
Discovering Patterns and Anomalies

in Association Rules

by

Ping Liang, LL.B., M.Sc.

School of Computer Science, Engineering and Mathematics,

Faculty of Science and Engineering

January 18, 2015

A thesis presented to the

Flinders University of South Australia

in total fulfillment of the requirements for the degree of

Doctor of Philosophy

Adelaide, South Australia, 2015

© (Ping Liang, 2015)

II

Abstract

Higher order mining (HOM) [183], which mines over patterns/models derived

from one or more large and/or complex datasets, has been widely used in a variety

of ways and provides benefits such as the ability to combine mining strategies

through the modular combination of components and the development of higher

order explanations in describing facts about data. Based on the idea of HOM, this

thesis addresses two important but unanswered issues.

First, while the discovery of rules that can inform business decision making is the

ultimate goal of data mining technology, the search for rules that adhere to a

user’s definition of interesting remains somewhat elusive, in part because rules are

commonly supplied in a low, instance-level format. In order to tackle this

problem, this thesis proposes the concept of ruleset patterns to represent complex

patterns in sets of rules reflecting a user’s definition of interesting and presents a

proof-of-concept system, Horace, for efficient ruleset pattern discovery. Since

frequent pattern or prefix trees are (generally speaking) isomorphic with the

resulting ruleset, Horace employs a novel tree-based approach to searching such

intermediate data structures for patterns. Experimental results show the approach

is both usable and efficient to search for rules that are sought by users.

Second, the detection of unusual or anomalous data is an important function in

automated data analysis or data mining. However, the diversity of anomaly

detection algorithms shows that it is often difficult to determine which algorithms

might best detect anomalies given any random dataset. This thesis provides a

III

partial solution to this problem by elevating the search for anomalous data in

transaction-oriented datasets to an inspection of the rules that can be produced by

higher order longitudinal/spatio-temporal association rule mining. The motivation

behind the approach is in two aspects. Firstly, the primary or raw data might not

be always available; thus in some cases, researchers can operate only on the rules

generated from the source data [183]. Furthermore, since HOM facilitates the

characterisation of items participating in rulesets in terms of real-world

descriptions (such as competitor, catalyst and so on), such a technique may

provide a view of anomalies that is arguably closer to that sought by information

analysts. In this thesis, two anomaly detection algorithms are proposed to find

anomalies/outliers and a proof-of-concept prototype has been developed and

tested. The experimental results demonstrate the soundness and feasibility of the

proposed approach.

IV

Certification

I certify that this thesis does not incorporate without acknowledgement any

material previously submitted for a degree or diploma in any university; and that

to the best of my knowledge and belief it does not contain any material previously

published or written by another person except where due reference is made in the

text.

Signed: Dated: January 18, 2015

V

Acknowledgements

I would like to express my sincere gratitude to a number of people who over the

years have contributed in various ways to the completion of this work.

First, I would like to thank my supervisor Professor John Roddick. His

encouragement, patience and guidance throughout my research were extremely

important for me. Without his persistent help, this dissertation would not have

been possible.

I would also like to thank my co-supervisor, Associate Professor Paul Calder, for

his useful advice, guidance and support.

Special thanks to my previous colleagues, Dr. Denise de Vries, Dr. Anna

Shillabeer, Dr. Aaron Ceglar and Dr. Carl Mooney. Their advice and shared

experience were significant in solving the troubles during my study period.

My appreciation also goes to Bruce Hayter and Fay Hayter for their

encouragement and help during the past years.

Most importantly, I would like to thank my family for their love and support. My

heartfelt thanks go to my wife and my daughter. The thesis is dedicated to them.

Finally, this thesis was proofread by professional editor Kate Leeson. Thanks for

her effort to make this thesis more readable.

 Ping Liang

January 2015

Adelaide

VI

Table of Contents

Abstract ... II

Certification... IV

Acknowledgements ... V

List of Tables ... X

List of Figures ... XI

List of Algorithms ... XIII

1 Introduction .. 1

1.1 Research Context ... 1

1.2 Research Objectives .. 4

1.2.1 Discovering Patterns in Association Rules 4

1.2.2 Discovering Anomalies in Longitudinal Association Rules.............. 6

1.3 Contribution ... 10

1.4 Thesis Organization ... 11

2 Literature Review and Background ... 13

2.1 Knowledge Discovery in Databases and Data Mining 13

2.2 Association Rule Mining ... 16

2.2.1 Formal Definition of Association Rule Mining 16

2.2.2 Apriori: Classic Association Rule Mining 18

2.3 Improvements in Frequent Itemset Generation 21

2.3.1 Candidate Generation Algorithms ... 22

2.3.2 Pattern Growth Algorithms ... 24

2.4 Improvements in Rule Generation .. 31

VII

2.4.1 Constraints-Based Association Rule Mining 32

2.4.2 Removing Redundant Rules .. 33

2.5 Extensions of Association Rule Mining .. 36

2.5.1 Quantitative Association Rule Mining .. 36

2.5.2 Multi-level Association Rule Mining .. 38

2.5.3 Temporal Association Rule Mining .. 41

2.6 Mining over Association Rules ... 44

2.6.1 Overview of Higher Order Mining ... 44

2.6.2 Clustering Association Rules .. 47

2.6.3 Classification of Association Rules ... 50

2.6.4 Rule Changing Monitoring ... 54

2.6.5 Rule Maintenance.. 58

2.7 Summary ... 60

3 Ruleset Pattern and Horace .. 62

3.1 Preliminaries .. 63

3.2 Defining Patterns in Rules ... 65

3.3 The Horace Approach .. 69

3.3.1 Overview of Horace .. 70

3.4 Related Work ... 72

3.5 Summary ... 74

4 Searching Ruleset Patterns Using FP-Trees and RP-Trees 76

4.1 FP-Tree .. 77

4.2 The Ruleset Pattern Tree (RP-Tree) .. 77

4.3 Algorithm Development .. 81

4.3.1 The SRPFP-a Algorithm ... 81

4.3.2 The SRPFP-b Algorithm ... 84

VIII

4.4 Experiments and Analysis ... 89

4.4.1 Results and Performance Study .. 91

4.5 Summary ... 96

5 RPL: A Ruleset Pattern Language .. 98

5.1 Towards a Ruleset Pattern Language - RPL .. 98

5.1.1 Ruleset Pattern Definition Language (RPDL) 99

5.1.2 Ruleset Pattern Query Language (RPQL) 102

5.2 Implementation of RPQL .. 104

5.2.1 Indexing... 105

5.2.2 Evaluating Queries .. 106

5.3 Experiments ... 108

5.4 Related Work ... 110

5.5 Summary ... 112

6 Detecting Anomalies in Longitudinal Association Rules 113

6.1 Motivation and Literature Review .. 114

6.1.1 Anomaly Detection .. 114

6.1.2 Longitudinal and Spatio-Temporal Knowledge Discovery 117

6.1.3 Motivation ... 121

6.2 Anomaly Detection in Longitudinal Association Rules 122

6.2.1 Longitudinal Association Rule Generation 123

6.2.2 Generation of the CS-set ... 123

6.2.3 Detection Process .. 124

6.3 Detection Algorithms .. 125

6.3.1 The TARMA-a Algorithm .. 125

6.3.2 The TARMA-b Algorithm .. 126

6.4 Implemented Prototype and Experiments ... 129

IX

6.4.1 Synthetic Longitudinal Data ... 131

6.4.2 Real Data ... 132

6.4.3 Longitudinal Association Rule Generation 133

6.4.4 Experimental Results and Evaluation ... 133

6.5 Summary ... 139

7 Conclusion and Future Research .. 140

7.1 Contributions ... 141

7.1.1 Discovering Patterns in Association Rules 141

7.1.2 Discovering Anomalies in Longitudinal Association Rules.......... 143

7.2 Future Research ... 144

Publications Resulting from This Thesis .. 146

Bibliography .. 148

X

List of Tables

Table 1.1: Stroke Patients Details .. 8

Table 1.2: Sample Association Rules ... 9

Table 3.1: Sample Ruleset Patterns .. 68

Table 4.1: Synthetic Data Parameters .. 90

Table 4.2: Synthetic Data ... 90

Table 4.3: Real Datasets ... 90

Table 4.4: Description of Test Pattern .. 91

Table 4.5: Test Results ... 92

Table 5.1: Notations of Ruleset Pattern p ... 99

Table 5.2: Sample Ruleset Patterns .. 106

Table 5.3: Synthetic Data ... 109

Table 5.4: Synthetic Data Parameters .. 109

Table 6.1: Synthetic Data Parameters .. 132

Table 6.2: Synthetic Data ... 132

Table 6.3: Real Data ... 132

Table 6.4: Test Results ... 134

Table 6.5: Test Results with Different 𝑟𝑋 .. 138

XI

List of Figures

Figure 1.1: An Example of Anomalies in Association Rules ... 9

Figure 2.1: The KDD Process .. 14

Figure 2.2: Illustration of Apriori ... 20

Figure 2.3: Sample Data and Frequent 1-itemset ... 26

Figure 2.4: FP-Tree Construction... 26

Figure 2.5: Sample Conditional FP-Tree ... 28

Figure 2.6: Example Food Hierarchical Structure ... 39

Figure 2.7: Architecture of the Association Rule Clustering System........................... 48

Figure 3.1: Sample Ruleset .. 64

Figure 3.2: Overview of Horace .. 70

Figure 3.3: Overview of Ruleset Pattern and the Pattern Language 71

Figure 4.1: Sample RP-Tree Construction ... 79

Figure 4.2: Searching Algorithm Illustration (SRPFP-a) .. 82

Figure 4.3: Searching Algorithm Illustration (SRPFP-b) .. 86

Figure 4.4: RP-Tree Substitution Process .. 88

Figure 4.5: Test Patterns ... 91

Figure 4.6: Performance Comparison .. 93

Figure 4.7: Effect of minH and maxL ... 95

Figure 5.1: Execution Times of the 4 Representative Queries 110

Figure 6.1: Anomaly Detection Process ... 123

Figure 6.2: An Example of 𝑟𝑋𝑌-neighbourhood... 128

Figure 6.3: Screenshots from TARMAD System .. 130

file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317307
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317310
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317311
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317313
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317315
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317316
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317317
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317318
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317319
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317320
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317321
file:///D:/Material/backup/finalVersion/PrintingVersion/PhDThesis0118.docx%23_Toc409317325

XII

Figure 6.4: Performance – Time vs #Transactions ... 134

Figure 6.5: Screenshots for Top N Anomalies in Real Data 135

Figure 6.6: Complex Data .. 137

XIII

List of Algorithms

Algorithm 2.1: Apriori Itemset Generation .. 18

Algorithm 2.2: Apriori Rule Generation .. 20

Algorithm 4.1: RP-Tree Construction .. 79

Algorithm 4.2: SRPFP-a Algorithm .. 81

Algorithm 4.3: SRPFP-b Algorithm .. 85

Algorithm 5.1: RPQL Query Evaluation.. 107

Algorithm 6.1: Overarching Detection Process ... 124

Algorithm 6.2: TARMA-a Algorithm .. 126

Algorithm 6.3: TARMA-b Algorithm .. 129

Algorithm 6.4: TARMA-c Algorithm .. 138

Chapter 1

Introduction

1.1 Research Context

We are living in a world with a wealth of data. With the use of computers and

electronic database packages, the amount of data that is collected doubles

approximately every twenty months [140]. This explosive growth in data and

databases generates the need for new techniques and tools that can intelligently and

automatically transform the data into useful information and knowledge.

Knowledge discovery in databases (KDD), which has been defined as the non-

trivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data [64], is an evolving research direction to meet this

challenge. The KDD process is composed of different steps that can be summarized

in four main phases:

 Data cleaning and data integration, where real world data from multiple

sources are cleaned and put in a coherent data store, such as data

CHAPTER 1. INTRODUCTION 2

warehouses and/or data marts.

 Data pre-processing, where data is transformed or consolidated into forms

appropriate for analysis (usually termed data mining).

 Data mining, where various mining techniques are applied over the

database in order to discover new patterns/knowledge.

 Post-mining, where evaluation and visualization techniques are utilized to

present the mined knowledge to the user.

Association rule mining is one of the most commonly applied techniques of data

mining. It aims to find interesting relationships among items in a given dataset

[86]. Initial research into association rule mining was largely motivated by the

analysis of retail market basket data, the results of which allowed companies to

understand purchasing behaviour more fully. One example is that “customers who

purchase computers also tend to buy anti-virus software at the same time”. The

discovery of association rules can help in many retail business decision-making

processes, such as cross-selling, shelf layout, and catalogue design. Although

initially motivated by the desire to analyse large retail transaction databases, the

general utility of association rules makes them applicable to a wide range of

different learning tasks. Association rule mining has now been applied in a variety

of industry sectors including commerce, defence, health, manufacturing,

exploration and engineering.

Data mining techniques extract implicit and interesting patterns from large data

collections. Such data are typically assumed to be primary data captured by some

application, cleaned and prepared according to the demands of the mining

CHAPTER 1. INTRODUCTION 3

algorithm [183]. However, in many cases, the primary or raw data are not always

available. For example, in some applications, stream data are not stored and are

only available for a short time [70]. Also, in some cases, organisations (and

governments) are willing to provide (by their nature relatively confidential)

association rules but unwilling to provide access to source data. Thus in some cases

only association rules generated from the source data are available for the

researchers to operate over [183]. Furthermore, even for available primary data,

there are limits on the computation speed that can be achieved – such limits are set

by hardware and firmware technologies [183].

One approach to tackling those issues is to mine over patterns/models derived from

one or more large and/or complex datasets, which can be termed higher order

mining (HOM) [183]. For example, Lent et al. [124] have shown how association

rules may be clustered. Gupta et al. [80] extended this work by looking at distance-

based clustering of association rules, and Perrizo and Denton [170] outlined a

framework based on partitions to unify various forms of data mining algorithms.

Compared with traditional data mining techniques which have largely focused on

the extraction of knowledge directly from the source data, HOM discovers patterns

from non-primary data and has the following benefits [128]:

 the ability to combine mining strategies through the modular combination

of components.

 the development of higher order explanations in describing facts about

data, particularly those describing changes over time, location or some

other dimension.

CHAPTER 1. INTRODUCTION 4

 a comparatively faster execution time due to reduced volumes of data.

1.2 Research Objectives

HOM opens a window for changes in perspective about knowledge discovery, from

the analysis of data to the analysis of patterns. Although there have been many

advances in this paradigm, the overall potential of HOM is still largely unexploited

and worthy of further research [183].

Based on the idea of HOM, this thesis addresses two important but unanswered

issues: 1) the discovery of patterns in association rules which represent the higher

order knowledge sought by users; 2) the discovery of anomalies in association

rules that are produced by higher order longitudinal/spatio-temporal association

rule mining.

1.2.1 Discovering Patterns in Association Rules

Since the early work of Agrawal, Srikant and others, association rule mining has

become a mature field. It has provided very powerful mining algorithms, with the

capacity to discover rapidly sets of co-occurring items or events in very large

databases. A variety of extensions have been proposed that enable, for example,

 temporal [7, 127, 175] and spatial [87, 115] semantics to be

accommodated,

 closed sets to be identified [165, 232],

 fuzzy and incomplete data to be handled [49, 119],

 the accommodation of domain-specific concept hierarchies [54, 66, 84,

190], and

CHAPTER 1. INTRODUCTION 5

 the application of visualisation techniques [154].

However, the search for patterns/knowledge which adhere to a user’s definition of

interesting, remains somewhat elusive [74], in part because rules are generally

supplied in an instance level format such as

 {𝑚𝑖𝑙𝑘} ^ {𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑} 𝜎(0.20) 𝛾(0.65) (1)

where the (support) and γ (confidence) values are examples of some quality

metric for the rule. Such low-level rules, while useful, provide knowledge only

about the coincidence of elementary values and can be termed zero-order rules.

Higher order semantics can be derived when sets of rules are inspected to

determine patterns of interest between rules.

Example 1.1 Given a set of rules such that:

{𝑎} => {𝑐} 𝜎(𝑥) (2)

{𝑏} => {𝑐} 𝜎(𝑦) (3)

 {𝑎, 𝑏} => {𝑐} 𝜎(𝑧) (4)

 𝑤ℎ𝑒𝑟𝑒 𝜎(𝑧) ≪ 𝜎(𝑥) × 𝜎(𝑦) (5)

We might find two competitor items 𝑎 and 𝑏 from the above three rules as the

observed value for Eq. (5) is considerably lower than one would have expected

with independent items.

Studies of patterns reveal that users are often interested in such types of

knowledge. For example, a supermarket manager may be interested in finding

products that churn with each other. Analysts looking to reduce hospital costs may

look for situations where potential alternatives exist, that is, pairs of items which

rarely occur together but almost always occur with the same other items.

In the past, specific algorithms have been developed to search for individual cases

CHAPTER 1. INTRODUCTION 6

of such patterns. For example, Teng [206] outlined a mechanism for learning

dissociations (aka competitors) from source data. However, direct current work on

the discovery of patterns in rules is limited and there are several questions which

remain unanswered:

 What are patterns in rules? How can we define them based on a user’s

definition of interesting?

 How can we efficiently search patterns from the discovered set of rules?

 Users need to specify high-level (i.e. user-oriented) descriptions of the

patterns they are interested in. Can we develop a pattern language to

enable users to create, update and retrieve such patterns?

This thesis provides some answers to the above questions. The thesis provides a

formal definition of patterns in rules, based on which it proposes the Horace

framework for pattern searching [130]. Horace consists of a pattern library and its

associated pattern language which allows users to define, retrieve and maintain

patterns in rules based on their own definition of interesting [129]. At the core of

Horace is a tree-based approach to searching for patterns in rules. Since frequent

patterns or prefix trees are (generally speaking) isomorphic with the resulting

ruleset, Horace expresses the ruleset patterns using a novel ruleset pattern tree (RP-

tree) and utilizes a set of algorithms to search such data structures for patterns

efficiently and directly [130].

1.2.2 Discovering Anomalies in Longitudinal Association Rules

The popularity of data mining, together with mounting recognition of the value of

temporal and spatial data, spatio-temporal data modelling and databases has

CHAPTER 1. INTRODUCTION 7

resulted in the prospect of mining spatial and temporal rules from both static and

longitudinal, temporal and spatial data. Longitudinal and spatio-temporal data

mining has the capacity to [128]:

 analyse activity rather than just states and to infer relationships of

locational and temporal proximity, some of which may also indicate a

cause-effect association, and

 mine the behavioural aspects of objects as opposed to simply mining rules

that describe their states at a point in time.

In many domains, the value of knowledge obtained by analysing the changes to

phenomena over time and space, as opposed to the situation at an instant or at a

single location, has been recognized and a number of temporal and spatial data

mining techniques have been developed [182, 61]. For example, spatio-temporal

association rules can indicate movement, trends and/or patterns that static rules

cannot show.

Anomaly detection is an important problem for many domains, particularly those

with a high level of pre-existing domain knowledge. Within medicine, for example,

it is commonly the exceptions that provide insight into a problem. It is important to

be able to detect statistically significant anomalies from a series of multiple, large

and semantically complex snapshots or single location datasets, such as those that

could be collected by an organization as part of routine archival operations or

statutory reporting. Efficiently solving this problem would enable the more rapid

development of knowledge discovery systems capable of uncovering hidden spatio-

temporal trends and correlations which might, in some cases, act as a real time

CHAPTER 1. INTRODUCTION 8

alerting mechanism [128].

In the past, there have been few efforts to address this problem. For example,

spatio-temporal outlier detection techniques [30, 53] have been proposed to find

spatial outliers over several time periods. Mooney and Roddick [148] tackled this

problem by running an association mining algorithm over sets of rules which they

themselves generated from association rule algorithms.

Clearly, anomalies in a single data item can be found using standard statistical

techniques. This thesis is primarily concerned with the following question: “Can

anomalies be detected through an inspection of association rules generated from the

source data?”

To illustrate, consider the following example.

Example 1.2 Assume Table 1.1 contains information about the patients who

suffered from stroke on a given day, including their name, age, blood pressure and

the time stroke occurred.

Table 1.1: Stroke Patients Details

Patient Name Age Blood Pressure Time

patient-a 60 150 2:00am

patient-b 69 170 2:00am

patient-c 78 165 8:00pm

patient-d 80 180 8:00am

patient-e 65 130 12:00pm

(rest of data omitted) … … …

Let A represent the antecedent (age = [60…80]) ^ (blood pressure [130…180]) and

B represent the consequent (stroke = yes). Table 1.2 shows some of the association

rules which might be generated based on the data stored in Table 1.1. Those rules

have the same rule body but a different timestamp, revealing the relationship

CHAPTER 1. INTRODUCTION 9

between the age and blood pressure of a patient and the possibility of suffering

stroke at different times.

Table 1.2: Sample Association Rules

Rule Name Support Confidence Time Stamp

A=>B 0.20 0.55 2:00am

A=>B 0.21 0.64 4:00am

A=>B 0.23 0.53 6:00am

A=>B 0.58 0.54 8:00am

A=>B 0.25 0.50 10:00am

A=>B 0.20 0.52 12:00pm

A=>B 0.21 0.58 14:00pm

A=>B 0.26 0.51 16:00pm

(rest of data omitted) … … …

Figure 1.1: An Example of Anomalies in Association Rules

Figure 1.1 illustrates the data in Table 1.2, where the X axis is the timestamp and

the Y axis is the support value. As shown in Figure 1.1, there is one normal region

N since the support values of most of the rules are between 0.2 and 0.26 during the

24-hour period. Point O1 which represents the rule occurred at 8am has a support

value of 0.58 which is sufficiently far away from the region. If we define points in

region N as normal, then point O1 can be treated as an anomaly. It reveals that older

patients (60 ≤ age ≤ 80) with high blood pressure (130 ≤ 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20 22 24

Su
p

p
o

rt

Time Stamp

N

O1

CHAPTER 1. INTRODUCTION 10

180) have an unexpectedly high rate of stroke at 8am.

This above example shows the possibility of detecting anomalies through an

inspection of association rules generated from the source data. Motivated by this

example, this thesis proposes an approach to elevating the search for anomalous

data in transaction-oriented datasets to an inspection of the rules that can be

produced by higher order longitudinal/spatio-temporal association rule mining.

Since HOM facilitates the characterization of items participating in rulesets in

terms of real-world descriptions (such as competitor, catalyst and so on), we argue

that such a technique may provide a view of anomalies that is arguably closer to

that sought by information analysts. In addition, it provides an alternative approach

for anomaly detection if primary sources are not available but only rules generated

from the source data the researchers can operate.

In this thesis, two anomaly detection algorithms have been developed and the

experimental results have demonstrated the soundness and feasibility of the

proposed approach [128].

1.3 Contribution

This thesis makes the following contributions to the domain:

 The concept of the ruleset pattern is developed, which represents patterns

in rules. Also, a framework, called Horace, is proposed for ruleset pattern

discovery. Since frequent pattern or prefix trees contain the complete set

of information held in a database relevant to frequent pattern mining,

Horace employs a tree-based approach to searching such data structure

CHAPTER 1. INTRODUCTION 11

directly for matches of given ruleset patterns.

 The thesis proposes a novel data structure, a ruleset pattern tree (RP-tree),

to represent patterns in rules. Two tree searching algorithms are presented

to search the frequent pattern tree (FP-tree) efficiently for matches of the

RP-tree.

 A ruleset pattern language (RPL) has been developed, which consists of a

ruleset pattern definition language (RPDL) and a ruleset pattern query

language (RPQL). RPL enables users to create, alter and retrieve patterns

from a ruleset pattern library.

 Two anomaly detection methods have been presented which can identify

anomalies in a set of longitudinal association rules.

 Prototypes for ruleset pattern discovery and anomaly detection in

longitudinal association rules have been built and tested. The experimental

results demonstrate the capacity of the proposed approach to find

patterns/anomalies that cannot be identified by traditional data mining

techniques.

1.4 Thesis Organization

The remainder of the thesis is structured as follows:

Chapter 2 presents a systematic literature review of related work, with a focus on

association rule mining and HOM.

Chapter 3 introduces the concept of ruleset patterns together with some specific

patterns, including the competitor pattern, twoway-catalyst pattern, and threeway-

CHAPTER 1. INTRODUCTION 12

catalyst pattern. Also, the Horace framework of ruleset pattern discovery is

explored in this chapter.

Chapter 4 presents two novel algorithms for searching FP-trees for ruleset patterns.

The details of a prototype and experiment results are also supplied.

Chapter 5 describes RPL, the ruleset pattern language. Detailed description of its

two components: the ruleset pattern definition language (RPDL) and the pattern

query language (RPQL) have been provided. The evaluations of RPL queries as

well as the experimental results are also discussed in this chapter.

Chapter 6 presents an approach for detecting anomalies in a set of longitudinal

rules. Two anomaly detection algorithms have been proposed. A prototype for

anomaly detection and experimental results are also explored.

Finally, the thesis concludes in Chapter 7, where recommendations are made

regarding possible future research and development activities.

Chapter 2

Literature Review and Background

This chapter presents an in-depth review of the topics, areas and research related to

the work presented herein. The chapter sections are arranged as follows. Section

2.1 provides an overview of knowledge discovery in databases and data mining.

Section 2.2 reviews the formal definition of association rule mining and the Apriori

algorithm. Section 2.3 and 2.4 discuss the improvements in frequent itemset

generation and rule generation respectively while Section 2.5 provides an overview

of some extensions of association rule mining. A survey of HOM is provided in

Section 2.6 with a focus on mining over association rules. Section 2.7 concludes

the chapter.

2.1 Knowledge Discovery in Databases and Data Mining

Since the 1960s, with the advances in computer science and databases, the volume

of information stored in databases has been growing exponentially. For example,

the National Aeronautics and Space Administration’s (NASA’s) Earth Observing

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 14

System of orbiting satellites and other space borne instruments sends one terabyte

of data to receiving stations every day [218]. It has become a real and universal

challenge to find actionable knowledge from such large amount of data. The field

of knowledge discovery in databases (KDD) has been designed to meet this

challenge.

KDD concerns the complex process of identifying valid, novel, potentially useful

and ultimately understandable patterns in data [64]. Data mining refers to a

particular step in the KDD process and is the automatic extraction of implicit and

interesting patterns from large data collections [109]. Figure 2.1 presents the main

steps of the KDD process, including data cleaning and data integration, data pre-

Data warehouse

Selected data

Patterns

Knowledge

Cleaning and integration

Data selection and
transformation

Data mining

Evaluation and
presentation

Databases

Figure 2.1: The KDD Process

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 15

processing, data mining, and post-processing.

Real-world data tend to be incomplete, noisy and inconsistent [86]. The first step

consists of two pre-mining tasks: data cleaning which is used to fill in missing

values, remove noise and correct inconsistent data, and data integration which is

utilized to bring data from multiple sources into a coherent data store, such as a

data warehouse and/or data mart(s).

During the data pre-processing step, the data warehouse developed during the data

cleaning and data integration phase is verified. Data are re-cleaned if needed. Data

selection is then performed where data relevant to the analysis task are retrieved

from the data store. Finally, data are transformed or consolidated into forms

appropriate for mining.

The data mining step is essential in the KDD process. In this step intelligent

methods are applied over data to extract interesting patterns. Some important data

mining techniques include [86]:

 Classification and prediction, two forms of data analysis that can be used

to extract models describing important data classes or to predict future

data trends.

 Clustering, a process of grouping a set of physical or abstract objects into

classes of similar objects.

 Association rule discovery, a technique to find interesting associations

among sets of items in transaction databases or other data repositories

 Anomaly detection, a process of identifying data objects that do not

comply with the general behaviour or model of the data.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 16

The final step of the KDD process is post-processing or post-mining. In this step,

users are able to evaluate the patterns, that is, to determine the importance of the

extracted patterns, using several user-driven methods or statistical database

oriented methods. Visualization and knowledge representation techniques are also

integrated in this step to present the mined knowledge to the user.

2.2 Association Rule Mining

Association rule mining, which was introduced by Agrawal et al. [3], is one of the

most well-known techniques of data mining. Association rule mining searches for

interesting relationships among items in a given dataset [86]. An example of such

an association is that if a customer buys bread and butter then that customer is

likely to also buy milk in the same transaction. Although initially motivated by the

desire to analyse large retail transaction databases, association rule mining has been

applied to a variety of industry sectors including commerce, defence, health,

manufacturing, exploration and engineering.

2.2.1 Formal Definition of Association Rule Mining

Let us consider 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} a set of 𝑚 binary attributes, called items. An

itemset is a non-empty subset of 𝐼. An itemset that contains 𝑘 items is a 𝑘-itemset.

Let 𝐼 = {𝑡1, 𝑡2, … , 𝑡𝑛} be a set of 𝑛 transactions, where each transaction 𝑡𝑖

represents a binary vector, with 𝑡𝑖[𝑘] = 1 if 𝑡𝑖 contains the item 𝑖𝑘 , and 𝑡𝑖[𝑘] =

0 otherwise. A unique identifier is assigned to each transaction, called 𝑇𝐼𝐷.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 17

Definition 2.1 (Association Rule) An association rule is an implicit expression of

the form

𝑋 => 𝑌,

where 𝑋, 𝑌 I and 𝑋 ∩ 𝑌 = ∅. We call 𝑋 the antecedent and 𝑌 the consequent of

the rule.

Definition 2.2 (Support) Support of an association rule is defined as the

percentage of transactions that contain 𝑋 ∪ 𝑌 compared to the total number of

transactions in the database. Support is calculated by the following formula:

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑂𝑓𝑋𝑌

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
.

Definition 2.3 (Confidence) Confidence of an association rule is defined as the

percentage of the number of transactions that contain 𝑋 ∪ 𝑌 to the total number of

records that contain 𝑋. If the percentage exceeds the threshold of confidence, an

interesting association rule 𝑋 => 𝑌 can be generated.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋|𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

Given a set of transactions 𝐷, the task of mining association rules is to generate all

association rules that have support and confidence greater than the user-specified

minimum support (called 𝑚𝑖𝑛𝑠𝑢𝑝) and minimum confidence (called 𝑚𝑖𝑛𝑐𝑜𝑛𝑓)

respectively.

The task of association rule mining can be broken into two steps [3]: 1) find all

frequent itemsets that hold transaction support above the minimum support

threshold; 2) generate the desired rules from the frequent itemsets if they also

satisfy the minimum confidence threshold.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 18

2.2.2 Apriori: Classic Association Rule Mining

The Apriori algorithm was proposed by Agrawal and Srikant [6]. It is regarded as

the classical association mining algorithm [47].

The Apriori algorithm provides an approach for frequent itemset generation, where

the key idea lies in the Apriori property of the support, that is, if an itemset has

minimum support, then all its subsets also have minimum support. Thus, any subset

of a frequent itemset must also be frequent while any superset of an infrequent

itemset must also be infrequent.

Algorithm 2.1: Apriori Itemset Generation [6]

1:Input: Database 𝐷

2:Output: The set 𝐿 of itemsets

3: 𝐿1= {1-itemsets}

4: for all (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin

5: 𝐶𝑘 = apriori-gen (𝐿𝑘−1)

6: for all transactions 𝑡 ∈ 𝐷 do begin

7: 𝐶𝑡 = subset (𝐶𝑘, 𝑡)

8: for all candidates 𝑐 ∈ 𝐶𝑡 do

9: 𝑐. 𝑐𝑜𝑢𝑛𝑡 + +

10: end for

11: end for

12: 𝐿𝑘 = {𝑐 ∈ 𝐶𝑘|𝑐. 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑠𝑢𝑝}

13: end for

14: apriori-gen (𝐿𝑘−1)

15: for all itemsets 𝑐 ∈ 𝐶𝑘 do begin

16: for all (𝑘 − 1)-subsets 𝑠 of 𝑐 do begin

17: if (𝑠 ∉ 𝐿𝑘−1) then

18: delete 𝑐 from 𝐶𝑘

19: end for

20: end for

As shown in Algorithm 2.1, the process of frequent itemset generation works as

follows. Let 𝐿𝑘 be the frequent k-itemset and 𝐶𝑘 be the candidate k-itemset. As

shown in line 3, the frequent 1-itemsets are generated in the first pass over the data,

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 19

as denoted by 𝐿1. Lines 4 to 13 show the process of k-itemsets generation. Starting

from 𝐿𝑘−1 which is generated in the previous step, the function apriori-gen (line

14) generates new 𝐶𝑘 which are validated during a new pass over data when the

support of each candidate is computed. During the process, the Apriori property is

used as follows: if any (k-1)-subset of a candidate k-itemset is not in 𝐿𝑘−1, then the

candidate cannot be frequent and can be removed from 𝐶𝑘 . The algorithm ends

when no further frequent itemsets are generated.

Example 2.1 Given a transaction database (𝐷) as shown in Figure 2.2(a) and

minimum support of 3, Apriori finds the complete set of frequent itemsets as

follows:

 Scan 𝐷 once to find frequent items, namely a, c, d, f, to form a 𝐿1 (as

shown in Figure 2.2 (b)). 𝐶2 is generated from 𝐿1 using the Apriori

heuristic to prune the candidates: only those candidates that consist of

frequent subsets can be potentially frequent.

 Scan 𝐷 once more to count the support of each itemset in 𝐶2. The itemsets

in 𝐶2 passing the support threshold form the 𝐿2, as shown in Figure 2.2

(c).

