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Abstract

Conceptual modelling presented as a framework for database design is a discipline

of great importance in many areas in computer science that seeks to represent

real-world phenomenon using semantic primitives. To date, traditional (static)

conceptual models have been successfully used and extended to deal with the

semantics of relatively stable real world applications. However, the capturing

of semantics is a seemingly endless task as it involves various dimensions and

categories.

It is argued in this thesis that the incorporation of complex domain structures

in conceptual modelling to represent the semantic domains of an attribute and

the relationships within a concept in ontologies would provide more expressive

and richer semantics. Additionally, it is argued that basic relationships in the

entity-relationship model may need to be modified or extended to handle a broad

spectrum of situations that arise from differing perspectives of the real world.

Furthermore, it is argued that a conceptual model should allow rapid and simul-

taneous storage of data and data modelling as unexpected and sudden events

require data to be modelled rapidly. This thesis begins with an extensive review

of the field of conceptual modelling and an exploration of the concepts of meso-

data, ontologies and semantic relationships in conceptual modelling as well as

various aspects of extensions to the entity-relationship model.

Using these foundations, a classification of ER modelling extensions (CERME)

framework is introduced that forms the basis of common aspects and comparative

criteria which can be used to categorise and compare various proposals. In ad-

dition, the Mesodata Entity-Relationship (MDER) model, Mesodata Object Role

Model (MDORM), Ontological Entity-Relationship (OntoER) model, Ontological

Object Role Modelling (OntoORM) and Ontological Unified Modeling Language

(OntoUML) class diagrams are presented that allow advanced semantics to be

associated with the domains of an attribute. It is also demonstrated that these

proposed models can be mapped into the commonly accepted standard relational

model. Furthermore, for some of the modelling issues that are not easily accom-

modated into the ER model, this thesis introduces a new relationship construct,

polymorphic relationships, to handle this situation. To this end, a novel approach

to conceptual modelling, the LItER model, is presented that incorporates the pre-

viously proposed concepts of mesodata, ontologies and polymorphic relationships

into the model which allows data to be modelled rapidly.
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Chapter 1

Introduction

Research on conceptual modelling suggests that more meaningful information

about application data should be captured in the data model (Badia, 2004; Codd,

1979; Hull and King, 1987; Tu and Wang, 1993). However, this capture of the

semantics is a seemingly endless task because it involves various dimensions and

categories (Badia, 2004; Tu and Wang, 1993). Moreover, the semantics of complex

attribute domains are not explicitly represented in conceptual models.

Prior research into data modelling has considered concepts such as the com-

plex domains of an attribute (de Vries and Roddick, 2004) and the use of concep-

tual models in supporting ontologies (Evermann and Wand, 2005; Jarrar, Demey

and Meersman, 2003; Purao and Storey, 2005; Spaccapietra, Parent, Vangenot

and Cullot, 2004; Sugumaran and Storey, 2002, 2006; Storey, 2005; Wand, Storey

and Weber, 1999). However, these studies have not fully examined how the se-

mantics of the complex domains of an attribute can be integrated into a theoreti-

cal framework of conceptual models as a single integrated schema.

As has been suggested in interviews with Peter Chen (Winslett, 2004), the fu-

ture directions and applications of ER databases are more likely to be focused on

providing answers to the high-level matching of concepts and the identification of

complex relationships. The boundary of this focus will not be as easily definable

as in the past, as the questions being asked will cover broader and more intan-

gible questions such as those related to national security and other open-ended

questions relating to risk identification and mitigation. Consequently, exploring

enhancements and extensions to conceptual models still continues to be a legiti-

mate and important research area (Badia, 2004). These are the driving forces for

exploring the ideas in this thesis.

This chapter provides the foundations of the presented thesis, beginning with

1
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the background of the thesis (Section 1.1) and the motivation behind the relevance

of the work (Section 1.2). Next, the objectives of the research (Section 1.3) and

its scope (Section 1.4) is discussed. The chapter concludes by presenting the

approach that will be followed to accomplish these objectives together with an

overview of the thesis structure (Section 1.5).

1.1 Background

Conceptual models attempt to represent the clear semantics of an application

environment of the real world so as to make the database schema generally un-

derstandable, useful and adaptable. Thus, instead of having modelling constructs

based on the concept of the logical schemata (as represented in the relational, hie-

rarchical and network models) (King and McLeod, 1985), conceptual models at-

tempt to represent data structures in a natural way by using graphics to represent

the entities (or objects) in the real world. For example, the Entity-Relationship

(ER) model (Chen, 1976) represents the data structures as entity types, which

are a group of entities, relationship types, which are a set of relationships as asso-

ciations among entity types, and attributes which characterise the properties of

entities and relationships.

The following topics are now briefly introduced to provide the foundation and

motivation for the contributions of this thesis.

1.1.1 The Design of Conceptual Models

“The design of conceptual models is the most difficult stage in data

model development to learn (and to teach). There is no mechanical

transformation from requirements to candidate solutions.”

Graeme Simsion and Graham Witt (2005)

Every database can be defined by a data model. A data model is an abstract

description of reality according to certain conceptualisations, which cannot be

produced by a mechanical transformation. Conceptual data modelling is the cen-

tral activity in data modelling, providing a high level of abstraction in describing

the requirements of real world applications, aimed at achieving independence from

implementation issues (Simsion and Witt, 2005). Conceptual modelling is widely

recognised to be a necessary foundation for building a database that satisfies the
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user requirements. It relies on a graphical notation that facilitates understand-

ing and management of conceptual schemata by both designers and users (Rizzi,

Abelló, Lechtenbörger and Trujillo, 2006).

Database design covers three main phases: conceptual design, logical design

and physical design. Often, there is some confusion between the terms conceptual

and logical when describing different data models. Similarly, conceptual schemata

are also ambiguously referred to as logical schema. The two notions of conceptual

and logical references are different and distinguishable as described below.

Conceptual design. A conceptual design aims to derive an implementation-

independent and expressive conceptual schema, starting from the user re-

quirements. In this phase, the database requirements are analysed and

modelled using conceptual data models. A main constituent of the con-

text in which user/application requirements specification are modelled is

related to the universe of discourse (UoD) or subject domain (Simsion and

Witt, 2005). For example, a medical database specification of requirements

refers to concepts in a UoD comprising entities such as patients, physicians,

treatments and so on. Conceptual models typically represent the UoD as

a collection of objects/entities (entity types). Entities are typically associ-

ated with each other via relationships and are classified according to types

(classes) and subtypes (subclasses).

Conceptual modelling is the central activity in data modelling and serves

as a framework for database design and information system development.

It represents real-world phenomena using semantic primitives (Chen, Song

and Zhu, 2007). The ER model (Chen, 1976) is the fundamental principle

for conceptual modelling.

Logical design. A logical design takes the conceptual schema and creates a

corresponding logical schema for the chosen platform by considering a cer-

tain set of constraints. In other words, the next step after a creation of a

conceptual schema is to translate it into a logical data model suitable for

implementation using the target database management system (DBMS).

The most well-known and extensively used logical model is the relational

model. Logical design, in particular referring to relational models, can be

characterised by two main methodologies as follows.

1. Transformations (or Mappings). A mapping is a process of trans-

forming results (including requests) between schemata (Elmasri and
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Navathe, 2007). Conceptual schemata are only a description of data

and do not include implementation details. This logical design step

focuses on the actual implementation of the database using a commer-

cial DBMS. Most current commercial DBMSs use the relational data

model, so the conceptual schema is transformed from the high-level

data model into the relational model. This step is called data model

mapping or logical design. Its results are the relational schemata that

serve as the framework for the implementation on the chosen platform.

As the relational model is the implementation model of choice, a trans-

formation of conceptual schemata into relational schemata is also dis-

cussed in this thesis. This includes procedures to create a relational

schema from the proposed modelling constructs, e.g. the mesodata

entity types and the total domain participation constraints in the

Mesodata Entity-Relationship (MDER) schema. This thesis relates the

modelling constructs presented in Chapters 4 and 5 to the constructs

of the relational model as presented in Chapter 8.

2. Normalisation. Functional dependencies (FDs) are derived from the

relationships between attributes. The concept of FDs are not taken

into consideration in conceptual modelling techniques such as the ER

model. There are two main types of FDs: (1) those that represent the

dependencies among non-key attributes; and (2) those that represent

dependencies of attributes which depend on only partial keys of tables

(A primary key of the table in this case is a composite key that uses

several attributes). The relational tables associated with all FDs are

normalised, i.e. tables are decomposed or split into smaller tables using

a standard methodology called normalisation, which is performed in

the logical design phase.

Normalisation aims to restructure database schemata through decom-

position in such a way that functional and join dependencies between

attributes are extracted from the real world semantics. An example

of this normalisation technique for the example MEDICAL database is

discussed in Appendix C.

Note that database tool vendors sometimes use the term logical model to refer

to the conceptual data model, and use the term physical model to refer to the

DBMS-specific implementation model (Teorey, Lightstone and Nadeau, 2006).

Note also that conceptual data models can not only be built from scratch, but



CHAPTER 1. INTRODUCTION 5

can also be generated through a process of reverse engineering from an existing

DBMS-specific schema (Silberschatz, Korth and Sudarshan, 2005).

Generally, when people first develop an application, they use ER, ORM or

UML diagrams for data modelling, followed by an alternate technique, such as

Data Flow Diagrams (DFD) for functional modelling1. ER models are concep-

tually oriented and are only a design methodology, as there are no commercial

ER database management systems (ER DBMSs) currently available. The logical

design step is necessary in order to allow the mapping of the ER diagrams to the

relational model which is more implementation oriented. For this reason, this

thesis also covers this aspect of logical design as it relates to ER modelling.

Designing a conceptual data model involves conceptualisation, abstraction and

other skills that are difficult to use on a day-to-day basis without considerable

practice (Simsion and Witt, 2005). Common experience tends to indicate that

even database design experts who have had many years experience in dealing with

the theories of conceptual modelling still struggle when faced with the scenario

of designing data models for challenging real world applications.

