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Summary

The development of shape analysis methods is an important field of study, espe-

cially in the context of biomedical image analysis. An understanding of shape

patterns provides information on morphology, function, growth, abnormalities,

and so on. Various shape analysis methods – including elliptic Fourier analysis,

multiple resolution skeletons, landmark methods and statistical shape models –

have been covered extensively in the literature. However, these methods have

been developed to analyse regular shape patterns and do not extend well to ob-

jects exhibiting irregular shape patterns, such as those common in biomedical

settings.

In this thesis, a method for shape analysis is developed specifically for cases

where the shape patterns are highly irregular. The idea of clustered shape prim-

itives is introduced, in which local shape patterns are captured and clustered

to form representative shape patterns occurring commonly throughout an ob-

ject or group of objects. Histograms of the occurrences of the clustered shape

primitives are used to characterise the shape patterns, and may be used for

classification or for regression to predict a given property of the data.

The method is demonstrated and explored using three example data sets:

Saccharomyces cerevisiae yeast colonies exhibiting pseudohyphal growth, can-

cellous bone in rat tibiae, and marbling in beef. Each of these types of objects

exhibit highly irregular shape patterns that cannot be adequately described us-

ing existing shape analysis methods, for example because the consistent place-

ment of landmark points between samples is difficult or impossible.

xiii



SUMMARY xiv

The most significant contribution of clustered shape primitives is that com-

plex shape patterns are learned automatically. There is no need to define any

features or landmark points at the outset of the study, which is an improvement

on previous methods wherever irregular shape patterns are present. Another

advantage of the method proposed here is that the number of features can be

kept small, since the most important features are learned and selected automat-

ically. This avoids the need to define a very large number of complex geometric

features and ensures that important features are not overlooked – these are ex-

amples of problems that may arise when a large list of features is defined at the

outset of the study.

Classification methods based on clustered shape primitives achieved com-

petitive results wherever only binary data was available and the shape patterns

exhibited were complex. The method could have an impact on shape analysis in

biomedical images, and the current study forms a basis for future work in this

direction.
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Chapter 1

Introduction

In this chapter, the thesis is introduced and placed in context. In Section 1.1,

the context and motivation for the current study is discussed. Section 1.2 out-

lines the specific objectives of the thesis. The methods developed throughout

the thesis are evaluated on three diverse data sets, and these are discussed in

Section 1.3. Finally, Section 1.4 provides an overview of the thesis, including

the major contributions of the study.

1.1 Previous work and motivation

This thesis is about characterising irregular shapes but the methods have their

roots in image texture analysis. In an early review paper on texture analysis,

Haralick defined texture as the spatial distribution of grey tones [49]. Since

then, many studies have appeared on texture analysis. In particular, texture

analysis in biomedical images is an important and well-developed area of re-

search [28, 65, 79, 99, 131]. A typical objective is to determine if there are textu-

ral differences between images corresponding to different experimental groups,

and thus whether texture can be used to automatically distinguish between

groups. Many examples of such questions arise in mammography, for instance

whether or not there are textural differences between images of a benign and

1
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a malignant mass [78, 84, 103], or between images corresponding to different

densities of breast tissue [44, 74, 111, 112]; or whether texture can be used to

predict the risk of a woman developing breast cancer in the future [75, 76, 77].

Since 1999, when the notion of a texton was formalised by Malik et al. [90],

textons have been widely used for texture analysis in biomedical images [38, 65,

74, 75, 77, 79, 111]. First, a texture primitive is recorded at each pixel to capture

information about the local texture at that pixel. There are many ways in which

the local texture may be captured, for example by recording the pixel intensities

inside the neighbourhood about the central pixel or by recording filter responses.

Regardless of the method chosen for capturing local texture information, the key

is that certain texture patterns are expected to occur commonly throughout a

particular group of images. A clustering algorithm is applied to the collection

of texture primitives, called the representation space, and the centres of the

clusters are called textons. Thus, textons describe texture patterns that are

common throughout the collection of images. Each pixel is mapped to the label

of the texton closest to its texture primitive, and thus the image is replaced by

a texton map. Finally, histograms of the frequency of texton occurrences are

computed for each image. Such histograms represent the texture content of each

image and may be used as input into a classifier. In cases where experimental

groups exhibit unique texture patterns, histograms of texton occurrences should

discriminate well between the experimental groups and have been shown to do

so in a wide variety of contexts as cited above.

Despite an extensive body of literature on texture analysis, including some

theoretical studies on the possible variations of texton implementations [72,

90, 133, 134], little has been done on extending the idea of textons to binary

data for shape analysis. Since the key idea in texton-based characterisation

methods is the clustering step, extracting local shape patterns and then finding

commonly occurring shape patterns through clustering is theoretically possible.

In fact, in a preliminary study by Martin and Bottema, the notion of textons
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was widened and applied to characterising cancellous bone in rats [91]. In that

study, the authors explored whether there are differences in the microstructure

of cancellous bone obtained from the tibiae of normal, diseased, and treated

rats. The results of the study showed that a shape analysis method based on

an extension of textons could be applied to binary data to detect differences in

shape between experimental groups.

However, this idea remains underdeveloped, with no other studies on the

topic (to the author’s knowledge) appearing in the literature. For this reason,

the focus of this thesis is to develop an extension of textons that may be used

for shape analysis, and to explore this idea in detail and in a variety of contexts.

Perhaps the biggest difficulty lies in choosing a sensible method for extracting

local shape patterns, analogous to extracting textural information by considering

an image patch or filter responses. Specific research questions are as follows.

1. How does the choice of method for local shape extraction affect classifica-

tion performance?

2. Is one variation of the method always better regardless of the type of

data, or must the implementation of the method be carefully considered

depending on the structure of the data?

1.2 Objectives of the thesis

Throughout the thesis, a method for shape analysis is developed, based on an

extension of well-known texture analysis methods.

First, the idea of a shape primitive is introduced, in which the local shape

at a point is recorded. This may be done in a variety of ways, and some of

these possibilities are explored. Then, the shape primitives are clustered, and

the centres of the clusters are taken to be clustered shape primitives (CSPs)

– these represent shape patterns that occur commonly throughout the objects

being analysed. Finally, the frequency of the occurrence of each CSP is viewed
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as one shape descriptor for each object. These shape descriptors, or features,

may be used in a classifier to distinguish between experimental groups, or in a

regression as a predictor of a particular characteristic of the data set.

As mentioned earlier, there are choices to be made in computing CSPs,

in particular the way in which the local shape at a point is captured most

effectively. In this thesis, the idea of oriented thickness measures is explored,

which involves measuring the thickness of the object at a pre-specified number

of directions and passing through a central point. Alternatively, a set of best-

fitting ellipsoids may be fit to the object, with features based on major and

minor axes of the ellipsoids. Here, both size and orientation parameters could

be included. Many of the choices considered may depend on the characteristics

of the data, for instance the dimension, or whether or not the data is expected

to have inherent rotation invariance (for instance, does an organism grow with

bias in a certain direction, or is there a direction of loading for bone?). As such,

the idea of CSPs is implemented and developed on three diverse binary data

sets. These are described in the following section.

1.3 Overview of the data sets

The first data set comprises binary images of the yeast Saccharomyces cerevisiae,

with colonies of three different strains imaged at various times after initiation

of growth. “On” pixels correspond to the presence of yeast cells and “off”

pixels correspond to the absence of yeast cells in that patch [6]. S. cerevisiae

may grow either by the budding of single cells, or as filaments of unseparated

cells called pseudohyphae. The pseudohyphal mode of growth is known to be

triggered by nitrogen deprivation [6], and many studies have been conducted

on the genetic control and pathways of this type of growth [23, 43, 80, 97, 98,

106, 107, 113]. However, little has been done towards quantifying the spatial

patterns in colonies exhibiting pseudohyphal growth, especially quantifying the

transition from uniform to pseudohyphal growth [6]. This is important because
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such work could lead to the automatic classification of yeast species and stages

of growth.

The second data set comprises micro-computed tomography (µ-CT) scans of

cancellous bone obtained from the tibiae of rats in three groups: normal, oestro-

gen deprived, and oestrogen deprived and treated with bisphosphonates [37, 91].

The data is three-dimensional, with “on” voxels corresponding to bone and “off”

voxels corresponding to surrounding soft tissue or air. This data set is impor-

tant for studying the microstructure of cancellous bone, which may lead to a

better understanding of the effect of diseases such as osteoporosis [61, 115, 123].

In particular, ascertaining whether treatment can restore the microstructure of

the bone to normal is of interest, since this could lead to a better understanding

of treatment methods and the process of bone remodelling. Bone data has tra-

ditionally been described using a set of standard parameters, which are based

on two-dimensional histomorphometry [108]. Recently, µ-CT has allowed for a

three-dimensional view of objects such as cancellous bone. The idea of using

CSPs could be a sensible approach towards quantifying this shape information

in three dimensions because all available information can be utilised, as opposed

to considering only individual slices in two dimensions.

The third data set contains images of the intramuscular fat, or marbling, ap-

pearing in striploins obtained from Australian Angus steers on a control diet and

a vitamin A supplemented diet [69, 127]. Different consumer markets worldwide

prefer different amounts of marbling in beef [34, 60, 102], and various studies

have shown that diets low in vitamin A tend to increase marbling [69, 102, 127].

However, little is known about the shape of marbling. For example, as the

amount of marbling increases, does the shape of the marbling change or does

the marbling simply become thicker? Answering such questions could lead to

a more thorough understanding of the biological processes that govern the for-

mation of marbling. CSPs may be used to characterise the shape patterns in

marbling. However, the data set presents a few problems in the sense that each
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striploin has been cut into slices, and each slice has been imaged separately. The

slices can easily be aligned to create a three-dimensional reconstruction of the

marbling, but this results in the distance between the slices being much larger

than the resolution of the pixels within each slice. Although CSPs may still

be used, the choices made (for example, the angles at which to make oriented

thickness measurements, or whether or not finding a set of best-fitting ellipsoids

is sensible) must be considered carefully.

A characteristic common to all of the data sets is that the shape patterns

are highly irregular, in the sense that they are not adequately described by stan-

dard parameters that may be defined at the outset of the study. For example,

although human cancellous bone has previously been described by the rod-and-

plate model [82, 129], this does not work well in describing the microstructure

of cancellous bone from rat tibiae because the direction of loading is not as pro-

nounced as in humans. Various authors have described cancellous bone in rats

using structural parameters [10, 12, 41, 110], but these do not appear to ade-

quately characterise the microstructure of the bone. For example, the studies

cited reach conclusions that are inconsistent with each other. Although yeast

colonies have been classified using pre-defined parameters such as fractal dimen-

sion and the area of the colony [119], such approaches require a large number

of features to be defined at the outset of the study to avoid important features

being overlooked. In addition, in that study, only six features were identified as

important, suggesting that a majority of standard parameters are redundant as

descriptive features.

1.4 Overview of the thesis

The major contribution of the thesis is the development of CSPs, including the

development and exploration of various ways to capture shape patterns at a

local level. The study demonstrates that CSPs are an effective means of charac-

terising shape patterns in biomedical data, which are often highly irregular. In
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particular, important shape patterns are learned automatically from the data,

avoiding the need to define a list of features at the outset of the study. This

is especially important in cases where defining a set of shape parameters is dif-

ficult due to the irregularity of the shape patterns present, as is the case with

the data sets considered here. The key is that excessively large lists of pre-

defined features are avoided, and important features are not overlooked. As a

result, CSP-based methods have the potential to be effective in a wide range of

applications.

The outline of this thesis is as follows. Chapter 2 comprises a detailed liter-

ature review. Classical shape analysis methods, including active shape models

and active appearance models, are discussed. Classical texton-based methods

used for texture analysis in greyscale images also reviewed. The methods for

clustering and classification used throughout this thesis are reviewed. A detailed

background of yeast colony morphology, structure of cancellous bone, and shape

of marbling in beef is presented. Since the shape patterns analysed throughout

the study may be considered highly irregular, this chapter also includes a brief

discussion on what is meant by regular and irregular shapes.

In Chapter 3, the CSPs are formally introduced and developed. Two meth-

ods for capturing the local shape at a point are presented, namely oriented

thickness measures and features derived from best-fitting ellipsoids. The CSPs

are then implemented on the three data sets. The experimental details, includ-

ing a detailed description of the data sets and a discussion of the choices made

in implementing CSP-based classification and regression methods, are given in

Chapter 4. The results of these experiments are summarised and analysed in

Chapter 5.

Chapter 6 comprises a discussion of the contribution of CSPs towards char-

acterising shape patterns in biomedical data. In particular, the two methods for

extracting shape features – oriented thickness measures and best-fitting ellip-

soids – are compared on each of the data sets individually. Finally, the study is
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discussed as a whole, including a discussion of the advantages and disadvantages

of CSP-based methods and the cases in which the method is most efficient.

Chapter 7 comprises a summary of the conclusions that may be drawn from

this study. Some shortcomings of the current work and ideas for future work

are briefly described here.



Chapter 2

Background and literature

review

This chapter provides a detailed literature review of existing shape analysis

methods (Section 2.1) and texton-based methods for texture analysis (Sec-

tion 2.2). The clustering methods used in this thesis, including K-means cluster-

ing and Gaussian mixture models, are reviewed in Section 2.3. The classification

methods used throughout, including linear discriminant analysis and the Fisher

classifier, are reviewed in Section 2.4. The biomedical background for the three

data sets is discussed in Section 2.5 along with relevant results obtained in pre-

vious studies. Since the shapes of objects in these data sets may be considered

highly irregular, the notions of regular and irregular shape patterns are loosely

defined in Section 2.6.

2.1 Shape analysis methods

Shape analysis is vital in many biological applications, providing information

on growth mechanisms and assisting in the detection of a variety of medical

conditions [117]. In a review of shape analysis techniques, Loncaric defined

the shape of an object as a binary image representing the extent of the object,

9
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and grouped shape analysis methods based on whether the method considers

the boundary of the object or the interior [85]. Extensive work has been done

in both of these areas, and a comprehensive review has been conducted by

Pavlidis [109].

Many studies have appeared in which the shapes of two-dimensional objects

are characterised in a biological context. Elliptic Fourier analysis has been used

to describe the shape of otoliths in fish [64], leaves for plant species identifica-

tion [11, 95], mussel shells [58], and the human mandible [14]. Multiple resolu-

tion skeletons have been used to characterise the geometry of non-rigid objects,

such as pseudopods on white blood cells [29]. Landmark methods have been used

for describing the shape of the human frontal bone [7] and Old World Talpidae

(mole) skulls [118]. The latter studies used projections of three-dimensional

computed tomography (CT) scans onto a two-dimensional plane, which means

that not all available information was utilised.

Cootes et al. extended landmark methods to the idea of point distribution

models [20], leading to statistical shape models (SSMs). The central idea of

SSMs is to extract the mean shape and several modes of variation from a col-

lection of training shapes using statistical methods [55]. SSMs encompass both

active shape models (ASMs) and active appearance models (AAMs).

ASMs are similar to active contour models (“Snakes”) [62], and for this rea-

son are sometimes called “Smart Snakes” [20], in the sense that data from the

image is used to iteratively deform the shape model in order to fit the model

to the data. However, the key step in ASMs is that constraints for allowable

deformations are learned from training data [57]. ASMs have been used to

model the shape of resistors, hands [19, 20], the left ventricle in echocardio-

grams [18, 20], prostate in magnetic resonance (MR) images, ventricles in brain

MR images [18], and car brake components [21]. ASMs have also been used

for classification, for example to classify plant seeds, and to recognise faces and

handwritten postcodes [70]. Hill et al. extended ASMs to three dimensions
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Figure 2.1: Microarchitecture of human bone. Left: healthy bone. Right: osteoporotic
bone. The bone does not exhibit any significant morphological features that could be
used as landmark points for consistent labelling between samples. Image created by
Gtirouflet and licenced under CC BY-SA 3.0.

using contours, and used these to segment MR head images [57]. Lu et al. used

a combination of ASMs, AAMs, and texture analysis to estimate bone fracture

risk from dual-energy X-ray absorptiometry images of the proximal femur [87].

An advantage of ASMs is that they can be implemented on either binary

or greyscale images. Only binary images are necessary for the model to be

implemented, but if greyscale data is available, then information about pixel

intensities can be incorporated into the model [18, 21, 70]. AAMs may be

viewed as the subsequent extension to ASMs, and combine a model of shape

variation with a model of texture variation [17]. AAMs have been used to model

the appearance of faces [17], and for segmentation of three-dimensional cardiac

MR images [2]. AAMs are designed to incorporate both shape and textural

information to model the “appearance” of an object.

Although modelling shape using SSMs is an automated process, the land-

mark points need to be manually located in the training images in a consistent

https://creativecommons.org/licenses/by-sa/3.0/
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manner. In particular, landmark points placed on one sample must correspond

to equivalent landmarks on the other samples [20]. For example, in the study

by Lu et al., the authors had to identify significant morphological features of

the femur including the femoral neck and greater trochanter for each sample,

and landmark points had to be placed at these points consistently between sam-

ples [87]. SSMs may be successfully implemented to model the shapes of objects

for which finding such landmark points is possible, but are not appropriate for

objects that are highly irregular in the sense that there are no recognisable

landmarks for comparing samples (Figure 2.1).

2.2 Texton-based methods

Texton-based methods are useful for characterising image texture. While tex-

ture does not play a direct role in this thesis, the idea of textons leads to the

formulation of the methods for shape analysis that constitute the main contri-

bution of this study.

Wherever greyscale images are available, texture analysis may be used for

detection [28, 73, 79, 84, 103, 104], classification [38, 44, 65, 78, 99, 101, 111,

112, 132], risk estimation [74, 75, 76, 77], etc. in various biomedical contexts.

In general, an image is viewed as a map X : R2 → R. Often, a data

set comprising a collection of images may be separated into some number of

groups. For example, the data set could comprise regions of interest (ROIs)

taken from mammograms. For a detection problem, the ROIs could be split

into two groups: those corresponding to normal tissue, and those corresponding

to a mass. For a classification problem, the ROIs usually correspond to masses

that have been detected previously, with the two groups labelled “benign” or

“malignant”. Another example of a classification problem in biomedical image

analysis is assessing the risk of breast cancer based on whole mammograms,

in particular incorporating information about breast cancer history and breast

density (Sections 2.2.4, 2.3.3, and 2.4.3). Texton-based methods have widely
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been used to characterise texture in such groups of images, both in a biomedical

context [38, 44, 74, 75, 76, 111, 112] and in other images [72, 90, 125, 133, 134].

The general framework for texture analysis using the idea of textons is as

follows. The local texture at a point p ∈ X is represented by a vector

vp = (vp,1, vp,2, . . . , vp,L) , (2.1)

called the texture primitive at p. The way in which the local texture at p is

determined is a question that has been studied extensively (Sections 2.2.1–2.2.3).

The collection of all texture primitives in a data group is called the rep-

resentation space for that group. Clusters in the representation space indicate

common local texture patterns in the corresponding group and are called textons

(Algorithm 1).

Algorithm 1 Computation of textons

Input: collection of pairs (Xi, Gi) , i = 1, 2, . . . , I,
Gi chosen from group labels {Gg : g = 1, 2, . . . ,m} ,
number K of textons per class

Output: M = Km cluster centres (textons)

initialise array T
for g = 1 to m do

initialise array Fg
for all Xi in group Gg do

for all p in Xi do
compute vp (Equation 2.1, Sections 2.2.1–2.2.3)
append vp to Fg

end for
end for
T gk , k = 1, 2, . . . ,K ← clustering on Fg with K clusters

end for
append T gk to T
return T

The texton map associated with an image X is obtained by replacing every

point p ∈ X by the label of the texton closest to vp. The histogram of texton

label occurrences for X (Algorithm 2) represents the texture content of X. The
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frequency of the occurrence of each texton may then be viewed as a feature for

classifying X. Thus, texture patterns are quantified and patterns occurring more

commonly in one group over another are used to distinguish between groups.