Similarly, 𝐶3 is generated from 𝐿2 and 𝐷 is scanned to identify the support count of

each itemset in 𝐶3 . 𝐿3 is then derived which consists of itemsets passing the

support threshold (as shown in Figure 2.2 (d)). The process stops when no

candidate can be derived or no candidate is frequent.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 20

TID Items

100 a, b, c

200 a, c, d, e, f

300 d, e,

400 a, b, c, f

500 a, c, d, f

(a) Transaction Database D

C2 L2

Itemset Support

Count

Itemset Support

Count

{a, c} 4 {a, c} 4

{a, d} 2 {a, f} 3

{a, f} 3 {c, f} 3

{c, d} 2

{c, f} 3

{d, f} 2

(c) Result of C2 & L2

C1 L1

Itemset Support

Count

Itemset Support

Count

{a} 4 {a} 4

{b} 2 {c} 4

{c} 4 {d} 3

{d} 3 {f} 3

{e} 2

{f} 3

(b) Result of C1 & L1

C3 L3

Itemset Support

Count

Itemset Support

Count

{a, c, f} 3 {a, c, f} 3

(d) Result of C3 & L3

Figure 2.2: Illustration of Apriori

Algorithm 2.2: Apriori Rule Generation [6]

1:Input: Set of itemsets 𝑙
2:Output: Set of association rules 𝑅𝑢𝑙𝑒𝑠

3: for all itemsets 𝑙𝑘, 𝑘 ≥ 2 do

4: call genrules(𝑙𝑘, 𝑙𝑘);

5: end for

6: genrules(𝑙𝑘: 𝑘-itemset, 𝑎𝑚: 𝑚-itemset)

7: 𝐴 = {(𝑚 − 1) − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑎𝑚−1|𝑎𝑚−1 ⊂ 𝑎𝑚}

8: for all 𝑎𝑚−1 ∈ 𝐴 do begin

9: 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑘)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎𝑚−1)

10: if (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓) then

11: 𝑅 = 𝑎𝑚−1 => (𝑙𝑘 − 𝑎𝑚−1)

12: if (𝑚 − 1 > 1) then

13: call genrules(𝑙𝑘, 𝑎𝑚−1)

14: 𝑅𝑢𝑙𝑒𝑠 = 𝑅𝑢𝑙𝑒𝑠 ∪ 𝑅

15: end if

16: end if

17: end for

18: return 𝑅𝑢𝑙𝑒𝑠

After the generation of frequent itemsets, the second step of association rule mining

is to derive rules from those itemsets which satisfy the minimum confidence

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 21

threshold. That is, for each frequent itemset 𝑙, generate a rule for every non-empty

subset 𝑠 of 𝑙 [86]:

𝑠 => (𝑙 − 𝑠), 𝑖𝑓
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑙)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑠)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓.

The process is described in Algorithm 2.2.

Example 2.2 Let us consider the transaction database in Figure 2.2(a). Given

minimum support count 3 and minimum confidence 0.60, there is a frequent

itemset 𝑖 = {𝑎, 𝑐, 𝑓} as shown in Figure 2.2(d). To get the rules from 𝑖, we first

have the following possible rules: {𝑎} => {𝑐, 𝑓} , {𝑐} => {𝑎, 𝑓} , {𝑓} => {𝑎, 𝑐} ,

{𝑎, 𝑐} => {𝑓} , {𝑎, 𝑓} => {𝑐} , {𝑐, 𝑓} => {𝑎} . We then need to calculate the

confidence of each possible candidate. For example, to compute the confidence of

{𝑎} => {𝑐, 𝑓}, we use the support of the complete itemset {𝑎, 𝑐, 𝑓}, and the support

of the antecedent {𝑎}.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒({𝑎}|{𝑐, 𝑓}) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝑎, 𝑐, 𝑓})

𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝑎})
=

3

4
= 0.75

Since the confidence 0.75 is greater than the minimum confidence, it is deemed a

valid rule.

2.3 Improvements in Frequent Itemset Generation

The entire performance of association rule mining is mainly determined by the step

of frequent itemset generation [6]. Therefore, in the last few decades, how to

improve the efficiency of frequent itemset generation has attracted a lot of attention

from the data mining community.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 22

2.3.1 Candidate Generation Algorithms

Candidate generation algorithms identify candidate itemsets before validating them

with respect to incorporated constraints, where the generation of candidates is

based upon previously identified valid itemsets [47]. The core algorithm of this

genre is Apriori.

The Apriori algorithm has the effect of reducing the number of candidate itemsets

and thus reducing computation, Input/Output (I/O) and memory costs [86].

However, it has two major drawbacks. One is that it requires multiple scans of the

dataset residing in the disk and the other is that the candidate generation process is

complex and resource consuming [236]. To overcome these issues, a number of

important Apriori-based algorithms were designed with modifications focusing on

two aspects: reducing the number of passes over the whole database and employing

various pruning techniques to produce smaller candidate itemsets.

Apriori-TID [6], which was proposed by Agrawal and Srikant, only needs one scan

of the database. A set 𝐶𝑘 is constructed during the first pass of the database and

each member of the set 𝐶𝑘 is of the form < 𝑇𝐼𝐷, 𝑋𝑘 > , where each 𝑋𝑘 is a

potentially large k-itemset present in the transaction with identifier 𝑇𝐼𝐷. The set 𝐶𝑘

is used for counting support. Since the size of 𝐶𝑘 is smaller than the database, this

saves much reading effort [6].

Another approach, AprioriHybrid [6], combines the best features of Apriori and

Apriori-TID, where Apriori is used in the initial passes and then Apriori-TID is

utilized if it is expected that the set 𝐶𝑘 at the end of the pass will fit in memory.

Although there is the cost of switching, it has been shown empirically that

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 23

AprioriHybrid is significantly faster than both Apriori and Apriori-TID [6].

Further improvements of Apriori-Hybrid were proposed by Hipp, Güntzer and

Nakhaeizadeh [95] who employed a hash-tree like structure to contain pointers to

𝑇𝐼𝐷 list sets instead of counters. A further revision developed to find a better

approach to determining when to switch from Apriori to Apriori-TID was presented

by Bodon [31]. Bodon’s work proposed Apriori-Brave which keeps track of

memory need and stores the amount of the maximal memory need. After the

generation of (k+1)-itemsets, the (k+2)-itemset candidates are generated only when

the memory need does not exceed the maximal memory need [31].

Savasere et al. [189] proposed a partition algorithm which requires only two

database scans. The algorithm consists of two phases. In the first step, the

algorithm divides the database into small non-overlapping partitions that can be

processed independently and efficiently in memory to find their frequent itemsets.

In the second step, only one scan of the database is required to find the frequent

itemsets from the candidates. The partition sizes and the number of partitions are

chosen to ensure that each partition can be accommodated in the main memory and

the partitions are read only once in each phase.

Brin et al. [39] proposed the DIC (Dynamic Itemset Counting) algorithm. DIC

utilizes a dynamic itemset counting technique in which the database is partitioned

into blocks marked by start points. DIC reduces the number of passes over the

database by introducing an original idea, namely that (k + 1) candidates are

computed from the k pass. When a k-itemset is considered frequent, all the (k+1)-

itemset candidates that the latter can produce are generated.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 24

In addition to the efforts to reduce the number of database scans, another approach

to improving the efficiency of Apriori is the utilization of different pruning

techniques to generate a smaller number of candidate itemsets. DHP (Direct

Hashing and Pruning) [164] uses a hashing technique to filter out unnecessary

itemsets for the generation of the next set of candidate itemsets. Instead of

including all the k-itemsets from 𝐿𝑘−1 × 𝐿𝑘−1 into 𝐶𝑘 in the Apriori algorithm, a k-

itemset is added into 𝐶𝑘 only if that k-itemset passes the hash filtering, that is, k-

itemset is hashed into a hash entry if its value is larger than or equal to the

minimum support [164]. Such hash filtering can drastically reduce the size of 𝐶𝑘.

Further improvements of DHP were proposed in PHP (Perfect Hashing and

Pruning) [158]. In this approach, a hash table with size equal to the distinct items in

the database is created during the first pass where each distinct item in the database

is mapped to different location. The prune method of the hash table prunes all the

entries whose support is less than the minimum support.

2.3.2 Pattern Growth Algorithms

Pattern growth techniques eliminate the need for candidate generation by

constructing complex hyper-structures that contain representations of the itemsets

within the dataset [47]. Generally, a hyper-structure is composed of two principal

structures [47]:

 Pattern frame - represents a tree-based or array-based structure containing

items with their support which is constructed in a database pass by using

each transaction.

 Item list - contains the list of frequent items. Each item is linked to the

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 25

first element in the pattern frame that contains it.

2.3.2.1 FP-Growth Algorithm

The fundamental pattern growth algorithm, FP-growth, was proposed by Han et al.

[88]. In their work, a frequent pattern tree (FP-tree) is used for storing compressed,

crucial information about frequent patterns. An FP-tree consists of one root

(labelled “null”), a set of prefix subtrees as the children of the root and a header

table. Each node in the sub-tree has three fields: item-name, support count and

node-link. Each entry in the header table has two fields: item-name and the head of

the node-link

There are two steps to construct an FP-tree. At the first step, an initial scan of the

database is conducted to identify the frequent 1-itemsets and an ordered list of

frequent items is generated. The ordered list is sorted by their frequency and is

stored in the header table. At the second step, an FP-tree is constructed as follows.

Firstly, a second complete scan of the dataset is performed. For each transaction

read, only the set of frequent items present in the header table is collected and

items are sorted in descending order according to their frequency. These sorted

transaction items are inserted into the FP-tree as follows: for the first item on the

sorted transactional dataset, check if it exists as one of the children of the root. If it

exists then increase the support count for this node by 1. Otherwise, add a new

node for this item as a child of the root node with 1 as support count. Then,

consider the current item node as the new temporary root and repeat the same

procedure with the next item on the sorted transaction. To facilitate tree traversal,

during the process of adding any new item-node to the FP-tree, a link is maintained

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 26

between this item-node in the tree and its entry in the header table.

TID Items

T1 a, b, c, d

T2 a, b, d, e
T3 a, c, d
T4 a, b, c
T5 a, b, c
T6 a, c, d
T7 a, b, e
T8 a, b, d

(a) Transaction Database

Item Support Count

a 8

b 6

c 5

d 5

e 2
(b) All Items

(c) Frequent 1-itemset

Figure 2.3: Sample Data and Frequent 1-itemset

Example 2.3 For illustration, let us take an example with transactions shown in

Figure 2.3(a). Figure 2.3(b) shows all items with their support count. Given the

minimum support threshold is 4, the non-frequent item is removed, which is e.

Finally, all frequent items are sorted according to their support count to generate

the sorted frequent 1-itemset, as shown in Figure 2.3(c).

During the tree construction process, frequent items in the first transaction (a, b, c,

d) are sorted according to their support count and then inserted into the root, as

Item Support Count

a 8

b 6

c 5

d 5

null

 b:2

c:1

d:1

a:2

 null

Figure 2.4: FP-Tree Construction

(a) Insert {a, b, c, d}

a:1

b:1

c:1

d:1

d:1

d:2

c:2 b 6

c 5

d 5

a 8

d:1

c:3

b:6

a:8

d:2

(c) Final FP-tree (b) Insert {a, b, d}

null

Item|Count

Header Table

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 27

shown in Figure 2.4(a). When inserting the second transaction, the sorted frequent

item list (a, b, d) shares the same prefix (a, b) with an existing path on the tree. The

support counts of item-nodes (a and b) are increased by 1 and a new sub-path is

created with the remaining items on the list (d) all with support equal to 1 (as

shown in Figure 2.4(b)). During the process, a link is established between the two

nodes with item-name d. The same procedure occurs until all transactions shown

in Figure 2.3(a) have been inserted. Figure 2.4(c) shows the resultant FP-tree.

FP-growth employs a divide-and-conquer technique for frequent itemset generation

which is based on one important concept: conditional pattern base [88, 89]. Given a

frequent itemset, a conditional pattern base consists of a set of prefix paths in the

FP-tree co-occurring with that itemset. A conditional FP-tree is constructed based

on the conditional base. Starting from each frequent length-1 pattern (as an initial

suffix pattern), the pattern growth is achieved by the concatenation of the suffix

pattern with the frequent patterns generated from a conditional FP-tree [88, 89].

Example 2.4 To illustrate, let us take the FP-tree in Figure 2.4(c) as an example.

Let the minimum support threshold be 2. The process to generate frequent itemsets

is as follows.

FP-growth starts with item d which is the last item in the header table. A set of

branches is obtained through the node link from the FP-tree. The paths in those

branches are (a, b, c, d: 1), (a, b, d: 2) and (a, c, d: 2) (the number after “:”

represents the support count of the nodes in a FP-tree branch). Considering d as a

suffix, the corresponding three prefix paths are (a, b, c: 1), (a, b: 2) and (a, c: 2),

which form the conditional pattern base. The conditional FP-tree is constructed as

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 28

shown in Figure 2.5(a), which generates a set of itemsets: {a, d}(5), {b, d}(3), {c,

d}(3), {a, b, d}(3), {b, c, d:1},{a, c, d}(3) and {a, b, c, d}(1) (the number in “()”

represents the support count of an itemset). Since {a, b, c, d} and {b, c, d} has a

support count less than the minimum support, they are pruned out.

FP-growth then moves to the next item, c, in the header table. The item has two

prefix paths for the conditional pattern base, namely, (a, b, c:3) and (a, c:2), which

generates a single branch conditional FP-tree (a, b), as shown in Figure 2.5(b). The

sets of frequent itemsets are: {a, c}(5),{b, c}(3) and {a, b, c}(3), which are all

frequent as their support counts are greater than the minimum support. Similarly,

FP-growth processes the rest of the items in the header table to generate all

frequent itemsets.

The FP-tree is usually smaller than the original database and, thus, saves costly

database scans in the mining process. Furthermore, FP-growth uses a divide-and-

conquer technique that considerably reduces the size of the subsequent conditional

FP-tree. However, the FP-growth algorithm still suffers some drawbacks. First, it is

difficult to use in an interactive mining system [236]. During the interactive mining

process, users may change the threshold of support in response to the rules

Figure 2.5: Sample Conditional FP-Tree

b 3

a 5

b:3

a:5

null

(b)

c:1

b 3

c 3

a 5

b:3

a:5

null

(a)

c:2

Item|Count Item|Count

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 29

produced, potentially leading to repetition of the whole mining process. Second,

the FP-tree algorithm is not suitable for incremental rule mining [236]. In addition,

the size of the tree usually increases exponentially as the number of unique items

increases [47].

2.3.2.2 FP-Growth Based Algorithms

A number of FP-tree/FP-growth based algorithms have been developed and

brought improvements to the FP-growth algorithm. One such effort is to employ

array-based structures to facilitate the searching process. For example, FP-Growth*

[78] uses an extra array-based structure to decrease the number of traversals of the

tree, which saves time during general traversal of the tree and also enables direct

initialization of the next level of the FP-tree.

H-Mine [168] also uses an array-based structure which is constructed in a manner

similar to FP-growth. In H-Mine, global frequent items are identified during the

first scan and then a hyper-linked data structure (called H-struct) is created from

those items in the second scan. The advantage of H-Mine over FP-growth is that it

uses the same pattern frame structure with semantics changed through pointer

manipulation, rather than the creation of conditional FP-trees as required in FP-

growth [47].

ITL-Mine [76] is an optimization of H-Mine. It needs one scan of the

database/dataset which creates the underlying structures that are similar to H-struct,

except that the header tables maintain all items. These extra links avoid the

progressive recalculation of linkage during processing which occurs in H-Mine. A

further improvement of ITL-Mine is CT-ITL [201], which uses a compressed

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 30

pattern frame structure to reduce the storage space/memory required and also

lessen traversal overheads. Although it requires two database/dataset scans, CT-ITL

is considered to be more scalable than ITL-Mine, especially as the size of the

database increases [202].

Liu et al. [137] proposed a hybrid pattern growth algorithm known as Opportunistic

Projection, which opportunistically chooses between array-based or tree-based

structures to represent projected transaction subsets. The algorithm heuristically

decides to build an unfiltered pseudo-projection or to make a filtered copy

according to features of the subsets to achieve the maximized efficiency and

scalability. Later, PatriciaMine [171] proposed a compressed trie (Patricia trie)

which alleviates the need to swap between trie and array-based data structures

based upon dataset density as proposed in H-Mine and Opportunistic Projection.

Wang et al. [216] proposed TD-FP-Growth, a top-down variation to the FP-growth

approach. This approach is said to alleviate the need or demand to generate/build

conditional pattern bases and physical projections of the trie. Similarly, COFI [59]

was proposed to provide an efficient pattern growth algorithm that uses a top-down

non-recursive technique.

Lin et al. [131] proposed IFP-growth, which employs an address-table structure to

lower the complexity of forming the entire FP-tree and a new structure called FP-

tree+ to reduce the need to build conditional FP-trees recursively. By using an

address-table and FP-tree+, the proposed algorithm has less memory requirement

and better performance in comparison with FP-tree based algorithms.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 31

2.4 Improvements in Rule Generation

One main issue related to association rule mining is that classical techniques

produce a high number of rules which are often unusable by the user [86].

Consequently, intensive research has been conducted to reduce the number of

extracted rules or improve their quality, for example:

 Interestingness measures. They are either objective or subjective.

Objective interestingness measures, such as support and confidence, as

well as others measures such as lift/interest, Laplace correction and chi-

square statistics, are used to rank the obtained rules to allow users to select

rules in which they are more interested [74, 204]. Subjective measures are

based on subjective factors controlled by the user. Most of the subjective

approaches, such as unexpectedness and actionability involve user

participation in order to express which rules are of interest [132].

 Pattern visualization. Visualization techniques are utilized to present

mining results in order to exploit the natural human pattern recognition

capability [154]. Commercial KDD products and many prototypes have

incorporated methods for the visualization of results [183].

 Condensed representations. Algorithms, such as disjunction-free sets [44],

deduction rules [45], counting inference [27] and closed itemset

algorithms [215, 169], have been developed to produce a reduced result

set from which valid patterns can be derived.

 Integration of domain knowledge. Domain knowledge consists of

information that is not explicitly presented in the database rather it is made

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 32

available from a domain expert. When a set of rules is generated from the

dataset, pre-conceived knowledge about the domain can help the user to

determine how well these rules match or contradict the user’s existing

knowledge. Less interesting rules can be ignored, thus reducing the

number of rules in focus [77, 229, 220, 114].

Among those available techniques, here the focus is on constraint-based association

rule mining techniques and the reduction of redundant rules.

2.4.1 Constraints-Based Association Rule Mining

Constraint-based association rule mining allows the user to impose a set of

constraints over the content of the discovered rules, and therefore only generate

those association rules that are interesting to them individually. These constraints

can be knowledge type constraints, data constraints, dimension/level constraints,

interestingness constraints and rule constraints [86].

Rule constraints define the form of rules to be mined and can be specified using a

high level declarative data mining language. For example, Shen et al. [192]

proposed meta query, a technique to specify the form of rules to be discovered in

data mining. Furthermore, several data mining query languages, such as DMQL

[85] and MSQL [99, 100] have been proposed for this purpose.

There have been several approaches to applying rule constraints to the mining

process. One of these is meta-rule guided mining [67]. A meta-rule is one kind of

constraint that is based on the user’s experience, expectations or intuition regarding

the data, or can be generated from the data schema. A meta rule is a rule template

of the form

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 33

𝑃1^ 𝑃2^ … ^ 𝑃𝑙 => 𝑄1^ 𝑄2^ … ^ 𝑄𝑟

where 𝑃𝑖(𝑖 = 1, … , 𝑙) and 𝑄𝑗(𝑗 = 1, … , 𝑟) are either instantiated predicates or

predicate variables.

Meta-rules allow users to specify the syntactic form of the rules they expect. For an

example, a meta-rule can be 𝑋, 𝑌 => 𝑍, where 𝑋, 𝑌 and 𝑍 represent any items in

the database. According to this meta-rule, only frequent 3-itemsets can produce this

kind of rule, which in turn makes the algorithm more efficient as early pruning can

be done.

Another approach was proposed by Bayardo et al. [29] where consequent

constraint is applied to the consequent of all the rules to a certain itemset and

minimum improvement constraint (𝑚𝑖𝑛𝑖𝑚𝑝) is used to prune uninteresting rules.

In their approach, a proper sub-rule is defined as a simplification of the rule formed

by removing one or more conditions from its antecedent. The 𝑚𝑖𝑛𝑖𝑚𝑝 prunes any

rule that does not offer a significant predictive advantage over its proper sub-rules.

This increases efficiency and presents the user with a concise set of predictive rules

that are easy to comprehend [29].

Furthermore, Ng et al. [151] and Srikant et al. [200] proposed algorithms

incorporating item constraints on the process of generating frequent itemsets, from

which association rules are derived. The item constraints restrict the items and

combination of items that are interesting to the user.

2.4.2 Removing Redundant Rules

Association rule mining may produce a large number of redundant rules, the

definition of which varies. For example, Jaroszewicz and Simovici [101] regarded

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 34

a rule as redundant if its true confidence is close to the estimate while Bastide et al.

[26] defined redundant association rules based on a decision rule that compares the

confidence or support of an association rule to similar rules. For instance, rule

𝑋 => 𝑌 is a “minimal non-redundant association rule” if there is no rule 𝑋′ => 𝑌′

with 𝑋′ ⊆ X, 𝑌 ⊆ Y′ such that 𝑠𝑢𝑝𝑝(𝑋𝑌) == 𝑠𝑢𝑝𝑝(𝑋′𝑌′) and 𝑐𝑜𝑛𝑓(𝑋 => 𝑌) =

= 𝑐𝑜𝑛𝑓(𝑋′ => 𝑌′) . Another definition was given by Zaki [232] based on the

concept of frequent closed itemsets. A set is called closed if it has no proper

superset with the same support. Given a non-closed set X, any set 𝑌 in its closure,

and a rule 𝑋 => 𝑍 , rules of the form 𝑋𝑌 => 𝑍 and 𝑋 => 𝑌𝑍 are treated as

redundant if their frequencies and confidences are identical with the rule 𝑋 => 𝑍.

Redundant rules contain information or knowledge that is less interesting to the

user. It becomes a crucial problem when the data is dense or correlated (such as in

statistical datasets) [166]. Eliminating redundant rules has received a great deal of

attention from various research communities [232, 233, 166, 223, 224, 75].

Zaki [232, 233] proposed an algorithm to remove redundant rules based on the

concept of minimal generators. A generator 𝑋′ of an itemset 𝑋 is a subset of

𝑋(𝑋′ ⊂ 𝑋) that has the same support as 𝑋(𝑠𝑢𝑝𝑝(𝑋) = 𝑠𝑢𝑝𝑝(𝑋′)). A generator of 𝑋

which has no subset generator of 𝑋 is called minimal generator of 𝑋. Then, each

minimal generator can be the left part or, respectively the right part of a non-

redundant association rule.

Further to the work by Zaki, Pasquier et al. [166] introduced two condensed

association bases to represent non-redundant association rules: Min-max

Approximate Basis and Min-max Exact Basis. Both Pasquier et al.’s and Zaki’s

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 35

approaches are based on frequent closed itemsets with Zaki using the mathematic

framework of Formal Concept Analysis (FCA), while Pasquier et al.’s approach

was based on Galois closure.

Xu and Li [223] improved the definitions suggested by Pasquier et al., proposing a

condensed representation called Reliable Exact Basis for exact association rules.

The rules in the Reliable Exact Basis are not only non-redundant but also more

succinct than the rules in Min-max Exact Basis. However, their work is focused on

reducing the redundancy in rules that have a confidence value of one, which only

offers a small reduction in redundancy for rules which have a confidence of less

than one.

Later, Xu, Li and Shaw [224] extended this work by introducing the concept of

approximate association rules, which are rules with confidence less than one. In

their work, they present a concise representation basis called Reliable Approximate

Basis to extract non-redundant approximate rules. They claimed that no

information or knowledge is lost and all approximate association rules can be

deduced from the Reliable Approximate Basis [224].

Another approach proposed to deal with redundant rules is based on the extraction

of non-derivable association rules [75]. The idea behind this approach is that if the

lower and upper bounds of a rule coincide and the confidence is uniquely

determined by the subrules, the rule can be pruned as redundant, or derivable,

without any loss of information. In this approach, proposed redundancy is tested by

deriving the absolute bounds of the rule’s confidence instead of estimating them as

is done in other approaches [75].

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 36

2.5 Extensions of Association Rule Mining

With the advances of association rule mining, a variety of extensions have been

proposed, such as the mining of spatio-temporal association rules [7, 127, 175, 87,

115], multi-level association rules [54, 66, 84, 190], negative association rules

[188, 221, 38] and fuzzy association rules [119]. This section reviews some of the

extensions of association rule mining, which are the main interests for this thesis,

including quantitative association rule mining, multi-level association rule mining

and temporal association rule mining.

2.5.1 Quantitative Association Rule Mining

The initial work on mining association rules introduced by Agrawal et al. [6, 3]

targeted databases consisting of categorical attributes only, that is, attributes

containing discrete and typically unordered data (e.g., gender, brand). Later, Srikant

and Agrawal [199] extended the categorical definition of association rules (which

are termed Boolean association rules (BARs)) and introduced quantitative

association rules (QARs) which involve either quantitative attributes or categorical

attributes. An example of a quantitative association rule would be:

{𝑎𝑔𝑒 = [25,35], 𝑔𝑒𝑛𝑑𝑒𝑟[𝑓𝑒𝑚𝑎𝑙𝑒]} => {𝑠𝑎𝑙𝑎𝑟𝑦 = [$50,000, $85,000]}

(𝜎 = 0.03, 𝛾 = 0.8)

QARs are more expressive and informative than BARs due to their ability to

represent a wide variety of real-life attributes. In the last decade, a lot of research

has been proposed aiming to improve the efficiency for mining such rules.

One common approach to mining QARs is to transform the task into conventional

BAR mining where values of quantitative or categorical attributes are mapped to

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 37

Boolean attributes and then algorithms are applied to mine QARs. In this approach,

a discretization process is often utilized to partition the values of attributes into

intervals and then combine adjacent intervals as necessary [124, 217, 147, 199].

Another QAR mining approach is based on statistical methods, in which the

consequent of a rule is a statistical measure (e.g., mean, variance) or an aggregate

(e.g., min, max) of a quantitative attribute. This type of rule is derived mainly to

provide a statistical view of the attributes, rather than giving the interval

information of the attributes. For instance, Aumann and Lindell [14] considered the

distribution of continuous data via standard statistical measures and provided a new

definition of quantitative association rules where the right-hand side (RHS) of a

rule expresses the distribution based measures of interestingness, such as the mean

or variance of the values of numeric attributes. One example of such a rule would

be:

𝑆𝑒𝑥 = 𝑓𝑒𝑚𝑎𝑙𝑒 𝑎𝑛𝑑 𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟 𝐷𝑒𝑔𝑟𝑒𝑒 = 𝑦𝑒𝑠 => 𝑚𝑒𝑎𝑛 𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000,

which states that the average salary for females with bachelor degrees is $50,000.

Webb [219] further extended this framework to include other statistical measures

such as minimum (min), maximum (max) and count. Furthermore, Zhang et al.

[234] introduced the concept of statistical quantitative rules (SQ rules) in which the

RHS can be any quantitative statistic that can be computed for the subset of data

satisfying the left-hand side (LHS) of a rule.

The third approach of QAR mining is optimization-based where numeric attributes

are optimized during the mining process. The term optimization was first used by

Fukuda et al. [69], who proposed an optimization criterion called gain. Gain takes

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 38

into account both the support and confidence of a rule and is defined as follows:

𝐺𝑎𝑖𝑛(𝐴 => 𝐵) = 𝑆𝑢𝑝𝑝(𝐴𝐵) − 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 × 𝑆𝑢𝑝𝑝(𝐴)

The authors also defined an association rule 𝑅 that has the form 𝐴𝑖 ∈ [𝑙𝑖, 𝑢𝑖] ^ 𝐶𝑝 =

> 𝐶𝑞, where 𝐴𝑖 is the i
th

 numeric attribute in the rule template from the left to the

right, and [𝑙𝑖, 𝑢𝑖] represents the whole domain of the i
th

 numeric attribute. 𝐶𝑝 and

 𝐶𝑞 contain only instantiated conditions. They proposed schemas to determine

values for variables 𝑙𝑖 and 𝑢𝑖 such that the confidence, support or gain of the rules

is maximized.

Later, the authors extended their work to handle rules containing two un-

instantiated numeric attributes on the LHS of a rule [68]. Furthermore, they

addressed the optimized support problem and optimized gain problem to allow

association rules to contain up to k disjunctions over uninstantiated numeric

attributes [180, 40].

In addition, Mata et al. [143] presented a tool to discover association rules in

numeric databases without the necessity of discretizing a priori, the domain of the

attributes while Ruckert et al. [184] proposed approaches to represent quantitative

association rules based on half spaces. Recently, QuantMiner [186] was introduced

which can dynamically discover “good” intervals in association rules by optimizing

both the support and the confidence.

2.5.2 Multi-level Association Rule Mining

Traditionally, association rule mining has been performed at the level of a single

concept or abstract [84, 83, 82]. However, in practice, transaction databases may

contain data with a hierarchical structure. One example is shown in Figure 2.6.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 39

Figure 2.6: Example Food Hierarchical Structure

Given such a food hierarchical structure, it might be difficult to find strong

associations among data items at low or primitive levels of abstraction. For

instance, a strong association between items “fat free milk” and “bread” may not be

found as they may occur in a very small fraction of the transactions. However,

consider the generalization of “fat free milk” to “milk”. It might be easier to find a

strong association rule like: {milk} => {bread}. Such rules, which reveal

relationships between items or attributes at different levels of conceptual hierarchy,

are termed multiple-level or multi-level association rules [86]. As shown in the

above example, multi-level association rule mining has the potential to discover

knowledge which may be ignored by the single-level approach.

There are two main issues regarding multi-level association rule mining. First, it is

often difficult to choose the proper support threshold(s) to determine frequent

itemsets for each level. One straightforward approach is using a uniform minimum

support for all levels. However, since items at lower levels of abstraction are

unlikely to occur as frequently as those at higher levels of abstraction, setting the

Food

Brown bread White bread

Bread

Butter

Dairy

Full cream milk

Milk

Fat free milk

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 40

support too low or too high may result in interesting associations being missed at

either high or low abstraction levels [86]. Second, the rules discovered through

multi-level association rule mining are dependent on the taxonomy that is built or

used. However, it is not trivial to choose or build a suitable ontology/taxonomy for

the database [84, 82].

In the literature, there have been a lot of works proposed aiming to improve the

efficiency of multi-level association rule mining, including Apriori based

approaches [198, 83], FP-growth based approaches [141, 155] and others, such as

those techniques based on statistics [160] and fuzzy set theory [97, 96, 107].

Sirkant and Agrawal [198] introduced a simple algorithm called “Basic” to mine

multi-level association rules. “Basic” utilizes the Apriori approach by adding the

ancestors of each item in a transaction into that transaction and then performing the

mining process across the expanded transactions. “Basic” is a slow algorithm and

the authors proposed two further algorithms to overcome this deficiency: Cumulate

and EstMerge. The Cumulate algorithm only adds ancestors that are in one (or

more) of the candidate itemsets being counted in the current pass and the EstMerge

algorithm utilizes sampling techniques to estimate the support of the candidate to

determine whether it is necessary to calculate their actual support [198].

Srikant and Agrawal’s approach [198] uses the support threshold across all the

levels, which may generate uninteresting rules if the threshold is set low or exclude

interesting rules at low levels if the threshold is set high [83]. To overcome this

drawback, Han and Fu [83] employed a different strategy which applies a variable

support count at different levels. In their work, they extended the Apriori algorithm

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 41

to generate strong multi-level association rules which are defined as follows [83]:

Definition 2.4 (Strong Multi-level Association Rule) A pattern is frequent in set 𝑆

at level 𝑙 if its support is no less than the 𝑚𝑖𝑛𝑠𝑢𝑝 for the corresponding level. Then

a rule “𝐴 => 𝐵/𝑆” is strong for a set 𝑆 if it satisfies the following conditions:

 all ancestors of 𝐴 and 𝐵 are frequent in their corresponding level.

 the support of 𝐴 ^ 𝐵 is frequent in the current level.

 the rule confidence is no less than the threshold in the current level.

The Apriori approaches for multi-level association rule mining suffer the same

bottlenecks as the original Apriori [6, 3], as discussed in Section 2.3.1. To

overcome the drawbacks, Mao [141] proposed an FP-growth based approach,

called Adaptive FP-growth (Ada-FP), which pushes various support constraints

into the mining process and is able to discover both inter-level frequent patterns

and intra-level frequent patterns. Furthermore, Ong et al. [155] proposed FP’-Tree,

which extends FP-growth to mine multi-level association rules with recurrent

items. Unlike Ada-FP, this approach builds a separate FP-tree for each concept

level that is being mined.

2.5.3 Temporal Association Rule Mining

With the mounting recognition of the value of temporal data, data modelling and

databases, an important research area has been how to mine temporal association

rules from both static and longitudinal/temporal data. A temporal association rule

(TAR) can be represented as a pair < AR, TE >, where AR is an association rule

and TE is a time expression belonging to AR [51].

Temporal association rule mining has the ability to mine the behavioural aspects of

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 42

(communities of) objects as opposed to simply mining rules that describe their

states at a point in time [128]. One example TAR is < "short of breath ~ asthma",

Days.Hours (6:10) >, which indicates that patients with symptoms of shortness of

breath will have symptoms of asthma from 6 to 10 o’clock every morning.

Several kinds of TARs have been proposed in the literature, some of which are

discussed in more detail in the following section.

2.5.3.1 Interval-Based Temporal Association Rule

In large databases, products may not necessarily exist throughout the whole time

when a database is gathered. Ale and Rossi [7] introduced the concept of lifetime

of members of an itemset. Each rule has an associated time frame, corresponding to

the lifetime of the items participating in the rule. Furthermore, Lee, Lin and Chen

[120] employed the concept of maximal common exhibition period (MCP) in their

Progressive-Partition-Miner (PPM) algorithm to discover general temporal

association rules in a publication database. Their algorithm first partitions the

publication database in light of exhibition periods of items and then progressively

accumulates the occurrence count of each candidate 2-itemset based on its intrinsic

partitioning characteristics. In addition, Rainsford and Roddick [175] proposed a

method to add temporal features to association rules by associating a conjunction

of binary temporal predicates that specify the relationships between the timestamps

of transactions.

