POINT AND REGIONAL SCALE MODELLING OF VADOSE ZONE WATER AND SALT FLUXES IN AN AREA OF INTENSIVE HORTICULTURE

Thesis submitted by Graham Paul Green, B.Sc. (Hons)

for the degree of Doctor of Philosophy in the School of the Environment, Faculty of Science and Engineering, Flinders University, South Australia

August 2010

TABLE OF CONTENTS

LIST OF FIGURES	IV
LIST OF TABLES	VIII
ABSTRACT	IX
DECLARATION OF ORIGINALITY	X
ACKNOWLEDGMENTS	XI
CHAPTER 1: INTRODUCTION	1
1.1 WASTEWATER RE-USE, IRRIGATION DRAINAGE, AND IRRIGATION-INDUCED SOII	L SALINITY
ON THE NORTHERN ADELAIDE PLAINS	1
1.2 Research Objectives	
1.3 RATIONALE FOR THE MODELLING APPROACH	5
1.4 Why Not Simply Make Direct Measurements of Soil Water and Sait F	$UIXES^{9}$ 7
1.5 SOIL HYDROLOGY MODELLING	8
1.5.1 Opportunities presented by numerical models of soil hydrology	8 8
1.5.2 Underlying principles of soil hydrology modelling	
1.5.3 Laboratory methods for measuring soil hydraulic characteristics	
1.5.4 Methods of measuring in-field soil hydrologic variables	
1.5.5 Measurement or estimation of evapotranspiration	
1.6 EXTENDING MODELS TO REGIONAL STUDIES: DEALING WITH SPATIAL VARIABLE	LITY 17
CHAPTER 2: FIELD AND LABORATORY METHODS	
2.1 Study Area	
2.2 DATA REQUIREMENTS	
2.3 FIELD DATA COLLECTION	
2.3.1 Selection of study sites	
2.3.2 Monitoring period	
2.3.3 Field methods	27
2.4. LABORATORY METHODS	39
2.4.1 Water retention curves and unsaturated hydraulic conductivity	
2.4.2 Soil water and irrigation water chemistry	
CHAPTER 3: RESULTS OF FIELD AND LABORATORY WORK	44
3.1 RESULTS FROM FIELD MONITORING PROGRAM	
3.1.1 Port Gawler Road (PGR) study site	45
3.1.2 Huxtable Road (HX) study site	53
3.1.3 Thompson Road (TR) study site	56
3.2 RESULTS FROM LABORATORY ANALYSES	59

CHAPTER 4: MODELLING OF SOIL WATER AND SALT FLUXES	64
4.1 Optimisation of Models	69
4.2 OPTIMISATION OF MODEL PARAMETERS FOR OTHER PRIMARY STUDY SITES	75
4.3 SENSITIVITY OF MODEL PREDICTIONS TO SOIL HYDRAULIC PARAMETERS	
4.4 MODEL OUTPUT: WATER FLUX ESTIMATES FOR MONITORED STUDY SITES	
4.5 COMPARISON WITH DIRECT ESTIMATES OF FLUXES USING FIELD TENSIOMETER R	EADINGS 87
4.6 SENSITIVITY OF SIMULATED DRAINAGE FLUXES TO MODELLED SOIL PROFILE	
COMBINATIONS	
4.7 SENSITIVITY OF MODEL PREDICTIONS TO LOCAL AND REGIONAL ETO DATA	
4.8 Soil Salinity Modelling	
4.8.1 Modelling soil salts as a single solute	102
CHAPTER 5: APPLICATION OF MODELS AT A POINT SCALE	
5.1 SOIL WATER DRAINAGE FLUXES AT NAP STUDY SITE PGR	105
5.2 EXTENSION OF POINT SCALE MODELS TO A LONGER TIME SERIES	110
5.2.1 Inter-annual variability of water fluxes	110
5.2.2 Alternative irrigation scenarios	115
5.3 SOIL SALINITY CHANGES OVER A 20 YEAR SIMULATION	118
5.4 CONCLUSIONS FROM APPLICATION OF MODELS AT THE POINT SCALE	
CHAPTER 6: APPLICATION OF MODELS AT CATCHMENT SCALE	
6.1 CONSIDERATIONS WHEN UP-SCALING MODELS	135
6.2 METHODOLOGY FOR APPLYING MODELS TO THE WHOLE STUDY AREA	139
6.3 CATCHMENT-SCALE ANNUAL WATER BALANCE DERIVED FROM A 20-YEAR SIMU	LATION
DISTRIBUTED ACROSS THE NAP AGRICULTURAL AREA	
6.3.1 Whole area model output	
6.3.2 Whole area water balance	
6.3.3 Effects of water table depth change	152
6.4 RECOMMENDATIONS FOR IRRIGATION MANAGEMENT	154
CHAPTER 7: CONCLUSIONS	
7.1 ONE-DIMENSIONAL SOIL WATER AND SOLUTE FLUX MODELS	156
7.2 EXTENSION OF MODELS TO THE WHOLE NAP AREA	