Algorithm 2 Computation of histograms of texton occurrences

Input: collection of images Xi, i = 1, 2, . . . , I,
collection of M = Km textons (Algorithm 1)

Output: collection of histograms hi, i = 1, 2, . . . , I

for i = 1 to I do
initialise ĥi
for p in Xi do

compute vp (Equation 2.1, Sections 2.2.1–2.2.3)
find index j of texton closest to vp
replace p with index j

end for
for j = 1 to M do

count number of times index j occurred in Xi

append number of occurrences to ĥi
end for
hi ← set sum of ĥi to equal one

end for
return all hi, i = 1, 2, . . . , I

2.2.1 Filter banks

The majority of classical texture analysis studies have used the filter bank ver-

sion of textons [22, 72, 90, 111, 112, 125, 134]. In the filter bank version, the

texture primitives are given by Equation 2.1 with

vp,l = hl ∗X(p), l = 1, 2, . . . , L,

where hl is the l-th filter in the filter bank, X(p) is the value of the image at

the point p, and ∗ denotes convolution. Different choices may be made for the

filter bank. A popular filter bank for two-dimensional images is the Leung-Malik

(LM) set [72, 90, 134]. The LM set consists of 48 filters, and so up to 48 filter

responses may be obtained at a single pixel. This results in texture primitives
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Figure 2.2: The LM filter bank. These 48 filters were designed to detect the presence
of bars, edges and spots of various sizes in the image. Image is publicly available from
the Visual Geometry Group, Department of Engineering Science, University of Oxford.

of dimension L = 48. The set of filters contains the first and second derivatives

of Gaussians at six orientations and three scales, eight Laplacian of Gaussian

filters, and four Gaussian filters (Figure 2.2). The filters are designed to pick

out bars, edges, and spots of various sizes.

A potential drawback of the LM set is that it is not rotationally invariant,

that is, two rotated images with identical textures do not give the same filter

responses. In other words, the same texture pattern occurring at two different

orientations is not recognised as the same pattern. Depending on the context,

one may wish to use a rotationally invariant filter bank such as the Schmid

set [125] (Figure 2.3). The Schmid set consists of 13 rotationally invariant

filters, resulting in 13-dimensional texture primitives. Note that, in the LM

filter bank one may choose to record only the maximum filter response across all

orientations, giving texture primitives of length eight (one for each orientation).

These responses are rotationally invariant. Whether or not using a rotationally

invariant filter bank is always advantageous is an open question, and in many

cases the choice of filter bank appears to be ad hoc.

Gabor filters [27] have been used extensively to recognise oriented features,

including texture, in many diverse applications. A few examples include the

recognition of handwritten characters [128], face recognition [138], and more

recently secure cloud-based identification [48]. The filter at a point (x, y) is

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Figure 2.3: The Schmid filter bank. All of the filters are rotationally invariant. Image is
publicly available from the Visual Geometry Group, Department of Engineering Science,
University of Oxford.

given by
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where x′ = x cosφ + y sinφ, y′ = y cosφ − x sinφ, and σx and σy are the

standard deviations of the Gaussians in the x and y directions, respectively. The

wavelength and orientation of the filter are denoted by λ and φ, respectively. A

Gabor filter bank is usually generated using several scales and orientations [116].

For instance, generating filters at five scales and eight orientations generates a

filter bank of 40 filters (Figure 2.4). If this collection of Gabor filters is used

to generate textons, the texture primitives are of length L = 40. Gabor filter

banks are used to detect lines and edges.

2.2.2 N ×N neighbourhoods

In the N × N neighbourhood version of textons [44, 73, 74, 133], the texture

primitives are given by Equation 2.1 with

vp,l = xl, l = 1, 2, . . . , N2,

where xl is the image intensity value at pixel number l within the N × N

neighbourhood centred at p. These texture primitives may be thought of as

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Figure 2.4: Gabor filter bank. These filters were generated using five scales and eight
orientations. Reprinted from Haghighat et al. [48], with permission from Elsevier.

the output of applying N2 filters, with each filter being an N ×N patch com-

prising N2 − 1 zeros and a single entry of one [75]. Thus, textons based on

N ×N neighbourhoods are a specific example of textons based on filter banks.

The N ×N neighbourhood version of textons is computationally less expensive

than the general filter bank version, but is not rotationally invariant.

Varma and Zisserman showed that the N × N neighbourhood method can

outperform filter bank methods [133]. The authors also showed that there is

no significant difference between including the central pixel and leaving it out,

and there is very little difference between choosing N = 3, 5, or 7. The N ×N

neighbourhood method has been used to classify whole mammograms into four

breast density groups [44].

2.2.3 Oriented thickness textons

Oriented thickness textons were first introduced by Martin and Bottema, where

local shape vectors were computed and clustered in order to characterise the

structure of cancellous bone in rat tibiae [91]. The shape at a point p within the
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Figure 2.5: Computation of one texture primitive vp at point p (red) as in Martin and
Bottema [91], illustrated using an example in two dimensions. Here, the lengths of line
segments (red lines) through p lying entirely within the bone (shaded) were measured at
four orientations. Thus, the texture primitive at p is given by vp = (vp,1, vp,2, vp,3, vp,4) ,
where the lengths are measured in directions 0, π/4, π/2, and 3π/4, respectively.

bone was characterised by the lengths of line segments through p lying entirely

within the bone at various orientations. These lengths, called oriented thickness

measures, were used as components in a local shape representation vector and

clusters of these vectors were viewed as textons. The data consisted of a three-

dimensional binary array with “on” voxels representing bone and “off” voxels

representing soft tissue or air. Specifically, the texture primitives were given by

Equation 2.1, where vp,l was the length of the longest line segment of on pixels

through p in direction θl (Figure 2.5). These could be thought of as “shape”

primitives rather than texture primitives.

In that preliminary study, the clustered shape representation vectors were

viewed as “textons”. The study demonstrated that recording local shape pat-

terns, clustering these patterns, and using the occurrence of the cluster centres

as shape descriptors was a viable method for distinguishing between experimen-

tal groups exhibiting different shape patterns. This was applied in a context

where only binary data was available.
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2.2.4 Example from the literature

Recently, Li et al. [75] considered 320 images from the Digital Database of

Screening Mammography [54]. The images were evenly selected from four cate-

gories describing mammographic appearance, and there were two experimental

groups: high risk and low risk for breast cancer. High risk images were defined

as images of the normal breast of women identified to have a mass (benign or

malignant) in the breast at screening time, whereas low risk mammograms were

randomly selected from women found to have no masses during screening. The

images were randomly and evenly split into training and testing groups com-

prising 160 images each. The objective was to classify mammograms as either

high or low risk [75].

Textons were computed as described in Section 2.2 using N ×N neighbour-

hoods (Section 2.2.2), with N = 3, 5, and 7 and the central pixel left out,

and using Gabor filters (Section 2.2.1) with wavelength λ = 20 and orienta-

tions φ = kπ/10, k = 1, 2, . . . , 10. Second-order textons were computed using

the N × N neighbourhood method on the texton maps (Section 2.2), where

the label for each pixel p was treated as an “intensity” value [75]. The texton

maps and histograms of second-order texton occurrences were then computed

as described in Section 2.2. Similarly, third-order textons were computed using

the N × N neighbourhood method (Section 2.2.2) on the second-order texton

maps [75].

2.3 Clustering methods

Methods used for clustering a collection of vectors are reviewed here. This is

not intended to be a comprehensive list of clustering methods, but is a list

of methods used throughout this study. These methods are presented here in

order to justify choices made later in the thesis (Sections 4.3 and 4.4). A detailed

presentation of clustering methods in general may be found in Hastie et al. [51],
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and code may be found on the associated website [50].

2.3.1 K-means clustering

Consider a set EL of L-dimensional unlabelled vectors. The purpose of K-means

clustering is to separate EL into K clusters and find the mean (centre) of each

cluster.

One of the first theoretical studies of the K-means procedure was conducted

by MacQueen in 1967 [88]. The author started with K clusters, each of which

contained one point randomly picked from EL. At each iteration, a new point

was added from EL and assigned to the cluster whose mean it was closest to.

The cluster means were re-computed to take into account the new point. The

algorithm was complete once the entire feature space was added. The “K-

means” were the means of the K resulting clusters.

The K-means clustering algorithm has since evolved [33, 51]. Initially, a set

of K centres is chosen from EL. Then, for each centre Ck, k = 1, . . . ,K, the

points that are closer to Ck than to any other centre are assigned to the cluster

corresponding to this centre (in other words, a Voronoi diagram is constructed

for the K centres). The mean of each cluster is re-computed. This procedure

is iterated until it converges. Since the K centres are chosen randomly at the

outset, the algorithm is non-deterministic.

The K-means algorithm has been experimentally shown to produce good

results, for example in medical imaging [75], in image segmentation [90], and in

texture classification [72, 134].

2.3.2 Gaussian mixture models

The purpose of Gaussian mixture models (GMMs) is to separate a set EL of

L-dimensional unlabelled vectors into K clusters, each of which is described by

a Gaussian density. Each cluster has associated with it a mean and a covariance

https://web.stanford.edu/~hastie/ElemStatLearn/
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matrix. The GMM is given by

f(x) =
K∑
k=1

αkφ(x;µk,Σk),

where each αk is a mixing proportion with
∑

k αk = 1, and φ(x;µk,Σk) is a

Gaussian density with mean µk and covariance matrix Σk. The multivariate

Gaussian density is given by

φ(x;µ,Σ) =
1

(2π)
L
2 |Σ|

1
2

exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
,

where µ is a vector of length L and Σ is the L × L covariance matrix. The

parameters αk, µk,Σk are estimated using the expectation-maximisation (EM)

algorithm. Initial choices are made for the estimates α̂k, µ̂k, Σ̂k. In the E-step,

each observation in EL is assigned a weight for each cluster, based on the proba-

bility of the corresponding Gaussian distributions. In the M-step, the estimates

are re-computed, with each observation contributing to the weighted means and

covariance matrices of each cluster [51].

The GMM algorithm may be thought of as a “soft” version of K-means clus-

tering. If the Gaussian distributions are assumed to have a common covariance

matrix with very small variance, then the means of the GMMs are analogous to

the cluster centres obtained by K-means clustering. An advantage of GMMs is

that observations are classified as belonging to a cluster using some probability

measure, so there is an indication of how “strongly” an observation belongs to

a cluster. Each cluster is defined by the mean and covariance.

2.3.3 Example from the literature

In the example from the Li et al. study (Section 2.2.4), cluster centres were found

using K-means clustering (Section 2.3.1) with K = 5 on the training images in

each of the four categories describing mammographic appearance, resulting in 20

cluster centres (textons) [75]. This choice was made in order to avoid missing any
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fundamental textures from different parenchymal patterns [75]. This procedure

was repeated for first-, second-, and third-order textons, resulting in 60 textons

in total.

2.4 Classification methods

The classification methods used throughout the thesis are discussed in this sec-

tion. As with the clustering methods (Section 2.3), this is not a comprehensive

list of existing classification methods, but comprises the methods used in the

current study. The classification methods are presented generally here in order

to justify choices made throughout the thesis (Sections 4.3 and 4.4). A thorough

presentation of classification methods may be found in Hastie et al. [51], and

examples of code may be found on the associated website [50].

2.4.1 Linear discriminant analysis

Consider a training set of M -dimensional vectors, each with known group labels.

Training a classifier is equivalent to determining each class posterior

P (G | X) = P (G = g | X = x) ,

the probability that observation x falls into group g, for every observation in

the training set. Let fg(x) be the group-conditional density of the training

set in group G = g. Let πg be the prior probability of group g, that is, the

probability of any observation falling into group g if there were no group labels.

Set
∑m

g=1 πg = 1, where m is the total number of groups. Then, the group

posteriors are computed using the formula

P (G = g | X = x) =
fg(x)πg∑m
j=1 fj(x)πj

.

The group-conditional densities may be modelled by any choice of func-

https://web.stanford.edu/~hastie/ElemStatLearn/
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tions fg(x). A classifier is called linear if these functions result in a linear deci-

sion boundary, for instance if each group density is modelled by a multivariate

Gaussian

fg(x) =
1

(2π)
M
2 |Σ|

1
2

exp

(
−1

2
(x− µg)′Σ−1(x− µg)

)
with mean vector µg and covariance matrix Σ, which is assumed to be common

to all groups. Two groups g and j may be compared using the log-ratio

log
P (G = g | X = x)

P (G = j | X = x)
= log

πg
πj
− 1

2
(µg + µj)

′Σ−1(µg − µj) + x′Σ−1(µg − µj).

(2.2)

The decision boundary between group g and group j is a hyperplane [51].

2.4.2 The Fisher classifier

The Fisher classifier was developed by Fisher in 1936 [39], and is a well-known

example of a linear discriminant function. The Fisher decision criterion arises

from Equation 2.2 when the observations are classified into two groups only:

observation x falls into group g if and only if the log-ratio is non-negative, and

into group j if and only if the log-ratio is negative. In most cases, πg = πj = 0.5

(for instance, when the prior probability of an observation falling into either

group g or j is unknown), in which case the decision rule reduces to observation x

being assigned to


Group g if (µg − µj)′Σ−1x ≥ 1

2 (µg − µj)′Σ−1 (µg + µj) ,

Group j if (µg − µj)′Σ−1x < 1
2 (µg − µj)′Σ−1 (µg + µj) .

In practice, the M -variate means µg and µj are estimated from the observa-

tions in the training set of images [51], and Σ is approximated by Spooled, the

pooled sample covariance matrix derived from the individual sample covariance

matrices Sg and Sj of groups g and j, respectively [71].



CHAPTER 2. BACKGROUND 24

2.4.3 Example from the literature

In the Li et al. example (Sections 2.2.4 and 2.3.3), among other methods, the

Fisher classifier (Section 2.4.2) was trained and tested on features based on

first-, second-, and third-order textons and combinations of these [75]. The

best classification into high or low risk groups was achieved using the N × N

neighbourhood method (Section 2.2.2), with N = 3, and a combination of first-

and second-order textons [75].

The Li et al. study provides an example of how texton-based (Section 2.2),

clustering (Section 2.3), and classification (Section 2.4) methods may be used

to approach a complex biomedical problem. Such methods may be useful in the

context of developing computed-aided diagnostic tools [44, 75, 79, 111, 112].

2.5 Biomedical background

In this section, the background, previous results, and open questions related to

the three data sets used throughout this thesis are discussed.

2.5.1 Yeast colony morphology

Many yeasts are considered useful for humans. For example, the yeast Sac-

charomyces cerevisiae is useful in producing bread, wine, and ale, and is often

referred to as “bakers’ yeast” or “brewers’ yeast” [6]. This yeast is also used to

produce some antibiotics and vaccines [106]. The yeast Saccharomyces boulardii,

a subtype of S. cerevisiae, is used to prepare a probiotic for the prevention and

treatment of various diarrhoeal disorders [35]. For this reason, the development

of new superior strains and optimisation of growth behaviour of yeasts is of

interest.

Since the 1980s, there has been growing evidence that S. cerevisiae should be

considered as a possible opportunistic pathogen. In 1980, Kiehn et al. showed

that S. cerevisiae had been isolated from the sputum in cancer patients, but
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accounted for only 0.8% of total yeast isolates [66]. In 1984, Eng et al. gave

evidence of S. cerevisiae infections in patients who had various underlying dis-

orders and had undergone prior courses of antibiotics [36]. There has also been

evidence that patients with Crohn’s disease have an antibody to S. cerevisiae,

although the yeast is unlikely to be the cause of Crohn’s disease [26, 42, 89].

In a review of clinical reports in 1995, Hazen found that this yeast may be

isolated from human mucosal sites, such as the gastrointestinal tract, and has

been found in human blood [53]. Reynolds and Fink showed that S. cerevisiae

can form a biofilm on surfaces, for example medical equipment, leading to re-

sistance to microbial therapies [114]. More recently, Enache-Angoulvant and

Hennequin conducted an analysis of 92 documented cases of proven invasive S.

cerevisiae infection, with 15 cases (16.3%) occurring before 1990 and 76 cases

(82.6%) occurring between 1990 and May 2005 [35]. They definitively argued

that Saccharomyces organisms should be added to the list of fungal pathogens,

and this argument has since been supported by other authors [107, 130]. In this

case, inhibiting growth is of interest.

Yeasts such as S. cerevisiae may grow either by the budding of single cells or

as multicellular filaments called pseudohyphae, which are chains of unseparated

cells. Pseudohyphal growth is known to be triggered by nutrient (especially ni-

trogen) deprivation [43] and is thought to represent a scavenging response [24].

There are different strains of the yeast S. cerevisiae, with only some strains

exhibiting pseudohyphal growth. McCusker et al. showed that there is a signif-

icant association between pseudohyphal growth and virulence [94]. Pseudohy-

phal growth in the yeast Candida albicans has also been linked to virulence [94],

which suggests that studying pseudohyphal growth in general could lead to bet-

ter identification of pathogenic yeast strains. Much is known about the genetic

control and pathways of pseudohyphal growth [23, 43, 80, 97, 98, 106, 107, 113],

but shortcomings remain. For instance, it is not routinely possible to distinguish

S. boulardii from S. cerevisiae strains [35]. The tests used currently involve anal-
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ysis of mitochondrial DNA, but these tests have not been fully evaluated [35].

Yeasts are commonly studied by growing a collection of cells on a solid

medium, such as agar, and recording a two-dimensional top-down image of the

resulting colony from which the morphology is analysed [6, 43, 86, 120]. Such

studies typically require high-throughput assays, which produce large data sets,

and a considerable variety of metrics have been employed to quantify the mor-

phology exhibited in the resulting images. Filamentous and invasive growth has

been measured by the relative size of the filamentous or invasive portion of the

colony, or, for invasive growth only, by comparing the pixel intensity of pre-

and post-washed colonies [120, 139, 140]. While studies on single-gene dele-

tion alleles have used these metrics to understand the regulation of filamentous

growth [120], they provide only limited information on the pattern and growth

behaviour. Both experimental and simulated data have been quantified by the

relative size of the squared colony perimeter to the area, and through the coef-

ficient of variation of the colony boundary [13]. The fractal dimension has been

shown to quantify the morphologies of bacterial colonies, which possess similar

colony morphologies to yeast [40, 92].

Recently, Binder et al. began studying pseudohyphal growth in S. cere-

visiae in terms of the two-dimensional spatial patterns appearing in the yeast

colonies [6]. This work was based on spatial statistics and spatial metrics devel-

oped for cell biology images in general [1, 4, 5]. Ruusuvuori et al. also classified

S. cerevisiae colonies into two phenotypes (smooth versus fluffy) by comput-

ing 427 intensity- and texture-based features and using logistic regression [119].

Of the features considered, only six were identified as important for classifying

the colony morphology, with the most important being the fractal dimension,

average entropy texture measure within the colony, and the area of the colony.

Such approaches are able to provide a suitably accurate classification but rely

on the specification of a large number of features, most of which may not be

useful or are unrelated to yeast morphology, while other important features may
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be overlooked.

The work developed in this thesis focusses on shape patterns being learned

automatically from the data, which is especially important in contexts where

the shape patterns are highly irregular – such as those exhibited in yeast pseu-

dohyphae. A method that automatically analyses the complex shape patterns

exhibited by yeast pseudohyphae may lead to better understanding of growth

behaviour. This could, in turn, lead to a better understanding of how to optimise

or inhibit growth as required.