2.5.3.2 Cyclic Temporal Association Rule

Association rules may also display regular hourly, daily, weekly, etc., variations

that have the appearance of cycles. For example, Hanau [90] discovered that every

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 43

18-24 months a big supply of pork for low prices was followed by a low supply for

high prices in the pig market in Europe in 1927.

Ozden et al. [157] defined a cyclic association rule as a rule which has the

minimum support and confidence at regular time intervals. Based on this definition,

a cyclic rule does not hold for the entire transactional database, but only for

transactional data in a particular periodic time interval. The authors proposed two

algorithms to mine cyclic rules. One is a sequential algorithm which uses existing

algorithms to discover association rules, utilizing several techniques to reduce the

running time, including cycle-pruning, cycle-skipping and cycle-elimination [157].

Another is an interleaved algorithm which consists of two steps [157]. In the first

step, the search space for large itemsets is reduced using cycle-pruning, cycle-

skipping and cycle-elimination and then in the second phase, the cyclic association

rules are calculated using the cycles and the support of the itemsets without

scanning the database.

2.5.3.3 Calendar-Based Temporal Association Rule

Ramaswamy et al. [177] considered the discovery of association rules that hold

during the time intervals described by a calendar algebraic expression. Later, Li et

al. [127] proposed a calendar schema to define a set of simple calendar-based

patterns. For example, given a calendar schema (year, month, day), a calendar-

based pattern within the schema might be (*, 6, 30), which represents the set of

time intervals each corresponding to the 30th day of a June. The notation * is a

wildcard denoting every arbitrary integer in the domain of the accordant attribute,

in this case, a year.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 44

Based on the definition of calendar schema, a calendric association rule is defined

as follows.

Definition 2.5 (Calendric Association Rule) A calendric association rule over

calendar schema 𝑅 is a pair (𝑟, 𝑒), where 𝑟 is an association rule and 𝑒 is a calendar

pattern on 𝑅.

Li et al. introduced two classes of calendric association rules [127]: Temporal

association rules w.r.t. full match which requires the rules to hold during every

interval in 𝑒, and temporal association rules w.r.t. relaxed match which requires the

rules to hold during a significant fraction of these intervals. In their work, they

extended the Apriori algorithm and developed two optimization techniques to

discover both classes of temporal association rules.

2.6 Mining over Association Rules

2.6.1 Overview of Higher Order Mining

The data used for data mining are typically assumed to be primary or raw data

captured by some application, cleaned and prepared according to the demands of

the mining algorithms [183]. For example, barcode scanning technologies are

widely employed to collect transactional data for market data analysis, while with

the advances of cloud technology, web browsing history data are stored and utilized

for data mining tasks, such as fault detection. However, primary data might not

always be available for data mining routines for the following reasons:

 Data ownership. Cooperating institutions that are interested in sharing

knowledge may not be willing to disclose their primary data. Thus in some

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 45

cases the rules are all that the researchers have on which to operate [183].

For example, Prodromidis et al. [173] pointed out that in fraud detection in

financial information systems, financial institutions are not willing to

disclose their own proprietary data due to competitive and confidentiality

considerations.

 Temporary or transient data. In some applications, primary data are only

available for a short time, such as stream data which are not stored. They

are encountered, processed in real time and deleted [70].

 Legal or confidentiality restrictions. There might be legal obligations or

confidentiality considerations applied to primary data, such as regulations

determining when the data records can be disclosed.

Further complexity is added by many data mining routines becoming heavily I/O

bound due to the fact that the volume of data requiring analysis is growing

disproportionately to the comparatively slower improvements in I/O channel

speeds which limit many of the benefits of the technology [128]. Methods of

reducing the amount of data have been discussed in the literature and include

statistical methods, such as sampling or stratification, reducing the dimensionality

of the data by, for instance, ignoring selected attributes, or by developing

incremental maintenance methods by analysing the changes to data only [55, 56].

However, these add to the processing complexity and cost thus achieving little

beyond transferring the problem to a later stage.

Based on the above observations and motivated by the increasingly frequent need

to define and practice data mining without the luxury of primary data, Roddick et

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 46

al. [183] introduced the paradigm of higher order mining (HOM) which is a form

of data mining that is applied over non-primary, derived data or patterns.

Definition 2.6 (Higher Order Mining) Let 𝑃𝑖 be a set of patterns or models

derived from a dataset 𝐷𝑖 . Given 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}, where 𝑛 > 1, higher order

mining discovers any new pattern or model 𝑃′ from 𝑃 through the use of data

mining methods.

As shown in the definition, HOM is the sub-field of knowledge discovery

concerned with mining over patterns/models derived from one or more large and/or

complex datasets. Since HOM discovers patterns from non-primary data, it thus

avoids several problems that traditional data mining techniques encounter and has

the following benefits [128]:

 the ability to combine mining strategies through the modular combination

of components

 the provision for the development of higher order explanations in

describing facts about data, particularly those describing changes over

time, location or some other dimension

 the comparatively faster execution time due to reduced volumes of data.

Higher order mining opens a window for changes in perspective for knowledge

discovery, from the analysis of data to the analysis of patterns [183]. There have

been many advances in this paradigm, including in the areas of pattern clustering

[80, 124, 34], pattern classification [11, 65, 72, 134], trend detecting [13, 48, 2, 91,

106, 145, 195, 196, 63], pattern change detection [73, 71, 72, 25] and pattern

maintenance [54, 55]. The following sections provide general descriptions of

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 47

related works on HOM over association rules.

2.6.2 Clustering Association Rules

Association rules, such as {𝑚𝑖𝑙𝑘} ^ {𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑} , are derived from

transactional databases. For non-transactional data, a record might be in a form like

(attribute = value) where the attribute is defined in the database schema and can be

either categorical or non-categorical. For example, we might have a rule like

{𝑎𝑔𝑒 = 40} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000} => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠}

However, when mining association rules from this type of non-transactional data,

we may find hundreds or thousands of rules corresponding to specific attribute

values. For example, the following three rules

{𝑎𝑔𝑒 = 40} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $50,000} => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠}

{𝑎𝑔𝑒 = 45} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $55,000} => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠}

{𝑎𝑔𝑒 = 50} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = $60,000} => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠}

might be better described as

{𝑎𝑔𝑒 = [40 − 50]} ^ {𝑠𝑎𝑙𝑎𝑟𝑦 = [$50,000 − $60,000]} => {𝑜𝑤𝑛ℎ𝑜𝑚𝑒 = 𝑦𝑒𝑠}

To handle this case, Lent et al. [124] introduced a clustered association rule as a

rule that is formed by combining similar, adjacent association rules to form a few

general rules where the set of (attribute = value) equalities are replaced by the set

of value ranges using inequalities.

Definition 2.7 (Clustered Association Rule) A clustered association rule is an

expression of the form

𝑋𝑐 => 𝑌𝑐

where 𝑋𝑐 and 𝑌𝑐 are items of the form (attribute = value) or (𝑏𝑖𝑛𝑖 ≤ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 <

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 48

𝑏𝑖𝑛𝑖+1) where a 𝑏𝑖𝑛 is the interval between attribute partitions and 𝑏𝑖𝑛𝑖 denotes the

lower bound for values in the 𝑖𝑡ℎ 𝑏𝑖𝑛.

Figure 2.7 shows the process of clustering association rules [124]. In this approach,

source data are taken in tuple form and the values of attributes from a continuous

domain are partitioned. Then a set of association rules is generated through a single

pass over the data using an association rule engine. Finally, all those two-attribute

association rules are clustered where the RHS of the rules satisfies its segmentation

criteria [124]. Lent et al.’s approach to the clustering problem is heuristic and

produces an efficient linear time approximation to an optimal solution. However,

Figure 2.7: Architecture of the Association Rule Clustering System

Binner

Association rule/engine

Segmentation criteria

Rule to bitmap
conversion/clustering

Verifier (cluster analysis)

Heuristic optimizer

Array of binned data

Record data

Association rules

Clustered association rules

test data

min. confidence

min. support

#of x-bins

#of y-bins

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 49

one drawback of this application is that it is limited to rules with two attributes in

the set of antecedents.

Toivonen et al. [210] proposed another approach for clustering association rules,

which defines the distance between two association rules as the number of rows

where the rules differ. The distance measure is then used to group all the rules into

appropriate clusters. In their work, the set of rules can be pruned by forming rule

covers, which are subsets of the original set of rules such that for each row in the

relation there is an applicable rule in the cover if and only if there is an applicable

rule in the original set. One of the limitations of this approach is that the distance

measures selected for rule clustering are somewhat arbitrary [211]. Moreover, it is

not clear how to describe the rule cluster concisely to the end-user since rules

belonging to the same cluster may have substantially different structures.

To improve upon the metric proposed by Toivonen et al. [210], Gupta et al. [80]

presented a new distance metric, called the conditional market-basket probability

(CMPB) distance, based on which an agglomerative clustering algorithm is

introduced for rule clustering. In their approach, the rules are embedded in a vector

space by multi-dimensional scaling and clustered using a self-organizing map

(SOM).

One of the domains for clustering association rules has been explorative mining.

Tuzhilin and Adomavicius [211] utilized the rule clustering techniques in the

analysis of microarray data in bioinformatics. In their approach, association rules

are clustered based on gene hierarchies (as specified by the domain expert) where

every rule cluster is uniquely represented by its aggregated rule (common to all

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 50

rules in that cluster). Also, unlike the traditional clustering methods, where the user

has only a limited control over the structure and sizes of resulting clusters, a

biologist has an explicit control over the granularity of the resulting rule groups

[211].

2.6.3 Classification of Association Rules

Associative classification (AC) integrates association rule mining and classification

to construct rule-based prediction models. Studies show that associative

classification can be used effectively to classify resources and achieve a high

precision compared with other sophisticated classifiers, like decision tree (DT),

C4.5, naive Bayes (NB) and support vector machine (SVM) [228]. Moreover, many

of the rules found by associative classification methods cannot be discovered by

traditional classification techniques [134].

In general, an AC algorithm operates in three main phases [227]:

 Rule generation. Association rules are generated using various association

rule mining techniques.

 Rule ranking. Rules are ranked according to defined parameters such as

confidence and support. The output of the second phase is the set of

classification association rules (CARs) which represent the final classifier

model.

 Classifier building and rule pruning. The classification model is utilized to

predict the class values on new unseen dataset (test data).

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 51

2.6.3.1 Rule Generation

Liu et al. [134] proposed one of the first algorithms to bring up the idea of using an

association rule for classification, which is called CBA. CBA uses an iterative

method which is similar to the Apriori algorithm to generate CARs with

consequents restricted to a class attribute [6]. The biggest drawback of this

approach is that since the database needs to be scanned many times, so the number

of rules increases exponentially, and more system resources are consumed.

Several AC algorithms have been proposed to overcome the deficiencies of CBA.

CBA (2) [136] tackles the problem of not generating CARs for minority class

labels in the training dataset while ACAC [98] employs support and all-confidence

[153] measures to select both frequent and mutual associated itemsets which

contribute to classification. ACN [117] extends the Apriori algorithm to mine a

relatively large set of negative association rules and then uses both positive and

negative rules to build a classifier. Kundu et al. [118] proposed a new CBA-like

algorithm called CARGBA, which merges rules generated from two steps. At the

first step, a set of high confidence rules of smaller length with support pruning is

generated using the Apriori algorithm, while at the second step rules with high

confidence and rules of higher length with support below minimum support are

also produced by using the Apriori algorithm but in a reverse manner.

Other approaches to improve the efficiency of CARs generation include ACCF

[126] which uses the frequent closed itemset approach to improve the searching for

frequent itemsets and ACCR [152], a metric measure of rules called “compactness”

that stores rule items with low support but high confidence to ensure that high

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 52

quality rules are kept. Furthermore, Quinlan and Cameron-Jones [174] proposed

the First Order Inductive Learner (FOIL). This learning strategy produces rules for

each class of cases in the training data. Yin and Han [228] proposed a greedy AC

algorithm called CPAR, which adopts the FOIL algorithm in generating the rules

from datasets. CPAR selects multiple literals and builds multiple rules

simultaneously. Also, it uses expected accuracy to evaluate rules and the best k

rules in prediction.

FP-growth like approaches are also employed in the classified rule generation

process. CMAR [125] adopts a variant of FP-growth to find the rules and stores

them efficiently in a prefix tree structure, namely the CR-tree. Baralis and Garza

[18] proposed a variation of the rule extraction part of the CMAR algorithm,

utlizing lazy pruning techniques in their 𝐿3(Live and Let Live) algorithm. Later,

they proposed 𝐿𝐺
3 which is an extension of 𝐿3 and can provide a wider selection of

rules obtained by allowing lower support thresholds [17].

2.6.3.2 Rule Ranking

Ranking generated rules is crucial since usually rules with higher ranks are tested

first when predicting test cases and the resulting classifier accuracy depends

heavily on rules used during the prediction phase. Most of the AC algorithms order

the generated rules using a group of parameters such as confidence and support,

where rules with high confidence and support receive higher ranks.

In CBA [134], rules are sorted according to antecedent length as well as confidence

and support, that is, if two rules have the same confidence and supports, their

antecedent lengths are compared and the rule with lower antecedent length receives

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 53

a higher rank. This sorting procedure is utilized by many AC algorithms such as

CBA (2) [136], CARGBA [118] and ACCF [126].

In addition to the parameters that are used in the CBA algorithm, Thabtah et al.

[207] proposed a new parameter called class distribution which represents the

number of times a class occurs in the training dataset. Baralis and Garza [18]

introduced a different sorting procedure in their 𝐿3 lazy AC algorithm where the

rules are sorted in decreasing length order, which is the opposite of the CBA rule

ranking procedure.

2.6.3.3 Building Classifiers and Pruning

Lastly, the classification model is utilized to predict class values on new unseen

datasets (test data). In AC, a classifier consists of a set of rules that is built from the

training dataset. A major concern about AC algorithms is that they produce a

relatively high number of rules that build the classifier [125], which slows the

classification process. Also, some of these rules may be useless for the classifier

and redundant. Redundant rules need to be discarded to increase the effectiveness,

efficiency and accuracy of the classifier.

Liu et al. [134] proposed a database coverage technique to reduce the size of the

classifier space. The technique checks whether each rule covers at least one object

of the training dataset. If so, the rule is added to the classifier and its corresponding

training object is deleted from the training dataset. This method has been utilized

by many AC algorithms, including CBA (2) [136], CMAR [125], CAAR [222],

ACN [117], and ACCF [126].

In the database coverage technique, since the objects covered by the rules are all

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 54

deleted, the selection of other rules derived from the deleted objects may be

affected. To overcome this problem, Jiang et al. [103] proposed a rule pruning

algorithm based on indiscernibility relationship. Baralis and Garza [18] introduced

further improvements in rule pruning where a lazy pruning technique is utilized to

discard from the classifier only the rules that do not correctly classify any training

case. Antonie and Zaïane [11] introduced the concept of conflicting rules, which is

defined as follows. Given two rules 𝑅1: 𝑋 => 𝐶1 and 𝑅2: 𝑋 => 𝐶2, 𝑅1 and 𝑅2 are

conflicting rules because they hold the same antecedent (𝑋) and belong to different

class labels 𝐶1and 𝐶2. In their approach, all these duplicates or conflicting rules are

eliminated.

Thabtah et al. [208] introduced the Looking at the Class (LC) prediction method,

which selects the class with the highest average confidence value among the set of

rules in the classifier for prediction. Abu-Mansour et al. [1] evaluated the

correctness of the rule’s class with that of the training data when covering the

training case. Their test results show that the number of rules generated by the

developed pruning procedure is usually less than those of lazy pruning and

database coverage heuristics.

2.6.4 Rule Changing Monitoring

The world around us changes constantly. In recent years, methods and techniques

have emerged to monitor the changes in association rules over time or location to

help businesses to detect, assess and respond to changing conditions rapidly and

intelligently.

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 55

2.6.4.1 Frameworks

Several frameworks have been proposed that can handle changes in association

rules. Ganti et al. [73, 71, 72] presented a framework for measuring changes via

two models. The difference between the two models is quantified as the amount of

work (e.g., difference in supports) required to transform one model into the other.

Spiliopoulou and Roddick [197] provided a framework for modelling higher order

association rules as temporal sequences of conventional rules obtained from

different mining sessions. Mining sessions are defined as a 6-tuple, providing a

signature to which higher order reasoning algorithms can refer. Higher order

mining routines are then able to operate over temporal sequences of rulesets.

Later Baron and Spiliopoulou [21] proposed a temporal rule model, generic rule

model (GRM), to model both the content and the statistics of a rule as a temporal

object. A rule 𝑅 is a temporal object with the following signature [21]:

𝑅 = (𝐼𝐷, 𝑞𝑢𝑒𝑟𝑦, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑠𝑡𝑎𝑡𝑠, 𝑏𝑜𝑑𝑦, ℎ𝑒𝑎𝑑)

where 𝐼𝐷 is an identifier, ensuring that rules with the same 𝑏𝑜𝑑𝑦 (antecedent) and

ℎ𝑒𝑎𝑑 (consequent) have the same 𝐼𝐷. The 𝑞𝑢𝑒𝑟𝑦 is the data mining query, while

the 𝑠𝑡𝑎𝑡𝑠 (statistics) depend on the rule type. For example, an association rule

A => B with an identifier ID𝑖 , support σ = 0.10 and confidence γ = 0.60

produced by query Q at time stamp τ is modelled as

R = (ID𝑖 , Q, τ, [σ = 0.10, γ = 0.60], A, B).

Using the GRM to represent patterns, Baron, Spiliopoulou and Günther [24]

proposed a general framework for pattern monitoring and change detection. In their

work, the KDD process is divided into two phases: the mining phase and the

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 56

monitoring phase. In the mining phase, data from the first period is mined and

interesting rules and patterns are identified. In the monitoring phase, rules to be

monitored are firstly identified and statistics of those rules are then extracted and

compared to predefined thresholds. If the statistics of a rule violate the user given

thresholds, it is removed from the rule base [24].

Furthermore, based on the GRM, Baron and Spiliopoulou [22] introduced Pattern

Monitor (PAM), a framework for observing changes to the behaviour of a web

site’s visitors. In PAM, a change detector mechanism is employed to identify

changes to a rule’s statistic which exhibit a particular strength. Statistical

significance is used to assess the strength of pattern changes.

Based on the idea of detecting interesting changes in a dataset by analysing the

support and confidence of association rules along the time axis, Böttcher et al. [33]

presented a framework that pro-actively and automatically discovers interesting

trends and stabilities in the support and confidence histories of association rules. In

this approach, a time stamped dataset is partitioned into intervals along the time

axis. Association rule discovery is then applied to each of these subsets. This yields

sequences or histories of support and confidence for each rule, which can be

analysed further in three layers: structural analyser, change analyser and

interestingness evaluator, respectively [33].

2.6.4.2 Representation and Interpretation of Discovered Rules

The changes in rules can be represented and interpreted in different forms based on

the nature of data and the requirements of the data mining task.

Active data mining [4] attempts to represent and query the history pattern of the

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 57

discovered association rules which are continuously generated at a desired

frequency. The discovered rules from different time periods are collected into a rule

base. The history, that is, ups and downs in support or confidence over time, is

represented and defined using shape operators. The user can then query the rule

base by specifying some history specifications.

Liu et al. [133] attempted to detect “fundamental changes” in a set of association

rules, that is, changes that are responsible for all changes seen in the set. The

proposed approach first generates rules and in the second phase it identifies

changes (rules) that cannot be explained by the presence of other changes (rules).

In their work, a statistical 𝑋2 test for homogeneity of support and confidence is

employed to evaluate rule changes.

Liu et al. [135] counted the significant rule changes across the temporal axis. The

dataset is first partitioned into a few blocks or sub-datasets corresponding to the

time periods (e.g., years, months or weeks) in which they were collected. Then

association rules are mined from each block. Finally, the supports and confidences

of the rules in these time periods are inspected to find various types of important

rules, including [135]:

 stable rules - rules that do not change a great deal over time and, thus, are

more reliable and can be trusted

 trend rules - rules that indicate some underlying systematic trends of

potential interest.

Similarly, Au and Chan [13] defined three types of an association rule based on the

changes of support or confidence value of each rule, including:

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 58

 a changed rule, if its support (confidence) in the period is different from its

support (confidence) in the previous period

 a perished rule, if its support and/or confidence become less than the user-

specified thresholds in the period, and

 an added rule, if its support and confidence become greater than or equal

to the user-specified thresholds in the period.

In their work, they used linguistic variables and linguistic terms to represent the

changes in discovered association rules and used fuzzy decision trees to discover

the changes [13]. The fuzzy decision trees can then be converted to fuzzy meta-

rules which are used to predict any change in the association rules in the future.

Chen and Petrounias [52] focused on the identification of valid time intervals for

previously discovered association rules. They proposed a methodology that finds

all adjacent time intervals during which a specific association holds, and

furthermore all interesting periodicities that a specific association has.

2.6.5 Rule Maintenance

Data change over time, such as the continuous changes due to addition, deletion

and modification of the contained data. Therefore, rules at a point in time may

become invalid while new rules may come into existence and wait to be detected.

It is challenging to maintain and update discovered association rules if the database

where the rules are generated is updated. Algorithms for efficiently updating the

association rules have been proposed in the literature [55, 56, 187, 209, 25, 139].

These algorithms take the set of association rules in the old database into account

and use this knowledge to remove itemsets that no longer exist in the updated

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 59

database and to add new itemsets which were not in the set of old transactions but

now exist in the updated database.

Updating association rules was first introduced by Cheung et al. [54, 55]. They

proposed the FUP (Fast UPdate) algorithm to deal with insertion of new transaction

data. FUP is based on the Apriori algorithm and achieves significant efficiency

because it avoids re-computations for itemsets which were already found to be

large during mining of the database.

There are two main drawbacks of FUP. One is that it can only handle insertion of

new transaction data and the other is it scans a database multiple times. The first

issue has been ameliorated by Cheung et al. [56], who extended the work from FUP

to handle deletion as well as addition. In order to reduce the number of database

scans, Ayan et al. [15] proposed the Update With Early Pruning (UWEP) algorithm

which scans the existing database at most once and the new database exactly once.

It employs a dynamic look-ahead pruning strategy in updating the existing large

itemsets by detecting and removing those that will no longer remain large after the

contribution of the new set of transactions. This results in a much smaller number

of candidates in the computation of new large itemsets.

When to update rules is an important question. Lee and Cheung [121] proposed an

algorithm to estimate the difference between the association rules in a database

before and after it is updated. The estimated difference can then be used to

determine whether to update the mined association rules. If the estimated difference

is sufficiently large, then it is time to update the mined association rules to discover

and learn the new rules and discard the old ones. If the estimated difference is

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 60

considered small, then there is no need to spend the resources to update the rules,

as the rules in the original database are still a good approximation for those in the

updated database. Similarly, DELI (Difference Estimations for Large Itemsets)

determines when to update rules using approximate upper/lower bounds on the

amount of changes in the set of newly introduced association rules, where a low

bound denotes small changes in association rules which require no maintenance

[122].

Rainsford et al. [176] proposed a temporal windowing technique for incremental

maintenance of association rules, which regards transactions outside a user-defined

time window as too old and thus uninteresting. Their approach finds strong and

near-strong association rules based on definitions of strong support and near-strong

support threshold levels as well as the corresponding strong and near-strong

confidence levels. Those near-strong rules might be become strong association

rules during the next time window.

2.7 Summary

This chapter described the Knowledge Discovery in Databases (KDD) process and

data mining. More particularly, it focused on association rule mining and higher

order mining techniques.

Association rule mining is a data mining technology used to discover knowledge

about patterns and associations between items of transactions in a database.

Association rule mining is a two-stage process: the frequent itemset discovery stage

and the rule generation stage. This chapter detailed different algorithms developed

for rapid and efficient frequent itemset generation. Also, various methods have

CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 61

been proposed in the literature to increase the efficiency of the rule generation

process. Two of them were studied in this chapter: constraint-based association rule

mining and redundancy rule reduction. Furthermore, this chapter reviewed some of

the extensions of association rule mining, including quantitative association rule

mining, multi-level association rule mining and temporal association rule mining.

Being a sub-field of data mining, HOM is concerned with mining over

patterns/models derived from one or more large and/or complex datasets. This

chapter explored HOM techniques briefly with a focus on works related to mining

over association rules, including rule clustering, rule classification, rule change

monitoring and rule maintenance.

HOM opens a new window for knowledge discovery from mining from the source

to mining from the patterns/models. However, the overall potential of HOM is still

largely unexploited and worthy of further research [183].

Chapter 3

Ruleset Pattern and Horace

Since the search for rules that can inform business decision making is the ultimate

goal of data mining technology, problems such as the interpretation of

interestingness for discovered rules is an important issue. However, as discussed in

Chapter 1, association rules are commonly supplied in a low, instance-level format.

Such low-level rules, while useful, provide knowledge only about the coincidence

of elementary values and can be termed zero-order rules. Higher order semantics

can be derived when sets of rules are inspected to determine patterns of interest

between rules.

This chapter provides formal definitions of patterns in discovered association rules

and presents Horace, a novel approach for ruleset pattern discovery.

CHAPTER 3. RULESET PATTERN AND HORACE 63

3.1 Preliminaries

Given a rule 𝑟𝑖 with antecedent 𝑋, consequent 𝑌, support 𝜎 and confidence 𝛾, it is

denoted as:

𝑟𝑖: 𝑋 => 𝑌(𝜎, 𝛾)

where 𝑟𝑖 is the name of the rule and 𝑋 ∪ 𝑌 the itemset of 𝑟𝑖. For brevity, there are

the following notations:

 𝑟𝑖. 𝑎𝑐: the antecedent of 𝑟𝑖, i.e., 𝑟𝑖. 𝑎𝑐 = 𝑋

 𝑟𝑖. 𝑐𝑠: the consequent of 𝑟𝑖, i.e., 𝑟𝑖. 𝑐𝑠 = 𝑌

 𝜎(𝑟𝑖): the support of 𝑟𝑖

 𝛾(𝑟𝑖): the confidence of 𝑟𝑖

 𝑃(𝑋 ∪ 𝑌): the number of transactions containing the itemset of 𝑟𝑖

Definition 3.1 (Parent and Sibling Rule) Given two rules 𝑟𝑖 and 𝑟𝑗 , if 𝑟𝑖. 𝑐𝑠 =

𝑟𝑗 . 𝑐𝑠 ^ 𝑟𝑖. 𝑎𝑐 ∩ 𝑟𝑗 . 𝑎𝑐 = ∅, that is, they have the same consequent but disjointed

antecedent, 𝑟𝑖 is a sibling of 𝑟𝑗 and vice versa. These are denoted as 𝑆𝑖𝑏(𝑟𝑖, 𝑟𝑗).

Given multiple sibling rules, they are denoted as 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛).

If 𝑟𝑖. 𝑐𝑠 = 𝑟𝑗 . 𝑐𝑠 ^ 𝑟𝑖. 𝑎𝑐 𝑟𝑗 . 𝑎𝑐 , that is, they have the same consequent but the

antecedent of 𝑟𝑗 contains the antecedent of 𝑟𝑖, 𝑟𝑗 is the parent of 𝑟𝑖, and 𝑟𝑖 a child of

𝑟𝑗, which are denoted as 𝑃𝑎𝑟(𝑟𝑗, 𝑟𝑖).

Given a parent rule 𝑟𝑝 with a set of sibling rules as its children, 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛),

they are denoted as 𝑃𝑎𝑟(𝑟𝑝, 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛)).

CHAPTER 3. RULESET PATTERN AND HORACE 64

Example 3.1 To illustrate, consider the ruleset below:

𝑟1: {𝑎} => {𝑐}(𝜎 = 0.60, 𝛾 = 0.80)

𝑟2: {𝑏} => {𝑐}(𝜎 = 0.70, 𝛾 = 0.75)

 𝑟3: {𝑎, 𝑏} => {𝑐}(𝜎 = 0.10, 𝛾 = 0.60)

|𝐷| = 1000

Figure 3.1: Sample Ruleset

Since 𝑟1. 𝑐𝑠 = 𝑟2. 𝑐𝑠 = {𝑐} , 𝑟1. 𝑎𝑐 ∩ 𝑟2. 𝑎𝑐 = {𝑎} ∩ {𝑏} = ∅, 𝑟1 and 𝑟2 are two

siblings. Also, since 𝑟1. cs = 𝑟3. cs = {c} , 𝑟1. ac = {a} ⊂ 𝑟3. ac = {a, b} , 𝑟3 is the

parent of 𝑟1. Similarly, we find that 𝑟3 is a parent of 𝑟2. Therefore, the three rules in

Figure 3.1 can be denoted as 𝑃𝑎𝑟(𝑟3, 𝑆𝑖𝑏(𝑟1, 𝑟2)).

Definition 3.2 (Relative Support) Given a set of sibling rules

𝑅 = 𝑆𝑖𝑏(𝑟1, 𝑟2, … , 𝑟𝑛), the relative support
1
 𝜌 of rule 𝑟𝑖 ∈ 𝑅 is defined as follows:

𝜌(𝑟𝑖) =
𝑃(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑐𝑠) − 𝑄(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑐𝑠)

|𝐷|

where 𝑄(𝑟𝑖. 𝑎𝑐 ∪ 𝑟𝑖. 𝑎𝑐) denotes the number of transactions containing the

antecedent and consequent of other rules in 𝑅 in all transactions containing the

antecedent and consequent of 𝑟𝑖.

Relative support represents the occurrence of the antecedent of a sibling rule

without the existence of other sibling rules’ antecedents, when occurring together

with their consequent. To illustrate, let us take the following example.

Example 3.2 Consider the relative support of the two sibling rules 𝑟1 and 𝑟2 in the

example shown in Figure 3.1. According to the definition of support, we have:

1
 This concept builds on the work by Shillabeer and Pfitzner[193]

CHAPTER 3. RULESET PATTERN AND HORACE 65

 𝜎(𝑟1) =
𝑃(𝑟1.𝑎𝑐∪𝑟1.𝑐𝑠)

|𝐷|
 (1)

 𝜎(𝑟2) =
𝑃(𝑟2.𝑎𝑐∪𝑟2.𝑐𝑠)

|𝐷|
 (2)

 𝜎(𝑟3) =
𝑃(𝑟3.𝑎𝑐∪𝑟3.𝑐𝑠)

|𝐷|
 (3)

Thus, we have

𝑃(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) = 𝑃({𝑎, 𝑐})

 = 𝜎(𝑟1) × |𝐷|

 = 0.60 × 1000 = 600 (4)

Similarly,

 𝑃(𝑟2. 𝑎𝑐 ∪ 𝑟2. 𝑐𝑠) = 700 (5)

 𝑃(𝑟3. 𝑎𝑐 ∪ 𝑟3. 𝑐𝑠) = 100 (6)

Result (4) shows there are 600 transactions containing items 𝑎 and 𝑏, which are the

antecedent and consequent of 𝑟1 respectively. In order to calculate 𝜌(𝑟1), we need

to calculate 𝑄(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) which is the number of transactions containing the

antecedent and consequent of its sibling, 𝑟2, from result (4). Since 𝑟2. 𝑎𝑐 = {𝑏},

𝑟2. 𝑐𝑠 = {𝑐} and result (4) contains all transactions with {𝑎, 𝑐}, it is clear that

 𝑄(𝑟1. 𝑎𝑐 ∪ 𝑟1. 𝑐𝑠) = 𝑃({𝑎, 𝑏, 𝑐}) = 100 (7)

and therefore,

 𝜌(𝑟1) = 0.5 (8)

 𝜌(𝑟2) = 0.6 (9)

That is, item 𝑎 occurs in 50% of transactions together with item 𝑐 without the

existence of item 𝑏 , and 𝑏 occurs in 60% of transactions together with item 𝑐

without the existence of item 𝑎.

3.2 Defining Patterns in Rules

Let 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} where 𝑛 > 1 be a set of rules. A pattern in 𝑅 is denoted as

CHAPTER 3. RULESET PATTERN AND HORACE 66

𝑅𝑃 = {𝑅𝑠𝑒𝑡|𝑃},

where 𝑅𝑠𝑒𝑡 = {𝑟|𝑟 ∈ 𝑅}, 𝑃 is the condition(s) the 𝑅𝑠𝑒𝑡 holds. For brevity, we call

𝑅𝑃 a ruleset pattern.

A condition in a ruleset pattern is in the following form:

< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > 𝑜𝑝 < 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > , or

< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > 𝑜𝑝 < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 >

The < 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 > is the attribute of the participating rule, including its name, the

antecedent, consequent, support, confidence, and relative support. 𝑜𝑝 is normally

one of the operators {=, <, >, ≥, ≤, ≠} . The < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > is a constant value

defined by end users or domain experts. Clauses can be arbitrarily connected by the

Boolean operators 𝐴𝑁𝐷, 𝑂𝑅and 𝑁𝑂𝑇 to form a general selection condition.

Definition 3.3 (Competitor Pattern) Given user-specified thresholds 𝑚𝑖𝑛𝐻 and

𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a competitor pattern is denoted as:

𝐶𝑜𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗))|

𝜌(𝑟𝑖) ≥ 𝑚𝑖𝑛𝐻,

𝜌(𝑟𝑗) ≥ 𝑚𝑖𝑛𝐻,

𝜎(𝑟𝑝) ≤ 𝑚𝑎𝑥𝐿,

𝜎(𝑟𝑝) < 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)}

As shown in the above definition, a competitor pattern contains a parent rule 𝑟𝑝

with two children rules 𝑟𝑖 and 𝑟𝑗. The pattern requires that the relative support of

𝑟𝑖 and 𝑟𝑗 is higher than or equal to the user-specified threshold 𝑚𝑖𝑛𝐻 and the

support of the parent rule is lower than or equal to threshold 𝑚𝑎𝑥𝐿. It also requires

that the itemsets of rules 𝑟𝑖 and 𝑟𝑗 are statistically negatively correlated.