1.1.2 A Historical Background and Perspectives of Con-

ceptual Modelling

Conceptual modelling has always been one of the cornerstones for information

systems as it describes the general knowledge of the system in the so-called con-

ceptual schema (Krogstie, Opdahl and Brinkkemper, 2007). The evolution of

research and practice in the area of conceptual modelling during the past four

decades as discussed by Bubenko jr (2007) is depicted in Figure 1.1, and discussed

below:

1. Modelling research issues in the seventies. This era was characterised

by the introduction of new models as well as the refinement and extensions

of a number of existing data modelling methodologies. The most enthusi-

astic data modelling researchers at this time came from the database com-

munity. Some notable activities during the seventies were as follows:

• In 1975, the Standards Planning and Requirements Committee (SPARC)

of the American National Standards Institute Information Processing

1Functional modelling is a different modelling approach focussing on describing the processes
rather than entities and relationships between entities. A well-known example of this approach
is Data Flow Diagrams.
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New models and
refinement

The search for a
common framework

Organisation aspects,
participation and
understanding

Extended scope and
standardisation efforts

'70s

'80s

'90s

2009

- ER model
- NIAM
- Binary relationship model
- Three schema architecture

- Business modelling
- Object-oriented modelling, UML
- Data warehousing
- Schema integration
- Temporal and deductive view

-Temporal dimensions
-Improved ER/EER model
-Capturing more semantics

- Active modelling
- Modelling advances applications
- Semantic web, XML
- Ontology modelling

DEVELOPMENTS

THE ROAD TOWARD
ACCEPTANCE

WORLDWIDE
ACCEPTANCE

Figure 1.1: Conceptual modelling issues during four eras.

Systems (ANSI/X3) Committee proposed the three-schema architec-

ture (the external schema, conceptual schema and internal schema)

for describing data in a database, in addition to the concept of data

independence:

– the external schema describes the views of different user groups.

– the conceptual schema describes the structures, which is a high-

level description of the whole database focussing on entities, data

types, relationships, user operations and constraints, but ignores

any physical storage structures.

– the internal schema describes the physical storage structures of the

database.

• Substantial research was carried out to provide high-level semantics

for modelling information systems, such as the binary relationship

model (Abrial, 1974; Senko, 1975), the ER model (Chen, 1976) and Ni-

jssen’s Information Analysis Methodology (NIAM) (Falkenberg, 1976;

Nijssen, 1976, 1977).

In summary, the essential basic concepts of modelling were invented and

presented during the seventies. Not all of the presented approaches became

practicable, but they formed a solid platform for further developments dur-

ing the eighties and nineties. This era is commonly referred to as “the road

toward acceptance” (Chen, Wong, Delcambre, Akoka, Sølvberg and Liuzzi,

2008).
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2. Modelling research issues in the eighties. Modelling approaches in

this era focused on the search for a common modelling and methodology

framework. As a large number of more or less similar modelling methodo-

logies and concepts were published during the seventies, it is apparent that

this era was marked by a common desire to compare the different mo-

dels and to try to find a common acceptable framework. Some important

developments during the eighties included:

• improving the expressive power of semantic data models, and adding

the temporal dimension;

• capturing more real-world semantics in an improved ER/EER model;

and

• increased understanding of existing methods and tools that conse-

quently led to their improvement.

Several other semantically rich and expressive modelling approaches were

introduced during the eighties, e.g. the Requirement Modeling Language

(RML) (Greenspan, Borgida and Mylopoulos, 1986) that focused on re-

quirement engineering as a significant phase in the system development life

cycle. An interest was also expressed in the topic of historical databases,

which gave rise to data models that treated several aspects of time, e.g.

checking valid time and the transaction time of an event. This database

concept was called temporal databases. A substantial number of tempo-

ral extensions are reported in the literature (Ferg, 1985; Klopprogge, 1981;

Klopprogge and Lockeman, 1983; Snodgrass, 1987).

3. Modelling research issues in the nineties. Modelling approaches in

this era focused on organisational aspects, stakeholder participation and

mechanisms to improve understanding of the various models. This illus-

trated the movement for extending the scope of modelling to business or

enterprise modelling which included, for example, work practice impacts,

managing database relationship changes and user needs. The widening

scope during the nineties included:

• increased understanding and support of work activities at all levels in

an organisation;

• interoperable systems and semantic heterogeneity; and

• enterprise modelling to support user and stakeholder participation in

enterprise analysis and requirements.
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These have led to a marked increase in the development and use of ad-

vanced conceptual modelling methodologies and techniques throughout the

database industry. This has not only impacted the development of new in-

formation system architectures and DBMS, but has brought many benefits

to a wide range of organisations in different application domains such as

medicine, defence and transportation.

Approaches based on temporal, spatio-temporal and deductive views of ap-

plication domains, as well as object-oriented modelling are attributable to

the nineties. Substantial research of this era focused on temporally en-

hanced ER models (Elmasri, El-Assal and Kouramajian, 1990; Elmasri,

Wuu and Kouramajian, 1993; Lai, Kuiboer and Guynes, 1994; Tauzovich,

1991; Theodoulidis, Loucopoulos and Wangler, 1991a,b; Zimanyi, Parent,

Spaccapietra and Pirotte, 1997) and spatio-temporal ER models (Tryfona

and Jensen, 1999; Parent, Spaccapietra and Zimányi, 1999). The Unified

Modeling Language (UML) (Booch, Rumbaugh and Jacobson, 1999; Muller,

1999) was one of the most well known object-oriented modelling approaches

that was developed in the nineties.

Just as in the eighties, research in the nineties was focused on seeking to

refine and rationalise the theory behind conceptual modelling (Chen et al.,

2008).

4. Modelling research issues in the new millennium. Modelling ap-

proaches in this era have focused on extended scope and standardisation

efforts. To satisfy the need for better understanding and a shared concep-

tual view of different domains, the concept of ontologies became increasingly

popular and gained widespread use in various disciplines. In addition, in-

creasing changes in the real world has demanded a shift in conceptualisation

and a new way of viewing reality using evolving knowledge (Chen et al.,

2008). Some important issues of this era include:

• a focus on the web and ontological perspectives of conceptual mo-

delling;

• development of a single dynamic conceptual model through multi-

perspective knowledge and technology integration within a new frame-

work of active paradigm; and

• development of database systems and technologies that can benefit

from active conceptual modelling.
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The present status of modelling is that its theory and practical applica-

tions have gained sufficient maturity for its worldwide acceptance in the IT

community (Chen et al., 2008).

1.2 Motivation for Research

As discussed by Berild (2004), conceptual models are traditionally used to cap-

ture the meaning and structure of the information to be managed in database

applications. In this respect, the conceptual model also acts as input for the gen-

eration of a specific database schema conformant to some chosen implementation

technology.

A number of recent research efforts on conceptual modelling have investi-

gated the use of natural relationships within a body of information using con-

ceptual models in supporting ontologies. Examples include a conceptual markup

language within the ontology-engineering framework based on an ORM schema

(Jarrar et al., 2003), a methodology for creating or evaluating ER models using

domain ontologies (Sugumaran and Storey, 2006, 2002), an ontology for classi-

fying the verb phases of relationships (Storey, 2005; Purao and Storey, 2005), a

formal analysis of the meaning of the relationship construct (Wand et al., 1999),

ontologically based semantics for object-oriented constructs using UML (Ever-

mann and Wand, 2005) and an analysis of some arguments concerning whether

conceptual data models can adequately support the design and use of ontologies

(Spaccapietra et al., 2004).

As suggested by Guizzardi (2005), the world view that is represented by con-

ceptual modelling can not be considered as an adequate conceptualisation of

reality. As a consequence, it falls short of offering its users suitable sets of mo-

delling concepts for constructing an explicit representation of their knowledge of

the domain. Within the database design community, there has been a change in

the application of databases away from the data and information specific level to

a domain specific level that focuses on semantic interaction. This thesis argues

that semantics can be completely represented by modelling structures, and the

focus of conceptual modelling should be on the adequacy and expressiveness of

the representation structures.

Having a precise representation of a given conceptualisation becomes more

important where advanced semantics are integrated into the data model. Con-

sider the role of ontologies in modelling the complex domains of an attribute.
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Conceptual Schema C

Conceptual Schema A

CA 

CB 

CC 

  Semantic Spheres
-Common domain structures
-Ontologies
-Polymorphic relationships

Conceptual Schema B

Figure 1.2: A representation of common domain semantics between three dif-
ferent conceptual modelling techniques.

Within this context, ontologies are referred to as a semantic representation of

the relationships between concepts/terms within the domain. In order for these

semantics to be represented precisely, the modelling of domain semantics for the

real world attributes must be explicitly represented in the conceptual models.

Consider the situation depicted in Figure 1.2, where CA, CB and CC represent

the conceptual schema of the same application created by different models. These

models can be equivalent. CA, CB and CC are modelled based on, for example, the

ER, ORM and UML modelling techniques which reference the semantic sphere

that includes common domain structures providing a shared set of semantics.

CA, CB and CC could share the semantic spheres that provide their ontologies

and other semantics. For this situation, common domain structures describing

real world phenomena have not been fully investigated, and limited research has

been made into developing and promoting unified common domain structures for

the data modelling community. Extensions to the ER model can facilitate such

a solution as it is a powerful conceptual design tool. It can be used to consider

different conceptual models at the same time for different user groups, and then

map these models to each other (Chen, Thalheim and Wong, 1999).