2.5.2 Microstructure of cancellous bone

Osteoporosis is a skeletal disease characterised by low bone mass and abnor-

malities in the skeleton [61, 123]. The disease is associated with decreased

production of oestrogen following the menopause in women and lower testos-

terone levels with advancing age in men, and leads to a rapid rise in the risk of

fractures [25, 105]. Women are at a higher risk of developing osteoporosis than

men because the decrease in oestrogen production in women is much more rapid

than the decrease in testosterone levels in men [105]. White women have a one

in six risk of sustaining a hip fracture in their lifetime [25], which increases to

a one in three risk at 90 years of age [96]. In turn, the mortality and economic

costs associated with fractures (especially hip fractures) are high. Although

death cannot be directly attributed to hip fracture, 10–20% more women die

than expected for their age within the first year following a hip fracture [16, 25].

Fractures in the USA cost an estimated 20 billion USD per year, with hip frac-

tures accounting for more than one third of this total [25]. In England in 1999,

hip fractures cost approximately 850 million GBP for the year [25]. In 2014 in

Australia, an estimated 1.2 million people were affected by osteoporosis [105].

Osteoporosis is commonly treated using bisphosphonates, which are intended to

reduce and eventually reverse bone loss [105].

Kleerekoper et al. showed that the biomechanical competence of cancellous
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Figure 2.6: Section of cancellous bone. This block has been obtained from rat tibia using
µ-CT and is of approximate size 0.52 mm×0.52 mm×0.52 mm. The rod and plate model
attempts to characterise this structure in terms of vertical rods and horizontal plates
only. Reprinted from Gontar et al. [45] © 2016 IEEE.

bone depends on the trabecular microstructure, in addition to the absolute

amount of bone present [67]. The mechanical [81, 82, 83], morphometric [129]

and topological [122] properties of human cancellous bone have been analysed

in various studies based on the rod and plate model. However, the concept of

bone “quality” is currently unmeasurable and warrants further study [115].

Studies have been conducted on cancellous bone obtained from rat tibiae in

an effort to understand the effect of osteoporosis on bone microstructure more

directly in experimental conditions [9, 10, 12, 37, 41, 110]. In such research,

bone loss is experimentally induced in growing female rats through ovariectomy

surgery. The induced bone loss is not strictly defined as osteoporosis, but the

structural patterns mimic the disease and provide a means of studying the dis-

ease more directly. Such research is difficult because cancellous bone from rats

has an irregular shape and the rod and plate model may be too simplistic to

capture differences in structure patterns of cancellous bone in various disease

states (Figure 2.6).

Traditionally, the structure of cancellous bone has been defined in terms of a

set of standard parameters based on two-dimensional histomorphometry [108].
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Using these parameters as descriptors for cancellous bone in rats, studies have

shown that a single injection of zoledronic acid (a bisphosphonate) inhibits

changes in bone structure induced by ovariectomy [10], and that a course of

zoledronic acid treatment over several weeks facilitates full reversal of bone

loss [110]. In contrast, Campbell et al. showed that the ovariectomy surgery

causes irreversible changes in the trabecular structure after only two weeks,

which are reflected in changes in the connectivity [12]. These studies suggest

that, while zoledronic acid treatment is beneficial and facilitates some recovery

of the cancellous bone, the treatment does not return the microstructure to

normal. Since the classic parameters are based on two-dimensional histomor-

phometry, they do not take full advantage of three-dimensional information that

can now be obtained by µ-CT scanning. The automated shape analysis method

developed in this thesis takes advantage of the available data to a greater extent

and have the potential to provide insight into the three-dimensional microstruc-

ture of cancellous bone.

2.5.3 Shape of marbling in beef

Intramuscular fat, or marbling, in beef cattle has an influence on the quality

of the beef [47]. Consumers in different markets choose beef based on varying

preferences and perceptions about marbling. For example, in the USA in the

1950s, leanness was the most desired factor [15, 126]. The Canadian market

prioritises tenderness, followed by flavour [60]. The Australian market values

both leanness and tenderness [34], whereas Japanese consumers prefer a higher

degree of marbling [34, 102]. The New Zealand market prioritises leanness,

tenderness, flavour, juiciness, in addition to a minimal amount of bone and

excess fat [3]. Grunert et al. showed that European consumers have a negative

perception of fat in beef, which they regard as a sign of bad quality [47].

In the scientific literature, the effect of marbling on the palatability of beef is

also disputed. Many authors have argued that increased marbling has positive



CHAPTER 2. BACKGROUND 30

effects on juiciness, tenderness, taste, and overall palatability [31, 32, 47, 52,

93, 124, 137]. Grunert et al. argued that the European consumers’ expectation

that low levels of fat lead to good palatabilility is dysfunctional [47]. On the

other hand, Jeremiah showed that relationships between measures of marbling

and palatability attributes were not strong [59]. The differences in the conclu-

sions drawn by these authors could be attributed to differences in the cattle

(for example, breed, age, and sample size) or the age of the beef [3] used in

the studies. Furthermore, Barton argues that, although the classification and

grading of beef should ideally reflect consumer requirements, this has not yet

been achieved [3]. In order to produce beef of the quality desired by markets

worldwide, understanding the factors that produce high levels of marbling is of

interest.

Various authors have examined the effect of vitamin A on marbling, which

may be described by intramuscular fat percentage (IMF%), a quantitative mea-

sure, or marbling score assigned by an expert grader, a qualitative measure. In

an early study using Tajima steers of Japanese Black cattle, Oka et al. showed

that qualitative marbling grade was highly correlated with IMF% [102]. While

this result is not surprising, it highlights that in a discussion of marbling, the

definitions of IMF%, marbling score, and “marbling” must be carefully consid-

ered. For the remainder of the thesis, the term IMF% will refer to the percentage

of intramuscular fat in a given cut of beef, marbling score will refer to the qual-

itative score assigned by an expert grader, and “marbling” will refer to the

intramuscular fat present in the beef viewed as an object in its own right.

Oka et al. showed that marbling score was negatively correlated with vitamin

A levels in the serum in the blood, for cattle of ages less than 23 months [102].

The authors showed that, while a high energy diet increases fat in general

(both intramuscular and subcutaneous fat), a low vitamin A diet may increase

marbling only [102]. These results have been supported replicated in various

studies using 12-month old Angus steers raised in Australia [69, 127]. Vita-
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min A deficiency is thought to increase marbling because it is known that

retinoic acid, a derivative of vitamin A, inhibits the terminal maturation of

adipocytes [69, 102, 127, 135]. A deficiency of retinoic acid is therefore thought

to cause higher levels of intramuscular fat being deposited.

Considering only IMF% or marbling score is simplistic in the sense that the

spatial distribution and shape of the marbling is not taken into account. If

IMF% or marbling score is used to describe the marbling, then only one value

is assigned to a cut of beef and information about the microstructure of the

marbling is lost. In a preliminary study on the shape of marbling, Bottema et al.

considered the marbling in striploins taken from the Australian Angus steers and

showed that most of the marbling in one striploin is concentrated in a single large

object [8]. However, many questions about the shape of the marbling remain

unanswered. For example, does increasing the amount of marbling change the

shape patterns appearing in the marbling – do new branches form, or does the

thickness of the fat simply increase? Are there differences in the marbling shape

between animals on the control diet compared with the vitamin A supplemented

diet? Answering such questions could lead to a better understanding of the

mechanisms underlying marbling formation and the diet needed to produce the

desired marbling in cattle.

2.6 Regular versus irregular shape patterns

The shape patterns appearing in the biomedical data in Section 2.5 may be con-

sidered highly irregular. To that end, in this section, regular and irregular shape

patterns are loosely defined and the differences between these are discussed.

Shape patterns could be defined as regular if two criteria are satisfied: they

can be described by geometric parameters, and identifiable features exist that

can be used as landmark points to compare samples. For example, the geometry

of the proximal femur may be described by geometric parameters such as hip

axial length, femoral length, femoral neck width and neck-shaft angle [30, 87].
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Furthermore, images of the proximal femur obtained from two different patients

are similar in the sense that significant morphological features can be identified

and used as landmark points. In particular, these landmark points can be placed

consistently between samples (Section 2.1). For these reasons, the shape of the

proximal femur is regular in some sense.

On the other hand, in this sense, the biomedical examples used in this study

(Section 2.5) cannot be considered regular. Although the geometry of the yeast

colonies could be described by certain parameters such as the length and number

of pseudohyphae, these would fail to capture the complex fractal-like shape

patterns occurring on the boundary of the pseudohyphae. Ruusuvuori et al.

used geometric parameters including area, diameter, and length of the major

and minor axes of an ellipse fitted to the shape of S. cerevisiae colonies, but

these were combined with textural features to form a list of 427 descriptive

features and most turned out to be unimportant for identifying the morphology

of the colony [119]. This result suggests that the shape patterns exhibited by

S. cerevisiae colonies are highly irregular and cannot be described by a set of

standard geometric features or by placing landmark points.

Similarly, the quality of cancellous bone obtained from rat tibiae has been

described by structural parameters such as bone volume ratio, bone surface ra-

tio, trabecular thickness, trabecular separation, trabecular number, connectivity

density, structural model index, and cortical thickness [9, 10, 12]. However, these

assign one value to the entire bone and do not directly quantify the geometry or

the shape patterns present in the bone. Furthermore, there are no easily iden-

tifiable morphological features that facilitate the direct comparison of samples

– in human tibiae, the cancellous bone could be described by the rod and plate

model [82, 129, 136], implying some degree of regularity in the structure of the

bone, but the direction of loading in rats appears to be much less pronounced

(Section 2.5.2). Thus, the shape patterns appearing in cancellous bone obtained

from rat tibiae are considered highly irregular.
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(a) (b)

Figure 2.7: (a) Dual-energy X-ray absorptiometry image of the proximal femur. The
image shows approximately equally spaced landmark points on the boundary of the
femur. Reprinted from Lu et al. [87], with permission from Taylor & Francis. (b)
Marbling present in one striploin. The placement of landmark points on samples of this
type has not been attempted. Reprinted from Bottema et al. [8] and freely available
from Scotland’s Rural College under the Freedom of Information Scotland Act (FOISA).

Finally, the scores assigned to describe marbling in beef, marbling score and

IMF%, are qualitative and simplistic, respectively (Section 2.5.3), and do not

adequately describe the shape of the marbling. In addition, the placement of

landmark points at equivalent points on two different samples would be impossi-

ble in practice due to the lack of significant morphological features (Figure 2.7).

For these reasons, the shape of the biomedical examples considered in this

study cannot adequately be described by a set of standard geometric parameters,

or by placing landmark points and using SSMs. Hence, the focus of this thesis is

to develop a method for describing highly irregular shape patterns by learning

the important patterns directly and automatically from the data. Such a method

would avoid the need to define a large list of geometric features at the outset

of the study and to identify an appropriate set of landmark points on each

training sample. This is important because, in the cases described here, defining

landmark points consistently between samples is not possible.

https://www.sruc.ac.uk/info/120283/freedom_of_information_scotland_act_foisa




Chapter 3

Clustered shape primitives

In this chapter, clustered shape primitives are formally introduced – this repre-

sents the major theoretical contribution of the thesis. In Section 3.1, a general

framework is introduced. The various ways in which the local shape may be

captured at a point are discussed in Sections 3.1.1 and 3.1.2. Section 3.2 com-

prises a discussion of the significance and contribution of CSPs towards shape

analysis, including a discussion of the context in which the method would be

implemented most effectively and efficiently.

3.1 Theoretical framework

Let X denote a binary function on Rn, and let Ω denote the set

{p ∈ Rn : X(p) = 1} .

For example, if n = 2, then X is a binary image. The set Ω is the object of

interest appearing inside this image.

The objective is to characterise a collection of objects based on shape and

compare these with other collections of objects. To that end, consider a col-

lection of objects Ωi, i = 1, 2, . . . , I, each with a group label chosen from m

groupsGg, g = 1, 2, . . . ,m. In other words, consider a collection of pairs (Ωi, Gi) ,

35
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where Gi is the corresponding group label chosen from {Gg : g = 1, 2, . . . ,m} .

The local shape at a point p ∈ Ω is represented by a shape primitive

vector vp, which may be computed in various ways (Sections 3.1.1–3.1.2). A

schematic example of the computation of a single shape primitive vector vp in

the context of the yeast colony data (Section 4.1.1) is shown in Figure 4.6.

The collection of all shape primitives in a data group Gg is

Fg = {vp : p ∈ Ω, X ∈ Gg} , (3.1)

and is called the representation space for group g. Shape primitives close to

each other in space represent similar shape patterns. Hence, common local

shape patterns occurring in the collection Gg may be identified by clustering

(Section 2.3) the vectors in Fg. The resulting cluster centres are referred to as

clustered shape primitives (CSPs), and may be viewed as quantitative shape

descriptors learned automatically from the data. The CSPs for data group Gg

are vectors Cgk , k = 1, 2, . . . ,K, of the same dimension as the shape primitives vp.

With m groups and K CSPs per group, there are M = Km CSPs in total. For

convenience, these are labelled sequentially as Cj , where C(g−1)K+k = Cgk , g =

1, 2, . . . ,m and k = 1, 2, . . . ,K (Algorithm 3).

The CSP map Y associated with X is obtained by replacing every point p ∈

Ω by the label of the CSP closest to vp. That is,

Y (p) = arg min
j∈{1,2,...,M}

{‖Cj − vp‖} ,

where ‖ · ‖ may be any norm, but for the purpose of this thesis is chosen to be

the Euclidean norm. The normalised histogram of CSP labels associated with X

is

hX = (h1, h2, . . . , hM ) , (3.2)

where hj is the proportion of points in Ω with label j (Algorithm 4). The

histogram hX represents the shape content of X and numbers hj are viewed as



37 3.1. THEORETICAL FRAMEWORK

Algorithm 3 Computation of CSPs

Input: collection of pairs (Ωi, Gi) , i = 1, 2, . . . , I,
Gi chosen from group labels {Gg : g = 1, 2, . . . ,m} ,
number K of CSPs per class

Output: M = Km cluster centres (CSPs)

initialise array C
for g = 1 to m do

initialise array Fg
for all Ωi in group Gg do

for all p in Ωi do
compute vp (Sections 3.1.1–3.1.2)
append vp to Fg

end for
end for
Cgk , k = 1, 2, . . . ,K ← clustering on Fg with K clusters

end for
append Cgk to C
return C

features either for classifying X (Section 2.4) or as a predictor for a particular

characteristic of X (for example, in a regression model). A schematic diagram

of the full method is shown in Figure 3.1.

The general method described thus far is made specific by defining the meth-

ods for setting the shape primitive vectors vp at every point p. The entire process

will later be demonstrated and evaluated on examples comprising real biomed-

ical data (Chapter 4).

The shape primitive vectors vp are an extension of the texture primitive

vectors vp discussed in Section 2.2. Here, local shape (as opposed to texture)

information is captured.
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... Collection of 
binary images

Shape 
primitive 
vectors
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Figure 3.1: Workflow for the theoretical framework for generating CSPs, illustrating
computation of shape primitives, representation space, CSPs, CSP maps, and his-
tograms of CSP occurrences. The histograms represent the shape content of each image
and are viewed as features for classifying the images or as a predictor for some charac-
teristic of each image.



39 3.1. THEORETICAL FRAMEWORK

Algorithm 4 Computation of histograms of CSP labels

Input: collection of objects Ωi, i = 1, 2, . . . , I,
collection of M = Km CSPs (Algorithm 3)

Output: collection of histograms hi, i = 1, 2, . . . , I

for i = 1 to I do
initialise ĥi
for p in Ωi do

compute vp (Sections 3.1.1–3.1.2)
find index j of CSP closest to vp
replace p with index j

end for
for j = 1 to M do

count number of times index j occurred in Ωi

append number of occurrences to ĥi
end for
hi ← set sum of ĥi to equal one

end for
return all hi, i = 1, 2, . . . , I

3.1.1 Oriented thickness measures

The first method for computing shape primitives is called oriented thickness

measures. For a point p ∈ Ω, the shape primitive is given by

vp = (vp,1, vp,2, . . . , vp,D) , (3.3)

where vp,d, d = 1, . . . , D, is the length of the longest line segment through p

in direction θd lying entirely inside Ω. The intention is to measure the local

thickness of the object Ω in D directions. The question of choosing the an-

gles θd, d = 1, . . . , D, at which to make thickness measurements is not trivial.

Ideally, the angles would be equally spaced, which reduces to evenly distribut-

ing D points on the surface of an n-dimensional sphere. However, this problem

is also not straightforward [56, 63, 100, 121]. For this reason, the ways in which

the angles are chosen are discussed in the context of each data set separately

(Section 4.3).
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(a) (b) (c)

Figure 3.2: Process of fitting an ellipse in two dimensions. A slice taken from the
cancellous bone data set (Section 4.1.2) is used as an example. The object Ω is shown
in white. (a) First, a disk Bp

r (blue) is drawn at p (blue cross). Here, the region Ω∩Bp
r

(shaded) contains more than one connected component. (b) Second, the connected
component Ωp containing the largest number of occupied points (now shaded) is found.
This represents the dominant local shape pattern at p. (c) Third, an ellipse Ep (now
blue) is fit to Ωp (shaded). The ellipse Ep and the connected component Ωp have the
same volume.

3.1.2 Features derived from best-fitting ellipsoids

For a point p ∈ Ω, let Bp
r denote the open ball of radius r centred at p. Let Ωp

denote the largest connected component of Ω∩Bp
r and let Ep denote the ellipsoid

that best fits Ωp in the sense that the n-dimensional volume of Ep and Ωp

are equal and that vol (Ep ∩ Ωp) is maximal subject to the condition of equal

volume (Figure 3.2). The best fitting ellipsoid Ep is easily found by applying

principal components on the coordinates of the points in Ωp. The directions

of the n axes of the ellipsoid are given by the unit eigenvectors u1,u2, . . . ,un,

each of which has n components, ui = (ui,1, ui,2, . . . , ui,n) . The lengths of each

axis `i, i = 1, . . . , n, are given by the corresponding eigenvalues, normalised to

ensure the volume of Ep is equal to the volume of Ωp. Let Li, i = 1, . . . , n,

be the length of the longest line segment in the direction given by ui, passing

through the centroid of Ep, and lying entirely inside the object Ω (Figure 3.3).

Four definitions of shape primitive vectors vp based on the constructions

above are considered in this study.
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(a) (b)

Figure 3.3: The difference between the length measurements `i, i = 1, 2, and Li, i =
1, 2. The ellipse fit in Figure 3.2 is used as an example. (a) The lengths `1 and `2
correspond to the lengths of the major and minor axes of the ellipse, respectively. (b)
The lengths L1 and L2 are the lengths of the longest line segments lying entirely inside Ω
and passing through the centroid of the ellipse, measured in the directions of the major
and minor axes, respectively. The thickness of the object, rather than the ellipse, is
measured here.

Definition 1 (Oriented ellipsoid parameters).

vp = (`1u1,1, `1u1,2, . . . , `1u1,n, `2u2,1, `2u2,2, . . . , `2u2,n−1, . . . , `nun,1) .

Oriented ellipsoid parameter shape primitives retain all orientation and length

information embodied in Ep to represent the local shape of Ωp. Since the unit

vectors are orthogonal, the ellipsoid may be specified by a total of n(n + 1)/2

parameters instead of the full n2 components needed to specify n vectors of

length n.

Definition 2 (Oriented object parameters).

vp = (L1u1,1, L1u1,2, . . . , L1u1,n, L2u2,1, L2u2,2, . . . , L2u2,n−1, . . . , Lnun,1) .

Oriented object parameter shape primitives capture information about the

local orientation and thickness of the segment of Ω more directly. This method

has the drawback that the centroid of the ellipsoid is not guaranteed to fall
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inside the object Ω, in which case Li = 0 for all i = 1, . . . , n.