The competitor pattern illustrates the relationship between the antecedents of rules

CHAPTER 3. RULESET PATTERN AND HORACE 67

𝑟𝑖 and 𝑟𝑗 , where one suppresses the other when occurring together with their

consequent, resulting in unexpected low support. To illustrate, let us take the

following example.

Example 3.3 Given 𝑚𝑖𝑛𝐻 = 0.4, 𝑚𝑎𝑥𝐿 = 0.2 and take the three rules from Figure

3.1. Since 𝜌(𝑟1) = 0.5 > 𝑚𝑖𝑛𝐻 , 𝜌(𝑟2) = 0.6 > 𝑚𝑖𝑛𝐻 and 𝜎(𝑟3) = 0.1 < 𝑚𝑎𝑥𝐿 ,

the first three conditions are satisfied. Furthermore, we have
𝜎(𝑟3)

𝜎(𝑟1)×𝜎(𝑟2)
=

0.1

0.6×0.7
=

0.238 < 1, thus 𝜎(𝑟3) < 𝜎(𝑟1) × 𝜎(𝑟2). So the last condition is also met and we

have found a matched instance which reveals that items 𝑎 and 𝑏 suppress each

other when occurring together with 𝑐.

Definition 3.4 (Twoway-Catalyst Pattern) Given user-specified thresholds 𝑚𝑖𝑛𝐻

and 𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a twoway-catalyst pattern is denoted as:

𝐶𝑎2𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗))|

𝜌(𝑟𝑖) ≤ 𝑚𝑎𝑥𝐿,

𝜌(𝑟𝑗) ≤ 𝑚𝑎𝑥𝐿,

𝜎(𝑟𝑝) ≥ 𝑚𝑖𝑛𝐻,

𝜎(𝑟𝑝) > 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)}

As shown in the above definition, the first three conditions require that 𝜌(𝑟𝑖) and

𝜌(𝑟𝑗) are lower than or equal to threshold 𝑚𝑎𝑥𝐿 and the support of the parent rule

𝑟𝑝 is higher than or equal to threshold 𝑚𝑖𝑛𝐻. The last condition requires that the

itemsets of the two sibling rules 𝑟𝑖 and 𝑟𝑗 should be statistically positively

correlated.

The twoway-catalyst pattern is similar to the competitor pattern except that it

illustrates a positive relationship between the antecedents of the rules 𝑟𝑖 and 𝑟𝑗 ,

CHAPTER 3. RULESET PATTERN AND HORACE 68

where one facilitates the other when occurring together with their common

consequent.

Definition 3.5 (Threeway-Catalyst Pattern) Given user-specified thresholds

𝑚𝑖𝑛𝐻 and 𝑚𝑎𝑥𝐿, where 𝑚𝑖𝑛𝐻 ≥ 𝑚𝑎𝑥𝐿, a threeway-catalyst pattern is denoted as:

𝐶𝑎3𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑠𝑖𝑏(𝑟𝑖, 𝑟𝑗 , 𝑟𝑘))|

𝜌(𝑟𝑖) ≤ 𝑚𝑎𝑥𝐿,

𝜌(𝑟𝑗) ≤ 𝑚𝑎𝑥𝐿,

𝜌(𝑟𝑘) ≤ 𝑚𝑎𝑥𝐿,

𝜎(𝑟𝑝) ≥ 𝑚𝑖𝑛𝐻,

𝜎(𝑟𝑝) > 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗) × 𝜎(𝑟𝑘)}

Threeway-catalyst patterns illustrate the relationship between the antecedents of

three sibling rules, which seldom occur individually, but more commonly occur

together with their consequent.

Table 3.1: Sample Ruleset Patterns

Pattern Ruleset Description
Competitor

Pattern

{𝑐𝑜𝑙𝑎} => {𝑐ℎ𝑖𝑝𝑠}

{𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒} => {𝑐ℎ𝑖𝑝𝑠}

{𝑐𝑜𝑙𝑎, 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒} => {𝑐ℎ𝑖𝑝𝑠}

Customers tend to buy 𝑐ℎ𝑖𝑝𝑠 and

𝑐𝑜𝑙𝑎 or 𝑐ℎ𝑖𝑝𝑠 and 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒

individually, but they seldom buy

𝑐ℎ𝑖𝑝𝑠, 𝑐𝑜𝑙𝑎 and 𝑙𝑒𝑚𝑜𝑛𝑎𝑑𝑒

together.

Twoway

-Catalyst

Pattern

{𝑚𝑖𝑙𝑘} => {𝑏𝑟𝑒𝑎𝑑}

{𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑}

{𝑚𝑖𝑙𝑘, 𝑏𝑢𝑡𝑡𝑒𝑟} => {𝑏𝑟𝑒𝑎𝑑}

When customers buy 𝑏𝑟𝑒𝑎𝑑, they

tend to buy 𝑚𝑖𝑙𝑘 and 𝑏𝑢𝑡𝑡𝑒𝑟

together but not individually.

Threeway

-Catalyst

Pattern

{𝑡𝑢𝑟𝑘𝑒𝑦} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠}

{𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠}

{ℎ𝑎𝑚} => {𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠}

{𝑡𝑢𝑟𝑘𝑒𝑦, 𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠, ℎ𝑎𝑚} =>

{𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠}

𝑇𝑢𝑟𝑘𝑒𝑦, 𝑐𝑟𝑎𝑐𝑘𝑒𝑟𝑠 and ℎ𝑎𝑚 are

frequently bought together with

𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠 𝑐𝑎𝑟𝑑𝑠.

CHAPTER 3. RULESET PATTERN AND HORACE 69

These three types of patterns in rulesets widely exist in the real world. Table 3.1

represents a descriptive list of the patterns. Ruleset patterns may be exhibited

within many domains, for instance, in human resources where the productivity of a

team can be affected by internal strife between its members. Also, in medicine,

exposure to different conditions may result in an increased probability of illness. In

addition, patterns in rulesets may combine to form more complex patterns. The

conjunction of ruleset patterns is outside the scope of this thesis.

3.3 The Horace Approach

A straightforward approach to finding ruleset patterns is to search for such patterns

from rules generated from other data mining techniques. However, this approach is

inefficient for the following reasons.

Firstly, association rule mining often generates a large number of rules. To tackle

the problem, support and confidence are used to prune those rules which do not

meet the thresholds. However, setting too high or too low thresholds of support and

confidence may not obtain satisfactory rules. If the threshold is set too high, the

number of rules may be insufficient and some important associations may be

filtered out. On the other hand, if the threshold is set too low, a huge number of

rules will be generated and the rule generation process becomes intractable.

Secondly, the support or confidence might not be required in ruleset patterns. For

example, confidence is not specified in patterns defined in this chapter. Therefore,

when searching a ruleset for such patterns, the ruleset is incomplete as it only

contains rules which satisfy the threshold of minimum confidence, resulting in

inaccurate results.

CHAPTER 3. RULESET PATTERN AND HORACE 70

3.3.1 Overview of Horace

To overcome the above drawbacks, this thesis proposes a novel tree-based

approach, called Horace, for efficient and effective ruleset pattern discovery.

Frequent pattern or prefix trees, also known as tries, are generally used for frequent

itemset generation [47], such as FP-tree [88, 89], COFI tree [59] and Patricia trie

[171]. Since the frequent pattern or prefix trees are (generally speaking) isomorphic

with the resulting ruleset, it is possible and more efficient to search such data

structures directly for patterns.

Firstly, there is no need to generate all rules as a preliminary step, which

significantly reduces the computational complexity and temporal overhead.

Secondly, once the trees have been built, there is no pruning process required to

remove rules which do not satisfy the threshold support and confidence.

Information held in the trees is complete, ensuring the completeness and accuracy

of searching results.

Source data
FP-growth or other
suitable algorithms

Zero order
rules

Higher order
rules

FP-tree or pre-fix
trees

Ruleset pattern
library

Pattern language

Figure 3.2: Overview of Horace

Searching algorithms

CHAPTER 3. RULESET PATTERN AND HORACE 71

As shown in Figure 3.2, there are three key parts to the Horace framework: the FP-

tree or pre-fix trees, a ruleset pattern library with an associated pattern language

and a set of pattern search algorithms.

In this thesis, FP-tree [88] is employed for Ruleset Pattern searching
2
. The ruleset

pattern library and its associated pattern language, as shown in Figure 3.3, play an

important part in Horace. The ruleset pattern library stores a set of ruleset patterns,

which can be defined, retrieved and maintained by end users or domain experts

through a pattern language. The pattern language, which consists of a rule pattern

definition language (RPDL) and a ruleset pattern query language (RPQL), provides

the following functionalities:

 Pattern creation. Users can define patterns in rules based on their own

definition of interesting.

 Pattern retrieval. Patterns can be retrieved from the ruleset pattern library

2
 The author of the thesis believes other tree-structures can also be utilized, although further

experiments are needed to confirm this.

Ruleset pattern
library

Users/Domain
experts

Pattern
language

Figure 3.3: Overview of Ruleset Pattern and the Pattern Language

Ruleset pattern

Create

Alter
Delete
View

Save

Retrieve

Searching algorithms

Input

CHAPTER 3. RULESET PATTERN AND HORACE 72

for viewing, maintenance or pattern searching.

 Pattern maintenance. This includes functions such as updating existing

ruleset patterns or deleting unused ruleset patterns.

At the core of Horace, there is a set of searching algorithms to find all matches of a

given ruleset pattern held in the frequent pattern or prefix trees. Horace represents

patterns in rulesets using a novel ruleset pattern tree (RP-tree). A RP-tree has a set

of prefix subtrees as the children of the root. Each node consists of three fields: the

item, a node link and a count, where the node link points to the next node

containing the same item in the RP-tree. Given the structure of the two trees, RP-

tree and FP-tree, the search algorithms search the FP-tree for all matches with the

RP-tree.

3.4 Related Work

With a few notable exceptions, data mining research has largely focused on the

extraction of knowledge directly from the source data [128]. Current work directly

in the area of this thesis is relatively limited.

Roddick et al. [183] discussed higher order mining more generally, proposing a list

of higher order patterns. The work presented in this thesis differs from their work in

the following aspects. Firstly, higher order patterns describe patterns from the

previously induced patterns and models, such as association rules, clusters,

classification rules and so on. In contrast, this thesis focuses on patterns in

association rules only. In addition, in their work, higher order patterns are

indicative and loosely described. In contrast, this thesis provides formal definitions

CHAPTER 3. RULESET PATTERN AND HORACE 73

for patterns in association ruleset. Also, a tree-based approach for ruleset pattern

discovery which cannot be handled by their work is proposed in this thesis.

Association rule mining can be performed under the guidance of various kinds of

constraints provided by the user [67, 29, 159, 151, 199, 200]. For example, meta-

rules allow users to specify the syntactic form of the rules they expected. The work

presented in this thesis is different from constraint-based association rule mining.

Firstly, ruleset patterns reveal interesting relationships in the antecedents or

consequents of participating rules. They are not constraints to be applied to the rule

generation process. Secondly, in constraint-based association rule mining,

association rules are generated based on constraints specified, while in the process

of ruleset pattern discovery, the phase of association rule generation is not required.

Rule templates were first studied by Klemettinen et al. [108]. In their work, a rule

template is defined by users to specify what items are in a rule, and what

restrictions are applied on support and/or confidence. Those rules which do not

match the template are uninteresting and thus are pruned out. Klemettinen’s work is

different from the work presented in this thesis as rule templates are employed to

find interesting rules from source data, while this thesis defines patterns of interest

between sets of rules.

Teng [206] studied disassociation rules, which are rules that capture the negative

relationship between two set of items. For example, the presence of X and Z is not

a good predictor for the presence of Y. Dissociation rules are close to the

competitor pattern as this chapter defined it. However, Teng’s work focuses on the

mechanism for learning dissociation from source data while the work presented

CHAPTER 3. RULESET PATTERN AND HORACE 74

here aims to define and facilitate searching of patterns in rules.

In data mining, the usefulness of association rules is strongly limited by the huge

amount of delivered rules. Post-processing methods, like pruning, summarizing,

grouping, or visualization, are proposed to improve the selection of discovered

rules [142, 16, 237]. The work presented in this thesis is different from those post-

processing methods as ruleset patterns are normally defined before the mining

process starts. Also, in the work presented herein, Horace searches the frequent

pattern or prefix trees for ruleset patterns and therefore rule generation and post-

processing are not involved.

3.5 Summary

Association rules are commonly supplied in a low-level or instance-level format.

Higher order patterns can be discovered in a set of rules based on users’ definitions

of interesting. This chapter provides formal definitions for patterns in rules, named

as ruleset patterns.

A straightforward approach to finding ruleset patterns is to search from association

rules generated from other data mining techniques. However, it is problematic due

to two factors. One is the complexity of the process of rule generation and the other

is that the completeness of rulesets is heavily affected by the setting of support and

confidence. To overcome these shortcomings, this chapter proposes a proof-of-

concept system, Horace, which incorporates a tree-based approach for efficient and

effective ruleset pattern discovery. The basic idea behind it is that since frequent

pattern or prefix trees contain all of the information represented by the (larger)

rulesets generated from them, it is firstly possible and secondly more efficient to

CHAPTER 3. RULESET PATTERN AND HORACE 75

search such an intermediate data structure for patterns.

There are three key parts to the Horace framework: the frequent pattern or prefix

trees, an RP library with an associated pattern language and a set of pattern search

algorithms. A brief overview of the key components of Horace is provided in this

chapter. Detailed implementation of the searching algorithms and experiment

results are presented in Chapter 4 and the ruleset pattern language is presented in

Chapter 5.

Chapter 4

Searching Ruleset Patterns Using

FP-Trees and RP-Trees

Chapter 3 outlines Horace, a framework for ruleset pattern discovery. The core

component of Horace is an efficient searching mechanism to find matches of a

ruleset pattern. Horace represents ruleset patterns using a novel ruleset pattern tree

(RP-tree). The searching algorithms then search the FP-tree for all matches of the

RP-tree.

The following section reviews the FP-tree and Section 4.2 provides a detailed

description of the new data structure (RP-tree) to represent ruleset patterns. Section

4.3 presents two searching algorithms and the experiment results are discussed in

Section 4.4. Section 4.5 concludes the chapter.

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 77

4.1 FP-Tree

FP-tree [88] is a compact data structure that contains the complete set of

information held in a database relevant to frequent pattern mining. FP-tree stores a

single item at each node, and includes a support count and additional links to

facilitate processing. These links start from a header table and link together all

nodes in the FP-tree which store the same item. Details of the FP-tree construction

were discussed in Section 2.3 in Chapter 2.

4.2 The Ruleset Pattern Tree (RP-Tree)

Horace represents ruleset patterns using a novel tree structure, ruleset pattern tree

(RP-tree). To illustrate the construction of a RP-tree, let us first examine an

example.

Example 4.1 Given a database 𝐷, user-specified thresholds 𝑚𝑖𝑛𝐻 and 𝑚𝑎𝑥𝐿 and a

competitor pattern 𝐶𝑜𝑃𝑎𝑡𝑡 containing three rules as follows:

𝑟𝑖: {𝑏} => {𝑎}

𝑟𝑗: {𝑐} => {𝑎}

 𝑟𝑝: {𝑏, 𝑐} => {𝑎}

then the pattern 𝐶𝑜𝑃𝑎𝑡𝑡 might be:

𝐶𝑜𝑃𝑎𝑡𝑡 = {𝑃𝑎𝑟(𝑟𝑝, 𝑆𝑖𝑏(𝑟𝑖, 𝑟𝑗))|

𝜌(𝑟𝑖) ≥ 𝑚𝑖𝑛𝐻,

𝜌(𝑟𝑗) ≥ 𝑚𝑖𝑛𝐻,

𝜎(𝑟𝑝) ≤ 𝑚𝑎𝑥𝐿,

𝜎(𝑟𝑝) < 𝜎(𝑟𝑖) × 𝜎(𝑟𝑗)}

A compact data structure can be designed based on the following observations:

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 78

 A list of itemsets in 𝐶𝑜𝑃𝑎𝑡𝑡 can be obtained after we scan it. We can then

generate an ordered list of items in those itemsets based on the number of

their occurrences (which can be registered as frequencies).

 For common items which exist in two itemsets, we might be able to merge

them using one prefix structure if items in 𝐶𝑜𝑃𝑎𝑡𝑡 are sorted in their

frequency descending order.

With the above observations, we construct a RP-tree for 𝐶𝑜𝑃𝑎𝑡𝑡 as follows. Firstly,

we scan the pattern once to obtain the list of itemsets in the ruleset pattern and

denote the list as L, where L = [{c, a}, {b, a}, {b, c, a}]. Also, we generate the set

of ordered items in L based on their frequency in descending order and denote it as

I, i.e., I = {a(3), b(2), c(2)}, where the number in () indicates the frequency of the

item in the list of itemsets.

Secondly, the root of the RP-tree is created with a label “T”. Then, we go through

each itemset in L and insert them as follows. Firstly, we insert the itemset of the

parent rule, which is {a, b, c}, resulting in the first branch of the tree, as shown in

Figure 4.1(a). Then, we insert the second itemset in L, which is {a, b}. Since all

items in {a, b} share a common prefix (a, b) with the existing path (a, b, c), no new

branch is created as shown in Figure 4.1(b). Finally, the process proceeds to the

third itemset, namely, {a, c}. Since only item a in this itemset share a common

prefix with the existing path (a, b, c), a new branch is created. In addition, to

facilitate tree traversal, a node link is created, which points to nodes with the same

item-name, that is, the two “c” nodes. The resultant RP-tree is shown as Figure

4.1(c).

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 79

Based on this example, a RP-tree can be defined as follows:

Definition 4.1 (RP-Tree) A RP-tree is a tree structure consisting of one root which

is labelled “T”, and a set of prefix subtrees as the children of the root. Each node

in the prefix subtree consists of three fields: the item, a node link and a count,

where the node link points to the next node containing the same item in the RP-

tree.

Algorithm 4.1: RP-Tree Construction

1: Input: A ruleset pattern 𝑝

2: Output: A RP-tree

3: scan each rule in 𝑝, do the following:

4: a) set 𝐿 to be the list of itemsets in 𝑝

5: b) set 𝐼 to be the sorted items in 𝐿 in their frequency count descending order

6: create root 𝑇

7: for each itemset 𝑠 in 𝐿, starting from the itemset of the parent rule, do

8: insert-tree(𝑠, 𝑇, 0)

9: end for

10: insert-tree(itemset 𝑠, treeNode 𝑛, int 𝑝𝑜𝑠)

11: if 𝑝𝑜𝑠 < 𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ then

12: if 𝑛. 𝑐ℎ𝑖𝑙𝑑 == 𝑛𝑢𝑙𝑙 or 𝑛. 𝑐ℎ𝑖𝑙𝑑.item-name ≠ 𝑠[𝑝𝑜𝑠].item-name then

13: create new node 𝑛′, set 𝑛′. 𝑖𝑡𝑒𝑚 = 𝑠[𝑝𝑜𝑠], 𝑛. 𝑐ℎ𝑖𝑙𝑑 = 𝑛′ and the node-link

of n’ points to the nodes with the same item-name of n’

14: end if

15: insert-tree(𝑠, 𝑛. 𝑐ℎ𝑖𝑙𝑑, 𝑝𝑜𝑠 + +)

16: end if

Based on this definition, the RP-tree construction algorithm is outlined in

Algorithm 4.1. As shown in line 3 to line 5, there is only one scan required to build

(a) Insert {a, b, c}

Td:

1

 a

b

c

b

a

c c

a

b c

T T

(b) Insert {a, b} (c) Insert {a, c}

T

Figure 4.1: Sample RP-Tree Construction

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 80

a RP-tree which generates the list of itemsets (L) in the ruleset pattern and the

ordered list of items (I) in L. Starting from the itemset of the parent rule, each

itemset in L is then inserted through a function called insert-tree (as shown in lines

10 to 16).

Given an itemset s, the function inserts each item based on their order in I. If the

node the item will be inserted into has a child and the item-name of the child node

is the same as that of the inserted item, it proceeds to the next node. Otherwise, a

new child node is added with a node-link pointing to the nodes with the same item-

name. The function is recursively executed until all itemsets in L are inserted.

After construction, a language is required to describe the RP-tree. A RP-tree is

defined as a collection of tuples <node, parent, [Nchildren]>, where Nchildren is

the collection of the node’s children from left to right. In addition, the set of

conditions the ruleset pattern holds and a label (denoted as desc), which is an

instantiated description of the pattern, can be imposed over the definition. Thus the

tuples which are constructed for all non-leaf RP-tree nodes of the RP-tree in Figure

4.1(c) are:

< 𝑇, , [𝑎] >

< 𝑎, 𝑇, [𝑏, 𝑐] >

< 𝑏, 𝑎, [𝑐] >

𝜌({𝑎, 𝑏}) ≥ 𝑚𝑖𝑛𝐻,

𝜌({𝑎, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,

𝜎({𝑎, 𝑏, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,

𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}),

𝑑𝑒𝑠𝑐: "Competitor pattern: " + 𝑏 + "," + 𝑐

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 81

4.3 Algorithm Development

Given the structure of the two trees, RP-tree and FP-tree, in this section, two

Searching Ruleset Patterns using FP-tree (SRPFP) algorithms are proposed to

search the FP-tree for matches of the RP-tree.

4.3.1 The SRPFP-a Algorithm

The SRPFP-a algorithm (as shown in Algorithm 4.2) provides a mechanism for

tree searching, which substitutes RP-tree nodes with the items from the FP-tree

header table.

Algorithm 4.2: SRPFP-a Algorithm

1: Input: FP-tree 𝑓𝑝, RP-tree 𝑟𝑝

2: Output: Set of matched instances of 𝑟𝑝 𝑅𝑃𝑠𝑒𝑡

3: set 𝐼 to be the items in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟 in their support descending order

4: RP-mine (𝑟𝑝. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑)

5: RP-mine (RPtreeNode 𝑛𝑜𝑑𝑒)

6: for each item 𝑖 in 𝐼 do

7: 𝑛𝑜𝑑𝑒.item-name = 𝑖.item-name

8: if 𝑛𝑜𝑑𝑒. 𝑙𝑖𝑛𝑘 ≠ 𝑛𝑢𝑙𝑙
9: 𝑛𝑜𝑑𝑒. 𝑙𝑖𝑛𝑘.item-name = 𝑖.item-name

10: end if

11: if 𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑 == 𝑛𝑢𝑙𝑙 then

12: calculate support count for nodes in branches of 𝑛𝑜𝑑𝑒. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑 from 𝑓𝑝

13: if !isValid (𝑛𝑜𝑑𝑒.root.child, 𝑟𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) then

14: return

15: else

16: 𝑅𝑃𝑠𝑒𝑡.Add(𝑛𝑜𝑑𝑒.root.child)

17: end if

18: else

19: RP-mine (𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑)

20: end if

21: end for

As the RP-tree’s leftmost branch contains all items in the parent rule, SRPFP-a

requires a single pass over this branch for search purposes. For each node in this

parent rule branch, all other nodes representing the same item are accessible

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 82

through the node links. The collection of itemsets that terminate with a specific

item is efficiently obtained through this structure.

During the process to calculate support, SRPFP-a visits the relevant FP-tree

branches by following the link of the specific item in the header table. If a visited

branch contains the parent rule’s itemset, the support of the itemset increases by

adding the support count of the visited node in the branch. If there is no parent

rule’s itemset in the branch and it contains a child rule’s itemset, the relative

support of the itemset increases by adding the support count of the visited node. If

there is a parent rule’s itemset in the branch and the branch contains more than one

child rule’s itemsets, those itemsets are not independent of each other in that branch

so the support count of the visited node will not be counted according to the

definition of relative support.

Item|Count

 (b) FP-tree

b: 6

c:2

d:1

d:1 d:1

c:4

e:1 e:1

b 6

c 6

d 3

e 2

a 10

a:10

Header Table

z

x

z

y

T

𝜌({𝑥, 𝑦}) ≥ 𝑚𝑖𝑛𝐻,
𝜌({𝑥, 𝑧}) ≥ 𝑚𝑖𝑛𝐻,

𝜎({𝑥, 𝑦, 𝑧}) ≤ 𝑚𝑎𝑥𝐿,
𝜎({𝑥, 𝑦, 𝑧}) < 𝜎({𝑥, 𝑦}) × 𝜎({𝑥, 𝑧})

 (a) RP-tree(Competitor Pattern)

 null

Figure 4.2: Searching Algorithm Illustration (SRPFP-a)

Illustration

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 83

Example 4.2 To illustrate, consider the example shown in Figure 4.2, which

contains a competitor pattern tree (RP-tree) and an FP-tree. Given that 𝑚𝑖𝑛𝐻 =

0.4, 𝑚𝑎𝑥𝐿 = 0.2 and |𝐷| = 10, the algorithm starts with node ‘x’ in the RP-tree.

Each node in the RP-tree will be replaced by its corresponding value from the FP-

tree header table.

Starting with item ‘a’, only one branch ends with ‘a’, and a support count of 10 is

obtained from the header table. The process continues, moving to the next node in

the traversal, ‘y’. The node ‘y’ is replaced by all items in the header table, except

‘a’. Starting with item ‘b’, a branch is generated from the RP-tree that ends with ‘b’

and also contains ‘a’, which is {a, b}. Following the FP-tree link from ‘b’, all

branches that contain {a, b} are found. The support count, which is 6, is thus

obtained. The process advances to ‘z’, which is replaced with each item in the FP-

tree header table except ‘a’ and ‘b’.

Starting with ‘c’, it generates a list of branches in the RP-tree that contain ‘c’ and

have ‘a’ or ‘b’ in their parental path, specifically {a, b, c} and {a, c}. The support

count of {a, b, c} and {a, c} are obtained, which are 2 and 6 respectively. Since it

is the last node of the parent rule branch, a condition check will be performed for

the three related itemsets, {a, b, c}, {a, b} and {a, c}. The relative support of {a, b}

(0.4) and {a, c} (0.4) are calculated. Since 𝜎({𝑎, 𝑏, 𝑐}) = 0.2 = 𝑚𝑎𝑥𝐿, 𝜌({𝑎, 𝑐}) =

0.4 = 𝑚𝑖𝑛𝐻, and 𝜌({𝑎, 𝑏}) = 0.4 = 𝑚𝑖𝑛𝐻, the first three of the conditions for the

competitor pattern are met. Furthermore, since
𝜎({𝑎,𝑏,𝑐})

𝜎({𝑎,𝑏})×𝜎({𝑎,𝑐})
=

0.2

0.6×0.6
= 0.56 <

1, and 𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}), all of the conditions of the pattern have

been met. Therefore, a matched instance of the RP-tree has been found.

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 84

The algorithm then progresses to ‘d’. Branches containing ‘d’ that have ‘a’ or ‘b’ in

their parental path are {a, b, d} and {a, d}. The support count of {a, b, d} and

relative support of {a, d} are obtained, namely, 𝜎({𝑎, 𝑏, 𝑑}) = 0.2, 𝜌({𝑎, 𝑑}) = 0.1.

Since 𝜌({𝑎, 𝑑}) = 0.1 < 𝑚𝑖𝑛𝐻, it is invalid and thus is pruned. The process

continues until all nodes in the leftmost branch of the pattern tree have been

substituted.

The complexity of the SRPFP-a algorithm is 𝑂(
𝑛!

(𝑛−𝑘)!𝑘!
), where 𝑛 is the number of

frequent items in an FP-tree and 𝑘 is the number of distinct items in a RP-tree. The

performance of SRPFP-a is heavily affected by the value of 𝑛 and 𝑘 . With an

increase in 𝑛 and 𝑘, the computational expense becomes high.

In addition, no pruning strategy is employed during the tree node substitution

process, which is less efficient. For example, in the above example, when node x

and y are substituted, SRPFP-a is not able to check the relative support of the

itemset represented by the tree path as it cannot be calculated unless all itemsets of

the ruleset patterns are identified. Therefore, itemsets with invalid relative support

are used for further processing, which adds unnecessary computation time.

4.3.2 The SRPFP-b Algorithm

To overcome the drawbacks of the SRPFP-a algorithm, SRPFP-b is proposed,

which provides a more efficient searching mechanism to deal with complex FP-

trees and RP-trees. The SRPFP-b algorithm (as shown in Algorithm 4.3) consists of

two phases: kp-itemset generation (where kp is the length of the itemset of the

parent rule) and RP-tree instance generation. At the kp-itemset generation step,

SRPFP-b finds all valid kp-itemsets from the FP-tree. At the second step, it

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 85

constructs a RP-tree instance for each itemset returned from the previous step

which is then validated against the conditions associated with the ruleset pattern.

Algorithm 4.3: SRPFP-b Algorithm

1: Input: FP-tree 𝑓𝑝, RP-tree 𝑟𝑝

2: Output: Set of matched instances of 𝑟𝑝 𝑅𝑃𝑠𝑒𝑡

3: set 𝐼 to be the sorted items in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟 in their support ascending order

4: for each item 𝑖 in 𝐼 do

5: set 𝑆 = RP-growth (𝑓𝑝, 𝑖, |𝑟𝑝. 𝑝𝑎𝑟𝑒𝑛𝑡|, 𝑟𝑝. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

6: for each itemset 𝑠 in 𝑆 do

7: sort items in 𝑠 in their support descending order in 𝑓𝑝. ℎ𝑒𝑎𝑑𝑒𝑟

8: set 𝑟𝑝′ = RP-Substitution (𝑟𝑝. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑, 𝑠, 0)

9: if !isValid(𝑟𝑝′, 𝑟𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) then

10: return

11: else

12: 𝑅𝑃𝑠𝑒𝑡.Add(𝑟𝑝′. 𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑)

13: end if

14: end for

15: end for

16: RP-growth (FP-Tree 𝑇𝑟𝑒𝑒, node 𝑎, int 𝑙𝑒𝑛, condition 𝑐)

17: if 𝑇𝑟𝑒𝑒 contains a single path 𝑃

18: for each combination (denoted as 𝑞) of the nodes in the path 𝑃 do

19: generate pattern 𝑞 ∪ 𝑎 with |𝑞 ∪ 𝑎| == 𝑙𝑒𝑛 and condition c is met

20: end for

21: else

22: for each 𝑎𝑖 in the header of 𝑇𝑟𝑒𝑒 do

23: generate pattern 𝑞 = 𝑎𝑖 ∪ 𝑎 with |𝑞| == 𝑙𝑒𝑛 and condition 𝑐 is met

24: construct 𝑞′s conditional pattern base and 𝑞′s conditional FP-tree 𝑇𝑟𝑒𝑒_𝑞

25: if 𝑇𝑟𝑒𝑒_𝑞 ≠ ∅ then

26: call RP-growth (𝑇𝑟𝑒𝑒_𝑞, 𝑞, 𝑙𝑒𝑛 − −, 𝑐)

27: end if

28: end for

29: end if

30: RP-Substitution(node 𝑛, itemset 𝑠, int 𝑖𝑛𝑑𝑒𝑥)

31: if 𝑖𝑛𝑑𝑒𝑥 > 𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then

32: calculate support count of 𝑠 from 𝑓𝑝

33: end if

34: 𝑛. 𝑖𝑡𝑒𝑚 = 𝑠[𝑖𝑛𝑑𝑒𝑥]
35: if 𝑠. 𝑙𝑖𝑛𝑘 ≠ 𝑛𝑢𝑙𝑙 then

36: 𝑛. 𝑙𝑖𝑛𝑘. 𝑖𝑡𝑒𝑚 = 𝑠[𝑖𝑛𝑑𝑒𝑥]
37: end if

38: RP-Substitution (𝑛. 𝑐ℎ𝑖𝑙𝑑, 𝑠, 𝑖𝑛𝑑𝑒𝑥 + +)

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 86

4.3.2.1 kp-Itemset Generation

In this step, SRPFP-b employs a function called RP-growth to find all valid kp-

itemsets from the FP-tree. RP-growth is a variation of the FP-growth algorithm [88,

89] with the following two main differences: (1) compared to FP-growth which

generates all frequent itemsets, RP-growth only generates kp-itemsets; (2) FP-

growth employs the minimum support threshold to ensure only frequent itemsets

are returned. In contrast, RP-growth does not require minimum support and kp-

itemsets might not be frequent. The above differences are reflected by the changes

in lines 16, 19 and 23 respectively in Algorithm 4.3.

Example 4.3 To illustrate, let us take the example shown in Figure 4.3, which

contains a twoway-catalyst pattern tree (RP-tree) and an FP-tree. The initial

parameter values are 𝑚𝑖𝑛𝐻 = 0.4, 𝑚𝑎𝑥𝐿 = 0.2 and |𝐷| = 10. Since the itemset of

the parent rule ({x, y, z}) has length 3, the algorithm firstly finds all 3-itemsets

Item|Count

 (b) FP-tree

Figure 4.3: Searching Algorithm Illustration (SRPFP-b)

b:7

c:6

d:4

e:1

d:1 b 7

c 6

d 6

a 10

a:10

Header Table

z

x

y

T

 e:1

e 2

𝜌({𝑥, 𝑦}) ≤ 𝑚𝑎𝑥𝐿,
𝜌({𝑥, 𝑧}) ≤ 𝑚𝑎𝑥𝐿,

𝜎({𝑥, 𝑦, 𝑧}) ≥ 𝑚𝑖𝑛𝐻,
𝜎({𝑥, 𝑦, 𝑧}) > 𝜎({𝑥, 𝑦}) × 𝜎({𝑥, 𝑧})

(a) RP-tree (Twoway-catalyst Pattern)

 null

d:1

z

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 87

from the FP-tree that satisfy the condition associated with the parent rule

(𝜎({𝑥, 𝑦, 𝑧}) ≥ 𝑚𝑖𝑛𝐻), that is, the support count should be greater than 𝑚𝑖𝑛𝐻 ×

|𝐷| = 0.4 × 10 = 4.

