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SUMMARY 

 This thesis shows work that largely aims to better understand collaborative visual search. 

More specifically, we aimed to replicate previous findings of collaborative search performance, that 

is, performance that meets or exceeds the predictions of a uniform weighting model of information 

integration and extend them to a signal detection task using naturalistic stimuli. We also aimed to 

investigate a collaborative search strategy when little target information is available to observers.    

In the first study, searchers performed a simulated baggage screening task and attempted to 

detect a target (one of a possible 5 knives) in x-ray baggage images. In Experiment 1, single 

observers completed the task in separate testing rooms, and teams collaborated in the same testing 

room. In Experiment 2, single observers and teams completed the task in the same testing room. In 

Experiment 3, both single observers and teams completed the search task in separate testing rooms. 

In Experiment 4, finally, single observers and teams were collocated, and stimuli presentation time 

was fixed (3s). In all four experiments, teams outperformed single observers and achieved 

sensitivity levels roughly midway between the predictions of the two versions of the uniform 

weighting model. A meta-analysis using the data from all four experiments confirmed this pattern 

of results.  

In the second study, observers performed a visual search task framed as a medical image 

reading task and attempted to locate an ‘abnormal cell’ amongst other normal ‘cells’. Top-down 

target information was limited by using dot-distortion stimuli. In Experiment 1, single observers 

completed the task in separate testing rooms and team collaborated in the same testing room, 

whereas in Experiment 2, both single observers and teams completed the search task in separate 

testing rooms. Teams outperformed single observers in both experiments and collaborative 

sensitivity again fell in between the predictions of the two versions of the uniform weighting model.  

The most consistent finding in both Studies 1 and 2 is that collaborative searchers 

outperform single seachers. Some of our findings show that teams can even outperform what is 

expected given their individual sensitivity levels and the similarity between team members’ 

judgments. Such findings suggest that teams might adopt visual search strategies that work to 



 xi 

decorrelate their judgments, resulting in a larger collaborative benefit when integrating their 

judgments. Another implication of our findings is that non-collocated teams can perform similarly 

to collocated teams. Finally, we provide evidence that collaboration under conditions of limited 

target information is valuable. 
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CHAPTER 1:  

LITERATURE REVIEW 

 
A key component of everyday visual behavior is the ability to find important items in a scene 

filled with distracting items. Visual search is a nontrivial activity and has been the focus of intense 

interest to visual cognition (Duncan & Humphreys, 1989; Itti & Koch, 2000; Treisman & Gelade, 

1980; Wolfe, 1994) and human factors (e.g., Beck, Lohrenz, & Trafton, 2010; Wickens, Alexander, 

Ambinder, & Martens, 2004). Traditionally, search has been studied by examining the performance of 

single observers. However, visual search is often collaborative, in daily life, such as when a couple 

attempt to locate a street address while driving, and in high-stakes domains such as transportation 

security officers jointly inspecting the same x-ray baggage image.  

Signal detection theory   

Collaboration during visual search requires multiple observers to reach a joint decision. Signal 

detection theory (SDT; Green & Swets, 1966; Macmillan & Creelman, 2005) provides models of how 

groups can reach decisions from probabilistic evidence distributions, and a framework for predicting 

and assessing collaborative search performance (Bahrami et al., 2010; 2012; Sorkin & Dai, 1994; 

Sorkin, Hays, & West, 2001). Conventional signal detection tasks require observers to judge on each 

trial if stimuli were drawn from a signal-plus-noise distribution or a noise-alone distribution (Green & 

Swets, 1966; MacMillan & Creelman, 2005, Tanner & Swets, 1954). In a study of transportation 

security screening, for example, a task might present signal-plus-noise trials that contain a threatening 

item (signal stimulus) embedded in a bag cluttered with non-threatening items (noise stimuli), and 

noise-alone trials that present only the bag of non-threatening items. On each trial, the observer reports 

whether or not a signal was detected.  

Table 1 shows the four possible response outcomes for a trial in a yes/no SDT task, i.e., an SDT 

task that requires a ‘yes/target present’ or ‘no/target absent’ response. On a signal-plus-noise trial, a 

correct response is referred to as a hit and an incorrect response is referred to as a miss. An accurate 
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response on a noise-alone trial constitutes a correct rejection, and an inaccurate response on a noise-

alone trial constitutes a false alarm. 

 

Table 1.1. Four response outcomes for a trial of a yes/no SDT task 

 Response 

Stimulus “yes/target present” “no/target absent” 

Signal (S) hit miss 

Noise (N) false alarm correct rejection 

 

Observers’ responses are based on the sampled value of an internal decision variable (Stanislaw 

& Todorov, 1999) that corresponds to the evidence for or against the signal each trial (Green & Swets, 

1966, Metz & Shen, 1992). As its name implies, the decision variable is non-deterministic; because of 

fluctuations of observer state and random variability in stimulus properties, strength of evidence for or 

against a signal varies from trial-to-trial even when holding the actual presence or absence of a signal 

constant (Burgess & Colborne, 1988). An observer reaches a discrete yes-or-no judgment by 

comparing the value of the decision variable sampled that trial to a criterion value, a threshold 

determining whether an observer responds positively or negatively (Green & Swets, 1966, Macmillan 

and Creelman, 2005). If the decision variable exceeds the criterion value, the observer responds ‘yes’. 

Otherwise, she responds ‘no’.  

Figure 1 shows the distribution of the potential values realized by the decision variable across 

signal-plus-noise and noise-alone trials, as well as the regions of the distributions corresponding to the 

four possible response outcomes for a yes-no task. The figure assumes a standard equal-variance 

Gaussian model, that is, normally distributed signal-plus-noise and noise-alone distributions with the 

same standard deviation but different means (Macmillan & Creelman, 2005). The signal distribution 

(right curve) represents signal-plus-noise trials and the noise distribution (left curve) represents noise-

alone trials. The means of the noise and signal distributions are 0 and µS respectively.    
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Figure 1.1. Distribution of decision variables for signal and noise trails in a yes/no task showing 

the four response outcomes, criterion, and d’. 

 

Overlap between the signal and noise distributions determines an observer’s sensitivity, ability 

to discriminate between signal-plus-noise and noise-alone stimuli (Green & Swets, 1966; Macmillan & 

Creelman, 2005; Tanner & Swets, 1954). A perfectly sensitive observer presents a hit rate of 1 and 

false-alarm rate of 0. A perfectly insensitive observer, though, is unable to discriminate between the 

two stimuli types (i.e., signal and noise) and presents the same probability for both hit and false-alarm 

rates. In figure 1.1, the hit rate equals the proportion of the signal distribution that exceeds the criterion 

value (e.g., the red line), whereas the false-alarm rate is the proportion of the noise distribution that 

exceeds the criterion value. 

The hit and false-alarm rates shift according to observers’ response bias, tendency to respond 

positively or negatively (Green & Swets, 1966; Macmillan & Creelman, 2005). Response bias is 

determined by the criterion placement. An unbiased criterion value produces equal hit and correct 
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rejection rates. A liberal criterion is lower, increasing the hit and also the false-alarm rates, and a 

conservative criterion is more stringent, decreasing the hit and false-alarm rates. 

Performance measures 

Sensitivity. Conventionally, sensitivity is measured using d’ (Green & Swets, 1966; Macmillan 

& Creelman, 2005),   

d’ = z(H) – z(F), 

where z is the inverse normal transformation and H and F are the hit and false alarm rates, respectively. 

More specifically, d’ is the distance between the means of the signal and noise distributions, in standard 

deviation units. d’ is a useful measure of sensitivity because it is robust against changes in response 

bias. However, this is true only if the signal and noise evidence distributions are normal and share the 

same standard deviation. If either assumption is violated, d’ will vary with response bias, regardless if 

the overlap between the signal and noise evidence distributions remains constant (Stanislaw & 

Todorov, 1999). 

Receiver operating characteristic. A receiver operating characteristic (ROC) or isosensitivity 

curve plots hit-rate as a function of the false-alarm rate while holding sensitivity constant (Green & 

Swets, 1966; Macmillan & Creelman, 2005). Figure 1.2 shows a typical ROC. Empirically, the 

multiple hit and false-alarm rate pairs needed to plot the curve are collected by varying the observer’s 

response criterion while holding task difficulty fixed. This can be done by manipulating signal rate or 

response payoffs across blocks of trials, or by collecting confidence-rated judgments in a single block 

of trials (Macmillan & Creelman, 2005). 
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Figure 1.2. Three ROCs of differing sensitivity levels and the chance line (dotted black line) 

(adapted from Macmillan & Creelman, 2005).  

 

Analysis of receiver operating characteristic curves (ROC; Green & Swets, 1966; Stanislaw & 

Todorov, 1999) provides alternative measures of sensitivity that do not require the assumption of equal 

variance in the signal and noise evidence distributions. The major diagonal denotes chance 

performance, the level at which hit and false-alarm rates are equal. Above-chance sensitivity levels 

shift the ROC toward the upper left corner, where H = 1 and F = 0, indicating perfect performance 

(Macmillan & Creelman, 2005). The slope of the ROC is the change in hit-rate relative to the change in 

false-alarm rate, and as such, the slope of a ROC curve decreases as responses are biased towards ‘yes’ 

(Green & Swets, 1966; Macmillan & Creelman, 2005; Tanner & Swets, 1954).  

Plotting a ROC in standardized normal space produces a zROC, which can be used to test the 

assumptions of equal-variance Gaussian evidence distributions. Assume, following convention, that the 

evidence distribution for noise trials is Gaussian with mean 0 and standard deviation 1, and the signal-
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plus-noise distribution is Gaussian with mean µS+N and standard deviation σS+N. Then, the zROC is a 

linear function with y-intercept µS+N and slope σS+N, 

z(H)	=	µS+N/σS+N	+	1/σS+N	×	z(F). 

The slope of the zROC equals the inverse of the standard deviation of the signal-plus-noise distribution 

(Macmillan & Creelman, 2005; Wickens, 2002), and a y-intercept equal to the mean of the signal-plus-

noise distribution divided by the standard deviation of the signal-plus-noise distribution (Stanislaw & 

Todorov, 1999). As such, slopes that equal 1 indicate equal variance in the evidence distributions 

whereas slopes that do not equal 1 indicate unequal variances.  

Figure 1.3 shows a family of typical zROCs with slope = 1. When the zROC has unit slope, d’ 

is equal to the distance in z units from the zROC line to the chance line.   

 

Figure 1.3. ROCs for a standard SDT task on z coordinates (adapted from Macmillan & 

Creelman, 2005).  

  

In the event that the slope of the zROC does not equal 1, the assumption of equal variance 

evidence distributions is violated, and an alternative to d’ is required to measure sensitivity. Figure 1.4 
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presents a zROC with a slope unequal to 1, and three alternative sensitivity measures, d’1, d’2, and d’e. 

The first, d’1, is the distance between the ROC and the major diagonal at the point where z(H) equals 0 

and provides a slightly amplified sensitivity measure. The second, d’2, is the difference between the 

ROC and the major diagonal but at the point where z(F) equals 0 and provides a slightly compressed 

sensitivity measure. The third, d’e, is based on the mean of the standard deviations of the evidence 

distributions (Egan, Schulman, & Greenberg, 1959; Macmillan & Creelman, 2005) and is defined as,  

d’e	=	 4567896
 

 
where µS and sS are the mean and standard deviation of the signal distribution respectively. When 

noise-alone and signal-plus-noise distributions are equal-variance, d’e reduces to d’. Otherwise, d’e may 

be above or below d’ (Macmillan & Creelman, 2005). 
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Figure 1.4. zROC showing three measures of sensitivity: d’1 and d’2 are dependent on the 

standard deviation of the signal and noise distributions respectively, and an average of d’1 and 

d’2, d’e (adapted from Macmillan & Creelman, 2005).  

 

Visual search as a form of Signal Detection 

 Theories of visual search performance (e.g., Duncan & Humphreys, 1989; Itti & Koch, 2000; 

Nodine & Kundel, 1987; Treisman & Gelade, 1980; Wolfe, 1994) generally share a basic two-stage 

structure. In the first stage, the viewer orients to the search field using parallel preattentive channels 

that register low-level features maps such as colour, shape, movement, and orientation, which generate 

a saliency map of the visual scene. If the target object is not detected readily, orientation gives way to a 

stage of slower, serial attentional scanning guided by preattentive outputs.  

 Bottom-up and top-down activation contribute to differential activation of feature maps (Wolfe, 

1994). Bottom-up activation is stimulus-driven and guides attention to the most salient search item. The 

observer requires no knowledge of the search task, rather salient items appear distinct from 

neighbouring items, thereby producing greater activation. When featural properties of a search item are 

not unusual, however, top-down activation is needed. Top-down activation is knowledge-driven and 

requires the observer to adopt a target template to prioritize to locations likely to contain target featural 

properties (Wolfe, 1994). 

 In a visual search task requiring only parallel processing, the target produces the greatest level 

of activation in the activation map, regardless of how many additional stimulus items are presented 

with the target, and often appears to ‘pop-out’ of the stimulus display, capturing attention (Treisman, 

1985; Treisman & Gelade, 1980; Wolfe, 1994). In a visual search task requiring serial processing, 

attention is directed to the most highly activated location on the activation map and continues to move 

from one location of high activation to another, in order of decreasing activation, until the target is 
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located, or the search is terminated (Duncan & Humphreys, 1989; Itti & Koch, 2000; Nodine & 

Kundel, 1987; Treisman & Gelade, 1980; Wolfe, 1994). 

Psychophysics of visual search. Signal detection theory is not the only feasible model of visual 

search. Palmer et al. (2000) note that the above two-stage theories of visual search performance (e.g., 

Duncan & Humphreys, 1989; Itti & Koch, 2000; Nodine & Kundel, 1987; Treisman & Gelade, 1980; 

Wolfe, 1994) assume a high threshold model of perceptual judgments.   

The classical feature of high threshold theories is that a ‘target present’ response, when no 

signal is in fact present, is purely the result of an observer guessing. In other words, noise stimuli 

cannot produce a target-present internal state (Macmillan & Creelman, 2005; Palmer et al., 2000). This 

is in contrast to low threshold theories such as SDT, which allow the possibility that a noise stimulus 

produces a target-present internal state. (Note that various authors define low-threshold theory 

differently. Whereas Palmer et al. (2000) use the term to denote any model in which a noise stimulus 

can be confused with a signal, others use it more specifically to denote models assuming discrete pre-

decisional mental states; see Macmillan and Creelman, 2005. The current discussion adheres to Palmer 

et al.’s usage.) 

 Palmer et al., (2000) compared six visual empirical search phenomena – the effects of set size, 

multiple targets, distractor heterogeneity, target-distractor discriminability, response bias, and external 

noise – to the predictions of high and low threshold theories. They concluded that the empirical results 

for all of the six were consistent with the predictions of low threshold theories and inconsistent with 

those from high threshold theories. Similarly, Eckstein (1998) and Eckstein, Thomas, Palmer, and 

Shimozaki (2000) found that signal detection theory models accurately predicted differences in the 

efficiency of feature and conjunction search, without appealing to a two-stage, parallel-to-serial 

processing model. Additionally, Verghese’s (2001) review of visual search data provides considerable 

evidence that at least some visual search results can be explained without a second-stage, limited-

capacity feature, rather a signal detection explanation in which the second stage is a decision rule. 

Discussion continues as to whether visual data are better reconciled with a two-stage model or a single-
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stage parallel model built on signal detection theory (Palmer, Fencsik, Flusberg, Horowitz, & Wolfe, 

2011; Verghese, 2001). Nonetheless, findings from Palmer et al. (2000) and others (Verghese, 2001) 

demonstrate at the very least that visual search performance is amenable to analysis with the methods 

of signal detection theory.    

Collaborative visual search 

Intuition, as captured in the aphorism, “two heads are better than one,” suggests that teams of 

collaborators ought to outperform individuals in search tasks, as in fact they do in many other cognitive 

tasks (Kerr & Tindale, 2004; Laughlin, Bonner, & Miner, 2002; Levine & Moreland, 1990). The 

benefits of collaboration, though, are often modest, group members integrating biased information 

when reaching a joint decision, for example, can reach decisions based on subsets of information that 

fail to take into account other, non-biased information, thereby producing degraded collaborative 

decisions that are not reflective of all potentially pooled information (Stasser & Titus, 1985). Such 

effects give little assurance that teams will generally outperform individuals in visual search tasks (Kerr 

& Tindale, 2004).  

