
 
 

Impact of Spatial Resolution on Mapping Urban 
Vegetation from Space 

 

 

 

A thesis  

Submitted in partial fulfillment of the requirement  

for 

 Masters in Geospatial Information Science  

in 

 College of Engineering and Science  

at  

Flinders University  

by  

Shashwat Kafle 

 

FAN: kafl0012 

 

Supervisor: 

 

Associate Professor David Bruce 

 

 

 

January 2019 



ii 
 

DECLARATION 

 

I certify that this thesis does not incorporate without acknowledgment any material previously 

submitted for a degree or diploma in any university; and that to the best of my knowledge and belief 

it does not contain any material previously published or written by another person except where due 

reference is made in the text 

 

 

 

 

 

 

 

 

Name:  

Date: 22/10/2018 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 
 

Vegetation is a part of liveable human society. This means that grass, shrubs and trees, which are 

visible in parks and gardens, are present in human communities and urban areas. Vegetation has a 

number of tangible benefits to humans, so, the mapping of vegetation in urban environments, 

whether it be small or large areas, is very important. Vegetation maps can be used for several purposes 

ranging from, but not limited to, monitoring street trees to conducting analysis of impact on human 

health. Recently, the use of satellite remote sensing techniques has become popular in mapping urban 

vegetation due to a huge archive of data and its free availability, at least for medium and lower spatial 

resolutions. Different satellite imagery is available, with differing resolutions (spatial, spectral, swath 

and temporal) and as there always has been a tension between accuracy and cost when it comes to 

mapping the focus of this project is to explore this tension when mapping urban vegetation. The 

research focuses on information accuracy of vegetation mapping which should be interest when 

researchers are not from the field of remote sensing and who used remote sensing techniques to map 

urban vegetation often using indices like Normalised Difference Vegetation Index (NDVI). These 

researchers often do not disclose or discuss the values of the selected NDVI threshold. So, the main 

objective of this research is to compare the results which are obtained from using different types of 

satellite imagery, along with their respective resolutions and different methods with ground truth. This 

comparison will help to provide an insight on how the accuracy differs over different images, with 

different resolutions and different processes used. For this comparison varying vegetation maps were 

obtained by using the Thresholded Normalised Difference Vegetation Index (THNDVI) and supervised 

classification methods on multispectral satellite images with a spatial resolution varying from 2 metres 

to 30 metres. The results from this thesis indicate that when THNDVI is used on Pleiades imagery (high-

resolution imagery) it yields most accurate result. This thesis also indicates the major cost drivers while 

mapping urban vegetation. This study not only helps to determine which method is accurate, but also 

what resolution of satellite imagery can be used to obtain the desired results. In addition, this research 

demonstrates the critical importance of setting the correct threshold in NDVI when classifying 

vegetation on the basis of NDVI.  
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1.0 INTRODUCTION 

1.1  Background 

As vegetation plays a very important role in all social, economic, environmental and cultural 

aspects of life, many researchers have been mapping vegetation extending from small to large 

scale for various purposes ever since the introduction of GIS technologies (Ekkel and de Vries, 

2017, Xie et al., 2008, Yuan and Bauer, 2006). Vegetation, often referred to as “greenness”, is 

a part of liveable society. This means that grass, shrubs and trees, often exhibiting in parks, 

are present in human communities, or in other words urban areas. So, the mapping of 

vegetation in urban environments, whether it be small or large areas, is very popular (Zhang 

et al., 2010, Van de Voorde et al., 2008). These urban vegetation maps are used by many 

stakeholders such as urban planners, health researchers, professionals and engineers. These 

people use urban vegetation maps for different purposes. The uses of urban vegetation maps 

can range from monitoring heat islands (Weng et al., 2004, Yuan and Bauer, 2007) and 

conducting research into the effect of greenness on human health and the longevity of 

humans who are exposed to greenness in urban areas (Dadvand et al., 2012, Kuo and Sullivan, 

2001, Takano et al., 2002) and may also be used by city councils to monitor street trees and 

urban vegetation. 

Although mapping urban areas would be beneficial for many stakeholders, such areas are both 

very heterogeneous and can be large in spatial extent. Heterogeneity between the urban 

features present includes impervious surfaces such as roads, footpaths, building roofs, 

concrete etc. and pervious features such as soil, grass, shrubs and trees. In other words, the 

features present in small spatial extents change very rapidly over short distances, making it 

difficult to map, especially over very large urban extents (Weng, 2012). Figure 1 is a spatial 

profile of a typical urban residential block inside the Adelaide metropolitan area. 
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Figure 1: Spatial profile or heterogenous urban area 

Some potential vegetation such as street trees, small parks and small gardens are potentially 

eclipsed if mapping occurs over a very large spatial area. In Figure 1, in such a short distance 

such as from 50 m to 100 m the reflectance changes dramatically from a pixel value of 500 to 

1300 to again less than 500. This implies that per spatial unit (metre) there is a lot of change 

in urban features, hence making the urban area heterogenous. Therefore, mapping vegetation 

which is present in an urban area, which already has a large heterogeneity throughout a large 

spatial extent, will be time consuming and extremely costly. Moreover, these rapid changes 

over a very short distance can only be perceived if a higher resolution image is used. 

Vegetation can be mapped through different techniques. such as through a land survey. 

However, the cost incurred through this method will be high due to the extent of the area, 

labour costs and time required. Yet a benefit of this is that every small patch of grass can be 

mapped, making it highly accurate. On the other hand, if a lower accuracy is acceptable then 

vegetation can be mapped by relatively less expensive methods such as aerial remote sensing. 

But when it comes to vegetation consisting of trees, grass and shrubs, their phenology should 

also be considered when mapping. Some non-native vegetation present in South Australia are 

deciduous, meaning they will shed their leaves annually and the grass and shrubs are much 

greener during the rainy season (late August/early September) than in summer (mid-

February/Late March). Therefore, to obtain an accurate urban vegetation map the process 
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should be applied to different seasons considering the above factors. Creating two urban 

vegetation maps for different seasons will increase the total cost incurred in mapping urban 

vegetation. 

 There is another process of obtaining an urban vegetation map, besides those two mentioned 

above, which is cheaper and may even be free of cost (data only) in some cases; the process 

is satellite remote sensing. There are a number of image providers that supply satellite images 

for various times free of charge such as Landsat and Sentinel 2, which can be used to map 

vegetation in urban areas. The main issue regarding this method is what is the accuracy of 

satellite remote sensing?  

Due to difficulties in mapping vegetation using a land survey, vegetation was usually mapped  

using aerial or remotely sensed imagery (Fensham and Fairfax, 2002, Xie et al., 2008, Skowno 

and Bond, 2003). Previously aerial photography used to be the primary source of data for 

urban vegetation mapping (Feng et al., 2015, Li and Shao, 2013). Aerial imagery provides the 

best resolution of the image, further resulting in a higher accuracy for the end map produced. 

However, it is very expensive. Aerial imagery was previously just simple colour imagery (RGB 

image) and thus its capacity was limited to creating a vegetation map, as simple RGB cannot 

differentiate between green tones of natural vegetation and artificial objects such as synthetic 

fields, artificial grass, green roofs etc. This limitation can be removed by introducing an infra-

red band in the imagery. Recently an infra-red band has been introduced in aerial imagery, but 

satellite images have already had infra-red capability for a very long time, which makes more 

automated mapping possible.  Another factor is that vegetation does not tend to remain the 

same throughout the year. It changes with the seasons and the cost of acquiring an aerial 

image throughout the year (say once per season) will be very high. But current methods of 

mapping using remotely sensed images are becoming more popular due to the increased 

availability of images and higher quality of imagery, with some images also being freely 

available (Weng, 2012). Since better resolution (spatial and spectral) satellite imagery started 

to become freely available, the tendency towards the use of satellite imagery for urban 

vegetation mapping has increased (Hill et al., 2010, Lefebvre et al., 2016, Mathieu et al., 2007, 

Tigges et al., 2013, Nichol and Lee, 2005). It is logical that high spatial resolution satellite 

imagery will produce better results than lower spatial resolution imagery, even for the 

smallest unit of urban vegetation such as street trees, lawns or gardens (Mathieu et al., 2007). 

But high resolution (both spatial and spectral) satellite images such as Pleiades 1, Planetscope 

and SuperView 1, do not come free of charge and can be as much as $24 per km2. So as usual 

the trade-off between accuracy and cost starts here; in other words, the higher the accuracy 
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and resolution the higher the cost. As the accuracy of the map will potentially depend on the 

resolution of the imagery used, and since the freely available imagery is not of a high 

resolution, it is of research interest to consider the relationship between vegetation mapping 

accuracy, resolution and cost. 

1.2  Aim and Objectives 

The main aim of this research is to investigate how cost, accuracy and resolution are 

interrelated when mapping urban vegetation from satellite remote sensing instruments. The 

objectives which will assist in reaching the above-mentioned aim are: 

a. Investigate the impact of sensor resolution on the accuracy of mapping urban vegetation. 

b. Explore different computer-based image analysis methods for mapping urban vegetation 

and what impacts these have on accuracy. 

c. Discover the major drivers of cost for producing maps of vegetation in large urban areas. 

d. Obtain the most accurate urban vegetation map for the lowest possible cost. 

The total cost for the completion of the project does not only include the cost incurred for the 

imagery used. There are also costs incurred for software, human labour and the computer 

system used. Yet most of the cost is incurred through the imagery used. if the imagery is of a 

high resolution.  High-resolution imagery is usually expensive, especially for commercial 

purposes. Commercially available satellite imagery a has spatial resolution that ranges from 

40 cm to 2 km. The cost for the image with a high spectral resolution is also high; the price 

increases as the resolution increases. However, when the spatial resolution is high the spectral 

resolution is often low. For instance, recently launched spaceborne satellites such as Ikonos 

and Quickbird have spatial resolutions of 4m and 2.4m for multispectral images respectively, 

yet their spectral resolution is limited to 4 bands in multispectral (Herold et al., 2003). 

Although in order to carry out this project it is only required that the spectral bands that 

differentiate between vegetation and non- vegetation components in the image. Therefore 

spectral resolution will not be an issue, as all the images used have at least 4 bands including 

RGB and infrared. Among these four bands, the two bands of red and Infra-Red (IR) are 

commonly used to identify vegetation. This is because the higher the chlorophyll content in 

the leaf, the healthier the leaf is and a healthier leaf absorbs more red and reflects Near Infra-

Red (NIR) (Dall'Olmo et al., 2005, Gitelson and Merzlyak, 1997, Tucker, 1979). However, if 

different types of vegetation are to be mapped, such as different species of tree, it is not 

sufficient to only use red and NIR band. In that case a multiple number of spectral bands 

besides red and NIR are required. 
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The images with a higher spatial resolution are larger in data size. These occupy more disk 

space than lower resolution images, and as more disk space is occupied the processing time 

also increases. Another noticeable factor to consider is that images with a higher spatial 

resolution usually have smaller spatial extents compared to lower spatial resolution images; 

so, mosaicking of many small images must be undertaken to achieve a single combined image. 

Furthermore, as spatial resolution increases then in the context of an image of an urban area 

the heterogeneity will become more pronounced, meaning an increase in spatial resolution 

will also increase the internal variability of what appear to be homogenous classes at a lower 

spatial resolution (Carleer et al., 2005, Thomas et al., 2003). In other words, an increase in 

spatial resolution can potentially result in an increase in classification errors (Carleer et al., 

2005). It will create a salt and pepper effect when classifying a heterogenous urban area due 

to spectral mixing and blurring, as the spectral resolution is usually low when spatial resolution 

is high. Yet this all depends on the perception of the user, as it is human nature to aggregate 

all complexities into one homogenous division such as vegetation and non-vegetation.  

To achieve the above-mentioned aim, the Adelaide metropolitan area was chosen as the study 

area. As the Adelaide metropolitan area has a very large extent (3258 Km2), with a vast amount 

of vegetation in hilly parts and these exhibit predominant land covers of agriculture and native 

vegetation or conservation areas. However, those hilly areas are not urban vegetation and so 

are not areas of interest to this research. So, to achieve the aims of this research, Adelaide 

Metropolitan City has been chosen as the study area for the following reasons: 

a. The structure or organisation of features such as buildings, road network, parks etc. in 

Adelaide is typical of several large Australian cities. 

b. It is easy and economical for any sort of field verifications, as the researcher is based at 

Flinders University. 

c. The amount of vegetation present in the urban area is aligned with planning policy. 

