3.5 Summary 

Association rules are commonly supplied in a low-level or instance-level format. 

Higher order patterns can be discovered in a set of rules based on users’ definitions 

of interesting. This chapter provides formal definitions for patterns in rules, named 

as ruleset patterns.  

A straightforward approach to finding ruleset patterns is to search from association 

rules generated from other data mining techniques. However, it is problematic due 

to two factors. One is the complexity of the process of rule generation and the other 

is that the completeness of rulesets is heavily affected by the setting of support and 

confidence. To overcome these shortcomings, this chapter proposes a proof-of-

concept system, Horace, which incorporates a tree-based approach for efficient and 

effective ruleset pattern discovery. The basic idea behind it is that since frequent 

pattern or prefix trees contain all of the information represented by the (larger) 

rulesets generated from them, it is firstly possible and secondly more efficient to 
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search such an intermediate data structure for patterns.  

There are three key parts to the Horace framework: the frequent pattern or prefix 

trees, an RP library with an associated pattern language and a set of pattern search 

algorithms. A brief overview of the key components of Horace is provided in this 

chapter. Detailed implementation of the searching algorithms and experiment 

results are presented in Chapter 4 and the ruleset pattern language is presented in 

Chapter 5. 



Chapter 4  

Searching Ruleset Patterns Using 

FP-Trees and RP-Trees  

Chapter 3 outlines Horace, a framework for ruleset pattern discovery. The core 

component of Horace is an efficient searching mechanism to find matches of a 

ruleset pattern. Horace represents ruleset patterns using a novel ruleset pattern tree 

(RP-tree).  The searching algorithms then search the FP-tree for all matches of the 

RP-tree.  

The following section reviews the FP-tree and Section 4.2 provides a detailed 

description of the new data structure (RP-tree) to represent ruleset patterns. Section 

4.3 presents two searching algorithms and the experiment results are discussed in 

Section 4.4. Section 4.5 concludes the chapter. 
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4.1 FP-Tree 

FP-tree [88] is a compact data structure that contains the complete set of 

information held in a database relevant to frequent pattern mining. FP-tree stores a 

single item at each node, and includes a support count and additional links to 

facilitate processing. These links start from a header table and link together all 

nodes in the FP-tree which store the same item. Details of the FP-tree construction 

were discussed in Section 2.3 in Chapter 2.  

4.2 The Ruleset Pattern Tree (RP-Tree) 

Horace represents ruleset patterns using a novel tree structure, ruleset pattern tree 

(RP-tree). To illustrate the construction of a RP-tree, let us first examine an 

example.  

Example 4.1 Given a database 𝐷, user-specified thresholds 𝑚𝑖𝑛𝐻 and 𝑚𝑎𝑥𝐿 and a 

competitor pattern 𝐶𝑜𝑃𝑎𝑡𝑡 containing three rules as follows: 

𝑟𝑖: {𝑏} => {𝑎} 

𝑟𝑗: {𝑐} => {𝑎} 

                                                    𝑟𝑝: {𝑏, 𝑐} => {𝑎} 

then the pattern 𝐶𝑜𝑃𝑎𝑡𝑡 might be: 

𝐶𝑜𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑆𝑖𝑏(𝑟𝑖, 𝑟𝑗))| 

𝜌(𝑟𝑖) ≥ 𝑚𝑖𝑛𝐻, 

𝜌(𝑟𝑗) ≥ 𝑚𝑖𝑛𝐻, 

𝜎(𝑟𝑝) ≤ 𝑚𝑎𝑥𝐿, 

𝜎(𝑟𝑝) < 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)} 

A compact data structure can be designed based on the following observations: 
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 A list of itemsets in 𝐶𝑜𝑃𝑎𝑡𝑡 can be obtained after we scan it. We can then 

generate an ordered list of items in those itemsets based on the number of 

their occurrences (which can be registered as frequencies). 

 For common items which exist in two itemsets, we might be able to merge 

them using one prefix structure if items in 𝐶𝑜𝑃𝑎𝑡𝑡  are sorted in their 

frequency descending order.  

With the above observations, we construct a RP-tree for 𝐶𝑜𝑃𝑎𝑡𝑡 as follows. Firstly, 

we scan the pattern once to obtain the list of itemsets in the ruleset pattern and 

denote the list as L, where L = [{c, a}, {b, a}, {b, c, a}]. Also, we generate the set 

of ordered items in L based on their frequency in descending order and denote it as 

I, i.e., I = {a(3), b(2), c(2)}, where the number in () indicates the frequency of the 

item in the list of itemsets.  

Secondly, the root of the RP-tree is created with a label “T”. Then, we go through 

each itemset in L and insert them as follows. Firstly, we insert the itemset of the 

parent rule, which is {a, b, c}, resulting in the first branch of the tree, as shown in 

Figure 4.1(a). Then, we insert the second itemset in L, which is {a, b}. Since all 

items in {a, b} share a common prefix (a, b) with the existing path (a, b, c), no new 

branch is created as shown in Figure 4.1(b).  Finally, the process proceeds to the 

third itemset, namely, {a, c}. Since only item a in this itemset share a common 

prefix with the existing path (a, b, c), a new branch is created. In addition, to 

facilitate tree traversal, a node link is created, which points to nodes with the same 

item-name, that is, the two “c” nodes. The resultant RP-tree is shown as Figure 

4.1(c). 
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Based on this example, a RP-tree can be defined as follows: 

Definition 4.1 (RP-Tree) A RP-tree is a tree structure consisting of one root which 

is labelled “T”, and a set of prefix subtrees as the children of the root.  Each node 

in the prefix subtree consists of three fields: the item, a node link and a count, 

where  the node link points to the next node containing the same item in the RP-

tree.  

Algorithm 4.1: RP-Tree Construction 

1: Input: A ruleset pattern 𝑝 

2: Output: A RP-tree 

3: scan each rule in 𝑝, do the following: 

4:     a) set 𝐿 to be the list of itemsets in 𝑝    

5:     b) set 𝐼 to be the sorted items in 𝐿 in their frequency count descending order  

6: create root 𝑇  

7: for each itemset 𝑠 in 𝐿, starting from the itemset of the parent rule, do 

8:  insert-tree(𝑠, 𝑇, 0) 

9: end for 

10: insert-tree(itemset 𝑠, treeNode 𝑛, int 𝑝𝑜𝑠) 

11: if 𝑝𝑜𝑠 < 𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ then 

12:   if 𝑛. 𝑐ℎ𝑖𝑙𝑑 == 𝑛𝑢𝑙𝑙 or 𝑛. 𝑐ℎ𝑖𝑙𝑑.item-name ≠ 𝑠[𝑝𝑜𝑠].item-name then 

13:         create new node 𝑛′, set 𝑛′. 𝑖𝑡𝑒𝑚 = 𝑠[𝑝𝑜𝑠], 𝑛. 𝑐ℎ𝑖𝑙𝑑 = 𝑛′ and the node-link 

of n’ points to the nodes with the same item-name of n’ 

14:    end if 

15:    insert-tree(𝑠, 𝑛. 𝑐ℎ𝑖𝑙𝑑, 𝑝𝑜𝑠 + +) 

16: end if 

Based on this definition, the RP-tree construction algorithm is outlined in 

Algorithm 4.1. As shown in line 3 to line 5, there is only one scan required to build 

(a) Insert {a, b, c} 

Td:

1 

 

 

 

 

  

 

 

 

 

  

 

 

 a 

b 

c 

b 

a 

c c 

a 

b c 

T T 

(b) Insert {a, b} (c) Insert {a, c} 

T 

Figure 4.1: Sample RP-Tree Construction 
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a RP-tree which generates the list of itemsets (L) in the ruleset pattern and the 

ordered list of items (I) in L. Starting from the itemset of the parent rule, each 

itemset in L is then inserted through a function called insert-tree (as shown in lines 

10 to 16).  

Given an itemset s, the function inserts each item based on their order in I. If the 

node the item will be inserted into has a child and the item-name of the child node 

is the same as that of the inserted item, it proceeds to the next node. Otherwise, a 

new child node is added with a node-link pointing to the nodes with the same item-

name. The function is recursively executed until all itemsets in L are inserted.  

After construction, a language is required to describe the RP-tree. A RP-tree is 

defined as a collection of tuples <node, parent, [Nchildren]>, where Nchildren is 

the collection of the node’s children from left to right. In addition, the set of 

conditions the ruleset pattern holds and a label (denoted as desc), which is an 

instantiated description of the pattern, can be imposed over the definition. Thus the 

tuples which are constructed for all non-leaf RP-tree nodes of the RP-tree in Figure 

4.1(c) are: 

< 𝑇, , [𝑎] > 

< 𝑎, 𝑇, [𝑏, 𝑐] > 

< 𝑏, 𝑎, [𝑐] > 

𝜌({𝑎, 𝑏}) ≥ 𝑚𝑖𝑛𝐻,  

𝜌({𝑎, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,  

𝜎({𝑎, 𝑏, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,  

𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}),  

𝑑𝑒𝑠𝑐: "Competitor pattern: " + 𝑏 + "," + 𝑐 
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4.3 Algorithm Development 

Given the structure of the two trees, RP-tree and FP-tree, in this section, two 

Searching Ruleset Patterns using FP-tree (SRPFP) algorithms are proposed to 

search the FP-tree for matches of the RP-tree. 

4.3.1 The SRPFP-a Algorithm  

The SRPFP-a algorithm (as shown in Algorithm 4.2) provides a mechanism for 

tree searching, which substitutes RP-tree nodes with the items from the FP-tree 

header table.  

Algorithm 4.2: SRPFP-a Algorithm 

1: Input: FP-tree 𝑓𝑝, RP-tree 𝑟𝑝 

2: Output: Set of matched instances of 𝑟𝑝 𝑅𝑃𝑠𝑒𝑡 

3: set 𝐼 to be the items in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟 in their support descending order  

4: RP-mine (𝑟𝑝. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑) 

5: RP-mine (RPtreeNode 𝑛𝑜𝑑𝑒) 

6: for each item 𝑖 in 𝐼 do 

7:      𝑛𝑜𝑑𝑒.item-name = 𝑖.item-name 

8:      if 𝑛𝑜𝑑𝑒. 𝑙𝑖𝑛𝑘 ≠ 𝑛𝑢𝑙𝑙 
9:     𝑛𝑜𝑑𝑒. 𝑙𝑖𝑛𝑘.item-name = 𝑖.item-name 

10:    end if 

11:    if 𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑 == 𝑛𝑢𝑙𝑙 then 

12:      calculate support count for nodes in branches of 𝑛𝑜𝑑𝑒. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑 from 𝑓𝑝 

13:       if !isValid (𝑛𝑜𝑑𝑒.root.child, 𝑟𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) then 

14:          return 

15:  else 

16:     𝑅𝑃𝑠𝑒𝑡.Add(𝑛𝑜𝑑𝑒.root.child) 

17: end if 

18:    else 

19:     RP-mine (𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑) 

20:    end if 

21: end for 

As the RP-tree’s leftmost branch contains all items in the parent rule, SRPFP-a 

requires a single pass over this branch for search purposes. For each node in this 

parent rule branch, all other nodes representing the same item are accessible 



CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES       82 

 

through the node links. The collection of itemsets that terminate with a specific 

item is efficiently obtained through this structure.  

During the process to calculate support, SRPFP-a visits the relevant FP-tree 

branches by following the link of the specific item in the header table. If a visited 

branch contains the parent rule’s itemset, the support of the itemset increases by 

adding the support count of the visited node in the branch. If there is no parent 

rule’s itemset in the branch and it contains a child rule’s itemset, the relative 

support of the itemset increases by adding the support count of the visited node.  If 

there is a parent rule’s itemset in the branch and the branch contains more than one 

child rule’s itemsets, those itemsets are not independent of each other in that branch 

so the support count of the visited node will not be counted according to the 

definition of relative support.  
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Figure 4.2: Searching Algorithm Illustration (SRPFP-a) 

Illustration 
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Example 4.2 To illustrate, consider the example shown in Figure 4.2, which 

contains a competitor pattern tree (RP-tree) and an FP-tree. Given that 𝑚𝑖𝑛𝐻 =

0.4, 𝑚𝑎𝑥𝐿 = 0.2 and |𝐷| = 10,  the algorithm starts with node ‘x’ in the RP-tree. 

Each node in the RP-tree will be replaced by its corresponding value from the FP-

tree header table.  

Starting with item ‘a’, only one branch ends with ‘a’, and a support count of 10 is 

obtained from the header table. The process continues, moving to the next node in 

the traversal, ‘y’. The node ‘y’ is replaced by all items in the header table, except 

‘a’. Starting with item ‘b’, a branch is generated from the RP-tree that ends with ‘b’ 

and also contains ‘a’, which is {a, b}. Following the FP-tree link from ‘b’, all 

branches that contain {a, b} are found. The support count, which is 6, is thus 

obtained. The process advances to ‘z’, which is replaced with each item in the FP-

tree header table except ‘a’ and ‘b’.  