Definition 3 (Ellipsoid shape parameters).

vp = (`1, `2, . . . , `n) ,

Ellipsoid shape parameter shape primitives retain only information about

the lengths of the axes of the ellipsoids.

Definition 4 (Object shape parameters).

vp = (L1, L2, . . . , Ln) .

Object shape parameter shape primitives retain only information about the

thickness of the object locally at p.

The purpose of recording shape primitives vp based on a collection of best-

fitting ellipsoids is to develop a method for sensibly choosing subsampled points

and to ascertain which variation of recording local shape information (Defini-

tions 1–4) leads to the best discrimination between groups of objects. Oriented

thickness measures have the shortcoming that the placement of subsampled

points p is not controlled in any way, and that thickness measurements are gen-

erally made with respect to laboratory coordinates (Figure 3.4). By finding a

collection of best-fitting ellipsoids, the locations and directions at which thick-

ness measurements are made are learned directly from the data rather than

being chosen at random.
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Figure 3.4: Computation of two shape primitives vp,1, vp,2 at points p1 (red) and p2

(blue), respectively, as in the two-dimensional example given in Figure 2.5. The infor-
mation recorded about the local shape is different depending on the placement of the
subsampled point p.

3.2 Significance and contribution

The idea of CSPs is similar to the notion of textons, but there are various notable

differences. Importantly, CSPs may be used to characterise the shape of objects

whenever only binary data is available. The notion of textons does not extend

naturally to binary data because taking linear filter responses (Section 2.2.1)

does not make sense. Similarly, recording pixel or voxel values in an N × N

neighbourhood about the central pixel (Section 2.2.2) is not a useful way of

capturing textural or shape information because the only possible responses for

pixels in that patch are 0 or 1. Clustering is not an effective method to find

common patterns in such a representation space. On the other hand, CSPs

provide a useful method for shape analysis even in cases where image intensity

data is not available. However, this also means that evaluating CSP-based

methods through comparison with baseline approaches such as texton-based

methods (Section 2.2) and AAMs (Section 2.1) does not make sense because the

latter methods do not readily apply to binary data.

The most significant contribution of CSPs is that complex shape patterns
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are learned automatically. This is especially important in cases where the shape

patterns are highly irregular (Section 2.6). Methods involving SSMs are not ap-

plicable in such cases because the manual placement of landmarks at equivalent

points between samples is effectively impossible, whereas in CSP-based methods

there is no need for such a step. This means that using CSPs to analyse the

shape of highly irregular objects could be an improvement on previous methods,

but that comparison with such methods is difficult.

Another advantage of the CSP-based methods proposed here is that the

number of features can be kept small, since the most important features are

learned and selected automatically. This avoids the need to define a very large

number of complex geometric features and ensures that important features are

not overlooked – these are examples of problems that may arise when a large

list of features is defined a priori [119]. The idea of CSPs may be compared to

textons in the sense that the purpose of textons is to learn important textural

features automatically from greyscale data. Analogously, in CSP-based methods

important shape features are learned automatically from binary data.



Chapter 4

Experimental details

In order to evaluate whether CSPs provide a valuable means of extracting shape

features for classification and prediction, the theoretical framework presented

previously (Chapter 3) was applied to the three example data sets. This chapter

serves to present the experimental details. In Section 4.1, the technical details

of the data sets, including image acquisition and resolution, are discussed. Sec-

tion 4.2 comprises a review of the spatial indices used to quantitatively describe

the spatial patterns in yeast colonies by Binder et al. [6]. This is presented here

because the spatial indices were reviewed and re-computed in detail as part of

the current study.

Section 4.3 comprises details of the implementation of CSPs based on ori-

ented thickness measures. For the yeast colonies, oriented thickness measures

and a rotationally invariant variation of oriented thickness measures were used

to classify by growth stage groups, and oriented thickness measures were used to

classify by strain and nutrient conditions. For the cancellous bone, a variation

of the method was implemented that separates shape and density information

to determine whether or not shape and density information is complementary.

For the marbling in beef, shape features were extracted using oriented thickness

measures and then used in a regression to predict the proportion of marbling in

the striploin. Section 4.4 describes the implementation of features derived from

45
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best-fitting ellipsoids on yeast colony and cancellous bone data.

All computational steps were carried out using Matlab R2015a–R2017b.

Samples of the code used may be found on the author’s Github page:

https://github.com/ameliagontar/PhD_project_2018.git.

4.1 Data sets

First, a detailed description of the three data sets is given, including the (retro-

spective) experimental methods, image acquisition, resolution of the data, and

some illustrative example images from each of the data sets.

4.1.1 Yeast colonies

The yeast colony study is retrospective, based on data collected in Binder et

al. [6]. Briefly, single cells of S. cerevisiae were used to initiate the growth of

several individual yeast colonies. The colonies were grown in ammonium sul-

phate at a fixed concentration, and each of the colonies was imaged successively

over time. The images were converted into two-dimensional binary images using

customised software [1, 4], where pixels were designated as either “occupied” by

yeast cells or “unoccupied”. The data comprises three separate experiments,

corresponding to different concentrations of ammonium sulphate nutrient and

yeast strains (Table 4.1). The data was also imaged at different resolutions,

depending on the strain and observation time (Table 4.2).

Table 4.1: Details of the three yeast groups used in this study. Shown are the strains,
concentrations of ammonium sulphate (in µm), number of colonies, and observation
times (in hours) after initiation of growth. The name column refers to the abbreviated
name of the group used hereafter.

Name Strain Conc. Trials Observation times

A7-50 AWRI 796 50 10 {23, 48, 73, 87, 115, 162, 211, 233}
A7-500 AWRI 796 500 9 {25, 49, 73, 97, 121, 145, 169, 193, 212, 240}
AR-50 AWRI R2 50 10 {25, 49, 73, 100, 121, 145, 168, 192, 212, 237}

https://github.com/ameliagontar/PhD_project_2018.git
https://github.com/ameliagontar/PhD_project_2018.git
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Table 4.2: Details of the resolution of the yeast colony images. The resolution (per
pixel) is given according to strain and observation time (in hours) after initiation of
growth.

Name Observation times Resolution

A7-50 {23, 48} 0.61 µm× 0.61 µm

{73, 87, 115, 162, 211, 233} 1.52 µm× 1.52 µm

A7-500 {25} 0.62 µm× 0.62 µm

{49, 73, 97, 121, 145, 169, 193, 212, 240} 1.55 µm× 1.55 µm

AR-50 {25, 49} 0.61 µm× 0.61 µm

{73, 100, 121, 145, 168, 192, 212, 237} 1.53 µm× 1.53 µm

AWRI R2, 50 uM, 237 hrs AWRI 796, 50 uM, 233 hrs AWRI 796, 500 uM, 240 hrs

500 μm
500 μm

Figure 4.1: Example images from the three groups of yeast colonies. The images are
taken at 233, 240, and 237 hours after initiation of growth, respectively. The AWRI
796, 50 µm, example image was published by Binder et al. [6] and is licenced under CC
BY 4.0. The AWRI R2 and AWRI 796, 500 µm, images are reproduced courtesy of the
Wine Innovation Cluster, based at the Waite Research Precinct at the University of
Adelaide.

An example image corresponding to each of the three strains at the last

observation time and before processing is shown in Figure 4.1. The temporal

evolution of one colony of the AWRI 796 strain grown in 50 µm ammonium

sulphate (A7-50) and after image processing is shown in Figure 4.2. More details

of the experiments may be found in Binder et al. [6].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: AWRI 796 colony number five grown in 50 µm ammonium sulphate. (a)–
(h) The colony was imaged at t = {23, 48, 73, 87, 115, 162, 211, 233} hours, respectively.
For t = 23, 48 hours, the resolution is approximately 0.61 µm × 0.61 µm per pixel.
For t = 73, . . . , 233 hours, the resolution is approximately 1.52 µm× 1.52 µm per pixel.

4.1.2 Cancellous bone

Material in this section appears in Gontar et al. [45] © 2016 IEEE.

The cancellous bone study is a retrospective study based on data collected

by Fazzalari et al. [37]. The data set contains 30 µ-CT scans of cancellous bone

obtained from rat tibiae. The rats were randomly assigned to three experimen-

tal groups, 10 in each group. At the start of the study (week 0), the sham

group underwent a sham surgery, where an incision was made but no organs

were removed. The ovx group underwent a full ovariectomy, and the ovx+zol

group underwent a full ovariectomy and subsequently started treatment with

zoledronic acid at week 2. The rats in the other two groups received saline injec-

tions at the same time as the rats in the ovx+zol group received the zoledronic

acid injections. The ovariectomy induced oestrogen deprivation and subsequent

bone loss.

Micro-CT scans of the right tibia of each rat were obtained at 0, 2, 4, 8, and 12

weeks after surgery. The resolution was 8.702 µm×8.702 µm×8.702 µm per voxel.

Since two rats died between weeks 8 and 12, only the scans for week 8 were used
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(a) (b) (c)

Figure 4.3: Examples of cancellous bone from rat tibiae taken eight weeks after the
beginning of the study. (a) The sham group corresponds to the control group. (b) For
the ovx group, bone loss was induced through ovariectomy. (c) For the ovx+zol group,
bone loss was induced through ovariectomy and then treated with zoledronic acid. The
bottom of each block represents the slice closest to the growth plate (slice 1). Reprinted
from Gontar et al. [45] © 2016 IEEE.

in this study. For each of the 30 rats, a rectangular block of size 121×121×400

voxels, corresponding to a size of approximately 1 mm × 1 mm × 3.5 mm, was

manually segmented from the µ-CT reconstruction. The longest edge of each

block was roughly parallel to the long axis of the tibia, and the first cross-

sectional slice was approximately 1.2 mm from the growth plate of the bone.

Each voxel was assigned as “bone present” or “bone absent” using a threshold,

resulting in three-dimensional binary rectangular blocks (Figure 4.3). Details

are discussed in Fazzalari et al. [37].

Each block was further divided into three sub-blocks. The first sub-block

comprised the first 100 slices counting from the growth plate end, the second

sub-block comprised the next 100 slices, and the third sub-block comprised

slices 200–300. The last 100 slices of each block were not used in the study

because the bone was too sparse for structure characterisation in some cases
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(a) (b)

Figure 4.4: Splitting a block from the ovx group into four sub-blocks. (a) The original
block (week 8), with the slice closest to the growth plate at the bottom of the image.
(b) From bottom to top: sub-blocks 1–4. Block 1 is closest to the growth plate, cor-
responding to the “newest” bone, and block 4 is furthest away. Sub-block 4 was not
included in the experiment since, in some cases, the bone was too sparse for meaningful
characterisation of the structure. Reprinted from Gontar et al. [45] © 2016 IEEE.

(Figure 4.4). Thus, a total of nine groups were used in the study, corresponding

to three experimental groups and three distances from the growth plate. The

rats in the study were growing and new bone was being formed during endochon-

dral ossification at the growth plate. Hence, different structure patterns could

be expected to occur at different distances from the growth plate, in addition

to differences in the structure between the three experimental groups.

For each of the three experimental groups, five of the 10 rats were randomly

assigned to the training set and the remaining five rats were assigned to the

testing set for classification.
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4.1.3 Marbling in beef

The marbling data used in this study has been described previously [69, 127].

Briefly, 20 Angus steers with a high propensity for marbling were placed in

feedlot facilities at 12 months of age. At the beginning of the study, the steers

were randomly separated into two groups of 10 animals each: vitamin A sup-

plemented (A+) and non-supplemented (A-). All animals were fed a standard

feedlot diet and kept in the same pen for the duration of the study. Once per

week, the steers in the A+ group received a dosage of vitamin A through a sup-

plement added to their feed for six hours. Throughout the study, the animals

were monitored for vitamin A deficiency.

After slaughter, striploins quartered at the 12–13th rib were collected,

trimmed, vacuum packed and frozen at −20 ◦C. Two drill holes were made

through each of the striploins. Twenty five consecutive slices, each 4 mm thick,

were cut from each of the striploins, cleaned, and stored. These slices were pho-

tographed. For each slice, the rib eye region was extracted manually from the

image and the area of the rib eye region was calculated. Then, each image was

converted to a binary image, with each pixel converted to “marbling present”

or “marbling absent” using an empirically determined threshold (Figure 4.5).

The 25 individual slices were then aligned using the drill holes, to form a

three-dimensional binary representation of the marbling in the striploin. The

marbling proportion

MP =
total volume of marbling

total volume of striploin
(4.1)

was recorded for each striploin.

The resolution of each slice is approximately 0.143 mm×0.143 mm per pixel.

If the data is considered in three dimensions by aligning the slices, then each

voxel has resolution approximately 0.143 mm× 0.143 mm× 4 mm.
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Figure 4.5: One slice taken from one striploin in the marbling data set. White represents
marbling. Shown is slice number 13 from the striploin collected from steer number one.

4.2 Spatial indices

Binder et al. defined three indices based on spatial metrics to describe fila-

mentous growth in colonies of S. cerevisiae: the radial index, angular index

of filamentation, and pair-correlation index of aggregation [6]. In the original

study, spatial indices were introduced to characterise shape. In Section 4.3.1

the method proposed in this thesis will be benchmarked against spatial indices

and so this method is presented here. (The notation here is different to that

in the original study to match the notation used throughout this thesis. The

symbols i, j, k are re-used as counters.)

Let the set of position vectors for the occupied sites within the colony be

P = {w(p) : p ∈ Ω} .

The maximal radial distance of the colony is

R = arg max
p∈∂Ω

{||c− p||} ,

where c is the centroid of the colony, and ∂Ω is the set of boundary pixels of Ω.
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The mean-field density is

ρ =
|Ω|
πR2

.

In order to compute the radial metric, the magnitudes of the position vectors

are defined in terms of subsets

Sr(i) = {w : ∆r(i− 1) ≤ |w| < ∆ri,w ∈ P} ,

where ∆r = R
Nr
, i = 1, . . . , Nr, and Nr is the number of equally spaced partitions

defined on the domain [0, R). The radial metric is

Fr(i) =
cr(i)

πρ∆2
r(2i− 1)

,

where cr(i) = |Sr| is the count of the radial distances of the position vectors

in each bin. The denominator is a normalisation factor that ensures the radial

metric is scaled with respect to circular domains populated uniformly at random.

When Fr(i) > 1, the spatial domain is aggregated and the probability of

finding an occupied site is greater than that for a state of complete spatial

randomness (CSR). When Fr(i) < 1, the spatial domain is dispersed and the

probability of finding an occupied site is less likely than for the CSR state.

For Fr(i) = 1, the probability of finding an occupied site is equal to that at the

CSR state, and the radial distance at which this occurs is called Rcsr. The radial

index is

Ir = 1− Rcsr

R
. (4.2)

and is a measure of the colony’s filamentation in the radial direction. The

radial index may be used to compare filamentous growth in the radial direction

between two or more yeast colonies, and may be used to distinguish between

strains exhibiting different filamentous growth patterns.

In order to define the angular index of filamentation, the principle arguments
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of the position vectors are defined in terms of subsets

Sθ(j) = {w : π + ∆θ(j − 1) ≤ arg(w) < −π + ∆θj,w ∈ P} ,

where ∆θ = 2π
Nθ
, j = 1, . . . , Nθ, and Nθ is the number of bins defined on the

domain [−π, π). The counts of the arguments of the position vectors are given

by cθ(j) = |Sθ| and the angular metric is

Fθ(j) =
cθ(j)

1
2ρ∆θR2

,

where the denominator is again a normalisation factor. The angular metric is

analogous to the radial metric, except that the spatial domain is separated into

segments rather than annuli. This metric describes the angles at which the

spatial domain is aggregated and can detect the orientation of filaments. The

discrete Fourier transform of the angular metric is given by

f̂k =
1

Nθck

Nθ−1∑
j=0

Fθ(j)e
−ikxj , k = 0,±1, . . . ,±Nθ

2
,

where xj = −π + 2πj
Nθ
, j = 0, . . . , Nθ, ck = 2 for k = ±Nθ

2 , and ck = 1

for k 6= ±Nθ
2 . The angular index describes the evolution of the spectrum |f̂k| of

the angular metric, and is given by

Iθ =

Nθ/2∑
k=1

|f̂k|2. (4.3)

The angular index provides the means to compare angular filamentous growth

between different colonies. This index may be used to distinguish between

colonies growing in different environments where the growth is directionally

biased towards a particular nutrient source.

Finally, to define the pair-correlation index of aggregation, the angles be-



55 4.2. SPATIAL INDICES

tween pairs of position vectors are defined in terms of the subsets

SΘ(k) =

{
(w1,w2) : ∆Θ(k − 1) ≤ cos−1

(
w1 ·w2

|w1||w2|

)
< ∆Θk,w1,w2 ∈ P

}
,

where ∆Θ = π
NΘ
, k = 1, . . . , NΘ, and NΘ is the number of bins defined on

the domain [0, π). The counts of the angles between position vectors are given

by cΘ(k) = |SΘ|, and the (angular) pair-correlation metric [1, 4, 5] is given by

FΘ(k) =
cΘ(k)

1
2ρ∆ΘR2(πρR2 − 1)

,

where the denominator is a normalisation factor. The (angular) pair-correlation

metric measures the frequency of the occurrence of angles between position

vectors. The value of FΘ(1) is the (normalised) number of pairs separated by

an angle in the domain [0, π
NΘ

), and hence corresponds to localised aggregation.

The pair-correlation index of aggregation is defined as

IΘ = FΘ(1)− 1 (4.4)

and is a quantitative measure of localised aggregation in the yeast colony. Binder

et al. provided extensive working examples to illustrate the implementation of

the spatial indices [6].

Binder et al. showed that these indices are an effective means of quantifying

the spatial patterning in yeast colonies [6]. In general, as time evolved, the

average radial index, average angular index, and average pair-correlation index

across all samples increased, for all three strains. This is consistent with the

observation of increasing filamentous growth with time for each of the strains.

Here, the spatial indices were computed using Equations 4.2–4.4 with Nr =

178, Nθ = 200, and NΘ = 200, to match the values used in the original study [6].
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4.3 Implementation of oriented thickness measures

This section describes how CSPs based on oriented thickness measures were

implemented on the three data sets using variations of the method as appropriate

to the data set. These variations are discussed in detail in this section. In each

case, the analysis of a single point p is scaled up to the entire collection of images

as shown in the workflow diagram in Figure 3.1.

4.3.1 Yeast colonies

For the yeast colony data, since the shape patterns appearing in the filaments are

of interest, only pixels on the boundary ∂Ω of Ω were analysed. The directions

were defined by

θd = (d− 1)
π

D
, d = 1, . . . , D, (4.5)

where 0 ≤ θd < π, and D is the number of directions. For each pixel p ∈ ∂Ω,

let v̂p,d be the length of the longest line segment through p in direction θd lying

entirely inside Ω (Figure 4.6). In order to sensibly compare shape character-

istics of colonies at different growth stages and to consider shape independent

of the orientation of the colonies, the distance v̂p,d was converted to a new

distance vp,d measured in terms of pixels, but accounting for the difference in

resolution between the images in the A7-50 group (Table 4.2). For character-

ising shape by strain and nutrient conditions, the distance v̂p,d in pixels was

converted to a physical distance vp,d, measured in µm, so that images at dif-

ferent resolutions could be compared. Then, the shape primitives vp were set

as in Equation 3.3. Since the number of pixels in ∂Ω varied between approxi-

mately 12, 000 and 24, 000, shape primitives were computed at all p ∈ ∂Ω.