APPENDIX 1	163
UNSATURATED HYDRAULIC CONDUCTIVITY MEASUREMENTS: SOIL MOISTURE OUTFLOW CURVE	ES
	63
APPENDIX 2	169
MEASUREMENTS OF SOIL WATER RETENTION VARIABLES AND DERIVATION OF CAMPBELL'S	
EQUATION PARAMETERS FROM SOIL WATER RETENTION CURVES 1	69
1. STUDY SITE PGR 1	71
2. Study Site HX	75
3. Study Site SR	77
4. SITE TR 1	79
REFERENCES	181

LIST OF FIGURES

FIGURE 1.1 NORTHERN ADELAIDE PLAINS LAND USE AND STUDY SITE LOCATIONS	. 3
FIGURE 2.1 TIMETABLE OF CROPS MONITORED AT THE FOUR STUDY SITES	27
FIGURE 2.2 CAPILLARY WICK LYSIMETER	32
FIGURE 2.3 LYSIMETER COLLECTION PLATE INSTALLATION	32
FIGURE 2.4 INSTALLATION OF CAPILLARY WICK LYSIMETERS	32
FIGURE 2.5 SOIL MOISTURE PROBES AT STUDY SITE TR	33
FIGURE 2.6 MONITORING POINT CONFIGURATION AT THREE STUDY SITES	34
FIGURE 2.7 AUTOMATIC WEATHER STATION AT STUDY SITE PGR	35
FIGURE 2.8 CROP COVER PHOTOGRAPHS TAKEN AT SITE PGR	35
FIGURE 2.9 SITE LAYOUT AT STUDY SITE PGR	36
FIGURE 2.10 MONITORING STATION ARRANGEMENT AT BROADACRE VEGETABLE SITE PGR	37
FIGURE 2.11 STUDY SITE LAYOUT FOR STUDY SITE SR	38
FIGURE 2.12 MONITORING STATION 2 AT THE SR STUDY SITE	38
FIGURE 2.13 RACK OF SIX TEMPE CELLS WITH HANGING TUBES	40
FIGURE 3.1 FIELD STUDY DATA FROM PGR CROP 1 AND MATRIC POTENTIALS AT POINT PGR2 4	46
FIGURE 3.2 RESULTS FROM LYSIMETER AT POINT PGR1 DURING PGR CROP 1	47
FIGURE 3.3 FIELD STUDY DATA FROM PGR CROP 2	49
FIGURE 3.4 SOIL MATRIC POTENTIALS MEASURED AT ADDITIONAL MONITORING POINTS	50
FIGURE 3.5 RESULTS FROM LYSIMETER AT POINT PGR1 DURING PGR CROP 2	51
FIGURE 3.6 EC VALUES OF SOIL SOLUTION CAPTURED BY SUCTION CUP SOLUTION SAMPLERS AT	
PGR1 AND PGR2 DURING THE PERIOD OF PGR CROP 25	52
FIGURE 3.7 WATER TABLE DEPTH IN TWO PIEZOMETERS INSTALLED AT THE PGR STUDY SITE	53
FIGURE 3.8 FIELD STUDY DATA FROM STUDY SITE HX	53
FIGURE 3.9 SOIL MATRIC POTENTIALS MEASURED AT FOUR MONITORING POINTS AT	
STUDY SITE HX	54
FIGURE 3.10 EC VALUES OF SOIL SOLUTION CAPTURED BY SUCTION CUP SOLUTION SAMPLERS	
AT POINTS HX1 AND HX25	55
FIGURE 3.11 FIELD STUDY DATA FROM STUDY SITE TR	57
FIGURE 3.12 EC VALUES OF SOIL SOLUTION CAPTURED BY SUCTION CUP SOIL SOLUTION	
SAMPLERS AT POINTS TR1 AND TR2	58
FIGURE 4.1 COMPARISONS OF SIMULATED MATRIC POTENTIAL AT 30, 75 AND 110 CM DEPTHS	
AT STUDY SITE PGR, USING MEASURED PARAMETERS VALUES WITH NO	
OPTIMISATION	70
FIGURE 4.2 COMPARISONS OF SIMULATED MATRIC POTENTIAL AT 30, 75 AND 110 CM DEPTHS	
AT STUDY SITE PGR, WITH PEST OPTIMISATION	73