The belief that groups generally outperform individuals likely comes from strong mathematical 

arguments showing the benefit of aggregated responses. Marquis de Condorcet’s jury theorem 

(Condorcet, 1785) was among the first to mathematically demonstrate that a ‘majority rule’ of 

aggregated votes from individuals produces near-perfect accuracy as long as the number of individuals 

is sufficiently large. Galton (1907) provided empirical support for the value of information aggregation 

when he asked local livestock fair goers to guess the weight of a specific ox that had been slaughtered 

and dressed. Galton (1907) found that the aggregated guesses of 800 fair goers, with no butchery 

expertise, produced a more accurate judgment than the best expert.  

Research in this ‘wisdom of crowds’ effect (Suriowiecki, 2004) resulted in a number of models 

of collaborative decision making (Bahrami et al., 2010, 2012; Davis, 1996; Hastie & Kameda, 2005; 

Hill, 1982; Kameda, Tsukasaki, Hastie, & Berg, 2011; Sorkin & Dai, 1994; Sorkin, Hays, & West, 
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2001; Sorkin, West, & Robinson, 1998), positing various methods by which individuals might 

aggregate their judgments.  

Condorcet group models. Sorkin et al., (1998) referred to groups that rely on some form of a 

majority rule of aggregated individual votes as Condorcet groups. Following Condorcet’s (1785) 

theorem, Condorcet group models base collaborative decisions on the likelihood that individual group 

members produce correct responses is above .5. If so, then the probability of a correct response from a 

majority response will increase with group size (Sorkin et al., 1998).  

Figure 1.5 presents the signal detection system of a Condorcet group composed of m members, 

each of which with their own sensitivity level, d’ (Sorkin & Dai, 1994; Sorkin et al., 2001; Sorkin et 

al., 1998). Each group member receives an input of either a signal or noise. After observing the input 

stimuli, group members estimate the signal’s likelihood, X. If a group member’s estimate exceeds their 

response criterion, c, then that member responds ‘yes’, signal present. If a group member’s estimate 

falls below their response criterion, the member responds ‘no’, signal absent.   
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Figure 1.5. Signal detection of a Condorcet group where d’ is the sensitivity index, c indicates 

response criterion, and X and is the group member’s estimate of the signal’s likelihood (adapted 

from Sorkin et al., 1998).   

 

Two noise sources contribute to the decision process. Unique noise, s2i,	i	=	1, 2…m is the 

variance isolated to an individual team member, and common noise, s2common, is variance shared among 

team members. For example, consider a pair of transportation security officers jointly inspecting a 

baggage x-ray. Unique noise might arise from differences in the searchers’ internal sensory noise, or 

from differences in their search patterns. Common noise might arise from ambiguities or degradations 

in the x-ray image itself, or from similarities in the viewers’ search patterns. 

The collaborative decision is determined by the majority rule applied to individual group 

members’ decisions (Sorkin et al., 1998). Majority rules range from liberal, the least number of group 

members required to reach a consensus, to strict, the largest number of group members required to 

reach a consensus. The simple majority rule requires ‘yes’ responses from at least half of the group 

members (m/2). The unanimous majority rule requires ‘yes’ responses from all group members (m). A 

number of intermediate majority rules exist within the extremes of the simple and unanimous majority 

rules, for example, a rule that requires ‘yes’ responses from all group members except for one (m – 1 

rule; Sorkin et al., 2001). Analyzing ROCs, Sorkin and colleagues (1998) showed that collaborative 

performance improved with group size, especially for groups employing a more lenient majority rule, 

e.g., m/2. Collaborative performance was poorest for groups using stricter majority rules, i.e., m, m – 1 

(Sorkin et al., 1998). 

But regardless of the majority rule applied, Condorcet groups perform well below the 

predictions of other models of collaborative decision making (Bahrami et al., 2010; Sorkin & Dai, 

1994; Sorkin et al., 2001). One explanation for the inefficiency of Condorcet groups is that they shrink 

continuous judgements into binary responses and then base collaborative decisions on the unweighted 
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combination of these binary responses (Sorkin et al., 2001). In addition to essentially eliminating useful 

information in group members’ continuous responses, weighing each member’s response similarly 

results in further information loss because the responses from more competent members are essentially 

discounted and treated the same as the responses from the least competent members. As such, Sorkin et 

al. (2001) treats the level of sensitivity achieved by Condorcet groups as an approximate lower bound 

of collaborative efficiency.           

Models of group signal detection. Where the collaborative performance levels achieved by 

Condorcet groups represent the lower bound of predicted collaborative performance, models of group 

signal detection incorporating more sophisticated information integration strategies establish the upper 

bounds of collaborative performance (Sorkin & Dai, 1994; Sorkin et al., 2001).The group decision 

process again begins with a signal-plus-noise or noise-alone event from which group members sample 

information to reach individual judgments (see figure 1.6). To reach a joint decision, group members 

again combine their judgements in some fashion.  

Ideal collaborative performance comes from the Optimal Weighting model (OW; Bahrami et al., 

2010; Sorkin & Dai, 1994; Sorkin et al., 2001). The OW model assumes that individual team members’ 

judgments are averaged in a weighted manner to produce a team decision variable. The value of a 

team’s optimal decision variable,	Xteam, is given by,  

Xteam	=	∑𝑋C𝑑′C	

where Xi is the decision variable for team member i,	and d’i is team member i’s sensitivity.  
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Figure 1.6. The general group signal detection paradigm. This figure was adapted from Sorkin 

et al. (1998) and Sorkin et al. (2001).   

 

Assuming that the team members’ individual judgments are stochastically independent, team sensitivity 

under the OW model is, 

								𝑑′FG = H∑𝑑IC
4. 

The level of sensitivity achieved by the ideal group provides the upper bound on collaborative 

performance (Sorkin et al., 2001). When team members present correlated judgments, collaborative 

sensitivity decreases,  

d’correlated	OW	=	√𝑚	RSTUVWX
YZ

7[\
+	 [^_U`WX

YZ]b

78\(c[7)
de
7/4

, 

where m is the total number of group members, Var(d’) is the variance of the individual team 

members’ d’ values, and ρ is the correlation among members’ judgments. However, to use this formula, 

the correlation needs to be known, which is often challenging, given that the group members individual 

decision variables are internal and not directly observable (Metz & Shen, 1992). 
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 The value of collaboration decreases when team members produce correlated judgments 

because team members share redundant information, limiting their capacity to make use of novel 

information in the collaborative decision-making process. Team members’ responses become 

correlated when common noise sources, such as those noted in the transportation security officers 

example above, increase. It seems unlikely that a pair of observers could overcome such common noise 

sources, however Sorkin et al. (2001) note that ideal observers ought to.     

  The Uniform Weighting Model (UW; Sorkin & Dai, 1994) is similar to the OW model, but 

assumes that individual team members’ signal likelihood judgements are weighted equally when they 

are averaged to reach a group judgement. Assuming an equal-variance Gaussian model again, group d’ 

under the UW model is,      

𝑑IhG = ∑XIi
√j

 .  

Bahrami et al. (2010) note that uniform weighting is similar to a circumstance in which team members 

do not directly communicate signal likelihood estimates, but instead convert an internal evidence 

representation into a confidence rating through a standard normal transformation. During trials, this is 

straight forward – participants respond according to their unique confidence estimates about target 

presence. Bahrami and colleagues argue that a more complex operation occurs to develop that sense of 

confidence, though, by transforming information from the normally distributed evidence to a z-score 

that operates as a yardstick for their internal confidence estimates.  When collaborators are equally 

sensitive, the UW model is equivalent to the OW model. Otherwise, the unweighted model produces 

lower sensitivity. 

 The Best Decides Model (BD; Bahrami et al., 2010; Denkiewicz, Rączaszek-Leonardi, Migdal, 

& Plewczynski, 2013) predicts less efficient collaborative performance than either the OW and UW 

models, and holds that a team reaches its decision by deferring to the most sensitive member’s 

judgment each trial. Sensitivity for the team thus equals that of the most sensitive team member,  

d’BD	=	max(d’1,	d’2). 
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Empirical evidence indicates collaborative performance in some perceptual and statistical 

decision-making tasks approaches levels predicted by the UW model (Bahrami et al., 2010; Sorkin et 

al., 2001). Bahrami et al. (2010) presented dyads with two viewing intervals each containing six Gabor 

patches. A single target, a patch with slightly elevated contrast, was present in either the first or second 

viewing interval, and the participants’ task was to decide which interval contained it. Dyad members 

first provided individual responses, without consulting each other, and in the event their responses 

conflicted, a joint response was requested. Trial feedback was then communicated onscreen to dyad 

members. In Experiment 1, stimuli were approximately equally discriminable for all participants. In 

Experiment 2, visual noise was added to the stimuli for one participant within each dyad in order to 

elicit different levels of sensitivity for the two dyad members. In Experiment 3, communication was 

restricted to their yes or no judgements, and in Experiment 4, no feedback was provided. Results from 

both Experiments 1 and 2 were consistent with the UW model. Dyads in the third experiment produced 

collaborative performance no better than the more sensitive observer, indicating that feedback alone 

was insufficient to give collaborative benefit. Collaborative sensitivity in Experiment 4 was similar to 

that predicted by the UW model indicating that feedback was unnecessary to produce collaborative 

benefit, in turn suggesting that communication plays a key role in collaborative benefit.         

Using a similar paradigm, Bahrami et al. (2012) likewise found evidence for collaborative 

performance levels predicted by the UW model. The participants’ task in this study was identical to 

that of Bahrami et al. (2010)’s experiment. In Experiment 1, different sensitivity levels for dyad 

members were elicited by including visual noise to the stimuli for one team member and participants 

communicated verbally or non-verbally (i.e., via confidence visual schema). In Experiment 2, 

participants viewed identical stimuli and communicated verbally, verbally and non-verbally, or not at 

all. The data from Experiment 1 indicated that when teams communicated verbally, collaborative 

sensitivity was worse than that of the better observer, consistent with UW model predictions. However, 

UW model predictions slightly overestimated collaborative performance of verbally communicating 

teams. Non-verbally communicating teams, though, performed no worse than the better observer, and 
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UW model predictions slightly underestimated collaborative performance. Bahrami et al. (2012) 

attributed the collective failure in verbally communicating groups to individuals’ underlying cognitive 

biases. Data from Experiment 2 showed that verbally communicating teams outperformed the better 

observer and matched UW model predictions. When teams communicated with strictly non-verbal or 

no communication, however, collaborative sensitivity was not better than that of the better observer, 

and UW model predictions overestimated empirical collaborative sensitivity. Taken together, the 

findings from Experiment 1 and 2 suggest that the type of communication should be dependent on the 

similarity of observers’ sensitivity levels, such that when observers present with dissimilar sensitivity 

levels, direct verbal communication degrades the value of collaboration. However, when observers 

present with similar sensitivity levels, direct communication should be used.   

Using Bahrami et al.’s (2012) data (from Experiment 2 – verbally and non-verbally 

communicating teams described above) Bang et al. (2014) explored whether teams with dissimilar 

sensitivity levels could achieve UW-level performance by using team members’ confidence levels or 

the judgment of the team member with the fastest reaction time (i.e., justified by the inverse 

relationship between confidence and response time). Data were submitted to two algorithms, the 

maximum confidence slating (MCS) and the minimum reaction time slating (MRTS), whose output 

responses were compared to teams’ observed responses. Results indicated that sharing confidence 

estimates produced UW-level performance only when team members shared similar sensitivity levels 

and could interact (verbally communicating teams).       

Sorkin, Hays, and West (2001) also assessed collaborative decision-making performance, 

manipulating task difficulty. Participants performed a signal detection task individually and in groups 

ranging in size from 2–7 members. On each trial, participants were presented with a display of nine 

analog gauges. Values of the gauges were drawn from one of two equal variance Gaussian 

distributions, one of higher mean than the other, and the participants’ task was to decide which 

distribution the values were drawn from. Task difficulty was manipulated by changing the display 

signal-to-noise ratio (DSNR), the standard deviation of the evidence distributions. In Experiment 1, the 
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distribution of DSNR was equal for all group members, equal task difficulty, or different for half of the 

group members, unequal task difficulty. Stimulus displays were also manipulated such that they were 

either independent across group members (ρ = 0) or partially correlated (ρ = 0.25). Groups with 

independent displays performed better than groups with correlated displays and better than individuals, 

but with efficiency that was less than predicted by the either OW model or a simple majority rule 

model, i.e., m/2. Deviations from optimal group performance did not seem to result from inefficient 

combination of the individual participants’ decisions. Rather, group performance was poorer than 

expected because individual observers put forth less effort into the task as group size increased (shown 

by decomposing a measure of group efficiency into two components – group member effort and group 

decision aggregation efficiency – and comparing both components’ contribution to the overall group 

detection performance).   

In Sorkin et al.’s (2001) second experiment, individual sensitivities were measured by requiring 

participants to make a response prior to the collaborative decision process. This allowed the researchers 

to more conclusively rule out inappropriate weighting strategies as a cause of the inefficiencies in 

collaboration in Experiment 1. Furthermore, by collecting individual responses prior to the group 

response, the researchers were able to calculate the correlation between group members’ judgments. 

These initial individual responses were presented onscreen and available to group members during the 

group deliberation. All group members in Experiment 2 viewed displays of the same DSNR. The 

results of Experiment 2 showed no evidence of correlations between group members’ individual 

responses, a result that was as expected given that displays were generated independently for each team 

member. As in Experiment 1, groups performed better than individuals, but collaborative performance 

decreased with group size. Analyses confirmed that the decreasing collaborative performance was not a 

result of inappropriate weighting strategies, but of decreasing individual group member effort.  

Other evidence, from Malcolmson, Reynolds, and Smilek (2007), compared the collaborative 

performance of empirical and nominal teams in a visual search task. In their study, two participants 
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completed the task in the same testing room sharing one computer (empirical teams) and independently 

in separate testing rooms (nominal teams). Trial order was identical for the two participants in the 

nominal teams so that individual judgments could be combined to reach one team judgment. 

Specifically, target present responses required one or both team members responded target present and 

target absent responses required both team members responded target absent. Empirical teams were 

encouraged to devise a search strategy that took advantage of the fact that there were two observers 

performing the task. This encouragement was reiterated every 40 trials, and teams were asked to check 

how their strategy was working. Participants comprising nominal teams were encouraged to evaluate 

their independent strategies. Results indicated that empirical teams outperformed nominal teams 

(Experiment 1). Empirical teams reported that the search strategy they employed was to divide the 

display into halves, making each team member responsible for one half. Malcolmson et al. (2007) 

tested whether collaborative performance above that of nominal groups could be explained by social 

facilitation effects. Experiment 2 replicated the same pattern of results, indicating that social facilitation 

effects were unlikely to contribute to the obtained collaborative gain.        

 Social processes in collaborative performance. Groups sharing similar or redundant 

information is the heart of the ‘hidden profile’ procedure (Stasser & Titus, 1985), and shows that 

groups can be less-than-optimal users of information. When Stasser and Titus (1985) asked groups of 4 

members to reach a judgment about a hypothetical candidate for a student body president, they found 

that groups often focused discussion on shared rather than unshared information, and as such, the 

groups produced biased judgments about the potential candidate. In a replication of Stasser and Titus 

(1985), Wittenbaum and Stasser (1996) showed that groups sometimes fail to uncover new information 

due to the dominant role of shared information during group deliberation. Wittenbaum and Stasser 

(1996) noted some potential mechanisms driving the effect, most of which were social, e.g., a group 

member who discussed shared information increased their perceived credibility.   

Other social aspects contribute to group deliberation and, ultimately, collaborative performance 

levels. Some empirical evidence of the social factors contributing to collaborative decision-making 
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suggests groups sometimes fall short of the predictions of statistical models of collaborative decision 

making because social influences bias individual group members’ judgments (Kerr & Tindale, 2004; 

Davis, 1992; Lorenz, Rauhut, Schweitzer, & Helbeing, 2011). In an experiment reported by Lorenz et 

al. (2011), for instance, 12-member groups estimated crime statistics for various geographical 

locations. Each group member made five estimations for each location, and provided a confidence 

estimate on a Likert scale ranging from 1 (very uncertain) to 6 (very certain) for their first and last 

estimates.  

All participants completed three information conditions (Lorenz et al., 2011). In the 

“aggregated information condition”, group members’ estimates for each round after the first were based 

on the mean of group members’ estimates of the immediately previous round (i.e., only one round of 

estimation aggregated to produce a mean). In the “full information” condition, group members could 

base estimations on a figure depicting the trajectories of all group members’ estimates from all 

previous rounds of that specific estimation. The “no information” condition operated as a control 

condition in which group members’ estimates were unavailable. The results indicated that the 

aggregated information and full information conditions reduced the diversity of group members’ 

estimates without raising judgmental accuracy. In other words, group members’ estimates converged 

but did not improve, a pattern referred to by Lorenz et al. (2011) as a social influence effect. The 

authors argued that the observed social influence effect reflected groups’ inability to make use of 

information exchange. The aggregated and full information conditions also showed a range reduction 

effect where group members based estimates on predictions that were narrowly distributed around the 

wrong value, limiting the potential benefit of collaboration. A third and final detrimental effect, the 

confidence effect, was found to undermine the wisdom of crowds effect by boosting individuals’ 

confidence in estimates without an associated increase in collaborative accuracy.      