Since conceptual modelling is meant to be used by the wider technology com-

munity, its semantic expressiveness and comprehensibility plays a fundamental

role. Thus, modelling methodologies should be sufficiently expressive to suitably

characterise the conceptualisation of its domain. The development of common
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domain structures involves the expansion of the semantics of each technique that

will improve its expressiveness and comprehensibility thus allowing for design-

ers to easily recognise what each modeling construct means in terms of domain

concepts or any other concepts involved. This thesis is motivated by these re-

quirements in trying to incorporate more data semantics and explicitly represent

them in the data models. This thesis argues that this can be achieved through

the incorporation of mesodata, ontologies and links as polymorphic relationships

into conceptual modelling approaches that leads to the development of the rapid

data modelling approach that is presented in Chapter 7. The practicability of

the suggested models is also presented in Chapter 8.

As applications and user needs of database systems have grown in complexity

over the decades, new demands have arisen that require event traceability in order

to deal with the changing world state. This new insight gained from the evalua-

tion of the relationships between events that cause these changes may provide a

significant impact on the understanding of the current world state (Chen, 2006).

Recent dramatic incidents (e.g. the devastating cyclone Nargis in Burma, the

earthquake disaster in China, the tsunami in Southeast Asia, the current global

financial market crash and the September 11 attack on the World Trade Centers)

require changes in conceptual modelling from a static conceptual model to an

active conceptual model2 (Chen et al., 2008). This is a reflective approach where

the facts, activities and trends that were precursors to these past incidents are

examined with the aim of creating reference points that can be used to assess

current events, circumstances, and behaviours. This threat and risk assessment

technique can be used to try and predict similar events in the future. This serves

to encourage the establishment of socio-economic and emergency response pro-

grams to cope with such situations. To deal with these issues on a timely and

adaptive basis requires active and rapid conceptual modelling techniques to ana-

lyse these situations to assess appropriate responses. This is another motivation

for this thesis, namely to represent a different approach to conceptual modelling,

allowing data to be modelled rapidly.

In summary, it is argued in this thesis that the expressiveness of conceptual

modelling methodologies can be enhanced through (a) the semantics of complex

domain structures for attribute domains, (b) the semantic relationships between

concepts in ontologies, and (c) the flexibility of dealing with existing relationships.

2Chen (2006) has defined active conceptual modelling as a continual process of describing
all aspects of the open world, its activities, and its changes under different perspective, based
on our knowledge and understanding.
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These aspects should be explicitly incorporated into the conceptualisations of

their underlying subject domains. In addition, since unexpected and sudden

events requires data to be modelled rapidly, a conceptual model should easily

accommodate new data to reflect the rapidly changing complex environment.

Therefore, the major research questions are:

• What extensions to the ER model have been previously described in the

body of research literature?

• How can mesodata be modelled in conceptual modelling methodologies?

• How can ontologies be modelled in conceptual modelling methodologies?

• How can the relatively restricted and static modelling of relationships be

modified to handle a broad spectrum of situations, or is there a more feasible

approach to model overloaded relationships?

• How can these presented modelling constructs be related to a (re)design of

conceptual modelling approaches to facilitate the rapid exploration of data?

• How can the presented modelling constructs be mapped into the relational

database schema?

The answers to these questions are addressed through the 4 objectives that are

detailed in the next section.

1.3 Objectives

The purpose of this thesis is to promote better practices in conceptual modelling.

Specifically, the thesis introduces the semantic extensions of mesodata, ontologies

and polymorphic relationships to traditional conceptual models. In addition, this

thesis presents a unique and innovative modelling approach that accommodates

changes in situations where data needs to be modelled rapidly. Furthermore, data

model mapping steps are discussed to show how to design a relational database

schema based on a conceptual schema design. This thesis also discusses a survey

of various extensions to the ER model including the fundamentals of conceptual

modelling concepts. In summary, the objectives of this thesis are:
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1. to review the field of conceptual modelling, ontologies and the emerging

discipline of mesodata to address existing conceptual modelling problems

and to survey extensions to the ER model;

2. to extend conceptual data models to enhance expressiveness;

3. to establish a conceptual modelling approach that can support the modelling

of data in rapidly changing environments

4. to illustrate the mapping procedures by creating a relational schema from

a schema of the proposed conceptual models.

1.4 Scope

The central theme of this thesis is on conceptual modelling methodologies aimed

at supporting database designers and users in explicitly modelling the semantics.

The overall goal is to represent more semantics of the real world in the database

schema. The work presented here is expressed using the concepts provided by

the high-level conceptual data model and concentrates on entities, data types,

relationships, user operations and constraints.

As the focus is on the conceptual level, physical-level and external-level as-

pects all fall outside the scope of this thesis. These aspects that are excluded

from consideration include implementation issues, such as the development of a

proof-of-concept system that will demonstrate these techniques or promote fur-

ther development of the ideas for possible commercialisation, and the external

issues such as the screen forms used for data entry.

1.5 Approach and Structure

The approach and structure of this thesis reflect the successive elaboration of the

objectives specified in Section 1.3.

1.5.1 Approach of the Thesis

The approach followed in this thesis is to accomplish each of the four objectives

is detailed as follows:
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Objective 1: To review the field of conceptual modelling, ontologies and the

emerging discipline of mesodata to address existing conceptual modelling

problems and to survey extensions to the ER model.

This objective is primarily accomplished in Chapters 2, 3 and parts of Chapters 4,

5 and 6 of this thesis. It begins with a review of conceptual modelling concepts and

methodologies. In Chapter 3, a comprehensive survey and consolidated overview

of extensions to the ER model is presented. In this survey, various aspects of

the ER extensions are analysed, salient points of the extended ER models are

described, and a comparison of the models is discussed. Lastly, the concepts of

mesodata, ontologies and relationships in conceptual modelling are discussed in

Chapters 4, 5 and 6, respectively.

Objective 2: To extend conceptual data models to enhance expressiveness.

The accomplishment of this objective constitutes the core of this thesis as detailed

below:

1. In Chapter 4, the concept of mesodata is incorporated into conceptual mo-

delling methodologies based on the ER and ORM model. In that chapter

it is argued that conceptual modelling methodologies would be semanti-

cally richer if they were able to express the semantics of complex data

types for attribute domains. It starts with a systematic examination of

how the concept of mesodata provides advanced semantics that can be

associated with the domain of an attribute. The main research problem

which is addressed in Chapter 4 is: how can mesodata be modelled in con-

ceptual modelling methodologies? The chapter thus presents the Mesodata

Entity-Relationship (MDER) model and Mesodata Object Role Modelling

(MDORM) to solve this research problem.

2. In Chapter 5, the thesis demonstrates how ontologies can be incorporated

into conceptual modelling methodologies. Besides extensions to the ER

model and the ORM, this chapter includes a discussion of UML class dia-

grams. In that chapter it is argued that the conceptual model should sup-

port and express relevant aspects of the underlying domain associated with

the world view. The Ontological Entity-Relationship (OntoER), Ontologi-

cal Object Role Modelling (OntoORM) and Ontological Unified Modelling

Language (OntoUML) class diagram models are thus presented to illustrate

how the two concepts of mesodata and ontologies can be merged in order to
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support a richer level of semantics. This shows how conceptual models can

be enhanced with the purpose of improving domain semantics, through the

use of common domain structures that facilitate more advanced semantic

relationships between concepts/terms.

3. In Chapter 6, a new relationship construct, termed polymorphic relation-

ships, is presented in the ER model. It is argued that existing relationship

constructs of traditional conceptual models may need to be modified or ex-

tended to handle a broader spectrum of situations due to differing world

views. It is shown how some of the modelling issues that are not easily

accommodated in conceptual modelling (i.e. the situation that requires a

treatment of default values in relationships where the values provided hold

unless more specific information is available) can be handled in an intuitive

manner. This research investigates the links between entities defined for

polymorphic (overloaded) relationships. This allows the conceptual models

to reflect situation changes in the real world and to continue providing a

sound basis for database design.

Extensions proposed in this thesis attempt to embed the semantics of an appli-

cation environment into the practice of conceptual modelling. This will improve

the semantic expressiveness of conceptual data models and database schemata,

and will assist in the evolution of semantically enriched conceptual schemata.

Objective 3: To establish a conceptual modelling approach that can support the

modelling of data in rapidly changing environments.

In Chapter 7, a new conceptual modelling approach, the LItER model (Roddick,

Ceglar, de Vries and La-Ongsri, 2008), is presented which allows rapid data mo-

delling. This methodology allows data to be stored immediately and a more

refined conceptual schema to be developed later. It is argued that a common

conceptual schema should exist for the initial storage of data in the absence of

a more specialised model and that it should be flexible enough to capture all

data, and simple enough to create a full conceptual model. The adoption of this

novel modelling approach will also allow for the integration of ontologies and

mesodata combining emerging technologies such as data mining and knowledge

based technologies including hypotheses, probabilistic reasoning and temporal

auditing.

The contribution towards this objective provides further support for the prac-

tical utility of the work presented in the preceding chapters of this thesis (i.e.
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  A Novel Approach to Conceptual Modelling

 

  Semantic Extensions to Conceptual Modelling

 

 Theoretical Background and Survey

        Introduction

 Revisiting the Fundamentals of Conceptual Modelling Concepts

    Mesodata in Conceptual Modelling

    Ontology in Conceptual Modelling

    Polymorphic Relationships in Entity-Relationship Modelling

  Data Modelling in Rapidly Changing Complex Environments

  Data Model Mapping

   From Conceptual Design to Logical Design
   for the Relational Model

       Conclusion

Objective 1

Objective 2

Objective 3

Objective 4

Chapter 1

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

   ER Modelling Extensions: A Survey and Comparative Review

Chapter 2

Chapter 3

Figure 1.3: Overview of the thesis structure relating the objectives of the thesis
with the chapters in which they are accomplished.

Chapters 4, 5 and 6).

Objective 4: To illustrate the mapping procedures by creating a relational

schema from a schema of the proposed conceptual models.

In Chapter 8, the results of Objective 2 are used to show how the proposed

constructs from the MDER, MDORM, OntoER, OntoORM or OntoUML class di-

agram schemata can be mapped to a relational database schema. This chapter

argues that the ability to transform a conceptual schema to a relational schema

that can be manipulated by the system is essential. It then describes how to

design a relational database schema based on a conceptual schema design. These

instructions include additional steps that are added to the existing mapping algo-

rithm, and this transformation is illustrated with examples from the INVENTORY

and MEDICAL databases.