FIGURE 4.3 COMPARISONS OF SIMULATED MATRIC POTENTIAL AT 30, 75 AND 110 CM DEPTHS	
AT STUDY SITE PGR, VERIFYING OPTIMISED PARAMETER VALUES	4
FIGURE 4.4 COMPARISONS OF MEASURED AND SIMULATED MATRIC POTENTIAL AT MONITORED	
POINT HX1	5
FIGURE 4.5 COMPARISONS OF MEASURED AND SIMULATED MATRIC POTENTIAL AT MONITORED	
POINT HX2	5
FIGURE 4.6 COMPARISONS OF MEASURED AND SIMULATED MATRIC POTENTIAL AT AT	
MONITORED POINT TR1	7
FIGURE 4.7 COMPARISONS OF MEASURED AND SIMULATED MATRIC POTENTIAL AT MONITORED	
POINT TR2	7
FIGURE 4.8 ALTERNATIVE WATER RETENTION CURVES FOR SOIL LAYERS AT POINT PGR1	0
FIGURE 4.9 VARIATION OF TOTAL ANNUAL DRAINAGE WITH ALTERNATIVE WATER RETENTION	
CURVE PARAMETERS AND UNSATURATED CONDUCTIVITY PARAMETERS	1
FIGURE 4.10 MODEL SIMULATIONS OF ETA AND DRAINAGE AT STUDY SITE PGR	3
FIGURE 4.11 MODEL SIMULATIONS OF ETA AND DRAINAGE AT MONITORED POINTS HX1 AND	
HX2	5
FIGURE 4.12 MODEL SIMULATIONS OF ETA AND DRAINAGE AT MONITORED POINTS TR1 AND	
TR2	б
FIGURE 4.13 DIRECT APPROXIMATIONS OF FLUXES AT MONITORING POINT PGR1, BASED ON	
MEASURED MATRIC POTENTIALS AND WATER POTENTIAL GRADIENTS	б
FIGURE 4.14 DIRECT APPROXIMATIONS OF FLUXES AT MONITORING POINT PGR1, BASED ON	
MEASURED MATRIC POTENTIALS AND WATER POTENTIAL GRADIENTS	9
FIGURE 4.15 DIRECT APPROXIMATIONS OF FLUXES AT MONITORING POINT PGR1, BASED ON	
MEASURED MATRIC POTENTIALS AND WATER POTENTIAL GRADIENTS	0
FIGURE 4.16 PREDICTED DRAINAGE FLUXES OVER A ONE-YEAR PERIOD WITH SOIL PROFILE	
DESCRIPTIONS FROM MODELS FOR ALL MONITORED SITES SUPERIMPOSED ON THE	
MODEL OF STUDY SITE PGR1	3
FIGURE 4.17 PREDICTED DRAINAGE FLUXES OVER A ONE-YEAR PERIOD AT THE PGR STUDY	
SITE WHEN THE ON-SITE ETO DATA ARE REPLACED BY ETO DATA DERIVED FROM	
WEATHER RECORDS FROM THE BOM EDINBURGH AIR FIELD WEATHER STATION	4
FIGURE 4.18 REGRESSION OF REFERENCE DAILY ETO VALUES DERIVED FROM PGR STUDY SITE	
WEATHER STATION DATA AND DAILY ETO VALUES DERIVED FROM RAAF	
EDINBURGH AIRFIELD BOM WEATHER STATION DATA	б
FIGURE 4.19 SIMULATED SOIL SOLUTION EC AT 70 CM DEPTH IN MONITORED STUDY SITE	~
LOCATIONS PGR1 AND PGR2. COMPARED WITH MEASURED EC OF LEACHATE	
COLLECTED IN LYSIMETERS AND SUCTION CUP SAMPLERS	0

