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Abstract

A wavelet is a function which is used to construct a specific type of orthonormal basis.

We are interested in using C∗-algebras and Hilbert C∗-modules to study wavelets. A

Hilbert C∗-module is a generalisation of a Hilbert space for which the inner product

takes its values in a C∗-algebra instead of the complex numbers. We study wavelets

in an arbitrary Hilbert space and construct some Hilbert C∗-modules over a group

C∗-algebra which will be used to study the properties of wavelets.

We study wavelets by constructing Hilbert C∗-modules over C∗-algebras generated

by groups of translations. We shall examine how this construction works in both the

Fourier and non-Fourier domains. We also make use of Hilbert C∗-modules over the

space of essentially bounded functions on tori. We shall use the Hilbert C∗-modules

mentioned above to study wavelet and scaling filters, the fast wavelet transform, and

the cascade algorithm. We shall furthermore use Hilbert C∗-modules over matrix C∗-

algebras to study multiwavelets.

Key Words and Phrases. Wavelet, filter, C∗-algebra, Hilbert C∗-module, cascade

algorithm.
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Introduction

In this thesis we shall use some constructions employing C∗-algebras to prove results

about wavelet theory. The main way that we shall do this is by constructing a Hilbert

C∗-module using the C∗-algebra which is generated by a set of translations associated

with a multiresolution analysis.

Wavelets are a tool that can be used to analyse an arbitrary function in terms of

resolution and frequency. They do this by decomposing spaces of functions into an

orthonormal basis, or more generally a Riesz basis or a frame. An orthonormal basis is

a basis where each element is orthogonal to the others and has norm equal to one. A

Riesz basis is the image of an orthonormal basis under an invertible operator. A frame

is a set which spans the space but need not be linearly independent. Both orthonormal

bases and Riesz bases are also frames.

Wavelets have numerous applications including image compression, artificial vision,

telecommunications, denoising, seismic signal processing, and medical signal processing

including tomography, computer aided mammography, and analysis of both ECG and

EEG signals, to mention a few. More applications are described in [Me2], [Da1], and

[KL]. Wavelet theory is relatively new, beginning in the early 1980’s. Since then

there have been literally thousands of papers published on the subject. Although

modern wavelet theory began quite recently, there are deep connections between wavelet

theory and earlier research, such as Littlewood-Paley theory [EG, LP1, LP2], Calderon-

Zygmund operators, pyramid algorithms, and subband coding schemes.

C∗-algebras are normed Banach algebras which have an involution. They also have

the property that they can be realised as bounded operators on a separable Hilbert

space. Any commutative C∗-algebra can also be realised as an algebra of continuous

functions on a compact Hausdorff space. Associated with any group there is a group

C∗-algebra, and most of the C∗-algebras studied here will be group C∗-algebras. As

well as group C∗-algebras, we shall also examine some work [J1, BJ1, BJ3] which relates

wavelets to C∗-algebras known as Cuntz algebras. C∗-algebras are related to other fields

of mathematics including dynamical systems, K-theory, topology, and noncommutative

geometry.

We shall relate wavelets to C∗-algebras by using Hilbert C∗-modules, which we

shall usually abbreviate as Hilbert modules. A Hilbert module is a generalisation of a

Hilbert space for which the inner product takes its values in a C∗-algebra instead of

the complex numbers. Hilbert modules can also be thought of as a generalisation of

xi



xii INTRODUCTION

vector bundles [Sw, Hi], and as such they play an important role in noncommutative

geometry. We shall use Hilbert modules to study wavelets by using methods which

are very closely related to a construction announced in 1997 by Marc A. Rieffel of a

Hilbert module over a group C∗-algebra associated with wavelets (see [R6, PR1, PR2]).

A large amount of this thesis is devoted to understanding this construction.

Most of the background material that we require is contained in Chapter 0, where

we study the Fourier transform, involutive algebras, group representations, group alge-

bras, Hilbert modules, and bases and frames for Hilbert spaces and Hilbert modules.

The reader who is already familiar with this material may wish to directly proceed to

Chapter 1.

The classical definition of a dyadic orthonormal wavelet is a function ψ such that

the family {
ψj,k(x) := 2−j/2ψ(2jx− k)

}

j,k∈Z

, for x ∈ R

is an orthonormal basis for the Hilbert space of square integrable functions, L2(R).

The functions ψj,k are obtained from ψ by acting on it by translations and dilations.

The translations and dilations are unitary operators on this Hilbert space, so they

preserve inner products. In Chapter 1 we generalise the classical definition of a wavelet

to an arbitrary Hilbert space in a manner similar to what has been done in [BCMO].