These ideas further illustrate the assertion that these modelling techniques

are useful and pragmatic.
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1.5.2 Structure of the Thesis

Between this introduction and the conclusion, this thesis contains seven chapters

which contain important research contributions. An overview of the structure of

this thesis is presented in Figure 1.3, and is summarised below:

Chapter 1 provides the foundations of the presented thesis.

Chapter 2 comprises an overview of fundamentals of conceptual modelling con-

cepts.

Chapter 3 presents a comprehensive survey and consolidated overview of ER

model extensions.

Chapter 4 extends the ER model and ORM to show how mesodata can be

accommodated into these modelling approaches, culminating in the Meso-

data Entity-Relationship (MDER) model and Mesodata Object Role Model

(MDORM). A review and further discussion of mesodata is included.

Chapter 5 extends three conceptual modelling methodologies, the ER model,

ORM and UML class diagrams, to show how the concept of common do-

main structures can be used to accommodate ontologies, resulting in the

Ontological Entity-Relationship (OntoER) model, Ontological Object Role

Modelling (OntoORM) and Ontological Unified Modelling Language (On-

toUML) class diagrams. This chapter also includes a comprehensive review

of the concept of ontologies.

Chapter 6 introduces the concept of polymorphic (i.e. overloaded) relationships

in ER modelling and shows how the static modelling of relationships can be

modified to accommodate the natural semantics of applications. This allows

for a conceptualisation of applications where a specific attribute value is not

neccessary for the relationship being described to be modelled in a concep-

tual model. This chapter also reviews the concept of (static) relationships

in conceptual modelling.

Chapter 7 presents a new conceptual modelling approach that allows data to

be modelled in rapidly changing environments. This research incorporates

the concepts of mesodata, ontologies and links as polymorphic relationships
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developed in Chapters 4, 5 and 6 into the the Low Instance-to-Entity Ratio

(LItER) modeling approach. Their structures are presented as parts of the

components of the LItER schema and architecture.

Chapter 8 presents a mapping algorithm that converts the proposed constructs

of the MDER, MDORM, OntoER, OntoORM and OntoUML schemata into

logical schemata that can be optimised and implemented in relational data-

base systems as illustrated through the two major database examples of

this thesis.

Chapter 9 summarises the contributions of this thesis and outlines areas for

future research.

Appendix A provides references to relevant publications.

Appendix B provides the sample proposals from the classification of ER mo-

delling extensions (CERME) framework that have been described according

to key considerations of a conceptual data model.

Appendices C and D provide the schema mappings and data definition lan-

guages of the two major examples from the INVENTORY and MEDICAL

databases in this thesis, respectively.



Chapter 2

Revisiting the Fundamentals of

Conceptual Modelling Concepts

In the early days of conceptual modelling when data models were first proposed

and the relational model had just conquered the database technologies, numerous

data models had emerged with the aim of providing more expressive power for

capturing the semantics of applications. These models, called conceptual models,

have been used to capture the meaning and structure of the information to be

managed in database applications for more than three decades. This chapter

revisits the theoretical background of conceptual modelling concepts and presents

a summary of the various data models proposed in each of the different eras.

The structure of this chapter is as follows. The foundations of conceptual

modelling concepts is given in Sections 2.1 to 2.7. These includes an overall

introduction (Section 2.1), a review of data model terminologies (Section 2.2),

conceptual schema (Section 2.3), semantics (Section 2.4), conceptual design (Sec-

tion 2.5), key considerations of a conceptual data model (Section 2.6), and three

well-known conceptual data models (the ER, ORM and UML class diagram mo-

dels) including their comparison (Section 2.7). Next, a summary of the evolution

of data models is presented in Section 2.8. Finally, this chapter is summarised in

Section 2.9.

2.1 Introduction

Database management is “all about mapping the informal real world into some

formal machine representation” (Date and Darwen, 1992). The traditional database

19
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community’s dissatisfaction with its early systems was due to unwanted depen-

dencies embedded in applications (Date and Darwen, 1992). Applications often

relied on detailed information about the physical layout of data records and this

made it impossible to evolve the database, or even to move it to a new architec-

ture without rewriting all affected applications. (Raymond, Tompa and Wood,

1996)

The solution developed by the database community was to generalise the se-

mantics of data by developing data models that described the logical properties

of data, independently of how it was stored (Raymond et al., 1996). The rela-

tional model, proposed by Codd (1970), makes the evolution of a database much

easier than using a data model based on a specific data representation such as a

hierarchical or network data model.

Most current database applications are implemented in either the relational,

object or object-relational data models. The relational model is well suited to

transaction processing, but has shortcomings in terms of semantic expressive-

ness that has led to the development of semantic models such as the ER model.

A number of database research efforts have concentrated on expanding the ex-

pressiveness of the database modelling mechanism in order to increase the un-

derstanding and usability of conceptual schemata. These so-called semantic or

conceptual data models, use primitives such as entities, attributes, relationships,

aggregation, generalisation, and constraint mechanisms, and are based on set

theory which typically provides a much more expressive modelling mechanism.

For the database community, the semantics of applications is of great concern.

Focussing on data models is a natural way to ensure the retention of semantics,

since data models deal with semantics directly, without taking into consideration

the machine, operating system or data representation (Raymond et al., 1996).

Conceptual modelling has traditionally been used to capture the meaning and

structure (schema) of the information to be managed in database applications.

In this respect, the conceptual model also acts as input for the generation of a

specific database schema conformant to some chosen implementation technology

(Berild, 2004). As discussed in the preface of the ER conference 2006 (Embley,

Olivé and Ram, 2006), conceptual modelling has now become fundamental to any

domain in which organisations have to cope with complex, real-world systems.

It has become a key mechanism for understanding and representing computing

systems and environments of all kinds, including the new e-applications and the

information systems that support them.
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In addition, as discussed by Parent, Spaccapietra and Zimányi (2006a), to-

day’s research on the semantic web again emphasises the need for conceptual mo-

delling approaches to facilitate information exchange over the Internet and within

heterogeneous, distributed or federated databases. In such contexts, a conceptual

model provides the best vehicle for delivering a common understanding between

application partners with different technical and application backgrounds.

2.2 Data Models

The various data models proposed in the literature fall into two types: conceptual

models, used in database design; and logical models, supported by the database

management systems (DBMSs) that create, modify and maintain databases (Ba-

tini, Ceri and Navathe, 1992). This section presents definitions of data models.

The term data model has been used in the database community with various

meanings and in diverse contexts. Various definitions of data models (listed in

ascending order by published year) are as follows:

— A data model is a common language for describing constraints on data and

the effect of operations on that data (Kerschberg, Klug and Tsichritzis, 1976).

— A data model is a mathematical framework for representing knowledge

(McGee, 1976).

— A data model is a combination of three components: a collection of data

structure types, a collection of operators or inference rules, and a collection of

general integrity rules (Codd, 1980).

— A data model is a collection of concepts that can be used to describe a set

of data and operations to manipulate the data (Batini et al., 1992)1.

— A data model is a set of concepts that can be used to describe the structure

of and operations on a database (Navathe, 1992).

— A data model is a collection of conceptual tools for describing the real-world

entities to be modelled in the database and the relationships among these entities

(Silberschatz, Korth and Sudarshan, 1996).

— A data model is a collection of concepts that can be used to describe the

1Based on this definition, when a data model describes a set of concepts from a given reality,
it is called a conceptual data model.



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 22

structure of a database providing the necessary means to achieve data abstraction2

(Elmasri and Navathe, 2007).

The term data model as used in the literature denotes different levels of

abstraction and this accounts for a degree of confusion when trying to provide

a consensus view of what a data model actually represents. To remove any am-

biguity, this thesis relies on the most concrete sense of the term data model as

defined by Codd (1980).

Codd (1980) further pointed out that many authors appear to understand

that a data model is only a collection of data structure types and often ignore the

operators and integrity rules. These operators and integrity rules are essential

to any understanding of how the structures behave, and as a consequence, when

they are omitted, such models should be regarded as incomplete.

Data models first appeared in the early 1970s with the aim of providing some

level of data abstractions so that different users may perceive data at their pre-

ferred level of detail. For example, the hierarchical data model was defined by

a process of abstraction as part of the DBMS called Information Management

System (IMS) created by IBM. The network data model was defined by a process

of abstraction introduced by the Conference on Data Systems and Languages

(CODASYL) Database Task Group. The relational data model (Codd, 1970),

which is based on mathematical concepts and formal definitions such as relations

and normal forms, organised data according to three levels of data description

(external, conceptual and internal).

These three data models are examples of logical models. A Logical model is

a data model that represents data descriptions in a form that can be processed

by computer (Batini et al., 1992). However, such data models retain less of the

original meaning of the data that is necessary for database designers and users in

being able to interpret the contents of a database. As a response to this perceived

need, better modelling tools are required to capture (in a more or less formal way)

more of the meaning of the data so that database design can become semantically

richer and the database system itself can behave more intelligently (Codd, 1979).

In the mid 1970’s, the creation of conceptual or semantic data models helped

to overcome these deficiencies of the logical data models by providing a stronger

semantic foundation that retain more of the original meaning of the data. The

2Data abstractions are relevant to three levels of data description (external, internal and
conceptual) through which the user can visualise the schema levels in a database system. This
three levels or three-schema architecture is known as the ANSI/SPARC proposal (1975).
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Entity-Relationship (ER) model (Chen, 1976) established in 1976 is the most

popular model for conceptual modelling.3

A data model is qualified as conceptual if it enables a direct mapping between

the perceived real world and its representation within the concepts of the model

(Parent et al., 2006a). The conceptual data model helps designers capture the

real world data requirements as it allows them to focus on semantic details of the

concepts and their relationships, more than that which would be provided by the

relational data model. The semantics represented in the ER model, for example,

allow for direct transformations of entity types and relationship types to at least

first normal form (1NF) tables. They also provide clear guidelines for integrity

constraints (Teorey et al., 2006).