According to the Planning, Development and Infrastructure Act 2016, 12.5% of the area 

vested in council should be open space. There are land use and landcover maps of 

Adelaide available, which can help determine if the area is green space or not. But the 

land use map cannot help to determine if the green space is open space or private space. 

Moreover, the land use map also cannot determine if the green space contains natural 

(real) vegetation or artificial vegetation such as artificial grass or turfs. 

In Figure 2 the extent of the study area can be seen with respect to Adelaide, and later in 

Figure 7 the selected Test Areas inside the study area can also be seen. The Test Areas were 
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selected empirically by calculating the Normalised Difference Vegetation Index (NDVI) from a 

medium spatial resolution satellite, Sentinel 2 (see Figure 5), of the study area and then 

applying zonal statistics using suburb boundaries as zones to obtain the average NDVI value 

for each suburb inside study area. The suburbs with high, moderate and low vegetation 

present in them were chosen and were named Test Area 1 (TA 1), Test Area 2 (TA 2) and Test 

Area 3 (TA 3) respectively. In Figure 2 below, the tentative boundary of Adelaide Metropolitan 

City can be seen.  

 

Figure 2: Study Area Extent 
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Although the ground truth collection cannot be done for the whole metropolitan area, three 

test areas (TA) were selected based on the abundance of vegetation in that area, with the help 

of NDVI (high, medium and low). 

The cost does not increase significantly relative to accuracy up to a certain point. However, it 

increases rapidly at higher levels of accuracy (Jensen, 2016, Mumby and Edwards, 2002). This 

means that a small increase in accuracy can potentially lead to a significant increase in cost. 

1.3  Research in wider context 

As discussed in section 1.2, the aim of this research is to determine what image spatial 

resolution and what methods will be the most accurate to use for mapping vegetation in an 

urban area from space, and their relationship to cost. This will give a result in a metropolitan 

city such as Adelaide as to what resolution, what method, and at what minimal cost will prove 

to provide the best result. But that is not all there is to this research. It can be applied to a very 

large area of vegetation (dense or sparse vegetation) in order to obtain the vegetation map 

with the best accuracy achievable. This will assist many other areas of research which will 

require a vegetation map to proceed, such as in the health sector, urban planning sector, 

construction management etc.  

1.4  Outline of Thesis 

The thesis has 5 chapters. Chapter 1 introduces the research, the need for urban vegetation 

mapping, the issues in constructing vegetation maps of large spatial extents, the use of 

satellite remote sensing, the tension between cost and accuracy, and the impact of image 

resolution on accuracy.  The chapter includes the overall research aim and objectives. Chapter 

2 presents a review of critical literature where relevant literature is viewed and compared to 

this research. The review ranges from vegetation mapping using remote sensing to various 

methods used to map vegetation and various imagery used to map vegetation, along with 

their accuracy. The review concludes with a summary of key findings and identifies a gap in 

the literature, which is that the literature rarely explores the appropriate image spatial 

resolution for the application in question. The next chapter, Methods, delivers a description 

of various methods undertaken based on the literature in order to answer the research 

objectives as posed in Chapter 1. Step-by-step processes by which each objective is achieved 

are laid out. Other issues explored in Chapter 3 are the selection of the study area, the 

selection of test areas within the study area, the choice of data, image processing procedures, 

development of ground truth, accuracy assessment methods and documentation of costs. 

Results are presented in Chapter 4, which displays key results obtained from the application 
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of the methods which were taken into account for the research. A comparison of results 

obtained from different image processing is outlined here. Then the final chapter, Chapter 5, 

provides a discussion and draws conclusions from the research, relating this back to critical 

findings from the literature. After a full list of references, Appendices are provided. 

2.0 REVIEW OF LITERATURE 

2.1  Vegetation Mapping using Remote Sensing 

Vegetation plays a very important role in the ecosystem and overall environment (Simonich 

and Hites, 1994). Not only does it protect and preserve the environment, but it also plays a 

vital role in many other ecological phenomena. Looking at the context of urban vegetation, an 

urban vegetation map can be used in a variety of ways. It can be used in micro climatic analysis 

(Dimoudi and Nikolopoulou, 2003), and can be used for research about how vegetation 

influences human health (Takano et al., 2002, Dadvand et al., 2012). It can also be used to 

research how a resident of a particular area responds positively or negatively (aggression, 

theft, other crimes etc.) to the amount of greenness present in the area (Kuo and Sullivan, 

2001). Digital vegetation maps can also be used to measure vegetation units, their distribution 

and composition (Walker et al., 2005). A critical concern is what level of accuracy is required 

for the vegetation map. The accuracy of the map depends on what purpose it is being used 

for. 

Much research has been conducted in the field of remote sensing, where it is used to map 

vegetation (Bauer and Yuan 2006; Weng 2012; Xie, Sha and Yu 2008). Mapping vegetation for 

various purposes using remote sensing instruments is a very promising technique. Aerial 

photographs used to be the primary source of data for mapping vegetation (Seidling 1998; 

Freeman and Buck 2003). But despite its high accuracy and amazing detail, the main problem 

with the aerial photograph is that it is harder to obtain and process than satellite imagery and 

is more time consuming. Moreover, the IR band that is required to map vegetation did not 

used to be included in aerial imagery. However, in more recent times most of the aerial images 

have started to include an IR band. Whereas satellite imagery has included at least one IR band 

for a long time, in comparison aerial imagery has only recently started to include IR. Since 

satellite imagery includes an IR band and some of the satellite imagery, such as Sentinel 2 

(medium resolution satellite 10 m spatial resolution), are even available free of charge, it can 

be said that satellite imagery, depending on the purpose and extent of the research, might be 

more useful in mapping vegetation using remote sensing (Weng, 2012). That being said, some 

satellite imagery such as Landsat and MODIS, which are also freely available, also have a coarse 
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spatial resolution. They can still map vegetation, but they may not be the most suitable for the 

purpose of mapping vegetation, especially in urban areas. There is a considerable amount of 

literature that mentions the use of satellite imagery (high resolution) compared to literature 

mentioning the use of aerial imagery or drones to map vegetation in urban areas.  

2.2 Phenology 

There is a very limited amount of literature that mentions the seasonal vegetation phenology 

that might affect the result of urban vegetation mapping, because image classification 

generally uses data from a single date rather than multiple dates (e.g. Hills et al. 2010, Tigges 

et al. 2013). As a result of this, image classification does not take into account the variation in 

vegetation throughout different seasons and variation in spectra caused by it (Dennison and 

Roberts, 2003). Seasonal phenology in the vegetation is mainly induced by weather changes, 

environment, human activity etc. (Hill et al., 2010, Zhang et al., 2001). However, the phenology 

is mostly affected by seasonal weather fluctuation.  In the case of Adelaide Metropolitan City, 

which lies in the Southern Hemisphere, the plants and grass are mostly green at the end of 

August or the beginning of September due to the continuous rainfall since the end of March. 

And the end of senescence usually occurs from almost mid- February until mid-March, as there 

is minimal precipitation during these times and the atmospheric temperature is higher than 

at any other time of the year, according to the meteorology data of SA. So, the amount of 

greenness will depend on the season or the date of the image acquired. This vegetation 

phenology can be monitored by satellite, which has a frequent revisit period. Most of the fine 

spatial resolution satellites do not have this quick revisit period, and besides that the high cost 

of new high-resolution satellite data is another problem. Tucker and Townshend 1980 used 

meteorological satellite data (AVHRR of NOAA satellite) to classify land use and monitor the 

vegetation dynamics of Africa during a 19-month period. They used satellite data which was 

acquired weekly over a period of 12 months to produce a remotely sensed estimate of 

production based on the duration and density of green leaf. Although AVHRR had a coarse 

resolution, it had a frequent revisit capability (weekly) which enabled it to be used to monitor 

the seasonal variation of vegetation (Tucker et al., 1985). However, while the resolution of 

AVHRR data was fit for Tucker and Townshend 1980 to estimate the production over Africa, 

the same data might not be suitable for mapping vegetation in urban areas such as Adelaide 

metropolitan city. Seasonal phenology is usually useful in detecting the vegetation type. 

However, in case of this research, in order to obtain the optimum result for overall greenness 

the analysis should be done in multidate data. This is because using the data acquired in 

multiple seasons can help to identify the variation in greenness (Tigges et al., 2013). 
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2.3 Sensor resolution   

A vegetation map can be used to solve many problems and answer many questions. But it is 

obvious that the sensor resolution plays an important role in the end map. 

In the case of satellite imagery there are different types of resolution. There are basically five 

different types of resolution that affect the imagery, those being spatial, spectral, temporal, 

radiometric and swath resolution respectively (Bruce, 2018). There are many satellite sensors 

currently available, some of the popular sensors in the literature being Rapid Eye, Sentinel 2, 

Landsat, Ikonos, Quickbird and Pleiades. These sensors have spatial resolution ranges from 30 

metres to 2 metres and spectral resolution ranges from 13 bands to 4 bands. Moreover, 

different bands have different spatial resolutions as well, which can be seen on Table 3. The 

main concern of this research is spatial resolution, but as the purpose is to map vegetation 

then spectral resolution must be considered to some extent as well.  

However, there is a tension involved in the resolution of a satellite. The tension is in the 

relationship between resolution (Bruce, 2018). Generally, the higher the resolution a satellite 

has, the smaller the swath width. Since the swath width of a high-resolution satellite is smaller 

in comparison to a low-resolution satellite, this will result in a huge number of images being 

required to cover the region of interest. This vast number of images will also increase the cost 

of the research, as it is obvious that more images of an expensive high-resolution satellite will 

incur a greater cost. Even if all those images are acquired, the processing will also be difficult 

as all those images will have to undergo all the pre-processing or atmospheric and geometric 

correction and finally mosaicking in order to obtain one single flawless image. This will result 

in an increase in the processing cost as well. There is another tension between the spatial and 

spectral resolution of an image. A higher spatial resolution usually results in a lower spectral 

resolution, as most of the high-resolution images used in the literature have a low spectral 

resolution. So not does the number of images increase as we increase the spatial resolution, 

but the spectral resolution also decreases. However, there is some satellite imagery, such as 

WorldView 2 with 1.8-metre multispectral spatial resolution and 8 bands, which has a high 

spatial and a reasonably high spectral resolution as well. There are also satellites such as the 

soon to be launched German Hyperspectral satellite mission called EnMAP (Environmental 

Mapping and Analysis Program), which has 30 metres spatial resolution and 230 spectral 

bands. There are many satellites with either good spatial resolution or good spectral 

resolution, but a perfect satellite with perfect resolution (including spatial, swath and spectral) 

is not out there yet.  
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The resolution of the imagery usually depends on the application and scale of the project. 

Some research or applications can be conducted using low resolution imagery (Tucker et al., 

1985, Van de Voorde et al., 2008) while some applications and research requires very high-

resolution imagery (Mathieu et al., 2007, Tigges et al., 2013, Zhang et al., 2010). Since there is 

no perfect imagery or satellite which fulfils the requirements of all the applications, the 

satellite imagery is chosen based on what is most suitable for the application, context and 

scale of the project or research. 

Van de Voorde et al. 2008 mapped urban vegetation using Landsat ETM+ Data, which has a 

spatial resolution of 30 metres and produced a resulting accuracy of around 65%. They even 

had an average of 4% geometric shift and an RMS error on the control point, which they noted 

to be around 5.7 metres in the data, meaning that while acceptable there was still a shift error 

in the images. Looking at the research conducted by Van de Voorde et al., it potentially shows 

that lower resolution images end up providing lower accuracy.  The method they used was a 

sub-pixel classification technique that measured vegetation using NDVI. Mathieu et al. 2007 

used two IKONOS imagery, one being a panchromatic stereo pair with a 1-meter resolution 

which was used to generate DSM and the other being multispectral imagery with a four-metre 

resolution obtained in mid-summer and used to map the urban vegetation of Dunedin city in 

New Zealand. They had an average of 1.4-metre geolocation error, which is better than that 

achieved by Van de Voorde et al. However, the overall accuracy of the classification for 

Mathieu et al. was a moderate 63.6%.  