Starting from item ‘e’ in the header table, since the support count of ‘e’ is 2 which

is less than the minimum support count, the process moves to the next item in the

header table, which is ‘d’. Item ‘d’ occurs in two branches of the FP-tree, which are

(a, b, c, d: 4) and (a, b, d: 1). Taking ‘d’ as the suffix, the corresponding two prefix

paths are (a, b, c: 4) and (a, b: 1) which forms the conditional pattern base. There is

one branch in the conditional FP-tree and we obtain all 3-itemsets, namely, {a, b,

d}(5), {a, c, d}(4) and {b, c, d}(4). They all are valid as their support counts are

greater than or equal to the minimum support count threshold associated with the

parent rule.

The process then proceeds to item ‘c’. Similarly, we obtain the branch containing

item ‘c’, which is (a, b, c: 6). There is only one branch and we obtain the valid 3-

itemset {a, b, c}(6).

Since items ‘a’ and ‘b’ are the first two items in the header table, they are not

considered as there will be no branches terminating at these items with length

greater than 2. Therefore, we have the following valid 3-itemsets: {a, b, d}(5), {a,

c, d}(4), {b, c, d}(4) and {a, b, c}(6).

4.3.2.2 RP-Tree Instance Generation

Given a set of itemsets L, SRPFP-b constructs a RP-tree instance for each itemset

in L. For an itemset s in L, nodes in the leftmost branch of the RP-tree, that is, the

parent rule branch, are substituted by items in s based on descending order of their

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 88

frequency. Nodes in branches other than the leftmost branch of the RP-tree are

substituted through the node link in the RP-tree. Since the parent rule branch

contains all items in the ruleset pattern, the process ensures that all nodes in the

RP-tree are substituted. Validation occurs when the substitution process is

completed, where the support and relative support count are calculated through the

node link structure in the FP-tree.

Example 4.4 For illustration, consider the RP-tree and FP-tree in Figure 4.3 as an

example. As indicated in the previous section, the set of 3-itemsets are {a, b, d}(5),

{a, c, d}(4), {b, c, d}(4) and {a, b, c}(6).

Starting with itemset (a, b, d: 5), node x, y and z in the leftmost branch are

substituted with item ‘a’, ‘b’ and ‘d’ respectively. The process is shown in Figure

4.4. As shown in Figure 4.4(d), when the node z in the leftmost branch is

substituted with item ‘c’, the node in another branch with the same item-name is

substituted by following the node link.

After substituting all nodes in the RP-tree, the process validates the generated RP-

tree instance against the conditions associated with the pattern tree. The support

(a) Original RP-tree

Td:

1

 x

y

z

y

a

z z

a

b c

T T

(b) Substitute node

x with item a
(c) Substitute node y

with item b

T

a

b

c

c
z z z

T

(d) Substitute node z

with item c

Figure 4.4: RP-Tree Substitution Process

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 89

and relative support are calculated from the FP-tree through the node link structure,

that is, 𝜎({𝑎, 𝑏, 𝑑}) = 0.5, 𝜎({𝑎, 𝑏}) = 0.7, 𝜎({𝑎, 𝑑}) = 0.6, 𝜌({𝑎, 𝑏}) = 0.2 and

𝜌({𝑎, 𝑑}) = 0.1. Since 𝜎({𝑎, 𝑏, 𝑑}) = 0.5 > 𝑚𝑖𝑛𝐻, 𝜌({𝑎, 𝑏}) = 0.2 = 𝑚𝑎𝑥𝐿,

𝜌({𝑎, 𝑑}) = 0.1 < 𝑚𝑎𝑥𝐿, the first three conditions are met. Also, since

𝜎({𝑎, 𝑏, 𝑑})

𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑑})
=

0.5

0.7 × 0.6
= 1.19 > 1,

we have

𝜎({𝑎, 𝑏, 𝑑}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑑}).

All conditions have been met and we have found a matched RP-tree instance.

Compared to the step of kp-itemset generation, the step to construct a RP-tree

instance is less complex. On one hand, the RP-tree is usually much smaller than the

FP-tree and the substitution of the nodes in the parent rule branch is

straightforward. On the other hand, during the validation process, it is more

efficient to calculate the support count and relative support count through the node

link structure in the FP-tree. Therefore, the entire performance of SRPFP-b is

determined by the kp-itemset generation step.

4.4 Experiments and Analysis

To demonstrate the concept, a prototype of Horace was implemented in Java and

several experiments were conducted on both synthetic and real datasets. All tests

were done on a 2.6 GHz PC with 2GB of main memory running Windows 7. This

implementation is shown to be tractable and able to reveal patterns in rulesets of

potential interest that would otherwise not be reported.

A synthetic data generator was built based on the work reported by Agrawal and

Srikant [6] to produce large quantities of transactional data. Table 4.1 shows the

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 90

parameters for data generation, along with their default values and the range of

values on which experiments were conducted. Table 4.2 presents an overview of

some generated synthetic data.

Three real datasets were used to test SRPFP-a and SRPFP-b. Their details are

shown in Table 4.3. The retail data was sourced from an anonymous Belgian retail

supermarket store [37]. The data were collected over three non-consecutive periods

between 1999 and 2000. The two datasets BMS-WebView-1 and BMS-WebView-2

were taken from KDDCUP 2000 [113]. They contain several months’ worth of

click stream data from two e-commerce web sites.

Figure 4.5 shows the patterns tested, while Table 4.4 shows detailed description.

Table 4.1: Synthetic Data Parameters

Name Description Default Value Range of Values
|I| Number of Items 10 10-100
|T| Number of Transactions 5,000 5,000-200,000
|P| Number of Patterns 50 50-200
TS Average Size of Transaction 5 5-10
PS Average Size of Pattern 5 5-10

Table 4.2: Synthetic Data

Data |I| |T| |P| |TS| |PS|
Syn1 100 10,000 20 5 5
Syn2 200 50,000 150 10 10
Syn3 300 100,000 250 10 15

Table 4.3: Real Datasets

Data Retail-Data BMS-WebView-1 BMS-WebView-2
NumberofTrans 88,163 59,602 77,512
Distinct Items 16,470 497 3,340
Max TransSize 67 267 161

Average TransSize 15 2.5 5.0

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 91

Table 4.4: Description of Test Pattern

Test

Pattern
Pattern

Type
Conditions Description

TP1
Competitor

pattern

𝜌({𝑎, 𝑏}) ≥ 𝑚𝑖𝑛𝐻,
𝜌({𝑎, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,
𝜎({𝑎, 𝑏, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,
𝜎({𝑎, 𝑏, 𝑐}) < 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐})

Item 𝑏 competes

with item 𝑐 when

occurring together

with item 𝑎.

TP2
Twoway-

catalyst

pattern

𝜌({𝑎, 𝑏}) ≤ 𝑚𝑎𝑥𝐿,
𝜌({𝑎, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,
𝜎({𝑎, 𝑏, 𝑐}) ≥ 𝑚𝑖𝑛𝐻,
𝜎({𝑎, 𝑏, 𝑐}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐})

Item 𝑏 facilitates

item 𝑐 when

occurring together

with item 𝑎.

TP3
Threeway-

catalyst

pattern

𝜌({𝑎, 𝑏}) ≤ 𝑚𝑎𝑥𝐿,
𝜌({𝑎, 𝑐}) ≤ 𝑚𝑎𝑥𝐿,
𝜌({𝑎, 𝑑}) ≤ 𝑚𝑎𝑥𝐿
𝜎({𝑎, 𝑏, 𝑐, 𝑑}) ≥ 𝑚𝑖𝑛𝐻,
𝜎({𝑎, 𝑏, 𝑐, 𝑑}) > 𝜎({𝑎, 𝑏}) × 𝜎({𝑎, 𝑐}) × 𝜎({𝑎, 𝑑})

Items 𝑏, 𝑐, 𝑑

facilitate each other

when occurring

together with item

𝑎.

TP4
Competitor

pattern

𝜌({𝑎, 𝑚, 𝑛}) ≥ 𝑚𝑖𝑛𝐻,
𝜌({𝑎, 𝑝, 𝑞}) ≥ 𝑚𝑖𝑛𝐻,
𝜎({𝑎, 𝑚, 𝑛, 𝑝, 𝑞}) ≤ 𝑚𝑎𝑥𝐿,
𝜎({𝑎, 𝑚, 𝑛, 𝑝, 𝑞}) < 𝜎({𝑎, 𝑚, 𝑛}) × 𝜎({𝑎, 𝑝, 𝑞})

Items 𝑚 and 𝑛

compete with items

𝑝 and 𝑞 when

occurring together

with item 𝑎.

4.4.1 Results and Performance Study

The experimental results demonstrate that both SRPFP-a and SRPFP-b provide a

sound and useful means of finding complex RP-tree patterns within an FP-tree.

Test results, as shown in Table 4.5, demonstrate that the two algorithms are able to

reveal patterns of potential interest based on users definition of interesting.

(a)TP1

Figure 4.5: Test Patterns

a

m

d b b c c

T

a

d

c

a

T

c

b c
n

p

T

(b)TP2 (c)TP3 (d)TP4

a

q

q

p

T

c

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 92

Table 4.5: Test Results

Dataset

min-

sup

FP-tree Info TP1 TP2 TP3 TP4

Depth Branches Nodes
minH

(%)

maxL

(%)
Cnt

minH

(%)

maxL

(%)
Cnt

minH

(%)

maxL

(%)
Cnt

minH

(%)

maxL

(%)
Cnt

Retail

Data
0.01 12 12,142 31,037 1.0 0.1 6 0.5 0.3 1 1.0 0.5 0 0.5 0.5 48

BMS-

WebView1
0.01 31 5,584 16,909 0.5 0.5 11 0.8 0.1 52 0.5 0.5 0 0.8 0.2 10

BMS-

WebView2
0.005 28 14,044 48,571 0.5 0.5 5 0.5 0.5 0 0.5 0.5 0 0.8 0.2 8

Syn1 0.2 46 5,842 96,159 1.0 0.5 54 1.0 0.5 32 1.0 0.5 44 1.0 0.5 10

Syn2 0.05 23 17,426 127,463 1.0 0.1 144 0.2 0.2 132 1.0 0.5 3 0.8 0.2 2

Syn3 0.1 20 11,699 52,897 0.5 0.5 97 0.5 0.5 2 0.5 0.5 0 0.5 0.5 270

Patterns TP1, TP2 and TP4 exist in both the real and synthetic datasets, while pattern

TP3 exists in two synthetic datasets
3

. Presented below are some examples

discovered from Retail-Data (each item is denoted as a character c plus a number):

{c39, c2925} (𝜌 = 1.1%),

{c39, c1146} (𝜌 = 1.1%),

 {c39, c2925, c1146} (𝜎 = 0.009%)

Description: item c2925 competes with c1146 when they occur together with item

c39.

{c14945, c101, c236} (𝜌 = 0.5%),

 {c271, c270, c236} (𝜌 = 0.8%),

 {c14945, c101, c271, c270, c236} (𝜎 = 0.005%)

Description: itemset {c14945, c101} competes with itemset {c271, c270} when

they occur together with item c236.

{c39, c682}(𝜌 = 0.24%),

{c48, c682}(𝜌 = 0.14%),

 {c39, c48, c682}(𝜎 = 0.53%)

Description: item c39 facilitates item c48 when they occur together with c682.

3
The author of the thesis believes TP3 exists in the real word, although further experiments with

more real datasets are needed to confirm this.

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 93

 (a) Number of Frequent Items vs. Time

(c) Number of Distinct RP-tree Nodes vs.

Time

 (b) FP-tree Size vs. Time

 (d) Number of RP-tree Nodes vs. Time

Figure 4.6: Performance Comparison

In the experiments, two groups of tests were conducted to investigate the effect of

the size of the FP-tree and RP-tree on the execution time of the two searching

algorithms. In the first group of tests, a set of synthetic datasets were generated

with the number of transactions ranging from 10k to 150k. The number ranges of

the frequent items and tree nodes of the resultant FP-trees were from 30 to 250 and

from 20k to 150k respectively. Then pattern TP1 was used to search for its matches

from those FP-trees. The test results are presented in Figure 4.6(a) and 4.6(b).

In the second test group, two synthetic datasets (Syn1 and Syn2) and a set of test

0

50

100

150

200

250

300

350

400

0 100 200

Ti
m

e
(s

ec
o

n
d

)

Number of Frequent Items

0

20

40

60

80

100

120

140

160

180

0 10 20

Ti
m

e(
se

co
n

d
)

Number of Distinct RP-tree Nodes

0

50

100

150

200

250

0 50,000 100,000 150,000

Ti
m

e
(s

ec
o

n
d

)

Number of FP-tree Nodes

0

20

40

60

80

100

120

140

160

180

0 10 20 30

Ti
m

e
(s

ec
o

n
d

)

Number of RP-tree Nodes

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 94

ruleset pattern trees are used where the number of distinct tree nodes and total tree

nodes varies from 3 to 12 and from 4 to 22 respectively. The test results are shown

in Figure 4.6(c) and 4.6(d).

The test results of the two groups of tests show that the execution time of SRPFP-a

and SRPFP-b increased with the increase of the size of the FP-tree and RP-tree.

However, as shown in Figure 4.6(a) and Figure 4.6(c), the computation time of

SRPFP-a sharply increased with the increase of the number of frequent items of the

FP-tree and the number of distinct items of the RP-tree. Similar results are shown

in Figure 4.6(b) and 4.6(d), revealing that SRPFP-b scales much better than

SRPFP-a when the size of the FP-tree and RP-tree increases.

SRPFP-b is more efficient than SRPFP-a in handling large and complex FP-trees

and RP-trees for the following two reasons:

Firstly, since SRPFP-a substitutes RP-tree nodes with items from the FP-tree

header table, its performance is heavily affected by the number of frequent items in

the FP-tree and the number of distinct items in the RP-tree. When the number of

frequent items in the FP-tree or the number of distinct items in the RP-tree is large,

the computation time of the algorithm becomes expensive. In contrast, SRPFP-b

provides a different approach for pattern searching which does not involve the

heavy tree node substitution process. As discussed in Section 4.3, the entire

performance of SRPFP-b is mainly determined by the step of kp-itemset generation.

This process is performed on a pattern-base Bai by constructing a conditional FP-

tree for Bai. Since Bai is usually much smaller than its original FP-tree and the

conditional FP-tree is usually much smaller and never bigger than Bai, each

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 95

subsequent mining process/step works on a set of usually much smaller pattern

bases and conditional FP-trees [88]. Therefore, SRPFP-b provides a faster

approach to finding matched kp-itemsets.

Secondly, SRPFP-a does not prune invalid itemsets until the parent rule branch of

the RP-tree has been processed, which is less efficient. In contrast, SRPFP-b

prunes out itemsets which do not meet the conditions associated with the parent

rule of the ruleset pattern or have a length that is not equal to kp during the

searching process. This greatly reduces the computation overhead.

Figure 4.7: Effect of minH and maxL

The experiments also examined the effect of setting minH and maxL on the

searching results. A set of tests were conducted on dataset Syn2 and pattern TP1

using various values of minH and maxL. As shown in Figure 4.7, the number of

matched instances is affected by the setting of minH and maxL. The higher the

minH or the lower the maxL, the more itemsets with lower support are pruned out,

and therefore the fewer matched instances found. Similarly, the lower the minH or

the higher the maxL, the more itemsets with lower support are included, and

0

20

40

60

80

100

120

140

0.05 0.1 0.2 0.3 0.7

N
u

m
b

er
 o

f
M

at
ch

es

maxL

maxL vs. Number of Matches
(minsup=0.1, minH=0.7, Data:Syn2)

0

200

400

600

800

1000

1200

1400

1600

0.3 0.4 0.5 0.6 0.7

N
u

m
b

er
 o

f
M

at
ch

es

minH

minH vs. Number of Matches
(minsup=0.1, maxL=0.3, Data:Syn2)

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 96

therefore, more matches can be identified.

4.5 Summary

This chapter presents a novel approach to finding matches for a defined ruleset

pattern through using two data structures: the FP-tree and the RP-tree. The RP-tree

is a tree structure which consists of one root and a set of prefix subtrees as the

children of the root. An associated language is created to describe a RP-tree and to

impose the description and conditions of a ruleset pattern over the tree.

Given the FP-tree and RP-tree, two algorithms (SRPFP-a and SRPFP-b) have been

proposed to search the FP-tree for matching RP-tree instances. SRPFP-a provides a

mechanism for tree searching by substituting RP-tree nodes with the items from the

FP-tree header table. The computational complexity of SRPFP-a is determined by

the number of frequent items in an FP-tree and the number of distinct items in a

RP-tree. Therefore, it is less efficient when performing pattern searching which

involves complex FP-trees and RP-trees.

The SRPFP-b employs a different approach for pattern searching which consists of

two steps. At the first step, all valid kp-itemsets are generated from the FP-tree

using an FP-growth like algorithm, RP-growth. At the second step, a RP-tree

instance is built and the conditions associated with the RP-tree are validated to

ensure that only valid RP-tree instances are returned.

A prototype has been built to demonstrate the feasibility and efficiency of the two

algorithms. The experimental results have demonstrated the capacity of both

SRPFP-a and SRPFP-b to find patterns of potential interest. However, SRPFP-b

CHAPTER 4. SEARCHING RULESET PATTERNS USING FP-TREES AND RP-TREES 97

uses less computation time and is more efficient when dealing with large and

complex FP-trees and RP-trees.

Chapter 5

RPL: A Ruleset Pattern Language

One essential part of Horace is a pattern library and its associated pattern language

to enable users to define, retrieve and update ruleset patterns based on their needs.

This chapter presents the ruleset pattern language (RPL), which consists of a

ruleset pattern definition language (RPDL) and a ruleset pattern query language

(RPQL). RPL provides a tool for end users to define patterns based on their own

definition of interesting, to maintain patterns in the ruleset pattern library, and to

retrieve patterns efficiently.

5.1 Towards a Ruleset Pattern Language - RPL

RPL consists of a rule pattern definition language (RPDL) and a ruleset pattern

query language (RPQL). RPDL is a language for defining ruleset patterns,

providing users with the ability to create, alter or delete ruleset patterns, while

RPQL is a language for retrieving patterns from a ruleset pattern library. The RPL

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 99

language is defined in an extended BNF grammar, where square brackets [] around

an element represent zero or one occurrence and {} represents zero or more

occurrences. Also, given a ruleset pattern p, there is a set of notations that can be

used in RPL (as shown in Table 5.1).

Table 5.1: Notations of Ruleset Pattern p

Notation Description
p.name The name of pattern p
p.rules The set of rules in p
p.rules[i] The i

th
 rule in p

p.rules.cs The set of consequents of all rules in p
p.rules.ac The set of antecedents of all rules in p
p.constraints The set of constraints of p
p.constraints [i] The i

th
 constraint in p

p.constraints [i].name The name of the i
th
 constraint in p

p.constraints [i].expression The expression of the i
th
 constraint in p

5.1.1 Ruleset Pattern Definition Language (RPDL)

RPDL was developed to create, alter, rename or delete ruleset patterns.

Create Statement. The syntax of the create statement is as follows:

CREATE pattern <pattern_name> (

{<rule_spec>},

 {<constraint_spec>})

<rule_spec>::= rule <rule_name> (<antecedent>, <consequent>)

<antecedent>:: = {<itemset>}

<consequent>::= {<itemset>}

<constraint_spec> ::= constraint <constraint_name> (<expression_spec>)

In RPDL, the statement <rule_spec> is the specification of the class of rules to be

included in a pattern. The word rule is a key word, indicating a single rule.

<rule_name> is the name of the rule, which can include any character or characters.

Each antecedent and consequent is a set of more or less tightly specified itemsets.

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 100

Similar to <rule_spec>, the statement <constraint_spec> specifies the constraints in

a ruleset pattern. <constraint_name> is the name of a constraint and

<expression_spec> specifies the content of a constraint, which is represented by

one or more mathematical statements. A constraint is defined by end users or

domain experts based on their own definition of interesting. Apart from the two

commonly used measurements of interestingness, support and confidence, other

quality metrics, such as relative support, might be utilized to define a constraint in

a ruleset pattern.

For illustration, given user defined thresholds minH and maxL, a ruleset pattern is

created in the following query.

Query 1: create a pattern called Competitor

CREATE pattern ‘Competitor’ (

rule r1({x},{z}),

rule r2({y},{z}),

rule r3({x,y},{z}),

constraint c1 (𝜌(𝑟1) ≥ 𝑚𝑖𝑛𝐻),

constraint c2 (𝜌(𝑟2) ≥ 𝑚𝑖𝑛𝐻),

constraint c3 (𝜎(𝑟3) ≤ 𝑚𝑎𝑥𝐿),

constraint c4 (𝜎(𝑟3) < 𝜎(𝑟1) × 𝜎(𝑟2)))

Query 1 contains three rules (r1, r2 and r3) and four constraints (c1, c2, c3 and c4)

where the first two conditions involve the quality metric relative support.

Alter Statement. The alter statement modifies an existing ruleset pattern. It has the

following syntax:

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 101

 ALTER pattern <pattern_name>

 {

 SET {

 antecedent = {any_character}

 | consequent = {any_character}

| constraint = <expression_spec>

 }

 | ADD{<rule_spec> | < constraint_spec>}

 | DELETE{rule <rule_name> | constraint <constraint_name>}

 }

There are three commands to update a ruleset pattern: SET, ADD and DELETE.

Their usages are illustrated with some examples as follows.

The command SET updates a rule or constraint in a ruleset pattern as shown in the

following two example queries.

Query 2: update the antecedent of rule r1 of pattern ‘Competitor’ to {w}

ALTER pattern ‘Competitor’

SET r1.ac = {w}

Query 3: update constraint c1 of pattern ‘Competitor’ to be ‘𝜎 < 𝑚𝑖𝑛𝐻’.

ALTER pattern ‘Competitor’

SET c1.expression = ‘𝜎 < 𝑚𝑖𝑛𝐻’

The command ADD is used to add a rule or constraint to a ruleset pattern. One

example is shown in Query 4.

Query 4: add rule r1: w=>z and constraint c1(𝜎 > 𝑚𝑖𝑛𝐻) to ruleset pattern

‘Competitor’

ALTER pattern ‘Competitor’

ADD rule r1({w},{z}),

constraint c1 (𝜎 > 𝑚𝑖𝑛𝐻)

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 102

Finally, the command DELETE removes a rule or a constraint from a ruleset

pattern. Query 5 and 6 provide two examples of its usage.

Query 5: delete rule r1 from ruleset pattern ‘Competitor’

ALTER pattern ‘Competitor’

DELETE rule r1

Query 6: delete constraint c1 from pattern ‘Competitor’

ALTER pattern ‘Competitor’

DELETE constraint c1

RENAME Statement. The rename statement renames a ruleset pattern. It has the

following syntax:

RENAME pattern <pattern_name>

SET name = {any_character}

Query 7 shows an example of the usage of the rename statement.

Query 7: updates the name of pattern ‘Competitor_A’ to be ‘Competitor_B’

RENAME pattern ‘Competitor_A’

SET name = ‘Competitor_B’

DROP Statement. The last RPDL statement is the DROP statement which is used

to delete a ruleset pattern. Its syntax is:

DROP pattern <pattern_name>

The usage of the DROP statement is straightforward as shown in Query 8.

Query 8: delete a pattern called ‘Competitor’

DROP pattern Competitor

5.1.2 Ruleset Pattern Query Language (RPQL)

RPQL allows users to retrieve patterns from a ruleset pattern library, denoted as

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 103

Patternbase. The structure of a basic RPQL query is:

SELECT p

 FROM Patternbase p

 WHERE <conditional_expression>

The SELECT clause selects one variable over its corresponding Patternbase that

satisfies the conditions of the WHERE clause.

A condition in the WHERE clause is defined in one of the following forms.

 {<pattern_name> | <rule_name> | <constraint_name> | <expression_

spec> } op const

The symbol op is one of the notations 𝐼𝑛 , 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 and 𝐸𝑞𝑢𝑎𝑙 , which are

related to the standard relational operators ⊂, ⊆ and = respectively. const can

be textual or numeric or a mathematical expression.

 [ALL|ANY] {<antecedent> | <consequent>} op <itemset>

ANY and ALL are two key words used to specify whether the condition should

be applied to any or all of the antecedents or consequents in a ruleset pattern.

For example, given a ruleset pattern p, the statement “ALL p.rules.cs 𝐼𝑛𝐸𝑞𝑢𝑎𝑙

{z}” requires that the consequents of all rules in p should contain itemset {z}.

 Count(R) relation_op const

Count (R) is a function returning the number of elements in R, where R is a list

of rules or constraints.

Similar to SQL, more than one simple condition can be joined together to form a

complex <conditional_expression>. It also supports negations. Some examples of

the basic RPQL queries are provided as follows.

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 104

Query 9: find patterns named ‘Competitor’

SELECT p

FROM Patternbase p

WHERE p.name = 'Competitor'

Query 10: find patterns where all of its rules’ consequents are {z}

SELECT p

FROM Patternbase p

WHERE ALL p.rules.cs 𝐸𝑞𝑢𝑎𝑙 {z}

Query 11: find patterns with more than one rule and constraint and the first rule’s

antecedent contains {x}

SELECT p

FROM Patternbase p

WHERE Count(p.rules) > 1

AND Count(p.constraints) > 1

AND {x} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac

Query 12: find patterns with more than one rule, all of which have consequent {z}

and at least one rule whose antecedent is {x}.

SELECT p

FROM Patternbase p

WHERE COUNT(p.rules) > 1

AND ANY p.rules.ac 𝐸𝑞𝑢𝑎𝑙 {x}

AND ALL p.rules.cs 𝐸𝑞𝑢𝑎𝑙 {z}

The above four queries show that RPQL is a small, yet expressive and powerful

language that allows a rich variety of queries about the ruleset patterns.

5.2 Implementation of RPQL

The user-defined ruleset patterns are stored in a database, where each ruleset

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 105

pattern is assigned a unique ID. The manipulation of RPDL, including alteration,

deletion and updating, is in line with SQL syntax. This section focuses on the

evaluation of RPQL queries.

One straightforward method to retrieve ruleset patterns is to scan all patterns in the

Patternbase for matches. This approach is applicable if the size of the Patternbase

is small. In order to cope with a huge number of patterns and complex queries,

RPQL employed the techniques of indexing to ensure evaluation efficiency.

5.2.1 Indexing

Inverted lists are a common indexing method used in text information retrieval,

where each document is regarded as a set of keywords or items. Inverted lists are

very efficient for set-oriented operations and also fast to build. Since the antecedent

and consequent of a rule are sets of items, inverted lists are a suitable indexing

technique when querying rules in ruleset patterns.

Inverted lists indexing works as follows: given a Patternbase 𝑃𝐵, an antecedent

inverted list (denoted as 𝑎𝐿) and a consequent inverted list (denoted as 𝑐𝐿) are

created to index items in the antecedent and consequent of all rules in 𝑃𝐵

respectively. The generated inverted lists index has two parts: a vocabulary and a

list. The vocabulary contains the distinct items in the antecedent or consequent,

while the list stores pattern IDs, each of which is paired to an integer representing

the position of the rule where the item belongs.

The inverted list for an item i in 𝑎𝐿 or 𝑐𝐿 is denoted as 𝑎𝐿(i) or 𝑐𝐿(i). The example

below shows a consequent inverted list for item w in Table 5.2:

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 106

𝑐𝐿(w): {(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)(3,3),(5,1),(5,2),(5,3)}

Each pair between the two curly braces in 𝑐𝐿(w) shows a pattern ID and the

position of the rule where item w appears. For example, (2, 1) indicates item w

exists in the first rule’s consequent of the pattern with ID 2.

The list of IDs in 𝑎𝐿 or 𝑐𝐿 for item i at the j
th

 rule is denoted as aL(i,j) or 𝑐𝐿(i,j)

respectively. For example, 𝑐𝐿(w, 1): [2, 3, 5] shows that item w exists in the first

rule’s consequent of three patterns with ID 2, 3 and 5 respectively.

Table 5.2: Sample Ruleset Patterns

Pattern

ID

1
th

 Rule 2
nd

 Rule 3
rd

 Rule 4
th

 Rule

antecedent consequent antecedent consequent antecedent consequent antecedent consequent

1 {x} {z} {y} {z} {x,y} {z}

2 {x} {w} {y} {w} {z} {w} {x,y,z} {w}

3 {x,y} {w,z} {p,q} {w,z} {x,y, p,q} {w,z}

4 {x,y} {z} {m } {z} {n} {z} {x,y,m,n} {z}

5 {x,y,v} {w,z} {m} {w,z} {x,y,v,m} {w,z}

6 {p} {z} {q} {z} {p, q} {z}

Note: for brevity, pattern name and constraints have been omitted.

5.2.2 Evaluating Queries

Algorithm 5.1 illustrates the process of RPQL query evaluation. As shown in lines

3 and 4, two inverted lists (𝑎𝐿 and 𝑐𝐿) are built and one variable 𝐼𝐷𝐿𝑖𝑠𝑡 is created,

which holds all ruleset patterns’ ID in the Patternbase. With the usage of the

inverted lists, lines 6 to 15 update 𝐼𝐷𝐿𝑖𝑠𝑡 if the antecedent or consequent appears in

the WHERE clause. Lines 17 to 21 scan the Patternbase to find those patterns

whose ID is in 𝐼𝐷𝐿𝑖𝑠𝑡 and also satisfy other conditions.

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 107

Algorithm 5.1: RPQL Query Evaluation

1: Input: Patternbase 𝑝𝑏, RPQL query 𝑞

2: Output: 𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡

3: build inverted list 𝑎𝐿 and 𝑐𝐿

4: set 𝐼𝐷𝐿𝑖𝑠𝑡 = list of all patterns’ ID from 𝑝𝑏

5: set 𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = new List()

6: for each 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑐 in 𝑞. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

7: if 𝑐. 𝑟𝑢𝑙𝑒 ≠ 𝑛𝑢𝑙𝑙 then

8: if 𝑐. 𝑟𝑢𝑙𝑒. 𝑎𝑐 ≠ 𝑛𝑢𝑙𝑙 then

9: updateID(𝑎𝐿, 𝑐. 𝑟𝑢𝑙𝑒. 𝑎𝑐, 𝑐. 𝑟𝑢𝑙𝑒. 𝑝𝑜𝑠)

10: else if 𝑐. 𝑟𝑢𝑙𝑒. 𝑐𝑠 ≠ 𝑛𝑢𝑙𝑙 then

11: updateID (𝑐𝐿, 𝑐. 𝑟𝑢𝑙𝑒. 𝑐𝑠, 𝑐. 𝑟𝑢𝑙𝑒. 𝑝𝑜𝑠)

12: end if

13: 𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.Add(𝑐)

14: end if

15: end for

16: set 𝑜𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑝. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.Except(𝑟𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

17: for each pattern 𝑝 in 𝑝𝑏

18: if IDList.contains(𝑝. 𝐼𝐷) ^ 𝑝.isValid(𝑜𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) then

19: 𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡.Add(𝑝)

20: end if

21: end for

22: updateID(invertedList 𝐿, itemset 𝐼, int 𝑝𝑜𝑠)

23: for each item 𝑖 in 𝐼

24: if 𝐿.contains(𝑖, 𝑝𝑜𝑠) then

25: 𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡^𝐿(𝑖, 𝑝𝑜𝑠)

26: end if

27: end for

To illustrate, consider the following query against patterns in Table 5.2.

Query 13: find patterns containing three rules and the antecedent of the first rule

contains {x,y} and the second rule’s antecedent is {m}.

SELECT p

FROM Patternbase p

WHERE {x,y} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac (1)

AND p.rules[2].ac 𝐸𝑞𝑢𝑎𝑙 {m} (2)

 AND Count (p.rules) = 3 (3)

To evaluate Query 13, we first set 𝐼𝐷𝐿𝑖𝑠𝑡 to contain the list of IDs for all patterns,

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 108

𝐼𝐷𝐿𝑖𝑠𝑡 = [1, 2, 3, 4, 5, 6]

We then evaluate the first condition: {x,y} 𝐼𝑛𝐸𝑞𝑢𝑎𝑙 p.rules[1].ac. Below shows the

inverted antecedent lists for item x and y:

aL(x): {(1,1),(1,3),(2,1),(2,4),(3,1),(3,3)(4,1),(4,4),(5,1),(5,3)}

 aL(y): {(1,2),(1,3),(2,2),(2,4),(3,1),(3,3)(4,1),(4,4),(5,1),(5,3)}

Since the condition requires items x and y to be in the first rule, we have:

𝑎𝐿(x, 1): [1, 2, 3, 4, 5]

 𝑎𝐿(y, 1): [3, 4, 5]

Thus 𝐼𝐷𝐿𝑖𝑠𝑡 can be updated as

 𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡 ^ 𝑎𝐿(x,1) ^ 𝑎𝐿(y,1)

 = [1, 2, 3, 4, 5, 6] ^ [1, 2, 3, 4, 5] ^ [3, 4, 5]

 = [3, 4, 5]

The process then goes to the second condition, p.rules[2].ac 𝐸𝑞𝑢𝑎𝑙 {m}. Similarly,

we have

 𝑎𝐿(m): {(4,2),(4,4),(5,2),(5,3)}

 𝑎𝐿(m, 2): [4, 5]

𝐼𝐷𝐿𝑖𝑠𝑡 is then updated as

𝐼𝐷𝐿𝑖𝑠𝑡 = 𝐼𝐷𝐿𝑖𝑠𝑡 ^ 𝑎𝐿(m,2) = [3, 4, 5] ^ [4, 5] = [4, 5]

Finally, we evaluate the third condition (Count (p.rules) = 3) by scanning those

patterns having ID in the 𝐼𝐷𝐿𝑖𝑠𝑡 and then check each of them to see whether the

condition is met. Since pattern 4 has 4 rules, it is pruned out. Thus, only pattern 5

meets all conditions and is returned for the query.

5.3 Experiments

To demonstrate the concept, a prototype of RPL was implemented in C# and

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 109

several experiments were conducted on synthetic datasets. All experiments were

carried on an Intel Core i5 PC with 2G memory. Database SQL 2008 was used to

store user defined ruleset patterns.