In addition, as discussed by Batini et al. (1992) and Navathe (1992), any

semantic data model used for the purpose of conceptual design should be a suit-

able tool for representing reality. These data models should possess the following

qualities:

• Expressiveness. The model must be sufficiently expressive to bring out the

distinctions between different types of data, relationships and constraints,

allowing analysts to capture relevant information not previously available.

Additional features are introduced through the modelling of any new con-

structs that contribute to the semantics of the model.

• Simplicity. The model must be simple enough for any end user to use and

understand. Hence, it must always be accompanied by easy diagrammatic

notation.

• Minimality. The model must consist of a small number of basic concepts

that are distinct and orthogonal in their meaning.

• Formality. The concepts of the model should be formally defined. It should

be possible to state the criteria for the validity of a schema in the model.

• Unique Interpretation. Ideally, there should be a single semantic interpreta-

tion of a given schema. In turn, this implies that complete and unambiguous

semantics can be defined for each modelling construct.

3Conceptual modelling was used either as a synonym to semantic data modelling or in the
technical sense of the ANSI/X3/SPARC report (1975) where it referred to a model that allows
for the definition of schemata lying between external views, as defined for different groups of
users, and internal schemata defining one or several databases (Mylopoulos, 1992).
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This thesis also suggests the inclusion of orthogonality as below:

• Orthogonality. A way that purportedly makes the modelling dimensions

independent of each other, so that the modelling of new constructs in one

dimension are independent of the existing constructs in another dimension.

Orthogonality is the best way to provide maximum expressive power while

retaining maximum simplicity in the constructs of the model (Spaccapietra,

Parent and Zimányi, 2008).

At the highest and most abstract level, a conceptual data model describes

how relevant information is structured in the natural world for purposes of com-

municating a common understanding. It should be independent of any database

management system or other implementation considerations and is usually ex-

pressed in verbal or graphical form based on formal notations that allows for the

capture of the semantics of the application.

In the design of databases, conceptual models are first used to produce a high-

level description of reality then the conceptual schema is translated into a logical

schema. The goal of conceptual data modelling is to capture real-world data

requirements in a simple and meaningful way that is understandable by both the

database designer and the end user. The conceptual data model has been most

successful as a tool for communication between the designer and the end user and

helps them understand and describe the contents of database in an intuitive way.

2.3 Conceptual Schema

A conceptual schema is a global description of the database that hides the details

of physical storage structures and concentrates on describing entities, data types,

relationships and constraints (Thalheim, 2000). As discussed by Sowa (2005),

the need for standardised ways of encoding knowledge has been recognised since

the 1970s. The American National Standards Institute (ANSI) proposed that all

pertinent knowledge about an application domain should be collected in a single

conceptual schema (Tsichritzis and Klug, 1978).

As described by Sowa (2005), Figure 2.1 illustrates an integrated system with

a unified conceptual schema at the centre. Each circle is specialised for its own

purposes, but they all draw on the common application knowledge represented in

the conceptual schema. The user interface calls the database for query and editing

facilities, which, in turn, calls the application programs to perform actions and
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Figure 2.1: Conceptual schema as the heart of an integrated system (from Sowa,
2005)

.

provide services. Thus, the database supports both the application programs with

facilities for data sharing and persistent storage. The conceptual schema binds

all three circles together by providing the common definitions of the application

entities and the relationships between them.

Sowa (2005) stated that for more than twenty years, the conceptual schema

has been important for integrated application design, development and use. The

most recent attempt to integrate all the world’s knowledge is the semantic web

and so far, its major contribution has been to propose XML as the common

syntax for sharing common semantics between applications.

It is important to distinguish between a conceptual data model and a concep-

tual schema. The former refers to the technique (including its notation) that is

used to model any database. The ER (Chen, 1976), NIAM/ORM (Falkenberg,

1976; Halpin, 2001; Nijssen, 1976, 1977; Nijssen and Halpin, 1989; Verheijen and

van Bekkum, 1982) and UML (Booch, Jacobson and Rumbaugh, 2005; Muller,

1999) are all examples of conceptual data models. On the other hand, conceptual

schemata refer to the result of the modelling, namely a set of diagrams described

by a specific data model in the form of diagrammatic conventions or a language

syntax to express the specific data structures for an application that is going to

be developed (Fonseca, Davis and Câmara, 2003; Fonseca and Martin, 2007).

2.4 Semantics in Conceptual Modelling

“...Data by itself is not enough — what we really need is information,

the meaning or semantics behind the data. Since computers lack com-

mon sense, we need to pay special attention to semantics when we use

computers to model some aspect of reality.”
Terry Halpin (2001)
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Next generation database systems will not work without semantics (Mylopou-

los, 2004). Several perspectives on semantics appeared in the literature, in par-

ticular, in a panel discussion of the Data Semantics (DS-6) conference compiled

by Sheth, Meersman and Navathe (1995). Various definitions of semantics are

given below:

— Semantics is the meaning and the use of data (Woods, 1988).

This is the classic definition of semantics.

— Semantics can be viewed as a mapping between an object modelled, repre-

sented and/or stored in an information system (e.g. an ‘object’ in a database)

and the real-world object(s) it represents (Sheth et al., 1995).

This mapping represents the semantics of the modelled object by describing or

identifying the meaning and the use perspectives.

— Semantics is all pervasive and covers many things such as the interpretation

and the use of data, or the interaction of people to convert data into information

(that is, semantics is everywhere and has broad interpretation).

This definition is given by Navathe, one of the four panellists of DS-6 conference,

who defined semantics in a broader term (Sheth et al., 1995).

— Semantics is dependent on humans, thus it is difficult to address it in the

context of machines (no wonder the systems oriented database researchers often

find it a ‘soft science’).

This is another definition by Navathe, given at the DS-6 conference (Sheth et al.,

1995) that shows another interesting philosophical point of this term.

— Semantics, in a formal way, is the precise description of the link between

a representation and concepts in the real world; in a casual way, semantics is

a feature of a language or representation that supposedly can be measured or

compared in intuitive ways (Meersman, 1996).

This latter definition appears to be the most frequently used in the database

and information system literature. Examples of this form are approaches where

semantics are conceptually linked to relationships, constraints, objects or appli-

cation functionality.

— Semantics can be identified by relationships between objects (Wiederhold,

1995) in Sheth et al. (1995).

This term is identified by Gio Wiederhold, one of the three keynote speakers

at the DS-6 conference (Sheth et al., 1995). In addition, Sheth, Thacker and



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 27

Patel (2003) stated that relationships between entities (terms or concepts) are

the basis of capturing, representing and supporting semantics. This definition

is indeed the perspective taken by many in the knowledge representation and

conceptual modelling fields.

— Semantics is defined as the meaning of a term or a mapping from a con-

struct to the real world (Purao and Storey, 2005).

According to this definition, understanding a relationship requires that one un-

derstands the semantics of the accompanying verb phrase.

— Semantics is defined as the meaning, or essential message, of the terms

used in the conceptual model, that is, of words and phrases representing entities

and verbs (Storey, 2005).

According to this definition, mechanisms for capturing some of the semantics of

the real world are needed to compare the entities and verb phrase relationships.

For the purpose of this thesis, the concept of semantics that is used throughout

this thesis encompasses all of these understandings and perspectives that reflect

upon the common understanding of this term. Understanding the semantics

of the real world and representing them in a conceptual schema are becoming

common in conceptual modelling. Ontologies capture useful semantics about the

domains that they model, relationships between them and the characteristics of

the domain (Sheth et al., 2003). A variety of the semantics of relationships can be

seen in context through conceptual schemata and ontologies. This understanding

that relationships between objects are the key to semantics is also reflected in the

definitions suggested by both Wiederhold (Sheth et al., 1995) and Sheth et al.

(2003).

Entities in the real world are related to each other in various ways (Sheth

et al., 2003). These relationships can be simple such as is-a and is-part-of,

which are basic hierarchical structures or can be much more complex relation-

ships which require complex structures. For example, the semantic relationships

such as CLOSETO and NEXTTO presented in this thesis capture the degrees of prox-

imity of address/location (refer to Chapter 4). Similarly, the domain knowledge

that uses ontologies to describe terms or concepts provides additional meanings

to a location attribute through the relationships between its concepts (refer to

Chapter 5).

Recent research efforts have been devoted to the further understanding of the

semantics of relationships. Bergholtz and Johannesson (2001) proposed an on-

tology for classifying relationships based on data abstractions. Purao and Storey
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(2005) proposed a layered ontology for classifying the semantics of relationships.

Other similar efforts provide a way to create database designs that capture and

represent the semantics of an application. For example, Storey (2005) proposed

an ontology for classifying relationship verbs based upon the domain and context

of the application within which the relationship appears. Sugumaran and Storey

(2006) showed how domain knowledge stored in an ontology can be used to assist

in the generation of complete and consistent database designs. These are based

on the concept that understanding the semantics of relationships requires an ex-

plicit characterisation of the meaning underlying the descriptive verb that is part

of each relationship.

It is believed that semantics is a grand challenge for the current generation

of computer technology (Embley, 2004) and ontologies will help solve the major

problem of incorporating semantics into data modelling. This thesis will show one

potential use of ontologies in enhancing richer semantics in conceptual modelling

(refer to Chapter 5).

2.5 Conceptual Design as Part of Database De-

sign

“Conceptual modeling is a very important phase in designing a suc-

cessful database application.”

Ramez Elmasri and Shamkant B. Navathe (2007)

As stated by Rolland and Cauvet (1992), conceptual models have proved to

be extremely useful throughout the information system life cycle. The growing

demand for information systems of ever-increasing complexity and size, calls for

high level concepts and formal techniques to model systems at different levels of

abstraction. The need for powerful conceptual tools and better forms of abstrac-

tion, particularly in the earlier phase of systems development, has been recognised

throughout industry, business and administration.

