Covalent immobilisation of proteins for biomaterial and biosensing applications

Submitted for examination on 10th of December 2007 for a Doctor of Philosophy Degree at Flinders University, Faculty of Science and Engineering, School of Chemistry, Physics and Earth Sciences by **Mr Endre Jozsef Szili**.

Supervisors:

Associate Professor Nicolas H. Voelcker (Flinders University) Associate Professor Sunil Kumar (University of South Australia) Professor Roger St. C. Smart (University of South Australia) Doctor Mark DeNichilo (TGR Biosciences)

Contents

Declarations	Ι
Acknowledgements	II
Abbreviations	III

Abstract	,
----------	---

1

Part 1: Covalent immobilisation of IGF-1 on PECVD-Si-Ti for orthopaedic biomaterial applications

1.1	Introduction
1.1	Introduction

1.1.1	Overview of biomaterials	3
1.1.2	Titanium biomaterials	4
1.1.3	Osseointegration	7
1.1.4	Introduction to titanium biomaterials research	11
1.1.5	Influence of surface topography on osseointegration	11
1.1.6	Influence of surface chemistry on osseointegration	14
1.1.7	Hydroxyapatite implant coatings	16
1.1.8	Bioactive glass implant coatings	17
1.1.9	Plasma enhanced chemical vapour deposition of bioactive glass	18
1.1.10	Biological bioactive factors	22
1.1.11	Protein surface immobilisation techniques	23
1.1.12	Silane chemistry for protein surface immobilisation	26

1.1.13	Part one objectives	28
1.2	Materials and Methods	
1.2.1	Substrate preparation	30
1.2.2	Buffer preparation	31
1.2.3	Plasma enhanced chemical vapour deposition (PECVD) of silica on titanium	32
1.2.4	Characterisation of hydroxyl group surface coverage on PECVD- Si-Ti	35
1.2.5	Grafting of alkoxysilane molecules on PECVD-Si-Ti	36
1.2.6	Development of surface modification techniques on PECVD-Si- Ti for the attachment of insulin-like growth factor-1 (IGF-1)	38
1.2.7	Immunological activity of immobilised IGF-1 on PECVD-Si-Ti	39
1.2.8	Assessment of IGF-1 biological activity on PECVD-Si-Ti	41
1.2.9	X-ray photoelectron spectroscopy	45
1.2.10	Infrared spectroscopy	46
1.2.11	Atomic force microscopy	46
1.2.12	Scanning electron microscopy	46
1.2.13	Statistical analyses	47
1.3	Results and Discussion	
1.3.1	Characterisation of silica films deposited on titanium by plasma enhanced chemical vapour deposition (PECVD)	48
1.3.2	Assessment of alkoxysilane grafting methods on PECVD-Si-Ti	69
1.3.3	Development of surface modification techniques for the covalent attachment of insulin-like growth factor-1 (IGF-1) on PECVD- Si-Ti	90
1.3.4	Analysis of the immunological activity of adsorbed and covalently attached insulin-like growth factor-1 (IGF-1) on PECVD-Si-Ti	105

1.4	Conclusion and Future Directions	161
	functionalised PECVD-Si-Ti	
1.3.6	Analysis of cell attachment and early cell proliferation on IGF-1	139
	IGF-1 functionalised PECVD-Si-Ti surfaces	
1.3.5	Analysis of osteoblast-like cell growth on PECVD-Si-Ti and	112

Part 2: Covalent immobilisation of anti-human IgG on porous silicon for the detection of human IgG by reflective interferometry

2.1 Introduction

2.1.1	Overview of porous silicon applications	163
2.1.2	Porous silicon formation	163
2.1.3	Porous silicon pore geometries	166
2.1.4	Biosensors made from porous silicon	168
2.1.5	Functionalisation of porous silicon biosensors	168
2.1.6	Patterning of biosensor platforms with biomolecules	169
2.1.7	Readout signal of porous silicon biosensors	171
2.1.8	Porous silicon optical interferometry	172
2.1.9	Interferometric porous silicon biosensors	173
2.1.10	Advantages of interferometric porous silicon biosensors	175
2.1.11	Part two objectives	176
2.2	Materials and Methods	
2.2.1	Porous silicon formation	177
2.2.2	Porous silicon oxidation	179
2.2.3	Optical interferometric reflectance spectroscopy	180
2.2.4	Mechanism of enzyme-catalysed porous silicon degradation	181
2.2.5	Immobilisation of anti-human IgG on porous silicon	181