A ruleset pattern generator was built to create synthetic test data. Rules in test

ruleset patterns are derived from a dataset generated based on the work reported by

Agrawal and Srikant [6]. Constraints in test ruleset patterns are in the format:

QM op CONST

where QM and CONST represent randomly generated quality measurements and

constants respectively. Table 5.3 presents the details of the generated synthetic data

and Table 5.4 shows the parameters for data generation.

Table 5.3: Synthetic Data

Data |P| |R| |C| |QM| |UC|

Data A 500 3 3 3 2

Data B 5000 5 5 5 4

Data C 10000 8 8 10 6

Data D 20000 10 10 12 8

Table 5.4: Synthetic Data Parameters

Name Description
Default

Value

Range of

Values

|P| Number of patterns 500 0.5k – 20k

|R| Average number of rules per pattern 3 2-20

|C| Average number of constraints per pattern 3 2-20

|QM| Number of quality measurements 3 1 - 10

|UC| Number of user-defined constants 2 1 - 10

The performance of the proposed system was tested on the four queries presented

in Section 5.1.2. The execution times of these queries are presented in Figure 5.1.

Each execution time is the average result for 10 runs for the query, and includes the

time for loading patterns from the Patternbase and the time for building

appropriate indices.

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 110

Figure 5.1: Execution Times of the 4 Representative Queries

As shown in Figure 5.1, RPQL queries are executed very efficiently. Query 11 and

12 have longer execution time than the other two as they contain more complex

conditions in the WHERE clause. However, it took only 0.65 seconds to process

Query 12 over 20,000 patterns. Also, it is interesting to see that Query 9, which is

the simplest query, has a greater execution time than Query 10. This is because

Query 10 employed inverted lists to speed up query processing while Query 9 was

evaluated by scanning the whole Patternbase, which is less efficient.

5.4 Related Work

Association rule mining often generates a large number of rules most of which are

actually not useful or interesting for specific applications [108]. Making sense of

such a large number of rules has become a significant challenge. One approach to

tackling this problem is identifying the rules that are of special importance to the

user through data mining queries. The query language acts as an interface between

the user and the knowledge and database. It allows the user to process data and

knowledge and to direct the discovery process.

0

100

200

300

400

500

600

700

0.5k 1k 5k 10k 12k

Ti
m

e
 (

m
ill

is
e

co
n

d
)

Number of Patterns

Query 9

Query 10

Query 11

Query 12

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 111

Agrawal et al proposed a shape definition language, called SDL, for retrieving

objects based on shapes contained in the histories associated with the objects [5].

SDL enables users to define ups and downs of supports or confidences of a rule

over a number of time periods. SDL is a definition language which focuses on

behaviour shapes of the rules. The ruleset pattern language (RPL) presented in this

thesis is built on ruleset patterns and it describes the relationships among items in

participating association rules. RPL is also comprised of a pattern query language

(RPQL) with the capability to retrieve patterns from the ruleset pattern library.

DMQL is a data mining query language proposed by Han et al [85]. With DMQL,

users can select different tables (and databases) to mine different types of rules.

Similar to DMQL, Meo et al. [146] proposed an SQL-like operator for data mining

(MINE RULE) and Shen et al. [192] reported a meta query language for data

mining. In addition, dmFSQL was proposed by Carrasco et al. [46] as an extension

of FSQL (Fuzzy SQL) for data mining. It extends the SQL language with the

capabilities to specify flexible queries to address tables that store vague

information using fuzzy attributes [46]. One common characteristic of these query

languages is that they are designed for generating rules from source data. In

contrast, RPL is designed for users to define, alter and query patterns from a set of

rules.

Several techniques that have been proposed to query discovered rules, including

MSQL [99, 100] and Rule-QL [212]. MSQL can be used not only for rule

generation, but also for querying the discovered rules. Rule-QL queries multiple

sets of association rules and provides efficient algorithms for processing the

CHAPTER 5. RPL: A RULESET PATTERN LANGUAGE 112

queries. RPL differs from those techniques in two aspects. It allows users to define

patterns among a set of rules, which cannot be handled by MSQL and Rule-QL. In

addition, RPQL queries ruleset patterns but not rules. A ruleset pattern is not a

single rule but consists of a set of rules and conditions defined by users.

5.5 Summary

This chapter proposed RPL, a ruleset pattern language which consists of a ruleset

pattern definition language (RPDL) and a ruleset pattern query language (RPQL).

RPL is a small, yet expressive and powerful language that allows a rich variety of

queries about the ruleset patterns. It enables end users to create, alter and retrieve

ruleset patterns from the pattern library.

RPL is a natural and necessary complement to the ruleset pattern searching

algorithms presented in Chapter 4. The emphasis of this chapter is on its

expressiveness and functionalities towards end users. The syntax of RPDL and

RPQL has been presented with illustrative examples in this chapter. Also, inverted

lists are employed as an indexing technique to improve the efficiency of RPQL

query evaluation. A set of experiments have been conducted which have

demonstrated the efficiency of RPQL.

Chapter 6

Detecting Anomalies in

Longitudinal Association Rules

The detection of unusual or anomalous data is an important function in automated

data analysis or data mining. This thesis provides a partial solution to this problem

by elevating the search for anomalous data in transaction-oriented datasets to an

inspection of the rules that can be produced by higher order longitudinal/spatio-

temporal association rule mining.

The next section discusses research to date in anomaly detection and longitudinal

and spatio-temporal knowledge discovery which outlines the context to this work.

Section 6.2 then discusses the research in anomaly detection in data as represented

through association rules. Section 6.3 provides details of two anomaly detection

algorithms and Section 6.4 presents the implementation and experiment results.

Finally, Section 6.5 concludes the chapter.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 114

6.1 Motivation and Literature Review

6.1.1 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not

conform to expected behaviour [50]. Such patterns, which are usually called

outliers, noise, or novelty in different application domains, often contain useful

information regarding the abnormal behaviour of the system described by the data.

For example, an anomalous traffic pattern in a computer network could mean that a

hacked computer is sending out sensitive data to an unauthorized destination. An

anomalous MRI image may indicate the presence of a malignant tumour. Originally

studied in the statistics community in the nineteenth century [58], anomaly

detection is now a widely researched problem and has found immense use in

application domains [162] such as:

 fraud detection: detection of criminal activities occurring in commercial

organizations

 intrusion detection: monitoring the events occurring in a computer system

or network for unusual behaviour and analysing them for intrusions

 medicine and public health: using unusual symptoms or test results to

indicate potential health problems

 image processing: detecting anomalies in an image monitored over time or

anomalous regions within an image.

The main anomaly detection approaches can be categorized into the following

groups: statistics-based techniques, proximity-based techniques, density-based

techniques, classification-based techniques, and clustering-based techniques.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 115

Statistics-based anomaly detection techniques treat data instances occurring in the

low probability regions of the statistical distribution as anomalies and those

occurring in high probability regions of a statistical distribution as normal [50].

These approaches break the process of anomaly detection into two steps. A

statistical distribution is estimated using given data at the first step and statistical

inference tests are then applied in the second step to verify whether a test instance

belongs to this distribution [93, 226, 225, 12, 185, 105]. Statistics-based anomaly

detection techniques are built on standard statistical techniques and thus have a

firm foundation. However, since they rely on the assumption that the data is

generated from a particular distribution, they are not applicable for detecting

anomalies in data with unknown distribution, such as high dimensional data [50].

In addition, it is difficult to select the best statistical method for anomaly detection

[149].

Proximity-based anomaly detection techniques define a proximity measure

between objects and try to find those objects that are distant from most of the other

objects [162]. One of the simplest ways to measure whether an object is distant

from most points is to use the distance to the k-nearest neighbour [43]. Since

originally being used to detect land mines from satellite ground images, the k-

nearest neighbour method has been extended by researchers with a focus on the

definition modifications to obtain the anomaly score of a data instance [60, 10, 235,

32, 110, 111, 112], the use of different distance/similarity measures to handle

different data types [156, 116, 161] and improvements in anomaly detection

efficiency [28, 178, 144, 60]. Distance-based anomaly detection techniques are

simple and easy to implement. However, the approach is too expensive for large

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 116

datasets due to the computational complexity (𝑂(𝑚2), where 𝑚 is the number of

objects). Also, the efficiency of the anomaly detection process is sensitive to the

choice of parameters [162].

Density-based anomaly detection techniques compute local densities of particular

regions and declare instances in low density regions as potential anomalies [50].

Breunig et al. [35, 36] introduced the concept of a local outlier factor (LOF). For

any given data instance, the LOF score is equal to the ratio of average local density

of the k-nearest neighbour of the instance and the local density of the data instance

itself. Values significantly larger than 1 indicate outliers. Several variants of LOF

have been proposed in the literature to enhance the estimation of the local density

of an instance [205, 92, 41, 163], handle different types of data [202, 203, 172,

231] or improve its efficiency [57, 104]. Density-based anomaly detection

techniques are easy to adapt and purely data driven as they do not make any

assumptions regarding the generative distribution for the data [50]. However, like

distance-based anomaly detection techniques, these approaches have 𝑂(𝑚2), time

complexity. Also, the parameter selection can be difficult for complex data, such as

graphs and sequences [162].

Classification-based anomaly detection techniques often build a model for normal

(and anomalous) events based on labelled training data and then use it to classify

each new unseen event [50]. Those approaches consist of two phases: the training

phase which learns a classifier using the available labelled training data and the

testing phase which classifies a test instance as normal or anomalous. Association

rule mining has also been utilized in building classifiers to capture the normal

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 117

behaviour of a system. For example, in the ADAM (Audit Data Analysis and

Mining) system [19], association rules are used to gather necessary knowledge

about the nature of the audit data. Lee et al. [123] used the association rules and

frequent episodes computed from audit data as the basis for guiding the audit data

gathering and feature selection processes. Similarly, He et al. [94] proposed an

anomaly detection algorithm for categorical datasets in which the anomaly score of

a test instance is equal to the number of frequent itemsets in which it occurs.

Clustering techniques which are used to group similar data instances together, have

also played an important role in anomaly detection. One of the approaches is based

on an assumption that normal data instances belong to a cluster in the data, while

anomalies do not belong to any cluster [62, 79, 230]. Some other work assumes

that normal data instances lie close to their closest cluster centroid, while anomalies

are far away from their closest cluster centroid [194, 42, 214, 20]. Furthermore,

research is being conducted on detecting anomalies based on cluster sizes where

large clusters correspond to normal data and the rest of the data points are outliers

[167, 60]. Clustering techniques such as K-means have linear or near-linear time

and space complexity and therefore, an outlier detection technique based on such

algorithms is efficient. However, the set of outliers produced and their scores can

be heavily dependent upon the number of clusters used as well as the presence of

outliers in the data [162].

6.1.2 Longitudinal and Spatio-Temporal Knowledge Discovery

The popularity of data mining, together with the mounting recognition of the value

of temporal and spatial data, spatio-temporal data modelling and databases has

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 118

resulted in the prospect of mining spatial and temporal rules from both static and

longitudinal/temporal/spatial data
4
. The accommodation of time and location into

mining techniques provides a window into the spatio-temporal arrangement of

events and affords the ability to suggest cause and effect, which are otherwise

overlooked when this component is ignored or treated as a simple numerical

attribute. The importance of longitudinal and spatio-temporal data mining is its

capacity to analyse activity rather than just states and to infer relationships of

locational and temporal proximity. Moreover, temporal data mining has the ability

to mine the behavioural aspects of (communities of) objects as opposed to simply

mining rules that describe their states at a point in time.

For example, temporal association rule mining accepts a set of keyed, time-

stamped datasets and returns a set of rules indicating not only the confluence of

events or attribute values (as in conventional association mining [47]) but also the

arrangement of these events in time. Such routines can reveal otherwise hidden

correlations, even in static rules.

Data mining techniques have been successfully applied in diverse application

domains including health, defence, telecommunications, commerce, astronomy,

geological survey and security. In many of these domains, the value of knowledge

obtained by analysing the changes to phenomena over time and space, as opposed

to the situation at an instant or at a single location, has been recognized and a

number of temporal and spatial data mining techniques have been developed [182,

61]. For example, spatio-temporal rules can indicate movement, trends and/or

4
 The term “longitudinal” is used to mean a set of data ordered in time or space.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 119

patterns that static rules are unable to show. However, apart from the computational

complexity involved in introducing any new dimension, a number of challenging

problems have arisen, three of which are described below.

The first is the efficient, automated determination of appropriate spatio-temporal

intervals. For example, adopting a granularity of a year for a patient’s age may

result in insufficient support for individual rules while the a priori division of the

values into age ranges may result in invalid (or missed) inferences. The problem

becomes more severe when the spatial dimension is non-geographic or when cyclic

temporal intervals are involved. Other researchers have recognized this problem

and solutions to date have included:

 the use of calendric association rules in which various ‘calendars’ are used

to reduce the search space [81, 179]. ‘Calendars’ in this case refers not

only to the many accepted conventions for synchronizing our

understanding of an event in absolute time, but also the many conventions

relating to relative ages. Although reducing the search space in

comparison to a full search, these solutions still suffer from the a priori

specification of a set of possible spatial and temporal patterns.

 the use of hierarchical data mining. This allows graduated temporal

intervals and spatial regions to be accommodated with the more general

being tested when the more specific do not reach the required support

thresholds [138, 191]. However, the intervals used at each higher level

must subsume those at the level below. Using multiple hierarchies can

ameliorate this although this expands the search space in comparison to

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 120

the single hierarchy and most algorithms proposed to date suffer from the

a priori specification of the spatial and temporal patterns.

 a combination of association rule and clustering algorithms. In this

approach, association rules are clustered to determine the appropriate

intervals. The approach outlined by Lent et al. [124] creates a 2-D matrix

in which the cells are clustered then appropriate minimal description

boundaries for the coordinates can be determined.

Secondly, clustering has been applied in spatio-temporal data mining, such as the

use of OPTICS for trajectory clustering, aggregation or generalization [150, 181, 9,

8] and the use of DBSCAN for moving data clustering [106, 102, 213]. However,

mechanisms for detecting and characterizing changes to cluster boundaries have

not received much attention. For example, the spread of many infections, such as

HIV, is known to follow distinct spatio-temporal patterns as does the incidence of

some pandemic conditions, such as schizophrenia. However, the automated mining

of rules that might accommodate such patterns has not been widely investigated.

A third problem is the common, but largely unaddressed issue of detecting

statistically-significant anomalies from a series of multiple, large and semantically

complex snapshots or single location datasets (such as those that could be collected

by an organization as part of routine archival operations or statutory reporting).

Efficiently solving this problem would enable a more rapid development of

knowledge discovery systems capable of uncovering hidden spatio-temporal trends

and correlations which might, in some cases, act as an alerting mechanism. For

example, spatio-temporal outlier detection techniques [30, 53] have been proposed

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 121

to find spatial outliers over several time periods. Mooney and Roddick [148]

tackled this problem by running an association mining algorithm over sets of rules,

themselves generated from association rule algorithms.

6.1.3 Motivation

Clearly, anomalies in a single data item can be found using standard statistical

techniques. The work presented in this thesis is primarily concerned with whether

anomalous transaction data can be detected through an inspection of association

rules generated from that data with the following considerations.

First, as discussed in Chapter 2, the primary or raw data might not be always

available. For example, organizations (and governments) are willing to provide

association rules but unwilling to provide access to source data. Thus in some cases

only the rules generated from the source data can be operated upon in research

scenarios [183].

Second, the semantics of second phase mining are subtly different and, in some

cases, lead to more useful information. For example where a (zero order)

association rule might state that there was a correlation between two (sets of) items,

a higher order rule might indicate that the strength of the associations was

influenced by the presence of a third item. This third item might be deemed to be a

catalyst. Therefore, the technique to detect anomalies hidden in a set of rules may

provide a view of anomalies that is arguably closer to that sought by information

analysts.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 122

6.2 Anomaly Detection in Longitudinal Association Rules

Sets of transaction data mined over time are likely to generate rules with the same

rule body and thus the form of association rule (𝑋 => 𝑌) is qualified by the time.

In the definitions in this chapter, the syntactic form of a longitudinal rule is

abbreviated to 𝑅𝑖
𝜏 where 𝑅𝑖 is the rule body and 𝜏 is the time stamp.

Definition 6.1 (Longitudinal Association Rule Instance) Any given 𝑅𝑖
𝜏 with

instantiated 𝜎(𝑅𝑖), 𝛾(𝑅𝑖) and 𝜏 values is termed an instance of 𝑅𝑖 . For brevity, a

specific instance of a rule 𝑅𝑖 at time 𝜏 is denoted 𝑅𝑖
𝜏. The support and confidence of

𝑅𝑖
𝜏 are denoted 𝜎𝑖

𝜏 and 𝛾𝑖
𝜏 respectively.

Definition 6.2 (Anomalous Rule) Given a set of rules 𝑅 holding 𝑛 different

instances of 𝑅𝑖, 𝑅 = {𝑅𝑖
1, … , 𝑅𝑖

𝑛}, where 𝑛 > 1, for an instance of 𝑅𝑖
𝜏 ∈ 𝑅, if a rule

quality metric such as 𝜎(𝑅𝑖
𝜏) and 𝛾(𝑅𝑖

𝜏) is significantly different from other

instances in 𝑅, then 𝑅𝑖
𝜏 is termed anomalous.

Based on the above definitions, anomaly detection in association rules can be stated

as the process of identifying those association rule(s) which have significantly

different support or confidence values among a large enough number of instances

of the same association rule. The main process is categorized into three closely

related parts: association rule generation, CS-set generation and anomaly detection,

as shown in Figure 6.1.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 123

6.2.1 Longitudinal Association Rule Generation

This part of the process generates association rules from a large amount of input

data. Because association mining techniques are relatively mature, there are many

widely used algorithms and techniques which can be chosen. The choice of which

algorithm is used is not of concern in this work (FP-growth [89, 88] is used herein).

Longitudinal sets of rules are commonly generated from a concatenation of

multiple individual association rule mining invocations.

6.2.2 Generation of the CS-set

A typical association rules generation run may result in thousands of rules.

Moreover, a longitudinal set of rules will typically be two or more orders of

magnitude larger. To organize the input rules, create a condensed-sequential set or

CS-set which brings together the instances of a rule in a form more easily

processed by the (potentially third-party) detection algorithms.

Datasets
Association rule

generation

Anomalous
rules

CS-set

Rulesets

Figure 6.1: Anomaly Detection Process

Pre-processing and
CS-set generation

Detection
process

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 124

For p rules ranging (sparsely) over 𝑛 time points, the format of the CS-set is as

shown below:

𝑅1(< 𝜎1, 𝛾1, 𝜏1 >, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >);

…

𝑅𝑝(< 𝜎1, 𝛾1, 𝜏1 >, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >);

Entries are sorted by time within the rule body. This step can also accommodate a

pre-processing filter and there is scope for further rule quality metrics to be added.

6.2.3 Detection Process

Using the CS-set, the task of detecting anomalies among association rules can be

simplified as the detection of anomalous support or confidence values of each

association rule 𝑅𝑖 in the CS-set. This is done by subjecting the rules in the CS-set

to a series of anomaly detection algorithms (see Section 6.3) which indicate

whether the instance is anomalous and if so, a measure of the anomaly’s

significance. The main detection process can be summarized as shown in

Algorithm 6.1.

Algorithm 6.1: Overarching Detection Process

1: precondition: CS-set has been generated,

2: Anomaly thresholds have been defined

3: input: All rules R in the CS-set

4: for all 𝑅𝑖, 𝑖 = (1 … 𝑛) do

5: Mark 𝑅𝑖 as non-anomalous

6: for each 𝑅𝑖, 𝜏 = (start-time . . . end-time) do

7: for each algorithm 𝐴𝑖 in registry do

8: Invoke 𝐴𝑖 over 𝑅𝑖

9: if anomalous then

10: Flag 𝑅𝑖 as anomalous at time 𝜏 with returned significance 𝜃

11: end if

12: end for

13: end for

14: end for

15:Invoke visualization listing top anomalies

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 125

6.3 Detection Algorithms

The overarching process described thus far now requires one or more algorithms to

detect the anomaly. This chapter presents two algorithms for anomaly detection:

TARMA-a and TARMA-b
5
.

The fundamentals for these two algorithms were derived from the Chebyshev

theorem that almost all the observations in a dataset will have z-scores less than 3.

The formula for z-score calculation is 𝑧 =
𝑥𝑖−𝜇

𝑠𝑑
 where 𝜇 and 𝑠𝑑 are the mean and

standard deviation of 𝑥𝑖 , (𝑖 = 1, … , 𝑛). If |𝑧𝑖| ≥ 3, 𝑥𝑖 is considered an anomaly.

The differences between the two algorithms are:

 For TARMA-a, the z-score is directly calculated from confidence and

support values. It has limited application scope as it can only deal with

univariate data. If the variance of the data is unpredictable, the detection

accuracy is low.

 For TARMA-b, the z-score is used to evaluate the expected number of

neighbours of each rule instance. It is more robust than TARMA-a when

dealing with large volumes of arbitrarily varying data.

6.3.1 The TARMA-a Algorithm

Based on Definition 6.2, the process of detecting anomalous rules is to identify a

significant difference in a rule’s confidence or support value with respect to the

other time values. Z-scores are a good statistical measure of difference amongst

large amounts of data. Taking Chebyshev’s theorem as the basis the process shown

5
 TARMA - Temporal Association Rule Mining of Anomalies.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 126

in Algorithm 6.2 is applicable.

Algorithm 6.2: TARMA-a Algorithm

1: precondition: CS-set has been generated

2: input: All rules R in the CS-set

3: for all 𝑅𝑖, 𝑖 = (1 … 𝑛) do

4: Compute mean support 𝜇 =
𝜎1+⋯+𝜎𝑛

𝑛

5: Compute standard deviation 𝑠𝑑 = √
1

𝑛−1
∑ (𝑠𝑖 − 𝜇)2𝑛

𝑖=1

6: for each 𝑅𝑖
𝜏, 𝜏 = (start-time . . . end-time) do

7: Computer 𝑧𝑖
𝜏 =

𝜎𝑖
𝜏−𝜇

𝑠𝑑

8: if|𝑧𝑖
𝜏| ≥ 3 then

9: Flag 𝑅𝑖
𝜏 as anomalous

10: end if

11: end for

12: if 𝑅𝑖 is anomalous then

13: Return max (𝑧𝑖
𝜏) as significance

14: end if

15: end for

The computational complexity is 𝑂(𝑛) , indicating that TARMA-a is a fast

algorithm. Its main failing is that the execution accuracy is heavily reliant on the

distribution of the data. It handles univariate data well but its performance is poor

when detecting anomalies among highly variate data. Furthermore, it is not a good

solution if we wish to consider more advanced temporal aspects.

6.3.2 The TARMA-b Algorithm

To overcome the weakness of TARMA-a, another more robust algorithm TARMA-b

was developed, which employs density-based outlier detection techniques. While

TARMA-b has been specifically designed to detect anomalies in longitudinal

association rules, it also works well with rules without such features. TARMA-b has

been developed based on the idea of density-based outlier detection proposed by

Breunig et al. [35], which relies on the local outlier factor (LOF) of each object,

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 127

calculated from the local density of its neighbourhood. The neighbourhood is

defined by the number of near neighbours. The work presented here takes the

essence of this technique and makes some improvements by introducing three new

concepts: 𝑟𝑋, 𝑟𝑌 and 𝑟𝑋𝑌-neighbourhood.

Definition 6.3 (rX) For a given rule 𝑅𝑖, we have a CS-set entry 𝑅𝑖(< 𝜎1, 𝛾1, 𝜏1 >

, … , < 𝜎𝑛, 𝛾𝑛, 𝜏𝑛 >) sorted by 𝜏. rX is defined as a time span of variable length

between 𝜏1 and 𝜏𝑛, where 𝑟𝑋 ≥ 0 and 𝑟𝑋 ≤ 𝜏𝑛 − 𝜏1.

Definition 6.4 (rY) From the CS-set calculate the minimum and maximum span of

support and confidence 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥, 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 respectively. 𝑟𝑌 is defined as a

variable threshold between 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 or 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 , where 𝑟𝑌 ≥ 0 and

either 𝑟𝑌 ≤ 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 or 𝑟𝑌 ≤ 𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛.

Definition 6.5 (𝒓𝑿𝒀-neighbourhood) For a given quality metric 𝑞 (where 𝑞 is 𝜎, 𝛾

or some other metric) for a given rule 𝑅𝑖, for any point 𝑃𝑛 < 𝑞𝑛, 𝜏𝑛 > taken from

𝑅𝑖 ’s CS-set, if there is a point 𝑃𝑛
′ < 𝑞𝑛

′ , 𝜏𝑛
′ > that exists such that |𝜏𝑛

′ − 𝜏𝑛| ≤

𝑟𝑋 ^ |𝑞𝑛
′ − 𝑞𝑛| ≤ 𝑟𝑌, then 𝑃𝑛

′ is said to be in the 𝑟𝑋𝑌-neighbourhood of 𝑃𝑛 . The

number of neighbours of 𝑃𝑛 is represented as 𝑁(𝑃𝑛, 𝑟𝑋, 𝑟𝑌).

Based on the evaluation of the distribution of data using statistical methods (such

as z-scores) we can label anomalous points as those with an unusual number of

neighbours in their 𝑟𝑋𝑌-neighbourhood. This can be done by flagging points that

either:

 have fewer than some specified minpts number of neighbours,

 have fewer than some number of local neighbours as calculated from the

global density for the rule (used in TARMA-b),

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 128

 have a significant deviation from its consecutive neighbour’s count of

neighbours,

 have a significant deviation from its the count of neighbours in a larger

(but not global) neighbourhood (proposed for TARMA-c).

Figure 6.2: An Example of 𝑟𝑋𝑌-neighbourhood

These latter two cases take account of datasets that become more or less sparse

over time. The use of the concepts 𝑟𝑋, 𝑟𝑌 and 𝑟𝑋𝑌-neighbourhood is illustrated in

Figure 6.2.

Whichever method is used, rules corresponding to the anomalous points can be

identified and returned to the overarching process as potentially suspect.

Algorithmically, TARMA-b uses z-scores to measure the significance of differences

to each rule instances neighbour count. That is, the first of the two methods for

finding outliers is used. The algorithm is shown in Algorithm 6.3.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 129

Algorithm 6.3: TARMA-b Algorithm

1: precondition: CS-set has been generated,

2: 𝑟𝑋 and 𝑟𝑌 have been defined

3: for each rule 𝑅𝑖 do

4: for each rule instance 𝑅𝑖
𝜏 do

5: Calculate 𝑟𝑋𝑌-neighbourhood count 𝑁(𝑃𝜏, 𝑟𝑋, 𝑟𝑌)

6: end for

7: Calculate mean μi and standard deviation 𝑠𝑑𝑖 for 𝑅𝑖

8: for each rule instance 𝑅𝑖
𝜏 do

9: Calculate z-score of the number of neighbours for 𝑧𝑖
𝜏

10: if |𝑧𝑖
𝜏| ≥ 3 then

11: Flag 𝑅𝑖
𝜏 as anomalous

12: end if

13: end for

14: end for

TARMA-b can deal with a variety of arbitrary datasets efficiently. However, the pre-

definition of 𝑟𝑋 and 𝑟𝑌 is crucial but not trivial. Different 𝑟𝑋 and 𝑟𝑌 values may

result in different results. A precise definition of 𝑟𝑋 and 𝑟𝑌 needs to be based on

the complexity of the data and careful study of its distribution, both of which will

be discussed in the next section.

6.4 Implemented Prototype and Experiments

In this thesis, a prototype called TARMAD has been implemented (screenshots of

which are shown in Figure 6.3) and some initial experiments have been completed

which show that the concept is sound and feasible in finding outliers.

The prototype design aimed to assess the efficacy of the approach to detecting

anomalies in rules produced by higher order longitudinal/spatio-temporal

association rule mining against traditional statistical data analysis methods.

Therefore, TARMA-a and TARMA-b were designed primarily to be representative

algorithms so that the concept could be tested empirically.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 130

Figure 6.3: Screenshots from TARMAD System

The initial prototype system was implemented in Java and the experiments were

run on a 2.6GHz PC with 2GB RAM under Window XP. It has the following four

main functions:

 Data loading. Data can be loaded with different formats from various

sources.

 Anomaly detection. The system currently supports the TARMA-a and

TARMA-b algorithms. Also, based on user-specified requirements, the

system can detect anomalies using either confidence or support values.

 Report generation. The system provides a user with detection anomaly

details, which includes an anomaly rank to indicate the importance that the

detection algorithm believes the anomaly warrants. TARMA-a and

TARMA-b use the z-score value to generate the anomaly rank but each

algorithm is free to determine its own method of measuring significance.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 131

 Anomaly visualization. The prototype is capable of visualizing the most

significant anomalies that have been detected.

In the experiments, both algorithms were tested using both synthetic data (the

generator is based on the work reported by Agrawal and Srikant [6] with some

modifications to cater for temporal features) and real data (the BMS-WebView-1

and BMS-WebView-2 datasets as used in the KDDCUP in 2000 [113]).

6.4.1 Synthetic Longitudinal Data

A synthetic data generator was built to produce large amounts of longitudinal data

which mimic the transactions in a retailing environment. Table 6.1 shows the

parameters for the data generation, along with their default values and the range of

values on which experiments were conducted. Table 6.2 shows the details of

synthetic data that was generated for experiments.

The synthetic data generator has three main steps:

 Step 1: Generate |𝑇| transactions.

 Step 2: Create a time domain |𝐷| which holds 𝑛 time intervals (𝑇𝑣𝑙),

|𝐷| = 𝑇𝑣𝑙1, 𝑇𝑣𝑙2, … , 𝑇𝑣𝑙𝑛 . |𝑇𝐹| (Temporizing Factor) is defined as the

number of elements which are randomly chosen from |D|. The mean of

transactions during |𝑇𝐹| time intervals is calculated as �̅� =
|𝑇|

|𝑇𝐹|
.

 Step 3: the number of transactions to be assigned with 𝑇𝑣𝑙𝑖 is determined

from a Poisson distribution with mean equal to �̅�. A time interval 𝑇𝑣𝑙 is

then assigned to those transactions. The process repeats until all

transactions have been assigned to a time interval.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 132

Table 6.1: Synthetic Data Parameters

Table 6.2: Synthetic Data

Data |I| |TS| |T| |TF|
I10.TS5.T20.TF40 10 5 20k 40
I50.TS10.T45.TF30 50 10 45k 30
I50.TS15.T100.TF50 50 15 100k 50
I100.TS10.T100.TF30 100 10 100k 30
I100.TS20.T200.TF50 100 20 200k 50

Table 6.3: Real Data

Data BMS-WebView-1 BMS-WebView-2
Number of Transaction 59,602 77,512

Distinct Items 497 3,340
Maximum Transaction Size 267 161
Average Transaction Size 2.5 5.0

6.4.2 Real Data

BMS-WebView-1 and BMS-WebView-2 contain several months’ worth of click

stream data from two e-commerce web sites. Each transaction in the two datasets is

a web session consisting of all the product detail pages viewed in that session. That

is, each product detail view is an item. The details of the two datasets are shown in

Table 6.3.

Taking the two datasets, a set of experiments were conducted aiming to discover

whether there are any anomalies amongst the associations between products

viewed by visitors to the web site. Since there are no timestamps for each unit of

click stream data, they are temporized by following steps 2 and 3 in the previous

section.

Name Description Default Value Range of Values
|I| Number of Items 10 10-100
|T| Number of Transactions 5,000 5k-200k
|P| Number of Patterns 50 50-200
TS Average Size of Transaction 5 5-10
PS Average Size of Pattern 5 5-10

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 133

6.4.3 Longitudinal Association Rule Generation

After the temporization of test datasets, the work to generate longitudinal

association rules is straightforward. In the work presented here, the ideas from

Rainsford and Roddick [175] were employed. Firstly, frequent items are generated

from transactions which occurred during the same time interval (𝑇𝑣𝑙𝑖) using FP-

growth. Longitudinal association rules are then generated by adding temporal

semantics (time interval 𝑇𝑣𝑙𝑖) to each frequent itemset which satisfied the

minimum support and confidence value.

Since there is no guarantee that rule 𝑅𝑖 will be found at different times and it will

be meaningless to detect the significant change of a rule 𝑅𝑖 if it has no or only few

rule instances in that time domain, the minimum number of rule instances (denoted

as min_𝑁(𝑅𝑖)) is defined as a threshold that one rule 𝑅𝑖 should satisfy. Those rules

that have instances less than min_𝑁 are pruned out.

6.4.4 Experimental Results and Evaluation

Experiments over both synthetic and real-world data show that the concept is sound

and that outliers in the behaviour of data can be found even if the incidence of the

items in the transaction do not change significantly. The results are shown in Table

6.4. The experimental performance showed that (as is the case with many data

mining tools) I/O dominates the calculation and the empirical results show a linear

correlation with dataset size (as shown in Figure 6.4). Moreover, even including all

I/O requirements, TARMA-b was able to analyse 100k transactions in 23 seconds.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 134

Table 6.4: Test Results

Dataset TF
Number

of Rules

TARMA-a TARMA-b
Deviation

Rate
Anomalies

Found

Anomaly

Rank

Anomalies

Found

Anomaly

Rank

I10.TS5.T20.TF40 40 12,255 348 4.23 335 2.68 0.04%

I50.TS10.T45.TF30 30 12,726 787 3.39 716 2.33 0.01%

I50.TS15.T100.TF50 50 13,204 259 5.15 257 5.10 0.01%

I100.TS10.T100.TF30 30 2,224 59 4.36 52 2.31 0.12%

I100.TS20.T200.TF50 50 11,997 239 5.42 234 5.49 0.03%

BMS-WebView-1 50 492 7 3.48 7 3.26 0.00%

BMS-WebView-1 100 1,221 24 3.00 24 3.26 0.00%

BMS-WebView-1 120 1,676 35 2.92 33 3.26 0.06%

BMS-WebView-2 90 4,163 71 2.86 71 3.26 0.00%

BMS-WebView-2 120 7,397 108 2.60 119 3.26 0.01%

 Count of Transactions(’000s)

Time

(secs)

Routine 5 10 15 20 25 35 45 50 60 75 100

TARMA-a 3.06 5.37 9.76 11.43 12.5 13.79 15.34 18.06 19.46 20.9 21.85

TARMA-b 3.09 5.5 10.04 12.03 12.65 14.01 16.25 18.39 19.48 21.08 22.93

Figure 6.4: Performance – Time vs #Transactions

For the tests, the minimum support, minimum confidence and 𝑚𝑖𝑛_𝑁 are defined

as 0.20, 0.80 and 10 respectively with synthetic data and 0.01, 0.20, 10 respectively

with real datasets. Only the value of support has been taken into account in the

process of detecting anomalous rules. To indicate the importance that the detection

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 135

algorithm indicates the anomaly warrants, the concept of an anomaly rank is

introduced. TARMA-a and TARMA-b use a z-score value to generate the anomaly

rank.