Another important social factor contributing to collaborative performance is motivation. 

Multiple reviews of collaborative performance (e.g., Davis, 1990; Karau & Williams, 1993; Kerr & 

Tindale, 2004; Levine & Moreland, 1990) note that collaborating team members might put forth less 
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effort when working in the presence of group members, compared to when working independently (i.e., 

social loafing; Karau & Williams, 1993; Kerr & Tindale, 2004; Latané et al., 1979), contributing to 

group motivational losses. Alternatively, group members can also put forth more effort when working 

in the presence of other group members (i.e., social facilitation; Forsyth, 1998; Zajonc, 1965), showing 

group motivational gains (Kerr & Tindale, 2004; Latané, Williams, & Harkins, 1979).  

A number of mechanisms contribute to groups’ motivational losses (Kerr & Tindale, 2004; 

Latané et al., 1979; Steiner, 1972). Smith, Kerr, Markus, and Stasson (2001) note that some group 

members might put forth less effort than others because there is an opportunity to ‘free ride’ on the 

efforts of other group members, or an unwillingness to do the work that other group members could be 

doing. 

Karau and Williams’ (1993) collective effort model (CEM) argues that social loafing reflects the 

contingency between a group member’s effort and that group member’s valued outcomes. As such, the 

CEM predicts that group members will put forth effort when performing a collaborative task to the 

extent that their efforts are perceived as highly instrumental in obtaining valued outcomes. Conversely, 

they will put forth less effort if their contributions are perceived as not linked to collaborative 

performance (low instrumentality) or if the potential collaborative outcomes are not valued. Group 

members’ expectancy, the degree to which each group member believes high levels of effort 

correspond with high collaborative performance levels, also play a role in the CEM. The authors argue 

that individual group members’ efforts can be conceptualised as the product of group members’ 

perceived instrumentality, expectancy, and the outcome values associated with a particular 

collaborative task. 

Mechanisms underlying group motivational gains are also of interest to researchers (Karau & 

Williams, 1997; Kerr & Tindale, 2004). Social facilitation theory (Forsyth, 1998; Zajonc, 1965) 

suggests individual group members put forth more effort when collaborating purely due to the mere 

presence of other group members. Another proposal, social compensation theory (Williams & Karau, 

1991), argues that individual group members might increase their efforts when participating in 
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collaborative tasks to compensate for the assumed poor performance of other group members. The 

poorest performing group members might increase their efforts in the event that they are aware of the 

discrepancy between their and other group members’ performance levels, a phenomenon termed the 

Köhler effect (Köhler, 1926; Witte, 1989). Witte (1989) noted that the Köhler effect is most likely to 

occur when the poorest performing group members define a group’s performance level. Finally, Erev, 

Bornstein, and Galili (1993) demonstrated that the potential for intragroup competition might also 

increase individual group members’ motivation levels.    

Non-collocated groups. Social factors also contribute to the value of collaboration when group 

members are not collocated (Chidambaram & Tung, 2005; Kiesler & Cummings, 2002). Sometimes 

referred to as virtual, distributed, or remote teams, group members are required to collaborate from 

different locations and communicate electronically (Kiesler & Cummings, 2002; Moon & Sproull, 

2001; Sproull & Kiesler, 1991). Kiesler and Cummings (2002) noted that distributed teams are likely to 

suffer from social as well as physical distance. This social distance encompasses a number of social 

factors, such as decreased group cohesion or group identity, limited or no face-to-face communication, 

and increased social diversity of teams, that potentially reduces collaborative performance (Kiesler & 

Cummings, 2002).  

The reduction of face-to-face communication in remote teams is particularly interesting because 

of the empirical evidence showing its powerful effects on collaboration (Deutsch, 1958; Kerr & 

Kaufman-Gilliland, 1994; Kiesler & Cummings, 2002). Kerr and Kaufman-Gilliland (1994) asked 

participants to engage in an investment game in which some teams were collocated and others were 

not. Working in groups, some group members were given 5 minutes to discuss the game, while other 

group members did not communicate. Face-to-face communicating group members were far more 

likely to cooperate with the group than were non-face-to-face communicating group members and, 

even more interesting, this effect was not evident when group members could hear the face-to-face 

communication but not participate in it. Groups with more cooperative group members outperformed 

groups with less cooperative group members.   
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But despite limited face-to-face communication, remote teams can produce collaborative 

performance levels on par with collocated teams (Purvanova, 2014; Scott & Wildman, 2015). Shachaf 

(2008) interviewed 41 team members of distributed teams from nine countries employed by Fortune 

500 corporations in attempt to better understand how virtual team environments influence the 

effectiveness of collaboration. The interviews focused on the effects of cultural diversity and 

information and communication technology (ICT) on virtual team effectiveness. Responses indicated 

that cultural diversity influenced collaborative decision-making positively but also influenced 

communication negatively. The detrimental effect of intercultural communication was moderated, 

though, by effective ICT. 

More recently, Purvanova (2014) explored the discrepancy between the findings of 

experimental literature and field research on virtual teams. Purvanova (2014) noted that multiple meta-

analyses of the experimental literature on virtual teams (e.g., Baltes, Dickson, Sherman, Bauer, & 

LaGanke, 2002; Benbasat & Lim, 1993; Rains, 2005) portray distributed groups negatively, inferior to 

traditional face-to-face teams, whereas field studies tend to show positive outcomes of remote teaming. 

One potential explanation for the discrepancy, according to Puranova’s (2014) qualitative review of 

experimental and field-based literatures, is the lack of ecological validity in experimental studies. More 

specifically, Purvanova (2014) argued that the reality of virtual teams is not accurately replicated in 

common experimental tasks, which require group members to work for short periods of time on 

inconsequential tasks. Ultimately, Purvanova (2014) found virtual teams a viable alternative to 

traditional, face-to-face teams, and noted the importance of experimental research to better understand 

collaborative processes and the outcomes of ad hoc teams, groups created to address a specific issue 

within a restricted timeframe. 

 



 

 24 
 
 

Current aims 

 Research on collaborative visual search is important to better understand the conditions under 

which teamwork produces more efficient search than independent search. This thesis investigated joint 

search in a naturalistic signal detection task. A series of experiments across two studies compared the 

collaborative sensitivity of two-person teams to that of individuals and the predictions of a uniform 

weighting information integration model and explored collaborative search efficiency with little target 

information. 

 Broadly, this thesis aimed to better understand collaborative visual search. More specifically, 

this thesis had two main aims. First, to replicate previous findings (i.e., collaborative search 

performance the same or better than the predictions of the uniform weighting model of information 

integration) and extend them to a signal detection task using naturalistic stimuli. Second, to investigate 

a joint search strategy when little target information is available to observers. 
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CHAPTER 2:  

STUDY 1 

 The following manuscript entitled, Collaborative Search in a Mock Baggage Screening Task: A 

Bayesian Hierarchical Analysis, is currently available on PsyArxiv Preprints 

(https://doi.org/10.17605/OSF.IO/8975X). The version of the manuscript presented here is a revised 

version.  

 Both authors were involved in the formulation of the study concept and design, and data 

analysis. Ali Enright collected the data and completed the initial draft of the manuscript. Jason 

McCarley edited multiple revisions of the manuscript.  
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Abstract 

Signal detection theory provides models of information integration that allow researchers to predict and 

benchmark collaborative performance in a visual search task. Naturalistic stimuli, however, may not 

conform to the simplifying assumptions—specifically, assumptions of equal-variance signal and noise 

distributions and stochastically independent observers—that are often made to make collaborative 

signal detection models tractable. Here, we used Bayesian hierarchical modeling of receiver operating 

characteristics to circumvent this difficulty. Participants (N = 28–32 per experiment) performed a 

simulated baggage x-ray screening task, working alone or in teams of two. Team performance was 

compared to the predictions of two versions of a uniform weighting model of information integration, 

one that assumed stochastically independent judgments from the two members of a team and one that 

allowed for correlated judgments. Across four experiments, teams fell short of the uncorrelated-

judgment model’s predictions, but outperformed predictions based on the observed correlations in 

individual judgments. Results imply motivational effects that improve individual searchers’ effort 

under collaborative conditions, or collaborative strategies that effectively decorrelate the individual 

searchers’ judgments.  
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Introduction 

 Visual search in domains such as transportation security screening and medical image reading is 

often collaborative, requiring multiple searchers to reach a joint decision. Signal detection theory 

(SDT; Green & Swets, 1966; Macmillan & Creelman, 2005), a model of how decision makers reach 

discrete judgments from probabilistic evidence distributions, provides a framework for predicting and 

assessing collaborative efficiency. A binary signal detection task requires a decision maker to judge 

whether a stimulus was drawn from a distribution containing only noise or containing noise with an 

embedded signal (Green & Swets, 1966; Macmillan & Creelman, 2005). The decision maker reaches a 

judgment by reducing the evidence for or against the presence of a signal to a scalar decision variable 

and comparing its value to a criterion. A positive judgment results when the decision variable exceeds 

the criterion, and a negative judgment results otherwise. On a signal-plus-noise trial, a correct response 

is a hit and an incorrect response is a miss. An accurate response on a noise trial is a correct rejection, 

and an inaccurate response on a noise trial is a false alarm. The ability to accurately distinguish signal-

plus-noise from noise-alone distributions is sensitivity, while the decision-maker’s general tendency to 

respond ‘yes’ or ‘no’, as determined by the criterion, is bias. The standard form of the SDT model, the 

equal-variance Gaussian model, assumes that signal and noise distributions of decision variables are 

normal with different means but equal variances. Within this model, sensitivity is conventionally 

measured by d’ (Green & Swets, 1966), the distance between the means of the signal and noise 

distributions, in units of the standard deviation.  

Collaborative sensitivity 

 The level of sensitivity achieved by a collaborative team is a function of the individual team 

members’ sensitivity levels, their information pooling strategy, and the correlation between their 

judgments (Bahrami et al., 2010; Sorkin & Dai, 1994; Sorkin, Hays, & West, 2001). Ideal collaborative 

performance comes from the Optimal Weighting Model (OW; Bahrami et al., 2010; Sorkin & Dai, 

1994; Sorkin et al., 2001). The OW model assumes that individual team members’ judgments are 
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averaged in a weighted manner to produce a team decision. The team’s optimal decision variable,	Xteam, 

is given by,  

																															Xteam	=	∑𝑋C𝑑′C	

where Xi is the decision variable for team member i,	and d’i is team member i’s sensitivity. Assuming 

that the team members’ judgments are stochastically independent, team sensitivity under the OW 

model is, 

								𝑑′FG = H∑𝑑IC
4.	            [1] 

 The Uniform Weighting Model (UW; Sorkin & Dai, 1994) is similar to the OW model, but 

assumes that individual team members’ signal likelihood judgements are weighted equally when they 

are averaged to reach a group judgement. Again, assuming an equal-variance Gaussian model, group d’ 

under the UW model is,      

𝑑IhG = ∑XIi
√j                               [2] 

Bahrami et al. (2010) note that uniform weighting is equivalent to a circumstance in which team 

members do not directly communicate signal likelihood estimates, but instead convert an internal 

evidence representation into a confidence rating through a standard normal transformation. When 

collaborators are equally sensitive, the UW model produces the same predictions as the OW model. 

Otherwise, the unweighted model produces lower sensitivity.  

 Collaborative performance in at least some perceptual and statistical decision making tasks 

approaches levels predicted by the UW model (Bahrami et al., 2010; Sorkin et al., 2001). Bahrami et al. 

(2010) presented dyads with two stimulus intervals each containing six Gabor patches. A single target, 

a patch with slightly elevated contrast, was present in either the first or second interval, and the 

participants’ task was to report the target interval. Dyad members first provided individual responses, 

without consulting each other, and in the event their responses conflicted, provided a joint response. In 

Experiment 1, stimuli were approximately equally discriminable for all participants. In Experiment 2, 
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visual noise was added to the stimuli for one participant within each dyad in order to elicit different 

levels of sensitivity for the two dyad members. Results from both experiments were consistent with the 

UW model. Bahrami et al. (2012) extended these findings to conditions of nonverbal communication 

between team members. 

 Sorkin, Hays, and West (2001) also assessed collaborative decision making performance. 

Participants performed a signal detection task individually and in groups ranging in size from 2–7 

members. On each trial, participants were presented with a display of nine analog gauges. Values of the 

gauges were drawn from one of two equal-variance Gaussian distributions, one of higher mean than the 

other, and the participants’ task was to decide which distribution the values came from. Groups 

performed better than individuals, but with efficiency lower than predicted either by the OW model or 

by a simple majority rule model. Deviations from optimal group performance did not seem to result 

from inefficient combination of the individual participants’ decisions. Rather, group performance was 

poorer than expected because individual observers put less effort into the task as group size increased 

(shown by decomposing a measure of group efficiency into two components – group member effort 

and group decision aggregation efficiency – and comparing both components’ contribution to the 

overall group detection performance). 

 Another study of collaborative visual search likewise found what appeared to be highly efficient 

collaboration. Malcolmson, Reynolds, and Smilek (2007) did not directly compare individual to team 

performance but compared the collaborative sensitivity levels of empirical and nominal teams. 

Empirical teams performed a visual search task sitting together at the same computer. Nominal teams 

were formed by combining the judgments of two members of two team members who performed the 

task in isolation, viewing a sequence of stimuli. Nominal teams thus provided a benchmark of the 

performance that would be expected from a UW model in which team members contributed judgments 

without interacting, and comparisons to the empirical teams revealed the costs or benefits to 

performance that might arise from active collaboration between team members. Empirical teams 

outperformed nominal teams, implying performance better than expected from a strict UW strategy. 
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Participants reported a strategy of dividing the search display into halves, with each team member 

taking responsibility for searching one half.  

 Generalizing the collaborative models described above to naturalistic contexts is challenging, 

however, for at least two reasons. First, team members performing a collaborative task outside the lab 

are likely to render correlated judgments. As noted, the predictions in Equations 1 and 2 assume that 

individual team members contribute stochastically independent judgments, which are then summed to 

produce a team decision variable. Correlations between team members’ responses reduce the benefit of 

collaboration. In the extreme, when collaborators produce identical responses every trial, collaboration 

produces no benefit at all.  

The dependence between collaborators’ responses is determined by the relative strength of 

unique and common noise in their information encoding (Sorkin et al., 2001), where unique noise is the 

variance isolated to an individual team member and common noise is that shared among team 

members. For example, consider a pair of transportation security officers jointly inspecting a baggage 

x-ray. Unique noise might arise from differences in the searchers’ internal sensory noise, or from 

differences in their search patterns. Common noise might arise from ambiguities or degradations in the 

x-ray image itself, from variations in target salience (Mello-Thoms, 2006), or from similarities in the 

viewers’ search patterns. Many past studies of collaboration in signal detection tasks have ensured 

uncorrelated judgments by presenting observers stimuli generated separately and independently (e.g., 

Bahrami et al., 2010, 2012; Sorkin et al., 2001). In naturalistic tasks, however, as in the case of the 

transportation security officers’ joint inspection above, collaborators are likely to view the very same 

stimulus, introducing a source of common variance. Unfortunately, because the decision variables that 

are the basis of the observers’ judgements are internal and unobservable, the degree to which they are 

correlated in such cases is difficult to know (Metz & Shen, 1992).  

 Naturalistic tasks are also likely to violate the assumption of equal-variance signal and noise 

distributions on which the formulas above are based; because the signal-plus-noise evidence 

distribution contains the variance associated with the signal as well as that associated with the noise, its 
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standard deviation will exceed that of the noise distribution anytime the properties of the signal are not 

deterministic (Swets, 1986). 

Bayesian hierarchical analysis of the ROC 

 Analysis of the receiver operating characteristic (ROC; Macmillan & Creelman, 2005; Morey, 

Pratte, & Rouder, 2008; Swets, Tanner, & Birdsall, 1961) provides a method for circumventing both 

the problem of stochastic dependence between observers and the problem of unequal signal and noise 

variance. A ROC plots hit rate in a signal detection task as a function of the false alarm rate, holding 

sensitivity constant. Empirically, the multiple hit and false alarm rate pairs needed to plot the ROC are 

collected by varying the decision maker’s response criterion while holding task difficulty fixed. This 

can be done by manipulating signal rate or response payoffs across blocks of trials, or by collecting 

confidence-rated judgments in a single block of trials (Macmillan & Creelman, 2005).  