Various classification problems were considered for the yeast colony data in

order to test the effectiveness of oriented thickness measures in distinguishing

between shape patterns. First, only the A7-50 group was considered and clas-

sified according to observation time (growth stage). Second, the yeast colonies
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Figure 4.6: The computation of a shape primitive for D = 4. For a region Ω (shaded
squares), shape primitives are computed for each pixel p on the boundary ∂Ω (dark
grey). The length of the longest line segment v̂p,d lying entirely inside Ω and passing
through p is measured, once each at angles φd = (d − 1)π/D, where d = 1, . . . , D, to
the horizontal axis. The associated shape primitive is the collection of these lengths
converted to µm, vp = (vp,1, vp,2, . . . , vp,D).

were classified at the last observation time by strain and nutrient conditions.

These experiments are described in the following subsections.

Classification by growth stage

Initially, only the A7-50 strain was considered, with the data set comprising

images taken at all observation times after initiation of growth. Thus, the

data set comprised 80 images from the A7-50 set and each observation time was

considered to be one experimental group. The purpose was to use shape features

to distinguish between observation times, and to test whether or not oriented

thickness measures may successfully be used to predict the growth stage of the

yeast colonies.

CSPs based on oriented thickness measures were computed by K-means clus-

tering (Section 2.3.1) on the representation space Fg derived from the training

images in each group g. The number of clusters was K = 10, with 100 itera-

tions and one replicate, resulting in a CSP dictionary of size M = 8K = 80. A

normalised histogram hi of CSP labels (Equation 3.2) was computed for each im-



CHAPTER 4. EXPERIMENTAL DETAILS 58

age Xi. Linear discriminant analysis (Section 2.4.1) was used to classify images

into each of the eight groups, with feature vectors as described below. Exhaus-

tive search was the method for feature selection. That is, for three features, all

combinations of three features were tested and those corresponding to the best

classification accuracy were chosen. The classification process was repeated 30

times, with the stochastic step being K-means clustering. The entire process

was repeated five times with D = 2, 4, 8, 12, and 18.

The classification process proceeded as described here, with three alterna-

tives for the feature vectors input into the classifier. First, the normalised his-

tograms hi of CSP labels (Equation 3.2) were input into the classifier. Second,

to make use of both the oriented thickness measures and spatial indices (Sec-

tion 4.2), the augmented feature vector for colony Xi was defined to be

h?i =

(
hi,1, hi,2, . . . , hi,M ,

Ir
M
,
Iθ
M
,
IΘ

M

)
, (4.6)

where the hi,j are as in Equation 3.2 and M = 80 is the number of CSPs. The

factor 1/M ensures that all features are of the same magnitude. Third, only

the three indices Ir, Iθ and IΘ (Section 4.2) were used for classification. More

specifically, the feature vector representing colony Xi was

h?i =

(
Ir
M
,
Iθ
M
,
IΘ

M

)
, (4.7)

with all three features used for classification. Since these feature vectors did

not require CSPs to be computed and there was no feature selection step, this

classification was only conducted once.

The purpose of this part of the study was to quantify how well the in-

dices Ir, Iθ and IΘ describe and discriminate between each of the growth stages,

and to ascertain whether including the indices increases the classification score.

In addition, for each value of D (Equation 4.5) the entire classification pro-

cess was repeated with randomised data. Randomising the data involved per-
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muting all of the image labels (including sample number and time) 30 times.

For each permutation, the classification process was applied with the feature

vectors chosen to be as in Equation 3.2. Ten clusters per class were used to

compute the CSPs, and three features were used for classification using linear

discriminant analysis (Section 2.4.1). For each permutation, only one trial of

the classification process was conducted. Conducting more than one trial was

unnecessary because the 30 permutations were random.

Rotation invariance

The yeast colonies considered in this study do not appear to grow with bias in

any particular direction (Section 4.1.1). Thus, ideally, a classification method

should be equally effective regardless of the orientation of the colony inside the

image frame. In particular, a classification process is desired that recognises

the same pattern, but occurring at different orientations, as a single pattern.

Recording shape primitives using oriented thickness measures as described in

Section 4.3.1 does not achieve rotation invariance (Figure 4.7). The purpose

of this part of the study was to introduce a rotationally invariant modification

of oriented thickness measures for the classification of yeast colonies, and to

evaluate whether this improves the classification accuracy.

Consider a point p ∈ ∂Ω, and let φ be the orientation of line joining the

centroid of the colony to p. Let the shape primitive vp at p be as in Equations 3.3

and 4.5, where the angle θd is instead given by

θd = φ+ (d− 1)
π

D
, d = 1, . . . , D. (4.8)

Shape primitives vp computed using the orientations in Equation 4.8 are rotation

invariant (Figure 4.8). Classification of the colonies with these shape primitives

proceeded as described in the previous subsection.
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(a) (b)

Figure 4.7: Recording oriented thickness measures in an identical image, rotated. The
process of measuring oriented thicknesses does not achieve rotation invariance, in the
sense that the same pattern appearing at two different orientations is not recognised as
the same pattern. A section cropped from A7-50 colony number five at t = 233 hours is
used as an example. White pixels represent “occupied” pixels. The shape primitive vp

is computed at p (black point). The lengths of the coloured lines represent the thick-
ness measurements, with blue, orange, yellow, and purple representing vp,1, vp,2, vp,3,
and vp,4, respectively. (a) The original shape pattern and the associated thickness mea-
sures. Here, vp = (23.6, 18.2, 30.0, 86.8) , with lengths recorded in µm. (b) The entire
image has been rotated by π/2 radians, with the point p being kept consistent in re-
lation to the object. The shape primitive here is vp = (30.0, 86.8, 23.6, 19.3) , which is
recognised as a different shape pattern to the one in (a). Note that these images have
been generated using the actual program used to compute the shape primitives, and
the discrepancies in measurements between images (a) and (b) are due to sampling. In
practice, the shape primitives were computed at points on the boundary ∂Ω, but here
a point was chosen inside Ω for clarity.
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(a) (b)

Figure 4.8: Rotationally invariant method for computing shape primitives using oriented
thickness measures. The example image from Figure 4.7 is used. Here, the first thickness
measurement is always in the direction of the line joining the centroid of the colony
(not pictured) and the point p. (a) The original image. (b) The image has been rotated
by π/2 radians. The shape primitives are given by vp = (111.4, 31.1, 18.2, 24.6) for both
examples, demonstrating that this method for recording shape primitives results in the
same pattern occurring at a different orientation being recognised as the same pattern.

Classification by strain and nutrient conditions

The author would like to acknowledge and thank B. J. Binder and H. Tronnolone

for their helpful discussion regarding the work presented in this section.

For each of the three strains, only images taken at the last observation time

were considered, resulting in a data set of 10 A7-50 images, nine A7-500 images,

and 10 AR-50 images. The purpose of conducting the classification was to test

how well shape features could distinguish between two different strains with

the same nutrient concentration (using A7-50 and AR-50), between the same

strain grown at different nutrient concentrations (using A7-50 and A7-500), and

between any of the three groups of yeast given no prior information about the

strain or nutrient concentration (a three-group classification problem comprising

A7-50, A7-500, and AR-50). In this part of the study, both oriented thickness

measures (Section 4.3.1) and spatial indices (Section 4.2) were used to classify

the yeast colonies.
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To make use of both the oriented thickness measures and spatial indices, the

augmented feature vector h?i for colony Xi was as in Equation 4.6, where M is

the number of CSPs. Using the augmented feature vectors h?i as input, linear

discriminant analysis (Section 2.4.1) was used for classification. One feature at

a time was used for classification in order to avoid overfitting, since the number

of images in the testing sets was small.

Within each classification problem, three methods for testing and analysis

were considered. First, the images from each group were split as evenly as possi-

ble between training and testing sets. The classifier was trained and tested once

for each individual feature, and the best feature and the corresponding highest

classification score were recorded. The K-means clustering step (Section 2.3.1)

was repeated n = 30 times. The mean and standard deviation of the classifica-

tion accuracies, and the number of times each of the spatial indices Ir, Iθ, and IΘ

(Section 4.2) were chosen as a best feature were recorded. Since the CSP labels

and values were different for each run, it was not possible to record the number

of times these were chosen as a best feature. The purpose was to ascertain

whether CSPs or spatial indices tend to be more important in distinguishing

between yeast colonies, and to check if a combination of both can result in high

classification accuracies.

Second, leave-one-out cross-validation (LOOCV) was conducted [51, 68]. For

each image that was left out, the full process of computing CSPs was performed

on the remaining images. The single best feature for classifying the left-out

image was chosen by exhaustive search. This resulted in S binary classification

accuracies (correct or incorrect), where S is the total number of images. The

total accuracy out of S samples and the number of times each spatial index was

chosen as a best feature were recorded. The leave-one-out method implemented

here was designed to test the performance of the full process, as opposed to

recommending an algorithm for classifying yeast colonies. For the latter, one

would have to apply LOOCV based on a fixed set of CSPs.
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The above two methods for testing the classification process give classifi-

cation scores, but do not necessarily shed any light on which shape patterns

differentiate well between colonies. For the third method for evaluating the

classification process (hereafter called the feature analysis method), the train-

ing and testing method was repeated only once (n = 1), and the features that

gave a high classification score were recorded. If a particular CSP is the best

feature for classification, this means that the CSP occurs more frequently in one

experimental group than another. A given CSP may be visualised by drawing a

histogram of the lengths vp,d corresponding to the associated shape primitive vp.

Each bin represents one angle θd, where d = 1, . . . , D, and the height of the bin

represents the corresponding length vp,d. Although this method for evaluating

the classification process is not as robust as training and testing, or LOOCV,

it allows for characterisation and visualisation of the important shape patterns

that discriminate well between yeast colonies.

For each of the three classification problems, the training and testing, and

LOOCV methods were repeated with the number of angles used to compute

the CSPs set at D = 4 and 12, and with K = 5 and 10 clusters per class.

The feature analysis method was then applied to the best combination of D

and K from the training and testing method to produce images representing

the best shape features. A rotationally invariant variation of the method was

not considered in this case. This choice, along with the choice to use D = 4

and 12, was made because of the results on the A7-50 group individually –

the best classification accuracies were achieved using D = 4, 12, and without

rotation invariance incorporated into the method (Section 5.1.1).

Three classification tasks were conducted: (1) distinguish between strains

A7-50 and AR-50; (2) distinguish by nutrient concentration for A7-50 and A7-

500; and (3) simultaneous three way classification of A7-50, A7-500, and AR-50.

Within each problem, the images from each data set were split evenly between

the training and testing groups at random, except for A7-500, for which five
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images were used for training with four left for the testing set. A classification

task with m groups and K clusters resulted in M = Km CSPs, while the

number of images used for LOOCV was equal to the total number of images in

the classification problem.

4.3.2 Cancellous bone

Since the cancellous bone data is in the form of discrete arrays, thicknesses were

measured in 13 directions, defined by the 26 voxels connected to the central

voxel p. Formally, 13 unit vectors were defined as

ud =
ed
‖ed‖

, d = 1, . . . , 13,

where the vectors ed were given by

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (1, 1, 0), e4 = (1,−1, 0),

e5 = (1, 0, 1), e6 = (−1, 0, 1), e7 = (0, 1, 1), e8 = (0,−1, 1),

e9 = (1, 1, 1), e10 = (−1, 1, 1), e11 = (1,−1, 1), e12 = (−1,−1, 1),

e13 = (0, 0, 1).

Then, each angle θd was defined by the direction of the vectors ud, d = 1, . . . , 13.

The direction defined by e13 = (0, 0, 1) was approximately the direction of the

major axis of the tibia.

The shape primitives vp were computed as in Equation 3.3 using the an-

gles θd, d = 1, . . . , 13, at approximately 10 000 points randomly subsampled

from the object Ω. K-means clustering with K = 10 (Section 2.3.1) was applied

to each representation space Fg, g = 1, . . . , 9 (Section 3.1), so the number of

CSPs was M = 9K = 90. CSP maps were obtained for each bone block, and

the frequencies of CSP occurrences (Equation 3.2) were viewed as features for

classifying the bone blocks into nine classes. Linear discriminant analysis (Sec-

tion 2.4.1) was used for classification, and the three best features were chosen

by exhaustive search – for each of the
(

90
3

)
combinations of the three features, a

classification accuracy was found, and the best accuracy was chosen as the clas-
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sification accuracy. The K-means clustering step (Section 2.3.1) was repeated 30

times. These steps were used in all variations of the shape analysis described in

the following subsections.

Four separate versions of shape analysis were considered, in which different

versions of the shape primitives were computed. Due to the nature of the data

set, measuring the thickness of the bone in a number of directions inherently cap-

tures both shape and density information, where density refers to bone volume

per unit tissue volume (BV/TV). Rather than considering rotation invariance

here, methods for separating shape and density information were explored.

Shape and density information, unseparated

CSPs were computed in the directions θd, d = 1, . . . , 13, according to Equa-

tion 3.3. Classification was performed as described at the beginning of Sec-

tion 4.3.2. This shape analysis appeared in a preliminary study by Martin and

Bottema [91]. In that paper, shape information and density information were

naturally included in the shape primitives in the sense that a given shape pat-

tern at a point p consisted of the lengths of bone segments in the 13 directions

encoded in the shape primitive vp. If vp is a pattern in sparse bone and αvp is

a pattern in dense bone, where α > 1, then the shape patterns may be viewed

as the same but scaled by the amount of bone. Thus, two identical shape

patterns at different scales are treated as two distinct patterns. The methods

of computing shape primitives presented in the following subsections are new.

The purpose is to separate shape information and density information in the

sense that, wherever shape information is considered, two identical patterns at

different scales are treated as an identical pattern. For some versions of the clas-

sification method, density information was included separately, or only density

information was considered.
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Shape information only

The shape primitive vp (Equation 3.3) was replaced by the normalised shape

primitive

wp =


vp−mean(vp)

std(vp) if std(vp) ≥ T,

vp −mean(vp) if std(vp) < T,

where T = 10−13 (the “tolerance”) was set to avoid round-off errors. Classifica-

tion was performed as described at the beginning of Section 4.3.2.

Shape and density information, separated

In order to consider both shape patterns and size, but as distinct attributes of

each sub-block, the normalised histogram hi of CSP labels (Equation 3.2) for

sub-block Xi was augmented with a component representing a density parame-

ter. For sub-block Xi, define Si by

Si =
number of on voxels in sub-block Xi

total volume of sub-block Xi
. (4.9)

The augmented feature vector representing Xi was

h?i =

(
hi,1, hi,2, . . . , hi,M ,

Si
M

)

where the hi,j are as in Equation 3.2 and M = 90 is the total number of CSPs.

The classification proceeded as described at the beginning of Section 4.3.2.

Density information only

The single feature Si/M (Equation 4.9) was used to classify the sub-blocks.

Since the classifier did not involve any CSPs, there was no clustering step and

no feature selection step.
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4.3.3 Marbling in beef

In a preliminary study on using CSP-based features to classify the steers (Sec-

tion 4.1.3) according to treatment group (A+ versus A-), the results showed no

clear difference between the two groups (M. Bottema, personal communication,

3 May 2017). For this reason, the focus here was to determine whether the shape

patterns in the marbling vary as the amount of the marbling increases. Thus,

in this part of the study, all of the striploins were treated as one experimen-

tal group, and the purpose was to use the occurrences of the CSPs as features

for linear regression to predict marbling proportion. Let MPi be the marbling

proportion corresponding to animal Xi (Equation 4.1).

The shape primitive computed at p ∈ Ω was

vp = (vp,1, vp,2, vp,3, vp,4, vp,5) ,

where vp,d is the length of the longest line segment passing through p in the

direction θd = (d − 1)π4 , for d = 1, . . . , 4. The angles θd were measured within

each slice cut from each striploin (Section 4.1.3). The measurement vp,5 was the

length of the longest line segment passing through p in the direction perpendic-

ular to the slices. That is, thicknesses of the marbling were measured in four

directions within each slice, and in one direction between the slices. This was

necessary since the distance between slices was much larger than the resolution

within the slices (Section 4.1.3).

In practice, all length measurements were converted to absolute lengths

in mm. The shape primitives were computed at approximately 10 000 ran-

domly subsampled from the marbling Ω in each striploin, resulting in approxi-

mately 200 000 shape primitives in total. A K-means clustering algorithm (Sec-

tion 2.3.1) was applied to the space of all shape primitives, with K = 10, result-

ing in M = 10 CSPs in total. For each striploin Xi, the normalised histogram
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of CSP occurrences

hi = (hi,1, hi,2, . . . , hi,10) (4.10)

was computed (Section 3.1), where the hi,j are as in Equation 3.2. The fre-

quencies of the occurrence of each CSP, hi,j , j = 1, . . . , 10, were then viewed as

features for linear regression to predict marbling proportion MP.

A linear regression model was fit using one, two, and three features. The

best feature (or combination of features) was chosen by exhaustive search. That

is, for each combination of features, a linear regression model was fit. The model

with the highest correlation value R was chosen as the best model. For each

number of features, the best R2 value, best feature (or combination of features),

and the vector corresponding to the best feature (or combination of features)

were recorded. (Here, R refers to the Pearson correlation coefficient.)

4.4 Implementation of features derived from best-

fitting ellipsoids

In order to implement the method of best-fitting ellipsoids (Section 3.1.2), two

data sets were considered: the A7-50 yeast colony data with colonies taken from

all eight observation times (each observation time was again considered to be

one experimental group, and the data set comprised 80 images in total), and

the cancellous bone data. Features derived from best-fitting ellipsoids were not

implemented on the marbling data set, predominantly because of the difference

in resolution between slices and within each slice.

In each case, the analysis of a single point p is scaled up to the entire collec-

tion of images as shown in the workflow diagram in Figure 3.1.

In the case of the yeast colony data, let ∂Ω be the subset of Ω comprising

boundary pixels, that is, pixels in Ω with at least one unoccupied neighbour.
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(a) (b)

Figure 4.9: A7-50 colony number five imaged at t = 233 hours. (a) An illustration of the
largest disk Bc

R′ (red) centred at the centroid c of the colony (red cross) that fits entirely
inside the colony. The radius of the disk is R′. (b) The subset Ωfil corresponding to the
filamentous part of the colony, inside which the ellipse fitting process was initialised.

Let c be the centroid of the colony and let

R′ = arg min
p∈∂Ω

{||c− p||} .

That is, R′ is the radius of the largest disk Bc
R′ centred at c that fits entirely

inside the colony. Let Ωfil = Ω \ Bc
R′ , so named because this is the “filamen-

tous” part of the colony (Figure 4.9). Ellipses were initialised at 10 000 sampled

points p ∈ Ωfil, since the shape of the filamentous part of the colony was of

interest. In the case of the cancellous bone data, ellipsoids were initialised at a

randomly sampled set of points from Ω.

In both cases, the best fitting ellipsoid Ep to Ωp was found as described in

Section 3.1.2. Shape primitives vp were constructed according to the general

construction given in Definitions 1–4 of Section 3.1.2. For the oriented object

parameter (Definition 2) and object shape parameter (Definition 4) shape prim-

itives, if Li = 0 for all i = 1, . . . , n, then those shape primitives were omitted

from the representation space. The proportion of centroids of all ellipsoids fit

to all images or arrays falling outside the object Ω was recorded in order to

ascertain whether an unreasonable proportion of shape primitives was being
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Table 4.3: Numerical details of the classification process for each data set. # pts is the
number of sampled points at which the ellipsoids were initialised, n is the dimension of
the binary data array,K is the number of clusters obtained usingK-means clustering,M
is the number of CSPs, # fts is the number of best features selected during classification,
and r is the radius of the balls (in µm) used to initialise the ellipsoids.

Data set # pts n K M # fts r

Yeast colonies 10 000 2 10 80 3 3.03, 15.2, 75.6, 303, 909

Cancellous bone 10 000 3 10 90 3 17.4, 43.5, 131, 261, 435

omitted.