2.4	Conclusions and Future Directions	223
	biosensor on functionalised porous silicon	
2.3.4	Assessing the performance of the enzyme-based interferometric	213
	porous silicon platform	
	the detection of immunoglobulin G (IgG) on a functionalised	
2.3.3	Establishment of an enzyme-based interferometric biosensor for	200
2.3.2	Enzyme-catalysed porous silicon degradation	193
	chemistry	
2.3.1	Characterisation of porous silicon morphology and surface	184
2.3	Results and Discussion	
2.2.10	Scanning electron microscopy	183
2.2.9	Atomic force microscopy	183
2.2.8	X-ray photoelectron spectroscopy	183
2.2.7	Infrared spectroscopy	182
2.2.6	Biosensing of human IgG	182
		100

Overall Conclusions

References

Part 1: Covalent immobilisation of IGF-1 on PECVD-Si-Ti for orthopaedic	i
biomaterial applications	
Part 2: Covalent immobilisation of anti-human IgG on porous silicon for the	xxiv
detection of human IgG by reflective interferometry	

225

Declarations

'I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.'

Endre J. Szili Date

'I believe that this thesis is properly presented, conforms to the specifications for the thesis and is of sufficient standard to be, *prima facie*, worthy of examination.'

Associate Professor Nicolas H. Voelcker

Date

Acknowledgements

First, I would like to thank my PhD principle supervisor, Associate Professor Nicolas Voelcker. Under his guidance, I have acquired a lot of knowledge in biomaterials science and developed a host of new skills. Also, I am grateful to my co-supervisors, Associate Professor Sunil Kumar, Professor Roger Smart and Dr. Mark DeNichilo for their supervision and professional discussions during my PhD degree.

I also thank Dr. Robert Jones and Dr. Andrew Lewis for teaching me the operation of the XPS instruments. I am thankful to Miss Suet Peng Low and Miss Rachel Lowe for kindly taking SEM images of my samples. In addition, I am grateful for their expert discussions and the expertise of Dr. Sean Graney who taught me new skills and knowledge in chemistry during my PhD.

The support of the technical staff at Flinders University has to be credited. This includes Mr Mike Mellow, Mr Chris Price, Mr Greg Hewitt, Mr Tony Nugent, Mr Bruce Gilbert, Mr Brenton Perkins, Mr Bob Northeast, Mr John Pesor, Mr Bob de Vries, Mr Bill Drury and Mr Mark Ellis. Also, I would like to thank the assistance of the former and current supervisors of the chemical store at Flinders University, Mr Kevin Solly and Ms Tricia Butterfield.

During my PhD, I have enjoyed the company and interesting conversations with many people at Flinders University especially Sean, Rachel, Mike, Trish, Gordy, Sasha, Kevin, Chris and the rest of the guys from the workshops, which has helped fill in time between experiments.

Finally, I would like to thank the love and support of my family and friends and especially Sue for all her love, support and patience.

Abbreviations List

А	ampere
ABTES	triethoxysilyl butyraldehyde
APTES	3-aminopropyl triethoxysilane
AFM	atomic force microscopy
anti-IGF-1	biotinylated anti-human IGF-1 antibody
ASD	anodic spark deposition
ASTM	American Society for Testing and Materials
at.%	atomic percentage
Avg	average
Αλ	absorbance at a given wavelength
Bal	balance of the elemental composition (wt.%) of the metal alloy
BSA	bovine serum albumin
BSP	bone sialoprotein or BioSpark TM
С	coulomb
CCD	charge-coupled device
CDS	cell dissociation solution
cm	centimetre
CPS	counts per second
C3b	complement-activated fragment
DCM	dichloromethane
DMEM	Dulbecco's modified Eagle's medium
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
Dr	Doctor
ECM	extracellular matrix
EGFs	epidermal growth factors
ELISA	enzyme-linked immunosorbent assay
EOT	effective optical thickness