 Plotting the ROC in standardized normal space produces a zROC, which can be used to test the 

assumptions of equal variance Gaussian evidence distributions. Assume, following convention, that the 

evidence distribution for noise trials is Gaussian with mean 0 and standard deviation 1, and the signal 

plus noise distribution is Gaussian with mean µs	and standard deviation σs. Then, the zROC is a linear 

function, 

𝑧(𝐻) =
𝜇s
𝜎s
+
1
𝜎s
× 𝑧(𝐹) 

where H and F are the raw hit and false alarm rates, respectively, and z is the inverse normal 

transformation (Wickens, 2002). Normal evidence distributions, that is, imply a linear zROC with a 

slope equal to the inverse of the standard deviation of the signal-plus-noise evidence distribution, and a 

y-intercept equal to the mean of the signal-plus-noise distribution divided by the standard deviation of 

the signal-plus-noise evidence distribution. A useful sensitivity measure derived from the zROC is the 

distance measure d’e (Macmillan & Creelman, 2005), 

𝑑′v =
456
7896

 . 
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When noise-alone and signal-plus-noise distributions are equal-variance, d’e reduces to d’. Otherwise, 

d’e may exceed or fall below d’ (Macmillan & Creelman, 2005). 

 Notably, the UW model can be adapted to predict collaborative signal detection performance in 

ROC space without the assumption of equal-variance distributions. As noted, the model assumes that 

group judgments are based on the unweighted average of the individual team members’ judgments. The 

sum of two normally-distributed independent random variables X1 and X2 is itself normally distributed, 

with mean and variance, respectively, equal to the summed means and variances of X1 and X2	

(Macmillan & Creelman, 2005). That is, if	

X1	~	N	(µ1,	s12)	

X2	~	N	(µ2,	s22)	

then, 

X1	+	X2	~	N	(µ1	+	µ2,	s12	+	s22).	

 Assume that the noise distribution for each individual team member is normally distributed with mean 

0 and standard deviation of 1, and that signal-plus-noise distributions for the two group members are 

normally distributed with means µ1, µ2 and standard deviations σ1, σ2. Then, assuming uncorrelated 

judgments from the two team members, the noise distribution for the group decision variable is,  

𝑋xy8xb~𝑁(0,2	) 

and the signal-plus-noise distribution for the group decision variable is, 

𝑋sy8sb~𝑁(𝜇7 +	𝜇4, 𝜎7
4 + 𝜎44	). 

These values specify the predicted ROC for a two-person team based on a UW model assuming 

stochastically independent observers. We will call this the UWρ = 0 model. 

	 The same approach can be adapted to predict the UW ROC for stochastically dependent team 

members. However, this requires that the correlation between the members’ judgments is known (Metz 

& Shen, 1992). An alternative approach for modelling team performance from judgments is to calculate 

a mock team decision variable from individual observers’ individual judgments of yoked stimuli 
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(Malcolmson et al., 2007; Metz & Shen, 1992; Sorkin et al., 2001). Averaging trial-by-trial confidence 

ratings from paired observers in an unweighted manner provides an estimate of the responses that 

would be produced by a UW strategy, and inherently incorporates stochastic dependency between the 

participants’ individual judgments. We will call responses generated this way mock UW team 

judgments. These responses can then be analysed in just the same way as observed responses. As noted 

above, Malcolmson et al. (2007) found evidence for higher sensitivity in empirical teams than in 

nominal teams, implying performance better than expected from a simple UW strategy. 

Conventional analyses of ROCs for multiple observers aggregate results over stimulus items, 

observers, or both. As Morey, Pratte, and Rouder (2008; Pratte & Rouder, 2012; Pratte, Rouder, & 

Morey, 2010) have shown, though, this practice can distort estimates of signal-distribution variance and 

zROC curvature. As an alternative method of analyzing group ROC data, Morey et al. (2008) 

recommend a Bayesian hierarchical approach (cf. Rouder & Lu, 2005). Here, we use Bayesian 

hierarchical ROC analysis to examine collaborative visual search using naturalistic stimuli, simulated 

baggage x-rays. Participants searched baggage x-rays for hidden knives, working either individually or 

in teams of two. Confidence ratings were collected to allow analysis of the ROC and observed team 

performance was compared to the performance of the mock UW teams and the predictions of the 

UWρ=0 model.   

Experiment 1 

In Experiment 1, participants performed the simulated baggage screening task individually, in 

separate testing rooms, or collaboratively, sitting together in the same room. 

Method 

Participants 

 Sixteen pairs of undergraduate students (25 female, Mage = 24.3, SD = 8.0) were recruited via 

the School of Psychology research participant pool at Flinders University. Each participant received 

$20AU in exchange for participation. All participants demonstrated normal color vision (determined 
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using Ishihara test) and normal or corrected-to-normal visual acuity (tested using a standard visual 

acuity chart in the lab).  

Apparatus and Stimuli 

  Stimuli for the visual search task were presented on a 370 mm x 300 mm Samsung monitor 

(model S24D590PL), with a resolution of 1920 x 1080 pixels and a refresh rate of 85 Hz. Stimulus 

display and response collection were controlled by software custom written in PsychoPy (Peirce, 2007, 

2009). Displays were viewed from a distance of roughly 570 mm, though viewing distance was not 

constrained.  

 Stimuli, the same used in an earlier study (McCarley, 2009), were color x-ray images of various 

bags (e.g., backpacks, suitcases, briefcases) containing everyday items (e.g., hair dryers, keys, clothes, 

portable electronics). Stimuli were created by combining images of individual objects using Photoshop 

(Adobe Systems Inc., San Jose, CA, USA) and MATLAB (The Mathworks, Natick, MA, USA). 

Images were combined through multiplicative blending, producing the appearance of transparency. 

Stimulus size ranged from 9.55° x 6.61° to 23.32° x 21.88°. A pool of 600 images was created for use 

as target-absent stimuli. Target-present stimuli were created by randomly choosing target-absent 

stimuli with replacement from the pool of 600, randomly rotating them by 0°, 90°, 180°, and 270°, and 

then inserting knives at random locations and random orientations of 0°, 45°, 90°, 135°, 180°, 225°, 

270° or 315° in the picture plane. Targets were inserted into the target-absent images using 

multiplicative blending, producing the appearance of transparency. Five knives, ranging in size from 

roughly 2.5° x 0.3° to 4.0° x 0.5°, served as targets. Only one knife was present in each target-present 

stimulus image. Figure 2.1 presents a sample stimulus. 
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   Figure 2.1. An example of a target-present baggage x-ray.     

 

Stimulus images were randomly divided into two sets, A and B, both of which contained 100 

target-present and 150 target-absent images. (Target-present and –absent trials were unbalanced in 

order to encourage a conservative response bias as in earlier work; McCarley, 2009). Odd-numbered 

teams used set A for individual conditions and set B for collaborative conditions, and even-numbered 

used the reverse assignment.    

Procedure 

 Participants completed the visual search task both individually, in separate testing rooms, and 

collaboratively, sharing one computer in the same testing room. Instructions were presented onscreen at 

the start of the experimental session. The instructions asked participants to imagine that they were 

transportation security screeners in an airport and explained that their task was to decide if a knife was 

present (signal-plus-noise event) or not (noise-alone event) in each x-ray image. Images of the five 

target knives were presented onscreen below the instructional text. 

The search task began after participants had read and affirmed that they understood the 

instructions. Each trial began with a fixation interval lasting 1000ms, after which the stimulus image 

was presented for free viewing, with a rating scale below it. Responses were made via mouse click on 

the six-point scale, which included the options Definitely Yes, Probably Yes, Guess Yes, Guess No, 
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Probably No, Definitely No. Definitely Yes, Probably Yes, and Guess Yes were treated as correct 

responses for target-present trials, whereas Guess No, Probably No, and Definitely No were treated as 

correct responses for target-absent trials. A feedback message of ‘You found a threat!’, ‘Good 

judgement’, ‘You missed a threat!’, or ‘False alarm’ followed a hit, correct rejection, miss, or false 

alarm, respectively. 

 Participants completed one block of 250 collaborative trials and one block of 250 individual 

trials. The order of blocks and choice of testing room for the collaborative condition were 

counterbalanced across teams. Trial order was randomized within blocks and yoked across participants 

in the individual search conditions in order to ensure that any potential influence of stimulus order on 

performance was matched across team members. 

Analyses 

  Data were analyzed in RStudio (www.rstudio.com) using the Hierarchical Bayesian Analysis 

of Recognition Memory package (HBMEM; Morey, Pratte, & Rouder, 2008; Pratte, Rouder, & Morey 

2009; Pratte & Rouder, 2012), which contains functions for fitting hierarchical versions of equal and 

unequal variance Gaussian signal detection models to confidence rating data. The model assumes an 

additive effect of observer on the mean separation between noise-alone and signal-plus-noise 

distributions, and where variance is not held fixed across observers, an additive effect of observer on 

the log variance of the signal-plus-noise distribution (Pratte & Rouder, 2012). Model-fitting functions 

employ Bayesian Markov chain Monte Carlo (MCMC) sampling procedure, assuming diffuse priors on 

model parameters. The model was run for 10,000 burn-in iterations, followed by 50,000 iterations for 

analysis.   

Three versions of the model were fit. The first (EV) assumed equal variance noise-alone and 

signal-plus-noise distributions. The second (UV, fixed S2) allowed the variance of the signal-plus-noise 

distribution to differ from that of the noise-alone distribution but assumed that it was fixed across 

observers (Pratte et al., 2009). The third (UV, free S2) also allowed unequal variance between the noise-

alone and the signal-plus-noise distributions, but with the variance of the signal-plus-noise distribution 
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free to vary across observers (Pratte & Rouder, 2010). Models within the HBMEM package also allow 

for estimates of item-level stimulus effects. This requires, however, that individual stimulus items be 

crossed with signal/noise condition. Here, individual stimulus images were nested within signal and 

noise conditions. Model fits were compared using the deviance information criterion (DIC), a statistic 

that measures the quality of model fit, incorporating a penalty for the number of functional model 

parameters (Spiegelhalter, Best, Carlin, & van der Linde, 2002). Smaller values indicate better 

performance.  

Because two individual participants were associated with each team, the experimental design 

did not lend itself to a paired-samples analysis of the collaborative versus team conditions. Search 

condition was therefore treated as a between-subject manipulation. Before fits of the three models were 

generated, data were submitted to a preliminary run of the UV, free S2 model (1000 burn-in iterations, 

10000 iterations for analysis) to identify any individuals or teams who failed to meet an inclusion 

criterion of d’e ≥ 0.5. If any individual participant or team failed to meet the minimum d’e for inclusion, 

all data for that team (both single observer and collaborative data) were excluded from further analysis. 

A total of four teams were excluded (one team in Experiment 2, one team in Experiment 3, and two 

teams in Experiment 4).  

Predictions for the UWρ=0 model were calculated from the hierarchical group mean parameter 

estimates of μn, μs, and σs at each iteration of the MCMC process. Note that because the hierarchical 

analysis produced only a single group-level distribution for the individual search condition (i.e., 

separate estimates were not made for each observer within a team), model predictions at this level 

assumed that the two searchers within a team were equally sensitive. This reduces the OW model to the 

UW model. Mock UW team predictions were generated by averaging the two participants’ responses 

for each trial of the individual search condition, rounding the result to put the responses on a 6-point 

scale, then submitting the data to the HBMEM model. Averaging team member responses in this way 

inherently includes the correlation between team members’ judgments, alleviating the need to know the 

exact correlations between team members’ decisions.   
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Data reported in the text below are the means and 95% Bayesian credible intervals (BCI) of the 

posterior distributions produced by the model. Plots of data were generated in R using the ggplot2 

package v 2.2.2 (Wickham & Chang, 2016), including the geom_density function for plots of posterior 

distributions.  

Results 

 All participants and teams in Experiment 1 met the minimum d’e 
score for inclusion. Table 2.1 

shows the DIC values for all three variants of the model, for Experiments 1-4. In Experiment 1, the 

UV, fixed S2 produced the lowest DIC value. However, the UV, free S2 model produced the lowest 

DIC values for the remaining experiments. For consistency, the results of UV, free S2 model are 

reported for all four experiments, though comparison of the UV fixed and free S2 models suggested no 

substantial differences in the results for any of the experiments. 

Figure 2.2 shows the post burn-in MCMC chains for the model fitting procedure. By inspection, 

chains appear to have converged. 

 

Table 2.1. DIC values for the EVSD, UV, S2 fixed and UV, S2 free for Experiments 1-4 

 DIC values 

 EV UV, S2 fixed  UV, S2 free 

Experiment 1 33511.96 32438.76 32446.21 

Experiment 2 31432.09 31430.43 31426.83 

Experiment 3 32462.82 32464.74 32460.56 

Experiment 4 32478.86 32476.45 32471.50 
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Figure 2.2. MCMC chains for Experiment 1. Columns represent task condition, rows represent 

estimated parameters. 

 

Figure 2.3 shows the zROCs for the single observers, teams, the UWρ=0 model, and mock UW 

teams, based on estimates of the group-level parameters. The z-slopes for the signal and noise 

distributions were less than 1.0 (M = 0.53 for single observers, and M = 0.40 for teams) indicating that 

the signal distribution had a larger variance than the noise distribution, as expected. 
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Figure 2.3. zROCs for Experiment 1, with group mean data points superimposed. 

 

Figure 2.4 shows the estimated posterior distribution of d’e scores, again based on estimates of 

the group-level parameters. Figure 2.5 presents the distributions and 95% BCIs of the difference scores 

between observed and model-predicted team performance levels. Teams (M = 1.96, BCI[1.75, 2.17]) 

outperformed the single observers (M = 1.52, BCI[1.36, 1.68]), mean difference = 0.44, BCI[0.18, 

0.70]. Mean team sensitivity fell roughly midway between that of the mock UW teams (M = 1.68, 

BCI[1.46, 1.89]) and the UWρ=0 model (M = 2.15, BCI[1.93, 2.37]). Error scores did not differ credibly 

from zero for either model.  
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Figure 2.4. Posterior distributions of d’e for single observers (light gray), teams (dark gray), the 

UWρ=0 model (blue), and mock UW teams (red) in Experiment 1.   
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Figure 2.5. Difference scores between observed team performance and UWρ=0 model (blue) and 

mock UW team (red) performance in Experiment 1. Error bars are 95% credible intervals on the 

difference between observed and predicted scores. 

 
 

An additional analysis compared observed scores to the performance of the mock UW teams 

and the UWρ=0 model at the team-by-team level. Figure 2.6 shows the difference between observed and 

predicted team performance for all 16 teams. The mock UW model underestimated sensitivity for four 

(teams 2, 14, 15, and 16) predictions differed credibly from the zero-error point of observed team 

performance. The UWρ=0 model overestimated sensitivity for one team (team 13) and underestimated it 

for two others (teams 14 and 16). 
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Figure 2.6. Difference scores between observed team d’e and UWρ=0 model (blue) and mock 

UW team (red) predictions in Experiment 1. Error bars are 95% credible intervals on difference 

between observed and predicted scores. 

  
Discussion 

 Observed team performance levels fell between the predictions of the correlated and 

uncorrelated UW models. Although past work has found collaborative visual search performance 

consistent with the uncorrelated UW model, the finding that performance here fell short of this level 

was expected; collaborating participants both viewed the same image each trial, creating a significant 

source of shared variance in their judgments. This shared variance should have engendered a strong 

stochastic dependence in the paired observers’ judgments, pushing performance below the predictions 

of the uncorrelated UW model. What’s more surprising is the finding that team performance trended 
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higher than the predictions of a UW model that accounted for the correlations in individual team 

members’ judgments. In other words, although the effect fell just short of being credible at the 95% 

level, teams trended toward performance better than expected given their correlated responses. 

 A potential explanation for this unexpected result is that estimates of collaborative efficiency 

were biased upwards by social processes unrelated to information integration strategy. The UW model 

assumes that team members’ sensitivity levels are the same under individual and collaborative 

conditions, and that the benefits of collaboration arise strictly from the combination of team members’ 

judgments. It is possible, though, that participants were more motivated or put forth more effort when 

working side-by-side in the same testing room than when working alone in separate rooms (Olsen, 

Bahrami, Roepstorff, & Frith, 2010), achieving higher levels of sensitivity in their individual 

judgments even before combining judgments to reach a team decision. This suggests that collaborative 

searchers might not outperform the mock UW model if they perform the individual search task in the 

same room. Notably, control experiments by Malcolmson et al. (2007) tested this possibility in a 

simpler form of visual search task and found no evidence that simply working in the same room as 

another participant produced benefits on par with those of active collaboration. Nonetheless, to rule out 

this potential confound, Experiment 2 replicated the design of the first experiment, but asked the 

participants to complete both the individual and collaborative conditions in the same testing room. 