Figure 6.5: Screenshots for Top N Anomalies in Real Data

Both TARMA-a and TARMA-b have successfully detected anomalies among all test

datasets with the size ranging from 20K to 200K and the count of association rules

from 500 to 13,200. Although not all anomalies were examined to evaluate the

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 136

detection accuracy, the approach presented here has demonstrated its capability to

detect anomalies in complex datasets after examinations of the top N anomalies

(𝑁 = 10% of the whole amount of anomalies found in the test). Some screen shots

of the top 8 anomalies among two real datasets are shown in Figure 6.5. The

viewed page is denoted with the character C plus a number.

6.4.4.1 Comparison between TARMA-a and TARMA-b

Experiment results show that the detection results are similar for the two

algorithms. The average deviation rate (the percentage of anomalies found by one

algorithm but ignored by another), was as low as 0.05% in synthetic datasets and

0.03% in real datasets.

Although TARMA-a has a higher execution speed than TARMA-b, TARMA-b is

more robust than TARMA-a in dealing with complex datasets. Further tests were

conducted to compare their capacity to detect anomalies hidden among large

amounts of data with different densities. Firstly, some association rules which have

predefined distribution were generated and then some anomalous points were

added into them.

Figure 6.6 shows some of these test data. When the two algorithms were applied

with the test data, only TARMA-b successfully detected all points (P1−P4) as

anomalies. The experiments have shown that TARMA-a works well with simple

data coming from a univariate Gaussian distribution but performs poorly with

multi-variate data, that is, data from heavy-tailed distributions.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 137

Figure 6.6: Complex Data

6.4.4.2 Effect of 𝒓𝑿 and 𝒓𝒀 on Anomaly Detection Results

TARMA-b calculates a z-score from 𝑟𝑋𝑌-neighbourhood and therefore has great

advantages over TARMA-a. However, the predefinition of 𝑟𝑋 and 𝑟𝑌 is crucial but

not trivial. In the experiments, 𝑟𝑋 is defined as 𝑟𝑋 = 𝐾𝑥 × 𝑠𝑑𝑥, where 𝐾𝑥 ≥ 0 and

𝑠𝑑𝑥 is the standard deviation from the sorted time set 𝑇 = 1,2, … 𝑛 . Similarly,

𝑟𝑌 = 𝐾𝑦 × 𝑠𝑑𝑦 , where 𝐾𝑦 ≥ 0 and 𝑠𝑑𝑦 is the standard deviation of the selected

quality metric.

Testing TARMA-b with different values of 𝐾𝑥 resulted in the outcome shown in

Table 6.5. It is clear that when the 𝑟𝑋 value is not appropriately defined, the

detection accuracy becomes low as the 𝑟𝑋𝑌-neighbourhood is sensitive to the value

of 𝑟𝑋 and 𝑟𝑌. That is, if the window is too big or too small, the evaluation of the

change of number of 𝑟𝑋𝑌-neighbourhood using a z-score becomes less meaningful.

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 138

A more robust algorithm currently is being developed, which has the capability to

determine the most suitable 𝑟𝑋 and 𝑟𝑌 value automatically, which may lead to the

next anomaly detection algorithm, TARMA-c (as shown in Algorithm 6.4), to

improve detection efficiency.

Table 6.5: Test Results with Different 𝑟𝑋

Rule

𝒓𝑿 = 𝟒 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟐 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟎. 𝟓 × 𝒔𝒅𝒙 𝒓𝑿 = 𝟎. 𝟐𝟓 × 𝒔𝒅𝒙

Average

rXY-

n’hood

count

Anomalies

found

Average

rXY-

n’hood

count

Anomalies

found

Average

rXY-

n’hood

count

Anomalies

found

Average

rXY-

n’hood

count

Anomalies

found

A 11 1 9 1 4 1 3 1

B 13 0 13 0 7 3 3 3

C 10 0 9 1 4 4 2 0

D 5 0 5 0 3 0 2 0

E 29 0 24 0 10 1 3 0

F 10 0 10 0 7 2 4 0

G 13 0 12 0 6 2 4 2

Algorithm 6.4: TARMA-c Algorithm

1: precondition: CS-set has been generated

2: 𝑟𝑋 and 𝑟𝑌 have been defined

3: input: All rules 𝑅 in the CS-set

4: for each rule 𝑅𝑖 do

5: for each rule instance 𝑅𝑖
𝜏 do

6: Calculate 𝑟𝑋𝑌-neighbourhood count and save as 𝑁(𝑅𝑖
𝜏)

7: Calculate 𝑟𝑋𝑌-window count and save as 𝑊(𝑅𝑖
𝜏)

8: end for

9: Calculate mean 𝜇𝑖 and standard deviation 𝑠𝑑𝑖 for 𝑅𝑖within its 𝑟𝑋𝑌-window

10: for each rule instance 𝑅𝑖
𝜏 do

11: Calculate 𝑍𝑝 = z-score for the number of neighbours

12: Calculate 𝑍𝑤 = average z-score for the window

13: if |𝑍𝑝| ≤ 𝑍𝑤 then

14: Flag 𝑅𝑖 as anomalous

15: end if

16: end for

17: end for

The TARMA-c algorithm could be (and is being) developed to replace the use of the

z-score of the number of neighbours across the rule with a z-score of the number of

proximate neighbours. It calculates a running mean and standard deviation within a

CHAPTER 6. DETECTING ANOMALIES IN LONGITUDINAL ASSOCIATION RULES 139

larger window (𝑟𝑋.window × 𝑟𝑌.window). In this way, some issues, such as the

edge conditions (i.e. problems encountered with the first and last data points) and

datasets that vary in the number of collected data points will be catered for more

naturally.

6.5 Summary

The work presented in this chapter sought to validate the idea that the inspection of

rules as opposed to data could be useful as a tractable method of finding outliers.

Having briefly reviewed related works of anomaly detection and longitudinal and

spatio-temporal knowledge discovery, two algorithms, TARMA-a and TARMA-b,

have been proposed for anomaly detection. Both of these algorithms are based on

the Chebyshev theorem that almost all the observations in a dataset will have z-

scores less than 3.

TARMA-a directly calculates the z-scores from confidence and support values and

can only deal with univariate data. In contrast, TARMA-b uses the z-score to

evaluate the expected number of neighbours of each rule instance. Although

TARMA-a has a higher execution speed than TARMA-b, TARMA-b is more robust

than TARMA-a in dealing with more complex datasets.

While further work needs to be undertaken (including the development of better

detection algorithms such as the planned TARMA-c algorithm), the work to date has

shown the soundness and feasibility of the proposed approach.

Chapter 7

Conclusion and Future Research

Our world is now in an information era. The explosive growth in data and

databases generates the need for new techniques and tools that can intelligently and

automatically transform that data into useful information and knowledge. Data

mining is one technology designed to meet this challenge.

As discussed in Chapter 2, with a few notable exceptions, data mining research has

largely focused on the extraction of knowledge directly from the source data.

However, in many cases, such mining routines are beginning to encounter problems

as the primary or raw data might not always be available. For instance, in some

applications, stream data are only available for a short time while some cooperating

institutions that are interested in sharing knowledge may not be willing to disclose

their primary data. Besides the availability issue of primary data, many data mining

routines are becoming heavily I/O bound due to the fact that the volume of data

requiring analysis grows disproportionately with the comparatively slower

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 141

improvements in I/O channel speeds which limit many of the benefits of the

technology. One approach to tackling those issues is to mine over patterns/models

derived from one or more large and /or complex datasets, which is generally termed

higher order mining (HOM) [183]. This thesis employed the idea of HOM and

addressed two important but unanswered issues:

 the discovery of patterns in association rules which represent the higher

order knowledge sought by users, and

 the discovery of anomalies in association rules that produced by higher

order longitudinal/spatio-temporal association rule mining.

7.1 Contributions

7.1.1 Discovering Patterns in Association Rules

In order to create useable systems, problems such as the generation and

interpretation of interestingness for discovered rules are important considerations

and need to be resolved. Unfortunately, since rules are commonly supplied in a

low, instance-level format, the rules generated from many algorithms do not

correspond to the types of knowledge often being sought by the user. Rather higher

order knowledge is required which necessitates the construction of complex

patterns of data and rules. This thesis developed mechanisms to cater for the tasks

of defining and searching such higher order patterns based on a user’s definition of

interesting. In particular, the following contributions were realised.

First, the thesis proposed formal definitions of patterns in rules, or ruleset patterns,

which reflect the types of knowledge users are interested in. Based on the

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 142

definition of ruleset patterns, a proof-of-concept system, Horace, was presented for

efficient ruleset pattern discovery. Horace consists of three key components: the

FP-tree or other prefix trees, a pattern library with its associated ruleset pattern

language and a set of searching algorithms. Since FP-tree or other prefix trees

contain the complete set of information held in a database relevant to frequent

pattern mining, Horace employs a tree-based approach to searching for ruleset

patterns in the trees instead of rulesets, which has been proved through a prototype

system to be possible and more efficient.

In addition, a novel ruleset pattern tree (RP-tree) was introduced to represent

ruleset patterns. Given the structures of the FP-tree and RP-tree, two algorithms

(SRPFP-a and SRPFP-b) were developed to search the FP-tree for matches of the

RP-tree. SRPFP-a substitutes RP-tree nodes with items from the header table of the

FP-tree, which only requires one scan of the parent rule branch of the RP-tree thus

potentially reducing the processing capacity and time required. However, its

computation time was found to be heavily affected by the number of frequent items

of the FP-tree and distinct nodes in the RP-tree. To improve the searching

efficiency, SRPFP-b was further proposed to break the searching task into two

steps: the generation of kp-itemsets and the construction of the RP-tree instances. A

variant of FP-growth [88], RP-growth, was introduced to facilitate the fast retrieval

of the kp-itemsets. A complete prototype was built and a comprehensive set of tests

have demonstrated the feasibility of both algorithms, with SRPFP-b demonstrating

greater efficiency when dealing with more complex and large FP-trees and RP-

trees.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 143

Finally, a ruleset pattern language (RPL) was developed, which consists of a ruleset

pattern definition language (RPDL) and a ruleset pattern query language (RPQL).

RPL enables users to create, alter and retrieve patterns from a ruleset pattern

library. Also, indexing techniques were employed to further improve the efficiency

of RPQL query evaluations. A set of experiments were conducted and reported in

this thesis and have demonstrated the efficiency of RPQL.

7.1.2 Discovering Anomalies in Longitudinal Association Rules

The detection of unusual or anomalous data is an important function in automated

data analysis or data mining. However, the diversity of anomaly detection

algorithms shows that it is often difficult to determine which algorithms might

detect anomalies given any random dataset. In this thesis, the idea that the

inspection of rules that are produced by higher order longitudinal/spatio-temporal

association rule mining as opposed to data could be useful as a tractable method of

finding outliers was validated. Furthermore it was demonstrated that such a

technique may provide a view of anomalies that is arguably closer to that sought by

information analysts.

This thesis presents a formal definition of anomalies in longitudinal association

rules. Based on the definition, the anomaly detection process in association rules is

stated as the process of identifying those association rule(s) which have

significantly different support or confidence values among a large enough number

of instances of the same association rule. Also, to facilitate the anomaly detection

algorithms, the thesis proposed condensed-sequential set or CS-set which is

extracted from varying longitudinal association rule formats and organized in

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 144

sequential order in terms of time of occurrence.

Furthermore, two algorithms were proposed (TARMA-a and TARMA-b) for

anomaly detection. The fundamentals of these two algorithms were derived from

the Chebyshev theorem that almost all the observations in a dataset will have z-

scores less than 3. In TARMA-a, the z-score is directly calculated from confidence

and support values. TARMA-a is a fast algorithm but has limited application scope

as it can only deal with univariate data. To overcome the deficiencies of TARMA-a,

TARMA-b detects anomalies by evaluating the expected number of proximate

neighbors of each rule instance. It is more robust than TARMA-a when dealing with

large volumes of arbitrarily varying data.

Finally, a set of experiments is reported based on both synthetic data and real world

data. Test results have demonstrated that the proposed approach is sound and

feasible in finding outliers.

7.2 Future Research

The work presented in this thesis points to several directions for future research.

One of the research directions to be undertaken includes handling the conjunction

of various ruleset patterns, that is, hybrid ruleset patterns. For example, given a

competitor pattern, containing the following three rules: {𝑥} => {𝑧}, {𝑦} => {𝑧},

{𝑥, 𝑦} => {𝑧}, and a catalyst pattern containing the following three rules: {𝑥} =>

{𝑤}, {𝑦} => {𝑤}, {𝑥, 𝑦} => {𝑤}, a conjunction of the two patterns might result in

a hybrid pattern, revealing that with item 𝑧 items 𝑥 and 𝑦 are competitors while

with item 𝑤, they become catalysts. The challenges of efficiently searching for

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 145

matches of hybrid ruleset patterns lie in two aspects. First, hybrid RP-trees are

needed to cater for multiple parent rule branches. Second, more robust search

algorithms are required to find matches for such complex hybrid RP-trees.

Another research direction is the enhancements of RPL. Future work is planned to

add additional features to RPQL, including the UNION operator, the support for

GROUP BY, HAVING and ORDER clauses. Also, more efficient query processing

methods are under development to cope with more complex RPL queries.

Finally, there is an intention to develop more robust anomaly detection algorithms.

As indicated in Chapter 6, a TARMA-c algorithm is being developed to replace the

use of the z-score of the number of neighbours across the rule with a z-score of the

number of proximate neighbours. This will also address the automatic

determination of 𝑟𝑋 and 𝑟𝑌 with the static use of the z-score of 3.

Appendix

Publications Resulting from This

Thesis

The following publications have resulted from material presented within this thesis.

Publication 1 relates to material presented in Chapter 6 while publication 2

contains early work of Chapter 3 and 4. Publication 3 contains most of the material

presented in Chapter 5.

 P. LIANG and J. F. RODDICK, Detecting anomalous longitudinal

associations through higher order mining, in K.-L. Ong, W. Li and J. Gao,

eds., 2nd International Workshop on Integrating Artificial Intelligence and

Data Mining(AIDM 2007), Australian Computer Society, Gold Coast,

Queensland, 2007, pp. 19-27.

 P. LIANG, J. F. RODDICK and D. DE VRIES, Searching frequent pattern

and prefix trees for higher order rules, in P. Christen, P. Kennedy, L. Liu,

APPENDIX 147

K.-L. Ong, A. Stranieri and Y. Zhao, eds., 11th Australian Data Mining

Conference (AusDM 2013), Australian Computer Society, Inc, Canberra,

Australia, 2013.

 P. LIANG and J. F. RODDICK, RPL: A ruleset pattern language,

International Conference on Artificial Intelligence and Industrial

Application(AIIA2014), WIT Press, Hong Kong, 2014.

Bibliography

[1] H. ABU-MANSOUR, W. E. HADI, T. MCCLUSKEY and F. THABTAH,

Associative text categorisation rules pruning method, in RafalRzepka, ed.,

Linguistic and Cognitive Approaches to Dialog Agents Symposium

(LaCATODA'10), UK, 2010, pp. 39-44.

[2] C. C. AGGARWAL, On change diagnosis in evolving data streams, IEEE

Transactions on Knowledge and Data Engineering, 17 (2005), pp. 587-600.

[3] R. AGRAWAL, T. IMIELIŃSKI and A. SWAMI, Mining association

rules between sets of items in large databases, ACM SIGMOD Record, 22

(1993), pp. 207-216.

[4] R. AGRAWAL and G. PSAILA, Active Data Mining, KDD'95, 1995, pp.

3-8.

[5] R. AGRAWAL, G. PSAILA, E. L. WIMMERS and M. ZAIT, Querying

shape of histories, 21st VLDB Conference(VLDB'95), 1995, pp. 502-514.

[6] R. AGRAWAL and R. SRIKANT, Fast algorithms for mining association

rules, in J. Bocca, M. Jarke and C. Zaniolo, eds., 20th International

Conference on Very Large Data Bases(VLDB'94), Morgan Kaufmann,

Santiago, Chile, 1994, pp. 487-499.

[7] J. M. ALE and G. H. ROSSI, An approach to discovering temporal

association rules, the 2000 ACM symposium on Applied Computing, ACM,

2000, pp. 294-300.

[8] G. ANDRIENKO and N. ANDRIENKO, Interactive cluster analysis of

diverse types of spatiotemporal data, ACM SIGKDD Explorations

Newsletter, 11 (2010), pp. 19-28.

BIBLIOGRAPHY 149

[9] G. ANDRIENKO and N. ANDRIENKO, Spatio-temporal aggregation for

visual analysis of movements, IEEE Symposium on Visual Analytics

Science and Technology (VAST'08), IEEE, 2008, pp. 51-58.

[10] F. ANGIULLI and C. PIZZUTI, Fast outlier detection in high dimensional

spaces, Principles of Data Mining and Knowledge Discovery, Springer,

2002, pp. 15-27.

[11] M.-L. ANTONIE and O. R. ZAÏANE, An associative classifier based on

positive and negative rules, 9th ACM SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery, ACM, 2004, pp. 64-69.

[12] A. ARNING, R. AGRAWAL and P. RAGHAVAN, A linear method for

deviation detection in large databases, KDD'96, 1996, pp. 164-169.

[13] W. H. AU and K. C. C. CHAN, Mining changes in association rules: a

fuzzy approach, Fuzzy Sets And Systems, 149 (2005), pp. 87-104.

[14] Y. AUMANN and Y. LINDELL, A statistical theory for quantitative

association rules, Journal of Intelligent Information Systems, 20 (2003),

pp. 255-283.

[15] N. F. AYAN, A. U. TANSEL and E. ARKUN, An efficient algorithm to

update large itemsets with early pruning, 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 1999, pp.

287-291.

[16] B. BAESENS, S. VIAENE and J. VANTHIENEN, Post-processing of

association rules, DTEW Research Report 0020, 2000, pp. 1-18.

[17] E. BARALIS, S. CHIUSANO and P. GARZA, On support thresholds in

associative classification, ACM Symposium on Applied Computing

(SAC'04), ACM, 2004, pp. 553-558.

[18] E. BARALIS and P. GARZA, A lazy approach to pruning classification

rules, IEEE International Conference on Data Mining (ICDM02), IEEE,

2002, pp. 35-42.

[19] D. BARBARÁ, J. COUTO, S. JAJODIA and N. WU, ADAM: A testbed

for exploring the use of data mining in intrusion detection, ACM

SIGMOD Record, 30 (2001), pp. 15-24.

BIBLIOGRAPHY 150

[20] D. BARBARÁ, Y. LI, J. COUTO, J.-L. LIN and S. JAJODIA,

Bootstrapping a data mining intrusion detection system, ACM Symposium

on Applied Computing(SAC'03), ACM, 2003, pp. 421-425.

[21] S. BARON and M. SPILIOPOULOU, Monitoring change in mining

results, in A. Cuzzocrea and U. Dayal, eds., Data Warehousing and

Knowledge Discovery, Springer, 2001, pp. 51-60.

[22] S. BARON and M. SPILIOPOULOU, Monitoring the evolution of web

usage patterns, in B. Berendt, A. Hotho, D. Mladenic, M. van Someren, M.

Spiliopoulou and G. Stumme, eds., Web Mining: From Web to Semantic

Web, Springer, 2004, pp. 181-200.

[23] S. BARON and M. SPILIOPOULOU, Monitoring the results of the KDD

process: An overview of pattern evolution, in J. Meij, ed., Dealing with the

Data Flood: Mining Data, Text and Multimedia, STT Netherlands Study

Center for Technology Trends, The Hague, Netherlands, 2002, pp. 845-

863.

[24] S. BARON, M. SPILIOPOULOU and O. GÜNTHER, Efficient

monitoring of patterns in data mining environments, 7th East-European

Conference on Advances in Databases and Information Systems

(ADBIS'03), Springer, 2003, pp. 253-265.

[25] I. BARTOLINI, P. CIACCIA, I. NTOUTSI, M. PATELLA and Y.

THEODORIDIS, A unified and flexible framework for comparing simple

and complex patterns, 8th European Conference on Principles and

Practice of Knowledge Discovery in Databases(PKDD'04), Springer, Pisa,

Italy, 2004, pp. 496-499.

[26] Y. BASTIDE, N. PASQUIER, R. TAOUIL, G. STUMME and L.

LAKHAL, Mining minimal non-redundant association rules using

frequent closed itemsets, in J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-

K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv and P. J. Stuckey, eds.,

International Conference on Computational Logic(CL'2000), Springer,

London, United Kingdom, 2000, pp. 972-986.

[27] Y. BASTIDE, R. TAOUIL, N. PASQUIER, G. STUMME and L.

LAKHAL, Mining frequent patterns with counting inference, ACM

BIBLIOGRAPHY 151

SIGKDD Explorations Newsletter, 2 (2000), pp. 66-75.

[28] S. D. BAY and M. SCHWABACHER, Mining distance-based outliers in

near linear time with randomization and a simple pruning rule,

SIGKDD'03, ACM, Washington, DC, USA, 2003, pp. 29-38.

[29] R. J. BAYARDO JR, R. AGRAWAL and D. GUNOPULOS, Constraint-

based rule mining in large, dense databases, the 15th International

Conference on Data Engineering, IEEE, 1999, pp. 188-197.

[30] D. BIRANT and A. KUT, Spatio-temporal outlier detection in large

databases, 28th International Conference on Information Technology

Interfaces, IEEE, Cavtat, Dubrovnik 2006, pp. 179-184.

[31] F. BODON, A fast apriori implementation, in F. B. Goethals and M. J.

Zaki, eds., IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI’03), IEEE Press, Melbourne, 2010.

[32] R. J. BOLTON and D. J. HAND, Unsupervised profiling methods for

fraud detection, Credit Scoring and Credit Control VII, Edinburgh, UK,

2001, pp. 235-255.

[33] M. BÖTTCHER, D. NAUCK, D. RUTA and M. SPOTT, Towards a

framework for change detection in datasets, 26th SGAI International

Conference on Innovative Techniques and Applications of Artificial

Intelligence, Springer, 2006, pp. 115-128.

[34] P. S. BRADLEY and U. M. FAYYAD, Refining initial points for k-means

clustering, in J. Shavlik, ed., 15th International Conference on Machine

Learning(ICML'98), Morgan Kaufmann, San Francisco, CA, 1998, pp. 91-

99.

[35] M. M. BREUNIG, H.-P. KRIEGEL, R. T. NG and J. SANDER, LOF:

Identifying density-based local outliers, ACM SIGMOD Record, ACM,

2000, pp. 93-104.

[36] M. M. BREUNIG, H.-P. KRIEGEL, R. T. NG and J. SANDER, Optics-of:

Identifying local outliers, Principles of Data Mining and Knowledge

Discovery, Springer, 1999, pp. 262-270.

[37] T. BRIJS, G. SWINNEN, K. VANHOOF and G. WETS, Using

BIBLIOGRAPHY 152

association rules for product assortment decisions: A case study, 5th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, 1999, pp. 254-260.

[38] S. BRIN, R. MOTWANI and C. SILVERSTEIN, Beyond market baskets:

Generalizing association rules to correlations, ACM SIGMOD Record, 26

(1997), pp. 265-276.

[39] S. BRIN, R. MOTWANI, J. D. ULLMAN and S. TSUR, Dynamic itemset

counting and implication rules for market basket data, ACM SIGMOD

Record, 26 (1997), pp. 255-264.

[40] S. BRIN, R. RASTOGI and K. SHIM, Mining optimized gain rules for

numeric attributes, 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Diego, California, USA,

1999, pp. 135-144.

[41] M. BRITO, E. CHAVEZ, A. QUIROZ and J. YUKICH, Connectivity of

the mutual k-nearest-neighbor graph in clustering and outlier detection,

Statistics & Probability Letters, 35 (1997), pp. 33-42.

[42] S. BUDALAKOTI, A. N. SRIVASTAVA, R. AKELLA and E. TURKOV,

Anomaly detection in large sets of high-dimensional symbol sequences,

Technical report (2006), NASA Ames Research Center.

[43] S. BYERS and A. E. RAFTERY, Nearest-neighbor clutter removal for

estimating features in spatial point processes, Journal of the American

Statistical Association, 93 (1998), pp. 577-584.

[44] A. BYKOWSKI and C. RIGOTTI, A condensed representation to find

frequent patterns, 20th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, ACM, Santa Barbara, California, USA

2001, pp. 267-273.

[45] T. CALDERS and B. GOETHALS, Mining all non-derivable frequent

itemsets, 6th European Conference on Principles of Data Mining and

Knowledge Discovery, Springer, 2002, pp. 74-85.

[46] R. A. CARRASCO, M. A. VILA and F. ARAQUE, dmFSQL: A language

for data mining, 17th International Workshop on Database and Expert

BIBLIOGRAPHY 153

Systems Applications (DEXA'06). , IEEE, 2006, pp. 440-444.

[47] A. CEGLAR and J. F. RODDICK, Association Mining, ACM Computing

Surveys, 38 (2006), pp. 1-42.

[48] S. CHAKRABARTI, S. SARAWAGI and B. DOM, Mining surprising

patterns using temporal description length, in A. Gupta, O. Shmueli and J.

Widom, eds., 24th International Conference on Very Large Data Bases

(VLDB'98), Morgan Kaufmann, New York, NY, USA, 1998, pp. 606-617.

[49] K. C. CHAN and W.-H. AU, Mining fuzzy association rules, 6th

International Conference on Information and Knowledge Management,

ACM, 1997, pp. 209-215.

[50] V. CHANDOLA, A. BANERJEE and V. KUMAR, Anomaly detection: A

survey, ACM Computing Surveys (CSUR), 41 (2009), pp. 1-58.

[51] X. CHEN and I. PETROUNIAS, An integrated query and mining system

for temporal association rules, 2nd International Conference on Data

Warehousing and Knowledge Discovery (DaWaK 2000), Springer, 2000,

pp. 327-336.

[52] X. CHEN and I. PETROUNIAS, Mining temporal features in association

rules, Principles of Data Mining and Knowledge Discovery, Springer,

1999, pp. 295-300.

[53] T. CHENG and Z. LI, A multiscale approach for spatio‐temporal outlier

detection, Transactions in GIS, 10 (2006), pp. 253-263.

[54] D. W.-L. CHEUNG, V. T. NG and B. W. TAM, Maintenance of

discovered knowledge: A case in multi-level association rules, 2nd

International Conference on Knowledge Discovery and Data Mining

(KDD'96), AAAI Press, 1996, pp. 307-310.

[55] D. W. CHEUNG, J. HAN, V. T. NG and C. WONG, Maintenance of

discovered association rules in large databases: An incremental updating

technique, in S. Su, ed., 12th International Conference on Data

Engineering(ICDE'96), IEEE Computer Society, New Orleans,

Louisiana,USA, 1996, pp. 106-114.

[56] D. W. CHEUNG, S. D. LEE and B. KAO, A general incremental

BIBLIOGRAPHY 154

technique for maintaining discovered association rules, 5th International

Conference on Database Systems for Advanced Applications(DASFAA'97),

1997, pp. 185-194.

[57] A. L.-M. CHIU and A.-C. FU, Enhancements on local outlier detection,

7th International Database Engineering and Applications Symposium

IEEE, 2003, pp. 298-307.

[58] F. EDGEWORTH, XLI. On discordant observations, The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23

(1887), pp. 364-375.

[59] M. EL-HAJJ and O. R. ZAÏANE, COFI-tree mining: A new approach to

pattern growth with reduced candidacy generation, Workshop on

Frequent Itemset Mining Implementations (FIMI’03) in conjunction with

IEEE-ICDM, Melbourne 2003.

[60] E. ESKIN, A. ARNOLD, M. PRERAU, L. PORTNOY and S. STOLFO, A

geometric framework for unsupervised anomaly detection, Applications of

Data Mining in Computer Security, Springer, 2002, pp. 77-101.

[61] M. ESTER, A. FROMMELT, H.-P. KRIEGEL and J. SANDER, Spatial

data mining: database primitives, algorithms and efficient DBMS support,

Data Mining and Knowledge Discovery, 4 (2000), pp. 193-216.

[62] M. ESTER, H.-P. KRIEGEL, J. SANDER and X. XU, A density-based

algorithm for discovering clusters in large spatial databases with noise,

International Conference on Knowledge Discovery in Databases and Data

Mining (KDD'96), Portland, Oregon, 1996, pp. 226-231.

[63] W. FAN, Systematic data selection to mine concept-drifting data streams,

10th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD'04), ACM, Seattle, WA, USA, 2004, pp. 128-137.

[64] U. M. FAYYAD, G. PIATETSKY-SHAPIRO, P. SMYTH and R.

UTHURUSAMY, Advances in knowledge discovery and data mining,

AAAI Press, 1996.

[65] D. H. FISHER, Knowledge acquisition via incremental conceptual

clustering, Machine Learning, 2 (1987), pp. 139-172.

BIBLIOGRAPHY 155

[66] S. FORTIN and L. LIU, An object-oriented approach to multi-level

association rule mining, 5th International Conference on Information and

Knowledge Management (CIKM'96), ACM, Rockville MD, USA, 1996,

pp. 65-72.

[67] Y. FU and J. HAN, Meta-rule-guided mining of association rules in

relational databases, 1st International Workshop on Integration of

Knowledge Discovery with Deductive and Object-Oriented Databases

(KDOOD'95), 1995, pp. 39-46.

[68] T. FUKUDA, Y. MORIMOTO, S. MORISHITA and T. TOKUYAMA,

Data mining using two-dimensional optimized association rules: Scheme,

algorithms, and visualization, ACM SIGMOD Record, 25 (1996), pp. 13-

23.

[69] T. FUKUDA, Y. MORIMOTO, S. MORISHITA and T. TOKUYAMA,

Mining optimized association rules for numeric attributes, 15th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, ACM, 1996, pp. 182-191.

[70] M. M. GABER, A. ZASLAVSKY and S. KRISHNASWAMY, Mining

data streams: A review, SIGMOD Record, 34 (2005), pp. 18-26.

[71] V. GANTI, J. GEHRKE and R. RAMAKRISHNAN, CACTUS-clustering

categorical data using summaries, in S. Chaudhuri and D. Madigan, eds.,

5th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ACM Press, San Diego, CA, 1999, pp. 73-83.

[72] V. GANTI, J. GEHRKE and R. RAMAKRISHNAN, DEMON:Mining

and monitoring evolving data, IEEE Transactions on Knowledge and Data

Engineering, 13 (2002), pp. 50-63.

[73] V. GANTI, J. GEHRKE and R. RAMAKRISHNAN, A framework for

measuring changes in data characteristics, 18th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, ACM,

Philadelphia, PA, 1999, pp. 126-137.

[74] L. GENG and H. J. HAMILTON, Interestingness measures for data

mining: A survey, ACM Computing Surveys (CSUR), 38 (2006).

BIBLIOGRAPHY 156

[75] B. GOETHALS, J. MUHONEN and H. TOIVONEN, Mining non-

derivable association rules, 5th SIAM International Conference on Data

Mining (SDM'05), SIAM, Newport Beach, CA, 2005, pp. 239-249.

[76] R. P. GOPALAN and Y. G. SUCAHYO, ITL-MINE: Mining frequent

itemsets more efficiently, in L. Wang, S. Halgamuge and X. Yao, eds.,

Internatiional Conference on Fuzzy Systems and Knowledge Discovery,

Springer, Singapore, 2002, pp. 167-172.

[77] M. S. GOUIDER and A. FARHAT, Mining multi-level frequent itemsets

under constraints, International Journal of Database Theory & Application,

3 (2010), pp. 15-34.

[78] G. GRAHNE and J. ZHU, Efficiently using prefix-trees in mining frequent

itemsets, FIMI, 2003, pp. 123-132.

[79] S. GUHA, R. RASTOGI and K. SHIM, ROCK: A robust clustering

algorithm for categorical attributes, the 15th International Conference on

Data Engineering, IEEE, 1999, pp. 512-521.

[80] G. K. GUPTA, A. STREHL and J. GHOSH, Distance based clustering of

association rules, Intelligent Engineering Systems Through Artificial

Neural Networks(ANNIE 1999), ASME, St. Louis, Missouri, USA, 1999,

pp. 759-764.

[81] H. J. HAMILTON and D. J. RANDALL, Data mining with calendar

attributes, in J. F. Roddick and K. Hornsby, eds., International Workshop

on Temporal, Spatial and Spatio-Temporal Data Mining (TSDM2000),

Springer, Lyon, France, 2001, pp. 117-132.

[82] J. HAN, Mining knowledge at multiple concept levels, 4th International

Conference on Information and Knowledge Management, ACM, 1995, pp.

19-24.

[83] J. HAN and A. FU, Mining multiple-level association rules in large

databases, IEEE Transaction on Knowledge and Data Engineering, 11

(1999), pp. 798-805.