ERK	extracellular-signal-regulated kinase
etc	et cetera
EtOH	ethanol
eV	electronvolt
F-actin	filamentous actin
FBS	foetal bovine serum
FEAM	2,2,2-trifluoroethylamine
FFT	Fast Fourier Transform
FGFs	fibroblast growth factors
FPTMS	3,3,3-trifluoropropyl trimethoxysilane
FT-IR	Fourier transform-IR
FWHM	full-width-half-maximum
GDP	guanosine diphosphate
GPTMS	3-glycidoxypropyl trimethoxysilane
GTP	guanosine triphosphate
h	hour
НА	hydroxyapatite
HBSS	Hank's balanced salt solution
HF	hydrofluoric acid
HOB	human osteoblast-like
HQ	hydroquinone
HRP	horseradish peroxidase
HRP-Strep	peroxidase conjugated streptavidin
hv	Planck's constant (h) times by the frequency of the exciting
	radiation (v)
ICP-AES	inductively coupled plasma atomic emission spectrometry
IgA	immunoglobulin A
IgG	immunoglobulin G
IgM	immunoglobulin M
IGF-1	insulin-like growth factor-1
IGFs	insulin-like growth factors

IR	infrared
IPTES	3-isocyanatopropyl triethoxysilane
kV	kilovolt
LBNL	Lawrence Berkeley National Laboratory
Μ	molar
mA	milliamps
МАРК	mitogen activated protein kinase
МАРКК	MAPK kinase
МАРККК	MAPK kinase kinase
MEM	minimal essential medium
mer	nucleotide
MFC	Mass flow controller
MG63	immortalised cell line of fibroblast morphology with adherent
	growth properties derived from an osteosarcoma of human bone
MHz	megahertz
min	minute
ml	millilitre
mM	millimolar
MPa	megapascal
mλ	spectral order of the Fabry-Pérot fringe (m) times wavelength of
	the incident light striking the surface at an incident angle of 0°
	(λ)
ng	nanogram
NHS	N-hydroxysuccinimide
nL	average refractive index of a porous silicon layer (n) times
	porous silicon layer thickness (L)
nm	nanometre
n-type	phosphorous or arsenic doped
OIRS	optical interferometric reflectance spectroscopy
OPD	o-phenylenediamine dihydrochloride
OPG	osteoprotegerin

OX	oxidised
PBS	phosphate buffered saline
PBS-T	PBS-Tween [®] 20
PDEPMA	poly(3,3'-diethoxypropyl methacrylate)
PDGFs	platelet-derived growth factors
PECVD	plasma enhanced chemical vapour deposition
PECVD-Si	silica film deposited on a material by the technique of PECVD
PECVD-Si-Ti	titanium coated with a film of PECVD-Si
p-ERK	phosphorylated ERK
PGE ₂	prostaglandin E ₂
pН	potential of hydrogen
Pty Ltd	proprietary limited
p-type	boron doped
RANK	nuclear factor κ-B
RCF	relative centrifugal force
Red	reduced
RGD	Arginine-Glycine-Aspartic acid
RMS	root mean square
SAGA	smart apertured grazing angle
sccm	standard cubic cm per min
scfh	standard cubic feet per h
SEM	scanning electron microscopy
SMP	N-succinimidyl-3-maleimidopropionate
StrepHRP	streptavidin conjugated HRP
TCPS	tissue culture polystyrene
TEOS	tetraethoxysilane
TFAA	trifluoroacetic anhydride
$TGF-\beta_1$	transforming growth factor β_1
TGFs	transforming growth factors
ТМ	trademark
TMB	3,3',5,5'-tetramethylbenzidine