As discussed by Halpin (2001), when a database is designed for a particular

application, a model of the application area is created. Technically, the applica-

tion area being modelled is called the Universe of Discourse (UoD), since it is the

world (or universe) that we are most interested in. The UoD is also called the

‘the application domain’ and typically represents ‘part’ of the ‘real world’. The

main challenge is to describe the UoD clearly and precisely.
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Figure 2.2: Three main phases of database design (from Batini et al. (1992).

Designing databases is still considered as an art rather than a science. When

supported by a good conceptual data model which has enough expressive power to

support the modelling of all situations of interest, this design process can deliver

high quality database applications. However, there is no obvious answer to the

question of how much expressive power a data model should possess, since being

conceptual, data models may have more or less expressive power depending on

the number of concepts, constructs and constraints they support (Parent et al.,

2006a).

Database applications are modelled using a three-step design paradigm. Con-

ceptual design is the first stage in the process of top-down database design which

is decomposed into conceptual, logical and physical design as shown in Figure 2.2.

The objective of conceptual design is to describe the information used by an or-

ganisation in a way which is not governed by implementation-level issues and

details, and is initiated from requirement specifications that describe the real-

ity. In this first phase, the model should be expressed at the conceptual level to

make it easy for people to see the overall picture, thus enabling any non-technical

stakeholders to be able to view, understand and to contribute to any discussions

on the database design.

The three-step design process as discussed by Batini et al. (1992) and Shekhar,

Vatsavai, Chawla and Burk (1999) is summarised as follows:

Conceptual Design. A conceptual design starts from the specification of re-

quirements and results in the conceptual schema of the database. A con-
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ceptual schema is a high-level description of the structure of the database,

independent of the particular DBMS that will be used to implement the

database. A common method of analysis involves identifying the essential

data that needs to be stored:

• entities that the organisation has to deal with;

• attributes and items of information that characterise and describe

these entities; and

• relationships between entities that exist and must be taken into ac-

count when processing information.

At the conceptual design level, the focus is on the entity types of the appli-

cation, their relationships and constraints, and therefore the actual imple-

mentation details are omitted from this step. To assist the design process,

graphical notation or visual tools are commonly used to express the data

and their relationships.

Of all the available conceptual design methodologies, the ER model is the

one that is used most prevalently.

Logical Design. A logical design starts from the conceptual schema and results

in the logical schema. A logical schema is a description of the structure of

the database that can be processed and supported by a commercial database

management system (DBMS). The logical data model is often directly used

as part of the computer implementation in some DBMSs but omits the phy-

sical details related to the implementation. It contains modelling constructs

that are easy for users to follow, and is also referred to as an implementation

model.

The most widely used logical data model in current commercial databases

is the relational data model. At this point of the process, the logical schema

now represents familiar relations, tuples, attributes, primary keys and for-

eign keys of relational databases and allows queries to be expressed without

direct reference to specific indexes. Normalisation4 is applied at this step

to minimise redundancy in the data and to leverage maximum utility of

relational concepts. Object-oriented, object-relational, network and hierar-

chical data models are also examples of the actual implementation of the

conceptual data model.

4Normalisation is a methodology to analyse an association between attributes to extract
functional and join dependencies from the real-world semantics.
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Note that the entire activity, starting from requirements and producing the

definition of the final implementable schema in a DBMS, can also be called

schema design (Navathe, 1992).

Physical Design. A physical design starts from the logical schema and results

in the physical schema. A physical schema is a description of the implemen-

tation of the database and is strongly coupled to the DBMS. It is used to

describe the storage structures and access methods used in order to effec-

tively access data. Issues relating to the disk representation of data related

to the storage, clustering, partitioning, indexing, and space and memory

management are handled at this level. There may be an iterative process

loop between the physical and logical design phases as the decisions taken

during physical design for improving performance might affect the structure

of the logical schema.

The most demanding phase in database design is conceptual design. The

conceptual schema is the first formalised description of the database application

which serves as the basis for discussions with stakeholders on database design

or on further design steps to achieve fuller functionality of an existing database

system (Engels, Gogolla, Hohenstein, Hülsmann, Löhr-Richter, Saake and Ehrich,

1992). Conceptual data modelling is thus imperative for successful information

systems development (ter Hofstede, Lippe and van der Weide, 1995).

2.6 Key Considerations of a Conceptual Data

Model

From a database point of view, conceptual data models that constitute a data(base)

model should at least possess: data structures that define the template of a

database; constraints (rules) that define the set of accurate and consistent database

states; and languages and operations on the database that allow retrievals and

updates.

According to these criteria, conceptual models are thus formally considered

as comprising three parts; data structures, integrity constraints and languages.

These criteria correspond to a combination of three components (a set of data

structure types, a set of operators or inferencing rules, and a set of general in-

tegrity rules) used to describe a data model as proposed by Codd (1980). These

key considerations of a conceptual data model are described below.
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Data Structures. The structure of a data model refers to the modelling con-

structs with which the structure of a database can be described. For exam-

ple, the data structures of the ER model are entity types, relationship types

and attributes.

Integrity Constraints. Constraints are an additional restriction on the occur-

rences of data within a database that must hold at all times (Navathe, 1992).

They are used to ensure accuracy and consistency of data in a database.

As discussed by Navathe (1992), data model constraints serve two primary

goals:

• Integrity. Integrity constraints are the rules that constrain the valid

states of a database. They arise either as properties of data or as user-

defined rules that reflect the meaning of data. For example, if a user

tries to insert data that does not meet the rules, the DBMS will not

allow it. Also, requirements (i.e. rules) imposed by a relationship in

the ER model must be met when updating the database.

• Security and Protection. This applies to restrictions and authorisation

limitations that are applied to a database so as to protect it from

misuse and unauthorised usage.

Constraints as described by Borysowich (2007), Elmasri and Navathe (2007)

and Navathe (1992) can be visualised at different levels and are summarised

as:

• Inherent-based constraints. An inherent-based constraint is a con-

straint that is built into the rules of the data model itself. For example,

in the ER model, a relationship must have a least two participating

entity types.

• Schema-based constraints. A schema-based constraint is a constraint

that can be directly expressed in a schema of a data model, typically

by specifying this constraint in the data definition language. These

constraints are expected to be automatically enforced. For example, a

total participation constraint in the ER model, states that a specific

entity must participate in a particular relationship and therefore it

requires a minimum of one occurrence for any particular entity that

participates in the relationship. Consider the relationship ‘Teacher

teaches Course’. A Course cannot exist unless a Teacher has been

assigned to teach the Course.
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• Application-based constraints. An application-based constraint is a

constraint that can not be directly expressed in a schema of a data

model and hence must be expressed and enforced by the application

program. This constraint is more general and relates to the meaning

as well as behaviour of attributes. Since this is difficult to express

and enforce within the data model, it is usually checked within the

application program.

Languages. A data model should provide languages and operations for the

database that allow retrievals and updates including insertions, deletions

and modifications. A data model in the database parlance is associated

with a variety of languages such as data definition language (DDL) and

data manipulation language (DML). The DDL allows the database designer

to define the database schema. The DBMS has a compiler to process the

schema definition in DDL and to convert it into a machine-processable

form (Navathe, 1992). The DML is used to specify the retrieval, insertion,

deletion and modification of data. Languages for data models can also

be distinguished in terms of record-at-a-time5 or set-at-a-time6 (Navathe,

1992).

In the following section, the criteria related to the key considerations of a concep-

tual data model are applied to show that each of the well-known data modelling

approaches, ER, ORM and UML, can be regarded as completed data models.

2.7 Conceptual Modelling Approaches

In the past, a number of data models, called semantic or conceptual models have

been proposed for conceptual modelling, e.g. the Semantic Data Model (SDM)

(Hammer and McLeod, 1981), the Functional Data Model (Shipman, 1981), the

Nijssen’s Information Analysis Methodology (NIAM) approach (Falkenberg, 1976;

Nijssen, 1976, 1977; Nijssen and Halpin, 1989) and the Entity-Relationship (ER)

model (Chen, 1976). For a comprehensive survey of these, refer to Hull and

5Record-at-a-time, the low level or procedural language, requires an elaborate control struc-
ture typically provided by a host programming language within which the DML commands are
embedded (Navathe, 1992).

6Set-at-a-time, the high level or non-procedural DML, can specify and retrieve sets of ele-
ments (e.g. sets of tuples in the relational model) in a single DML statement. This retrieval of
a tuple is said to be Set-at-a-time or Set-oriented.
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King (1987) and Potter and Kerschberg (1988). Amongst these, one of the first

and most powerful semantic data models was the ER model proposed by Chen

(1976). Since this time, several conceptual modelling researchers have continued

to evolve the model by trying to express it using semantically enriched modelling

formalisms. A number of new abstraction mechanisms have been proposed, such

as specialisation, aggregation and association (Batini et al., 1992; Elmasri and

Navathe, 2007) to enrich its modelling capabilities. Another well-known fact-

oriented model for conceptual modelling is the NIAM approach (Nijssen, 1976,

1977; Nijssen and Halpin, 1989). Although it is less popular than the ER model, it

has also gained some attention from the database community and several papers

have been presented (Leung and Nijssen, 1988; Creasy, 1989; Song and Forbes,

1991; Laender and Flynn, 1993; Puntheeranurak and Chittayasothorn, 2002).

This model is now widely known as Object Role Modelling (ORM) (Halpin, 1998,

2001). More recently, Unified Modelling Language (UML) class diagrams (Muller,

1999; Halpin, 1998-1999a) have also gained popularity for data modelling.

There are many modelling approaches that provide for diagrammatic repre-

sentation of conceptual models and much of the literature on data modelling is

devoted to different modelling techniques. This thesis provides a discussion of

three of these well-known approaches, ER, ORM and UML class diagram that

are used for conceptual modelling. The following explanation of this model draws

particular attention to data structures, integrity constraints and languages that

are the key considerations of the model.