Starting with ‘c’, it generates a list of branches in the RP-tree that contain ‘c’ and 

have ‘a’ or ‘b’ in their parental path, specifically {a, b, c} and {a, c}. The support 

count of {a, b, c} and {a, c} are obtained, which are 2 and 6 respectively.  Since it 

is the last node of the parent rule branch, a condition check will be performed for 

the three related itemsets, {a, b, c}, {a, b} and {a, c}. The relative support of {a, b} 

(0.4) and {a, c} (0.4) are calculated. Since 𝜎({𝑎, 𝑏, 𝑐}) = 0.2 = 𝑚𝑎𝑥𝐿,  𝜌({𝑎, 𝑐}) =

0.4 = 𝑚𝑖𝑛𝐻, and 𝜌({𝑎, 𝑏}) = 0.4 = 𝑚𝑖𝑛𝐻, the first three of the conditions for the 

competitor pattern are met. Furthermore, since 
𝜎({𝑎,𝑏,𝑐})

𝜎({𝑎,𝑏})×𝜎({𝑎,𝑐})
=

0.2

0.6×0.6
= 0.56 <

1, and 𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}), all of the conditions of the pattern have 

been met. Therefore, a matched instance of the RP-tree has been found. 
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The algorithm then progresses to ‘d’. Branches containing ‘d’ that have ‘a’ or ‘b’ in 

their parental path are {a, b, d} and {a, d}. The support count of {a, b, d} and 

relative support of {a, d} are obtained, namely, 𝜎({𝑎, 𝑏, 𝑑}) = 0.2, 𝜌({𝑎, 𝑑}) = 0.1. 

Since 𝜌({𝑎, 𝑑}) = 0.1 < 𝑚𝑖𝑛𝐻,  it is invalid and thus is pruned. The process 

continues until all nodes in the leftmost branch of the pattern tree have been 

substituted. 

The complexity of the SRPFP-a algorithm is 𝑂(
𝑛!

(𝑛−𝑘)!𝑘!
), where 𝑛 is the number of 

frequent items in an FP-tree and 𝑘 is the number of distinct items in a RP-tree. The 

performance of SRPFP-a is heavily affected by the value of 𝑛  and 𝑘 . With an 

increase in 𝑛 and 𝑘, the computational expense becomes high.  

In addition, no pruning strategy is employed during the tree node substitution 

process, which is less efficient. For example, in the above example, when node x 

and y are substituted, SRPFP-a is not able to check the relative support of the 

itemset represented by the tree path as it cannot be calculated unless all itemsets of 

the ruleset patterns are identified. Therefore, itemsets with invalid relative support 

are used for further processing, which adds unnecessary computation time. 

4.3.2 The SRPFP-b Algorithm  

To overcome the drawbacks of the SRPFP-a algorithm, SRPFP-b is proposed, 

which provides a more efficient searching mechanism to deal with complex FP-

trees and RP-trees. The SRPFP-b algorithm (as shown in Algorithm 4.3) consists of 

two phases: kp-itemset generation (where kp is the length of the itemset of the 

parent rule) and RP-tree instance generation.  At the kp-itemset generation step, 

SRPFP-b finds all valid kp-itemsets from the FP-tree. At the second step, it 
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constructs a RP-tree instance for each itemset returned from the previous step 

which is then validated against the conditions associated with the ruleset pattern.  

Algorithm 4.3: SRPFP-b Algorithm 

1: Input: FP-tree 𝑓𝑝, RP-tree 𝑟𝑝 

2: Output: Set of matched instances of 𝑟𝑝 𝑅𝑃𝑠𝑒𝑡 

3: set 𝐼 to be the sorted items in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟 in their support ascending order  

4: for each item 𝑖 in 𝐼 do 

5:  set 𝑆 = RP-growth (𝑓𝑝, 𝑖, |𝑟𝑝. 𝑝𝑎𝑟𝑒𝑛𝑡|, 𝑟𝑝. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

6: for each itemset 𝑠 in 𝑆 do 

7:       sort items in 𝑠 in their support descending order in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟  

8:        set 𝑟𝑝′  = RP-Substitution (𝑟𝑝. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑, 𝑠, 0) 

9:               if !isValid(𝑟𝑝′, 𝑟𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) then 

10:   return 

11:            else 

12:  𝑅𝑃𝑠𝑒𝑡.Add(𝑟𝑝′. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑) 

13:            end if 

14:    end for 

15: end for 

16: RP-growth (FP-Tree 𝑇𝑟𝑒𝑒, node 𝑎, int 𝑙𝑒𝑛, condition 𝑐) 

17: if 𝑇𝑟𝑒𝑒 contains a single path 𝑃 

18:  for each combination (denoted as 𝑞) of the nodes in the path 𝑃 do 

19:           generate pattern 𝑞 ∪ 𝑎 with |𝑞 ∪ 𝑎| == 𝑙𝑒𝑛 and condition c is met 

20: end for 

21: else  

22:  for each 𝑎𝑖 in the header of 𝑇𝑟𝑒𝑒 do  

23:     generate pattern 𝑞 = 𝑎𝑖 ∪ 𝑎 with |𝑞| == 𝑙𝑒𝑛 and condition 𝑐 is met 

24:     construct 𝑞′s conditional pattern base and 𝑞′s conditional FP-tree 𝑇𝑟𝑒𝑒_𝑞  

25:     if 𝑇𝑟𝑒𝑒_𝑞 ≠ ∅ then 

26:            call RP-growth (𝑇𝑟𝑒𝑒_𝑞, 𝑞, 𝑙𝑒𝑛 − −, 𝑐 ) 

27:      end if 

28:   end for 

29: end if 

30: RP-Substitution(node 𝑛, itemset 𝑠, int 𝑖𝑛𝑑𝑒𝑥) 

31: if 𝑖𝑛𝑑𝑒𝑥 > 𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then 

32: calculate support count of 𝑠 from 𝑓𝑝  

33: end if 

34: 𝑛. 𝑖𝑡𝑒𝑚 = 𝑠[𝑖𝑛𝑑𝑒𝑥]  
35: if 𝑠. 𝑙𝑖𝑛𝑘 ≠ 𝑛𝑢𝑙𝑙 then 

36: 𝑛. 𝑙𝑖𝑛𝑘. 𝑖𝑡𝑒𝑚 = 𝑠[𝑖𝑛𝑑𝑒𝑥]  
37: end if 

38: RP-Substitution (𝑛. 𝑐ℎ𝑖𝑙𝑑, 𝑠, 𝑖𝑛𝑑𝑒𝑥 + +) 
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4.3.2.1  kp-Itemset Generation  

In this step, SRPFP-b employs a function called RP-growth to find all valid kp-

itemsets from the FP-tree. RP-growth is a variation of the FP-growth algorithm [88, 

89] with the following two main differences: (1) compared to FP-growth which 

generates all frequent itemsets, RP-growth only generates kp-itemsets; (2) FP-

growth employs the minimum support threshold to ensure only frequent itemsets 

are returned. In contrast, RP-growth does not require minimum support and kp-

itemsets might not be frequent. The above differences are reflected by the changes 

in lines 16, 19 and 23 respectively in Algorithm 4.3.  

 

Example 4.3 To illustrate, let us take the example shown in Figure 4.3, which 

contains a twoway-catalyst pattern tree (RP-tree) and an FP-tree. The initial 

parameter values are 𝑚𝑖𝑛𝐻 = 0.4, 𝑚𝑎𝑥𝐿 = 0.2 and |𝐷| = 10. Since the itemset of 

the parent rule ({x, y, z}) has length 3, the algorithm firstly finds all 3-itemsets 
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Figure 4.3: Searching Algorithm Illustration (SRPFP-b) 
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from the FP-tree that satisfy the condition associated with the parent rule 

(𝜎({𝑥, 𝑦, 𝑧}) ≥ 𝑚𝑖𝑛𝐻), that is, the support count should be greater than 𝑚𝑖𝑛𝐻 ×

|𝐷| = 0.4 × 10 = 4.  

Starting from item ‘e’ in the header table, since the support count of ‘e’ is 2 which 

is less than the minimum support count, the process moves to the next item in the 

header table, which is ‘d’. Item ‘d’ occurs in two branches of the FP-tree, which are 

(a, b, c, d: 4) and (a, b, d: 1). Taking ‘d’ as the suffix, the corresponding two prefix 

paths are (a, b, c: 4) and (a, b: 1) which forms the conditional pattern base. There is 

one branch in the conditional FP-tree and we obtain all 3-itemsets, namely, {a, b, 

d}(5), {a, c, d}(4) and {b, c, d}(4). They all are valid as their support counts are 

greater than or equal to the minimum support count threshold associated with the 

parent rule. 

The process then proceeds to item ‘c’. Similarly, we obtain the branch containing 

item ‘c’, which is (a, b, c: 6). There is only one branch and we obtain the valid 3-

itemset {a, b, c}(6). 

Since items ‘a’ and ‘b’ are the first two items in the header table, they are not 

considered as there will be no branches terminating at these items with length 

greater than 2. Therefore, we have the following valid 3-itemsets: {a, b, d}(5), {a, 

c, d}(4), {b, c, d}(4) and {a, b, c}(6). 

4.3.2.2  RP-Tree Instance Generation 

Given a set of itemsets L, SRPFP-b constructs a RP-tree instance for each itemset 

in L. For an itemset s in L, nodes in the leftmost branch of the RP-tree, that is, the 

parent rule branch, are substituted by items in s based on descending order of their 
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frequency. Nodes in branches other than the leftmost branch of the RP-tree are 

substituted through the node link in the RP-tree. Since the parent rule branch 

contains all items in the ruleset pattern, the process ensures that all nodes in the 

RP-tree are substituted. Validation occurs when the substitution process is 

completed, where the support and relative support count are calculated through the 

node link structure in the FP-tree.  

Example 4.4 For illustration, consider the RP-tree and FP-tree in Figure 4.3 as an 

example. As indicated in the previous section, the set of 3-itemsets are {a, b, d}(5), 

{a, c, d}(4), {b, c, d}(4) and {a, b, c}(6).  

 

Starting with itemset (a, b, d: 5), node x, y and z in the leftmost branch are 

substituted with item ‘a’, ‘b’ and ‘d’ respectively. The process is shown in Figure 

4.4. As shown in Figure 4.4(d), when the node z in the leftmost branch is 

substituted with item ‘c’, the node in another branch with the same item-name is 

substituted by following the node link. 

After substituting all nodes in the RP-tree, the process validates the generated RP-

tree instance against the conditions associated with the pattern tree. The support 
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and relative support are calculated from the FP-tree through the node link structure, 

that is, 𝜎({𝑎, 𝑏, 𝑑}) = 0.5,  𝜎({𝑎, 𝑏}) = 0.7, 𝜎({𝑎, 𝑑}) = 0.6,  𝜌({𝑎, 𝑏}) = 0.2  and 

𝜌({𝑎, 𝑑}) = 0.1. Since  𝜎({𝑎, 𝑏, 𝑑}) = 0.5 > 𝑚𝑖𝑛𝐻,  𝜌({𝑎, 𝑏}) = 0.2 = 𝑚𝑎𝑥𝐿, 

𝜌({𝑎, 𝑑}) = 0.1 < 𝑚𝑎𝑥𝐿, the first three conditions are met. Also, since  

𝜎({𝑎, 𝑏, 𝑑})

𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑑})
=

0.5

0.7 × 0.6
= 1.19 > 1, 

we have 

𝜎({𝑎, 𝑏, 𝑑}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑑}). 

All conditions have been met and we have found a matched RP-tree instance.  

Compared to the step of kp-itemset generation, the step to construct a RP-tree 

instance is less complex. On one hand, the RP-tree is usually much smaller than the 

FP-tree and the substitution of the nodes in the parent rule branch is 

straightforward. On the other hand, during the validation process, it is more 

efficient to calculate the support count and relative support count through the node 

link structure in the FP-tree. Therefore, the entire performance of SRPFP-b is 

determined by the kp-itemset generation step. 

4.4 Experiments and Analysis      

To demonstrate the concept, a prototype of Horace was implemented in Java and 

several experiments were conducted on both synthetic and real datasets. All tests 

were done on a 2.6 GHz PC with 2GB of main memory running Windows 7. This 

implementation is shown to be tractable and able to reveal patterns in rulesets of 

potential interest that would otherwise not be reported. 

A synthetic data generator was built based on the work reported by Agrawal and 

Srikant [6] to produce large quantities of transactional data. Table 4.1 shows the 
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parameters for data generation, along with their default values and the range of 

values on which experiments were conducted. Table 4.2 presents an overview of 

some generated synthetic data. 

Three real datasets were used to test SRPFP-a and SRPFP-b. Their details are 

shown in Table 4.3. The retail data was sourced from an anonymous Belgian retail 

supermarket store [37]. The data were collected over three non-consecutive periods 

between 1999 and 2000. The two datasets BMS-WebView-1 and BMS-WebView-2 

were taken from KDDCUP 2000 [113]. They contain several months’ worth of 

click stream data from two e-commerce web sites. 

Figure 4.5 shows the patterns tested, while Table 4.4 shows detailed description. 

Table 4.1: Synthetic Data Parameters 

Name Description Default Value Range of Values 
|I| Number of Items 10 10-100 
|T| Number of Transactions 5,000 5,000-200,000 
|P| Number of Patterns 50 50-200 
TS Average Size of Transaction 5 5-10 
PS Average Size of Pattern 5 5-10 

Table 4.2: Synthetic Data 

Data |I| |T| |P| |TS| |PS| 
Syn1 100 10,000 20 5 5 
Syn2 200 50,000 150 10 10 
Syn3 300 100,000 250 10 15 

Table 4.3: Real Datasets 

Data Retail-Data BMS-WebView-1 BMS-WebView-2 
NumberofTrans 88,163 59,602 77,512 
Distinct Items 16,470 497 3,340 
Max TransSize 67 267 161 

Average TransSize 15 2.5 5.0 
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Table 4.4: Description of Test Pattern 

Test 

Pattern 
Pattern 

Type 
Conditions Description 

TP1 
Competitor 

pattern 

𝜌({𝑎, 𝑏}) ≥ 𝑚𝑖𝑛𝐻,  
𝜌({𝑎, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,  
𝜎({𝑎, 𝑏, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,  
𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐})  

Item 𝑏 competes 

with item 𝑐 when 

occurring together 

with item 𝑎. 