CSPs were computed by clustering each representation space Fg (Equa-

tion 3.1) constructed from the training images for each group g. The K-means

algorithm (Section 2.3.1) with 100 iterations and one replicate was used for clus-

tering, with K = 10 clusters per group. This resulted in M = 80 or M = 90

CSPs in total for yeast colonies and cancellous bone, respectively (Table 4.3).

Normalised histograms of CSP labels were computed for all images or arrays in

the data set. Linear discriminant analysis (Section 2.4.1) was used during the

training and testing steps, and the best combination of three features was chosen

by exhaustive search. Each combination of features was tested individually and

the combination that gave the highest classification accuracy was selected for

the testing step. Thirty trials were conducted, with the stochastic step being

the K-means clustering algorithm.

For each definition of the shape primitives, the entire process was repeated

five times with the parameter r corresponding to the radius of the ball Br (Sec-

tion 3.1.2) set at varying lengths (Table 4.3). These lengths were chosen to be

whole numbers of pixels or voxels and converted to µm during the implementa-

tion of the process.



Chapter 5

Results and analysis

In this chapter, the results of the experiments described in Chapter 4 are pre-

sented. These results are interpreted and analysed throughout. Section 5.1

gives detailed results for the implementation of CSPs using oriented thickness

measures. The results for CSPs computed using best-fitting ellipsoids are given

in Section 5.2.

All p-values given in this chapter correspond to a two-tailed t-test. The

values of g correspond to Hedges’ g used to measure the level of effect [46].

5.1 Oriented thickness measures

First, the results on the yeast colonies are discussed, including classifying only

the A7-50 group by growth stage, classifying the A7-50 group by growth stage

using a rotationally invariant adaptation of oriented thickness measures, and

classifying the colonies by strain and nutrient conditions (Section 5.1.1). Sec-

ond, the results of classifying the cancellous bone data into the nine groups

defined by the three experimental groups and three distances from the growth

plate are presented (Section 5.1.2). Third, the results on the marbling data

are given, where the objective was to use CSP-based features in a regression

model to predict marbling proportion. The important predictive features are

71
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also visualised and discussed (Section 5.1.3).

5.1.1 Yeast colonies

Classification by growth stage

When the A7-50 yeast strain was classified into experimental groups defined by

the eight observation times after initiation of growth, using features based on

CSPs only, the highest classification accuracy was achieved with D = 4 angles

(Table 5.1). When the spatial indices were included in the augmented feature

vector (Equation 4.6), the classification accuracy increased overall, with the best

accuracy being achieved with D = 12 (Table 5.1). The best classification accu-

racy when spatial indices were included was statistically significantly different

from the best classification accuracy when only CSPs were used (p = 0.011).

Only the radial index was chosen as a best feature during classification (Ta-

ble 5.2). Out of the 30 trials, the radial index was chosen 27 times (Table 5.2).

The number of times each feature was chosen was independent of the order in

which the features appeared in the feature vector (the experiment was repeated

in full for each of the six possible permutations of three features, and the angu-

lar and pair-correlation indices were never chosen, with the radial index chosen

approximately 20 times on average – detailed results are not shown).

These results suggest that the information extracted by the radial index

significantly contributes towards the classification. This is not surprising, since

the indices were designed to capture temporal changes in the yeast colonies [6].

The radial index detects the outward growth of the colonies, whereas the angular

index captures angular growth of the colonies and the pair-correlation index may

be thought of as a measure of aggregation. The angular and pair-correlation

indices are designed to capture differences in directional growth, for example if

a yeast colony is growing towards a nutrient source. For a set of colonies that

are growing radially outwards, evenly in all directions, the result that the radial

index best captures the differences between colonies makes sense (Figure 4.2).
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Table 5.1: Classification accuracy as a function of D, for the A7-50 strain with each of
the eight observation times considered to be one experimental group. CSPs refers to the
classification accuracies obtained when only features based on CSPs were used (Equa-
tion 3.2). Spatial indices refers to the classification accuracies obtained when spatial
indices were included (Equation 4.6), and Randomised shows classification accuracies
for the corresponding classification on randomised data. For each classifer, M = 80
CSPs were computed and n = 30 trials were conducted. The highest classification
accuracy for each (non-randomised) classification process is shown in bold.

D CSPs Spatial indices Randomised

2 µ = 0.793, σ = 0.025 µ = 0.838, σ = 0.013 µ = 0.330, σ = 0.034

4 µ = 0.864, σ = 0.033 µ = 0.879, σ = 0.025 µ = 0.323, σ = 0.029

8 µ = 0.854, σ = 0.028 µ = 0.872, σ = 0.014 µ = 0.325, σ = 0.027

12 µ = 0.860, σ = 0.026 µ = 0.883, σ = 0.021 µ = 0.327, σ = 0.033

18 µ = 0.841, σ = 0.026 µ = 0.877, σ = 0.024 µ = 0.325, σ = 0.028

Table 5.2: The number of times (out of 30) that each of the spatial indices were chosen
as one of the three best features for classification, as a function of D, for the classifica-
tion of the A7-50 strain with each of the eight observation times considered to be one
experimental group.

D Ir
M

Iθ
M

IΘ
M

2 27 0 0

4 14 0 0

8 15 0 0

12 25 0 0

18 20 0 0

When the feature vectors described in Equation 4.7 (that is, spatial indices

only) were input into the classifier, the classification accuracy was 0.525. This

suggests that, while spatial indices capture some information about the temporal

evolution of the colony, the information captured by the CSPs and the spatial

indices complements each other. The combination of CSPs and spatial indices

results in better prediction of the growth stage of the yeast.

In addition, for all values of D, the classification accuracy achieved by the

CSPs or by the combination of CSPs and spatial indices were significantly higher

than for the corresponding experiment with randomised class labels (Table 5.1),



CHAPTER 5. RESULTS AND ANALYSIS 74

suggesting that these features did not attain such high classification accuracies

by chance alone.

Rotation invariance

When the A7-50 strain was classified according to growth stage, with the shape

primitives computed using Equations 3.3 and 4.8, the best classification accu-

racy was achieved with D = 12 angles (Table 5.3). For all values of D, the CSPs

computed without rotation invariance and the CSPs without rotation invariance

combined with the spatial indices outperformed the CSPs computed with rota-

tion invariance (Tables 5.1 and 5.3). The best classification accuracy obtained

using the CSPs without rotation invariance (D = 4) was significantly different

from the best classification accuracy obtained using the CSPs computed with

rotation invariance (D = 12) (p < 0.001). Similarly, the best classification ac-

curacy obtained using the CSPs computed without rotation invariance plus the

spatial indices (D = 12) was significantly different from the best classification

accuracy obtained using the CSPs computed with rotation invariance (D = 12)

(p < 0.001).

Table 5.3: Classification accuracy as a function of D, for the A7-50 strain with each
of the eight observation times considered to be one experimental group and oriented
thickness measures modified to be rotationally invariant (Equation 4.8). For each value
of D, M = 80 CSPs were computed and n = 30 trials were conducted. The best
classification accuracy is shown in bold.

D Classification accuracy

2 µ = 0.729, σ = 0.027

4 µ = 0.778, σ = 0.031

8 µ = 0.819, σ = 0.030

12 µ = 0.835, σ = 0.027

18 µ = 0.816, σ = 0.030

These results are somewhat surprising. The angles at which the thickness

measurements were made were modified so that two patterns occurring in the

pseudohyphae at two different angles (with respect to the centroid of the colony)
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would be recognised as the same pattern. The yeast colonies do not appear to

have grown with bias towards any particular direction (for instance, towards a

nutrient source), instead appearing to grow radially outwards at an even rate

in all directions (Figure 4.1). For this reason, in theory, CSPs computed with

rotation invariance should improve the classification score, since the same shape

pattern should be recognised as the same, regardless of the angle at which it

appears. However, the results do not support such a theory, instead suggesting

that directional information does contribute towards the classification of the

A7-50 colonies into groups defined by growth stage.

For a majority of points p, the rotationally invariant variation of the method

would inherently result in the largest length measurement being recorded as

the first element of the shape primitive. In the rotationally invariant method,

the classification results could possibly be due to filament length, rather than

the complex shape patterns present in the pseudohyphae. This may be an

explanation for the lower classification accuracies obtained using this variation

of the method.

Classification by strain and nutrient conditions

The author would like to acknowledge and thank B. J. Binder and H. Tron-

nolone for their helpful discussion regarding the work presented in this section.

(1) Classification by strain:

When the data sets A7-50 and AR-50 were classified according to strain, the

best accuracy score was achieved using D = 4 and K = 10 (Table 5.4). How-

ever, this classification accuracy was not significantly different to those obtained

using D = 4,K = 5 or D = 12,K = 10. The results suggest that measuring the

lengths of the yeast colonies at only four angles provides sufficient information

towards classification using features based on CSPs. Choosing a higher number

of clusters per class appears to be more important than using a higher number
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Table 5.4: The mean and standard deviation (n = 30) as a function of the number
of clusters K per class and number of angles D chosen to compute the CSPs when
classifying A7-50 and AR-50 by strain. The best classification accuracy is shown in
bold.

K 4 angles 12 angles

5 µ = 0.987, σ = 0.035 µ = 0.907, σ = 0.037

10 µ = 0.997, σ = 0.018 µ = 0.987, σ = 0.035

Table 5.5: The accuracy score as a function of the number of clusters K per class
and number of angles D used to compute the CSPs when performing LOOCV for the
classification of A7-50 and AR-50 by strain.

K 4 angles 12 angles

5 1.00 1.00

10 1.00 1.00

of angles at which to make length measurements.

During training and testing, the spatial indices were never chosen as one of

the best features for classification. At approximately 240 hours after initiation

of growth, the values of the indices did not discriminate well between A7-50

and AR-50, which is consistent with the results in Binder et al. [6]. However,

Binder et al. showed that the spatial indices took on different values at ap-

proximately 170 hours after the start of growth [6]. If the classification process

presented here was repeated using yeast colonies imaged at 170 hours instead

of 240 hours, then the spatial indices may be more useful towards the classi-

fication. The tradeoff is that the CSPs may not capture as much information

because the pseudohyphae in either colony have not had as much time to de-

velop.

During LOOCV, all 20 images were classified correctly regardless of the

number of angles D at which the CSPs were computed and the number of

clusters K per class (Table 5.5). This means that, for all 20 images, there was

at least one feature (either based on a CSP or spatial index) that could classify

that image correctly.
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Table 5.6: The number of times (out of 20 runs) each of the spatial indices was chosen
as one of the best features when classifying A7-50 and AR-50 by strain at a single time
point and performing LOOCV.

Index Times chosen

Ir 0

Iθ 6

IΘ 8

The angular index and angular pair-correlation index were picked as one of

the best features six and eight times, respectively (Table 5.6). This does not

necessarily mean that these spatial indices were the only features that correctly

classified these images, since there may have been more than one feature that

gave a correct classification. The number of times each index achieves a classi-

fication accuracy of 1.00 is independent of the choices for D and K, since these

affect the computed CSPs only. The results demonstrate that a combination of

shape features based on CSPs and spatial indices can classify yeast colonies by

strain to a very high degree of accuracy.

Although not a robust test of the classification process, the feature analysis

method (Section 4.3.1) allows for visualisation of the shape patterns that result

in good discrimination between the groups. In order to analyse the features that

gave the best discrimination between strains, the training and testing method

was repeated once with D = 4 and K = 10, since these gave the best classifi-

cation accuracy during training and testing with n = 30 (Table 5.4). Out of 23

features tested, two gave an equal best classification score of 1.00. These were

both CSPs rather than spatial indices, and are given by

C6 = (59.7, 52.1, 59.3, 977.6)

and

C8 = (54.1, 968.9, 55.0, 44.3) ,
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Figure 5.1: The shape patterns that gave a perfect classification of A7-50 and AR-50
by strain. Each bin represents an angle, and the height of the bin represents the length
measurement made at that angle (after clustering).

where each entry in the CSP vectors represents a length in µm, measured at

angles of 0, π/4, π/2, and 3π/4, respectively. These may be represented by

histograms (Figure 5.1). The histograms provide a means of characterising the

shape patterns that are learned by the classification method as the features that

discriminate best between strains. The numerical labels for the CSPs do not

provide any information other than providing a convenient means of keeping

track of the CSPs for each individual run of the classification process.

For each of the features that gave a perfect accuracy for one run of the clas-

sification process, the largest length measurement occurred at 3π/4 and π/4,

respectively, with the two features being at a comparable scale. The largest

length measurement was approximately 970 µm for both shape features, which

suggests that these features were picking out longer filaments present in the

yeast colonies at an angle of 3π/4 and π/4. The filaments of the A7-50 colonies

appear to be typically longer than those of AR-50 (Figure 4.1), which likely

enables the CSPs to distinguish between strains.

(2) Classification by nutrient concentration:

When the colonies from A7-50 and A7-500 were classified by nutrient concentra-

tion by splitting the data into training and testing sets and conducting n = 30
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Table 5.7: The mean and standard deviation (n = 30) as a function of the number of
clusters K per class and number of angles D used to compute the CSPs when classifying
A7-50 and A7-500 by nutrient concentration.

K 4 angles 12 angles

5 µ = 1.00, σ = 0.00 µ = 1.00, σ = 0.00

10 µ = 1.00, σ = 0.00 µ = 1.00, σ = 0.00

Table 5.8: The accuracy score obtained using LOOCV when classifying A7-50 and A7-
500 by nutrient concentration, as a function of the number of clusters K per class and
number of angles D used to compute the CSPs.

K 4 angles 12 angles

5 1.00 1.00

10 1.00 1.00

trials, all combinations of values for D and K gave an equal best classification

accuracy of 1.00, while the spatial indices were never chosen as a best feature

(Table 5.7). Classifying by nutrient concentration appears to be an easier classi-

fication problem than classifying by strain. The growth patterns in the A7-500

group are closer to the regular growth pattern than the A7-50 group, exhibiting

pseudohyphae that are less developed (Figure 4.1). The classification process

picks out these differences effectively.

Similarly, during LOOCV, all choices for D and K gave a perfect classifi-

cation accuracy (Table 5.8). For each of the 19 images, there was at least one

individual feature that classified that image correctly.

The radial index was selected over two times more often than either of the

other indices (Table 5.9). This is again not surprising as the growth patterns in

the A7-500 group appear to be more circular in shape with shorter pseudohyphae

than those in the A7-50 group, so the radial distance RCSR is expected to be

higher for the colonies in the A7-500 group. In general, radial information

appears to be more important than angular information when using the spatial

indices to discriminate between yeast colonies by nutrient concentration.
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Table 5.9: The number of times (out of 19 runs) each of the spatial indices was chosen as
one of the best features for classification when performing LOOCV for the classification
of A7-50 and A7-500 by nutrient concentration.

Index Times chosen

Ir 15

Iθ 6

IΘ 5

Since all combinations of values of D and K performed equally well dur-

ing training and testing, D = 4 and K = 10 were chosen for feature analysis

for consistency with the results for classification by strain above. Of the 23

features tested, 14 of the CSPs gave a tied best classification accuracy of 1.00

(Figure 5.2). None of the spatial indices achieved such a high classification

accuracy. The largest length measurements of several of the best CSP-based

features occurred at π/4 and 3π/4, which is similar to the two best features

chosen when classifying by strain (Figure 5.1). In addition, the features were at

a similar scale. However, many additional features gave a perfect classification

here, which suggests that classification by nutrient concentration is an easier

classification problem than classifying by strain.

(3) Classification by strain and nutrient concentration

When the yeast colonies were classified by both strain and nutrient concentration

using all three data sets (A7-50, A7-500, and AR-50) by splitting the data into

training and testing sets and conducting n = 30 trials, the best classification

score was achieved with D = 12 and K = 10 (Table 5.10). However, this

score was not significantly different from those obtained using D = 4,K = 5

or D = 4,K = 10. Increasing the information content of the CSPs by increasing

the number of angles at which the CSPs are computed and the number of

clusters per class slightly increases the effectiveness of the classification process.

The spatial indices were never chosen as a best feature, which suggests that
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Figure 5.2: The shape patterns that gave a perfect classification of A7-50 and
A7-500 by nutrient concentration. In each histogram, the bins represent the an-
gles 0, π/4, π/2, 3π/4 (left to right), and the height of each bin represents the length
measurement made at that angle (after clustering). In each panel, the range of the
vertical axis is 0 to 2000 µm.
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Table 5.10: The mean and standard deviation (n = 30) of the classification accuracy as
a function of the number of clusters K per class and number of angles D used to compute
the CSPs for the three-group classification problem using A7-50, A7-500, AR-50. The
best classification accuracy is shown in bold.

K 4 angles 12 angles

5 µ = 0.957, σ = 0.052 µ = 0.898, σ = 0.064

10 µ = 0.955, σ = 0.064 µ = 0.969, σ = 0.041

Table 5.11: The accuracy score obtained using LOOCV for the three-group classification
problem as a function of the number of clusters K per class and number of angles D
used to compute the CSPs using A7-50, A7-500, and AR-50.

K 4 angles 12 angles

5 1.00 1.00

10 1.00 1.00

shape-based features are more important when classifying yeast colonies when

no information about the strain or nutrient concentration is known beforehand.

During LOOCV, all 29 images were classified correctly regardless of the

choices made for D and K (Table 5.11). This means there was at least one

feature that could classify each image correctly, suggesting that a classification

process that uses a combination of features based on CSPs and spatial indices

extracts useful information from the binary yeast colonies.

The number of times that each spatial index was chosen as a best feature is

shown in Table 5.12. These results are not necessarily achieved exclusively by

that feature, as other (CSP-based) features may have resulted in an equal best

classification. The number of times each spatial index gave an accuracy score

of 1.00 was independent of the choices for D and K.

In order to analyse the features, D = 12 and K = 10 were chosen for

one run of the classification process, since this combination achieved the best

accuracy during training and testing. Of the 33 features tested, two CSPs tied

for a classification accuracy of 1.00 (Figure 5.3). The spatial features did not

produce a perfect accuracy score.



83 5.1. ORIENTED THICKNESS MEASURES

Table 5.12: The number of times (out of 29 runs) each of the spatial indices was
chosen as one of the best features for classification, using LOOCV for the three-group
classification problem using A7-50, A7-500 and AR-50.

Index Times chosen

Ir 6

Iθ 1

IΘ 2
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Figure 5.3: The shape patterns that gave a perfect classification when classifying A7-50,
A7-500 and AR-50 by both strain and nutrient concentration. Each bin represents an
angle, with the leftmost bin corresponding to an angle of 0 and the rightmost bin cor-
responding to 11π/12. The increments between angles are π/12. The height of each bin
represents the length measurement made at the corresponding angle (after clustering).
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(a) (b) (c)

Figure 5.4: One example colony from each of the three groups in the classification by
strain and nutrient concentration, with the sizes of the colonies relative to each other
displayed correctly so that colonies images at different resolutions can be compared. (a)
A7-50. (b) A7-500. (c) AR-50. There are differences in filament lengths and overall
colony size between the three groups.

The shapes corresponding to the CSP-based features cannot be compared

directly to those from the other classification problems (Figures 5.1 and 5.2)

because different values of D and K were used to compute the features, al-

though similar patterns can be seen. For instance, the CSP labelled number 19

corresponds to a similar shape to that of CSP labelled number 6 in Figure 5.1,

with longer lengths around an angle of 3π/4 and shorter lengths around π/4.

Overall, for the classification of yeast colonies by strain and nutrient concentra-

tion, a shape pattern with the largest length measurement oriented at an angle

of 3π/4 appears to give most discrimination between classes, possibly since these

measurements are picking out differences in filament lengths between the groups

(Figure 5.4).