Associated with every wavelet is what is known as a generalised multiresolution analysis.

Roughly speaking, a generalised multiresolution analysis (GMRA) of a Hilbert space is

an increasing sequence of subspaces (Vn)n∈Z of the Hilbert space, which approximate

the Hilbert space more closely as n approaches infinity. If the Hilbert space has an

element ϕ such that translations of ϕ span the subspace V0, we call the generalised

multiresolution analysis a multiresolution analysis (MRA), and we call ϕ a scaling

function. We will prove in Theorem 1.1.11 that we can obtain wavelets when we

have a multiresolution analysis; we use von Neumann algebras to prove this theorem.

The projections onto the subspaces Vn are closely related to an important numerical

algorithm known as the fast wavelet transform. The investigation of the fast wavelet

transform was what originally lead to the development of the notion of a multiresolution

analysis, and is also closely related to the study of filter banks. We shall show in Chapter

1 that the fast wavelet transform still makes sense in this more general setting. We

will mainly be looking at the case that the Hilbert space is a space of square integrable

functions defined on a locally compact Abelian group. When this is the case it is

possible to define the Fourier transform, and we shall often make use of the Fourier

transform as a tool for examining wavelets.

Most of the author’s new results are contained in Chapter 2 and Chapter 3. Chapter

2 is where we shall introduce the construction that relates wavelets to Hilbert C∗-

modules. This construction is the main tool and object that is examined in this thesis.

It is one of the aims of this thesis to demonstrate the importance and utility of this

tool for understanding wavelets. The author’s work on this construction was partially

inspired by results announced in [R6]. The construction described here is very similar

to a construction described in [PR2], which was released as an eprint not long before
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the submission of this thesis. In order to take into account the dilation, we define a

chain of Hilbert modules (Xn)n∈Z over the C∗-algebra of the translation group, C∗(Zd).

The C∗(Zd)-valued inner products used by these Hilbert modules are sometimes known

as “bracket products”. As well as studying the properties of bracket products on Xn,

we shall also study the properties of bracket products on L2(Rd). We shall work out

the details of this construction on both the Fourier and non-Fourier domains. We show

in Corollary 2.2.7 that the dilation is an adjointable operator which maps between the

elements of the above chain of Hilbert C∗(Zd)-modules. In Chapter 2 we shall also

define some Hilbert modules (Yn)n∈Z which are over the larger C∗-algebra L∞(Td),

and whose L∞(Td)-valued inner products are Fourier transformed bracket products.

These Hilbert L∞(Td)-modules are similar to ones described in [CaLa, CoLa], which

are used to study Gabor systems.

If a wavelet corresponds to a multiresolution analysis, there exist functions on Zd

whose Fourier transform is contained in L∞(Td) which correspond to scaling functions

and wavelets, and are known as scaling and wavelet filters. We examine wavelets from

this perspective in Chapter 3. Associated with these filters are some operators from

the C∗-algebra to itself associated with the fast wavelet transform. We shall examine

the convergence properties of an algorithm for obtaining the scaling function from

the scaling filter known as the cascade algorithm. It is then possible to obtain the

wavelets from the scaling function using the wavelet filters. The cascade algorithm

(Theorem 3.4.10 and Theorem 3.4.11) gives us necessary and sufficient conditions for

elements of Cc(Z
d) to be scaling filters. We demonstrate that the cascade algorithm

converges in the topology given by the Hilbert module norm, as well as in the norm

topology on L2(Rd). We shall investigate wavelet matrices in this chapter and see

that they correspond to Hilbert modules over matrix C∗-algebras. Our results on

wavelet matrices are encapsulated in Theorem 3.5.4, which also tells us necessary and

sufficients conditions for elements of C∗-algebras to be wavelet filters, when we have a

corresponding set of scaling functions.

Part of the aim of this thesis is to show how results in operator algebra theory are

useful for studying wavelets. We want to in particular demonstrate the importance

of the construction in Chapter 2 to wavelet theory. Because of the wide variety of

applications of wavelet theory, this represents an interesting application of the theory

of C∗-algebras and Hilbert C∗-modules.
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Fourier Series and Wavelets

CRC Press, (1996)

[KR] Kadison, R. V., Ringrose, J. R.

Fundamentals of the theory of operator algebras, Vols I and II

Academic Press, New York, (1986)

[L] Lance, E. C.