FIGURE 4.2	0 Simulated soil solution EC at 70 cm depth at monitored points HX1 and	
	HX2, COMPARED WITH MEASURED EC OF LEACHATE COLLECTED IN SUCTION CUP	
	SAMPLERS 1	01
FIGURE 4.2	1 SIMULATED SOIL SOLUTION EC AT 70 CM DEPTH AT MONITORED POINTS TR1 AND	
	TR2, COMPARED WITH MEASURED EC OF LEACHATE COLLECTED IN SUCTION CUP	
	SAMPLERS 1	.02
FIGURE 4.2	2 COMPARISON OF OUTPUTS FROM LEACHP AND LEACHC MODELS SIMULATING	
	Soil solution EC at 70 cm depth at location $PGR1$ 1	.03
FIGURE 5.1	Model simulations of matric potentials at 30, 75 and 110 cm resulting	
	FROM (A) RAIN, IRRIGATION AND POTENTIAL ET CONDITIONS MEASURED ON-SITE,	
	AND (B) RAIN AND ET DATA FROM LOCAL WEATHER STATION AND SIMULATED	
	IRRIGATION 1	.08
FIGURE 5.2	. SIMULATED ETA (A) AND DRAINAGE (B) RESULTING FROM APPLYING RAIN AND ET	
	DATA FROM LOCAL WEATHER STATION AND SIMULATED TRIGGERED IRRIGATION 1	.09
FIGURE 5.3	MODELLED ANNUAL DRAINAGE TOTALS AT MONITORED POINTS PGR1 and PGR2	
	FOR A TWENTY YEAR SIMULATION FROM 1985 TO 2004, AND RECORDED RAINFALL	
	FOR THOSE YEARS	.12
FIGURE 5.4	REGRESSION PLOTS OF ANNUAL DRAINAGE FLUX TOTALS VERSUS ANNUAL	
	RAINFALL TOTALS FROM SIMULATIONS OF TWENTY YEARS OF IRRIGATED CROP	
	GROWTH FROM 1985 TO 2004 1	.14
FIGURE 5.5	SIMULATIONS OF CUMULATIVE IRRIGATION WATER, EVAPORATION AND DRAINAGE	
	OVER A 20-YEAR SIMULATION WITH SIMULATED TRIGGERED IRRIGATION 1	.17
FIGURE 5.6	Simulated soil solution EC at 70 cm depth from a one-year simulation	
	OF STUDY SITE PGR1 AND EC MEASUREMENTS OF SOIL, SUCTION CUP SAMPLES	
	AND LYSIMETER LEACHATE	.23
FIGURE 5.7	Changes in soil salinity (EC _{1:5} equivalent) over a 20-year simulation	
	WITH AUTOMATED IRRIGATION TRIGGERED AT VARYING SOIL MATRIC POTENTIALS 1	.25
FIGURE 5.8	Changes in soil salinity at 70 cm depth over a 20-year simulation with	
	VARYING IRRIGATION TRIGGER POTENTIALS AND IRRIGATION WATER TDS 1	.30
FIGURE 5.9	CHANGES IN THE TOTAL SOLUTES IN THE SOIL PROFILE OVER A 20-YEAR	
	SIMULATION WITH DIFFERING AUTOMATED IRRIGATION SCENARIOS 1	.32
FIGURE 6.1	COMBINATION OF LAND ATTRIBUTES USING GIS COVERAGES 1	.32
FIGURE 6.2	FLOWCHART OF THE DISTRIBUTED MODELLING PROCESS USING LEACHPG 1	.42
FIGURE 6.3	Areas of the 11 land use categories and soil profile types incorporated	
	IN THE 20-YEAR SIMULATION	.45
FIGURE 6.4	DRAINAGE FLUXES (A) AND DRAINAGE VOLUMES (B) FOR THE EACH LAND USE /	
	SOIL TYPE COMBINATION 1	47