2.7.1 The Entity-Relationship (ER) Model

“(The Entity-Relationship model) incorporates some of the important

semantic information in the real world...”

Peter Chen (1976)

The ER model was the first conceptual data model that was proposed by Peter

Chen in 1976, and is still the most widely used data modelling approach for the

conceptual design of databases and information systems. It can be described as

a top-down approach that views the real world as entities (that have attributes)

and relationships. The ER model exemplified semantic data models and has been

a precursor of much subsequent development (Navathe, 1992). The key elements

of a (conceptual) data model as they apply to the ER model are described below:
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Figure 2.3: An example of an ER diagram for a university database.

Data Structures. The main constructs in the ER model are entity types, rela-

tionship types and attributes which are represented graphically as an entity-

relationship diagram.

1. Entity types. In the ER model, the real world is modelled into entities,

that are characterised by attributes and interrelated through relation-

ships. An entity, or more precisely an entity instance, represents an

object of interest that may be concrete or abstract. A collection of

similar entities forms an entity type. An entity type is similar to a

class of objects, however, it is not involved with the operations on

data and thus there are no methods associated with an entity type.

2. Relationship types. A relationship type represents a meaningful associ-

ation between two or more entity types.

3. Attributes. An attribute is a property of the entity. The set of values

an attribute can take is often termed a domain.

Figure 2.3 shows an example ER diagram for a university database. In

the ER diagram, entity types, relationship types and attributes are repre-

sented by rectangles, diamonds and ellipses respectively. The ellipse with

an underlined label indicates a unique identifier attribute which uniquely

identifies instances of an entity.
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Figure 2.4: Cardinality ratio and participation constraint in the WORKS IN and
MANAGES relationship types.

1:1 1:N N:1 M:N

Figure 2.5: Cardinality ratios in the ER model.

Integrity Constraints. There are two types of constraints on relationship types

in the ER model: cardinality ratios and participation constraints that fall

under the schema-based constraint category.

1. Cardinality ratios. A cardinality ratio specifies the maximum number

of relationship instances that an entity can participate in (Elmasri and

Navathe, 2007). For example, consider the WORKS IN relationship type

in Figure 2.4. A cardinality ratio of EMPLOYEE:DEPARTMENT is N:1,

meaning that an employee can work in only one department while a

department can have many employees. The possible cardinality ratios

for relationship types in the ER model are 1:1, 1:N, N:1 and M:N as

shown in Figure 2.5, where the N and M notations refer to any number

of instances (refer to Elmasri and Navathe (2007)).

2. Participation constraint. A participation constraint specifies whether

the existence of an entity depends on its relationship to another en-

tity via the relationship type (Elmasri and Navathe, 2007). There are

two types of participation constraints — total and partial. Consider

the MANAGES relationship type in Figure 2.4. If we do not expect every

employee to manage a department, then the participation of EMPLOYEE

in the MANAGES relationship type is partial as depicted by a single line

connecting EMPLOYEE and MANAGES and if we expect that every de-

partment has a manager, then the participation of DEPARTMENT in the
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MANAGES relationship is total as depicted by a double line connecting

DEPARTMENT and MANAGES.

Languages. A discussion of query languages for the ER model ranges from pro-

cedural languages (Campbell and Embley, 1985; Demo, Di Leva and Giolito,

1985), descriptive languages such as GORDAS (Elmasri and Wiederhold,

1981) to graphical languages (Campbell, Embley and Czejdo, 1987; El-

masri and Larson, 1985) such as GRAQULA (Sockut, Burns, Malhotra and

Whang, 1993) or GQL/ER (Zhang and Mendelzon, 1983). There are also

query languages such as SQL/ER (Gogolla and Hohenstein, 1991) and oth-

ers that are based on the Extended Entity-Relationship (EER) model such

as SQL/EER (Hohenstein and Engels, 1992).

However, there are no DBMSs that use the ER model directly. As most com-

mercial DBMS uses the relational model, the ER model is thus converted

to a relational schema in the data-specification language of the relational

DBMS. Subsequently, a RDBMS language, such as SQL, is used to create

a schema in the conceptual design phase. The ER model integrates seam-

lessly with the relational data model and can be mapped into a relational

database schema which guarantees the first normal form (1NF).

To capture the real-world semantics in the ER model, one main problem that

needs to be overcome is how to distinguish between attributes and entity types.

The distinction between entity types and attributes tends to be fuzzy (Navathe,

1992). Also, there seems to be not just one correct ER diagram for a given

situation. For example, one may consider the Country in which a person was

born to be modelled as an attribute of the PERSON entity type Figure 2.6(a).

Conversely, it could be argued that the COUNTRY entity type should be modelled

with the attributes of, for example, Name, Population and Zone. The latter

argument is supported by promoting relationship types between the PERSON and

COUNTRY entity type as shown in Figure 2.6(b).

Given the term Country from the example in Figure 2.6, this thesis suggests

that the following guideline should be used to assess whether Country should be

modelled as an attribute or entity type.

• Country should be modelled as an attribute if it is required to record only

one piece of information about a Country (i.e. the Country’s name) and

Country is related to only one entity type.
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Figure 2.6: Two design choices of Country (a) attribute of PERSON entity type
and (b) entity type COUNTRY.

• Country should be modelled as an entity type if it is required to record mul-

tiple pieces of information about Country (e.g. Name, Population, Zone)

and where Country is also associated with any other entity types through

relationship types.

2.7.2 Object Role Modelling (ORM)

ORM is a method for modelling and querying an information system at the con-

ceptual level (Halpin, 1998). ORM’s precursor is often referred to as NIAM,

which was initially developed by Nijssen and others in Europe in the early 1970s

(Nijssen and Halpin, 1989). NIAM was originally an acronym for Nijssen’s Infor-

mation Analysis Methodology (Nijssen, 1976, 1977; Nijssen and Halpin, 1989),

but more recently, it has been revised to Natural Language Information Analysis

Method (Verheijen and van Bekkum, 1982). At present, a more general name for

NIAM is Object Role Modelling (ORM) (Halpin, 2001).

ORM expresses the information in terms of elementary relationships which

means that a base concept of ORM makes no use of attributes, but uses a re-

lationship instead (Halpin, 2000). This differs from other modelling techniques

such as the ER or UML approaches in that these approaches use attributes as

their main constructs. The key elements of a (conceptual) data model as they

apply to the ORM approach are described as follows:

Data Structures. The main constructs of ORM are entity types (types of ob-

ject), label types (type of values or names), reference types and fact types.

1. Entity types. An entity type is the set of all possible values. Each

entity is an instance of the particular entity type. For example, the

entity type STUDENT is the set of all students. That is, an entity type
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Figure 2.7: An example of an ORM diagram (adapted from Jarrar et al. (2003)).

is a generic collection of abstract or real entities. Note that in ORM

the word ‘entity’ refers to ‘entity instance’. The semantics of the con-

structs are similar to that of the ER model, however the graphical

representation is different. In ORM, an entity type is depicted as a

named ellipse whereas in ER a named rectangle is used.

2. Label types. A label type is used to denote a particular object. In

other words, it is a naming of an entity type and is usually depicted

as a named, dotted ellipse.

3. Reference types. Relationship types in ORM are known as reference

types and fact types that are depicted as a named sequence of one or

more roles, where each role appears as a box connected to the object

type that plays it. A reference type is an association between entity

types and label types. An entity type may have several label types

and its unique identifier is chosen from a one-to-one reference type.

4. Fact types. A fact type is an association between entity types. Each

fact type is in the form of elementary facts (Halpin, 1993). This pro-

perty enables the ORM conceptual schemata to be mapped into the

5NF relational schemata (Leung and Nijssen, 1987; Pornphol and Chit-

tayasothorn, 2004).

Consider Figure 2.7 that depicts an example of an ORM diagram. Object

types are shown as a named ellipse, with solid lines for entity types and
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dotted line for label (value) types. Fact types appear as a named sequence of

roles, where each role appears as a box connected to the object type playing

it. Entity types are Committee, Person, Author, Reviewer and Paper. A

label type is TitleName. Committees, Persons, Authors and Reviewers are

identified by their name while Papers are identified by their paper number.

A named bracket is used to concisely represent a unique identifier, which

is placed below the entity type name. There is one reference type (i.e. a

Paper has a TitleName) while the remaining are fact types (e.g. an Author

writes a Paper, an Author presents a Paper, a Reviewer reviews a Paper,

etc.).

Integrity Constraints. ORM is typically more expressive than ER in terms

of its wider variety of constraints. Examples of such constraints that come

under the schema-based constraint category include uniqueness, mandatory

role, entity type, subtype and set comparison.

1. Uniqueness constraints. A uniqueness constraint is a constraint on the

fact types to indicate that each fact instance is unique. Arrow-tipped

bars over one or more roles represent uniqueness constraints. There

are two types of uniqueness constraints: intra-fact-type and inter-fact-

type.

• Intra-fact-type constraints. An intra-fact-type constraint, some-

times called internal constraint, declares that the role in the rela-

tionship type must be unique. These are shown as arrow tipped

bars and are placed over one or more roles in a predicate7. For

example, adding a uniqueness constraint over the first role of

fact type ‘Committee is chaired by Person’ in Figure 2.7 declares

that each committee is chaired by at most one person and that

each entry in the Committee column must be unique (no com-

mittee’s name can be duplicated in that column). The predicate

‘...is chaired by...’ is many to one (N:1). The inverse predicate

‘...chairs...’ is said to be one to many (1:N).