Experiment 2 

Participants 

 Sixteen pairs of undergraduate students (22 female, Mage = 22.3 SD = 7.4) were recruited via the 

School of Psychology participant pool at Flinders University. Each participant received $20AU in 

exchange for participation. All participants demonstrated normal color vision and normal or corrected-

to-normal visual acuity.  

 All stimuli and procedures were the same as Experiment 1 except that participants completed 

the individual condition in separate workstations within the same testing room. In the individual 

condition, one participant faced a display located on the north wall, while the other faced a display 
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located on the east wall of the same room. In the individual testing conditions, participants were 

instructed to look strictly at their own display and to refrain from communicating. When one 

participant completed the individual condition, he or she exited the testing room and waited in an 

empty room for the other member to finish.  

Results 

Data from one team were excluded because one team member (d’e = 0.18) failed to meet the 

inclusion criterion, leaving data from 15 teams for analysis. Figure 2.7 presents the post burn-in 

MCMC chains for the model-fitting procedure. By inspection, chains appear to have converged. 

 

Figure 2.7. MCMC chains for Experiment 2. Columns represent task condition, rows represent 

estimated parameters. 
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Figure 2.8 shows the zROCs for the single observers, teams, the UWρ=0 model, and mock UW 

teams, again based on estimates of the population-level parameters. The z-slopes for the signal and 

noise distributions were similar to those of Experiment 1 (M = 0.60 for single observers, and M = 0.53 

for teams). 

 

Figure 2.8. zROCs for Experiment 2, with group mean data points superimposed. 

  

 Figure 2.9 presents the estimated posterior distributions of d’e	scores, and Figure 2.10 presents 

distributions of difference scores between observed and predicted team d’e. Teams (M = 1.80, 

BCI[1.63, 1.98]) again outperformed single observers (M = 1.47, BCI[1.35, 1.59]), mean difference = 

0.33, BCI[0.12, 0.55]. Team performance fell within the 95% credible interval of the mock UW team 

scores (M = 1.68, BCI[1.51, 1.87]) and fell credibly short of the UWρ=0 model predictions (M = 2.08, 

BCI[1.91, 2.25]).  
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Figure 2.9. Posterior distributions of d’e for single observers (light gray), teams (dark gray), the 

UWρ=0 model (blue), and mock UW teams (red) in Experiment 2. 

 

Figure 2.11 presents observed and predicted d’e values on a team-by-team basis. The UWρ=0 

model overestimated sensitivity for one team (team 4) and underestimated it for another (team 11). 

Mock UW team sensitivity did not differ credibly from observed sensitivity for any team. 
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Figure 2.10. Distribution of difference scores between observed and predicted team 

performance in Experiment 2. Solid lines near the bottom of the figure indicate 95% BCIs. 
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Figure 2.11. Difference scores between observed team d’e and UWρ=0 model (blue) and mock 

UW team (red) predictions in Experiment 2. Error bars are 95% credible intervals on the 

difference between observed and predicted scores.   

 
Discussion 

 Team sensitivity fell below the levels predicted by the UWρ=0 model but near the upper end of 

the distribution of scores for the mock UW teams. These findings are similar to those of Experiment 1 

and suggest that any differences in observer motivation between single and collaborative conditions 

were not directly related to whether single observers and teams completed the baggage search task in 

the same testing room.  

Experiment 3 

 In some applied contexts, teams may need to jointly inspect a common image from remote 

locations, communicating electronically. Experiment 3 investigated the effects of collaboration when 

teams performed both the individual and collaborative conditions in separate testing rooms.  
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Participants 

 Sixteen pairs of undergraduate students (23 females, Mage = 23.2 SD = 6.5) were recruited via 

the School of Psychology participant pool at Flinders University. Each participant received $20AU in 

exchange for participation. All participants demonstrated normal color vision and normal or corrected-

to-normal visual acuity.  

 All stimuli and procedures were exactly the same as Experiment 1 except that participants 

completed both the individual and team conditions is separate testing rooms. In the collaborative 

condition, team members communicated via Skype (www.skype.com) using only the phone option 

(i.e., no video). Skype was run on the same testing computers as the visual search task. No Skype 

window was visible during the search task. 

Results 

 Because of a technical error, data from one observer in the single observer condition were 

partially lost. All data from that team were therefore excluded from analysis. All of the remaining 

fifteen teams met the inclusion criterion. Figure 2.12 presents the post burn-in MCMC chains for the 

model-fitting procedure. By inspection, chains appear to have converged.  
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Figure 2.12. MCMC chains for Experiment 3. Columns represent task condition, rows represent 

estimated parameters. 

  

Figure 2.13 shows the zROCs for the single observers, teams, the UWρ=0 model and mock UW 

teams, again based on estimates of the population-level parameters. The z-slopes for the signal and 

noise distributions were similar to those of Experiments 1 and 2 (M = 0.54 for single observers, and M 

= 0.45 for teams) and indicate that the signal distribution had a larger variance than the noise 

distribution.  
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Figure 2.13. zROCs for Experiment 3, with group mean points superimposed.  

 
Figure 2.14 shows the estimated posterior distributions of d’e	scores. Team performance (M = 

1.87, BCI[1.69, 2.06]) was better than that for single observers (M = 1.52, BCI[1.38, 1.66]), mean 

difference = 0.35, BCI[0.12, 0.58], and fell between that of the mock UW teams (M = 1.68, BCI[1.48, 

1.88]) and the UWρ=0 model (M = 2.15, BCI[1.96, 2.35]). 

 



 

 53 
 
 

 
Figure 2.14. Posterior distributions of d’e for single observers (light gray), teams (dark gray), 

the UWρ=0 model (blue), and mock UW teams (red) in Experiment 3. 

  

The distribution of difference scores between observed and predicted team performances is 

depicted in Figure 2.15 and shows that observed team performance fell in between that of the mock 

UW teams and the UWρ=0 model but did not differ credibly from either. A team-by-team comparison of 

observed and predicted d’e values is presented in Figure 2.16. The mock UW and UWρ=0 model both 

underestimated sensitivity for one team (team 5).  
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Figure 2.15. Distribution of difference scores between observed and predicted team 

performances in Experiment 3. Solid lines near the bottom of the figure indicate 95% BCIs. 

 

 

 

 



 

 55 
 
 

 
Figure 2.16. Difference scores between observed team d’e and UWρ=0 model (blue) and mock 

UW team (red) predictions in Experiment 3. Error bars are 95% credible intervals on the 

difference between observed and predicted scores.  

 

Discussion 

Team sensitivity exceeded that of single observers and fell roughly midway between 

performance of the mock UW teams and the UWρ=0 model. This pattern is similar to that seen in 

Experiments 1 and 2 and indicates that teams need not be collocated to outperform single observers.    

Experiment 4 

Inspection of response time data from the first three experiments indicated that on average, 

teams (M = 10.02, SD = 6.19, SEM = 0.39, averaged across experiments) took longer to respond than 

did single observers (M = 3.94, SD = 2.06, SEM = 0.09). Longer response times in the collaborative 

conditions presumably reflect, in part, the time needed for team members to discuss their individual 

judgments and come to a consensus before making a joint response. They may also indicate that the 
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participants took longer to scan images before executing a joint decision, producing a speed-accuracy 

tradeoff in the search component of the task (Reed, 1973; Wickelgren, 1977) and artifactually inflating 

team sensitivity relative to the predictions of the two uniform weighting models. Experiment 4 tested 

this possibility by holding stimulus presentation time fixed at 3s for both the individual and team search 

conditions. 

Participants 

 Sixteen pairs of undergraduate students (24 females, Mage = 23.7 SD = 7.8) were recruited via 

the School of Psychology participant pool at Flinders University. Each participant received $20AU in 

exchange for participation. All participants demonstrated normal color vision and normal or corrected-

to-normal visual acuity.  

 All stimuli and procedures were identical to Experiment 2 (i.e., participants completed both the 

individual and collaborative conditions in the same testing room) except that stimulus presentation time 

each trial was limited to 3s. Stimulus exposure duration was fixed at 3s because this time was slightly 

less than the mean response time for individual searchers across the first three experiment. 

Results 

 One team was excluded because one member failed to meet the inclusion criterion (d’e = 0.00), 

and another was excluded because data for one team member were lost to an evident technical error. 

This left data from 14 teams for analysis. Figure 2.17 shows the post burn-in MCMC chains for the 

model-fitting procedure. By inspection, chains appear to have converged. 
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Figure 2.17. MCMC chains for Experiment 4. Columns represent task condition, rows represent 

estimated parameters.  

 

Figure 2.18 shows the zROCs for the single observers, teams, UWρ=0 model and mock UW 

team predictions, again based on estimates of the population-level parameters. The z-slopes for the 

signal and noise distributions were similar to those of Experiment 1 (M = 0.53 for single observers, and 

M = 0.41 for teams).  
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Figure 2.18. zROCs for Experiment 4, with group mean points superimposed.  

 

The estimated posterior distributions of d’e	scores for single observers, team, and the two UW 

models are presented in Figure 2.19. Distributions of difference scores between observed and predicted 

team sensitivity are shown in Figure 2.20. Teams (M = 1.75, BCI[1.60, 1.91]) outperformed single 

observers (M = 1.42, BCI[1.32, 1.53]), mean difference = 0.33, BCI[0.14, 0.52]. Team sensitivity again 

fell between that of the UWρ=0 model (M = 2.01, BCI[1.86, 2.17]) and mock UW teams (M = 1.55, 

BCI[1.39, 1.71]), though it was not credibly different from mock team performance.   
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Figure 2.19. Posterior distributions of d’e for single observers (light gray), teams (dark gray), 

the UWρ=0 model (blue), and mock UW teams (red) in Experiment 4. 

 

Figure 2.21 depicts a team-by-team comparison of observed and predicted d’e. The mock UW 

model underestimated sensitivity credibly for three teams (teams 3, 4, and 9). The UWρ=0 model 

predictions and observed performance not differ credibly for any team.  
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Figure 2.20. Difference scores between observed team performance and UWρ=0 model (blue) 

and mock UW team (red) performance in Experiment 4. Solid lines near the bottom indicate 

95% BCIs. 

 



 

 61 
 
 

 
Figure 2.21. Difference scores between observed team d’e and UWρ=0 model (blue) and mock 

UW team (red) predictions in Experiment 4. Error bars are 95% credible intervals on the 

difference between observed and predicted scores.  

 

Discussion 

Data showed a pattern of effects very much like that of the first three experiments, despite that 

viewing time was restricted to three seconds in both the individual and team search conditions. This 

makes it unlikely that speed-accuracy tradeoffs in visual inspection produced the unexpectedly large 

team advantage observed in the earlier three experiments.  

Meta-analysis of Experiments 1-4 

 Data across Experiments 1-4 were largely consistent. In all four cases, observed team 

sensitivity fell roughly midway between the predicted performance of the mock UW teams and the 



 

 62 
 
 

UWρ=0 model. There was some modest disagreement, however, in the pattern of statistically credible 

differences across the experiments. In Experiments 1 and 3, observed team performance failed to differ 

credibly from the predictions of either UW model at the 95% level; in Experiment 2, observed team 

performance was credibly poorer than expected from the UWρ=0 model performance, but did not differ 

from performance of the mock UW teams; in Experiment 4, finally, observed team performance 

credibly exceeded mock UW performance, but did not differ credibly from the UWρ=0 model 

predictions. 

These small inconsistencies across experiments seem likely to reflect statistical variability, 

rather than genuine differences in team performance levels. Statistical variability is the mostly likely 

culprit of the small inconsistencies across experiments because of the relatively small sample size, 

particularly at the group level. To provide a clearer picture of team performance relative to the UW 

models’ predictions, a meta-analysis aggregated the data of the four experiments. The analysis 

produced a DIC value for the UV, S2 free of 128825. The MCMC chains for single observers, teams 

and mock UW teams are presented in Figure 2.22.  
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Figure 2.22. MCMC chains for the meta-analysis. Columns represent task condition, rows 

represent estimated parameters. 

 
Figure 2.23 shows the estimated posterior distribution of d’e		scores, based on estimates of the 

population-level parameters, for the combined data of all four experiments. Figure 2.24 presents the 

distribution of difference scores of observed team and UW-predicted team performance. Teams (M = 

1.85, BCI[1.76, 1.94]) outperformed single observers (M = 1.49, BCI[1.42, 1.55]), mean difference = 

0.36, BCI[0.25, 0.47], and fell in between that of the mock UW teams (M = 1.65, BCI[1.56, 1.74]), and 

the UWρ=0 model (M = 2.10, BCI[2.01, 2.19]).   
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Figure 2.23. Posterior distributions of d’e for single observers (light gray), teams (dark gray), 

the UWρ=0 model (blue), and mock UW teams (red) in the meta-analysis. 
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Figure 2.24. Difference scores between observed team performance and UWρ=0 model (blue) 

and mock UW team (red) performance in the meta-analysis. Solid lines near the bottom indicate 

95% BCIs.  

 

Control UW Model 

 The UW model assumes that participants working as a team communicate and average their raw 

decision variables in order to reach a decision each trial. In other words, information integration in the 

standard UW model occurs before the observers’ raw judgments are converted to discrete choices. In 

the analyses reported above, however, mock team judgments were calculated by averaging individual 

team members’ confidence ratings on a trial-by-trial basis; information integration occurred after the 

raw judgments had been discretized. This raises the concern that by discarding information available in 
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the raw judgments, analysis of the mock team judgments may have underestimated the performance 

expected from a UW strategy.  

 A control analysis tested this possibility by adopting a converging method of estimating UW 

performance for stochastically dependent team members (Metz & Shen, 1992). In this approach, we 

take the correlation between team members’ confidence ratings as an estimate of the correlation 

between their unobservable decision variables, use that value to estimate the covariance of the team 

members’ decision variables, then adjust the variance of the predicted noise and signal distributions to 

incorporate that covariance. If rn and rs are the correlations between participants confidence ratings on 

noise and signal trials, respectively, then the covariance between the team members’ raw decision 

variables 

covW𝑋xy, 𝑋xbZ = 𝑟x 

for noise trials, and 

covW𝑋xy, 𝑋xbZ = 𝑟s𝜎7𝜎4 

for signal trials. The noise distribution for the team decision variable becomes, 

𝑋xy8xb~𝑁W0, 2 + 2 × cov~𝑋xy, 𝑋xb�Z, 

and the signal distribution for the team decision variable becomes, 

𝑋sy8sb~𝑁W𝜇7 +	𝜇4, 𝜎7
4 + 𝜎44 + 2 × cov~𝑋sy, 𝑋sb�	Z. 

These distributions specify the ROC for a UW team whose members judgments are correlated, from 

which d’e can be calculated. We will refer to this as the UWρ > 0 model. 

 To calculate predictions for this model, we first aggregated confidence ratings across the full set 

of 60 teams included in the meta-analysis above, arbitrarily identifying one participant within each 

team as observer 1 and the other as observer 2. We then used the model described by Kruschke (2017) 

to produce a Bayesian estimation of the correlation between team members’ confidence ratings. 

Estimates were based on a total of 50,000 MCMC iterations (four chains of 12,500 iterations each) 

following a burn-in sequence of 10,000 iterations. This produced estimates of rn = 0.14 and rs = 0.46. 
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These values imply that dependencies in team members’ judgments were driven largely by visibility of 

the target, rather than by characteristics of the image clutter.  

Figure 2.25 presents the estimated posterior distribution of team d’e scores based on the UWρ > 0 

model, along with the estimated posterior of mock UW team scores. The two methods produced similar 

distributions, lending confidence that the mock UW teams scores did not dramatically underestimate 

the sensitivity levels expected from a UW strategy. Note that because rn and rs are based on discrete 

confidence ratings, they are likely to underestimate the true correlation between the team members’ 

raw judgments and might therefore cause the UWρ > 0 model to overestimate sensitivity. This again 

lends confidence that the differences between mock UW team sensitivity and observed team sensitivity 

were not artefactual. 

 

Figure 2.25. Posterior distribution of d’e for mock UW teams (red) and the UWρ > 0 model 

(purple) performance for Experiments 1-4.   

 

General Discussion 
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 In Experiment 1, we asked single observers to complete the task in separate testing rooms, 

whereas in Experiment 2, single observers completed the task in the same testing room. Experiment 3 

simulated a non-co-located joint search in which both single observers and teams completed the search 

task in separate testing rooms. Finally, single observers and teams in Experiment 4 were located in the 

same testing room and stimulus presentation time was limited to 3s. In all four experiments, teams 

performed better than single observers, and achieved sensitivity levels roughly midway between the 

performance of mock UW teams and a UW model assuming stochastically independent observers. A 

meta-analysis using the data from all four experiments confirmed this pattern of effects. 