[84] J. HAN and Y. FU, Discovery of multiple-level association rules from

large databases, VLDB, 1995, pp. 420-431.

BIBLIOGRAPHY 157

[85] J. HAN, Y. FU, W. WANG, K. KOPERSKI and O. ZAIANE, DMQL: A

data mining query language for relational databases, in R. Ng, ed., ACM

SIGMOD Workshop DMKD'96, Montreal, Canada, 1996, pp. 27-34.

[86] J. HAN and M. KAMBER, Data Mining: Concepts and Techniques,

Morgan Kaufmann Publishers, 2006.

[87] J. HAN, K. KOPERSKI and N. STEFANOVIC, GeoMiner: A system

prototype for spatial data mining, in J. Peckham, ed., ACM SIGMOD

International Conference on the Management of Data (SIGMOD'97),

ACM Press, Tucson, AZ, USA, 1997, pp. 553-556.

[88] J. HAN, J. PEI and Y. YIN, Mining frequent patterns without candidate

generation, in W. Chen, J. Naughton and P. Bernstein, eds., ACM

SIGMOD International Conference on the Management of Data

(SIGMOD 2000), ACM Press, Dallas, TX, USA, 2000, pp. 1-12.

[89] J. HAN, J. PEI, Y. YIN and R. MAO, Mining frequent patterns without

candidate generation: A frequent-pattern tree approach, Data Mining and

Knowledge Discovery, 8 (2004), pp. 53-87.

[90] A. HANAU, Die Prognose der Schweinepreise, Hobbing, Berlin 1928.

[91] S. K. HARMS, J. DEOGUN and T. TADESSE, Discovering sequential

association rules with constraints and time lags in multiple sequences,

13th International Symposium on Foundations of Intelligent

Systems(ISMIS'02), Springer, Lyon, France, 2002, pp. 373-376.

[92] V. HAUTAMÄKI, I. KÄRKKÄINEN and P. FRÄNTI, Outlier detection

using k-nearest neighbour graph, 17th International Conference on

Pattern Recognition, IEEE Computer Society, 2004, pp. 430-433.

[93] D. M. HAWKINS, Identification of Outliers, Chapman and Hall, London

and New York, 1980.

[94] Z. HE, X. XU, J. Z. HUANG and S. DENG, A frequent pattern discovery

method for outlier detection, Advances in Web-Age Information

Management, Springer, 2004, pp. 726-732.

[95] J. HIPP, U. GÜNTZER and G. NAKHAEIZADEH, Mining association

rules: Deriving a superior algorithm by analyzing today’s approaches,

BIBLIOGRAPHY 158

Principles of Data Mining and Knowledge Discovery, Springer, 2000, pp.

159-168.

[96] T.-P. HONG, K.-Y. LIN and B.-C. CHIEN, Mining fuzzy multiple-level

association rules from quantitative data, Applied Intelligence, 18 (2003),

pp. 79-90.

[97] T.-P. HONG, K.-Y. LIN and S.-L. WANG, Fuzzy data mining for

interesting generalized association rules, Fuzzy Sets and Systems, 138

(2003), pp. 255-269.

[98] Z. HUANG, Z. ZHOU, T. HE and X. WANG, ACAC: Associative

classification based on all-confidence, IEEE International Conference on

Granular Computing (GrC), IEEE, 2011, pp. 289-293.

[99] T. IMIELIŃSKI and A. VIRMANI, MSQL: A query language for

database mining, Data Mining and Knowledge Discovery, 3 (1999), pp.

373-408.

[100] T. IMIELIŃSKI, A. VIRMANI and A. ABDULGHANI, DMajor-

Application programming interface for database mining, Data Mining and

Knowledge Discovery, 3 (1999), pp. 347-372.

[101] S. JAROSZEWICZ and D. A. SIMOVICI, Pruning redundant association

rules using maximum entropy principle, Advances in Knowledge

Discovery and Data Mining, Springer, 2002, pp. 135-147.

[102] H. JEUNG, M. L. YIU, X. ZHOU, C. S. JENSEN and H. T. SHEN,

Discovery of convoys in trajectory databases, VLDB Endowment, 2008, pp.

1068-1080.

[103] Y. JIANG, Y. LIU, X. LIU and S. YANG, Integrating classification

capability and reliability in associative classification: A β-stronger model,

Expert Systems with Applications, 37 (2010), pp. 3953-3961.

[104] W. JIN, A. K. TUNG and J. HAN, Mining top-n local outliers in large

databases, 7th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ACM, San Francisco, California USA, 2001,

pp. 293-298.

[105] T. JOHNSON, I. KWOK and R. NG, Fast computation of 2-dimensional

BIBLIOGRAPHY 159

depth contours, KDD'98, 1998, pp. 224-228.

[106] P. KALNIS, N. MAMOULIS and S. BAKIRAS, On discovering moving

clusters in spatio-temporal data, 9th International Symposium on Spatial

and Temporal Databases(SSTD2005), Springer, Angra dos Reis, 2005, pp.

364-381.

[107] M. KAYA and R. ALHAJJ, Mining multi-cross-level fuzzy weighted

association rules, 2nd IEEE International Conference Intelligent Systems,

IEEE, Varna, Bulgaria, 2004, pp. 225-230.

[108] M. KLEMETTINEN, H. MANNILA, P. RONKAINEN, H. TOIVONEN

and A. I. VERKAMO, Finding interesting rules from large sets of

discovered association rules, in N. Adam, B. Bhargava and Y. Yesha, eds.,

3rd International Conference on Information and Knowledge Management,

ACM Press, Gaithersburg, Maryland, 1994, pp. 401-407.

[109] W. KLÖSGEN and J. M. ZYTKOW, Handbook of Data Mining and

Knowledge Discovery, Oxford University Press, New York, 2002.

[110] E. M. KNORR and R. T. NG, Finding intensional knowledge of distance-

based outliers, 25th VLDB Conference, Edinburgh Scotland, 1999, pp.

211-222.

[111] E. M. KNORR and R. T. NG, A unified approach for mining outliers,

1997 Conference of the Centre for Advanced Studies on Collaborative

Research, IBM Press, 1997, pp. 11.

[112] E. M. KNORR, R. T. NG and V. TUCAKOV, Distance-based outliers:

Algorithms and applications, The VLDB Journal, 8 (2000), pp. 237-253.

[113] R. KOHAVI, C. E. BRODLEY, B. FRASCA, L. MASON and Z. ZHENG,

KDD-Cup 2000 organizers' report: Peeling the onion, SIGKDD

Explorations, 2 (2000), pp. 86-93.

[114] I. KOPANAS, N. M. AVOURIS and S. DASKALAKI, The role of

domain knowledge in a large scale data mining project, Methods and

Applications of Artificial Intelligence, Springer, 2002, pp. 288-299.

[115] K. KOPERSKI and J. HAN, Discovery of spatial association rules in

geographic information databases, Advances in Spatial Databases,

BIBLIOGRAPHY 160

Springer, 1995, pp. 47-66.

[116] Y. KOU, C.-T. LU and D. CHEN, Spatial weighted outlier detection, in J.

Ghosh, D. Lambert, D. Skillicorn and J. Srivastava, eds., SIAM

International Conference on Data Mining, 2006, pp. 614-618.

[117] G. KUNDU, M. M. ISLAM, S. MUNIR and M. F. BARI, ACN: An

associative classifier with negative rules, 11th IEEE International

Conference on Computational Science and Engineering, IEEE, 2008, pp.

369-375.

[118] G. KUNDU, S. MUNIR, M. F. BARI, M. M. ISLAM and K. MURASE, A

novel algorithm for associative classification, International Conference on

Neural Information Processing (ICONIP'07), Springer, 2007, pp. 453-459.

[119] C. M. KUOK, A. FU and M. H. WONG, Mining fuzzy association rules in

databases, ACM SIGMOD Record, 27 (1998), pp. 41-46.

[120] C.-H. LEE, C.-R. LIN and M.-S. CHEN, On mining general temporal

association rules in a publication database, IEEE International

Conference on Data Mining (ICDM'01), IEEE, 2001, pp. 337-344.

[121] S. D. LEE and D. W.-L. CHEUNG, Maintenance of discovered

association rules: When to update?, in R. Ng, ed., ACM SIGMOD

Workshop on Research Issues on Data Mining and Knowledge Discovery

(DMKD'97), ACM, Tucson AZ, USA, 1997.

[122] S. D. LEE, D. W. CHEUNG and B. KAO, Is sampling useful in data

mining? A case in the maintenance of discovered association rules, Data

Mining and Knowledge Discovery, 2 (1998), pp. 233-262.

[123] W. LEE, S. J. STOLFO and K. W. MOK, Adaptive intrusion detection: A

data mining approach, Artificial Intelligence Review, 14 (2000), pp. 533-

567.

[124] B. LENT, A. SWAMI and J. WIDOM, Clustering association rules, in A.

Gray and P.-A. Larson, eds., 13th International Conference on Data

Engineering, IEEE Computer Society Press, Birmingham, UK, 1997, pp.

220-231.

[125] W. LI, J. HAN and J. PEI, CMAR: Accurate and efficient classification

BIBLIOGRAPHY 161

based on multiple class-association rules, in N. Cercone, T. Lin and X.

Wu, eds., IEEE International Conference on Data Mining(ICDM'01),

IEEE Computer Society, San Jose, CA, USA, 2001, pp. 369-376.

[126] X. LI, D. QIN and C. YU, ACCF: Associative classification based on

closed frequent itemsets, 5th International Conference on Fuzzy Systems

and Knowledge Discovery(FSKD'08), IEEE, 2008, pp. 380-384.

[127] Y. LI, P. NING, X. S. WANG and S. JAJODIA, Discovering calendar-

based temporal association rules, Data & Knowledge Engineering, 44

(2003), pp. 193-218.

[128] P. LIANG and J. F. RODDICK, Detecting anomalous longitudinal

associations through higher order mining, in K.-L. Ong, W. Li and J. Gao,

eds., 2nd International Workshop on Integrating Artificial Intelligence and

Data Mining(AIDM 2007), Australian Computer Society, Gold Coast,

Queensland, 2007, pp. 19-27.

[129] P. LIANG and J. F. RODDICK, RPL: A ruleset pattern language,

International Conference on Artificial Intelligence and Industrial

Application(AIIA2014), WIT Press, Hong Kong, 2014.

[130] P. LIANG, J. F. RODDICK and D. DE VRIES, Searching frequent

pattern and prefix trees for higher order rules, in P. Christen, P. Kennedy,

L. Liu, K.-L. Ong, A. Stranieri and Y. Zhao, eds., 11th Australian Data

Mining Conference (AusDM 2013), Australian Computer Society, Inc,

Canberra, Australia, 2013.

[131] K.-C. LIN, I.-E. LIAO and Z.-S. CHEN, An improved frequent pattern

growth method for mining association rules, Expert Systems with

Applications, 38 (2011), pp. 5154-5161.

[132] B. LIU, W. HSU, S. CHEN and Y. MA, Analyzing the subjective

interestingness of association rules, Intelligent Systems and their

Applications, IEEE, 15 (2000), pp. 47-55.

[133] B. LIU, W. HSU and Y. MA, Discovering the set of fundamental rule

changes, 7th SIGKDD International Conference on Knowledge Discovery

and Data Mining, ACM, 2001, pp. 335-340.

BIBLIOGRAPHY 162

[134] B. LIU, W. HSU and Y. MA, Integrating classification and association

rule mining, Knowledge Discovery and Data Mining Conference

(KDD'98), New York, NY, 1998, pp. 80-86.

[135] B. LIU, Y. MA and R. LEE, Analyzing the interestingness of association

rules from the temporal dimension, IEEE International Conference on

Data Mining (ICDM'01), IEEE, 2001, pp. 377-384.

[136] B. LIU, Y. MA and C.-K. WONG, Classification using association rules:

Weaknesses and enhancements, in V. Kumar, ed., Data Mining for

Scientific and Engineering Applications, Springer, 2001, pp. 591-605.

[137] J. LIU, Y. PAN, K. WANG and J. HAN, Mining frequent item sets by

opportunistic projection, 8th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, Edmonton, Alberta,

Canada, 2002, pp. 229-238.

[138] Y. LU, Concept hierarchy in data mining: Specification, generation and

implementation, Simon Fraser University, Simon Fraser University, 1997.

[139] A. MADDALENA and B. CATANIA, Towards an interoperable solution

for pattern management, 3rd International Workshop on Database

Interoperability (INTERDB'07) (in conjunction with VLDB'07), Vienna,

Austria, 2007.

[140] O. MAIMON and L. ROKACH, Introduction to knowledge discovery in

databases, Data Mining and Knowledge Discovery Handbook, Springer,

2005, pp. 1-17.

[141] R. MAO, Adaptive-FP: An efficient and effective method for multi-level

multi-dimensional frequent pattern mining, Simon Fraser University,

Simon Fraser University, 2002.

[142] C. MARINICA, F. GUILLET and H. BRIAND, Post-processing of

discovered association rules using ontologies, IEEE International

Conference on Data Mining Workshops (ICDMW'08), IEEE, 2008, pp.

126-133.

[143] J. MATA, J.-L. ALVAREZ and J.-C. RIQUELME, An evolutionary

algorithm to discover numeric association rules, ACM Symposium on

BIBLIOGRAPHY 163

Applied Computing, ACM, 2002, pp. 590-594.

[144] A. MCCALLUM, K. NIGAM and L. H. UNGAR, Efficient clustering of

high-dimensional data sets with application to reference matching, the

sixth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, ACM Press, 2000, pp. 169-178.

[145] Q. MEI and C. ZHAI, Discovering evolutionary theme patterns from text -

an exploration of temporal text mining, in R. Grossman, R. Bayardo and K.

Bennett, eds., 11th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD05), ACM Press, Chicago,

IL, 2005, pp. 198-207.

[146] R. MEO, G. PSAILA and S. CERI, A new SQL-like operator for mining

association rules, 22nd VLDB Conference (VLDB'96), Mumbai, India,

1996, pp. 122-133.

[147] R. J. MILLER and Y. YANG, Association rules over interval data, in J.

Peckham, ed., ACM SIGMOD International Conference on the

Management of Data, ACM Press, Tucson, AZ, USA, 1997, pp. 452-461.

[148] C. MOONEY and J. RODDICK, Mining itemsets-an approach to

longitudinal and incremental association rule mining, in A. Zanasi, C.

Brebbia, N. Ebecken and P. Melli, eds., 3rd International Conference on

Data Mining Methods and Databases, WIT Press, Bologna, Italy, 2002, pp.

93-102.

[149] H. MOTULSKY, Intuitive Biostatistics, Oxford University Press New

York, 1995.

[150] M. NANNI and D. PEDRESCHI, Time-focused clustering of trajectories

of moving objects, Journal of Intelligent Information Systems, 27 (2006),

pp. 267-289.

[151] R. T. NG, L. V. LAKSHMANAN, J. HAN and A. PANG, Exploratory

mining and pruning optimizations of constrained associations rules, ACM

SIGMOD International Conference on Management of Data(SIGMOD

'98), ACM, 1998, pp. 13-24.

[152] Q. NIU, S.-X. XIA and L. ZHANG, Association classification based on

BIBLIOGRAPHY 164

compactness of rules, 2nd International Workshop on Knowledge

Discovery and Data Mining (WKDD'09), IEEE, 2009, pp. 245-247.

[153] E. R. OMIECINSKI, Alternative interest measures for mining associations

in databases, IEEE Transactions on Knowledge and Data Engineering, 15

(2003), pp. 57-69.

[154] K.-H. ONG, K.-L. ONG, W.-K. NG and E.-P. LIM, Crystalclear: Active

visualization of association rules, International Workshop on Active

Mining (AM-2002) in Conjunction with the IEEE International Conference

on Data Mining (ICDN'02), IEEE Press, Maebashi City, Japan, 2002.

[155] K.-L. ONG, W.-K. NG and E.-P. LIM, Mining multi-level rules with

recurrent items using FP'-tree, 3rd International Conference on

Information, Communications and Signal Processing, Singapore, 2001.

[156] M. E. OTEY, A. GHOTING and S. PARTHASARATHY, Fast distributed

outlier detection in mixed-attribute data sets, Data Mining and Knowledge

Discovery, 12 (2006), pp. 203-228.

[157] B. OZDEN, S. RAMASWAMY and A. SILBERSCHATZ, Cyclic

association rules, 14th International Conference on Data Engineering

(ICDE'98), IEEE Computer Society Press, Orlando, Florida, USA, 1998,

pp. 412-421.

[158] S. OZEL and H. GUVENIR, An algorithm for mining association rules

using perfect hashing and database pruning, 10th Turkish Symposium on

Artificial Intelligence and Neural Networks, Springer, 2001, pp. 257-264.

[159] B. PADMANABHAN and A. TUZHILIN, Small is beautiful: discovering

the minimal set of unexpected patterns, Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data

mining, ACM, 2000, pp. 54-63.

[160] R. PÁIRCÉIR, S. MCCLEAN and B. SCOTNEY, Discovery of multi-level

rules and exceptions from a distributed database, 6th SIGKDD

International Conference on Knowledge Discovery and Data

Mining(KDD'00), ACM Press, 2000, pp. 523-532.

[161] G. K. PALSHIKAR, Distance-based outliers in sequences, Distributed

BIBLIOGRAPHY 165

Computing and Internet Technology, Springer, 2005, pp. 547-552.

[162] T. PANG-NING, M. STEINBACH and V. KUMAR, Introduction to data

mining, Library of Congress, 2006.

[163] S. PAPADIMITRIOU, H. KITAGAWA, P. B. GIBBONS and C.

FALOUTSOS, Loci: Fast outlier detection using the local correlation

integral, 19th International Conference on Data Engineering, IEEE, 2003,

pp. 315-326.

[164] J. S. PARK, M.-S. CHEN and P. S. YU, An effective hash-based algorithm

for mining association rules, ACM SIGMOD International Conference on

Management of Data, ACM, 1995, pp. 175-186.

[165] N. PASQUIER, Y. BASTIDE, R. TAOUIL and L. LAKHAL, Discovering

frequent closed itemsets for association rules, 7th International

Conference on Database Theory (ICDT99), Springer, 1999, pp. 398-416.

[166] N. PASQUIER, R. TAOUIL, Y. BASTIDE, G. STUMME and L.

LAKHAL, Generating a condensed representation for association rules,

Journal of Intelligent Information Systems, 24 (2005), pp. 29-60.

[167] A. PATCHA and J.-M. PARK, An overview of anomaly detection

techniques: Existing solutions and latest technological trends, Computer

Networks, 51 (2007), pp. 3448-3470.

[168] J. PEI, J. HAN, H. LU, S. NISHIO, S. TANG and D. YANG, H-mine:

Hyper-structure mining of frequent patterns in large databases,

International Conference on Data Mining (ICDM'01), IEEE, San Jose,

California, 2001, pp. 31-39.

[169] J. PEI, J. HAN and R. MAO, CLOSET: An efficient algorithm for mining

frequent closed itemsets, ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, 2000, pp. 21-30.

[170] W. PERRIZO and A. DENTON, Framework unifying association rule

mining, clustering and classification, International Conference on

Computer Science, Software Engineering, Information Technology, e-

Business, and Applications (CSITeA03) Rio de Janeiro, Brazil, 2003.

[171] A. PIETRACAPRINA and D. ZANDOLIN, Mining frequent itemsets

BIBLIOGRAPHY 166

using patricia tries, in B. Goethals and M. Zaki, eds., IEEE ICDM

Workshop on Frequent Itemset Mining Implementations(FIMI'03),

Melbourne, Florida, USA, 2003.

[172] D. POKRAJAC, A. LAZAREVIC and L. J. LATECKI, Incremental local

outlier detection for data streams, IEEE Symposium on Computational

Intelligence and Data Mining, IEEE, 2007, pp. 504-515.

[173] A. PRODROMIDIS, P. CHAN and S. STOLFO, Meta-learning in

distributed data mining systems: Issues and approaches, in H. Kargupta

and P. Chan, eds., Advances in Distributed and Parallel Knowledge

Discovery, AAAI press, 2000.

[174] J. R. QUINLAN and R. M. CAMERON-JONES, FOIL: A midterm report,

European Conference on Machine Learning(ECML'93), Springer, Vienna,

Austria, 1993, pp. 3-20.

[175] C. RAINSFORD and J. RODDICK, Adding temporal semantics to

association rules, in J. Żytkow and J. Rauch, eds., 3rd European

Conference on Principles of Knowledge Discovery in Databases

(PKDD'99), Springer 1999, pp. 504-509.

[176] C. P. RAINSFORD, M. K. MOHANIA and J. F. RODDICK, A temporal

windowing technique for the incremental maintenance of association rules,

8th International Database Workshop-Data Mining, Data Warehousing

and Client/Server Databases, 1997, pp. 78-94.

[177] S. RAMASWAMY, S. MAHAJAN and A. SILBERSCHATZ, On the

discovery of interesting patterns in association rules, 24th International

Conference on Very Large Data Bases(VLDB'98) ACM Press, 1998, pp.

368-379.

[178] S. RAMASWAMY, R. RASTOGI and K. SHIM, Efficient algorithms for

mining outliers from large data sets, ACM SIGMOD International

Conference on Management of Data, ACM, 2000, pp. 427-438.

[179] D. J. RANDALL, H. J. HAMILTON and R. J. HILDERMAN,

Generalization for calendar attributes using domain generalization graphs,

5th Workshop on Temporal Representation and Reasoning, IEEE

BIBLIOGRAPHY 167

Computer Society, Sanibel Island, Florida, USA, 1998, pp. 177-184.

[180] R. RASTOGI and K. SHIM, Mining optimized support rules for numeric

attributes, 15th International Conference on Data Engineering, IEEE,

1999, pp. 206-215.

[181] S. RINZIVILLO, D. PEDRESCHI, M. NANNI, F. GIANNOTTI, N.

ANDRIENKO and G. ANDRIENKO, Visually driven analysis of

movement data by progressive clustering, Information Visualization, 7

(2008), pp. 225-239.

[182] J. F. RODDICK and M. SPILIOPOULOU, A survey of temporal

knowledge discovery paradigms and methods, IEEE Transactions on

Knowledge and Data Engineering, 14 (2002), pp. 750-767.

[183] J. F. RODDICK, M. SPILIOPOULOU, D. LISTER and A. CEGLAR,

Higher order mining, SIGKDD Explorations, 10 (2008), pp. 5-17.

[184] U. RUCKERT, L. RICHTER and S. KRAMER, Quantitative association

rules based on half-spaces: An optimization approach, 4th IEEE

International Conference on Data Mining(ICDM'04), IEEE, 2004, pp.

507-510.

[185] I. RUTS and P. J. ROUSSEEUW, Computing depth contours of bivariate

point clouds, Computational Statistics & Data Analysis, 23 (1996), pp.

153-168.

[186] A. SALLEB-AOUISSI, C. VRAIN and C. NORTET, QuantMiner: A

Genetic Algorithm for Mining Quantitative Association Rules, IJCAI, 2007.

[187] N. L. SARDA and N. SRINIVAS, An adaptive algorithm for incremental

mining of association rules, 9th International Workshop on Database and

Expert Systems Applications, IEEE, 1998, pp. 240-245.

[188] A. SAVASERE, E. OMIECINSKI and S. NAVATHE, Mining for strong

negative associations in a large database of customer transactions, 14th

International Conference on Data Engineering, IEEE, 1998, pp. 494-502.

[189] A. SAVASERE, E. R. OMIECINSKI and S. B. NAVATHE, An efficient

algorithm for mining association rules in large databases, 21th

International Conference on Very Large Data Bases, Morgan Kaufmann

BIBLIOGRAPHY 168

Publishers Inc, 1995, pp. 432-444.

[190] L. SHEN and H. SHEN, Mining flexible multiple-level association rules in

all concept hierarchies, in G. Quirchmayr, E. Schweighofer and T. Bench-

Capon, eds., 9th International Conference on Database and Expert

Systems Applications, DEXA'98, Springer, Vienna, Austria, 1998, pp. 786-

795.

[191] L. SHEN and H. SHEN, Mining flexible multiple-level association rules in

all concept hierarchies, Database and Expert Systems Applications,

Springer, 1998, pp. 786-795.

[192] W.-M. SHEN, K. ONG, B. MITBANDER and C. ZANIOLO,

Metaqueries for data mining, in M. F. Usama, P.-S. Gregory, S. Padhraic

and U. Ramasamy, eds., Advances in Knowledge Discovery and Data

Mining, AAAI/MIT Press, 1996, pp. 375-398.

[193] A. SHILLABEER and D. PFITZNER, Determining pattern element

contribution in medical datasets, ACSW Frontiers 2007, Australian

Computer Society, Inc., 2007, pp. 233-240.

[194] R. SMITH, A. BIVENS, M. EMBRECHTS, C. PALAGIRI and B.

SZYMANSKI, Clustering approaches for anomaly based intrusion

detection, Intelligent Engineering Systems through Artificial Eeural

Eetworks, ASME Press, 2002, pp. 579-584.

[195] M. SPILIOPOULOU and S. BARON, Temporal evolution and local

patterns, Local Patterns Detection, Springer-Verlag Berlin Heidelberg,

2005, pp. 190-206.

[196] M. SPILIOPOULOU, I. NTOUTSI, Y. THEODORIDIS and R. SCHULT,

MONIC: Modeling and monitoring cluster transitions, 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD06), ACM, Philadelphia, USA, 2006, pp. 706-711.

[197] M. SPILIOPOULOU and J. F. RODDICK, Higher order mining:

Modelling and mining the results of knowledge discovery, in N. Ebecken

and C. Brebbia, eds., 2nd International Conference on Data Mining

Methods and Databases, WIT Press, Cambridge, UK, 2000, pp. 309-320.

BIBLIOGRAPHY 169

[198] R. SRIKANT and R. AGRAWAL, Mining generalized association rules,

21th International Conference on Very Large Data Bases (VLDB'95),

1995, pp. 407-419.

[199] R. SRIKANT and R. AGRAWAL, Mining quantitative association rules

in large relational tables, ACM SIGMOD International Conference on

Management of Data, ACM Press, 1996, pp. 1-12.

[200] R. SRIKANT, Q. VU and R. AGRAWAL, Mining association rules with

item constraints, KDD'97, 1997, pp. 67-73.

[201] Y. G. SUCAHYO and R. P. GOPALAN, CT-ITL: Efficient frequent item

set mining using a compressed prefix tree with pattern growth, in K.

DieterSchewe and X. Zhou, eds., 14th Australasian Database Conference,

Australian Computer Society, Inc., Adelaide, Australia, 2003, pp. 95-105.

[202] P. SUN and S. CHAWLA, On local spatial outliers, 4th IEEE

International Conference on Data Mining (ICDM'04), IEEE, 2004, pp.

209-216.

[203] P. SUN, S. CHAWLA and B. ARUNASALAM, Mining for outliers in

sequential databases, SIAM International Conference on Data Mining,

SIAM, 2006, pp. 94-105.

[204] P.-N. TAN, V. KUMAR and J. SRIVASTAVA, Selecting the right

interestingness measure for association patterns, 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining(KDD'02), ACM, 2002, pp. 32-41.

[205] J. TANG, Z. CHEN, A. W.-C. FU and D. W. CHEUNG, Enhancing

effectiveness of outlier detections for low density patterns, Pacific-Asia

Conference on Knowledge Discovery and Data Mining, 2002, pp. 535-548.

[206] C. M. TENG, Learning from dissociations, 4th International Conference

on Data Warehousing and Knowledge Discovery (DaWaK'02), Springer,

Aix-en-Provence, France, 2002.

[207] F. THABTAH, P. COWLING and Y. PENG, MCAR: Multi-class

classification based on association rule, 3rd IEEE International

Conference on Computer Systems and Applications, IEEE, Cairo, Egypt,

BIBLIOGRAPHY 170

2005, pp. 1-7.

[208] F. THABTAH, Q. MAHMOOD, L. MCCLUSKEY and H. ABDEL-

JABER, A new classification based on association algorithm, Journal of

Information and Knowledge Management, 9 (2010), pp. 55-64.

[209] S. THOMAS, S. BODAGALA, K. ALSABTI and S. RANKA, An efficient

algorithm for the incremental updation of association rules in large

databases, 3rd International Conference on Knowledge Discovery and

Data Mining (KDD 97), ACM Press, New Port Beach, CA, USA, 1997, pp.

263-266.

[210] H. TOIVONEN, M. KLEMETTINEN, P. RONKAINEN, K. HÄTÖNEN

and H. MANNILA, Pruning and grouping discovered association rules,

ECML-95 Workshop on Statistics, Machine Learning, and Knowledge

Discovery in Databases, Heraklion, Greece, 1995, pp. 47-52.

[211] A. TUZHILIN and G. ADOMAVICIUS, Handling very large numbers of

association rules in the analysis of microarray data, 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

ACM, Edmonton, Alberta, Canada, 2002, pp. 396-404.

[212] A. TUZHILIN and B. LIU, Querying multiple sets of discovered rules, 8th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining(KDD'02), ACM Press, 2002, pp. 52-60.

[213] M. R. VIEIRA, P. BAKALOV and V. J. TSOTRAS, On-line discovery of

flock patterns in spatio-temporal data, 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems,

ACM, 2009, pp. 286-295.

[214] A. VINUEZA and G. GRUDIC, Unsupervised outlier detection and semi-

supervised learning, University of Colorado at Boulder, 2004.

[215] J. WANG, J. HAN and J. PEI, Closet+: Searching for the best strategies

for mining frequent closed itemsets, 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining(KDD'03), ACM,

2003, pp. 236-245.

[216] K. WANG, L. TANG, J. HAN and J. LIU, Top down fp-growth for

BIBLIOGRAPHY 171

association rule mining, 6th Pacific-Asia Conference (PAKDD 2002)

Springer, Taipei, Taiwan, 2002, pp. 334-340.

[217] K. WANG, S. H. W. TAY and B. LIU, Interestingness-based interval

merger for numeric association rules, KDD, 1998, pp. 121-128.

[218] J. WAY and E. A. SMITH, The evolution of synthetic aperture radar

systems and their progression to the EOS SAR, IEEE Transactions on

Geoscience and Remote Sensing, 29 (1991), pp. 962-985.

[219] G. I. WEBB, Discovering associations with numeric variables, 7th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining(KDD'01), ACM, 2001, pp. 383-388.

[220] R. C.-W. WONG and A. W.-C. FU, ISM: Item selection for marketing

with cross-selling considerations, Advances in Knowledge Discovery and

Data Mining, Springer, 2004, pp. 431-440.

[221] X. WU, C. ZHANG and S. ZHANG, Efficient mining of both positive and

negative association rules, ACM Transactions on Information Systems

(TOIS), 22 (2004), pp. 381-405.

[222] X. XU, G. HAN and H. MIN, A novel algorithm for associative

classification of image blocks, 4th IEEE International Conference on

Computer and Information Technology, IEEE, 2004, pp. 46-51.

[223] Y. XU and Y. LI, Generating concise association rules, 16th ACM

conference on Information and Knowledge Management (CIKM'07), ACM,

2007, pp. 781-790.

[224] Y. XU, Y. LI and G. SHAW, A reliable basis for approximate association

rules, IEEE Intelligent Informatics Bulletin, 9 (2008), pp. 25-31.

[225] K. YAMANISHI and J.-I. TAKEUCHI, Discovering outlier filtering rules

from unlabeled data: combining a supervised learner with an

unsupervised learner, 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, San Francisco, California,

2001, pp. 389-394.

[226] K. YAMANISHI, J.-I. TAKEUCHI, G. WILLIAMS and P. MILNE, On-

line unsupervised outlier detection using finite mixtures with discounting

BIBLIOGRAPHY 172

learning algorithms, 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, Boston, Massachusetts,

USA, 2004, pp. 320-324.

[227] Y. YE, Q. JIANG and W. ZHUANG, Associative classification and post-

processing techniques used for malware detection, 2nd International

Conference on Anti-counterfeiting, Security and Identification (ASID'08),

IEEE, 2008, pp. 276-279.

[228] X. YIN and J. HAN, CPAR: Classification based on predictive association

rules, SIAM Conference on Data Mining (SDM'03), SIAM, San

Francisco,California, USA, 2003, pp. 369-376.

[229] S.-C. YOON, L. J. HENSCHEN, E. PARK and S. MAKKI, Using domain

knowledge in knowledge discovery, 8th International Conference on

Information and Knowledge Management, ACM, 1999, pp. 243-250.

[230] D. YU, G. SHEIKHOLESLAMI and A. ZHANG, Findout: Finding

outliers in very large datasets, Knowledge and Information Systems, 4

(2002), pp. 387-412.

[231] J. X. YU, W. QIAN, H. LU and A. ZHOU, Finding centric local outliers

in categorical/numerical spaces, Knowledge and Information Systems, 9

(2006), pp. 309-338.

[232] M. J. ZAKI, Generating non-redundant association rules, 6th

International Conference on Knowledge Discovery and Data Mining

(SIGKDD'00), AAAI Press, Boston, MA, USA, 2000, pp. 34-43.

[233] M. J. ZAKI, Mining non-redundant association rules, Data Mining and

Knowledge Discovery, 9 (2004), pp. 223-248.

[234] H. ZHANG, B. PADMANABHAN and A. TUZHILIN, On the discovery

of significant statistical quantitative rules, 10th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining(KDD'04), ACM, 2004, pp. 374-383.

[235] J. ZHANG and H. WANG, Detecting outlying subspaces for high-

dimensional data: the new task, algorithms, and performance, Knowledge

and Information Systems, 10 (2006), pp. 333-355.

BIBLIOGRAPHY 173

[236] Q. ZHAO and S. S. BHOWMICK, Association rule mining: A survey,

Nanyang Technological University, Singapore, Singapore, 2003.

[237] Y. ZHAO, C. ZHANG, L. CAO and I. GLOBAL, Post-mining of

association rules: Techniques for effective knowledge extraction,

Information Science Reference, New York, 2009.