TP2 
Twoway-

catalyst 

pattern 

𝜌({𝑎, 𝑏}) ≤ 𝑚𝑎𝑥𝐿,  
𝜌({𝑎, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,  
𝜎({𝑎, 𝑏, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,  
𝜎({𝑎, 𝑏, 𝑐}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐})  

Item 𝑏 facilitates 

item 𝑐 when 

occurring together 

with item 𝑎. 

TP3 
Threeway-

catalyst 

pattern 

𝜌({𝑎, 𝑏}) ≤ 𝑚𝑎𝑥𝐿,  
𝜌({𝑎, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,  
𝜌({𝑎, 𝑑}) ≤ 𝑚𝑎𝑥𝐿  
𝜎({𝑎, 𝑏, 𝑐, 𝑑}) ≥ 𝑚𝑖𝑛𝐻,  
𝜎({𝑎, 𝑏, 𝑐, 𝑑}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}) × 𝜎({𝑎, 𝑑}) 

Items 𝑏, 𝑐, 𝑑 

facilitate each other 

when occurring 

together with item 

𝑎. 

TP4 
Competitor 

pattern 

𝜌({𝑎, 𝑚, 𝑛}) ≥ 𝑚𝑖𝑛𝐻,  
𝜌({𝑎, 𝑝, 𝑞}) ≥ 𝑚𝑖𝑛𝐻,  
𝜎({𝑎, 𝑚, 𝑛, 𝑝, 𝑞}) ≤ 𝑚𝑎𝑥𝐿,  
𝜎({𝑎, 𝑚, 𝑛, 𝑝, 𝑞}) < 𝜎({𝑎, 𝑚, 𝑛}) × 𝜎({𝑎, 𝑝, 𝑞}) 

Items 𝑚 and 𝑛 

compete with items 

𝑝 and 𝑞 when 

occurring together 

with item 𝑎. 

 

4.4.1 Results and Performance Study  

The experimental results demonstrate that both SRPFP-a and SRPFP-b provide a 

sound and useful means of finding complex RP-tree patterns within an FP-tree. 

Test results, as shown in Table 4.5, demonstrate that the two algorithms are able to 

reveal patterns of potential interest based on users definition of interesting. 

(a)TP1 

Figure 4.5: Test Patterns 
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Table 4.5: Test Results 

Dataset 

min-

sup 

 

FP-tree Info TP1 TP2 TP3 TP4 

Depth Branches Nodes 
minH

(%) 

maxL 

(%) 
Cnt 

minH 

(%) 

maxL 

(%) 
Cnt 

minH 

(%) 

maxL 

(%) 
Cnt 

minH 

(%) 

maxL 

(%) 
Cnt 

Retail 

Data 
0.01 12 12,142 31,037 1.0 0.1 6 0.5 0.3 1 1.0 0.5 0 0.5 0.5 48 

BMS-

WebView1 
0.01 31 5,584 16,909 0.5 0.5 11 0.8 0.1 52 0.5 0.5 0 0.8 0.2 10 

BMS-

WebView2 
0.005 28 14,044 48,571 0.5 0.5 5 0.5 0.5 0 0.5 0.5 0 0.8 0.2 8 

Syn1 0.2 46 5,842 96,159 1.0 0.5 54 1.0 0.5 32 1.0 0.5 44 1.0 0.5 10 

Syn2 0.05 23 17,426 127,463 1.0 0.1 144 0.2 0.2 132 1.0 0.5 3 0.8 0.2 2 

Syn3 0.1 20 11,699 52,897 0.5 0.5 97 0.5 0.5 2 0.5 0.5 0 0.5 0.5 270 

Patterns TP1, TP2 and TP4 exist in both the real and synthetic datasets, while pattern 

TP3 exists in two synthetic datasets
3

. Presented below are some examples 

discovered from Retail-Data (each item is denoted as a character c plus a number):  

{c39, c2925} (𝜌 = 1.1%), 

{c39, c1146} (𝜌 = 1.1%), 

                              {c39, c2925, c1146} (𝜎 = 0.009%) 

Description: item c2925 competes with c1146 when they occur together with item 

c39. 

{c14945, c101, c236} (𝜌 = 0.5%), 

    {c271, c270, c236} (𝜌 = 0.8%), 

               {c14945, c101, c271, c270, c236} (𝜎 = 0.005%) 

Description: itemset {c14945, c101} competes with itemset {c271, c270} when 

they occur together with item c236. 

{c39, c682}( 𝜌 = 0.24%), 

{c48, c682}( 𝜌 = 0.14%), 

                                      {c39, c48, c682}( 𝜎 = 0.53%) 

Description: item c39 facilitates item c48 when they occur together with c682. 

                                                      
 
3
The author of the thesis believes TP3 exists in the real word, although further experiments with 

more real datasets are needed to confirm this. 
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  (a) Number of Frequent Items vs. Time 

 
(c) Number of Distinct RP-tree Nodes vs. 

Time 

 
           (b) FP-tree Size vs. Time 

 
      (d) Number of RP-tree Nodes vs. Time 
 

 

Figure 4.6: Performance Comparison 

In the experiments, two groups of tests were conducted to investigate the effect of 

the size of the FP-tree and RP-tree on the execution time of the two searching 

algorithms. In the first group of tests, a set of synthetic datasets were generated 

with the number of transactions ranging from 10k to 150k. The number ranges of 

the frequent items and tree nodes of the resultant FP-trees were from 30 to 250 and 

from 20k to 150k respectively. Then pattern TP1 was used to search for its matches 

from those FP-trees. The test results are presented in Figure 4.6(a) and 4.6(b). 

In the second test group, two synthetic datasets (Syn1 and Syn2) and a set of test 
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ruleset pattern trees are used where the number of distinct tree nodes and total tree 

nodes varies from 3 to 12 and from 4 to 22 respectively. The test results are shown 

in Figure 4.6(c) and 4.6(d). 

The test results of the two groups of tests show that the execution time of SRPFP-a 

and SRPFP-b increased with the increase of the size of the FP-tree and RP-tree. 

However, as shown in Figure 4.6(a) and Figure 4.6(c), the computation time of 

SRPFP-a sharply increased with the increase of the number of frequent items of the 

FP-tree and the number of distinct items of the RP-tree. Similar results are shown 

in Figure 4.6(b) and 4.6(d), revealing that SRPFP-b scales much better than 

SRPFP-a when the size of the FP-tree and RP-tree increases. 

SRPFP-b is more efficient than SRPFP-a in handling large and complex FP-trees 

and RP-trees for the following two reasons: 

Firstly, since SRPFP-a substitutes RP-tree nodes with items from the FP-tree 

header table, its performance is heavily affected by the number of frequent items in 

the FP-tree and the number of distinct items in the RP-tree. When the number of 

frequent items in the FP-tree or the number of distinct items in the RP-tree is large, 

the computation time of the algorithm becomes expensive. In contrast, SRPFP-b 

provides a different approach for pattern searching which does not involve the 

heavy tree node substitution process. As discussed in Section 4.3, the entire 

performance of SRPFP-b is mainly determined by the step of kp-itemset generation. 

This process is performed on a pattern-base Bai by constructing a conditional FP-

tree for Bai. Since Bai is usually much smaller than its original FP-tree and the 

conditional FP-tree is usually much smaller and never bigger than Bai, each 
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subsequent mining process/step works on a set of usually much smaller pattern 

bases and conditional FP-trees [88]. Therefore, SRPFP-b provides a faster 

approach to finding matched kp-itemsets.  

Secondly, SRPFP-a does not prune invalid itemsets until the parent rule branch of 

the RP-tree has been processed, which is less efficient. In contrast, SRPFP-b 

prunes out itemsets which do not meet the conditions associated with the parent 

rule of the ruleset pattern or have a length that is not equal to kp during the 

searching process. This greatly reduces the computation overhead. 

 

Figure 4.7: Effect of minH and maxL 

The experiments also examined the effect of setting minH and maxL on the 

searching results. A set of tests were conducted on dataset Syn2 and pattern TP1 

using various values of minH and maxL. As shown in Figure 4.7, the number of 

matched instances is affected by the setting of minH and maxL. The higher the 

minH or the lower the maxL, the more itemsets with lower support are pruned out, 

and therefore the fewer matched instances found. Similarly, the lower the minH or 

the higher the maxL, the more itemsets with lower support are included, and 

0

20

40

60

80

100

120

140

0.05 0.1 0.2 0.3 0.7

N
u

m
b

er
 o

f 
M

at
ch

es
 

maxL 

maxL vs. Number of Matches 
(minsup=0.1, minH=0.7, Data:Syn2) 

0

200

400

600

800

1000

1200

1400

1600

0.3 0.4 0.5 0.6 0.7

N
u

m
b

er
 o

f 
M

at
ch

es
 

minH 

minH vs. Number of Matches 
(minsup=0.1, maxL=0.3, Data:Syn2) 



CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES       96 

 

therefore, more matches can be identified. 

4.5 Summary     

This chapter presents a novel approach to finding matches for a defined ruleset 

pattern through using two data structures: the FP-tree and the RP-tree. The RP-tree 

is a tree structure which consists of one root and a set of prefix subtrees as the 

children of the root. An associated language is created to describe a RP-tree and to 

impose the description and conditions of a ruleset pattern over the tree.  

Given the FP-tree and RP-tree, two algorithms (SRPFP-a and SRPFP-b) have been 

proposed to search the FP-tree for matching RP-tree instances. SRPFP-a provides a 

mechanism for tree searching by substituting RP-tree nodes with the items from the 

FP-tree header table. The computational complexity of SRPFP-a is determined by 

the number of frequent items in an FP-tree and the number of distinct items in a 

RP-tree. Therefore, it is less efficient when performing pattern searching which 

involves complex FP-trees and RP-trees. 

The SRPFP-b employs a different approach for pattern searching which consists of 

two steps. At the first step, all valid kp-itemsets are generated from the FP-tree 

using an FP-growth like algorithm, RP-growth. At the second step, a RP-tree 

instance is built and the conditions associated with the RP-tree are validated to 

ensure that only valid RP-tree instances are returned. 

A prototype has been built to demonstrate the feasibility and efficiency of the two 

algorithms. The experimental results have demonstrated the capacity of both 

SRPFP-a and SRPFP-b to find patterns of potential interest. However, SRPFP-b 
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uses less computation time and is more efficient when dealing with large and 

complex FP-trees and RP-trees. 



Chapter 5  

RPL: A Ruleset Pattern Language 

One essential part of Horace is a pattern library and its associated pattern language 

to enable users to define, retrieve and update ruleset patterns based on their needs. 

This chapter presents the ruleset pattern language (RPL), which consists of a 

ruleset pattern definition language (RPDL) and a ruleset pattern query language 

(RPQL). RPL provides a tool for end users to define patterns based on their own 

definition of interesting, to maintain patterns in the ruleset pattern library, and to 

retrieve patterns efficiently.  

5.1 Towards a Ruleset Pattern Language - RPL 

RPL consists of a rule pattern definition language (RPDL) and a ruleset pattern 

query language (RPQL). RPDL is a language for defining ruleset patterns, 

providing users with the ability to create, alter or delete ruleset patterns, while 

RPQL is a language for retrieving patterns from a ruleset pattern library. The RPL 
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language is defined in an extended BNF grammar, where square brackets [] around 

an element represent zero or one occurrence and {} represents zero or more 

occurrences. Also, given a ruleset pattern p, there is a set of notations that can be 

used in RPL (as shown in Table 5.1). 

Table 5.1: Notations of Ruleset Pattern p 

Notation Description 
p.name The name of pattern p 
p.rules  The set of rules in p 
p.rules[i]  The i

th
 rule in p 

p.rules.cs  The set of consequents of all rules in p 
p.rules.ac The set of antecedents of all rules in p 
p.constraints The set of constraints of p 
p.constraints [i] The i

th
 constraint in p 

p.constraints [i].name The name of the i
th
 constraint in p 

p.constraints [i].expression The expression of the i
th
 constraint in p 

5.1.1 Ruleset Pattern Definition Language (RPDL) 

RPDL was developed to create, alter, rename or delete ruleset patterns.  

Create Statement. The syntax of the create statement is as follows: 

CREATE pattern <pattern_name> ( 

{<rule_spec>}, 

 {<constraint_spec>}) 

<rule_spec>::= rule <rule_name> (<antecedent>, <consequent>)  

<antecedent>:: = {<itemset>} 

<consequent>::= {<itemset>} 

<constraint_spec> ::= constraint <constraint_name> ( <expression_spec>) 

In RPDL, the statement <rule_spec> is the specification of the class of rules to be 

included in a pattern. The word rule is a key word, indicating a single rule. 

<rule_name> is the name of the rule, which can include any character or characters. 