Mapping vegetation in an area where the principal component, which is vegetation, is 

homogenous is comparatively easier than mapping vegetation in an urban area due to urban 

heterogeneity. It can be can be said that increasing the spatial resolution of images does not 

always lead to an increase in classification accuracy, because of an increase in heterogeneity 

in the image. Most of the literature where an urban vegetation map is produced by means of 

free satellite imagery, such as Van de Voorde et al. 2008, use Landsat images because of its 

huge archive while other literature where high-resolution imagery is used to map urban 

vegetation, such as Mathieu et al. or Tooke et al. (Tooke et al., 2009) prefer using IKONOS or 

Quickbird imagery. Since imagery with a better resolution than Landsat, and also free of cost 

as is Landsat, was not available at that time, such as Sentinel 2 with a resolution of ten metres, 

this provides an opportunity in t the present context to use that imagery and potentially yield 

better results. So, the question is still what image and what resolution is the least required in 

order to obtain the best possible or, in other words, accurate result, which remains a key 

research objective of this project. 
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For what purpose an image analysis is being conducted will determine how much accuracy is 

considered acceptable, because accuracy and cost are closely related.  High levels of accuracy 

usually mean a high cost and vice versa; the other consideration is whether the image is readily 

available. Most of the literature does not explain how important the purpose of the end map 

is or explain in simple language the threshold of accuracy. For some purpose 70% accuracy is 

more than adequate, while some cases may require at least 85% accuracy, such as in areas like 

construction, hydropower etc. It is clear that the higher the resolution the higher the accuracy, 

yet at the same time high resolution imagery might not be readily available or might not be 

affordable within the project budget. So, the choice of imagery must be done while considering 

what level of accuracy is desired and what image is available. 

2.4 Relevant Methods 

Various literature discusses different methods used to map urban vegetation. Those methods 

usually vary depending on the different purposes of an urban vegetation map. Bauer and Yuan 

2007 used NDVI in Landsat imagery to analyse the relationship between land temperature, 

impervious surface, and vegetation. Besides Bauer and Yuan 2007, others such as Small, 

Sobrino and Verhoef 2006, and Nichol and Lee 2005 have also used NDVI to either monitor 

vegetation in urban areas or to estimate change in vegetation in order to monitor land surface 

temperature. In majority of the literature NDVI is generally used for a quantitative assessment 

of vegetation, such as Nichol and Lee 2005, where NDVI was used to determine how effective 

it is to model urban biomass. Similarly, Small, Sobrino and Verhoef 2006 used NDVI and the 

land surface temperature algorithm to estimate change in vegetation. Yuan and Bauer 2007 

used NDVI to determine the fraction of vegetation in a pixel, which further helped them to 

investigate its relationship with the land surface temperature of that pixel. NDVI is itself not 

an image classification technique but is instead an index that provides quantitative index 

information on the greenness of vegetation, which can be further used to indicate plant 

health, fractional cover, determine biomass etc.  

NDVI is robust and commonly used in much literature, and only the band ratio-based 

vegetation index was considered because other indices like perpendicular based indices are 

more sensitive to soil than to the vegetation (Chlorophyll) (Nichol and Lee, 2005). However, 

while NDVI is a popular index, it might not be a suitable indicator in a sparsely vegetated area, 

because NDVI also depends on the reflectance of the bare soil, which may not be present in 

environments such as a city or urban area. Moreover, NDVI is also affected by non-

photosynthetically active components such as aged vegetation, which might lead to an 
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inaccurate estimation of the index (Carlson and Ripley, 1997). However, in the case of 

deciduous nature and phenology of vegetation in urban areas such as trees, grass etc., NDVI 

is a good indicator of vegetation at those times when all the vegetation is green due to high 

precipitation (Carlson and Ripley, 1997). Moreover, if a threshold is set on the NDVI index 

range then anything below the threshold is classified as non-vegetation and anything above 

the threshold can be classified as vegetation. For instance, during their case study at Beijing, 

Gamba and Aldrighi 2012, used threshold in NDVI Value to detect wrongly associated 

vegetated area. They set the threshold by analysing the histogram of NDVI Value on urban 

area (Gamba and Aldrighi, 2012). However, their objective was to obtain Landuse-Landcover 

map which can be used to monitor urban sprawl. Moreover, Amiri et al., 2009 also used 

threshold on NDVI values to differentiate between vegetation and non-vegetation area  (Amiri 

et al., 2009). But they also fail to maintain the threshold value used for that purpose. This is 

one way to use thresholding to differentiate between vegetated and non-vegetated areas in 

an NDVI image. Dadvand etl al. 2012 used an NDVI map obtained from Landsat to determine 

the greenspace around the maternal place of residence. They used an NDVI map to determine 

how greenness around pregnant women impacts on the birth weight, head circumference and 

gestational age at delivery. But they did not mention the thresholding of the indices in order 

to obtain an accurate vegetation map that would show actual vegetated and non-vegetated 

areas. This might have caused a misrepresentation, with actual green areas such as garden, 

parks and trees being confused with artificial green areas such as turfs and artificial grass, and 

therefore the decisions and conclusions made using this vegetation map might not be entirely 

correct. This issue can be overcome by thresholding the index value of NDVI in order to obtain 

a map that differentiates between vegetation and non-vegetation areas. Since THNDVI can 

help to overcome the issue of how to separate vegetated areas from non-vegetated areas, this 

can prove useful to many researchers who are not from a geospatial field but are simply using 

NDVI to identify vegetation. It is worth investigating what degree of accuracy can be obtained 

and how effective it is to map vegetation using THNDVI 

Another popular method among the literature is classification. Since an urban area is a 

heterogeneous area, the classification that does not require training data does not provide the 

best result in this case (Zha et al., 2003). Nancy et al. 2003 used different techniques of image 

classification to classify vegetation, which included supervised and unsupervised classification 

but also included automated classification and spatial model-based classification. While 

classifying an image using supervised classification, Nancy et al. obtained a 90% producer 

accuracy for the vegetation class, which is a very impressive result considering how 
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heterogeneous the urban environment of the City of Scottsdale, their study area, is. However, 

the image used by them was obtained from an ADAR 5500 digital multispectral scanner, which 

is an airborne sensor with a 4 spectral band and a resolution of 1 m. That this was not a satellite 

remote sensing instrument is not relevant to this thesis. However, the process used to classify 

the image in an urban area is potentially useful to this research, as high-resolution satellite 

imagery with a resolution almost equal to that of the ADAS 5500 are also available and can 

potentially be used to map vegetation. Since major advances in the spatial resolution of 

satellite imagery strains the usefulness of supervised image classification in such images 

because the heterogeneity is clearly visible, this further enables the user to provide even 

better training data that will be of further use in supervised classification in highly 

heterogeneous areas such as urban areas (Thomas et al., 2003). Since the accuracy of the 

result obtained from the supervised classification of high-resolution imagery to map 

vegetation is high, it is worth investigating the result that will be obtained by this method in 

this research. 

Another new approach to mapping urban vegetation is automated classification, also known 

as machine learning. This classification technique provides promising results for extracting 

information from very high-resolution satellite imagery (Mathieu et al., 2007). Initially it 

involves segmentation of the image to divide the image into a number of groups of 

homogenous and meaningful features such as roads, gardens, canopy, rooftops etc., and those 

features are then further used to classify the image (Mathieu et al., 2007). There is some 

literature that discusses about and shows the results of mapping urban vegetation using 

machine learning with the help of a high-resolution satellite.  Mathieu et al. used IKONOS 

imagery and obtained a 63.6% accuracy, while Tigges et al. used a high-resolution rapid eye 

imagery to obtain an urban vegetation map of Berlin and obtained an 87.71% accuracy. 

However, because most of the high-resolution satellite imagery, such as Pleiades is not 

available free of cost and are very expensive to purchase (See Table 1), this may be a limitation 

to using this process to map urban vegetation. Machine learning in a medium or low-resolution 

satellite is very difficult as low spatial resolution creates different challenges and errors in 

image segmentation, which further create inaccuracy in image classification (Mathieu et al., 

2007, Tigges et al., 2013). 

 

The accuracy of the map obtained is the most crucial part of mapping almost anything. Most 

of the literature used NDVI to identify the vegetation in the area of interest, which was further 

used to establish relationships with other factors such as land surface temperature or 
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vegetation cover in a pixel or for regression analysis (Nichol and Lee, 2005, Otukei and 

Blaschke, 2010). However, if a threshold value is set on NDVI, it can be used to classify 

vegetation (Geerken et al., 2005). This thresholding is the part that most of the literature does 

not mention weather it was used or not and if it was used what threshold they set. The 

accuracy of any classified image is assessed based on the ground truth (Geerken et al., 2005, 

Mathieu et al., 2007). The accuracy of statistics such as overall accuracy, classification 

accuracy, producer’s accuracy and user’s accuracy are obtained after the resulting classified 

image is assessed with the help of ground truth. Most of the accuracy assessment in the 

literature is carried out using error matrix, where all the classified and reference component 

are sorted in rows and columns and used to establish several accuracies of classification. For 

instance, Thomas et al. 2003 used error matrix to calculate the error in their classification.  

 

2.5 Other Methods of Mapping Vegetation 

Besides NDVI and classification, there are other methods which help us to map vegetation 

including Leaf Area Index (LAI), Ratio Vegetation Index (RVI), Difference Vegetation Index (DVI) 

and Normalized Difference Water Index (NDWI), or instead of using index other features such 

as Tasselled Cap Transformation (TCT), Principal Component Analysis (PCA) can also be used. 

All the above indices use the spectral value that is present in the pixel. Based on the value of 

red and infra-red, most of the vegetation indices are calculated. But in some contexts, there 

might be a problem, such as in NDVI where the index can be altered because of various 

photosynthetically inactive features. In such cases, many of the analysts prefer the process of 

object-based image classification. Supervised and unsupervised classification generally causes 

salt and pepper effect in the classified objects (Li and Shao, 2013). Even in the high-resolution 

imagery, at the edge of each object there are mixed pixels which increase the rate of 

misclassification. This misclassification has been overcome by object based image analysis, 

which is also popular in much of the literature (Li and Shao, 2013, Mathieu and Aryal, 2007, 

Zhang et al., 2010). While Object Based Image Analysis is usually performed on high resolution 

imagery such as IKONOS and Quick Bird, it is not always necessary for high resolution imagery 

to be used   for these purposes. Sometimes even medium to coarse resolution satellites can 

be used to good effect if fit for purpose and if they fit the scale. Moreover, there is another 

popular method usually used in medium resolution imagery, known as Sub-Pixel Classification. 

Due to heterogeneity of the surface and different surface structures, it is difficult to map urban 

areas (MacLachlan et al., 2017). It is even tedious when the imagery is of medium resolution 

because of a lot of mixed pixels (Arif et al., 2015). Due to this heterogeneity and mixed pixels 
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in the context of medium resolution satellite imagery, sub-pixel classification is being used 

widely to represent land use (Arif et al., 2015, MacLachlan et al., 2017, Weng and Pu, 2013). 

This is important to consider, as this research has a research question of what is a suitable 

resolution for mapping vegetation with the best accuracy? The methods discussed above use 

different resolutions. MacLachlan et al. 2017 use Landsat 7 imagery, while Mathieu and Aryal 

2007 use IKONOS imagery, which are very different in terms of resolution. The imagery 

selected by them was based on what was most suitable for the purpose of their research. 

Mathieu and Aryal, 2007 used IKONOS imagery to map large scale vegetation communities in 

urban areas and obtained a moderate overall accuracy of 63.6%. MacLachlan et al. 2007, 

mentions achieving an 85.4% accuracy. These two examples give an insight that the accuracy 

and resolution depend on the purpose, methods and scale of the research.  