These results echo those of Malcolmson et al. (2007), who also found that empirical teams 

outperformed mock teams based on a UW strategy, but differ from those of Bahrami et al. (2010), 

Bahrami et al. (2012) who report collaborative performances that approach levels predicted by the UW 

model in simple perceptual and cognitive tasks. Their experiments employed tightly controlled stimuli 

to ensure uncorrelated judgments from team members as well as equal-variance noise-alone and signal-

plus-noise distributions. The current data show performance slightly above the UW level in a more 

naturalistic task, in which judgments between observers were not stochastically independent and the 

assumption of equal-variance evidence distributions was violated. 

The finding that teams achieved performance levels better than expected given their correlated 

responses implies that participants overcame the negative effect of correlated team member responses, 

though the data do not reveal how they achieved this. One possibility is that individuals may have 

increased their effort, and thus sensitivity levels, during collaboration to avoid negative performance 

evaluation. Although the phenomenon of social loafing is perhaps more familiar, the opposite effect, 

social facilitation, is also possible (Kerr & Tinsdale, 2004). Social comparison, for example, can 

motivate team members to work harder under groups conditions than performing a task individually 

(Stroebe, Diehl, & Abakoumkin, 1996; Weber & Hertel, 2007). This implies that teams could have 

outperformed mock teams because either or both members of a team put forth more effort under 

collaborative conditions than they did working individually. This suggestion may seem to sit poorly 
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with the finding in Experiment 2 that individual observers did not seem to put forth additional effort 

when working in the same testing room compared to when they worked in different locations 

(Experiment 1). When single observers worked in the same testing room, however, they were 

instructed to keep their eyes to their own computer displays, to refrain from communicating in any 

way, and to exit the room upon completing the task. As such, they would have had little chance to 

compare their own performance to their partner’s and might not have felt the same social pressure to 

excel in the individual search conditions that they did in the team conditions. 

Collaborators could also have boosted their performance by exchanging information in a way 

that allowed them to sample the stimulus images more effectively or extensively. The OW and UW 

models discussed above, notably, assume that collaborators integrate their individual judgments to 

reach a team decision, but that collaboration does change the process by which the team members 

sample information from the stimulus. Earlier work has often enforced this constraint by generating 

stimuli independently for each team member and presenting them in isolation (e.g., Bahrami et al., 

2010; Sorkin et al., 2001). Presenting a common stimulus for inspection, however, allows collaborating 

team members to guide or inform each other’s sampling strategies, as might happen, for instance, if one 

collaborator points the other toward a suspicious item within the stimulus that the second might 

otherwise not have inspected. In effect, collaborating over a common stimulus would transform a 

collaborative team from a standard parallel system to an interactive parallel system (Mordkoff & 

Yantis, 1991; Townsend & Wenger, 2004). Interacting channels systems are dramatically more 

efficient that standard parallel systems (Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Townsend & 

Wenger, 2004), and thus could extract greater amounts of evidence from a stimulus even within a fixed 

sampling period. 

One form of interactive channels operation that participants might have adopted is a division-

of-labor strategy. Earlier studies of collaborative search have found that team members tend to divide 

responsibilities, for example, by allocating each team member a different region of the display for 

inspection (Brennan et al., 2008; Chen, 2007; Malcolmson et al., 2007), or by allocating each team 
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member a different target to search for (Chen, 2007). Paired searchers in the current experiments might 

likewise have focused attention on different regions of the stimulus images or adopted attentional sets 

for different targets. These strategies could have been adopted either purposefully or tacitly (Chen, 

2007).  

The benefits of a division-of-labor strategy would reflect a tradeoff among three effects. 

Consider a search task with four potential target items, A, B, C, and D. By restricting their attention to 

a subset of the search space—defined by literal space within the display and the space of potential 

target items—searchers would sacrifice sensitivity for items outside the attended space. A searcher with 

an exclusive attentional set for Target A would lose sensitivity for detecting targets B, C, and D (Chen 

& Zelinsky, 2006; Schmidt & Zelinsky, 2009, Vickery, King, & Jiang, 2005), for instance, and a 

searcher whose attention was focused on one region the display would be less likely to notice a target 

embedded in clutter elsewhere (Kundel, Nodine, & Carmody, 1978; McCarley, Kramer, Wickens, 

Vidoni, & Boot, 2004). However, restricting attention to a narrow subset of the search space would 

improve sensitivity for items within the attended subspace. Search performance is more efficient when 

observers search for one target at a time, instead of multiple simultaneously (Menneer, Barrett, Phillips, 

Donnelly, & Cave, 2007; Menneer, Cave, & Donnelly, 2009), for example.  

Finally, by attending to different regions or characteristics of a stimulus image, collaborators 

using a division-of-labor strategy could potentially de-correlate their judgments. A searcher attending 

to the left half of the display might make a low-confidence target-absent judgment, for instance, while 

her partner attending to the right half of the display detects the target with high confidence. A reduction 

in the correlation between judgments, as discussed above, would tend to increase team sensitivity.  

Future research, perhaps using eye-tracking or the analysis of collaborators’ utterances, might 

reveal which of these strategies, if any, collaborators in the current task used to bolster performance 

above levels of the mock UW teams.  

Constraints on generality       
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A number of constraints on generality (Simons, Shoda, & Lindsay, 2017) of the current findings 

should be noted. Participants completed the task in a quiet environment with no distractions, unlike 

many real-world baggage screening environments. Also, participants comprised non-expert screeners. 

Future research is needed to confirm if the obtained pattern of results generalise to expert screeners.  

It is also worth noting that many real-world situations, including airport security, are likely to 

entail an exceptionally low (£ 1%) rate of target prevalence, i.e., frequency with which targets are 

presented (Wolfe et al., 2007). Target prevalence in all four of the current experiments was 40%, and 

so a lower target prevalence would have better mimicked naturalism but also increased the potential for 

a low-prevalence effect, when targets are more often missed due to their low probability (Wolfe et al., 

2007). In an x-ray baggage signal detection task, Wolfe et al. (2007) examined the sensitivity and miss 

errors of paired observers across low (2%) and balanced (50%) target prevalence conditions and 

expected the miss rate of pairs to be the product of the two individual team member’s miss rates. 

Unexpectedly, paired observers demonstrated a low-prevalence effect worse than expected from the 

product of their individual miss rates and only slightly lower than the better of the two observers. 

Importantly, poor performance in the low target prevalence condition was characterized by a shift in 

criterion and not a decrease in sensitivity. In fact, teams achieved greater sensitivity levels in the low 

prevalence condition than in the equal prevalence condition, but maintained a strong bias toward 

responding “no,” resulting in very low hit rates. In other words, collaboration might improve 

sensitivity, but without buffering against performance lapses caused by suboptimal criterion-setting. 

This concludes the currently available paper. 
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CHAPTER 3:  

STUDY 2 

The following manuscript entitled, Collaborative searchers outperform individuals in the 

absence of precise target information, is presently available on PsyArxiv Preprints 

(https://doi.org/10.17605/OSF.IO/V6CQK). The version of the manuscript presented here is the same 

version currently available.  

 Both authors were involved in the formulation of the study concept and design, and data 

analysis. Ali Enright collected the data and completed the initial draft of the manuscript. Jason 

McCarley edited multiple revisions of the manuscript.  
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Abstract 

Two-person teams outperform individuals in a simulated baggage x-ray screening task, and even 

appear to exceed expectations based on statistical limitations (Enright & McCarley, 2018). The current 

experiments aimed to replicate and extend this result. We use Bayesian hierarchical modelling of 

receiver operating characteristics to examine collaborative visual search performance in a visual search 

task wherein top-down target information was constrained. Participants (N = 32, 16 teams per 

experiment), working independently or collaboratively, performed a visual search task framed as a 

medical image reading task. Stimuli were polygons generated by randomly distorting a prototype 

shape. Each trial, observers judged whether an extreme distortion was present among a set of low-

distortion distractor objects. Team members’ individual sensitivity levels were used to predict 

collaborative sensitivity using two versions of a uniform judgment weighting model, one assuming 

stochastically independent judgements from the two team members and the other accounting for 

correlations in the team members’ judgements. Collaborative search performance was better than that 

from single observers in both Experiment 1 and 2 and fell roughly midway between the predictions of 

the correlated and uncorrelated models. Results imply that collaboration when searching in conditions 

of limited top-down target knowledge is beneficial.   
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Introduction 

Signal detection theory (SDT; Green & Swets, 1966; Macmillan & Creelman, 2005) provides a 

framework for studying decision makers’ ability to reach discrete judgments from uncertain data. The 

prototypical signal detection task asks observers to distinguish two states of the world, one termed 

signal-plus-noise and the other noise-alone, from probabilistic evidence. In the standard SDT model, 

the signal-plus-noise and noise-alone evidence distributions are normal with different means but the 

same standard deviation (Macmillan & Creelman, 2005). Sensitivity denotes the ability to discriminate 

signals from noise, and is measured by d’, the distance between the means of the signal-plus-noise and 

noise-alone distributions, in standard deviation units (Green & Swets, 1966; Macmillan & Creelman, 

2005).    

SDT also offers models for understanding collaborative or team decision making. Collaborative 

sensitivity in a signal detection task reflects individual team members’ sensitivity levels, their 

information integration strategy, and the correlation between their judgments (Bahrami et al., 2010, 

2012; Sorkin & Dai, 1994; Sorkin, Hays, & West, 2001; Sorkin, West, & Robinson, 1998). The 

Optimal Weighting Model (OW; Bahrami et al., 2010; Sorkin & Dai, 1994; Sorkin et al., 2001) predicts 

ideal collaborative sensitivity. Within this model, a team reaches a decision by combining team 

members’ individual judgments, weighting them according to each individuals’ mean sensitivity. 

Assuming an equal-variance Gaussian model and stochastic independence between team members’ 

judgments, d’ for the group is, 

       𝑑′FG = H∑𝑑IC
4.                         [1] 

The Uniform Weighting Model (UW; Sorkin & Dai, 1994) is similar, but assumes that team members’ 

judgments are weighted equally when averaged to reach a team decision. Group d’ under this model is, 

    𝑑IhG = ∑XIi
√j

.                                               [2] 

When team members are equally sensitive, the UW model is equivalent to the OW model. When team 

members are not equally sensitive, the UW model predicts lower sensitivity than the OW model.  
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Studies of collaborative signal detection have consistently found that groups outperform 

individuals, but at varying levels of efficiency. Hinsz (1990) demonstrated that 6-member-groups 

achieved higher sensitivity than individuals when recalling audiovisual information but performed far 

below the predictions of the UW/OW model. In contrast, Bahrami and colleagues (Bahrami, Olsen, 

Bang, Roepstorff, Rees, & Frith, 2012; Bahrami, Olsen, Latham, Roepstorff, Rees, & Frith, 2010) 

examined team performance in a 2-interval forced-choice visual search for a contrast singleton and 

found sensitivity levels similar to the predictions of a UW model. This pattern obtained even when 

collaborators differed dramatically in their individual sensitivity levels, meaning that the UW strategy 

led to performance worse than the better team member could have achieved alone. Sorkin et al. (2001) 

found even better performance in a multiple-cue judgment task, showing that small groups (4 or fewer 

members) performed with near-perfect efficiency, approaching predictions of the OW model. 

Efficiency decreased as group size increased, but this appeared to result from social loafing, rather than 

inefficient weighting strategies.  

In the experiments conducted by Bahrami et al. (2010, 2012) and Sorkin et al. (2001), 

importantly, stimuli were generated independently for each team member each trial, and team members 

did not inspect each other’s stimuli. These controls minimized the correlations between participants’ 

judgments, consistent with the assumption of stochastically independent collaborators on which 

Equations 1 and 2 rest. Team sensitivity is reduced when team members provide correlated judgments 

(Sorkin et al., 2001), as is likely to be the case when collaborators make judgments of a common 

stimulus. Consider the example of two pathologists jointly searching a cell sample for an abnormal cell 

(Dee, 2009; Dee et al., 2003). Although unique variance in their judgments might result from 

differences in the observers’ sensory abilities, oculomotor scan patterns, background knowledge, etc., 

ambiguities in the image itself will provide a strong source of stochastic dependency between the 

observers (Sorkin & Dai, 1994; Sorkin et al., 2001). The predictions of the OW and UW models can be 

adjusted to account for stochastic dependencies between observers (Sorkin et al., 2001), but this 

requires that the correlation between the observers’ judgment be known. Unfortunately, because the 
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observers’ mental decision variables are unobservable, the correlation between them is difficult to 

estimate (Metz & Shen, 1992).   

An alternative method for generating predictions for correlated observers is to create nominal or 

mock teams by combining team members’ individual judgments for yoked stimuli (Metz & Shen, 

1992). The mock team judgments, because they are based on isolated individuals’ responses to the 

same stimuli, inherently account for stimulus- or sequence-driven dependencies in the decision makers’ 

judgments. Mock team judgments, in other words, reflect the collaborative sensitivity that can be 

expected given the stochastic dependency between the team members’ judgments. Malcolmson, 

Reynolds, and Smilek (2007) compared empirical and mock team sensitivity in a visual search task. 

Two-person teams completed the task working together (empirical teams) and alone in separate testing 

rooms (mock teams). In the latter condition, both members of the team experienced the same sequence 

of trials, and team judgments were produced by combining the individual members’ yes-no judgments 

using a disjunctive rule. Empirical teams produced greater sensitivity levels than did mock teams, 

suggesting performance better than expected from a UW rule given the statistical dependencies in 

individual team members’ judgments. Participants reported informally that their collaborative strategy 

was to divide the display for search, with one team member attending one half of the search field and 

second team member attending to the other half. 

More recently, Enright and McCarley (2018) examined collaborative performance in a 

simulated baggage screening task. Participants viewed a series of baggage x-rays and judged whether a 

knife was present each trial. In individual search conditions of Experiment 1, the participants 

performed the task in isolated rooms. In the collaborative conditions, they sat side-by-side and were 

allowed to discuss the stimulus before making a team judgment. Because the stimuli were expected to 

violate the assumption of equal-variance signal and noise distributions, participants were asked to 

provide confidence ratings in place of simple yes-no judgments, and data were used to plot receiver 

operating characteristics (ROCs; Macmillan & Creelman, 2005). Observed ROCs were compared to the 

predictions of two versions of the UW model. The first, denoted the mock UW model, assumed 
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stochastically dependent judgments between team members, and the other, denoted the UWρ = 0 model, 

assumed independent judgments. Mock UW team predictions were derived by averaging individual 

team members’ ratings of yoked stimuli to create team judgments. The UWρ = 0 model predictions were 

adapted to predict collaborative signal detection performance in ROC space without the assumption of 

equal-variance distributions. Sensitivity was gauged with the statistic d’e (Egan, Schulman, & 

Greenberg, 1959; Macmillan & Creelman, 2005), a generalization of d’, derived from analysis of the 

ROC, that does not require the assumption of equal-variance evidence distributions. 

Echoing the findings of Malcolmson et al. (2007), collaborative sensitivity was better than that 

from single observers, and fell in between the predictions of the UW and mock UW model predictions. 

This pattern of effects persisted when participants performed the individual search task while sitting at 

separate workstations in the same room, when they performed the collaborative search task from 

different rooms while communicating via speakerphone, and when viewing times were restricted. Two 

interpretations of the results were considered. The first was that the results reflected social 

compensation effects suggesting teams put forth more effort when working collaboratively than 

independently. The second interpretation was that teams’ might have interacted while viewing the 

images in a way that improved their scanning or information sampling. Most obvious was the 

possibility that searchers adopted a division-of-labor strategy akin to that of Malcolmson et al.’s (2007) 

participants, making individual team members responsible for inspecting particular regions of the 

display or detecting particular targets (see Brennan et al., 2008, Chen, 2007, for evidence of similar 

strategies in speeded collaborative search).  

The present experiments aimed to extend the findings of Enright and McCarley (2018), in two 

important ways. The first goal was simply to replicate those earlier findings using an alternative 

stimulus set. Although Enright and McCarley (2018) found consistent results across a series of five 

experiments, the stimuli, simulated baggage x-rays with knives as targets, were the same in all cases. 

This raises the concern that the observed results might have been idiosyncratic to the stimuli. The 

second goal of the current experiments was to replicate our earlier findings in a task designed to limit 
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target certainty. In our previous experiments, participants searched for targets drawn from a set of five 

knives. Pictures of the five potential targets were provided with the task instructions, and the 

participants performed a set of practice trials that gave them further exposure to the targets before 

beginning the experimental trials. Thus, although participants did not have perfect certainty of which 

target might appear on any given trial, the space of potential target items was small and familiar.  