Each antecedent and consequent is a set of more or less tightly specified itemsets.  
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Similar to <rule_spec>, the statement <constraint_spec> specifies the constraints in 

a ruleset pattern. <constraint_name> is the name of a constraint and 

<expression_spec> specifies the content of a constraint, which is represented by 

one or more mathematical statements. A constraint is defined by end users or 

domain experts based on their own definition of interesting. Apart from the two 

commonly used measurements of interestingness, support and confidence, other 

quality metrics, such as relative support, might be utilized to define a constraint in 

a ruleset pattern. 

For illustration, given user defined thresholds minH and maxL, a ruleset pattern is 

created in the following query. 

Query 1: create a pattern called Competitor 

CREATE pattern ‘Competitor’ ( 

rule r1({x},{z}), 

rule r2({y},{z}), 

rule r3({x,y},{z}), 

constraint c1 (𝜌(𝑟1) ≥ 𝑚𝑖𝑛𝐻), 

constraint c2 (𝜌(𝑟2) ≥ 𝑚𝑖𝑛𝐻), 

constraint c3 (𝜎(𝑟3) ≤ 𝑚𝑎𝑥𝐿), 

constraint c4 (𝜎(𝑟3) < 𝜎(𝑟1) × 𝜎(𝑟2))) 

Query 1 contains three rules (r1, r2 and r3) and four constraints (c1, c2, c3 and c4) 

where the first two conditions involve the quality metric relative support.  

Alter Statement. The alter statement modifies an existing ruleset pattern. It has the 

following syntax: 
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 ALTER pattern <pattern_name>  

     { 

 SET { 

 antecedent = {any_character} 

  | consequent = {any_character}  

| constraint = <expression_spec> 

                        }  

               | ADD{<rule_spec> | < constraint_spec>} 

 | DELETE{rule <rule_name> | constraint <constraint_name>} 

           } 

There are three commands to update a ruleset pattern: SET, ADD and DELETE. 

Their usages are illustrated with some examples as follows.  

The command SET updates a rule or constraint in a ruleset pattern as shown in the 

following two example queries.  

Query 2: update the antecedent of rule r1 of pattern ‘Competitor’ to {w}  

ALTER pattern ‘Competitor’ 

SET r1.ac = {w} 

Query 3: update constraint c1 of pattern ‘Competitor’ to be ‘𝜎 < 𝑚𝑖𝑛𝐻’. 

ALTER pattern ‘Competitor’ 

SET c1.expression = ‘𝜎 < 𝑚𝑖𝑛𝐻’ 

The command ADD is used to add a rule or constraint to a ruleset pattern. One 

example is shown in Query 4. 

Query 4: add rule r1: w=>z and constraint c1(𝜎 > 𝑚𝑖𝑛𝐻 ) to ruleset pattern 

‘Competitor’ 

ALTER pattern ‘Competitor’ 

ADD rule r1({w},{z}), 

constraint c1 (𝜎 > 𝑚𝑖𝑛𝐻) 
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Finally, the command DELETE removes a rule or a constraint from a ruleset 

pattern. Query 5 and 6 provide two examples of its usage. 

Query 5: delete rule r1 from ruleset pattern ‘Competitor’ 

ALTER pattern ‘Competitor’ 

DELETE rule r1 

Query 6: delete constraint c1 from pattern ‘Competitor’ 

ALTER pattern ‘Competitor’ 

DELETE constraint c1 

RENAME Statement. The rename statement renames a ruleset pattern. It has the 

following syntax: 

RENAME pattern <pattern_name> 

SET name = {any_character} 

Query 7 shows an example of the usage of the rename statement.  

Query 7: updates the name of pattern ‘Competitor_A’ to be ‘Competitor_B’ 

RENAME pattern ‘Competitor_A’ 

SET name = ‘Competitor_B’ 

DROP Statement. The last RPDL statement is the DROP statement which is used 

to delete a ruleset pattern. Its syntax is: 

DROP pattern <pattern_name> 

The usage of the DROP statement is straightforward as shown in Query 8.  

Query 8: delete a pattern called ‘Competitor’ 

DROP pattern Competitor 

5.1.2 Ruleset Pattern Query Language (RPQL) 

RPQL allows users to retrieve patterns from a ruleset pattern library, denoted as 
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Patternbase. The structure of a basic RPQL query is:  

SELECT p 

                     FROM Patternbase p  

                     WHERE <conditional_expression> 

The SELECT clause selects one variable over its corresponding Patternbase that 

satisfies the conditions of the WHERE clause.  

A condition in the WHERE clause is defined in one of the following forms.  

 {<pattern_name> | <rule_name> | <constraint_name> | <expression_ 

spec> }  op const      

The symbol op is one of the notations 𝐼𝑛 , 𝐼𝑛𝐸𝑞𝑢𝑎𝑙  and 𝐸𝑞𝑢𝑎𝑙 , which are 

related to the standard relational operators ⊂, ⊆ and = respectively. const can 

be textual or numeric or a mathematical expression.  

 [ALL|ANY] {<antecedent> | <consequent>} op <itemset>      

ANY and ALL are two key words used to specify whether the condition should 

be applied to any or all of the antecedents or consequents in a ruleset pattern. 

For example, given a ruleset pattern p, the statement “ALL p.rules.cs 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 

{z}” requires that the consequents of all rules in p should contain itemset {z}. 

 Count(R) relation_op const 

Count (R) is a function returning the number of elements in R, where R is a list 

of rules or constraints. 

Similar to SQL, more than one simple condition can be joined together to form a 

complex <conditional_expression>. It also supports negations. Some examples of 

the basic RPQL queries are provided as follows.  
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Query 9: find patterns named ‘Competitor’ 

SELECT p  

FROM Patternbase p 

WHERE p.name = 'Competitor' 

Query 10: find patterns where all of its rules’ consequents are {z} 

SELECT p  

FROM Patternbase p 

WHERE  ALL p.rules.cs 𝐸𝑞𝑢𝑎𝑙 {z} 

Query 11: find patterns with more than one rule and constraint and the first rule’s 

antecedent contains {x} 

SELECT p  

FROM Patternbase p 

WHERE Count(p.rules) > 1 

AND Count(p.constraints) > 1 

AND {x} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac  

Query 12: find patterns with more than one rule, all of which have consequent {z} 

and at least one rule whose antecedent is {x}. 

SELECT p  

FROM Patternbase p 

WHERE COUNT(p.rules) > 1 

AND ANY p.rules.ac 𝐸𝑞𝑢𝑎𝑙 {x} 

AND ALL p.rules.cs 𝐸𝑞𝑢𝑎𝑙 {z}  

The above four queries show that RPQL is a small, yet expressive and powerful 

language that allows a rich variety of queries about the ruleset patterns.  

5.2 Implementation of RPQL   

The user-defined ruleset patterns are stored in a database, where each ruleset 
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pattern is assigned a unique ID. The manipulation of RPDL, including alteration, 

deletion and updating, is in line with SQL syntax. This section focuses on the 

evaluation of RPQL queries.   

One straightforward method to retrieve ruleset patterns is to scan all patterns in the 

Patternbase for matches. This approach is applicable if the size of the Patternbase 

is small. In order to cope with a huge number of patterns and complex queries, 

RPQL employed the techniques of indexing to ensure evaluation efficiency.  

5.2.1 Indexing 

Inverted lists are a common indexing method used in text information retrieval, 

where each document is regarded as a set of keywords or items. Inverted lists are 

very efficient for set-oriented operations and also fast to build. Since the antecedent 

and consequent of a rule are sets of items, inverted lists are a suitable indexing 

technique when querying rules in ruleset patterns.  

Inverted lists indexing works as follows: given a Patternbase 𝑃𝐵, an antecedent 

inverted list (denoted as 𝑎𝐿) and a consequent inverted list (denoted as 𝑐𝐿) are 

created to index items in the antecedent and consequent of all rules in 𝑃𝐵 

respectively. The generated inverted lists index has two parts: a vocabulary and a 

list. The vocabulary contains the distinct items in the antecedent or consequent, 

while the list stores pattern IDs, each of which is paired to an integer representing 

the position of the rule where the item belongs.  

The inverted list for an item i in 𝑎𝐿 or 𝑐𝐿 is denoted as 𝑎𝐿(i) or 𝑐𝐿(i). The example 

below shows a consequent inverted list for item w in Table 5.2: 
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𝑐𝐿(w): {(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)(3,3),(5,1),(5,2),(5,3)} 

Each pair between the two curly braces in 𝑐𝐿(w) shows a pattern ID and the 

position of the rule where item w appears. For example, (2, 1) indicates item w 

exists in the first rule’s consequent of the pattern with ID 2. 

The list of IDs in 𝑎𝐿 or 𝑐𝐿 for item i at the j
th

 rule is denoted as aL(i,j) or 𝑐𝐿(i,j) 

respectively. For example, 𝑐𝐿(w, 1): [2, 3, 5] shows that item w exists in the first 

rule’s consequent of three patterns with ID 2, 3 and 5 respectively. 

Table 5.2: Sample Ruleset Patterns 

Pattern 

ID 

1
th

 Rule 2
nd

 Rule 3
rd

 Rule 4
th

 Rule 

antecedent consequent antecedent consequent antecedent consequent antecedent consequent 

1 {x} {z} {y} {z} {x,y} {z}   

2 {x} {w} {y} {w} {z} {w} {x,y,z} {w} 

3 {x,y} {w,z} {p,q} {w,z} {x,y, p,q} {w,z}   

4 {x,y} {z} {m } {z} {n} {z} {x,y,m,n} {z} 

5 {x,y,v} {w,z} {m} {w,z} {x,y,v,m} {w,z}   

6 {p} {z} {q} {z} {p, q} {z}   

Note: for brevity, pattern name and constraints have been omitted. 

5.2.2 Evaluating Queries 

Algorithm 5.1 illustrates the process of RPQL query evaluation. As shown in lines 

3 and 4, two inverted lists (𝑎𝐿 and 𝑐𝐿) are built and one variable 𝐼𝐷𝐿𝑖𝑠𝑡 is created, 

which holds all ruleset patterns’ ID in the Patternbase. With the usage of the 

inverted lists, lines 6 to 15 update 𝐼𝐷𝐿𝑖𝑠𝑡 if the antecedent or consequent appears in 

the WHERE clause. Lines 17 to 21 scan the Patternbase to find those patterns 

whose ID is in 𝐼𝐷𝐿𝑖𝑠𝑡 and also satisfy other conditions. 
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Algorithm 5.1: RPQL Query Evaluation 

1: Input: Patternbase 𝑝𝑏, RPQL query 𝑞 

2: Output: 𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡  

3: build inverted list 𝑎𝐿 and 𝑐𝐿 

4: set 𝐼𝐷𝐿𝑖𝑠𝑡 = list of all patterns’ ID from 𝑝𝑏 

5: set 𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = new List() 

6: for each 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑐 in 𝑞. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

7:   if 𝑐. 𝑟𝑢𝑙𝑒 ≠ 𝑛𝑢𝑙𝑙 then 

8:  if 𝑐. 𝑟𝑢𝑙𝑒. 𝑎𝑐 ≠ 𝑛𝑢𝑙𝑙 then 

9:    updateID(𝑎𝐿, 𝑐. 𝑟𝑢𝑙𝑒. 𝑎𝑐, 𝑐. 𝑟𝑢𝑙𝑒. 𝑝𝑜𝑠) 

10:  else if 𝑐. 𝑟𝑢𝑙𝑒. 𝑐𝑠 ≠ 𝑛𝑢𝑙𝑙 then 

11:       updateID (𝑐𝐿, 𝑐. 𝑟𝑢𝑙𝑒. 𝑐𝑠, 𝑐. 𝑟𝑢𝑙𝑒. 𝑝𝑜𝑠) 

12:  end if 

13:        𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.Add(𝑐) 

14:  end if 

15: end for 

16: set 𝑜𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.Except(𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)  

17: for each pattern 𝑝 in 𝑝𝑏 

18: if IDList.contains(𝑝. 𝐼𝐷) ^ 𝑝.isValid(𝑜𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) then 

19:   𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡.Add(𝑝) 

20:  end if 

21: end for 

22: updateID(invertedList 𝐿, itemset 𝐼, int 𝑝𝑜𝑠) 

23: for each item 𝑖 in 𝐼 

24:       if 𝐿.contains(𝑖, 𝑝𝑜𝑠) then 

25:              𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡^𝐿(𝑖, 𝑝𝑜𝑠)  

26:         end if 

27: end for 

To illustrate, consider the following query against patterns in Table 5.2.  

Query 13: find patterns containing three rules and the antecedent of the first rule 

contains {x,y} and the second rule’s antecedent is {m}. 