 

2.6 Spatial Resolution and Cost 

The accuracy of the map depends on the accuracy of the materials used to produce the map 

and the methods used. The total cost includes the cost incurred by imagery, software used, 

hardware used and the labour cost. Image is a very important aspect of remote sensing 

analysis, as most of the errors in the remote sensing process are caused by the image itself, as 

well as the processing and user’s interpretation technique (Story and Congalton, 1986)  

 

Table 1: Pricelist of Various Images 

Platform 
Name of 
Platform 

Spatial 
Resolution 
(m) 

Price AUD per 
sq. km. 

Total price in 
AUD1 for 3257 
Sq. Km. 

Disk Storage 
(in GB) 

Aerial Aerometrex 0.5 

15-24 
(Depending 

on date of 
acquisition) 11,000  

97 

Satellite WV4 1.24 24.32 79,225 15 

Satellite Plaiedes 2 17.3 52,590 6 

Satellite Superview 1 2 19.5 63,511 6 

Satellite Spot 6 6.5 21,496 0.7 

Satellite Sentinel-2 10 0 02 0.8 

Satellite Landsat 30 0 0 0.2 

In Table 1 above, the price per Sq. Km of the archived image with high resolution is expensive. 

It becomes even more expensive, with price increases of around 10 AUD if the image 

                                                           
1 Prices are rounded off to significant number 
2 Only for academic purpose 
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acquisition is a new task (depends on type of tasking), meaning the image is not in archive and 

therefore it must be freshly sensed via satellite. So if any of the imagery outlined in Table 1 or 

other relevant images that are also expensive are used in the processing, it can be concluded 

that image acquisition will be the major cost driver. It is even more expensive in aerial platform 

than satellite platform because the user must bear the total cost for the dedicated flight and 

image acquisition. Also, according to the literature, using a map with a high resolution for 

analysis potentially yields higher accuracy (Mathieu and Aryal, 2007, Mathieu et al., 2007). So 

it can be said that the accuracy and the cost are highly correlated, as higher accuracy usually 

incurs a higher cost. But there are still some cases where higher accuracy can be achieved 

using low cost or sometimes free imagery, such as Landsat, depending on the imagery purpose 

and scale of the study. For instance, if pervious versus impervious surface are to be mapped, 

then Landsat or Spot 6 can be used and can also yield high accuracy. But if every street tree 

must be mapped, then higher resolution data such as Aerometrex data might be required. 

The cost also varies depending on what body is conducting the research. If the organisation 

or personnel conducting the analysis/research is a private or commercial organisation, then 

the cost will be almost as much as that outlined in Table 1. But if the research is conducted for 

academic purposes such as university research, or a thesis in this case, the cost of the image 

and software incurred will not be nil but it will still be  minimal. For research purposes 

conducted through an academic institution such as a university, the software is either freely 

available to the researchers or available at a lower cost, while similarly the image provider 

usually provides the images free or at a negligible cost.  

2.7 Gap in Literature 

In all the literature viewed, most of the literature defines the accuracy of the map produced 

using the methods and resolution for the respective research. Tim Van de Voorde et al. 2008 

used Landsat image, which at 30 m in resolution is a very low-resolution image in comparison 

to that used in other literature. Yet they do not mention how much accuracy was required for 

them to carry out their research. Similarly, others such as Mathieu et al. 2007, Tigges et al. 

2013, Zhang et al. 2010 used a very fine resolution imagery (3, 5 and 3m respectively). But 

while they obtained a higher accuracy level due to the resolution of the imagery they used, 

they fail to mention the cost they incurred to conduct the analysis. Besides that, most of the 

literature fails to mention the errors and issues caused by any geometric distortion of the 

image, threshold used in NDVI, and shadows in the images, while some of the literature even 

fails to discuss the accuracy of the methods used For instance, Dadvand et al. 2012 used an 
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NDVI image created from Landsat image, but does not mention the distortions in the image or 

any geometric correction applied to the image. 

Another factor is that most of the literature does not focus on the importance of multidate 

image analysis. However, some of them do focus on that. Tigges, Lakes and Hostert 2013, 

focused on multidate imagery from RapidEye. As a multi temporal image would help to identify 

tree species-specific characteristics, which would further help in classifying different tree 

species in the urban environment of Berlin. As multidate image analysis in the case of 

vegetation can potentially be useful, especially in a temperate climate such as Adelaide, where 

the variation in greenness can be observed during the change in seasons. The literature that 

focused on multidate image analysis often used high resolution imagery such as Rapid Eye 

(Tigges et al., 2013). This also indicated that multidate imagery is potentially useful when a 

high-resolution image is used, because changes in vegetation might be significantly clear only 

in high resolution imagery. But in this research, due to a lack of multidate images for high 

resolution imagery and the inclusion of low-resolution imagery such as Landsat, unfortunately 

this concept cannot be pursued.  These gaps in the literature helped to formulate the tasks for 

this research, which are listed below: 

a. Investigate the impact of sensor resolution on the accuracy of mapping urban 

vegetation. 

b. Explore different methods for mapping urban vegetation and what impacts these 

have on accuracy and cost. 

c. Discover the major drivers of cost for producing maps of vegetation of large urban 

areas (cost of resources). 

d. Obtain the most accurate urban vegetation map. 
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3.0 METHODS 

3.1   Overview 

An overall flow chart of the processes that were carried out in this research is provided in 

Figure 3: 

 

 

Figure 3: Flowchart of Methods 
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3.2   Selection of Study Area 

 The overall study area for mapping urban vegetation was Adelaide metropolitan city. The main 

reason for choosing Adelaide metropolitan city is accessibility to the area. As the accuracy 

assessment based on the field verification might be done, this is the main reason why 

accessibility to the area was an important consideration. Another reason to justify the 

selection of Adelaide metropolitan city as the study area is the availability of the data and 

Adelaide metropolitan city being an ideal city to perform this analysis due to its layout, 

structure and the way this city is built. Of course, there are many other possible cities to study, 

but the spatial extent and extent heterogeneity must also be considered. For instance, Delhi 

could also be chosen as a study area, but the structure of the city and density of buildings and 

population gives rise to more spatial heterogeneity, which might later create various 

challenges and also give rise to many errors.  

To test the methods on different images of different resolution, test suburbs was chosen. The 

empirical method of choosing the test suburbs was to perform NDVI on the whole study area 

and use zonal statistics (where the zones are different suburbs). This was carried out so that 

suburbs based on high, medium and low NDVI values can be chosen. The NDVI value does not 

represent the density of vegetation in the area, but rather the overall greenness of vegetation 

present in the area. So, after comparing NDVI with visual interpretation, the test areas were 

chosen. 

 

 

Table 2: Sample table of Zonal Statistics of Postcodes Based on NDVI 

POSTCOD
E SUBURB NAME 

SUBURB_NU
M 

NDVI_MEA
N 

5007 (TA3) 

WELLAND 500704 

0.16 

BOWDEN 500701 

WEST HINDMARSH 500705 

BROMPTON 500702 

HINDMARSH 500703 

 
5039 (TA1) 

CLARENCE GARDENS 503901 

0.23 

EDWARDSTOWN 503902 

MELROSE PARK 503903 

5061 (TA2) 

HYDE PARK 506101 

0.31 

MALVERN 506102 

UNLEY 506103 

UNLEY PARK 506104 
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The above suburbs were chosen not only with the help of statistics, but also with the help of 

visual interpretation with consideration of factors such as: 

a. Should not have too many parks in it. 

b. Must have a majority of residential area in it, with the presence of vegetation such as 

trees, small parks, gardens etc. 

c. Should not be an industrial area with abundant impervious surfaces only. 

The test suburb 5007 was named as Test Area 3 (TA3), which has a low mean NDVI in it. 

Similarly, 5039 was named TA2, which has a moderate mean NDVI in it, while finally 5061 was 

named TA1, which has a high mean NDVI in it. 

 

 

3.3   Selection of datasets 

After the study area and its extent was set, the main challenge was to select a dataset or 

images on which the further processing was to be conducted. As the literature review indicates 

that the accuracy of the map is higher when the resolution of the dataset or image used to 

obtain the map is also high (spatial resolution), consequently all the potential image providers 

with different resolutions (spectral and spatial) were compared based on their resolution and 

cost (see Table 1).  

It is clear from Table 1 that the higher the resolution of the image (spatial resolution), the more 

expensive the image becomes. Moreover, if processing involves the use of multi date images 

the cost will be double that which is outlined in Table 1, but it is also understood that some of 

the image providers such as Sentinel and Landsat provide images free of charge for research 

or academic purposes. Sentinel 2 MSI images have a moderate spatial resolution of 10 metres 

and has 13 band spectral bands, whereas Landsat 5 has a lower spatial resolution of 30 metres 

and has spectral band of 7. The reason for choosing Landsat 5 over Landsat 7 ETM+ or Landsat 

8 is that since 2003 there has been an error on the Landsat & ETM+ scan line sensor which 

results in a data loss of 12-14%. The error which occurs by scan line may be corrected in pre-

processing, but even then, the resulting image will not be as good as one with no error, with 

the error in the image likely to be around 14% with a spatial resolution 30 m, which is 

unaffordable. Moreover, the data on Landsat 8 was very hazy and cloud coverage was high. 
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But in Landsat 5 there is no scanline error and a dataset with almost no haze and cloud was 

also available.  

Based on this calculation it would be suitable to consider Sentinel-2A imagery, as it has a 13 

band and is of 10 m resolution, while I also have access to Pleiades Multi Spectral Imagery 

thanks to my supervisor who has allowed to use that imagery for this research. The Landsat 5 

Image was also used since it freely available and has a good spectral resolution as many very 

old archives of images, which may be useful to investigate if it is fit for purpose.  

3.4   Development of ground truth 

In order to assess the accuracy of the methods used to classify and map the vegetation in an 

urban area, ground truth is required. Ground truth is a very crucial part of the image processing 

as it determines how accurate the generated data will be by cross-referencing the resulting 

map with this data. To obtain the ground truth, there were basically two different approaches 

taken. These approaches were based on an interpretation of the data to identify the change 

between ground truth and the dataset acquired and the collection of the ground truth digitally. 

The following steps were undertaken to acquire ground truth: 

a. Desktop survey: Since the images acquired from different image providers were from 

different dates ranging from 2014 to 2017, those images had to be checked using high 

resolution imagery such as google earth in order to find out if there are any dominant 

changes in the images over the respective periods of time. This was carried out in order 

to confirm that the ground truth in the different TA’s at the present time is not affected 

by what may have been in the respective TA at the time of the dataset. For instance, 

if there was a big park in the image that might no longer be present at the current time 

in the same place, this might create a problem as the ground truth and the result 

obtained from the image using a different method might differ. 

b. Human digitisation: After a desktop survey was done and it was concluded that there 

are not any major changes inside the TA’s landscape between the imagery and the 

present context, the acquisition of ground truth of different features was carried out 

by human digitisation using an ESRI base map in ArcGIS Pro. The TA in the ESRI base 

map was also checked with the TA in recent google earth images and no significant 

changes were found. The desktop survey for the ESRI basemap was also important 

because the ground truth was digitised using the ESRI basemap, and that ground truth 

will be used to assess the accuracy of the vegetation map produced from the further 

image processing and classification of various datasets. After all the images were 

verified and found to be suitable for collecting ground truth, including features such 
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as trees, shrubs, gardens, roads, buildings (rooftops) and shadows, the boundaries of 

those respective features were digitised and extracted from the ESRI basemap.  