TNPtrintrophenolμgmicrogramμlmicrolitreμmmicronetreμMmicronolarUTSultimate tensile strengthUV-Visultimate tensile strengthV/vvolume per volumeWGFEwhey growth factor extractwt.%weight percentagew/vweight percentagev/vdegrees°Cdegrees°Cdegreesβgreater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo<less than≤less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane $β$ micar extinction coefficient $β$ greestifter extinction coefficient $β$ greestifter extinction coefficient $β$ greestifter extinction coefficient $β$ greet relation or equal to $β$ greet extinction coefficient <td< th=""><th>TNBS</th><th>2,4,6-trinitrobenzenesulfonic acid</th></td<>	TNBS	2,4,6-trinitrobenzenesulfonic acid
μ microlite μ mmicrolite μ Mmicrometre μ MmicromolarUTSultimate tensile strengthUV-Visultra-visible ν/ν volume per volumeWGFEwhey growth factor extractwt.%weight percentagew/vweight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusødiameter>greater than2greater than2immortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo<less than≤less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms%percentage e registered	TNP	trinitrophenol
μmmicrometreμMmicromolarUTSultimate tensile strengthUV-Visultra-visible v/v volume per volumeWGFEwhey growth factor extractwt.%weight percentage w/v weight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusøgreater than≥greater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent≤less than≤less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane ς molar extinction coefficient Ω ohms%percentage%percentage%molar equal to	μg	microgram
μMmicromolarUTSultimate tensile strengthUT-Visultra-visible v/v volume per volumeWGFEwhey growth factor extractwt.%weight percentage w/v weight per volumeXPSX-ray photoelectron spectroscopy $~$ approximately $°$ degrees $°C$ greater than $≥$ greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent $≤$ less than $≤$ less than or equal to $3-MPTS$ 3 -mercaptopropyl trimethoxysilane $ε$ molar extinction coefficient $Ω$ ohms $%$ percentage	μl	microlitre
JuncUTSultimate tensile strengthUV-Visultra-visiblev/vvolume per volumeWGFEwhey growth factor extractwt.%weight percentagew/vweight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusødiameter>greater than≥greater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo<less than≤less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane \$%molar extinction coefficientΩohms%percentage%percentage%percentage	μm	micrometre
UV-Visultra-visible V/v volume per volumeWGFEwhey growth factor extractwt.%weight percentage w/v weight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusødiameter>greater than2greater than2immortalised cell line of fibroblast morphology with adherent $growth properties derived from mouse embryo<less than\leqses than or equal to3-MPTS3-mercaptopropyl trimethoxysilane\epsilonmolar extinction coefficient\Omegaohms%percentage$	μΜ	micromolar
ν/vvolume per volumeWGFEwhey growth factor extractWt%weight percentagew/vweight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusødiameter>greater than or equal toST3 balb/cimmortalised cell line of fibroblast morphology with adherent≤less than≤less than≤ses than or equal toS-MPTSaprecaptopropyl trimethoxysilaneεmolar extinction coefficientΩohms%percentage%percentage%percentage	UTS	ultimate tensile strength
WGFEwhey growth factor extractwt.%weight percentagew/vweight per volumeXPSX-ray photoelectron spectroscopy~approximately°degrees°Cdegrees celsiusødiameter>greater than2greater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo<less than≤less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane ϵ ρ ohms%percentage%percentage%percentage	UV-Vis	ultra-visible
wt.%weight percentagew/vweight per volumeXPSX-ray photoelectron spectroscopy \sim approximately \circ degrees $°C$ degrees celsius $ø$ diameter>greater than \geq greater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than \leq molar extinction coefficient Ω ohms $%$ percentage $*$ registered	v/v	volume per volume
w/vweight per volumeXPSX-ray photoelectron spectroscopy \sim approximately \circ degrees $^{\circ}$ Cdegrees celsius ϕ diameter $>$ greater than \geq greater than or equal to3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than \leq nercaptopropyl trimethoxysilane ε molar extinction coefficient Ω ohms $\%$ percentage \ast nercaptopropyl trimethoxysilane ε nolar extinction coefficient Ω ohms $\%$ percentage \ast registered	WGFE	whey growth factor extract
XPSX-ray photoelectron spectroscopy \sim approximately \circ degrees $^{\circ}$ degrees $^{\circ}$ degrees celsius \emptyset diameter $>$ greater than \geq greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ε molar extinction coefficient Ω ohms $\%$ percentage \mathbb{R} registered	wt.%	weight percentage
\sim approximately \circ degrees \circ Cdegrees celsius \emptyset diameter $>$ greater than \geq greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ε molar extinction coefficient Ω ohms $\%$ percentage \circledast registered	w/v	weight per volume
\circ degrees $^{\circ}$ Cdegrees celsius \emptyset diameter $>$ greater than \geq greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than \leq less than or equal to $3-MPTS$ 3 -mercaptopropyl trimethoxysilane ε molar extinction coefficient Ω ohms $%$ percentage \mathbb{R} registered	XPS	X-ray photoelectron spectroscopy
$^{\circ}$ Cdegrees celsius	~	approximately
	0	degrees
>greater than \geq greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms $%$ percentage \mathbb{P} registered	°C	degrees celsius
\geq greater than or equal to $3T3$ balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo $<$ less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms $%$ percentage \mathbb{R} registered	Ø	diameter
3T3 balb/cimmortalised cell line of fibroblast morphology with adherent growth properties derived from mouse embryo<less than \leq less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms%percentage \circledast registered	>	greater than
$<$ growth properties derived from mouse embryo $<$ less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ε molar extinction coefficient Ω ohms $\%$ percentage \circledast registered	\geq	greater than or equal to
$<$ less than \leq less than or equal to 3 -MPTS 3 -mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms $%$ percentage \mathbb{P} registered	3T3 balb/c	immortalised cell line of fibroblast morphology with adherent
\leq less than or equal to3-MPTS3-mercaptopropyl trimethoxysilane ϵ molar extinction coefficient Ω ohms $%$ percentage \mathbb{R} registered		growth properties derived from mouse embryo
3-MPTS3-mercaptopropyl trimethoxysilaneεmolar extinction coefficientΩohms%percentage®registered	<	less than
εmolar extinction coefficientΩohms%percentage®registered	\leq	less than or equal to
Ωohms%percentage®registered	3-MPTS	3-mercaptopropyl trimethoxysilane
%percentage®registered	3	molar extinction coefficient
® registered	Ω	ohms
registered	%	percentage
λ wavelength	®	registered
	λ	wavelength