SELECT p  

FROM Patternbase p 

WHERE {x,y} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac                                                  (1) 

AND p.rules[2].ac 𝐸𝑞𝑢𝑎𝑙 {m}                                                             (2) 

  AND Count (p.rules) = 3                                                                      (3) 

To evaluate Query 13, we first set 𝐼𝐷𝐿𝑖𝑠𝑡 to contain the list of IDs for all patterns,  
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𝐼𝐷𝐿𝑖𝑠𝑡 = [1, 2, 3, 4, 5, 6] 

We then evaluate the first condition: {x,y} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac. Below shows the 

inverted antecedent lists for item x and y:  

aL(x): {(1,1),(1,3),(2,1),(2,4),(3,1),(3,3)(4,1),(4,4),(5,1),(5,3)} 

                aL(y): {(1,2),(1,3),(2,2),(2,4),(3,1),(3,3)(4,1),(4,4),(5,1),(5,3)} 

Since the condition requires items x and y to be in the first rule, we have: 

𝑎𝐿(x, 1): [1, 2, 3, 4, 5] 

                                                  𝑎𝐿(y, 1): [3, 4, 5] 

Thus 𝐼𝐷𝐿𝑖𝑠𝑡 can be updated as  

  𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡 ^ 𝑎𝐿(x,1) ^ 𝑎𝐿(y,1)  

           = [1, 2, 3, 4, 5, 6] ^ [1, 2, 3, 4, 5] ^ [3, 4, 5]  

                                      = [3, 4, 5] 

The process then goes to the second condition, p.rules[2].ac 𝐸𝑞𝑢𝑎𝑙 {m}. Similarly, 

we have 

     𝑎𝐿(m): {(4,2),(4,4),(5,2),(5,3)} 

                                         𝑎𝐿(m, 2): [4, 5] 

𝐼𝐷𝐿𝑖𝑠𝑡 is then updated as 

𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡 ^ 𝑎𝐿(m,2) = [3, 4, 5] ^ [4, 5] = [4, 5] 

Finally, we evaluate the third condition (Count (p.rules) = 3) by scanning those 

patterns having ID in the 𝐼𝐷𝐿𝑖𝑠𝑡 and then check each of them to see whether the 

condition is met. Since pattern 4 has 4 rules, it is pruned out. Thus, only pattern 5 

meets all conditions and is returned for the query. 

5.3 Experiments  

To demonstrate the concept, a prototype of RPL was implemented in C# and 
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several experiments were conducted on synthetic datasets. All experiments were 

carried on an Intel Core i5 PC with 2G memory. Database SQL 2008 was used to 

store user defined ruleset patterns.  

A ruleset pattern generator was built to create synthetic test data. Rules in test 

ruleset patterns are derived from a dataset generated based on the work reported by 

Agrawal and Srikant [6]. Constraints in test ruleset patterns are in the format:   

QM op CONST 

where QM and CONST represent randomly generated quality measurements and 

constants respectively. Table 5.3 presents the details of the generated synthetic data 

and Table 5.4 shows the parameters for data generation. 

Table 5.3: Synthetic Data 

Data |P| |R| |C| |QM| |UC| 

Data A 500 3 3 3 2 

Data B 5000 5 5 5 4 

Data C 10000 8 8 10 6 

Data D 20000 10 10 12 8 

Table 5.4: Synthetic Data Parameters 

Name Description 
Default 

Value 

Range of 

Values 

|P| Number of patterns 500 0.5k – 20k 

|R| Average number of rules per pattern 3 2-20 

|C| Average number of constraints per pattern 3 2-20 

|QM| Number of quality measurements 3 1 - 10 

|UC| Number of user-defined constants 2 1 - 10 

The performance of the proposed system was tested on the four queries presented 

in Section 5.1.2. The execution times of these queries are presented in Figure 5.1. 

Each execution time is the average result for 10 runs for the query, and includes the 

time for loading patterns from the Patternbase and the time for building 

appropriate indices. 
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Figure 5.1: Execution Times of the 4 Representative Queries 

As shown in Figure 5.1, RPQL queries are executed very efficiently. Query 11 and 

12 have longer execution time than the other two as they contain more complex 

conditions in the WHERE clause. However, it took only 0.65 seconds to process 

Query 12 over 20,000 patterns. Also, it is interesting to see that Query 9, which is 

the simplest query, has a greater execution time than Query 10. This is because 

Query 10 employed inverted lists to speed up query processing while Query 9 was 

evaluated by scanning the whole Patternbase, which is less efficient.  

5.4 Related Work 

Association rule mining often generates a large number of rules most of which are 

actually not useful or interesting for specific applications [108]. Making sense of 

such a large number of rules has become a significant challenge. One approach to 

tackling this problem is identifying the rules that are of special importance to the 

user through data mining queries. The query language acts as an interface between 

the user and the knowledge and database. It allows the user to process data and 

knowledge and to direct the discovery process.  
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Agrawal et al proposed a shape definition language, called SDL, for retrieving 

objects based on shapes contained in the histories associated with the objects [5]. 

SDL enables users to define ups and downs of supports or confidences of a rule 

over a number of time periods. SDL is a definition language which focuses on 

behaviour shapes of the rules. The ruleset pattern language (RPL) presented in this 

thesis is built on ruleset patterns and it describes the relationships among items in 

participating association rules. RPL is also comprised of a pattern query language 

(RPQL) with the capability to retrieve patterns from the ruleset pattern library.   

DMQL is a data mining query language proposed by Han et al [85]. With DMQL, 

users can select different tables (and databases) to mine different types of rules. 

Similar to DMQL, Meo et al. [146] proposed an SQL-like operator for data mining 

(MINE RULE) and Shen et al. [192] reported a meta query language for data 

mining. In addition, dmFSQL was proposed by Carrasco et al. [46] as an extension 

of FSQL (Fuzzy SQL) for data mining. It extends the SQL language with the 

capabilities to specify flexible queries to address tables that store vague 

information using fuzzy attributes [46]. One common characteristic of these query 

languages is that they are designed for generating rules from source data. In 

contrast, RPL is designed for users to define, alter and query patterns from a set of 

rules. 

Several techniques that have been proposed to query discovered rules, including 

MSQL [99, 100] and Rule-QL [212]. MSQL can be used not only for rule 

generation, but also for querying the discovered rules. Rule-QL queries multiple 

sets of association rules and provides efficient algorithms for processing the 
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queries. RPL differs from those techniques in two aspects. It allows users to define 

patterns among a set of rules, which cannot be handled by MSQL and Rule-QL. In 

addition, RPQL queries ruleset patterns but not rules. A ruleset pattern is not a 

single rule but consists of a set of rules and conditions defined by users. 

5.5 Summary  

This chapter proposed RPL, a ruleset pattern language which consists of a ruleset 

pattern definition language (RPDL) and a ruleset pattern query language (RPQL). 

RPL is a small, yet expressive and powerful language that allows a rich variety of 

queries about the ruleset patterns. It enables end users to create, alter and retrieve 

ruleset patterns from the pattern library.  

RPL is a natural and necessary complement to the ruleset pattern searching 

algorithms presented in Chapter 4.  The emphasis of this chapter is on its 

expressiveness and functionalities towards end users. The syntax of RPDL and 

RPQL has been presented with illustrative examples in this chapter. Also, inverted 

lists are employed as an indexing technique to improve the efficiency of RPQL 

query evaluation. A set of experiments have been conducted which have 

demonstrated the efficiency of RPQL. 



Chapter 6  

Detecting Anomalies in 

Longitudinal Association Rules 

The detection of unusual or anomalous data is an important function in automated 

data analysis or data mining. This thesis provides a partial solution to this problem 

by elevating the search for anomalous data in transaction-oriented datasets to an 

inspection of the rules that can be produced by higher order longitudinal/spatio-

temporal association rule mining.  

The next section discusses research to date in anomaly detection and longitudinal 

and spatio-temporal knowledge discovery which outlines the context to this work. 

Section 6.2 then discusses the research in anomaly detection in data as represented 

through association rules. Section 6.3 provides details of two anomaly detection 

algorithms and Section 6.4 presents the implementation and experiment results. 

Finally, Section 6.5 concludes the chapter. 
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6.1 Motivation and Literature Review 

6.1.1 Anomaly Detection 

Anomaly detection refers to the problem of finding patterns in data that do not 

conform to expected behaviour [50]. Such patterns, which are usually called 

outliers, noise, or novelty in different application domains, often contain useful 

information regarding the abnormal behaviour of the system described by the data. 

For example, an anomalous traffic pattern in a computer network could mean that a 

hacked computer is sending out sensitive data to an unauthorized destination. An 

anomalous MRI image may indicate the presence of a malignant tumour. Originally 

studied in the statistics community in the nineteenth century [58], anomaly 

detection is now a widely researched problem and has found immense use in 

application domains [162] such as: 

 fraud detection: detection of criminal activities occurring in commercial 

organizations 

 intrusion detection: monitoring the events occurring in a computer system 

or network for unusual behaviour and analysing them for intrusions 

 medicine and public health: using unusual symptoms or test results to 

indicate potential health problems 

 image processing: detecting anomalies in an image monitored over time or 

anomalous regions within an image. 

The main anomaly detection approaches can be categorized into the following 

groups: statistics-based techniques, proximity-based techniques, density-based 

techniques, classification-based techniques, and clustering-based techniques.  
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Statistics-based anomaly detection techniques treat data instances occurring in the 

low probability regions of the statistical distribution as anomalies and those 

occurring in high probability regions of a statistical distribution as normal [50]. 

These approaches break the process of anomaly detection into two steps. A 

statistical distribution is estimated using given data at the first step and statistical 

inference tests are then applied in the second step to verify whether a test instance 

belongs to this distribution [93, 226, 225, 12, 185, 105]. Statistics-based anomaly 

detection techniques are built on standard statistical techniques and thus have a 

firm foundation. However, since they rely on the assumption that the data is 

generated from a particular distribution, they are not applicable for detecting 

anomalies in data with unknown distribution, such as high dimensional data [50]. 

In addition, it is difficult to select the best statistical method for anomaly detection 

[149]. 

Proximity-based anomaly detection techniques define a proximity measure 

between objects and try to find those objects that are distant from most of the other 

objects [162]. One of the simplest ways to measure whether an object is distant 

from most points is to use the distance to the k-nearest neighbour [43]. Since 

originally being used to detect land mines from satellite ground images, the k-

nearest neighbour method has been extended by researchers with a focus on the 

definition modifications to obtain the anomaly score of a data instance [60, 10, 235, 

32, 110, 111, 112], the use of different distance/similarity measures to handle 

different data types [156, 116, 161] and improvements in anomaly detection 

efficiency [28, 178, 144, 60]. Distance-based anomaly detection techniques are 

simple and easy to implement. However, the approach is too expensive for large 
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datasets due to the computational complexity (𝑂(𝑚2), where 𝑚 is the number of 

objects). Also, the efficiency of the anomaly detection process is sensitive to the 

choice of parameters [162].  

Density-based anomaly detection techniques compute local densities of particular 

regions and declare instances in low density regions as potential anomalies [50]. 

Breunig et al. [35, 36] introduced the concept of a local outlier factor (LOF). For 

any given data instance, the LOF score is equal to the ratio of average local density 

of the k-nearest neighbour of the instance and the local density of the data instance 

itself. Values significantly larger than 1 indicate outliers. Several variants of LOF 

have been proposed in the literature to enhance the estimation of the local density 

of an instance [205, 92, 41, 163], handle different types of data [202, 203, 172, 

231] or improve its efficiency [57, 104]. Density-based anomaly detection 

techniques are easy to adapt and purely data driven as they do not make any 

assumptions regarding the generative distribution for the data [50]. However, like 

distance-based anomaly detection techniques, these approaches have 𝑂(𝑚2),  time 

complexity. Also, the parameter selection can be difficult for complex data, such as 

graphs and sequences [162].  

Classification-based anomaly detection techniques often build a model for normal 

(and anomalous) events based on labelled training data and then use it to classify 

each new unseen event [50]. Those approaches consist of two phases: the training 

phase which learns a classifier using the available labelled training data and the 

testing phase which classifies a test instance as normal or anomalous. Association 

rule mining has also been utilized in building classifiers to capture the normal 
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behaviour of a system. For example, in the ADAM (Audit Data Analysis and 

Mining) system [19], association rules are used to gather necessary knowledge 

about the nature of the audit data. Lee et al. [123] used the association rules and 

frequent episodes computed from audit data as the basis for guiding the audit data 

gathering and feature selection processes. Similarly, He et al. [94] proposed an 

anomaly detection algorithm for categorical datasets in which the anomaly score of 

a test instance is equal to the number of frequent itemsets in which it occurs. 

Clustering techniques which are used to group similar data instances together, have 

also played an important role in anomaly detection. One of the approaches is based 

on an assumption that normal data instances belong to a cluster in the data, while 

anomalies do not belong to any cluster [62, 79, 230]. Some other work assumes 

that normal data instances lie close to their closest cluster centroid, while anomalies 

are far away from their closest cluster centroid [194, 42, 214, 20]. Furthermore, 

research is being conducted on detecting anomalies based on cluster sizes where 

large clusters correspond to normal data and the rest of the data points are outliers 

[167, 60]. Clustering techniques such as K-means have linear or near-linear time 

and space complexity and therefore, an outlier detection technique based on such 

algorithms is efficient. However, the set of outliers produced and their scores can 

be heavily dependent upon the number of clusters used as well as the presence of 

outliers in the data [162]. 

6.1.2 Longitudinal and Spatio-Temporal Knowledge Discovery 

The popularity of data mining, together with the mounting recognition of the value 

of temporal and spatial data, spatio-temporal data modelling and databases has 
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resulted in the prospect of mining spatial and temporal rules from both static and 

longitudinal/temporal/spatial data
4
. The accommodation of time and location into 

mining techniques provides a window into the spatio-temporal arrangement of 

events and affords the ability to suggest cause and effect, which are otherwise 

overlooked when this component is ignored or treated as a simple numerical 

attribute. The importance of longitudinal and spatio-temporal data mining is its 

capacity to analyse activity rather than just states and to infer relationships of 

locational and temporal proximity. Moreover, temporal data mining has the ability 

to mine the behavioural aspects of (communities of) objects as opposed to simply 

mining rules that describe their states at a point in time. 