FIGURE 6.5	DRAINAGE FLUXES (1) AND VOLUMES (2) FOR THE EACH LAND USE / SOIL TYPE	
	COMBINATION WITH IRRIGATED CROP AREAS REPLACED BY AREAS OF NATURAL	
	VEGETATION.	141
FIGURE 6.6	WATER TABLE DEPTHS IN SA STATE GOVERNMENT OBSERVATION WELLS IN THE	
	VICINITY OF STUDY SITES HX AND TR.	153

LIST OF TABLES

TABLE 3.1	SOIL HYDRAULIC CONDUCTIVITIES DERIVED FROM KLUTE OUTFLOW METHOD	60
TABLE 3.2	SOIL PHYSICAL PROPERTIES SUMMARY	61
TABLE 3.3	MEASURED MAJOR SOIL CHEMISTRY (CSIRO LABORATORY ANALYSIS RESULTS)	62
TABLE 4.1	SOIL HYDROLOGIC PARAMETER VALUES FOR THE TWO MONITORED POINTS AT	
	STUDY SITE PGR	69
TABLE 4.2	OPTIMISATION OF SOIL HYDROLOGIC PARAMETER VALUES FOR SOIL PROFILES AT	
	STUDY SITE PGR	70
TABLE 4.3	MODEL PERFORMANCE FOR TWO MODEL SOIL PROFILES, OPTIMISED FOR BEST FIT	
	BETWEEN OBSERVED AND MODELLED MATRIC POTENTIALS AT STUDY SITE PGR	72
TABLE 4.4	Means and ranges of matric potential values measured at PGR site and	
	USED IN CALIBRATION OF MODEL-SIMULATED MATRIC POTENTIALS.	72
TABLE 4.5	Soil hydrologic parameter values – before and after optimisation for	
	MONITORING POINT HX1	78
TABLE 4.6	Soil hydrologic parameter values – before and after optimisation for	
	MONITORING POINT HX2	78
TABLE 4.7	Soil hydrologic parameter values – before and after optimisation for	
	MONITORING POINT TR1	78
TABLE 4.8	Soil hydrologic parameter values – before and after optimisation for	
	MONITORING POINT TR2	78
TABLE 4.9	COMPARISON OF TOTAL DRAINAGE PREDICTED BY 1-YEAR SIMULATION WITH	
	VARYING MODEL SOIL PROFILE DESCRIPTIONS AND USING 1) REFERENCE ET DATA	
	DERIVED FROM PGR STUDY SITE WEATHER STATION DATA AND 2) REFERENCE ET	
	DATA DERIVED FROM BOM EDINBURGH AIRFIELD WEATHER STATION	95
TABLE 5.1	Average annual fluxes of water at study site PGR1, according to 20-	
	YEAR SIMULATIONS	. 116
TABLE 5.2	COMPOSITION OF IRRIGATION WATER AS USED IN MODELS	. 124
TABLE 5.3	WATER FLUX COMPONENTS WITH SCENARIOS TESTED TO DETERMINE SOIL ROOT	
	ZONE SALINITY DEVELOPMENT	. 129
TABLE 6.1	SUMMARY OF OUTPUT FROM 20-YEAR WHOLE AREA SIMULATION	. 146
TABLE 6.2	Summary of output from 20-year whole area simulation with irrigated	
	CROP AREAS REPLACED BY AREAS OF NATURAL VEGETATION	. 150