 

3.5   Image Processing 

The main part of this research is image processing, as this is where all the methods and 

processes undertaken to obtain the result are discussed. There are various factors to be 

considered from the literature and other studies when processing the image. These factors 

inform an understanding of what processing is mandatory and what processing is not. Every 

aspect of this research relies on this part being carried out correctly, and many processes were 

undertaken while processing the image. However, to make the process more comprehensible, 

the Image processing will be divided into two basics parts as discussed below: 

a. Pre-processing: Any image obtained must be corrected geometrically and radio 

metrically, also known as restoration of image, before it is ready to go to further 

processing. This corrects the distortion caused by the sensor and platform 

(Schowengerdt, 2006, Pohl and Van Genderen, 1998). All the pre-processing varies 

according to the sensor and platform. Therefore, it can be said that the pre-processing 

for every image is different. The pre-processing of the image that was carried out in 

this research can also be divided into two major parts: 

i. Atmospheric correction: This is done to remove the scattering and absorbing 

effect of the atmosphere to obtain the correct ground reflectance. But this is 

usually only in the context of a single image from each image provider being used, 

while in this case atmospheric correction was not necessary as the image used 

was not hazy or cloudy and moreover, all the pixel values if influenced will be 

influenced to the same degree and will therefore still provide a good result while 

classifying it. 

ii. Geometric correction: When the image was overlayed on top of the ESRI basemap 

in ArcGIS Pro the image did not completely align to the basemap, which required 

all the images to undergo geometric correction. Because if the images do not 

align, the information of the satellite data will not correspond exactly to ground 

truth, as the basemap was considered as ground truth and so the geometric 

correction had to be done. The ESRI basemap was considered as ground truth 

because it was the only high-resolution dataset available. Another reason was that 
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due to a bug in both ArcMap and ArcGIS Pro, the Google Earth image (another 

high-resolution image) could not be georeferenced for digitisation.  

 

Figure 4: Geometric Shift in Pleiades 

                

The imagery was geometrically corrected using GCP from the base map and the 

resampling method used was bilinear interpolation. The first-degree polynomial did 

not yield worthy results. However, the second degree polynomial yielded a result that 

although not exact, still significantly improved the image that almost aligned with the 

base map, while the resampling method bilinear interpolation was used in order to 

avoid the “stair stepped” effect caused by the nearest neighbourhood and to obtain a 

smoother and more accurate result.  

 

b. Image Analysis: This was the most crucial part of this investigation. This part 

determines the overall result and output, which is the map (Schowengerdt, 2006) or 

overall research. Since the main objective of this project was to obtain an (urban) 

vegetation map, this was undertaken based on an understanding from the literature, 

the accuracy obtained by researchers, and the popularity of methods which are widely 

used, the following methods were used to process and classify and hence map the 

urban vegetation. They are as follows: 

Western edge of bridge 

from Pleiades imagery 

Western edge 

of bridge from 

ESRI base 

maps imagery 
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i. NDVI: The threshold here is used to define anything that falls below the threshold 

as being non-vegetation. Although NDVI has a broader use in agriculture and land 

use, to use it to differentiate between vegetated and non-vegetated areas in an 

urban environment, it needs to be thresholded (Geerken et al., 2005). After the 

computation of NDVI on all the images obtained after pre-processing, threshold on 

NDVI was applied using a spatial modeler in ERDAS Imagine obtaining thresholded 

NDVI raster. The threshold was set differently for different images as the range of 

NDVI values was different for all the images. This difference in NDVI values was a 

result of a different wavelength of red and NIR bands in different imagery. 

Furthermore, three different thresholds were set for each individual image to 

identify which threshold would yield satisfactory results.   

ii. Supervised Classification: Supervised classification is also popular in much of the 

literature (Myint, 2006, Thomas et al., 2003, Zha et al., 2003). The main feature of 

this method is the classification of features based on user trained data or user 

defined signatures. All the datasets were classified using this method. 

Parallelepiped was used as a non-parametric rule and maximum likelihood was 

used as a parametric rule, while the unclassified rule was set to unclassified to 

ensure that most of the unclassified features could again be trained to obtain their 

signature such that unclassified features could be reduced to a minimum. For 

parallelepiped surface, the standard deviation was set to reduce the number of 

outliers, while setting standard deviation also helps in reducing incidences of 

misclassification; it is like setting threshold to maximum likelihood classification. 

Parallelepiped is used instead of maximum likelihood because it is faster; the main 

limitation is that maximum likelihood is said to be more accurate although slower 

than parallelepiped, assuming that all the signatures selected are correct and the 

input data follows a Gaussian distribution, which might not always be the case. 

However, assuming the specified signatures are correct and use a standard 

deviation (3 SD was set for all images) to parallelepiped each side’s dimension, then 

the result from using parallelepiped rule will also be highly accurate. There is also 

a sub-pixel classification method that can be used to classify an image with greater 

accuracy, but as with Sentinel 2 and Landsat the spectral resolution of Pleiades is 

also not high (only 4 bands). As the sub-pixel classification approach exploits the 

spectral information of the image, and as the literature review informs an 

understanding that there is a trade-off between increased spatial resolution and 
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decreased spectral resolution, consequently the sub-pixel classification method 

was not used in this case. In this research the supervised classification signatures 

for four different features (grass, tree, non-vegetation and shadow) were specified. 

For the parallelepiped sides, a 2.5 standard deviation was set. After the 

classification, the raster was compared with the satellite imagery and most of the 

major unclassified patches were noted. For those unclassified features, again the 

signature was trained, and the image reclassified. This process was repeated 

several times to minimise the unclassified features. After classifying an image that 

depicts four different features, classification was again performed in order to 

depict just two features, namely vegetation and non-vegetation. 

3.6   Accuracy Assessment 

This is another crucial part of the overall image analysis. Each of the resulting rasters 

underwent this procedure, as one of the main objectives of this research is to find out what 

process and which image yields the highest accuracy amongst all the available methods and 

images, and therefore this can help to establish a relationship between image and accuracy. 

The ground truth collected will play the most critical role in this process, as this will serve as 

reference data to assess the accuracy of all the results obtained. 

For the purposes of THNDVI, a fishnet (or GIS square polygon layer) related to the pixel size of 

individual images was created. Zonal statistics were extracted from the higher resolution 

vector ground truth. Using the zonal statistics, where the zone was the fishnet for an individual 

image, all the NDVI values of corresponding fishnets were calculated.  A similar fishnet was 

intersected with all the higher resolution vector ground truth. The intersected fishnet 

contained the detail on how much of each feature, such as shadows, grass, non-vegetation or 

trees, were present in an area of that fishnet while the individual NDVI value of these 

respective fishnets was used to assess the accuracy of classification. So, after obtaining the 

fishnet, with its respective NDVI value for each cell that corresponding to satellite imagery and 

containing the information regarding the content of each individual fishnet, the data was 

analysed in a tabular form in Excel. The analysis was conducted based on the following simple 

principles and logic: 

i. At least 50% of the individual fishnet’s area should be covered by vegetation. 

ii. The corresponding fishnet has an NDVI value greater than the thresholded value. 
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After using the formulas created on Excel, based on this straightforward reasoning the 

accuracy of each TA for each image and each threshold was computed, the results of which 

will be reported in the results section. 

For the supervised classification accuracy assessment, the first step was that the ground truth 

in digital format (Figure 11) was merged and converted into raster (Figure 12) using an ERDAS 

vector to raster function. It was noted in conversion that in order to capture most of the 

digitised features, the cell size during conversion was set to 0.5 metres so as to preserve most 

of the details and assess their accuracy. After obtaining the raster of ground truth data, a 

thematic matrix union tool was used to obtain an error matrix for all 3 TA’s across all the 

images. The classification error, error of commission, error of omission and overall accuracy 

were all calculated with the assistance of this matrix. 

3.7   Selecting best method 

The individual accuracy of each method for each image was obtained and assessed across all 

3 TA’s. Following this, the average accuracy was calculated using the accuracy of all 3 TA’s 

recorded individually for each. After determining the overall accuracy through this method, 

the method and image which displayed the highest accuracy was considered to be the best 

method and imagery, and that method shall be applied to the imagery of the whole study area, 

which is Adelaide metropolitan city, to map the urban vegetation.  
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4.0 RESULTS 

4.1 Study area selection 

Based on the results listed below, obtained from zonal statistics using suburbs as zones and the 

NDVI obtained from a Sentinel 2 image for the Adelaide metropolitan city, 3 TA’s were chosen. 

The zonal statistics of NDVI for different suburbs are outlined in Figure 5: 

 

   

Figure 5: NDVI of different suburb 
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On the basis of the zonal statistics listed in Figure 5, it was concluded that the highest NDVI value 

in the study area was 0.49 recorded at 5052, Belair, with this high value largely a result of the 

presence of a vast amount of greenness such as trees and plants, and with fewer buildings and 

impervious surfaces present in the suburb. The lowest NDVI value was 0.091 recorded at 5015, 

Port Adelaide, where the greenness was comparatively less than in all other suburbs. Below is the 

histogram that represents the distribution of NDVI values. 

 

Figure 6: Histogram of Mean NDVI value 

The tails of the curve show extreme NDVI values. The suburbs that represent extreme values of 

NDVI cannot be selected as a study area because the regions with extreme values are not a typical 

urban area, with the low NDVI denoting a suburb with a lot of industry and building while the one 

with a higher NDVI denotes an area with too much vegetation. Moreover, it is both empirically 

and visually clear that they have either most of the greenness or a majority of photosynthetically 

inactive features such as houses, buildings or pavement in them. So those suburbs that had 

extreme values could not be selected. In order to overcome this problem, the suburbs were 

selected based on a visual interpretation and examination of NDVI zonal statistics, such that an 

area chosen is an urban area with residents but also with an ample amount of greenness present 

in them, excluding national parks and excessive forest and plantations. Consequently, the suburb 

with postcode 5007 and a low mean NDVI, postcode 5039 with an average mean NDVI, and 

postcode 5061 with a high mean NDVI, were selected as set out in Figure 7 below. These study 

areas were not just selected based on visual interpretation but were also assessed empirically 

using zonal statistics of NDVI for each suburb. 
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Figure 7: 3 Study Area selected as Test Areas 
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4.2 Dataset selection 

In contrast to the research aim and objective, three datasets (multi-spectral satellite imagery) 

were selected based on their spatial resolution. The imagery selected were Landsat 5 (30 m), 

Sentinel 2 (10 m) and Pleiades (2 m). These three particular data sets were specifically selected 

due to their varying resolution. The different spectral and spatial resolution and wavelength of 

each spectra can be seen in Table 3 and Figure 8: 

 

 

Table 3: List of images used with their band content and resolution 

 Pleaides Sentinel 2 Landsat 5 

Spatial 

Resolution 

2 metres Varying from 10 m to 60 m depending on 

bands used 

 30 metres 

Spectral 

resolution 

4 Band 13 Bands 7 Bands 

Band 

composition 

Blue: 0.43-0.55μm 

Green: 0.49-0.61μm 

Red: 0.6-0.72μm 

NIR:           0.75-0.95 μm 

B1-Coastal Aerosol: 0.443μm (60 m) 

B2-Blue: 0.49 μm (10 m) 

B3-Green: 0.56 μm (10 m) 

B4- Red: 0.665 μm (10 m) 

B5- Vegetation Red Edge: 0.705 μm(20m) 

B6- Vegetation Red Edge: 0.740 μm (20m) 

B7- Vegetation Red Edge: 0.783 μm(20m) 

B8- NIR: 0.842 μm (10 m) 

B8A- Vegetation: 0.865 μm (20m) 

B9- Water Vapour: 0.945 μm (60 m) 

B10- SWIR- Cirrus: 1.375 μm (60 m) 

B11- SWIR: 1.610 μm (20m) 

B12- SWIR: 2.190 μm (20m) 

B1-Blue: 0.49 μm 

B2-Green:0.56 μm 

B3- Red: 0.665 μm  

B4- NIR: 0.705 μm 

B5- SWIR1: 0.740 μm 

B6-Thermal:0.783 μm 

B7- SWIR2: 0.740 μm 

 

The result obtained from all these images will help to inform an understanding of what is the 

relationship between image resolution and the accuracy obtained using that particular image. 
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Figure 8: Comparison of resolution of Landsat 5(left), Sentinel 2 (middle) and Pleiades (right) 

From Table 3 it is clear that although Sentinel 2 has a spatial resolution that depends on the bands 

used, which may vary from 10 metres to 60 metres, the bands used in this research (red, green, 

blue and NIR) were all of 10 m resolution. It can also be seen from Table 3 that the wavelength 

for same bands in different imagery is also different, especially for red and NIR. Because of the 

difference in the value of wavelengths, the indices calculated using these wavelengths also result 

in different values for different images, which will be further discussed in section 5. 