For example, temporal association rule mining accepts a set of keyed, time-

stamped datasets and returns a set of rules indicating not only the confluence of 

events or attribute values (as in conventional association mining [47]) but also the 

arrangement of these events in time. Such routines can reveal otherwise hidden 

correlations, even in static rules. 

Data mining techniques have been successfully applied in diverse application 

domains including health, defence, telecommunications, commerce, astronomy, 

geological survey and security. In many of these domains, the value of knowledge 

obtained by analysing the changes to phenomena over time and space, as opposed 

to the situation at an instant or at a single location, has been recognized and a 

number of temporal and spatial data mining techniques have been developed [182, 

61]. For example, spatio-temporal rules can indicate movement, trends and/or 

                                                      
 
4
 The term “longitudinal” is used to mean a set of data ordered in time or space. 
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patterns that static rules are unable to show. However, apart from the computational 

complexity involved in introducing any new dimension, a number of challenging 

problems have arisen, three of which are described below. 

The first is the efficient, automated determination of appropriate spatio-temporal 

intervals. For example, adopting a granularity of a year for a patient’s age may 

result in insufficient support for individual rules while the a priori division of the 

values into age ranges may result in invalid (or missed) inferences. The problem 

becomes more severe when the spatial dimension is non-geographic or when cyclic 

temporal intervals are involved. Other researchers have recognized this problem 

and solutions to date have included:  

 the use of calendric association rules in which various ‘calendars’ are used 

to reduce the search space [81, 179]. ‘Calendars’ in this case refers not 

only to the many accepted conventions for synchronizing our 

understanding of an event in absolute time, but also the many conventions 

relating to relative ages. Although reducing the search space in 

comparison to a full search, these solutions still suffer from the a priori 

specification of a set of possible spatial and temporal patterns.  

 the use of hierarchical data mining. This allows graduated temporal 

intervals and spatial regions to be accommodated with the more general 

being tested when the more specific do not reach the required support 

thresholds [138, 191]. However, the intervals used at each higher level 

must subsume those at the level below. Using multiple hierarchies can 

ameliorate this although this expands the search space in comparison to 
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the single hierarchy and most algorithms proposed to date suffer from the 

a priori specification of the spatial and temporal patterns. 

 a combination of association rule and clustering algorithms. In this 

approach, association rules are clustered to determine the appropriate 

intervals. The approach outlined by Lent et al. [124] creates a 2-D matrix 

in which the cells are clustered then appropriate minimal description 

boundaries for the coordinates can be determined. 

Secondly, clustering has been applied in spatio-temporal data mining, such as the 

use of OPTICS for trajectory clustering, aggregation or generalization [150, 181, 9, 

8] and the use of DBSCAN for moving data clustering [106, 102, 213]. However, 

mechanisms for detecting and characterizing changes to cluster boundaries have 

not received much attention. For example, the spread of many infections, such as 

HIV, is known to follow distinct spatio-temporal patterns as does the incidence of 

some pandemic conditions, such as schizophrenia. However, the automated mining 

of rules that might accommodate such patterns has not been widely investigated.  

A third problem is the common, but largely unaddressed issue of detecting 

statistically-significant anomalies from a series of multiple, large and semantically 

complex snapshots or single location datasets (such as those that could be collected 

by an organization as part of routine archival operations or statutory reporting). 

Efficiently solving this problem would enable a more rapid development of 

knowledge discovery systems capable of uncovering hidden spatio-temporal trends 

and correlations which might, in some cases, act as an alerting mechanism. For 

example, spatio-temporal outlier detection techniques [30, 53] have been proposed 
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to find spatial outliers over several time periods. Mooney and Roddick [148] 

tackled this problem by running an association mining algorithm over sets of rules, 

themselves generated from association rule algorithms.  

6.1.3 Motivation 

Clearly, anomalies in a single data item can be found using standard statistical 

techniques. The work presented in this thesis is primarily concerned with whether 

anomalous transaction data can be detected through an inspection of association 

rules generated from that data with the following considerations.  

First, as discussed in Chapter 2, the primary or raw data might not be always 

available. For example, organizations (and governments) are willing to provide 

association rules but unwilling to provide access to source data. Thus in some cases 

only the rules generated from the source data can be operated upon in research 

scenarios [183]. 

Second, the semantics of second phase mining are subtly different and, in some 

cases, lead to more useful information. For example where a (zero order) 

association rule might state that there was a correlation between two (sets of) items, 

a higher order rule might indicate that the strength of the associations was 

influenced by the presence of a third item. This third item might be deemed to be a 

catalyst. Therefore, the technique to detect anomalies hidden in a set of rules may 

provide a view of anomalies that is arguably closer to that sought by information 

analysts.  



CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES      122 

 

6.2 Anomaly Detection in Longitudinal Association Rules 

Sets of transaction data mined over time are likely to generate rules with the same 

rule body and thus the form of association rule (𝑋 => 𝑌) is qualified by the time. 

In the definitions in this chapter, the syntactic form of a longitudinal rule is 

abbreviated to 𝑅𝑖
𝜏 where 𝑅𝑖 is the rule body and 𝜏 is the time stamp.  

Definition 6.1 (Longitudinal Association Rule Instance) Any given 𝑅𝑖
𝜏  with 

instantiated 𝜎(𝑅𝑖), 𝛾(𝑅𝑖) and 𝜏 values is termed an instance of 𝑅𝑖 . For brevity, a 

specific instance of a rule 𝑅𝑖 at time 𝜏 is denoted 𝑅𝑖
𝜏. The support and confidence of 

𝑅𝑖
𝜏 are denoted 𝜎𝑖

𝜏 and 𝛾𝑖
𝜏 respectively. 

Definition 6.2 (Anomalous Rule) Given a set of rules 𝑅  holding 𝑛  different 

instances of 𝑅𝑖, 𝑅 = {𝑅𝑖
1, … , 𝑅𝑖

𝑛}, where 𝑛 > 1, for an instance of 𝑅𝑖
𝜏 ∈ 𝑅, if a rule 

quality metric such as 𝜎(𝑅𝑖
𝜏)  and  𝛾(𝑅𝑖

𝜏)  is significantly different from other 

instances in 𝑅, then 𝑅𝑖 
𝜏 is termed anomalous.  

Based on the above definitions, anomaly detection in association rules can be stated 

as the process of identifying those association rule(s) which have significantly 

different support or confidence values among a large enough number of instances 

of the same association rule. The main process is categorized into three closely 

related parts: association rule generation, CS-set generation and anomaly detection, 

as shown in Figure 6.1. 
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6.2.1 Longitudinal Association Rule Generation 

This part of the process generates association rules from a large amount of input 

data. Because association mining techniques are relatively mature, there are many 

widely used algorithms and techniques which can be chosen. The choice of which 

algorithm is used is not of concern in this work (FP-growth [89, 88] is used herein). 

Longitudinal sets of rules are commonly generated from a concatenation of 

multiple individual association rule mining invocations. 

6.2.2 Generation of the CS-set 

A typical association rules generation run may result in thousands of rules. 

Moreover, a longitudinal set of rules will typically be two or more orders of 

magnitude larger. To organize the input rules, create a condensed-sequential set or 

CS-set which brings together the instances of a rule in a form more easily 

processed by the (potentially third-party) detection algorithms.  

Datasets 
Association rule 

generation 

Anomalous 
rules 

CS-set 
 

Rulesets 

Figure 6.1: Anomaly Detection Process 

Pre-processing and 
CS-set generation 

Detection 
process 
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For p rules ranging (sparsely) over 𝑛 time points, the format of the CS-set is as 

shown below:  

𝑅1(< 𝜎1, 𝛾1, 𝜏1 >, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >); 

… 

𝑅𝑝(< 𝜎1, 𝛾1, 𝜏1 >, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >); 

Entries are sorted by time within the rule body. This step can also accommodate a 

pre-processing filter and there is scope for further rule quality metrics to be added. 

6.2.3 Detection Process 

Using the CS-set, the task of detecting anomalies among association rules can be 

simplified as the detection of anomalous support or confidence values of each 

association rule 𝑅𝑖 in the CS-set. This is done by subjecting the rules in the CS-set 

to a series of anomaly detection algorithms (see Section 6.3) which indicate 

whether the instance is anomalous and if so, a measure of the anomaly’s 

significance. The main detection process can be summarized as shown in 

Algorithm 6.1. 

Algorithm 6.1: Overarching Detection Process 

1: precondition: CS-set has been generated, 

2:                         Anomaly thresholds have been defined 

3: input: All rules R in the CS-set 

4: for all 𝑅𝑖, 𝑖 = (1 … 𝑛) do 

5:  Mark 𝑅𝑖 as non-anomalous 

6: for each 𝑅𝑖, 𝜏 = (start-time . . . end-time) do 

7:        for each algorithm 𝐴𝑖  in registry do 

8:   Invoke 𝐴𝑖 over 𝑅𝑖 

9:  if anomalous then 

10:       Flag 𝑅𝑖 as anomalous at time 𝜏 with returned significance 𝜃  

11:   end if 

12:         end for 

13:       end for 

14: end for 

15:Invoke visualization listing top anomalies 
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6.3 Detection Algorithms 

The overarching process described thus far now requires one or more algorithms to 

detect the anomaly.  This chapter presents two algorithms for anomaly detection: 

TARMA-a and TARMA-b
5
. 

The fundamentals for these two algorithms were derived from the Chebyshev 

theorem that almost all the observations in a dataset will have z-scores less than 3. 

The formula for z-score calculation is 𝑧 =
𝑥𝑖−𝜇

𝑠𝑑
  where 𝜇 and 𝑠𝑑 are the mean and 

standard deviation of 𝑥𝑖 , (𝑖 = 1, … , 𝑛). If |𝑧𝑖| ≥ 3, 𝑥𝑖  is considered an anomaly. 

The differences between the two algorithms are: 

 For TARMA-a, the z-score is directly calculated from confidence and 

support values. It has limited application scope as it can only deal with 

univariate data. If the variance of the data is unpredictable, the detection 

accuracy is low. 

 For TARMA-b, the z-score is used to evaluate the expected number of 

neighbours of each rule instance. It is more robust than TARMA-a when 

dealing with large volumes of arbitrarily varying data. 

6.3.1 The TARMA-a Algorithm 

Based on Definition 6.2, the process of detecting anomalous rules is to identify a 

significant difference in a rule’s confidence or support value with respect to the 

other time values. Z-scores are a good statistical measure of difference amongst 

large amounts of data. Taking Chebyshev’s theorem as the basis the process shown 

                                                      
 
5
 TARMA - Temporal Association Rule Mining of Anomalies. 
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in Algorithm 6.2 is applicable. 

Algorithm 6.2: TARMA-a Algorithm 

1: precondition: CS-set has been generated 

2: input: All rules R in the CS-set 

3: for all 𝑅𝑖, 𝑖 = (1 … 𝑛)  do 

4:  Compute mean support  𝜇 =
𝜎1+⋯+𝜎𝑛

𝑛
  

5:  Compute standard deviation 𝑠𝑑 = √
1

𝑛−1
∑ (𝑠𝑖 − 𝜇)2𝑛

𝑖=1   

6:  for each 𝑅𝑖
𝜏, 𝜏 = (start-time . . . end-time) do 

7:  Computer 𝑧𝑖
𝜏 =

𝜎𝑖
𝜏−𝜇

𝑠𝑑
  

8:    if|𝑧𝑖
𝜏| ≥ 3  then 

9:               Flag 𝑅𝑖
𝜏 as anomalous 

10:  end if 

11:  end for 

12: if 𝑅𝑖 is anomalous then 

13:         Return max (𝑧𝑖
𝜏) as significance 

14:  end if 

15: end for 

The computational complexity is 𝑂(𝑛) , indicating that TARMA-a is a fast 

algorithm. Its main failing is that the execution accuracy is heavily reliant on the 

distribution of the data. It handles univariate data well but its performance is poor 

when detecting anomalies among highly variate data. Furthermore, it is not a good 

solution if we wish to consider more advanced temporal aspects. 

6.3.2 The TARMA-b Algorithm 

To overcome the weakness of TARMA-a, another more robust algorithm TARMA-b 

was developed, which employs density-based outlier detection techniques. While 

TARMA-b has been specifically designed to detect anomalies in longitudinal 

association rules, it also works well with rules without such features. TARMA-b has 

been developed based on the idea of density-based outlier detection proposed by 

Breunig et al. [35], which relies on the local outlier factor (LOF) of each object, 
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calculated from the local density of its neighbourhood. The neighbourhood is 

defined by the number of near neighbours. The work presented here takes the 

essence of this technique and makes some improvements by introducing three new 

concepts: 𝑟𝑋, 𝑟𝑌 and 𝑟𝑋𝑌-neighbourhood. 

Definition 6.3 (rX) For a given rule 𝑅𝑖, we have a CS-set entry 𝑅𝑖(< 𝜎1, 𝛾1, 𝜏1 >

, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >)  sorted by 𝜏. rX is defined as a time span of variable length 

between 𝜏1 and 𝜏𝑛, where 𝑟𝑋 ≥ 0 and 𝑟𝑋 ≤ 𝜏𝑛 − 𝜏1.  

Definition 6.4 (rY) From the CS-set calculate the minimum and maximum span of 

support and confidence 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥, 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 respectively. 𝑟𝑌 is defined as a 

variable threshold between 𝜎𝑚𝑖𝑛  and 𝜎𝑚𝑎𝑥  or 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 , where 𝑟𝑌 ≥ 0  and 

either 𝑟𝑌 ≤ 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 or  𝑟𝑌 ≤ 𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛. 