Abstract

This thesis focuses on surface science and bioengineering investigations, first for the development of an improved biomaterial for orthopaedic implant applications, and second, for the development of a biosensor device for biomedical diagnostics. A key component considered in this thesis was the covalent linkage of proteins to the material's surface for retaining the protein's immunological and biological activities and for generating a functional interface.

Part 1 of this thesis investigated surface modification procedures for improving the bioactivity of titanium substrates. Titanium is first coated with a bioactive silica film grown by plasma enhanced chemical vapour deposition (PECVD), referred to as PECVD-Si-Ti. In previous studies, the bone-implant integration process was enhanced 1.6-fold for titanium implants coated with PECVD-Si films compared to uncoated titanium implants in vivo. However, in vitro studies carried out in this thesis showed that the growth of MG63 osteoblast-like cells was 7-fold higher on uncoated titanium compared to PECVD-Si coated titanium. Therefore, to improve cell growth on the surface and, by inference, the integration of PECVD-Si-Ti implants into bone tissue, the implant's surface was functionalised with a mitogenic factor, insulin-like growth factor-1 (IGF-1). This was accomplished by modifying the PECVD-Si-Ti surface with an alkoxysilane, 3-isocyanatopropyl triethoxysilane (IPTES), and then by covalent bioconjugation of IGF-1 through isocyanateamino chemistry. After 72 h of in vitro cell culture in serum-free medium, the growth of MG63 cells was enhanced 1.9-fold on IPTES functionalised PECVD-Si-Ti, which was loaded with covalently immobilised IGF-1 compared to IPTES functionalised PECVD-Si-Ti without IGF-1 (isocyanate reactive groups were quenched with ethanolamine hydrochloride). The attachment and adhesion of MG63 cells were also enhanced on PECVD-Si-Ti by the covalently immobilised IGF-1 in serum-free cell culture conditions. Therefore, the bioactivity of PECVD-Si-Ti was improved by covalently linking IGF-1 to the substrate surface through isocyanate-amino chemistry.

Part 2 of this thesis involved the development of a new optical interferometric biosensor. The biosensor platform was constructed from electrochemically-prepared thin films of porous silicon that acted as a sensing matrix and transducer element. By reflective interferometry using white light, an enzyme-catalysed reaction was discovered (horseradish peroxidase (HRP) mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB)), which led to an acceleration in the rate of porous silicon corrosion and represented the biosensor's readout signal. We discovered that another substrate, which is also oxidised by HRP, OPD, produces an even more pronounced readout signal. The HRP-OPD system was used in an immunoassay for detecting human IgG from an Intragam solution. An important part in the design of the biosensor was the surface functionalisation approach where anti-human IgG, referred to as the capture antibody, is immobilised on the porous silicon surface. The readout signal (produced from the capture of human IgG) was enhanced 4-fold on the porous silicon biosensing platform functionalised with covalently linked anti-human IgG through isocyanate-amino chemistry compared to the porous silicon biosensing platform functionalised with adsorbed anti-human IgG. The optimised biosensor was used to detect IgG from a total human protein concentration of Intragam to a sensitivity of 100 ng/ml.

In summary, isocyanate-amino bioconjugate chemistry was used to covalently link either IGF-1 to PECVD-Si-Ti for improving the biological activity of the orthopaedic implant and to covalently link IgG to porous silicon for developing a sensitive biosensor for the detection of proteins. This surface chemistry approach is very useful for biomaterial and biosensing applications.