 

4.3 Development of Ground Truth 

A desktop survey was conducted to establish if there were any significant changes in the 

vegetation or non-vegetated impervious surfaces such as pavements, houses or buildings in the 

images. This was necessary because the images acquired were not the latest images. As the images 

acquired for the purpose of analysis were three to nine years old, due to the only available image 

for Pleaides being from March 2015 while for Landsat the image with the least cloud coverage and 

haze was from as far back as March 2009. As the images were significantly older than the present 

time, it must be checked to determine if there have been any significant changes in the images 

since then, so as to ensure that the accuracy assessment was not affected by changes in ground 

truth. In the case of Landsat 5, as the resolution was coarser than that of Sentinel 2 and Pleaides, 

changes in small spatial extent were not very clear, but there was no evidence of major changes. 

Since different images were acquired at different times, Google Earth’s timeline was used to 

detect any significant changes between that time and the present. This was more helpful in the 

case of Landsat 5, as the low resolution meant that small features such as buildings, trees etc. in 

the image itself were not clear. In this case, Google Earth’s timeline was used to match the time 

of the image acquired, and the Google Earth image from that time was compared to the present 

time to identify any significant changes 

After undertaking a thorough desktop survey for different imagery, Google Earth was used to 

determine if there were any significant changes in the vegetation inside the TA’s. With the 
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exception of some changes in a couple of residential homes, there were no significant changes in 

vegetation in all three TA’s.  These findings further confirmed the accuracy of the dataset, which 

could then be finalised for further processing.  

 

Figure 9: Digitization inside TA1 
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After all the features were extracted, there were some cases where either one or multiple 

features were inside another feature and donut polygons had to be created.  

 

Figure 10: Creating donut polygon 

 

After digitising the features in separate layers for all the TA’s, the features were merged in each 

TA and used in further analysis for an accuracy assessment of the result obtained from all the 

image processing.  

 

Donut Polygon 
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Figure 11: Digitization of patch inside TA1 

 

The digitised patch of TA1 was merged and then converted into raster using a vector to raster 

function in ERDAS Imagine 2018 to obtain a raster as shown in Figure 12: 
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Figure 12: TA 1 digitised Vector converted to raster 

This process was similarly applied to TA2 and TA3. 
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4.4 Image processing 

As discussed in the methods, the two steps to the image processing were pre-processing and 

image classification. As a certain shift is clearly visible in Figure 4, when all the images were 

analysed it was noted that the actual basemap of Adelaide did not align with any of the satellite 

images, so all the satellite images had to be geometrically resampled to align as much as possible. 

Figure 13 shows the result obtained after geometric correcting was applied and the image was 

resampled for Pleiades: 

 

Figure 13:Image obtained after Geometric Correction (Image pixels align on the basemap bridge after correction) 

Edge of bridge in 

Imagery 

Edge of bridge in 

ground truth 
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In comparison to the shift seen on Figure 4, in Figure 13 the shift has been reduced as much as 

possible, such that the values computed using the satellite image corresponds very closely to the 

ground truth collected. 

After the Pleiades image was corrected geometrically, it was used to compute the NDVI raster of 

the respective image. The NDVI obtained at the beginning had values that ranged from -1 to +1, 

while the range of the values were different for different images as illustrated in Appendixes 4 and 

6.  

 

Figure 14: Pleiades NDVI 
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After computing the NDVI raster for all the geometrically corrected images, thresholding was 

applied to get a classified image. THNDVI for Sentinel 2 and Landsat 5 can be seen in Appendixes 

5 and 7 respectively. 

 

Figure 15:Pleiades THNDVI 
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After computing the THNDVI raster for all the images, supervised classification was performed on 

all the images. The result for the supervised classification with five classes for Pleiades can be seen 

on Figure 16: 

 

Figure 16: Pleiades Supervised classification 



41 
 

Similarly, the result for Sentinel 2 supervised classification using four classes can be seen in 

Appendix 1. After supervised classification was performed using training data for four classes (and 

water) as mentioned in the method, it was further classified for only two features and the result 

for Pleiades was obtained in Figure 17 (see also Appendix 2 and 3 for Sentinel 2 and Landsat 

classified using two classes): 

 

Figure 17: Pleiades Supervised classification for 2 class 
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4.5 Accuracy Assessment 
The accuracy assessment for THNDVI was conducted mathematically using expressions in Excel. 

Table 4 shows the classification accuracy using thresholded NDVI for all the satellite imagery. For 

a more detailed accuracy assessment, error matrices for all satellite imagery and all test areas are 

provided from Appendix 9 to Appendix 23.  

Table 4: Accuracy for THNDVI for potentially best threshold 

 Accuracy 

Satellite  TA1 TA2 TA3 

Pleiades 95.66% 99.36% 90.28% 

Sentinel 2 92.19% 70.02% 83.66% 

Landsat 92.82% 99.43% 35.7% 

 

The accuracy for the supervised classification was calculated using the matrix obtained from the 

thematic matrix union, while the fifth class (water) was merged with non-vegetation, as the only 

area of classification interest was vegetation and non-vegetation. The accuracy obtained for the 

supervised classifications for four classes and two classes respectively are listed in Table 5: 

 

 

Table 5: Accuracy for different image classification 

Test Area Satellite Accuracy for 4 classes Accuracy for 2 classes 

TA1(High Vegetation) Pleiades 65.70% 72.48% 

Sentinel 2 60.33% 71.90% 

Landsat NA 69.13% 

TA2 (Medium Vegetation) Pleiades 67.96% 80.08% 

Sentinel 2 61.87% 70.36% 

Landsat NA 67.13% 

TA3 (Low Vegetation) Pleiades 72.88% 78.50% 

Sentinel 2 72.76% 77.78% 

Landsat NA 77.32% 
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Pleiades recorded an average accuracy for THNDVI of 95%, Sentinel 2 recorded 82% accuracy and 

Landsat recorded 75% accuracy. However, where a supervised classification using four classes 

(excluding water) was conducted, Pleiades recorded an accuracy of 68.8% and Sentinel 2 recorded 

64.98% accuracy. Similarly, the classification accuracy for only two classes was 77.02% for Pleiades, 

73.34% for Sentinel 2, and 71.19% for Landsat respectively. Figures 18 and Figure 19 show the error 

maps obtained for TA 1 for Pleiades and Sentinel 2 images, while the Landsat error map can be seen 

in Appendix 8. This raster and the above accuracy result were obtained using the thematic matrix 

union function in ERDAS Imagine 2018. In all the error maps, red represents correctly classified pixels 

while yellow represents wrongly classified pixels (Commision and Ommission error): 
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Figure 18: Error map for Pleiades for TA 1 
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Figure 19: Error Map Sentinel 2 
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5.0 DISCUSSION 

5.1 THNDVI 
Although the accuracy for various methods used to map urban vegetation were produced, most of 

the time they strongly indicated a higher accuracy for the higher spatial resolution imagery, while 

the accuracy decreased as the spatial resolution decreased. This general trend is observable in 

Figure 20, though there is less accuracy variation between satellites when the vegetated area is 

high. 

 

Figure 20: Accuracy vs Resolution for THNDVI 

 
It was clear from the results obtained that different images yielded different values for NDVI due 

to the reflectance and the size of the pixel, insofar as the smaller is the pixel the greater the 

probability is that the pixel will have no mixed reflectance values. For instance, the 2 m resolution 

of Pleiades where the area of each pixel is 4 sq. m is significantly smaller than the Landsat pixel of 

900 sq. m.  It is because of this that Pleiades imagery had more pixels that were “spectrally pure” 

(containing just one feature) instead of mixed pixels (containing more than one feature), which 

affects its reflectance, and which further affects NDVI values as the NDVI value is calculated based 

on the reflectance of NIR and Red band. For this reason, all three images yielded different ranges 

of NDVI values, and so the threshold for each of them was different.  

The difference in NDVI value between all three images indicated that there is a difference between 

red and NIR value for the same feature in all the images. As a different sensor and a different 

atmosphere in a different satellite gives rise to different values of red and NIR, this eventually 
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results in different NDVI values. To some extent in this context, NDVI itself normalises the 

atmospheric difference issue. But in some cases, these variation in the NDVI value in different 

sensors might affect applications such as monitoring, change detection etc. Besides that, it will 

mainly affect the time series trend such as the annual, long-term trend derived from remote 

sensing methods which help to monitor and detect change in land cover (Bradley et al., 2007). NDVI 

derived phenological data might not be reliable as NDVI itself may be inaccurate due to 

atmospheric effects and the sensor effect (Bradley et al., 2007, Trishchenko et al., 2002, Van 

Leeuwen et al., 2006). 

 

Figure 21: Plot of SD of accuracy (%) for different satellites 

 

In Figure 21, it was discovered that the standard deviation (SD) for the accuracy of Pleiades was 3.7 

%, for Sentinel 2 it was 9.05 %, while Landsat was very high at 28.61 %. This statistic illustrates that 

although Landsat in some points shows a result with very high accuracy, such as in this case of 

medium vegetation where it recorded an accuracy of almost 99.5%, comparable to that of Pleiades, 

Pleiades remains 225 times better than Landsat in terms of spatial resolution. The SD of Landsat is 

significantly higher in comparison to Pleiades and Sentinel 2; a higher SD means more uncertainty 

in the results. Although Landsat provides astonishing results in some instances, it is still not as 

reliable as other medium or high-resolution images because it is inconsistent. There could be a 

number of potential reasons for Landsat images yielding this result, such as a smaller number of 

pure pixels. As the vegetation in an urban area is being mapped, this vegetation includes not only 

canopies but also grass, gardens and small trees inside residential premises. Since there is a 

heterogeneity that changes rapidly per spatial unit in the context of an urban area, a pixel as large 

as 30 m might include other features in addition to the vegetation present at that point. This heavily 



48 
 

impacts the reflectance of the pixel, which further affects the NDVI. In contrast, Sentinel 2 and 

Pleiades have a medium (10 m) and high (2 m) spatial resolution respectively, which potentially 

produces a higher number of “pure” pixels (in comparison to Landsat’s 30 m pixel that purely 

represents vegetation without any other features present in it). Consequently, when there are 

other non-vegetation surfaces (but which still show some reflectance in NIR and red band) 

alongside some real vegetation, such as grass or a canopy of trees (which give high reflectance in 

NIR and red band) present in the same pixels in Landsat due to these mixed pixels the NDVI value 

of the pixel will be quite high. This leads to classifying the mixed pixel as pure vegetation or as a 

pixel with a majority of vegetation present within it. Many researchers using this method and this 

image are not taking this problem into consideration when formulating a hypothesis (Dadvand et 

al., 2012, Van de Voorde et al., 2008). Therefore, any conclusion drawn without considering the 

effects of mixed pixels on NDVI might be significantly inaccurate.  

Another issue is determining the correct threshold for THNDVI. Although THNDVI showed 

remarkable accuracy in order to obtain that accuracy the proper threshold must be set. In this 

research, the threshold was decided based on GIS data, which was the ground truth. Setting the 

threshold also introduced errors of both commission and omission. For instance, in Figure 22 the 

tennis court (an artificial feature which was verified after a field visit) had no vegetation present in 

it but was classified as vegetation (error of commission). Yet in other cases some vegetation was 

classified as non-vegetation (error of omission). Proper thresholds should be selected in order to 

achieve minimal errors of both commission and omission, as these errors also determine the 

accuracy of the map, not just overall accuracy. If a very high threshold is set, a high level of errors 

of omission will be introduced, while if a very low threshold is set a high error of commission rate 

is introduced. Errors of both commission and omission should be checked using various GIS 

statistics and the threshold. A plot between the threshold and accuracy (accuracy for each different 

threshold) can help in deciding what is the best threshold for the NDVI values. The threshold will 

also differ in a different satellite image, as the NDVI for different satellites is different, so 

determining the correct threshold must be done carefully. In this case the threshold for Pleiades 

was 0.15, at which point the map had a maximum accuracy level in comparison to any other map 

produced from any other methods. Table 6 shows the threshold used for different imagery and 

their respective accuracies in 3 Test Areas. 
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Table 6: Threshold for all 3 Imagery with their Accuracy 

Image Test Area Accuracy Threshold 

Sentinel 2 TA1 92.19 0.3 

TA2 70.02 

TA3 83.66 

Pleaides TA1 95.66 0.15 

TA2 99.36 

TA3 90.28 

Landsat TA1 92.82 0.1 

TA2 99.43 

TA3 35.7 

 

Besides the ambiguity created by a larger pixel size or low spatial resolution imagery and the 

problem in setting the correct threshold, there is another consideration that may explain why 

images of low spatial resolution, such as Landsat, cannot be completely relied on for such analysis, 

which is geometric shift. As is clear from Figure 4 and as discussed in section 4.4, the acquired 

satellite images did not align properly to the basemap which was assumed to have the correct 

geometry. Moreover, the geometric correction was important as the ground truth was collected 

from the basemap, which, if referenced with a geometrically incorrect image, will not align either. 