Definition 6.5 (𝒓𝑿𝒀-neighbourhood) For a given quality metric 𝑞 (where 𝑞 is 𝜎, 𝛾 

or some other metric) for a given rule 𝑅𝑖, for any point 𝑃𝑛 < 𝑞𝑛, 𝜏𝑛 > taken from 

𝑅𝑖 ’s CS-set, if there is a point 𝑃𝑛
′ < 𝑞𝑛

′ , 𝜏𝑛
′ >  that exists such that |𝜏𝑛

′ − 𝜏𝑛| ≤

𝑟𝑋 ^ |𝑞𝑛
′ − 𝑞𝑛| ≤ 𝑟𝑌, then 𝑃𝑛

′ is said to be in the 𝑟𝑋𝑌-neighbourhood of 𝑃𝑛 . The 

number of neighbours of 𝑃𝑛 is represented as 𝑁(𝑃𝑛, 𝑟𝑋, 𝑟𝑌). 

Based on the evaluation of the distribution of data using statistical methods (such 

as z-scores) we can label anomalous points as those with an unusual number of 

neighbours in their 𝑟𝑋𝑌-neighbourhood. This can be done by flagging points that 

either: 

 have fewer than some specified minpts number of neighbours, 

 have fewer than some number of local neighbours as calculated from the 

global density for the rule (used in TARMA-b), 
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 have a significant deviation from its consecutive neighbour’s count of 

neighbours, 

 have a significant deviation from its the count of neighbours in a larger 

(but not global) neighbourhood (proposed for TARMA-c). 

 

Figure 6.2: An Example of  𝑟𝑋𝑌-neighbourhood 

These latter two cases take account of datasets that become more or less sparse 

over time. The use of the concepts 𝑟𝑋, 𝑟𝑌 and 𝑟𝑋𝑌-neighbourhood is illustrated in 

Figure 6.2. 

Whichever method is used, rules corresponding to the anomalous points can be 

identified and returned to the overarching process as potentially suspect. 

Algorithmically, TARMA-b uses z-scores to measure the significance of differences 

to each rule instances neighbour count. That is, the first of the two methods for 

finding outliers is used. The algorithm is shown in Algorithm 6.3. 
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Algorithm 6.3: TARMA-b Algorithm 

1: precondition: CS-set has been generated,  

2:        𝑟𝑋 and 𝑟𝑌 have been defined 

3: for each rule 𝑅𝑖 do 

4:  for each rule instance 𝑅𝑖
𝜏 do 

5:          Calculate 𝑟𝑋𝑌-neighbourhood count 𝑁(𝑃𝜏, 𝑟𝑋, 𝑟𝑌) 

6:  end for 

7:  Calculate mean μi and standard deviation 𝑠𝑑𝑖 for 𝑅𝑖 

8:  for each rule instance 𝑅𝑖
𝜏 do 

9:          Calculate z-score of the number of neighbours for 𝑧𝑖
𝜏 

10:          if |𝑧𝑖
𝜏| ≥ 3 then 

11:      Flag 𝑅𝑖
𝜏 as anomalous 

12:         end if 

13:  end for 

14: end for 

TARMA-b can deal with a variety of arbitrary datasets efficiently. However, the pre-

definition of 𝑟𝑋 and 𝑟𝑌 is crucial but not trivial. Different 𝑟𝑋 and 𝑟𝑌 values may 

result in different results. A precise definition of 𝑟𝑋 and 𝑟𝑌 needs to be based on 

the complexity of the data and careful study of its distribution, both of which will 

be discussed in the next section. 

6.4 Implemented Prototype and Experiments 

In this thesis, a prototype called TARMAD has been implemented (screenshots of 

which are shown in Figure 6.3) and some initial experiments have been completed 

which show that the concept is sound and feasible in finding outliers.  

The prototype design aimed to assess the efficacy of the approach to detecting 

anomalies in rules produced by higher order longitudinal/spatio-temporal 

association rule mining against traditional statistical data analysis methods. 

Therefore, TARMA-a and TARMA-b were designed primarily to be representative 

algorithms so that the concept could be tested empirically.  
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Figure 6.3: Screenshots from TARMAD System 

The initial prototype system was implemented in Java and the experiments were 

run on a 2.6GHz PC with 2GB RAM under Window XP. It has the following four 

main functions: 

 Data loading. Data can be loaded with different formats from various 

sources.  

 Anomaly detection. The system currently supports the TARMA-a and 

TARMA-b algorithms. Also, based on user-specified requirements, the 

system can detect anomalies using either confidence or support values. 

 Report generation. The system provides a user with detection anomaly 

details, which includes an anomaly rank to indicate the importance that the 

detection algorithm believes the anomaly warrants. TARMA-a and 

TARMA-b use the z-score value to generate the anomaly rank but each 

algorithm is free to determine its own method of measuring significance. 
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 Anomaly visualization. The prototype is capable of visualizing the most 

significant anomalies that have been detected. 

In the experiments, both algorithms were tested using both synthetic data (the 

generator is based on the work reported by Agrawal and Srikant [6] with some 

modifications to cater for temporal features) and real data (the BMS-WebView-1 

and BMS-WebView-2 datasets as used in the KDDCUP in 2000 [113]).  

6.4.1 Synthetic Longitudinal Data 

A synthetic data generator was built to produce large amounts of longitudinal data 

which mimic the transactions in a retailing environment. Table 6.1 shows the 

parameters for the data generation, along with their default values and the range of 

values on which experiments were conducted. Table 6.2 shows the details of 

synthetic data that was generated for experiments. 

The synthetic data generator has three main steps: 

 Step 1: Generate |𝑇| transactions. 

 Step 2: Create a time domain |𝐷| which holds 𝑛  time intervals (𝑇𝑣𝑙 ), 

|𝐷| = 𝑇𝑣𝑙1, 𝑇𝑣𝑙2, … , 𝑇𝑣𝑙𝑛 . |𝑇𝐹|  (Temporizing Factor) is defined as the 

number of elements which are randomly chosen from |D|. The mean of 

transactions during |𝑇𝐹|  time intervals is calculated as  �̅� =
|𝑇|

|𝑇𝐹|
. 

 Step 3: the number of transactions to be assigned with 𝑇𝑣𝑙𝑖 is determined 

from a Poisson distribution with mean equal to �̅�. A time interval 𝑇𝑣𝑙 is 

then assigned to those transactions. The process repeats until all 

transactions have been assigned to a time interval. 
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Table 6.1: Synthetic Data Parameters 

Table 6.2: Synthetic Data 

Data |I| |TS| |T| |TF| 
I10.TS5.T20.TF40 10 5 20k 40 
I50.TS10.T45.TF30 50 10 45k 30 
I50.TS15.T100.TF50 50 15 100k 50 
I100.TS10.T100.TF30 100 10 100k 30 
I100.TS20.T200.TF50 100 20 200k 50 

Table 6.3: Real Data 

Data BMS-WebView-1 BMS-WebView-2 
Number of Transaction 59,602 77,512 

Distinct Items 497 3,340 
Maximum Transaction Size 267 161 
Average Transaction Size 2.5 5.0 

6.4.2 Real Data 

BMS-WebView-1 and BMS-WebView-2 contain several months’ worth of click 

stream data from two e-commerce web sites. Each transaction in the two datasets is 

a web session consisting of all the product detail pages viewed in that session. That 

is, each product detail view is an item. The details of the two datasets are shown in 

Table 6.3. 

Taking the two datasets, a set of experiments were conducted aiming to discover 

whether there are any anomalies amongst the associations between products 

viewed by visitors to the web site. Since there are no timestamps for each unit of 

click stream data, they are temporized by following steps 2 and 3 in the previous 

section. 

Name Description Default Value Range of Values 
|I| Number of Items 10 10-100 
|T| Number of Transactions 5,000 5k-200k 
|P| Number of Patterns 50 50-200 
TS Average Size of Transaction 5 5-10 
PS Average Size of Pattern 5 5-10 
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6.4.3 Longitudinal Association Rule Generation 

After the temporization of test datasets, the work to generate longitudinal 

association rules is straightforward. In the work presented here, the ideas from 

Rainsford and Roddick [175] were employed. Firstly, frequent items are generated 

from transactions which occurred during the same time interval (𝑇𝑣𝑙𝑖) using FP-

growth. Longitudinal association rules are then generated by adding temporal 

semantics (time interval 𝑇𝑣𝑙𝑖 ) to each frequent itemset which satisfied the 

minimum support and confidence value.  

Since there is no guarantee that rule 𝑅𝑖 will be found at different times and it will 

be meaningless to detect the significant change of a rule 𝑅𝑖 if it has no or only few 

rule instances in that time domain, the minimum number of rule instances (denoted 

as min_𝑁(𝑅𝑖)) is defined as a threshold that one rule 𝑅𝑖 should satisfy. Those rules 

that have instances less than min_𝑁 are pruned out. 

6.4.4 Experimental Results and Evaluation 

Experiments over both synthetic and real-world data show that the concept is sound 

and that outliers in the behaviour of data can be found even if the incidence of the 

items in the transaction do not change significantly. The results are shown in Table 

6.4. The experimental performance showed that (as is the case with many data 

mining tools) I/O dominates the calculation and the empirical results show a linear 

correlation with dataset size (as shown in Figure 6.4). Moreover, even including all 

I/O requirements, TARMA-b was able to analyse 100k transactions in 23 seconds.  
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Table 6.4: Test Results 

Dataset TF 
Number 

of Rules 

TARMA-a TARMA-b 
Deviation 

Rate 
Anomalies 

Found 

Anomaly 

Rank 

Anomalies 

Found 

Anomaly 

Rank 

I10.TS5.T20.TF40 40 12,255 348 4.23 335 2.68 0.04% 

I50.TS10.T45.TF30 30 12,726 787 3.39 716 2.33 0.01% 

I50.TS15.T100.TF50 50 13,204 259 5.15 257 5.10 0.01% 

I100.TS10.T100.TF30 30 2,224 59 4.36 52 2.31 0.12% 

I100.TS20.T200.TF50 50 11,997 239 5.42 234 5.49 0.03% 

BMS-WebView-1 50 492 7 3.48 7 3.26 0.00% 

BMS-WebView-1 100 1,221 24 3.00 24 3.26 0.00% 

BMS-WebView-1 120 1,676 35 2.92 33 3.26 0.06% 

BMS-WebView-2 90 4,163 71 2.86 71 3.26 0.00% 

BMS-WebView-2 120 7,397 108 2.60 119 3.26 0.01% 

 
  Count of Transactions(’000s) 

Time 

(secs) 

Routine 5 10 15 20 25 35 45 50 60 75 100 

TARMA-a 3.06 5.37 9.76 11.43 12.5 13.79 15.34 18.06 19.46 20.9 21.85 

TARMA-b 3.09 5.5 10.04 12.03 12.65 14.01 16.25 18.39 19.48 21.08 22.93 

 

Figure 6.4: Performance – Time vs #Transactions 

For the tests, the minimum support, minimum confidence and 𝑚𝑖𝑛_𝑁 are defined 

as 0.20, 0.80 and 10 respectively with synthetic data and 0.01, 0.20, 10 respectively 

with real datasets. Only the value of support has been taken into account in the 

process of detecting anomalous rules. To indicate the importance that the detection 
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algorithm indicates the anomaly warrants, the concept of an anomaly rank is 

introduced. TARMA-a and TARMA-b use a z-score value to generate the anomaly 

rank.  

 

Figure 6.5: Screenshots for Top N Anomalies in Real Data 

Both TARMA-a and TARMA-b have successfully detected anomalies among all test 

datasets with the size ranging from 20K to 200K and the count of association rules 

from 500 to 13,200. Although not all anomalies were examined to evaluate the 
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detection accuracy, the approach presented here has demonstrated its capability to 

detect anomalies in complex datasets after examinations of the top N anomalies 

(𝑁 = 10% of the whole amount of anomalies found in the test). Some screen shots 

of the top 8 anomalies among two real datasets are shown in Figure 6.5. The 

viewed page is denoted with the character C plus a number. 

6.4.4.1  Comparison between TARMA-a and TARMA-b 

Experiment results show that the detection results are similar for the two 

algorithms. The average deviation rate (the percentage of anomalies found by one 

algorithm but ignored by another), was as low as 0.05% in synthetic datasets and 

0.03% in real datasets.  

Although TARMA-a has a higher execution speed than TARMA-b, TARMA-b is 

more robust than TARMA-a in dealing with complex datasets. Further tests were 

conducted to compare their capacity to detect anomalies hidden among large 

amounts of data with different densities. Firstly, some association rules which have 

predefined distribution were generated and then some anomalous points were 

added into them.  