However, many naturalistic tasks require observers to judge whether a stimulus contains a 

target whose appearance is uncertain. As in the pathologist example above, the cell sample might 

contain an anomalous cell whose shape, size, and color are not predetermined. Some theories of visual 

search (e.g., Wolfe, 1994) posit that top-down knowledge of the target helps guide visual search to 

locations on an activation map likely to contain target features. Visual search performance without top 

down guidance limits attentional guidance and is generally less efficient than search with good top-

down guidance (Chen & Zelinsky, 2006; Wolfe, 1994). Search is more efficient if observers are 

provided a detailed and accurate visual representation of the target, for example, than if they are 

provided with a text description or an imprecise or degraded visual representation (Hout & Goldinger, 

2015; Malcolm & Henderson, 2009; Schmidt & Zelinsky, 2009; Vickery, King, & Jiang, 2005). 

 Smith and colleagues (Smith, Redford, Gent, & Washburn, 2005) found particularly poor 

performance in a novel form of visual search characterized by weak top-down control. Stimuli were 

randomly-generated polygons created by distorting prototype shapes (Posner, Goldsmith, & Welton, 

1967). Participants searched each trial for shapes derived from a designated set of prototype objects, 

amongst distractors that were not derived from the target prototypes. In most cases, targets were high-

level distortions of the prototype. Target uncertainty was therefore high and top-down control 

necessarily poor. Remarkably, sensitivity under these conditions was near chance levels. Performance 

substantially exceeded chance only when targets were presented without distractors, or when targets 

were highly similar to their category prototypes, providing high target certainty (Smith et al., 2005).  

The current experiments adapted the task and stimuli of Smith et al. (2005) to introduce further 

target uncertainty, limiting the prospects of a divide-and-conquer collaborative strategy. Here, all the 
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objects within a given stimulus image were distortions of a common prototype. The distractors, though, 

were low-level distortions, and the target, when it was present, was a high-level distortion. Thus, the 

target could be distinguished only by comparison to the surrounding distractors. As noted, participants 

in Enright and McCarley’s (2018) experiments could have divided responsibility in either of two ways, 

either by searching different regions of the display, or by searching for different items within the set of 

five potential targets. The current stimuli limit both these strategies. Without foreknowledge of the 

target shapes, collaborators could not adopt an attentional set for any particular target or adopt a 

strategy of searching for different targets. And because the target was defined as a distortion more 

extreme than the surrounding items, collaborators could not identify any single item as a target without 

also attending to the distractors. Rather, they were required to attend to all stimuli presented in the 

search display. Comparing search stimuli in this way inherently limited the ability of team members to 

restrict search to predefined search areas.  

Building from Enright and McCarley (2018), we use Bayesian hierarchical ROC analysis to 

examine collaborative visual search using dot-distortion stimuli. The search was framed as a medical 

image reading task. Participants searched cell samples for an abnormal cell, working collaboratively, in 

teams of two, or independently. Graded confidence responses were collected to allow analysis of the 

ROC. Empirical collaborative performance was compared to the predictions of two versions of the UW 

model, the mock UW model and the UWρ = 0 model. 

Experiment 1 

 In Experiment 1, participants performed the visual search task individually, in separate testing 

rooms, and collaboratively, sharing one computer in the same room. Experimental methods were 

preregistered (Enright, McCarley, & Leggett, 2018a, June 13) 

(https://osf.io/u43yg/?view_only=78d0a609a9b64dcb8d1b9c70094c6dc3). 

Method 

Participants 
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 Sixteen pairs of undergraduate students (22 female, Mage = 22.5, SD = 3.28) were recruited via 

Finders University College of Education, Psychology, & Social Work’s first year research participant 

pool. All participants demonstrated normal or corrected-to-normal visual acuity (tested using a standard 

eye chart in the lab) and colour vision (determined using Ishihara test) and were paid $20AU in 

exchange for participation.  

Apparatus and Stimuli 

 Participants completed the visual search task on a 370 mm x 300 mm Samsung monitor (model 

S24D590PL), with a resolution of 1920 x 1080 pixels and a refresh rate of 85 Hz. Stimulus display and 

response collection were controlled by software custom written in PsychoPy (Peirce, 2007, 2009). 

Participants viewed displays from a distance of roughly 570mm, however viewing distance was not 

constrained.   

 Dot-distortion stimuli (see Figure 3.1 for example stimuli) were generated in RStudio 

(www.rstudio.com). Each stimulus image comprised a set of 3-5 polygons created by distorting a 

common prototype. A prototype was generated by randomly selecting a sequence of five points within 

a 30 x 30 (21° x 21°) grid, then connecting them in order. Distortions were created by randomly 

displacing the prototype’s vertices (Posner et al., 1967; Smith et al., 2005). Target and distractor stimuli 

were distinguished by magnitude of distortion: 1 Bit/vertex for distractors, and 7.7 Bits/vertex for 

targets (Posner et al., 1965). All objects were rendered as coloured regions. The colours of all items 

were selected randomly with replacement from the default colour palette in R and were drawn at 50% 

opacity. Each item was positioned at a random, under the constraint that the object not extend beyond 

the bounds of an imaginary 6° x 6° box concentric with the centre of the display.  

 Stimulus images were generated in yoked target-absent/target-present pairs. The target-absent 

image within a pair contained only distractor objects. The yoked target-present image was identical, 

except that one distractor was replaced with a target, centred at the same position and drawn in the 

same colour. A total of 400 pairs of images was generated, and were sorted randomly into two sets, A 

and B, of 200 pairs each. 
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a b  

 

Figure 3.1. An example of a generated stimulus pair; a – target-absent, and b – target-present. 

  

Procedure 

 Procedure was similar to that of Enright and McCarley (2018). Participants completed the 

visual search task in the same testing room in all conditions. In the single observer condition, 

participants worked independently, sitting at separate workstations at perpendicular angle to one 

another. Participants were instructed to refrain from communicating with each other and to look only at 

their own display. In the team condition, participants sat side-by-side at one workstation.  

Instructions were presented onscreen at the start of the experimental session. They framed the 

search as a mock cell pathology screening task. The instructions informed participants that their task 

was to decide if a ‘highly abnormal cell’ was present (signal-plus-noise event) or not (noise-alone 

event) in each ‘cell’ sample. Each trial began with a fixation interval lasting 1000ms. The stimulus 

image and response rating scale were then presented for free viewing. Responses were made via mouse 

click on a six-point confidence scale including the judgments Definitely Yes, Probably Yes, Guess Yes, 

Guess No, Probably No, and Definitely No. A feedback message of ‘You found a highly abnormal 

cell!’, ‘Good judgement’, ‘You missed a highly abnormal cell!’, or ‘False alarm’ followed each hit, 
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correct rejection, miss, and false alarm respectively. For target present trials, Definitely Yes, Probably 

Yes, and Guess Yes were treated as correct responses. Similarly, for target absent trials, Definitely No, 

Probably No, and Guess No were treated as correct responses. 

 Each team completed one block of 200 trials in the single observer condition and one block of 

200 trials in the team condition. Each block included 100 target-present and 100 target-absent trials. 

Block order was counterbalanced across teams. Half of the teams used stimulus set A for single 

searcher conditions and set B for the team search conditions. The remaining teams used set B for the 

single searcher condition and set A for team search. Trial order was randomized within blocks and 

yoked across participants in the single observer condition.  

Analyses 

 Data were analysed in RStudio (www.rstudio.com) using the Hierarchical Bayesian Analysis of 

Recognition Memory package (hbmem; Morey, Pratte, & Rouder, 2008; Pratte, Rouder, & Morey, 

2009; Pratte & Rouder, 2012), which contains functions for fitting hierarchical versions of equal and 

unequal variance Gaussian signal detection models to confidence rating data. The model is fit with a 

Bayesian Markov chain Monte Carlo (MCMC) sampling procedure, using vague priors on model 

parameters. The model fitting procedure fits was run for 10,000 burn-in iterations and 50,000 iterations 

for analysis.  

 Three versions of the model were fit. The first (EV) assumed equal-variance signal-plus-noise 

and noise-alone distributions. The second (UV, fixed S2) assumed that the variance of the signal-plus-

noise distribution might differ from that of the noise-alone distribution, but that it was fixed across 

observers. The third (UV, free S2) allowed the variance of the signal-plus-noise distribution to vary 

across observers, assuming an additive effect of log variance (Pratte & Rouder, 2010). Model fittings 

were compared using the deviance information criterion (DIC; lower values indicate better 

performance), which measure the quality of model fit, accounting for the number of functional model 

parameters (Spiegelhalter, Best, Carlin, & van der Linde, 2002). It is possible to fit two versions of 

each model, one in which item effects are included in the modelling, thereby accounting for them in 
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estimates of collaborative performance, and one in which item effects are excluded in the modelling, 

reintroducing the correlations between team members’ responses. Here, we limit reporting to models 

that did not include item effects.      

 Because two single observers were associated with each team, data were not amenable to a 

conventional paired-samples comparison of individual versus team search conditions. Instead, search 

condition was treated as a between-subject variable with 32 participants in the single-searcher 

condition and 16 participants in the team search condition. All data were initially fit to the UV, free S2 

model (1000 burn-in iterations, 10,000 analysis iterations) to check that team members and their 

associated team met the data inclusion criterion of a minimum of 60% accuracy. Any data, both 

individual and collaborative, that failed to meet the minimum accuracy for inclusion were excluded 

from further analysis.  

 UWρ=0 model predictions were generated using the hierarchical group mean parameter 

estimates of μn, μs, and σs for the individual search condition at each iteration of the MCMC process. 

Because the modeling provided one group-level estimate of each parameter—that is, it did not provide 

separate estimates for two different searchers within a team— this analysis assumed that the two 

searchers comprising a team were equally sensitive, making predictions for the UW model equivalent 

to those for OW model. The Mock UW model predictions were generated by first averaging the two 

searchers’ responses on each trial of the individual condition, truncating the result to place the result on 

a 6-point scale, and finally submitting the ratings to the hbmem model. 

 The reported data below present the means and 95% Bayesian credible intervals (BCI) of the 

posterior distributions given by the hbmem model. Data were plotted in R using the ggplot2 package v 

2.2.2 (Wickham & Chang, 2016), including the geom_density function for plots of posterior 

distributions. 

Results 

All participants and teams in Experiment 1 met the minimum 60% accuracy inclusion score. 

The DIC values for Experiment 1 and 2 are presented in table 3.1, and show that the UV, free S2 
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produced the best fit. The results of that model are therefore reported below. The MCMC chains for 

single observers, teams, and mock UW model predictions for Experiment 1 are shown in Figure 3.2, 

and by inspection, appear to have converged.    

 

Table 3.1. DIC values for the EVSD, UV, S2 fixed and UV, S2 free for Experiments 1 & 2 

 DIC values 

 EV UV, S2 fixed  UV, S2 free 

Experiment 1 26544.14 26542.55 26468.21 

Experiment 2 26504.53 26507.81 26482.71 

 

 

Figure 3.2. MCMC chains in Experiment 1. Rows show estimated parameters and columns the 

search condition.  
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The zROCs for the single observers, teams, UWρ=0 model and mock UW model predictions, 

based on estimates of the group-level parameters, are presented in figure 3.3. The z-slopes for the 

signal and noise distributions were less than 1.0 (M = 0.81 for single observers and M = 0.87 for 

teams), indicating that the signal-plus-noise distribution had a larger variance than the noise-alone 

distribution.  

 

Figure 3.3. zROCs for Experiment 1 with empirical data superimposed. 

 

 Figure 3.4 shows the posterior distribution of d’e scores for single observers, teams, UWρ=0 

model-predicted and mock UW model-predicted performance, based on estimates of the group-level 

parameters. Teams (M = 2.20, BCI[1.97, 2.43]) outperformed single observers (M = 1.71, BCI[1.57, 

1.85], mean difference 0.49, BCI[0.22, 0.76]. Team performance fell between the mock UW model 

predictions (M = 1.87, BCI[1.66, 2.08]) and UWρ=0 model predictions (M = 2.41, BCI[2.22, 2.63]).  
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Figure 3.5 shows the distributions and 95% BCIs of the difference scores between observed and 

predicted team performance levels. The mean score for the mock UW model’s predictions was 

negative, indicating that the model tended to underestimate observed sensitivity, with a BCI that just 

excluded a value of zero. The mean score for the the UWρ=0 model was positive, but with a BCI that 

overlapped zero. 

 

Figure 3.4. The posterior distributions of d’e for single observers (light gray), team (dark gray), 

mock UW teams (red), and the UWρ=0 model (blue) in Experiment 1. 
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Figure 3.5. Distribution of difference scores between observed and predicted team performance 

in Experiment 1. Solid red and blue lines near the bottom of the figure indicate 95% BCIs. 

 

 A more specific analysis tested the fit of the mock UW team and UWρ=0 model predictions at 

the team-by-team level. Figure 3.6 shows the difference between observed and predicted team 

performance for all 16 teams. The mock UW model underestimated sensitivity for three teams (teams 

1, 7, and 15) as their predictions differed credibly from the zero-error point of observed team 

performance. The UWρ=0 model overestimated sensitivity for two teams (teams 6, and 16). 
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Figure 3.6. Difference between observed team sensitivity and UWρ=0 model (blue) and mock 

UW (red) sensitivity in Experiment 1. Error bars are 95% credible intervals on the difference 

between observed and predicted scores. 

 

Discussion 

Observed team sensitivity fell between the predictions of the mock UW and UWρ=0 models 

suggesting that teams performed above their expected performance levels given their correlated 

responses. This pattern mimics the results of Enright and McCarley (2018), who found that teams with 

correlated judgments also outperformed the predictions of a correlated UW model in a simulated 

baggage search task. 
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Enright and McCarley (2018) found that collaborative performance levels were similar 

regardless of whether team members were collocated. However, Yu and Wu (2015) found participants 

were quicker to detect targets in x-ray baggage images when searching in the presence of another. Liu 

and Yu (2017) also found participants produced shorter response times when detecting a “C” amongst 

“O” distractors when searching in the presence of another. Participants’ eye-movements reflected 

social facilitation effects such that fixations, saccades, and scan paths changed as a function of task 

complexity and search condition (e.g., alone versus in the presence of another; Liu & Yu, 2017). The 

social aspect in these studies was achieved using differing methods. Enright and McCarley (2018), for 

example, instructed collaborators to focus attention on their computer display, refrain from 

communicating and exit the testing room upon task completion. Team members, thus, may not have 

felt evaluated by the other team member. In the other studies (e.g., Liu & Yu, 2017; Yu & Wu, 2015), 

searchers were accompanied by an ‘examiner’ who focused attention on the searcher completing the 

task, leaving little space to avoid a sense of performance evaluation. Taken together, these findings 

suggest that it is possible that collaborative sensitivity is influenced by social facilitation effects. 

Experiment 2, thus, provided an opportunity to test whether Experiment 1’s findings generalize to non-

collocated teams.  

Experiment 2 

Experiment 2 modified the procedure of Experiment 1 by asking participants to perform the 

collaborative search task from separate locations, communicating vocally. Experimental methods were 

preregistered (Enright, McCarley, & Leggett, 2018b, June 13) 

(https://osf.io/wcp69/?view_only=2069ee7afc434eef901820006a5f6665). 

Participants 

 Thirty-two participants, making 16 pairs, of undergraduate students (23 female, Mage = 22.25, 

SD = 8.80) were recruited via Flinders University first-year research participant pool. All participants 

presented normal colour vision and normal or corrected-to-normal visual acuity and received $20AU in 

exchange for participation. 
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 All stimuli and procedures were exactly the same as Experiment 1 except that participants 

completed both the individual and collaborative conditions in separate testing rooms. When performing 

the collaborative condition, teams communicated via Skype (www.skype.com) using only the phone 

function (i.e., no video), which operated on the same computer as the visual search task; however, no 

skype window was visible during the search task. 

Results 

All participants in Experiment 2 met the minimum 60% accuracy inclusion criteria. Figure 3.7 

shows the MCMC chains for single observers, teams, and mock UW model predictions for Experiment 

2. By inspection, the chains appear to have converged.  

 

Figure 3.7. MCMC chains in Experiment 2. The rows show estimated parameters and the 

columns show search condition. 
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Figure 3.8 shows the zROCs for the single observers, teams, UWρ=0 model and mock UW team 

model predictions, again based on estimates of the group-level parameters. The signal-plus-noise and 

noise-alone distributions’ z-slopes were less than 1.0 (M = 0.83 for single observers and M = 0.80 for 

teams) indicating that the signal-plus-noise distribution had a larger variance than the noise-alone 

distribution. 

 

Figure 3.8. zROCs for Experiment 2 with empirical data superimposed. 