However, during geometric correction the satellite images were resampled by confining the GCP 

residuals to half of their individual pixel size. Even after this correction, it was a close fit rather than 

a perfect fit. In other words, the images were resampled to show a minimum geometric shift. 

However, the RMS error on Landsat was around 5 m - 6 m, the best available result but still far from 

perfect. For this reason, it was also the case that the cells in the Landsat might possibly not align 

properly to the ground truth, on which the accuracy assessed for individual images was based. 

However, in the case of Sentinel and Pleiades the residual was low, due to which most of the pixels 

aligned with the ground truth and resulted in greater accuracy than that of low resolution Landsat. 

Aside from the mixed pixels and spatial resolution issues, there was also an issue in the spectral 

side of the imagery.  
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Figure 22: Comparison of NDVI value and real features (THNDVI Raster on left and Pleiades Image on right) 

 

In Figure 22, the area inside the yellow circle on the right is a tennis court made of synthetic grass; 

this is an artificial feature with probably no chlorophyll present in it which was checked and 

confirmed after site visit. However, it still has some reflectance in the NIR band due to which it also 

displays some NDVI value. This may have happened because those are synthetic turfs with artificial 

grass and sand in them. If these turfs are not taken care of and cleaned properly, mosses might 

start to develop due to a build-up of dirt and moisture. These mosses have chlorophyll present in 

them, which exhibits some positive NDVI value. Hence, artificial features like these which ordinarily 

should not show any NDVI values present some NDVI value, which may well be above the threshold. 

If that is the case, then such features will be classified as vegetation. Yet it cannot be defined as 

vegetation, which might cause problems for researchers in fields related to health that use this 

method to map vegetation and conclude that everything with an NDVI value above a certain 

threshold is green vegetation (Dadvand et al., 2012, Van de Voorde et al., 2008). 

Some of the literature (Carlson and Ripley, 1997, Nichol and Lee, 2005, Van de Voorde et al., 2008) 

deals with this problem. For instance, Van de Voorde et al 2008 mentions comparing pixels of 

Landsat satellite imagery to high resolution IKONOS imagery, in order to detect any land use change 

between the timespan of acquisition of the Landsat and IKONOS imagery. However, in this instance 

they fail to mention how accurately the Landsat image aligned with the IKONOS image, so that the 

pixels can be compared accurately and precisely. Moreover, researchers who use this method to 

map vegetation in order to analyse it in relation to other factors such as human health fail to 

mention geometric shifts, atmospheric corrections and the error induced by these things on the 

final map acquired. Without considering these factors, they may also come to an inaccurate 

conclusion. 
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5.2 Supervised Classification 
 

In the context of supervised classification, in the case Sentinel 2 and Pleiades images, acquiring the 

signature to classify the image was not a problem due to its medium and high resolution. The 

signature of canopies and grass present in residential and commercial objects such as houses, 

buildings and factories could be easily extracted due to the resolution of the image. However, in 

the case of Landsat this could not be done as easily. The reason is that the pixel size was too large 

and in order to identify a canopy or a grass of the size of one third of the pixel, or even smaller 

features such as gardens or small trees, was visually challenging. In order to overcome this 

difficulty, the classification of the Landsat image was based on only two classes, vegetation and 

non-vegetation. However, as mentioned in section 3.5 of Methods, sub-pixel classification is one 

of the methods which can potentially overcome this issue as it exploits the spectral properties of 

pixel. Support Vector Machine (SVM) spectral unmixing might be one of the applicable methods for 

classifying an image with a high degree of heterogeneity, provided that there is a large training 

sample (MacLachlan et al., 2017). Although, as discussed above, sub-pixel classification is not 

applicable due to the low spectral resolution of Pleiades, which was used for the image analysis in 

this research.  In comparison to Sentinel 2, Pleiades classified features such as tree and grass with 

a higher accuracy level due to its spatial resolution, indicating that even though features such as 

trees or grass are visually identifiable in Sentinel 2 images they may not be able tom be accurately 

classified.  However, contrary to Pleiades, Sentinel 2 still has a number of mixed pixels which may 

confuse the classification algorithm and eventually lead to some misclassification of such features. 

Yet to compare the results between all imagery, even Pleiades and Sentinel 2 were classified in two 

classes as was Landsat. The accuracy obtained for each satellite for different classifications can be 

seen in Tables 4 and 5. In either case of classification, Pleiades had the highest average accuracy in 

comparison to Sentinel 2 and Landsat. Nevertheless, Sentinel, despite its medium resolution of 10 

m, also displayed a result that was on par with Pleiades in terms of accuracy. However, at a high 

resolution the spatial heterogeneity of Pleiades imagery was clearer than the other two, where 

even features such as shadows were very difficult to identify in Sentinel 2 and almost impossible to 

identify in Landsat but were clearly visible and prominent in Pleiades.  
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Figure 23: Shadows around building in Adelaide CBD 

Due to these shadows, an example of which can be seen in Figure 23, many features were eclipsed 

beneath the shadow and moreover, those features were wrongly classified as water as can be seen 

in Figure 25. Since shadows and deep water have similar reflectance properties, in that they absorb 

most of the bands and appear dark visually, there arises many instances of potential 

misclassification between shadows and water. In some instances (such as in Figure 24), the water 

bodies were misclassified as shadows in some places. 
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Figure 24: Water body misclassified as shadow and shadow misclassified as water (Dark Green=Tree, Light Green=Grass, 

Blue=Water, Black=Shadow, Grey=Non-Vegetation, Yellow=Unclassified) 

This may be a possible explanation for the almost equal accuracy recorded between Pleiades and 

Sentinel 2, as in the above picture the shadows of the structure are clearly visible. The features 

present beneath the shadows there, such as trees, grass and non-vegetation features, were 

classified as shadow/water, leading to a misclassification. As a result, this misclassification leads to 

a decrease in the overall accuracy of the classified map. The misclassification and loss of details due 

to misclassification can be seen below: 

  

Figure 25: Misclassification of shadow around the Adelaide CBD (Dark Green=Tree, Light Green=Grass, Blue=Water, 

Black=Shadow, Grey=Non-Vegetation) 
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The misclassification is clear in Figure 25, where the majority of important features underneath the 

shadow are classified as shadow or water, ultimately leading to a diminishing of the overall 

accuracy of the classification. The cause of this problem is that satellite imagery, which was used in 

this research, is sun synchronous meaning that the elevation of the sun between different images 

is different, despite having the same azimuth. Due to this there will be shadows, as in an urban area 

such as Adelaide there are a lot of tall buildings which will cast wide shadows. The only possible 

solution to this problem is acquiring the image at the time of the summer solstice, which is 22nd 

December in the southern hemisphere, yet even at that time there will be minimal shadow to the 

south (with no shadow only at 23.5 degrees south latitude).  

However, an analysis based on a single image is possible but not reliable for extrapolating as to the 

overall extent of vegetation present in an urban area, as some might be deciduous and if plant 

phenology is to be considered then a multidate image analysis should be conducted in order to 

obtain a more reliable result. Furthermore, in this case due to a lack of availability of multidate 

images for Pleaides, a multidate image analysis was not done. Furthermore, multidate image 

analysis is only reliable if the image is of a high resolution, so as to detect any change in vegetation 

(Tigges et al., 2013). Therefore, a multidate image analysis on medium and low-resolution satellite 

imagery might not yield a useful result either. 

  

 

Table 7: Error of Commission in Pleiades for TA 1 

  
Number of classified 
pixels 

Total 
Row Error (%) 

Shadow 13565 15745 86.15 

Non_vegetation 36293 369373 9.83 

Grass 16892 47671 35.43 

Tree 141849 218349 64.97 

Table 6 illustrates the error of commission when classifying Pleiades in four classes. Although the 

overall accuracy for this patch was found to be almost 68%, it shows a high level of error of 

commission on three classes. Also listed below are the errors of omission for the same patch for 

the same satellite image: 
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Table 8: Error of omission for TA1 for Pleiades Classification 

 
Number of classified 
pixels 

Total 
Column Error (%) 

Shadow 3589 5769 62.21 

Non_vegetation 93268 426348 21.88 

Grass 94066 124845 75.35 

Tree 17676 94176 18.77 
 

It is clear from Table 8 that not only are errors of commission high, but errors of omission are also 

high, because of which it may be concluded that although the classification accuracy for this patch 

was found to be 68%, this classification may not be sufficient for it to be considered for the purpose 

of mapping vegetation in an urban area. But this is not the case when the classification is done 

using only two classes where shadow is included in the non-vegetation class while trees and grass 

are included in the vegetation class. 

 

Table 9: Error of Commission in Pleiades for TA 1 (Only 2 classes) 

 
Number of classified 
pixels 

Total 
Row Error (%) 

Non_vegetation  88187 432632 20.38 

Veg  41583 218869 18.99 

 

Table 10: Error of Omission in Pleiades for TA1 (only 2 classes) 

 
Number of classified 
pixels 

Total 
Column Error (%) 

Non_vegetation 41583 386028 10.77 

Veg 88187 265473 33.22 

It is clear from Table 9 and Table 10 that the errors of both omission and commission may be 

significantly reduced to a satisfactory level when the image is classified for only two distinct classes 

and the accuracy for this classification is obtained at 80%. When the number of classes is reduced, 

it is more logical and less ambiguous to train the data so that the classification yielded a high 

accuracy in comparison to where there were multiple classes. Similarly, when the number of classes 

was reduced during the classification in Sentinel 2 the accuracy also increased significantly. But at 

the extremes of the spectrum, the classification accuracy of supervised classification also depends 

on the user’s knowledge and interpretation, because if the signature acquired is not correct then 
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the classification will be inaccurate regardless of the overall accuracy of classification. Therefore, 

the accuracy of supervised classification depends not only upon the available statistics but is also 

heavily dependent on the skills of the user in identifying on the image exactly what they are 

classifying. 

As the results obtained from different methods and images showed different levels of accuracy, 

these accuracy levels are to be considered according to their use. For instance, if the objective of 

the research is to monitor street trees, then a high level of accuracy is required as street trees have 

a comparatively small canopy size compared to that of trees in parks. In this case, if a low accuracy 

is used then most of the street trees will be mixed in with the street due to mixed pixels (error of 

omission). However, in the event that someone requires an urban vegetation map in order to plan 

land plotting, where the plotting is planned based on the distance from parks and vegetation in the 

area, the map must be highly accurate. On the other hand, if a vegetation map is being used to 

determine greenness levels in a suburb, then a medium level of accuracy is acceptable. The bottom 

line is that importance of accuracy levels varies for different applications and, moreover, higher 

accuracy levels are required for a smaller study extent such as TA’s in this research, while medium 

accuracy levels might be acceptable for a larger study area such as a state, country etc. If a low 

accuracy level is used on an area that requires greater attention to details, then the result may not 

be acceptable for the purpose. 