ABSTRACT

The introduction of a large volume of reclaimed effluent water for irrigation in the Northern Adelaide Plains (NAP) horticultural area has altered the regional water and salt balance, raising concerns regarding the effects of these on shallow water table elevation and root zone salinity in the highly valued and productive soils.

A methodology is described for constructing and calibrating numerical models of vertical fluxes of soil water and solutes to achieve simulations which match a number of monitored study sites. Extension of these simulations to a period of 20 years, and incorporation of measured soil chemistry variables, enables an examination of the influence of differing irrigation strategies and temporal variations in weather conditions on year-to-year variations in soil water fluxes and root zone salinity. Application of these models to the whole NAP horticultural area was achieved using a system of multiple one-dimensional simulations with variables altered according to their spatial distribution.

The results show large temporal variability in drainage fluxes beneath irrigated plots. Fluxes occur mainly in winter, with annual variations depending primarily on differences in rainfall distribution and evapotranspiration. Annual drainage flux totals were found to correlate poorly with annual rainfall totals.

Spatially, drainage fluxes varied both within and between study sites. Simulations of fluxes at observation points within monitored study sites varied owing to variations in soil hydrological properties. Results of the whole-area simulations suggest that over a larger scale, the majority of variation in drainage fluxes is due to differences in land use and irrigation practices, with a smaller but significant spatial variation due to differing soil types.

Additional simulations, representing the NAP prior to irrigated horticulture, indicates the introduction of irrigation has significantly increased drainage fluxes, but that the major change to the soil water budget in irrigated land areas has been to evaporation from the soil surface, with significant implications for soil salinity development.

DECLARATION OF ORIGINALITY

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Graham Paul Green

ACKNOWLEDGMENTS

The author acknowledges and is very grateful to the many people and organisations that have assisted and made contributions to the completion of this research.

Firstly, sincere thanks to my principal supervisor Dr John Hutson, who's patient guidance, unassailable enthusiasm and unfailing willingness to impart his seemingly boundless knowledge have been essential to the completion of this work. John spent many hours over-and-above the call of duty, discussing concepts and checking data files and model code.

Many thanks also to Dr Peter Dillon, who, as co-supervisor of this project, was key to its instigation and provided expert advice, encouragement and support throughout. Professor Craig Simmons provided important guidance and ideas in the early stages of the research, and intellectual support and friendship thereafter. Thanks also to Dr Daryl Stevens for contributions in the early stages of the research.

The Virginia Horticulture Centre provided technical assistance and liaison with horticulturalists. My sincere gratitude is extended to those horticulturalists and property owners of the Northern Adelaide Plains who hosted field study sites and provided assistance in their establishment. Thanks also to Karen Barry, Dallas Baird and David Poulsen for their hard work in assisting with installation and monitoring of field study sites.

Essential operating funds for this research were provided by CSIRO Land and Water, the Northern Adelaide and Barossa Catchment Water Management Board, and the Government of South Australia Environmental Protection Authority. Financial support of the author, in the form of scholarships and stipends, was provided by the Australian Research Council, CSIRO Land and Water (Postgraduate Scholarship) and the Centre for Groundwater Studies (Research Project Support Stipend). The author is sincerely grateful to these organisations.

Lastly, but by no means least, thanks to my endlessly patient wife Niki, who's constant encouragement and moral support have seen me through this task, and to Lewis and Robert, who's welcome arrivals have spurred me to the finish line.