Comparison with previous work

Previous studies have considered the classification of S. cerevisiae colonies into

two morphological groups (smooth versus fluffy) based on 427 image features

using regularised logistic regression [119]. Of these features, only six were chosen

as important for classification and were derived directly from the images, includ-

ing texture features derived from the interior of the colony. The classification
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method presented here has been developed based on less information, namely

binary information only rather than greyscale images. The average classifica-

tion accuracy for the two-group classification problem where the yeast colonies

from A7-50 and AR-50 were classified by strain was slightly better than the

two-group morphological classification problem of smooth and fluffy colonies

by [119] (0.997 compared with 0.988), indicating that the method presented

here is equally powerful.

Previous work on the quantification of yeast colonies required extensive lists

of features to be identified as input to the classification in order to identify which

were useful. Despite the size of such lists, this approach may result in important

features being overlooked and thus not considered by the classification process.

The method presented here has the advantage of selecting the best features

automatically, avoiding the need to specify features, which risks missing key

attributes.

5.1.2 Cancellous bone

When CSPs were used to classify cancellous bone based on oriented thickness

measures, the best classification accuracy was achieved when shape and density

information was input into the classifier separately (Table 5.13). However, this

classification accuracy was not significantly higher than the accuracy obtained

when both shape and density information was used but input together (p =

0.056). Overall, including both shape and density information increased the

performance of the classification process.

When shape and density were separated, the density feature was chosen as

one of the three best features in all of the 30 trials. The classification pro-

cess based on these CSPs outperformed the shape only CSPs (Table 5.13, p <

0.001, g = 3.41) and the density only CSPs (Table 5.13, p < 0.001, g = 6.71).

The CSPs based on shape only outperformed the CSPs based on density only

(Table 5.13, p = 0.092, g = 1.69).
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Table 5.13: Performance as a function of the classification process on cancellous bone
data. The second column shows the classification accuracies for each method for im-
plementing CSPs with K = 10 clusters per class. For the first three implementa-
tions, n = 30 trials were conducted. The best classification accuracy is shown in bold.

Implementation Classification accuracy

Shape and density, unseparated µ = 0.637, σ = 0.021

Shape only µ = 0.575, σ = 0.025

Shape and density, separated µ = 0.647, σ = 0.017

Density only 0.533

In general, including shape information significantly increased the classifi-

cation accuracy, regardless of whether the shape and density information was

separated. Using CSPs containing shape information only gave a better clas-

sification accuracy than using bone density as a single feature, although the

level of effect was not as high and the difference was not statistically significant

at the 0.05 level. In the context of cancellous bone in rats, shape and density

information appear to be complementary. Classification appears to rely more

strongly on the shape information than the density information, which suggests

that there are indeed differences in the microstructure of the cancellous bone

between sham, ovx, and ovx+zol rats.

5.1.3 Marbling in beef

The CSPs and histograms of CSP occurrences hi were computed on the marbling

data (Section 4.3.3). One feature chosen from hi,j , j = 1, . . . , 10 (Equation 4.10)

was used to fit the linear regression model to predict marbling proportion MP.

The coefficient of determination R2 was recorded for each feature (Table 5.14).

The occurrence of CSP labelled number 10 was the single best feature for

regression (Table 5.14). When combinations of two or three features were used,

the occurrences of CSPs labelled 2 and 4 also contributed to predicting marbling

proportion (Table 5.15). The best combination of two or three features did not

correspond to the best single features, with the exception of the occurrence of
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Table 5.14: The coefficient of determination R2 as a function of CSP label. The best
three CSPs are shown in bold.

CSP label R2

1 0.213

2 0.027

3 0.579

4 0.010

5 0.139

6 0.021

7 0.096

8 0.365

9 0.129

10 0.793

Table 5.15: The best coefficient of determination achieved using linear regression, and
the corresponding best combination of features as a function of the number of features
used to fit the regression model.

Number of features Best R2 Combination of features

1 0.793 10

2 0.889 4, 10

3 0.909 2, 4, 10

CSP labelled number 10. The presence of the shape pattern represented by CSP

number 10 appears to be strongly correlated with marbling proportion. The

values of CSPs 2, 3, 4, 8, and 10 are shown in Table 5.16.

Each of the vectors shown in Table 5.16 corresponds to marbling thicknesses

in mm, with the first four thicknesses being measured in four directions within

each slice in the striploin, and the fifth thickness being measured in the direction

perpendicular to the slices. The thicknesses within each slice were measured with

respect to the x axis, as determined by the orientation at which each slice was

photographed. In general, as the occurrence of CSP number 10 increased, the

marbling proportion decreased (Figure 5.5).

The physical manifestations of CSPs labelled 2, 3, 4, 8, and 10 are shown
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Table 5.16: The values of the CSPs labelled 2, 3, 4, 8, and 10. The CSP labelled num-
ber 10 is shown in bold, since this appears to be the most important indicator of
marbling proportion. The vectors shown here correspond to the values of the CSPs
whose occurrences resulted in the best features for the linear regression.

CSP label Value

2 (5.60, 7.50, 17.4, 7.36, 11.9)

3 (6.05, 6.04, 4.91, 4.71, 22.1)

4 (3.40, 3.18, 2.68, 2.61, 12.7)

8 (7.14, 18.9, 7.49, 5.74, 13.1)

10 (2.26,2.26,2.12,1.96,5.66)

0.25 0.3 0.35 0.4 0.45 0.5

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.5: Marbling proportion plotted as a function of the occurrence of CSP labelled
number 10. The correlation is R2 = 0.793.
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in Figure 5.6, where each CSP is represented by a histogram, and Figure 5.7,

where each CSP is represented in the form of a three-dimensional drawing.

In the three-dimensional drawing, each thickness measurement is represented

by a line segment of length proportional to the thickness in the corresponding

direction. Figure 5.6 is an “honest” representation of each CSP in the sense

that, in each of the histograms, the height of each bin represents the thickness

of the marbling in a given direction. Figure 5.7 is given here to facilitate the

visualisation of each CSP, but is not necessarily a true representation of the

CSPs because the line segments representing the thickness measurements have

been assumed to intersect at their midpoints. Actually, information about the

point of intersection of each of the line segments has been lost.

Of the five CSPs that have been identified as most important for predicting

marbling proportion, CSP labelled number 10 corresponds to the most “round”

shape, with the five thicknesses being relatively uniform (Figures 5.6 and 5.7).

The CSPs labelled 2, 3, 4, and 8 each exhibit at least one thickness that is much

larger than the others. Thus, some measure of “roundness” appears to be a good

predictor of marbling proportion. In addition, CSP labelled number 10 corre-

sponds to a relatively small shape overall compared with the other CSPs shown

in either Figure 5.6 or 5.7, so it is not surprising that a large marbling propor-

tion corresponds to a low frequency of the occurrence of CSP 10 (Figures 5.5

and 5.8).
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Figure 5.6: The CSPs identified as important for predicting marbling proportion, each
represented using a histogram. For each image, the height of each bin represents the
thickness of the marbling in a given direction. The left-most four bins represent the
angle within the slices of the striploin, and the bin labelled z represents the angle
perpendicular to the slices, or the z direction.
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Figure 5.7: The CSPs identified as important for predicting marbling proportion, each
represented by a drawing in three dimensions. The length of each line segment is propor-
tional to the thickness measurement in the corresponding direction. The measurements
in the xy plane are shown in blue and the measurement in the z direction is shown in
red, for clarity. These drawings are not necessarily a true representation of each CSP
because, for the purpose of visualisation, each of the line segments has been assumed to
intersect at the midpoint. Actually, information about the point of intersection of the
line segments has been lost. CSP number 10 is smaller and “rounder” than the other
CSPs shown.
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(a)

(b)

Figure 5.8: Examples of one slice of striploin taken from steers with (a) minimum
(MP = 0.090, represented by slice 13 taken from steer number nine) and (b) maximum
(MP = 0.286, represented by slice 13 taken from steer number 14) marbling proportions.
The frequency of the occurrence of CSP labelled number 10 can be used as a feature to
predict marbling proportion MP.
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5.2 Features derived from best-fitting ellipsoids

Here, the results obtained using CSPs computed with features derived from

best-fitting ellipsoids are presented. First, the results of classifying the A7-

50 yeast strain by growth stage are given (Section 5.2.1). Second, the results

of classifying the cancellous bone blocks into the nine groups as defined by

the three experimental groups and three distances from the growth plate are

presented (Section 5.2.2). The results are compared with relevant previous work

(Section 5.2.3) and briefly summarised (Section 5.2.4).

5.2.1 Yeast colonies

When fitting ellipses to the yeast colony data, the largest proportion of ellipse

centroids that fell outside the colony was 3.11 × 10−2 for r = 75.6 µm, with

the proportions dropping for smaller and larger values of r (Table 5.17). In

the context of yeast colonies, the possibility of centroids of the ellipses falling

outside Ω did not pose a serious problem, since this caused relatively few feature

vectors to be excluded from the representation space.

When the shape primitives were recorded using oriented ellipsoid parameters

(Definition 1), the highest classification accuracy was achieved using r = 303 µm

(Table 5.18). Here, information about the orientation and size of the ellipses was

included in the shape primitives. Using disks Br with r < 303 µm resulted in

ellipses that captured information at the local level. Although there appears to

be some filamentation at the local level, these small filaments seem to be similar

in shape regardless of the development of the larger filaments. These small

ellipses failed to capture the shape of the larger filaments. For r = 909 µm,

Table 5.17: The proportion of ellipses fit to all 80 images whose centroids fell outside
the colony as a function of r (in µm) when ellipses were fit to yeast colony data.

r 3.03 15.2 75.6 303 909

Proportion 6.00× 10−4 8.27× 10−3 3.11× 10−2 7.28× 10−4 0
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Figure 5.9: An ellipse fit to a yeast colony. The ellipse (blue) was fit using a ball Br

of radius r = 909 µm to a sampled point in colony number five at t = 233 hours after
initiation of growth. The connected component Ωp is shaded.

the ellipses were very large and captured information about a large area of the

colony, leading to information without much discriminative power (Figure 5.9).

The ellipses fit using disks Br, r = 303 µm, resulted in a good tradeoff between

picking out information at the local and the global level.

When oriented object parameters were recorded in the shape primitives (Def-

inition 2), the best classification score was achieved when the ellipses were fit

using disks of radius r = 15.2 µm. Here, the orientation of each ellipse was

recorded, along with the length of the colony itself in the major and minor di-

rections of the ellipse. When disks Br with r < 15.2 µm were used to fit the

ellipses, the ellipses fell too close to the boundary of the colony, resulting in

length measurements that did not adequately capture the shape patterns of the

colony. For r > 15.2 µm, the ellipses were large, giving centroids and directions

that result in length measurements with little discriminatory power (Figure 5.9).

Using disks with r = 15.2 µm resulted in the centroids of the ellipsoids falling

far from the boundaries of the filaments, meaning that oriented object param-

eters extracted useful information about the length and width of the filaments

(Figure 5.10).

When only ellipsoid shape parameters were recorded in the shape primitives
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Figure 5.10: An ellipse fit to a portion of a yeast colony. The ellipse (red) was fit using
a ball Br of radius r = 15.2 µm to one filament (white) isolated from colony number
five at t = 233 hours. The largest connected component Ωp that intersects with Bp

r is
shaded in grey. The blue and orange lines show the length measurements in the major
and minor directions of the ellipse, respectively. Oriented object parameters appear to
adequately capture the shape of the filament at this point, whereas the thickness of the
ellipse itself does not extract as much information about the shape of the colony.
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Table 5.18: Best classification accuracy as a function of r (µm) for yeast colony data.
Columns two to five correspond to the accuracy obtained using each of the four methods
for recording the shape primitives (Definitions 1–4, respectively). For each method, 80
CSPs were computed and 30 trials were conducted. The highest accuracy achieved by
each method is shown in bold.

r Oriented
ellipsoid
parameters

Oriented object
parameters

Ellipsoid shape
parameters

Object shape
parameters

3.03
µ = 0.722,
σ = 0.014

µ = 0.819,
σ = 0.025

µ = 0.744,
σ = 0.022

µ = 0.785,
σ = 0.018

15.2
µ = 0.702,
σ = 0.023

µ = 0.843,
σ = 0.021

µ = 0.776,
σ = 0.019

µ = 0.773,
σ = 0.025

75.6
µ = 0.763,
σ = 0.033

µ = 0.808,
σ = 0.020

µ = 0.840,
σ = 0.028

µ = 0.633,
σ = 0.025

303
µ = 0.827,
σ = 0.020

µ = 0.815,
σ = 0.023

µ = 0.755,
σ = 0.010

µ = 0.576,
σ = 0.021

909
µ = 0.478,
σ = 0.009

µ = 0.485,
σ = 0.013

µ = 0.413,
σ = 0.019

µ = 0.471,
σ = 0.016

(Definition 3), the highest classification accuracy was obtained with r = 75.6 µm.

This suggests the ellipses fit the data closely, being of a comparable length and

width to that of the filaments themselves. When only object shape parameters

were recorded (Definition 4), the best classification accuracy occurred at r =

3.03 µm (Table 5.18). This suggests the ellipses did not fit the data closely, but

their centroids corresponded to a set of subsampled points at which informative

object shape parameter measurements were made.

The highest classification accuracy overall (µ = 0.843, σ = 0.020) was

achieved by recording oriented object parameters, after fitting ellipses using

disks of radius r = 15.2 µm (Table 5.18). This result suggests that interrogating

the data directly, and including directional information in conjunction with this,

is the most effective way of extracting information from the yeast colony data.
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5.2.2 Cancellous bone

When ellipsoids were fit to the cancellous bone data, a large proportion of cen-

troids fell outside of the bone itself. The proportion increased with r, with the

largest proportion being 0.340 when balls of radius r = 435 µm were used to fit

the ellipsoids (Table 5.19).

Table 5.19: The proportion of ellipsoids fit to all 90 sub-blocks whose centroids fall
outside the bone as a function of r (in µm), for cancellous bone data.

r 17.4 43.5 131 261 435

Proportion 7.28× 10−4 6.33× 10−3 0.083 0.236 0.340

When oriented ellipsoid parameters were used for the shape primitives (Def-

inition 1), the highest classification accuracy was achieved at r = 131 µm (Ta-

ble 5.20). If balls of smaller radius were used, then the subset Ωp was small

and did not contain much meaningful information about the local structure. In

fact, the balls Bp
r were likely to fall entirely inside the bone, for most points p,

resulting in ellipsoids that were also balls. If balls of larger radius were used,

then each Ωp was likely to be large and complicated, and the ellipsoid proper-

ties failed to capture orientation and thickness information at the local level.

Choosing r = 435 µm meant that the diameter of each ball was almost as large

as the length of the two shortest sides of the bone block, so it is not surprising

that this choice of r corresponded to the lowest classification accuracy. The

choice r = 151 µm gave the optimal tradeoff between extracting local versus

global information about the trabecular structure.

When oriented object parameters were recorded (Definition 2), the equal

highest classification score occurred when the ellipsoids were fit using balls of

radius r = 17.4 and 43.5 µm. The standard deviation for r = 17.4 µm was

slightly smaller than that for r = 43.5 µm (Table 5.20). As r increased, the

proportion of centroids of the ellipsoids that fell outside the bone also increased,

and the classification accuracy decreased. This suggests that, although the
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ellipsoids fit using balls with r = 17.4 and 43.5 µm may be small and capture

local information only, their centroids most likely did fall close to the centre

of the bone and hence resulted in meaningful bone thickness measurements,

especially when combined with directional information.

In the case of the cancellous bone, the classification accuracy tended to

improve when directional information was removed from the shape primitives.

The highest classification accuracy overall (µ = 0.745 σ = 0.024) occurred

at r = 131 µm when only object shape parameters (Definition 4) were recorded

(Table 5.20). In the context of cancellous bone in rats, including directional

information in the features did not increase the discriminatory power of the

classification process. However, the lengths of the bone were measured in the

directions of the major, middle, and minor axes of the ellipsoid. Hence, the

length measurements alone contained some directional information in the sense

that the important directions were learned directly from the data, as opposed

to making assumptions about the direction of the main axis of the tibia.
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Table 5.20: Best classification accuracy as a function of r (µm) for cancellous bone
data. Columns two to five correspond to the accuracy obtained using each of the four
methods for recording the shape primitives (Definitions 1–4, respectively). For each
method, 90 CSPs were computed and 30 trials were conducted. The highest accuracy
achieved using each method is shown in bold.

r Oriented
ellipsoid
parameters

Oriented object
parameters

Ellipsoid shape
parameters

Object shape
parameters

17.4
µ = 0.593,
σ = 0.021

µ = 0.676,
σ = 0.016

µ = 0.633,
σ = 0.025

µ = 0.670,
σ = 0.021

43.5
µ = 0.640,
σ = 0.019

µ = 0.676,
σ = 0.020

µ = 0.670,
σ = 0.014

µ = 0.666,
σ = 0.017

131
µ = 0.663,
σ = 0.026

µ = 0.664,
σ = 0.021

µ = 0.695,
σ = 0.016

µ = 0.745,
σ = 0.024

261
µ = 0.620,
σ = 0.024

µ = 0.649,
σ = 0.029

µ = 0.670,
σ = 0.024

µ = 0.713,
σ = 0.020

436
µ = 0.613,
σ = 0.023

µ = 0.625,
σ = 0.023

µ = 0.657,
σ = 0.019

µ = 0.624,
σ = 0.016

5.2.3 Comparison with previous work

Martin and Bottema classified cancellous bone in rats into the same three ex-

perimental groups and three distances from the growth plate as described in this

study using a classification process based on oriented thickness measures [91].

However, oriented thickness measures may have the shortcoming that the sub-

sampled points p are not guaranteed to fall close to the centre of the bone.

Recording the shape primitives at a point p near the edge of the bone could

lead to the local shape being inadequately captured [45, 91]. In this part of the

study, the intention was to to replace each of the sampled points by the centroid

of the best fitting ellipsoid in order to relocate the sample away from the edge

of the bone. However, a preliminary study showed that a large proportion of

centroids typically fell outside of the bone [45]. This result was supported here

(Table 5.19), suggesting that the expected outcome of fitting ellipsoids to the

data was not achieved.
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Nonetheless, the preliminary study gave some promising classification scores

on the cancellous bone data, despite being limited in scope [45]. For this reason,

in this study, the shape primitives were defined in a more robust way, and the

potential of using ellipsoid-based features to classify binary objects based on

their shape was more thoroughly investigated.

In the current study, the definitions of the shape primitives are new. In the

earlier study, each ellipsoid was represented by the shape primitive

vp = (u1,1, u1,2, u1,3, u2,1, u2,2, `1, `2, `3) ,

where the lengths `i, i = 1, 2, 3, were measured in terms of voxel units [45]. The

elements of those shape primitives were not necessarily of equal magnitude (all

values of the elements of the unit direction vectors, u1,1, u1,2, u1,3, u2,1, u2,2, were

in the interval [−1, 1], whereas `i, i = 1, 2, 3, could vary by up to two orders

of magnitude). Here, all elements of the shape primitives were of comparable

magnitude. In addition, all length measurements were made in µm rather than

voxel units, meaning that the resolution of the data was accounted for and length

measurements were standardised in some sense.

The best classification scheme for cancellous bone in rats proposed in this

study (µ = 0.745, σ = 0.024, 30 trials) significantly outperformed the classifi-

cation schemes using shape features alone (µ = 0.607, σ = 0.018, 10 trials, p <

0.001), and standard attributes alone (classification accuracy of 0.467, p <

0.001, where the p-value is the value of the cumulative distribution function of

the normal distribution with mean 0.745 and standard deviation 0.024 at x =

0.467) in Martin and Bottema [91], as well as the classification scheme proposed

using ellipsoids (µ = 0.699, σ = 0.014, 30 trials, p < 0.001) in the preliminary

study [45]. If features derived from best-fitting ellipsoids were combined with

standard attributes [91], the classification accuracy may be improved further.
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5.2.4 Summary

For both data sets, the highest classification accuracy was achieved using either

oriented object parameters or object shape parameters, suggesting that interro-

gating the data directly is advantageous. For the yeast data, recording oriented

object parameters resulted in the highest classification accuracy, suggesting that

information about the thickness and orientation of the colony is important to-

wards the classification. For the cancellous bone data, the highest classification

score was achieved using object shape parameters (Definition 4). Although di-

rectional information was not specifically included in these shape primitives, the

process of fitting ellipsoids has the advantage that the directions in which length

is measured do not rely on laboratory coordinates or on assumptions being made

about the main axis of the tibia. The important directions in which to make

length measurements are learned directly from the data, and the results suggest

that these choices are sensible.