5.3 Costs Incurred 
When the results were evaluated at the end and considering all the efforts and problems that were 

encountered, there were three main costs encountered: (1) Data acquisition, (2) set-up costs and 

(3) time spent on analysis and image processing. The highest cost incurred during this academic 

research was the set-up costs. The software used for this research can potentially run on an 

ordinary computer system, but a faster processor and good storage system can provide additional 

benefits. A faster processor and HDD would result in faster processing and save a lot of time. Such 

a high-end system with a faster processor can handle all the tasks simultaneously and provide 

storage which is faster than a traditional hard drive, and can load images and the software quickly 

and efficiently. Another set-up cost incurred was the license fee for the software; as this was 

academic research, educational licensed software was used. As the software was provided by the 

university for research purposes, it was free of charge but only for student use. However, if this 

was a commercial project a huge license fee would need to have been paid for acquiring software 

such as ArcGIS Pro or ERDAS Imagine. The fee for the license does not only include the licensing 

price, it also includes an annual maintenance fee. The next highest cost incurred was (3) time spent 

on analysis and image processing. This section includes tasks such as processing images, using 
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various tools to perform an analysis and obtain various statistics, the user’s exploration on different 

methods to be used and finding suitable ways to use those methods which requires a lot of study 

in areas including findings, the literature review, field visits for accuracy assessments and validation 

of the results, time spent on interpretation of the data, preparing more than a dozen maps etc.  

The cost incurred on data acquisition depends on the objective of the research. In this case, two 

satellite images used were free of charge (Sentinel 2 and Landsat), whereas Pleiades is not freely 

available. The cost for Pleiades per Sq. Km is AUD 15-24 (refer to Table 1). As has been mentioned 

previously, the satellite imagery is selected based on the objective of the research. If that objective 

can be met using a medium resolution satellite such as Sentinel 2, then the price incurred for data 

acquisition can be reduced to nil. However, if the objective requires a very fine resolution image, 

such as that of SuperView or Pleiades, the cost for data acquisition will surpass other costs such as 

the set-up cost and will further increase as the extent of the study area in the research increases. 

So the cost incurred for data acquisition varies considerably depending on the scope, objective and 

study area of the research. 

In this research, three different datasets were used. Among the three datasets used, Landsat was 

free of charge, Sentinel 2 was also free of charge for academic and research purpose, while Pleiades 

was not normally freely available like Sentinel 2 and Landsat, but thanks to my supervisor it was 

made available for this research but was not available free of charge when my supervisor acquired 

access to it. The processing for all the images was carried out in the same system. However, the 

processing time was longer for Pleiades than it was for the other two. So, for the three major cost 

drivers, the set-up cost was consistent across all data sources used, while the data acquisition cost 

and time spent on analysis and processing was comparatively higher for Pleiades imagery. This 

difference in major cost drivers between the three different data sources used indicates a trade-

off between cost and accuracy. It was clear that Pleaides allowed the most accurate map to be 

obtained, but in terms of cost drivers was costlier than the other two, while Sentinel 2 and Landsat 

were comparatively less accurate but incurred minimal costs. So, there is clearly a trade-off 

between accuracy and cost incurred in image processing. 
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6.0 CONCLUSION 
After analysing all the results obtained using various methods on various imagery of different 

resolutions, the most accurate and effective method for mapping urban vegetation was found to 

be the THNDVI method. The satellite image for the THNDVI Method with the lowest spatial 

resolution had an average accuracy of 75%. Moreover, the dataset or image that provided the best 

accuracy was Pleiades imagery due to its high resolution. The average accuracy was 95% for THNDVI 

in the case of Pleiades. However, in the context of supervised classification the accuracy varied 

when the number of classes also varied (see Tables 6,7,8 and 9). For the purposes of this research, 

due to its high resolution, Pleiades had the highest accuracy amongst all the images used. Yet 

although the results for supervised classification seemed to be promising, the number of errors of 

commission and omission was high enough to potentially call into question whether the results 

obtained were accurate enough. Even in some instances of supervised classification, Pleiades and 

Sentinel 2 had a very similar level of accuracy despite their being on a completely different level of 

resolution (spatial). That may have occurred because Pleiades has a low spectral resolution of 4 

bands compared to 13 bands for Sentinel 2. As the supervised classification is based on the 

signatures of the training data, the high spectral resolution of Sentinel 2 might have an advantage 

over Pleiades in this respect. Similar results were recorded for THNDVI between Pleiades and 

Sentinel 2. Although Pleiades had an outstanding accuracy of 95%, Sentinel also had an accuracy of 

82% which was quite acceptable considering the scope and objective of this research. However, 

the result achieved from supervised classification, although the classification controlled for just two 

different features (vegetation and non-vegetation) which were visually appealing, was not accurate 

enough considering the number of errors or omission and commission. Even in the high-resolution 

Pleiades, where the errors of commission and omission were comparatively lower than that of 

Sentinel 2 and Landsat, and which showed a higher average accuracy, still had errors of commission 

and omission which were potentially unacceptable. In the context of THNDVI, despite a higher 

accuracy level than supervised classification, many features exhibit NDVI value which is also a type 

of classification error in the case of THNDVI (classifying artificial features as vegetation/greenness). 

But in comparison to the supervised classification errors of omission and commission in THNDVI, 

such misclassifications were less frequent. However, if a specified signature or quality of training 

data can be improved, the likelihood is that supervised classification can also potentially yield 

greater accuracy with fewer misclassification errors. 

In the context of cost, as discussed in section 5.3, there is a clear trade-off between accuracy and 

cost. The results obtained in section 4.0 clearly show that Pleiades, with the highest resolution, 

demonstrated a higher degree of accuracy than the other two medium and low-resolution images 
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across all the methods. Despite that, Sentinel 2 as a medium-resolution satellite displayed some 

promising results, which might be acceptable in the context of many potential research objectives. 

Even for THNDVI, Sentinel 2 achieved a notable accuracy of 82%, but still fell well short of the 95% 

accuracy achieved by Pleiades. Yet it must be understood that high-resolution imagery such as 

Pleiades or Superview are not freely available. The higher accuracy results obtained clearly come 

at a cost. A similar pattern emerges in the case of supervised classification. Pleiades recorded the 

highest overall classification accuracy here as well. So there is a clear trade-off between accuracy 

and cost. Although the cost of high resolution imagery is also high, it pays off in terms of the 

accuracy obtained after image classification, yet some freely available medium resolution satellites 

such as Sentinel 2 also show promising accuracy. So the answer to the research question is that the 

best method among the two was found to be THNDVI, while the most accurate map was the one 

obtained from Pleiades. This result also indicates that the highest accuracy and best results cannot 

be obtained at a low cost, but depending on the objective of the research, free and medium 

resolution images such as Sentinel 2 can also provide acceptable results. For the purposes of 

commercial use, Sentinel 2 is also not free but will be significantly less costly than other available 

high-resolution imagery. 

 

7.0 FUTURE RESEARCH 

There are a number of other popular methods besides either NDVI or supervised classification, 

which could potentially be used to attempt to verify the results. Since the introduction of ERDAS 

Imagine 2018, machine learning is becoming increasingly popular, although it was still somewhat 

popular under earlier available software. However, there is very little literature that deals 

specifically with machine learning for mapping vegetation in an urban area but there are substantial 

literature using Machine Learning to map vegetation. With many methods machine learning 

segments, the image, which creates many difficulties, particularly in urban areas such as Adelaide 

as these areas have a high degree of spatial heterogeneity, and that spatial heterogeneity becomes 

even more distinct in high resolution imagery such as Pleiades. The results obtained from machine 

learning are worthy of further investigation, as some of the researchers who have used it 

mentioned getting surprising results using this algorithm. Due to time constraints, this algorithm 

could not be applied to this research, but this method represents a promising potential area for 

similar research in future. 
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APPENDICES 

Appendix 1: Sentinel Supervised Classification for 5 classes 
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Appendix 2: Sentinel 2 supervised classification for 2 class 
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Appendix 3: Landsat supervised classification for 2 class 
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Appendix 4: Sentinel NDVI 
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Appendix 5: Sentinel 2 THNDVI 
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Appendix 6: Landsat NDVI 
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Appendix 7: Landsat THNDVI 
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Appendix 8: Landsat Error map for Supervised Classification 
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Appendix 9: Error matrix for Sentinel for 4 class of TA2 
  Reference 

Shadow Non_veg Grass Tree Total 

Classified Shadow 0 0 0 0 0 

Non_veg 2129 342977 66274 35285 446665 

Grass 3500 81952 62194 49695 197341 

Tree 2089 12780 5585 15643 36097 

Total 7718 437709 134053 100623 420814 
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Appendix 10: Error matrix of Sentinel for 2 class of TA2 
  Reference Data 

Non_veg Veg Total 

Classified Data Non_veg 345322 100118 445440 

Veg 101445 133231 234676 

Total 446767 233349 478553 
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Appendix 11: Error matrix of Pleiades for 2 class of TA2 
  Reference Data  

  Non_veg Veg Total 

Classified Data Non_veg 344445 88187 432632 

 Veg 41583 177286 218869 

 Total 386028 265473 521731 
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Appendix 12: Error matrix of Pleiades for 4 class of TA2 
  Reference Data 

Shadow Non_veg Grass Tree  Total 

Classified 
Data 

Shadow 2180 8631 3312 1622 15745 

Non_veg 1554 333080 22813 11926 369373 

Grass 95 12669 30779 4128 47671 

Tree 1940 71968 67941 76500 218349 

 Total 5769 426348 124845 94176 442539 
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Appendix 13: Error matrix of Landsat for 2 class of TA2 
  Reference Data 

Non_veg Vegetation total 

Classified Data Non_Veg 425441 210505 635946 

Vegetation 9561 24174 33735 

total 435002 234679 449615 
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Appendix 14: Error matrix of Sentinel 2 for 4 class of TA1 
  Reference Data 

Shadow Non-Veg Grasss Trees Total 

Classified 
Data 

Shadow 0 0 0 0 0 

Non-Veg 864 170288 20795 35127 227074 

Grass 1234 25792 7906 33312 68244 

Trees 158 1146 434 2596 4334 

Total 2256 197226 29135 71035 299652 
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Appendix 15: Error matrix of Sentinel 2 for 2 class of TA1 
  Reference Data 

Non_Veg Veg Total 

Classified Data Non_Veg 171294 28183 199477 

Veg 55871 44298 100169 

Total 227165 72481 215592 
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Appendix 16: Error matrix of Landsat for 2 class of TA1 
  Referenced Data 

Non_veg Veg total 

Classified Data Non_veg 198912 565 199477 

Veg 91883 8156 100039 

total 290795 8721 207068 
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Appendix 17: Error matrix of Pleiades for 4 class of TA1 
  Referenced Data 

shadow non_veg Grass Tree total 

Classified 
Data 

shadow 357 2085 86 2723 5251 

non_veg 667 130689 4694 11349 147399 

Grass 22 11847 10399 3423 25691 

Tree 805 47282 13267 46830 108184 

total 1851 191903 28446 64325 188275 
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Appendix 18: Error matrix of Pleiades for 2 class of TA1 
  Reference Data 

Non_Veg Veg total 

Classified Data Non_Veg 133960 18911 152871 

Veg 60023 74000 134023 

total 193983 92911 207960 
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Appendix 19: Error matrix of Pleiades for 2 class of TA3 
  Reference Data 

Non_veg Veg total 

Classified Data Non_veg 62986 8653 71639 

Veg 13362 17421 30783 

total 76348 26074 80407 
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Appendix 20: Error matrix of Pleiades for 4 class of TA3 
  Reference Data 

shadow Non_veg Grass Tree total 

Classified 
Data 

shadow 0 558 0 98 656 

Non_veg 0 61997 4540 9137 75674 

Grass 0 2473 4324 2455 9252 

Tree 0 6622 1886 8323 16831 

total 0 71650 10750 20013 74644 
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Appendix 21: Error matrix of Sentinel 2 for 4 class of TA3 
  Reference Data 

shadow Non_veg Grass Tree total 

Classified 
Data 

shadow 0 323 94 276 693 

Non_veg 0 71236 4298 172 75706 

Grass 0 6185 3052 36 9273 

Tree 0 11750 4787 316 16853 

total 0 89494 12231 800 74604 
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Appendix 22: Error matrix of Sentinel 2 for 2 class of TA3 
  Reference Data 

Non_veg Veg total 

Classified Data Non_veg 71559 4840 76399 

Veg 17935 8191 26126 

total 89494 13031 79750 
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Appendix 23: Error matrix of Landsat for 2 class of TA3 
  Reference Data 

Non_veg Veg total 

Classified Data Non_veg 74277 461 74738 

Veg 22247 3139 25386 

total 96524 3600 77416 

 

 

 

 