 

Figure 3.9 shows the posterior distribution of d’e scores for single observers, teams, UWρ=0 

model-predicted and mock UW model-predicted performance, based on estimates of the group-level 

parameters. Teams (M = 2.34, BCI[2.13, 2.56]) outperformed single observers (M = 1.95, BCI[1.81, 

2.08]), mean difference (M = 0.40, BCI[0.14, 0.65]). Team performance was similar to mock UW 

teams (M = 2.11, BCI[1.91, 2.31]) and fell below UWρ=0 model (M = 2.76, BCI[2.57, 2.93]).  
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Figure 3.9. The posterior distributions of d’e for single observers (light gray), team (dark gray), 

mock UW model-predicted (red), and UWρ=0 model-predicted (blue) performance in 

Experiment 2. 

 

Figure 3.10 shows the distributions and 95% BCIs of the difference scores between observed 

and predicted team performance levels. Team performance was not credibly different from the mock 

UW model predictions and were credibly below the UWρ=0 model predictions. 
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Figure 3.10. Distribution of difference scores between observed and predicted team 

performance in Experiment 2. Solid red and blue lines near the bottom indicate 95% BCIs. 

 

A team-by-team level analysis tested the fit of the mock UW team and UWρ=0 model 

predictions (Figure 3.11). The UWρ=0 model overestimated sensitivity for seven teams (teams 5, 8, 9, 

11, 13, and 14). The mock UW model underestimated sensitivity for one team (15).   
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Figure 3.11. Difference between observed team performances and UWρ=0 model-predicted 

(blue) and Mock UW model-predicted performances (red) in Experiment 2. Error bars are 95% 

credible intervals on the difference between observed and predicted scores.  

 

General Discussion 

 Collaborative performance in a visual search task was explored in two experiments. Observed 

team performance was compared to the predictions of two versions of a uniform weighting model – one 

that allowed stochastic dependency between team members’ judgments and one that assumed 

stochastic independency. In Experiment 1, single observers performed the task in the same testing room 

whereas in Experiment 2, single observers performed the task in separate testing rooms. In both 

experiments, teams performed better than single observers. Collaborative sensitivity fell roughly 
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midway between the predictions of both models and, more specifically, was slightly closer to the 

predictions of the uncorrelated UW model in Experiment 1 and the correlated UW model in 

Experiment 2. 

Multiple previous studies found collaborative sensitivity levels above those of individuals and 

similar to those predicted by the UW model (e.g., Bahrami et al., 2010; 2012; Hinsz, 1990; Sorkin et 

al., 2001). Our methods are unique in that we expected correlated judgments and unequal variances in 

the signal-plus-noise and noise-alone distributions 

Our results replicate Enright and McCarley’s (2018) findings and extend them to a signal 

detection task that limits top-down knowledge of the target. Participants were aware that targets would 

appear distorted from other stimulus items, but were unaware of what colour, shape, size, or spatial 

orientation the target might present. Despite this lack of target information, team performance levels 

were above those from single observers. Visual search studies that constrain top-down target guidance 

show that search is generally less efficient (Chen & Zelinsky, 2006; Schmidt & Zelinsky, 2009). Our 

results, however, suggest collaboration during visual search tasks that include limited top-down 

knowledge of the target is valuable. 

Similar to Enright and McCarley (2018), collaborative performance was better than expected 

given team members’ correlated responses. It seems improbable that team members engaged a divide-

and-conquer approach reflecting the effects of both dividing the search display and adopting differing 

target templates, though (Chen, 2007; Malcolmson et al., 2007). Chen (2007) found that pairs of 

observers divided the search display to share the search labour. Similarly, Malcolmson et al. (2007) 

found teams reported using the same strategy. Dividing the stimulus display in this way seems unlikely 

in the current task because participants needed to compare a potential target with at least two other 

items in the search display. Similarly, it is unlikely that team members adopted differing target 

templates because top-down knowledge of targets was constrained. 

It is possible, though, that team performance was greater than what was expected because team 

members may have put forth more effort when working collaboratively, to avoid negative performance 
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evaluation (Kerr & Tindale, 2004). Team members may have engaged in social comparison, thereby 

increasing their individual sensitivity levels before integrating judgments to reach a joint decision. This 

explanation fits well with our findings because team performance was credibly below the correlated 

UW model predictions, and no longer above performance expectations, when teams collaborated from 

separate rooms (Experiment 2). Although collaborative sensitivity was slightly lower for non-

collocated teams, the different patterns of observed collaborative performance in Experiment 1 and 2 

are potentially no more than random variation, suggesting that team collocation, and consequently 

social facilitation effects, are unlikely contributing to obtained collaborative benefit.  

Future research, with larger sample sizes or using a within-subject comparison, is required to 

determine whether collaborative sensitivity differs for collocated and non-collocated conditions. The 

exact search strategies teams employed remains unclear and so future research would benefit from 

explicitly measuring which strategies teams use.   

Constraints on generality 

 Generalizing the current findings is limited to the characteristics of the sample population and 

the task (Simons, Shoda, & Lindsay, 2017). The above findings were produced by non-expert 

screeners; expert screeners might produce different results due to potentially different scan paths 

(Nodine & Kundel, 1987). Participants performed the visual search task in a quiet room with no 

distractions. Future research is needed to confirm if our obtained pattern of results generalise to less 

controlled conditions.   

This concludes the currently available paper. 
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CHAPTER 4:  

GENERAL DISCUSSION 

A broad aim of this thesis, thus, was to better understand collaborative visual search. More 

specifically, this thesis had two main aims: 1) to replicate previous findings (i.e., collaborative search 

performance that matches or exceeds the predictions of the uniform weighting model) and extend them 

to a signal detection task using naturalistic stimuli, and 2) to investigate a joint search strategy when 

little target information is available to observers.  

 Study 1 aimed to replicate previous collaborative visual search findings, that is collaborative 

search performance on par with or better than the predictions of a UW model (e.g., Bahrami et al., 

2010, 2012; Malcolmson et al., 2007), and extend findings to a signal detection task using naturalistic 

stimuli. Benchmarking collaborative search performance relative to the predictions of the UW model in 

our signal detection task required addressing two obstacles: the correlation between collaborators’ 

judgments and signal-plus-noise and noise-alone distributions with differing variance. 

 The correlation between collaborators’ judgments is problematic because the standard equation 

for predicting UW-performance assumes either that team members provide stochastically independent 

judgments, or that the correlation between their judgments is known (Sorkin et al., 2001). Collaborative 

searchers in real-world contexts are likely to provide stochastically dependent judgments, though, 

because searchers are jointly inspecting the same stimulus thereby increasing the shared variance in 

their information encoding. When team members share a large proportion of shared variance, they will 

contribute redundant information that increases the similarity between their judgments and 

consequently decreases the value of collaboration (Sorkin & Dai, 1994; Sorkin et al., 2001).  

 Differing variance in the signal-plus-noise and noise-alone distributions requires addressing 

because the UW model predictions were originally formulated in terms of d’, which assumes equal-

variance evidence distributions. Naturalistic stimuli will often violate this equal-variance assumption, 

because the signal-plus-noise distribution will include the variance associated with the signal and the 
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noise, whereas the noise distribution contains the variance associated with only the noise (Swets, 

1986). 

 Both problems (i.e., correlated team member responses and unequal variance in the evidence 

distributions) were circumvented in Study 1 by analysing receiver operating characteristics (ROC; 

Green & Swets, 1966; Macmillan & Creelman, 2005). The UW model was adapted to predict 

collaborative signal detection performance in ROC space. The correlated UW model predictions were 

derived by averaging team members’ trial-by-trial confidence ratings, an analysis that incorporates the 

correlations between observers’ judgments. Data were fit to Bayesian hierarchical models that 

produced posterior distributions of d’e, a sensitivity index that does not require the same variance in the 

signal-plus-noise and noise-alone distributions.  

 To benchmark team sensitivity levels relative to individual sensitivity levels and gauge 

collaborative performance relative to both versions of the UW model predictions, participants 

performed a simulated baggage screening task, working independently or collaboratively in two-person 

teams. In Experiment 1, participants completed the individual search condition in separate testing 

rooms and the collaborative search condition in the same testing room, sharing one computer. In 

Experiment 2, they completed both the individual and collaborative search conditions in the same 

testing room. In Experiment 3, they completed both the individual and collaborative search conditions 

in separate testing rooms. Finally, in Experiment 4, they completed both search conditions in the same 

testing room, and stimulus presentation time was fixed to 3s.    

Results confirmed that teams outperformed single searchers in all four experiments. Somewhat 

surprisingly, though, team sensitivity levels fell mostly in between the predictions of the correlated and 

uncorrelated UW model predictions with some modest disagreement in the pattern of statistically 

credible differences across the four experiments. Although the pattern of credible differences fluctuated 

across experiments, team sensitivity fell between the predictions of the uncorrelated and correlated UW 

model predictions. 
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The pattern of results for Experiments 1-4 likely reflected statistical variability and not real 

differences in collaborative performance levels. A meta-analysis of the data produced in the four 

experiments tested this statistical variability assumption and provided a more accurate picture of the 

team performance levels relative to the UW model’s predictions. Results of the meta-analysis showed 

that team sensitivity fell midway between the predictions of both versions of the UW model and, more 

specifically, were credibly below the predictions of the correlated UW model and credibly above the 

correlated UW model predictions. 

We considered three potential explanations for why teams performed better than expected given 

the statistical limitations. The first possibility is that speed-accuracy tradeoff effects (Reed, 1973; 

Wickelgren, 1977) mimicked performance levels above the correlated UW model’s predictions. A 

speed-accuracy tradeoff effect was hypothesized because teams in Experiments 1-3 took significantly 

longer to respond than did individuals, indicating the possibility that teams employed longer scanning 

durations thereby increasing accuracy. However, Experiment 4 tested this assumption by limiting 

stimuli presentation time to 3s, and results showed that collaborative performance remained above the 

correlated UW model predictions. This suggested speed-accuracy tradeoff effects unlikely contributed 

to the collaborative performance levels.  

The second potential account for why teams outperformed the correlated UW model predictions 

is that individuals may have put forth greater effort when collaborating to avoid negative performance 

evaluation. Such social facilitation effects (Kerr & Tindale, 2004) might have acted to effectively 

increase individuals’ sensitivity levels when working collaboratively, thereby producing higher 

individual sensitivity levels before aggregating responses to reach a joint decision. 

The third possibility is that teams might have interacted during collaboration in a way that 

changed their information sampling, effectively increasing the individual d’ scores that contribute to 

UW performance, or decorrelating their individual judgments. A division-of-labour strategy, for 

example, reflects two effects. One, team members search particular areas of the search display, dividing 

the search labour (Chen, 2007; Malcolmson et al., 2007). And two, paired searchers may have also 



 

 100 
 
 

applied different top-down target templates for the different potential knife target items, guiding 

attention to the target more easily. Doing so could have reduced the similarity in their encoded 

evidence for the signal, thereby decorrelating their individual judgments before reaching a joint 

decision. 

Study 2 aimed to first replicate Study 1’s findings using different stimuli, and second, limit 

participants’ capacity to engage a divide-and-conquer search strategy by limiting target certainty. Study 

2 reduced top-down target information using dot-distortion stimuli (Posner, Goldsmith, & Welton, 

1967; Smith, Redford, Gent, & Washburn, 2005). Stimuli were unique each trial, limiting observers’ 

target information and capacity to use attentional guiding to detect targets. Furthermore, because the 

target was defined as an extreme distortion among more modest distortions—that is, an outlier in a 

space of shapes—the task did not allow participants to identify the target based strictly on its own 

characteristics but required them to compare presented stimulus items. This limited the option to divide 

the search display between observers. In Experiment 1, teams performed the individual search 

condition in the same testing room using separate testing stations, and the collaborative condition in the 

same room, sharing one computer. In Experiment 2, participants completed both the individual search 

condition and the collaborative search condition in separate testing rooms. Data were again analysed 

using Bayesian hierarchical analysis of receiver operating characteristic curves. 

Results replicated the effects of Study 1. In Experiment 1, team performance levels were 

slightly above the predictions of the uncorrelated UW model predictions and not credibly different 

from the predictions of the correlated UW model. In Experiment 2, team performance was credibly 

poorer than the uncorrelated UW model predictions and not credibly different from the correlated UW 

model predictions. Overall, team sensitivity fell roughly in between the predictions of the correlated 

and uncorrelated UW models. Study 2 thus extends these findings to a signal detection task that 

assumed observers had limited top-down target knowledge. 

Given that top-down target information was limited, it seems unlikely that a division-of-labour 

strategy contributed to the collaborative benefit obtained. Although non-collocated teams performed 
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slightly poorer than collocated teams, this pattern of results is likely to largely reflect statistical 

variation, rather than a true, substantial difference between performance levels. It also seems somewhat 

unlikely that social facilitation effects explain teams’ performance levels because collaborative 

sensitivity was similar regardless of whether teams were collocated.     

Practical implications and future directions 

 Our findings carry implications most specifically for the human factors of fields in which 

collaborative visual search is common, e.g., transportation security and medical image reading. Our 

most consistent finding is that collaborative searchers outperform single searchers. This suggests that 

agents working to detect a signal are more efficient when searching collaboratively than independently.   

 In fact, some of our findings indicate that teams can even outperform what is expected given 

their individual sensitivity levels and the similarity in team members’ judgments. Such findings imply 

that teams can adopt visual search performance strategies that work to decorrelate their judgments to 

result in a larger collaborative benefit when integrating their judgments. The exact method of how 

participants achieve de-correlated judgments, though, is still unclear. As such, future research would 

benefit from directly investigating the visual search strategies teams employ, that increase their 

collaborative benefit, potentially using eye-tracking or dialogue analysis.  

 Teams continued to outperform individuals despite reduced target information, limiting teams’ 

capacity to engage a divide-and-conquer search strategy. Previous studies (e.g., Chen & Zelinsky, 

2006; Schmidt & Zelinsky, 2009; Vickery, King, & Jiang, 2005) found visual search performance is 

less efficient when top-down target knowledge is constrained. Our results show that collaboration is 

nonetheless valuable in such conditions. This finding carries implications in real-world contexts such as 

transportation security screening, in which officers are required to search for illicit items that take 

various shapes, sizes, and orientations. Under such conditions, it seems reasonable to suggest 

collaborative searchers will detect targets with greater sensitivity than individual searchers.  

   Results also demonstrate that non-collocated teams can perform similarly to collocated teams. 

Remotely collaborating teams produced similar performance levels suggesting that collaborative gains 
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do not require team members to work in a face-to-face context to gain collaborative benefit. However, 

further research with larger sample sizes and a within-subject design is needed to confidently claim 

team collocation is not an important factor to collaborative visual search.  

 It is worth noting that our data might also be compatible with other models of visual data, such 

as Yonelinas’ dual-processing model (Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996; Pratte 

& Rouder, 2011). Yonelinas’ dual-processing model (Yonelinas, Dobbins, Szymanski, Dhaliwal, & 

King, 1996; Pratte & Rouder, 2011) is effectively a signal detection model with the probability of a 

discrete detection state. Dual process models essentially argue that target detection can occur due to 

threshold models, discrete detection, or signal detection models, familiarity compared to a criterion. 

Some of the modelled data presented here (Study 1) show very high d’e and σ	values. These 

exceptionally high values might suggest a discrete detection, rather than a signal detection, process. 

Future work comparing discrete state and signal detection models would be useful. 

 The high σ	values obtained in the modelled data presented in Study 1 drop considerably in 

Study 2. In fact, σ	is roughly halved when participants’ task limits precise target information. One 

possible explanation is that Study 2 included targets that were much more difficult to detect with 

certainty, resulting in participants relying on less extreme values when responding, indicating less 

confidence in their judgements.  

Constraints on generality  

 As Simons, Shoda, and Lindsay (2017) note, generalising the above findings is limited to the 

context of the experimental tasks and the characteristics of the sample population. Participants 

performed our visual search tasks in quiet rooms with no distractions. Further research will be needed 

to confirm that effects replicate under in real-world conditions. We also sampled a population of non-

expert observers. Future research, thus, is needed to confirm if our results generalise to expert 

observers. 
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Generalizing our obtained pattern of results (Studies 1 and 2) is also limited to events with 

higher than some naturally occurring target prevalence rates. Our studies included signal rates of 40-

50% whereas real-world contexts reported signal rates closer to 2% (Wolfe et al., 2007). Target 

prevalence aligned with naturalistic environments could trigger a low-prevalence effect in which 

observers more often miss targets because their presentation is less likely (Wolfe et al., 2007). 

Additional work will be necessary to confirm that the current effects persist under conditions of 

extremely low target prevalence. 
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