Figure 6.6 shows some of these test data. When the two algorithms were applied 

with the test data, only TARMA-b successfully detected all points (P1−P4) as 

anomalies. The experiments have shown that TARMA-a works well with simple 

data coming from a univariate Gaussian distribution but performs poorly with 

multi-variate data, that is, data from heavy-tailed distributions.  
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Figure 6.6: Complex Data 

6.4.4.2  Effect of 𝒓𝑿 and 𝒓𝒀 on Anomaly Detection Results 

TARMA-b calculates a z-score from 𝑟𝑋𝑌-neighbourhood and therefore has great 

advantages over TARMA-a. However, the predefinition of 𝑟𝑋 and 𝑟𝑌 is crucial but 

not trivial. In the experiments, 𝑟𝑋 is defined as 𝑟𝑋 = 𝐾𝑥 × 𝑠𝑑𝑥, where 𝐾𝑥 ≥ 0 and 

𝑠𝑑𝑥 is the standard deviation from the sorted time set 𝑇 = 1,2, … 𝑛 . Similarly, 

𝑟𝑌 = 𝐾𝑦 × 𝑠𝑑𝑦 , where 𝐾𝑦 ≥ 0 and 𝑠𝑑𝑦  is the standard deviation of the selected 

quality metric.  

Testing TARMA-b with different values of 𝐾𝑥  resulted in the outcome shown in 

Table 6.5. It is clear that when the 𝑟𝑋  value is not appropriately defined, the 

detection accuracy becomes low as the 𝑟𝑋𝑌-neighbourhood is sensitive to the value 

of 𝑟𝑋 and 𝑟𝑌. That is, if the window is too big or too small, the evaluation of the 

change of number of 𝑟𝑋𝑌-neighbourhood using a z-score becomes less meaningful. 
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A more robust algorithm currently is being developed, which has the capability to 

determine the most suitable 𝑟𝑋 and 𝑟𝑌 value automatically, which may lead to the 

next anomaly detection algorithm, TARMA-c (as shown in Algorithm 6.4), to 

improve detection efficiency.  

Table 6.5: Test Results with Different 𝑟𝑋 

Rule 

𝒓𝑿 = 𝟒 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟐 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟎. 𝟓 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟎. 𝟐𝟓 × 𝒔𝒅𝒙 

Average 

rXY-

n’hood 

count 

Anomalies 

found 

Average 

rXY-

n’hood 

count 

Anomalies 

found 

Average 

rXY-

n’hood 

count 

Anomalies 

found 

Average 

rXY-

n’hood 

count 

Anomalies 

found 

A 11 1 9 1 4 1 3 1 

B 13 0 13 0 7 3 3 3 

C 10 0 9 1 4 4 2 0 

D 5 0 5 0 3 0 2 0 

E 29 0 24 0 10 1 3 0 

F 10 0 10 0 7 2 4 0 

G 13 0 12 0 6 2 4 2 

 

Algorithm 6.4: TARMA-c Algorithm 

1: precondition: CS-set has been generated 

2:                         𝑟𝑋 and 𝑟𝑌 have been defined 

3: input: All rules 𝑅  in the CS-set 

4: for each rule 𝑅𝑖 do 

5:      for each rule instance 𝑅𝑖
𝜏 do 

6:            Calculate 𝑟𝑋𝑌-neighbourhood count and save as 𝑁(𝑅𝑖
𝜏) 

7:            Calculate 𝑟𝑋𝑌-window count and save as 𝑊(𝑅𝑖
𝜏) 

8:      end for 

9:      Calculate mean 𝜇𝑖 and standard deviation 𝑠𝑑𝑖 for 𝑅𝑖within its 𝑟𝑋𝑌-window 

10:    for each rule instance 𝑅𝑖
𝜏 do 

11:         Calculate 𝑍𝑝 = z-score for the number of neighbours 

12:         Calculate 𝑍𝑤 = average z-score for the window 

13:    if |𝑍𝑝| ≤ 𝑍𝑤 then 

14:              Flag 𝑅𝑖 as anomalous 

15:         end if 

16:    end for 

17: end for 

The TARMA-c algorithm could be (and is being) developed to replace the use of the 

z-score of the number of neighbours across the rule with a z-score of the number of 

proximate neighbours. It calculates a running mean and standard deviation within a 
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larger window (𝑟𝑋.window × 𝑟𝑌.window). In this way, some issues, such as the 

edge conditions (i.e. problems encountered with the first and last data points) and 

datasets that vary in the number of collected data points will be catered for more 

naturally. 

6.5 Summary 

The work presented in this chapter sought to validate the idea that the inspection of 

rules as opposed to data could be useful as a tractable method of finding outliers.  

Having briefly reviewed related works of anomaly detection and longitudinal and 

spatio-temporal knowledge discovery, two algorithms, TARMA-a and TARMA-b, 

have been proposed for anomaly detection. Both of these algorithms are based on 

the Chebyshev theorem that almost all the observations in a dataset will have z-

scores less than 3.  

TARMA-a directly calculates the z-scores from confidence and support values and 

can only deal with univariate data. In contrast, TARMA-b uses the z-score to 

evaluate the expected number of neighbours of each rule instance. Although 

TARMA-a has a higher execution speed than TARMA-b, TARMA-b is more robust 

than TARMA-a in dealing with more complex datasets.  

While further work needs to be undertaken (including the development of better 

detection algorithms such as the planned TARMA-c algorithm), the work to date has 

shown the soundness and feasibility of the proposed approach. 



Chapter 7  

Conclusion and Future Research  

Our world is now in an information era. The explosive growth in data and 

databases generates the need for new techniques and tools that can intelligently and 

automatically transform that data into useful information and knowledge. Data 

mining is one technology designed to meet this challenge.  

As discussed in Chapter 2, with a few notable exceptions, data mining research has 

largely focused on the extraction of knowledge directly from the source data. 

However, in many cases, such mining routines are beginning to encounter problems 

as the primary or raw data might not always be available. For instance, in some 

applications, stream data are only available for a short time while some cooperating 

institutions that are interested in sharing knowledge may not be willing to disclose 

their primary data. Besides the availability issue of primary data, many data mining 

routines are becoming heavily I/O bound due to the fact that the volume of data 

requiring analysis grows disproportionately with the comparatively slower 
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improvements in I/O channel speeds which limit many of the benefits of the 

technology. One approach to tackling those issues is to mine over patterns/models 

derived from one or more large and /or complex datasets, which is generally termed 

higher order mining (HOM) [183]. This thesis employed the idea of HOM and 

addressed two important but unanswered issues:  

 the discovery of patterns in association rules which represent the higher 

order knowledge sought by users, and  

 the discovery of anomalies in association rules that produced by higher 

order longitudinal/spatio-temporal association rule mining. 

7.1 Contributions   

7.1.1 Discovering Patterns in Association Rules 

In order to create useable systems, problems such as the generation and 

interpretation of interestingness for discovered rules are important considerations 

and need to be resolved. Unfortunately, since rules are commonly supplied in a 

low, instance-level format, the rules generated from many algorithms do not 

correspond to the types of knowledge often being sought by the user. Rather higher 

order knowledge is required which necessitates the construction of complex 

patterns of data and rules. This thesis developed mechanisms to cater for the tasks 

of defining and searching such higher order patterns based on a user’s definition of 

interesting. In particular, the following contributions were realised. 

First, the thesis proposed formal definitions of patterns in rules, or ruleset patterns, 

which reflect the types of knowledge users are interested in. Based on the 
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definition of ruleset patterns, a proof-of-concept system, Horace, was presented for 

efficient ruleset pattern discovery. Horace consists of three key components: the 

FP-tree or other prefix trees, a pattern library with its associated ruleset pattern 

language and a set of searching algorithms. Since FP-tree or other prefix trees 

contain the complete set of information held in a database relevant to frequent 

pattern mining, Horace employs a tree-based approach to searching for ruleset 

patterns in the trees instead of rulesets, which has been proved through a prototype 

system to be possible and more efficient.  

In addition, a novel ruleset pattern tree (RP-tree) was introduced to represent 

ruleset patterns. Given the structures of the FP-tree and RP-tree, two algorithms 

(SRPFP-a and SRPFP-b) were developed to search the FP-tree for matches of the 

RP-tree. SRPFP-a substitutes RP-tree nodes with items from the header table of the 

FP-tree, which only requires one scan of the parent rule branch of the RP-tree thus 

potentially reducing the processing capacity and time required. However, its 

computation time was found to be heavily affected by the number of frequent items 

of the FP-tree and distinct nodes in the RP-tree. To improve the searching 

efficiency, SRPFP-b was further proposed to break the searching task into two 

steps: the generation of kp-itemsets and the construction of the RP-tree instances. A 

variant of FP-growth [88], RP-growth, was introduced to facilitate the fast retrieval 

of the kp-itemsets. A complete prototype was built and a comprehensive set of tests 

have demonstrated the feasibility of both algorithms, with SRPFP-b demonstrating 

greater efficiency when dealing with more complex and large FP-trees and RP-

trees. 
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Finally, a ruleset pattern language (RPL) was developed, which consists of a ruleset 

pattern definition language (RPDL) and a ruleset pattern query language (RPQL). 

RPL enables users to create, alter and retrieve patterns from a ruleset pattern 

library. Also, indexing techniques were employed to further improve the efficiency 

of RPQL query evaluations. A set of experiments were conducted and reported in 

this thesis and have demonstrated the efficiency of RPQL.  

7.1.2 Discovering Anomalies in Longitudinal Association Rules 

The detection of unusual or anomalous data is an important function in automated 

data analysis or data mining. However, the diversity of anomaly detection 

algorithms shows that it is often difficult to determine which algorithms might 

detect anomalies given any random dataset. In this thesis, the idea that the 

inspection of rules that are produced by higher order longitudinal/spatio-temporal 

association rule mining as opposed to data could be useful as a tractable method of 

finding outliers was validated. Furthermore it was demonstrated that such a 

technique may provide a view of anomalies that is arguably closer to that sought by 

information analysts.  

This thesis presents a formal definition of anomalies in longitudinal association 

rules. Based on the definition, the anomaly detection process in association rules is 

stated as the process of identifying those association rule(s) which have 

significantly different support or confidence values among a large enough number 

of instances of the same association rule. Also, to facilitate the anomaly detection 

algorithms, the thesis proposed condensed-sequential set or CS-set which is 

extracted from varying longitudinal association rule formats and organized in 
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sequential order in terms of time of occurrence.   

Furthermore, two algorithms were proposed (TARMA-a and TARMA-b) for 

anomaly detection. The fundamentals of these two algorithms were derived from 

the Chebyshev theorem that almost all the observations in a dataset will have z-

scores less than 3. In TARMA-a, the z-score is directly calculated from confidence 

and support values. TARMA-a is a fast algorithm but has limited application scope 

as it can only deal with univariate data. To overcome the deficiencies of TARMA-a, 

TARMA-b detects anomalies by evaluating the expected number of proximate 

neighbors of each rule instance. It is more robust than TARMA-a when dealing with 

large volumes of arbitrarily varying data.  

Finally, a set of experiments is reported based on both synthetic data and real world 

data. Test results have demonstrated that the proposed approach is sound and 

feasible in finding outliers. 

7.2 Future Research             

The work presented in this thesis points to several directions for future research.  

One of the research directions to be undertaken includes handling the conjunction 

of various ruleset patterns, that is, hybrid ruleset patterns. For example, given a 

competitor pattern, containing the following three rules: {𝑥} => {𝑧}, {𝑦} => {𝑧}, 

{𝑥, 𝑦} => {𝑧}, and a catalyst pattern containing the following three rules: {𝑥} =>

{𝑤}, {𝑦} => {𝑤}, {𝑥, 𝑦} => {𝑤}, a conjunction of the two patterns might result in 

a hybrid pattern, revealing that with item 𝑧 items 𝑥 and 𝑦 are competitors while 

with item 𝑤, they become catalysts. The challenges of efficiently searching for 
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matches of hybrid ruleset patterns lie in two aspects. First, hybrid RP-trees are 

needed to cater for multiple parent rule branches. Second, more robust search 

algorithms are required to find matches for such complex hybrid RP-trees. 

Another research direction is the enhancements of RPL. Future work is planned to 

add additional features to RPQL, including the UNION operator, the support for 

GROUP BY, HAVING and ORDER clauses. Also, more efficient query processing 

methods are under development to cope with more complex RPL queries. 

Finally, there is an intention to develop more robust anomaly detection algorithms. 

As indicated in Chapter 6, a TARMA-c algorithm is being developed to replace the 

use of the z-score of the number of neighbours across the rule with a z-score of the 

number of proximate neighbours. This will also address the automatic 

determination of 𝑟𝑋 and 𝑟𝑌 with the static use of the z-score of 3. 

 



Appendix  

Publications Resulting from This 

Thesis 

The following publications have resulted from material presented within this thesis. 

Publication 1 relates to material presented in Chapter 6 while publication 2 

contains early work of Chapter 3 and 4. Publication 3 contains most of the material 

presented in Chapter 5. 

 P. LIANG and J. F. RODDICK, Detecting anomalous longitudinal 

associations through higher order mining, in K.-L. Ong, W. Li and J. Gao, 

eds., 2nd International Workshop on Integrating Artificial Intelligence and 

Data Mining(AIDM 2007), Australian Computer Society, Gold Coast, 

Queensland, 2007, pp. 19-27. 

 P. LIANG, J. F. RODDICK and D. DE VRIES, Searching frequent pattern 

and prefix trees for higher order rules, in P. Christen, P. Kennedy, L. Liu, 



APPENDIX                                                                                                                                     147 

 

K.-L. Ong, A. Stranieri and Y. Zhao, eds., 11th Australian Data Mining 

Conference (AusDM 2013), Australian Computer Society, Inc, Canberra, 

Australia, 2013. 

 P. LIANG and J. F. RODDICK, RPL: A ruleset pattern language, 

International Conference on Artificial Intelligence and Industrial 

Application(AIIA2014), WIT Press, Hong Kong, 2014. 
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