Chapter 6

Discussion

Here, the study is discussed as a whole and conclusions are drawn. The in-

tention is to compare the two methods for extracting features from the data,

namely via oriented thickness measures and best-fitting ellipsoids. To that end,

the two methods are first compared in the context of the yeast colonies (Sec-

tion 6.1), cancellous bone (Section 6.2) and marbling in beef (Section 6.3). These

comparisons are then drawn upon to discuss the study overall, including the ad-

vantages, disadvantages, and relevance of CSPs (Section 6.4). The significant

contributions of this thesis are summarised in Section 6.5.

As in Chapter 5, all p-values quoted here correspond to the two-tailed t-test.

6.1 Discussion of the yeast colonies

First, the images of the S. cerevisiae AWRI 796 strain grown in 50 µm ammo-

nium sulphate nutrient (A7-50) were classified into eight groups defined by the

observation time after initiation of growth. The best overall classification accu-

racy obtained using oriented thickness measures (µ = 0.883, σ = 0.021, n =

30, D = 12 with spatial indices included) significantly outperformed the best

overall classification accuracy using features computed from best-fitting ellip-

soids (µ = 0.843, σ = 0.021, n = 30, r = 15.2 µm with oriented object parame-
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ters). Here, p < 0.001. However, in order to compare the effectiveness of oriented

thickness measures and features derived from best-fitting ellipsoids more fairly,

the classification accuracies for the two methods should be compared when spa-

tial indices were not included. Again, the best classification accuracy obtained

using oriented thickness measures (µ = 0.864, 0.033, n = 30, D = 4 with no

spatial indices included) outperformed the best classification accuracy obtained

using features computed from the best-fitting ellipsoids above (p = 0.005).

In general, extracting shape features using oriented thickness measures ap-

pears to give the most discriminatory information for distinguishing between

A7-50 colonies by growth stage. This makes sense because, by visual observa-

tion, the most obvious change as time passes is in the length of the filaments.

Thus, it is not surprising that length measurements pick out the lengths of the

filaments and predict the observation time effectively.

For both methods for recording shape primitives, including some version

of directional information increased the classification accuracy. In the case of

the oriented thickness measures, this meant making all thickness measurements

with respect to the x axis, rather than with respect to the direction of the line

joining the centroid of the colony to the point p. For the features derived from

best-fitting ellipsoids, this involved recording the directions of the major, mid-

dle and minor axes in addition to the thickness of the colony at p (Definition 2;

oriented object parameters). This is somewhat surprising, since it appears that

the filaments of the yeast colonies grow radially outward at the same rate in all

directions. Since growth does not appear to be biased in any particular direc-

tion, this result is counterintuitive. However, for both methods, including more

information during computation of the features is definitively advantageous.

Second, the S. cerevisiae colonies were classified by strain, by nutrient con-

centration, and by strain and nutrient concentration when no information was

known about either using CSPs computed via oriented thickness measures. The

results were very promising in the sense that the classification method was
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equally as powerful as previous methods [119], but achieved this classification

accuracy using only binary data and a much smaller number of features, all of

which were learned automatically from the data. Furthermore, this classifica-

tion accuracy was obtained using shape features rather than textural features,

demonstrating that CSPs represent a viable and promising method for biomed-

ical image analysis wherever only binary data is available.

Since CSPs computed using features derived from best-fitting ellipsoids were

not implemented on this particular classification problem, comparing the meth-

ods used throughout this thesis (oriented thickness measures and features de-

rived from best-fitting ellipsoids) does not make sense. For a more complete and

fair comparison of the two methods, the yeast colonies should also be classified

by strain, nutrient concentration, and and both strain and nutrient concentra-

tion using features derived from best-fitting ellipsoids. This is left as future

work.

6.2 Discussion of the cancellous bone

In the context of the cancellous bone data, the best classification process using

features derived from best-fitting ellipsoids (µ = 0.745, 0.024, n = 30, r =

131 µm with object shape parameters) significantly outperformed the classifica-

tion process using oriented thickness measures (µ = 0.647, σ = 0.017, n = 30

with shape and density information considered separately) (p < 0.001). In

fact, for each method for recording features using best-fitting ellipsoids (Defi-

nitions 1–4), the best classification accuracy (corresponding to the best choice

of the radius parameter r) was higher than the best classification accuracy ob-

tained using oriented thickness measures. This suggests that, in the case of

the cancellous bone, features extracted using best-fitting ellipsoids result in a

stronger classification process than features obtained using oriented thickness

measures.

When extracting features using best-fitting ellipsoids, recording object shape
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parameters (Definition 4) means recording only the thickness of the bone in three

directions as specified by the directions of the major, middle, and minor axes of

the corresponding ellipsoid. Recording oriented thickness measures, in this case,

means recording the thickness of the bone in 13 directions as specified by the

laboratory coordinate frame, which depends on the orientation at which the tibia

of the rat was placed in the scanner. Thus, in the context of cancellous bone,

choosing the directions in a sensible way appears to be much more important

than recording more information (that is, recording shape primitive vectors of

a higher dimension) without forethought about the structure of the data. The

key is that a better classification accuracy is obtained using shape primitives

containing less information, but with that information chosen in a more sensible

manner.

Although fitting ellipsoids enables the directions at which the thickness mea-

surements are made to be chosen more carefully, recording oriented shape pa-

rameters means directional information is not directly included in the shape

primitives. Using shape primitives without directional information appears to

be advantageous in this case.

6.3 Discussion of marbling in beef

A linear regression model was used to predict the marbling proportion (Equa-

tion 4.1) of each of the striploins. The features were the occurrences of CSPs

computed by treating all of the striploins as one group. The best coefficient of

determination R2 = 0.909 was obtained when a regression model was fit using

three features. The best feature overall was the occurrence of CSP labelled num-

ber 10. When CSP 10 was used as a single feature in the regression model, the

resulting coefficient of determination was R2 = 0.793. Overall, the coefficients

of determination obtained were high, suggesting that CSP-based features are

good predictors of marbling proportion.

For CSP labelled number 10, the thicknesses in all of the five directions were
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close to each other, especially when compared to the other CSPs identified as

important towards predicting marbling proportion (Table 5.16 and Figure 5.6).

This means that a “round” shape is a good predictor of marbling proportion.

The results suggest that shape features can be good predictors of the mar-

bling proportion of the striploins. However, whether or not the shape charac-

teristics change as the marbling proportion increases (or whether the marbling

only becomes thicker) remains an unanswered question. More work is required,

for example principal component analysis to determine the amount of variation

in marbling proportion that is described by shape, or developing methods for

counting the average number of branches in each striploin. This is work in

progress (M. Bottema, personal communication, 19 October 2017).

In the context of marbling in beef, the idea of deriving features from best-

fitting ellipsoids was not considered. This is because of the difference in reso-

lution between and within slices, which would presumably result in elongated

ellipsoids in the z direction and would effectively reduce to measuring thicknesses

in the x, y, and z directions. In this case, measuring the amount of branching

or using oriented thickness measures is more intuitive. Thus, oriented thickness

measures and features derived from best-fitting ellipsoids cannot be compared

here.

The results for the marbling in beef illustrate the versatility of CSPs. Al-

though the emphasis in this thesis has primarily been on classification based

on CSPs, this part of the study demonstrates that CSPs may be applied and

evaluated in the context of a linear regression model. The results show that

CSPs can be good predictors of a specific characteristic of the data set, such as

marbling proportion.

6.4 Discussion of the overall study

In the context of the yeast colonies, in general, CSPs computed using oriented

thickness measures outperformed features derived from best-fitting ellipsoids. In



CHAPTER 6. DISCUSSION 108

addition, the classification process gave better results when directional informa-

tion was included in the shape primitives. On the other hand, in the context of

the cancellous bone, features derived from best-fitting ellipsoids outperformed

oriented thickness measures. Also, the classification process was stronger when

no directional information was recorded in the shape primitives.

Overall, there appears to be no one best method for shape analysis based

on CSPs, and instead the choices made should depend on the structure of the

objects being analysed. These choices should be made sensibly and with fore-

thought, as demonstrated by the superior classification results obtained in the

cancellous bone using thickness measurements made in only three directions

chosen sensibly, as opposed to 13 directions chosen by the laboratory coordi-

nate frame (Section 6.2). In addition, this means that testing different methods

on a particular data set could act as a form of interrogation in itself, and may

reveal information about the shape properties of that data.

This thesis also demonstrates that CSP-based features can be used for a

wide variety of different purposes, including classification, and regression for

predicting a certain characteristic of the data – as demonstrated by the marbling

in beef, where CSP-based features were used to predict the marbling proportion

in the striploin (Section 6.3).

Importantly, throughout this study, an automated shape analysis method

has been developed and its versatility has been demonstrated. Many existing

shape analysis methods, such as ASMs and AAMs, require some user input de-

spite incorporating a training step to learn shape patterns from the data. For

example, in ASMs and AAMs, landmark points must be placed on each sample

before shape patterns can be learned. However, when the shape patterns ap-

pearing in the object under consideration are highly irregular, as is the case with

the examples considered in this thesis, the placement of such landmark points

is difficult or impossible. For example, for the yeast colonies, landmark points

would have to be placed at two equivalent points on two different pseudohyphae.
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For the cancellous bone, landmark points would have to be placed at equiva-

lent points on the trabeculae of two different samples. For an object exhibiting

highly irregular shape patterns, the question of how to define equivalent points

on two different samples is essentially impossible to answer.

The method developed in this thesis avoids the need for manual placement

of landmark points, and instead allows for highly complex and irregular shape

patterns to be learned automatically from the data. In addition, the user is

allowed to understand how the shape patterns are captured and can visualise

the resulting CSPs, as demonstrated by the results on the yeast colonies (Sec-

tion 5.1.1) and marbling in beef (Section 5.1.3). Furthermore, in comparable

classification studies, a very large list of pre-defined features is often considered,

with the authors presumably defining such a large number of features to avoid

important features being overlooked [119]. In this study, the number of features

input into the classifier is relatively small, and since these features are learned

automatically from the data, the possibility of overlooking important features

is alleviated.

The method proposed here is effective and efficient for shape analysis of

objects exhibiting highly irregular shape patterns, but may be inefficient for

regular shapes. Depending on the position of the sampled point p, two identical

shapes may result in two different shape primitives, and two different shapes may

have identical shape primitives (Figure 6.1). At first glance, this appears to be

a drawback of the method. However, if the full method is applied, including

the computation of shape primitives at a large set of sampled points, clustering,

and computation of histograms of CSP occurrences, then the final normalised

histograms will be the same (no significant difference) for identical shapes and

different for different shapes. Accordingly, the method may be used for regular

shapes, but is not efficient. The method is efficient and effective specifically in

the context of irregular shapes, such as those often encountered in biomedical

data.
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Figure 6.1: Three regular shapes and corresponding shape primitives computed at
different sampled points p. The boundaries of the objects Ω are shown in blue. A
shape primitive is recorded at D = 16 equally spaced angles (red). The shape primitive
is represented by a histogram (dark blue). Left and middle: two identical shapes are
represented by two different shape primitives. Left and right: two different objects are
represented by the same shape primitive. The shape on the right is regular in the sense
that it was generated as a radial function using sine and cosine function with five chosen
parameters: one initial radius, two frequencies and two amplitudes.

Finally, the results demonstrate that the CSP-based method may be imple-

mented on a range of data sets, each exhibiting different characteristics, and

for different purposes (for example, for classification or for building a regression

model). The idea of CSPs is promising, especially for shape analysis of objects

exhibiting highly irregular shape patterns. However, since SSMs or methods

where geometric parameters are defined a priori are not readily applicable for

objects with highly irregular shape patterns, evaluating the strength of CSP-

based methods by benchmarking with similar shape analysis methods is impos-

sible in practice. Despite this, the thesis demonstrates that strong classification

and regression results can be achieved using CSPs and illustrates the versatility

of the method.

The classifiers chosen throughout the study were very simple. In particular,

a linear classifier was chosen for classification, with exhaustive search chosen

as the feature selection method. These were chosen as opposed to support

vector machines, artificial neural networks, deep learning, etc., because of the

small number of samples in each of the data sets, and because the purpose
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of the study was to evaluate the discriminatory power of the features arising

from the shape primitives and to compare the different methods of computing

features. A simple linear classifier gives more certainty that positive results

were achieved due to the features rather than overclassification. In addition,

the number of features chosen for the classifier will always be small because the

most important features are learned automatically from the data and there is

no need to define a large number of features. Hence, despite its computational

complexity, exhaustive search remains a reasonable choice for feature selection

in the context of this study.

6.5 Summary of the contributions of the thesis

The significant contributions of this thesis are as follows.

1. A general method has been developed for shape analysis, in particular for

objects exhibiting highly irregular shape patterns.

2. Shape patterns are learned automatically from the data. This means that

the most important descriptive features are learned, as opposed to using

a large list of features defined a priori, many of which may be redundant.

This also means that important features are not inadvertently overlooked.

3. There is no need to place landmark points at equivalent locations on each

sample. This means the method may be used for the analysis of highly

irregular shape patterns, and for this reason is advantageous compared

to methods such as SSMs for characterising biomedical data. However,

the method cannot feasibly be evaluated by comparison with baseline ap-

proaches such as SSMs.





Chapter 7

Conclusions and future work

In this chapter, the conclusions that may be drawn from the results of this

study are summarised (Section 7.1). Some shortcomings of the work are briefly

discussed and ideas for future work are presented (Section 7.2).

7.1 Conclusions

The conclusions drawn from this study may be summarised as follows.

1. Features may be computed by taking oriented thickness measures, or by

finding best-fitting ellipsoids and extracting features based on these ellip-

soids. The method of computing features must be chosen sensibly, and

certain choices achieve better results depending on the nature of the data.

2. The proposed method has been developed specifically in the context of

highly irregular binary data. The method may not be efficient for shape

analysis of regular or semi-regular objects, but has been shown to achieve

competitive classification results wherever only binary data was available

and the shape patterns exhibited were complex (Sections 5.1.1 and 5.2.3).

This is a promising method for the analysis of binary biomedical data, and

pursuing the ideas developed in this thesis further is worthwhile.
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7.2 Future work

Although this study proposes a method for shape analysis, considers different

ways in which the method can be implemented, and validates the method by

providing classification and regression results in a variety of contexts, there is

more work that could be done. Some current shortcomings and ideas for future

work are listed below.

1. In a few instances throughout the thesis, the K-means algorithm was run

only once, and thus only one set of CSPs was computed. For example,

this occurred when the yeast colonies were classified by strain and nutri-

ent conditions and the features were visualised (Section 4.3.1), and during

regression to predict marbling proportion (Section 4.3.3). Although visu-

alising the CSPs that are important for classification or regression allows

the user to understand the important discriminatory or predictive shape

patterns, this is not a rigorous way of evaluating the method. In these

cases, the CSPs could be evaluated further by repeating the process n

times, recording the highly discriminatory CSPs each time, and then clus-

tering the collection of these CSPs. This would allow for analysis of the

clusters, including the within-cluster distance, and thus an understanding

of how consistently similar shape patterns are being learned.

2. When shape primitives are recorded, both using oriented thickness mea-

sures and best-fitting ellipsoids, the points p at which to record the shape

primitives tend to be chosen arbitrarily. Choosing the points p in a more

sensible way was originally the motivation for fitting the ellipsoids to the

object Ω, with p being taken to be the centroids of the ellipsoids. However,

a reasonably large proportion of the centroids were shown to fall outside Ω

(Sections 5.2.1 and 5.2.2). In addition, there is no obvious way, in general,

to evaluate whether the remaining points fall far enough from the bound-

ary ∂Ω. For this reason, a method for choosing a more satisfactory point p
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is desired. Finding such points may be possible using an idea based on

convex sets, and the resulting points p could be taken to compute oriented

thickness measures or to fit ellipsoids.

3. The yeast colonies were not classified by strain and nutrient conditions

by deriving features from best-fitting ellipsoids. This was because, when

the A7-50 group was classified by growth stage, the oriented thickness

measures significantly outperformed the features derived from best-fitting

ellipsoids. However, exploring the idea of best-fitting ellipsoids in this

context could be worthwhile. In the context of classifying the colonies

by time, the oriented thickness measures could have worked exceptionally

well because the lengths of the filaments were increasing with time. In

this case, ellipsoids may work more effectively by capturing the more sub-

tle differences in shape patterns. In addition, being able to identify the

strain of a yeast colony at the termination of growth is of more practical

importance than being able to predict its growth stage [6].

4. In the case of the marbling in beef, the idea of using CSP-based features to

classify animals into the A+ and A- groups was not pursued. In previous

runs, such a classification process achieved approximately 14 correct as-

signments out of 20 (M. Bottema, personal communication, 3 May 2017).

Although this is a positive result, in practice it is not sufficiently reliable to

be considered useful. In addition, the data set is not sufficiently large for

the results to be validated rigorously. Classifying animals into experimen-

tal groups defined by their diet could be worth pursuing, but ideally would

require larger data sets, including animals of different breeds, genotypes,

ages, dietary conditions, and so on.

5. The work presented in the thesis could extend to continuous image data.

Mathematically, there is no difference between the work presented here and

the framework for continuous image data. In fact, the general setting as
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described in Chapter 3 is presented in the continuous setting. There may

be practical difficulties in measuring the thickness at various orientations

depending on how the continuously defined object is presented.
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association of proximal femur geometry with hip fracture risk. Clin. Anat.,

21:575–580, 2008.

[31] H. G. Dolezal, G. C. Smith, J. W. Savell, and Z. L. Carpenter. Comparison

of subcutaneous fat thickness, marbling and quality grade for predicting

palatability of beef. J. Food Sci., 47:397–401, 1982.

[32] M. Du, Y. Huang, A. K. Das, Q. Yang, M. S. Duarte, M. V. Dodson, and

M.-J. Zhu. Meat Science and Muscle Biology Symposium: Manipulating

mesenchymal progenitor cell differentiation to optimize performance and

carcass value of beef cattle. J. Anim. Sci., 91:1419–1427, 2013.



121 REFERENCES

[33] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John

Wiley & Sons, 1973. Data mining, inference, and prediction.

[34] A. F. Egan, D. M. Ferguson, and J. M. Thompson. Consumer sensory re-

quirements for beef and their implications for the Australian beef industry.

Aust. J. Exp. Agr., 41:855–859, 2001.

[35] A. Enache-Angoulvant and C. Hennequin. Invasive Saccharomyces infec-

tion: A comprehensive review. Clin. Infect. Dis., 41:1559–1568, 2005.

[36] R. H. K. Eng, R. Drehmel, S. M. Smith, and E. J. C. Goldstein. Saccha-

romyces cerevisiae infections in man. Sabouraudia, 22:403–407, 1984.

[37] N. L. Fazzalari, B. L. Martin, K. J. Reynolds, T. M. Cleek, A. Badiei, and

M. J. Bottema. A model for the change of cancellous bone volume and

structure over time. Math. Biosci., 240:132–140, 2012.

[38] M. M. Fernández-Carrobles, G. Bueno, O. Déniz, J. Salido, M. Garćıa-
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