Hilbert C∗-Modules: A Toolkit for Operator Algebraists

Cambridge University Press, (1995)

[Lr1] Larson, D. R.

von Neumann Algebras and Wavelets

Operator Algebras and Applications (1997), 267-312

[Lg1] Lang, W. C.

Orthogonal Wavelets on the Cantor Dyadic Group

SIAM J. Math. Anal. 27 (1) (1996), 305-312

[Lg2] Lang, W. C.

Wavelet Analysis on the Cantor Dyadic Group

Houston J. Math. 24 (3) (1998), 533-544

[Lw1] Lawton, W. M.

Tight frames of compactly supported affine wavelets

J. Math. Phys. 31 (8) (1990), 1898-1901

[Lw2] Lawton, W. M.

Necessary and sufficient conditions for constructing orthonormal wavelet bases

J. Math. Phys. 32 (1) (1991), 57-61

[Lw3] Lawton, W. M.

Conjugate Quadrature Filters

Advances in Wavelets (Springer, 1999), 103-119



BIBLIOGRAPHY 115

[LP1] Littlewood, J. E., Paley, R. E. A. C.

Theorems on Fourier series and power series I

J. London Math. Soc. 9 (1931), 230-233

[LP2] Littlewood, J. E., Paley, R. E. A. C.

Theorems on Fourier series and power series II

Proc. London Math. Soc. 42 (1936), 52-89

[Me1] Meyer, Y.

Wavelets and operators

Cambridge University Press, (1992)

[Me2] Meyer, Y.

Wavelets, algorithms and applications

Society for Industrial and Applied Mathematics, (1992)

[PR1] Packer, J. A., Rieffel, M. A.

Wavelet filter functions, the matrix completion problem, and projective modules over C(Tn)

arXiv:math.FA/0107231 v1, (2001)

[PR2] Packer, J. A., Rieffel, M. A.

Projective multi-resolution analyses for L2(R2)

arXiv:math.FA/0308132, (2003)

[Pa1] Papadakis, M.

On the dimension function of orthonormal wavelets

Proc. Amer. Math. Soc. 128 (7) (2000),

[Pa2] Papadakis, M.

Generalised Frame Multiresolution Analysis of Abstract Hilbert Spaces

Preprint, http://www.math.uh.edu/ mpapadak/gfmra26.ps.gz (2001),

[Pas1] Paschke, W. L.

Inner product modules over B∗-algebras

Trans. Amer. Math. Soc. 182 (1973), 443-468

[Pe] Pedersen, G.

C∗-algebras and their Automorphism Groups

London Mathematical Society, (1979)

[RW] Raeburn, I., Williams, D.

Morita Equivalence and Continuous-trace C∗-Algebras

American Mathematical Society, (1998)

[RT] Raeburn, I., Thompson, S. J.

Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames in

Hilbert modules

Proc. Amer. Math. Soc. 131 (5) (2003), 1557-1564

[R1] Rieffel, M. A.

Induced Representations of C∗-Algebras

Advances in Math. 13 (1974), 176-257

[R2] Rieffel, M. A.

Morita Equivalence for Operator Algebras

Proc. Sym. in Pure Math. 38 (1) (1982), 285-298



116 BIBLIOGRAPHY

[R3] Rieffel, M. A.

The cancellation theorem for projective modules over irrational rotation C∗-algebras

Proc. London Math. Soc. 47 (2) (1983), 285-302

[R4] Rieffel, M. A.

Projective modules over higher-dimensional non-commutative tori

Can. J. Math. 60 (2) (1988), 257-338

[R5] Rieffel, M. A.

Noncommutative tori - a case study of noncommutative differentiable manifolds

Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp.

Math. 105 (1990), 191-211

[R6] Rieffel, M. A.

Multiwavelets and Operator Algebras

Talk given at AMS special session (January 1997),

[Ru1] Rudin, W.

Real and Complex Analysis

Mcgraw-Hill, New York, (1987)

[Ru2] Rudin, W.

Fourier Analysis on Groups

Interscience Publishers, New York, (1962)

[SB] Smith, M. J. T., Barnwell III, T. P.

Exact reconstruction techniques for tree-structured subband codes

IEEE Trans. ASSP 34 (1986), 434-441

[SN] Strang, G., Nguyen, T

Wavelets and Filter Banks

Wellesley - Cambridge Press, (1996)

[St] Strang, G.

Eigenvalues of (↓ 2)H and convergence of the cascade algorithm

IEEE Transactions on Signal Processing 44 (1996), 233-238

[Sw] Swan, R.

Vector bundles and projective modules

Trans. Amer. Math. Soc. 105 (1962), 264-277

[Tu] Turcajová, R.
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