• Inter-fact-type constraints. An inter-fact-type constraint, some-

times called an external constraint, indicates that instances of the

7A predicate (as discussed by Halpin (1998), Halpin and Morgan (2008) and Nijssen and
Halpin (1989)) is basically a declarative sentence with object holes in it, one for each role. The
number of role is called the arity of the predicate. ORM allows predicates of any arity (e.g.
1=unary, 2=binary, 3=ternary etc.) in which the name of the predicate can be written either
in or beside the first role box. For example, the fact type an Author writes a Paper involves
the predicate ‘...writes...’.
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combination of the roles in the join of those predicates are unique.

These are depicted as a circled U applied to two or more roles from

different predicates and are interconnected with dotted lines. For

example, to identify that a paper is defined by a combination of a

title name and authors, an inter-fact-type constraint is used that

joins the two role boxes shown in Figure 2.7. This indicates that

for each paper the combination of a title name and authors is

unique. This means that when querying any title name and au-

thor name, there is at most one PaperNr which is paired with

both.

2. Mandatory role constraints. A mandatory role constraint declares that

every instance in the population of the role’s object type must play that

role. These are represented graphically by a black dot (Figure 2.7).

For example, each Paper must have a Title name.

3. Entity type constraints. An entity type constraint, sometimes called a

domain constraint or value constraint, restricts an object type’s pop-

ulation to a given list. The relevant values may be listed in braces.

For example, the set of possible sexes may be listed or enumerated as

{M,F}, and placed alongside the entity type. If the values are ordered

and have a continuous range, the range can be declared by separat-

ing the first and last values by ‘..’ which abbreviates the integers in

between. For example, a range of employee age may be indicated as

[18..65].

4. Subtype constraints. A subtype constraint indicates that the specified

object type is a subtype of another. These are depicted by a solid

arrow. For example, in Figure 2.7, the solid arrows connecting the

object types Author and Reviewer to Person denote a subtype (is-a)

relationship, i.e. both author and reviewer are a subtype of person.

5. Set comparison constraints. A set comparison constraint restricts the

way the population of one role, or role sequence, relates to the pop-

ulation of another. These constraints can be applied between com-

patible role sequences where the corresponding roles have the same

object type. Set comparison constraints declare a subset, equality and

exclusion relationship between the populations of role sequence. An

example of exclusion and subset constraints is described below:

• Exclusion constraints. An exclusion constraint indicates that the
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populations are mutually exclusive. This is depicted by the symbol

⊗. For example, in Figure 2.7, the ⊗ symbol between the fact

types ‘Reviewer reviews Paper’ and ‘Paper is written by Author’

indicates that an author who writes a certain paper is not allowed

to be a reviewer of the same paper.

• Subset constraints. A subset constraint declares that the popu-

lation of the source role sequence must be a subset of the target

role sequence. This is depicted by a dotted arrow that connects

any pair of compatible role sequences. For example, consider the

subset constraint between the Person-Committee role pair in Fig-

ure 2.7. This constraint declares that any person who chairs a

committee must be a member of that committee.

A detailed discussion of equality constraints including other constraints such

as ring and frequency constraints provided by ORM, can be found in Halpin

(2001) and Nijssen and Halpin (1989).

Languages. A powerful query language is important for successful database

modelling. To allow queries and updates to be performed at a concep-

tual level requires interaction with conceptual structures, rather than with

relational databases. ConQuer (Bloesch and Halpin, 1996) is a concep-

tual query language based on ORM allowing users to formulate queries

naturally in terms of elementary relationships. Operators such as ‘and’,

‘not’ and ‘maybe’ can be used and it does not require the user to have

any understanding of how the information is stored in the underlying data

structures. Similarly, the conceptual query language RIDL (De Troyer,

1989) is based on NIAM (ORM’s precursor methodology) (Verheijen and

van Bekkum, 1982; Demey, Jarrar and Meersman, 2002). ORM-Markup

Language (ORM-ML) (Demey et al., 2002) has also been proposed as a

method to express ORM schemata using an XML-based markup language.

The ORM approach has well-defined semantics and uses elementary fact

types which can be easily mapped into fifth normal form (5NF) relational

schema. Once the conceptual schema has been transformed to a relational

schema, it then can be supported by SQL which is widely used in commercial

DBMSs.
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2.7.3 Unified Modelling Language (UML) Class Diagrams

The Unified Modelling Language (UML) is a relatively new object-oriented analy-

sis and design method. The Object Management Group (OMG) (OMG, 2008)

is in charge of developing and standardising UML and this sponsorship aims

to promote its universal acceptance and for it to become an emerging standard

for conceptual data modelling in object-oriented domains (OMG, 2005). Several

types of diagrams are provided by UML to assist developers of object-oriented

programming (Booch et al., 2005; Halpin, 1998-1999a; Muller, 1999). As far as

conceptual data modelling is concerned, this thesis is only interested in the UML

class diagram which is used for data modelling purposes.

The key elements of a (conceptual) data model as they apply to the UML

class diagrams are described below:

Data Structures. The main modelling constructs of the UML class diagram

that is used for conceptual modelling purposes are classes, associations and

attributes. These constructs closely correlate to those associated with the

ER model.

1. Classes. A class is a description of a set of objects that share the same

attributes, associations and methods. In ER terminology, the term

class has an equivalent meaning to that of entity type. Classes have

properties in the form of attributes, provide abstract services in the

form of operations, and can be related to other objects using associa-

tions. Classes in UML are typically depicted as named rectangles with

three sections: the top section for the name of the class; the middle

section for the attributes of the class; and the bottom section for the

operations (methods) of the class. When used in conceptual analysis

and design, implementation details such as methods are omitted. The

nature and usage of UML class diagrams closely mirrors equivalent

processes in the ER model.

2. Associations. An association is the semantic relationship between two

or more classes involving links or connections among their instances.

These are depicted as solid lines connecting classes. In ER terminology,

the term association has an equivalent meaning to that of relationship

type.

3. Attributes. Attributes are properties of classes that describe a range of

values that instances of this class may hold.
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Figure 2.8: An example of a binary association with the expression of
multiplicity constraints in a UML class diagram.

Integrity Constraints. The UML class diagram includes multiplicity constraints

on the association roles. The concept of multiplicity in UML class diagrams

corresponds to cardinality in ER terminology. The multiplicity specifies

the number of target instances (at minimum and maximum) of one class

that may be associated with a given single instance of another class. Each

multiplicity constraint is placed on the far role in the direction in which the

association is read (Halpin, 2001; Génova, Llorens and Martinez, 2001).

Figure 2.8 shows a multiplicity constraint on a binary association meaning

that ‘each Company employs zero or more Employees’ while ‘each Employee

is employed by exactly one Company’. The association is simply shown as a

line connecting the two classes, named with a verb that describes the action.

An arrow shows which way the association is read. Notations at each end

of the line (i.e. ‘1’ and ‘*’) represents the multiplicity of the association.

The ‘*’ character symbol abbreviates ‘0..*’, meaning ‘zero or more’. A

‘1’ abbreviates ‘1..1’, meaning ‘exactly one’. The multiplicity at each end

of the line in Figure 2.8 is called a one-to-many association. Multiplicity

is important in the data model since it maps directly into the structure

of the foreign key in the logical schema. Table 2.1 shows some examples

of multiplicity notations. Refer to Halpin (2001) for possible constraint

patterns in UML for binary associations.

UML supports subclass and superclass, where each instance of a subclass

is also an instance of its superclass. A subclass inherits all the attributes,

associations (and operations/methods) of its superclass. The symbol for a

subclass association in UML is an open arrowhead that points to the su-

perclass. Rather than the usual multiplicity constraint, the subclass asso-

ciation line is labelled with four predefined constraints to indicate whether
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Table 2.1: Examples of Multiplicities.

Multiplicity Meaning

0..* Zero or more objects

0..1 No more than one optional object

1 Exactly one object

1..* One or more objects

2..10 At least two but not more than ten objects

1,3,9-10 At least one object but possibly three, nine or ten objects

subclasses are exclusive or exhaustive (Halpin and Morgan, 2008). Con-

straints are described along two dimensions: incomplete versus complete,

and disjoint versus overlapping (Jewett, 2006a).

• Incomplete versus complete. These constraints can be considered as

participation8 constraints.

– Incomplete. The incomplete superclass/subclass relationship spec-

ifies that only some instances of the superclass belong to any of its

subclasses. An incomplete superclass/subclass relationship is also

called a partial participation. To represent an incomplete super-

class/subclass relationship, the label {incomplete} is placed next

to the subclass association line.

– Complete. The complete superclass/subclass relationship specifies

that all instances of the superclass must also be a member of

a subclass. A complete superclass/subclass relationship is also

called a total or exhaustive participation. To represent a complete

superclass/subclass relationship, the label {complete} is placed

next to the subclass association line. For example, in Figure 2.9

the subclasses of the Owner are complete, which means that every

member of Owner must be either a private owner or a business

owner.

• Disjoint9 versus overlapping. These two constraints, respectively indi-

cate whether the subclasses are mutually exclusive or overlapping.

8Participation constraints determine whether every member in the superclass must partici-
pate as a member of a subclass (Connolly and Begg, 2004).

9Disjoint constraints describe the relationship between members of the subclasses and in-
dicates whether it is possible for a member of a superclass to be a member of one or more
subclasses (Connolly and Begg, 2004).
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Staff

staffNo {PK}
staffName

has

1..* 1..1

Branch

branchNo {PK}
branchName
address

PropertyForRent

propertyNo {PK}
address
   street
   city
   postcode
type
room
rent

0..1

0..100
oversees

offers1..*

1..1

Owner

address
telNo

owns
1..*

1..1

Newspaper

nName

Advert

dateAdvert
cost

advertises

1..*

0..*

PrivateOwner

ownerNo {PK}
name

BusinessOwner

bName {PK}
bType
contactName

{complete, disjoint}

Figure 2.9: An example of a UML class diagram (adapted from Connolly and
Begg (2004)).

– Disjoint. If subclasses are disjoint, then an entity instance of the

superclass can be a member of only one of the subclasses. The

disjoint constraint only applies when a superclass has more than

one subclass (Connolly and Begg, 2004). A disjoint constraint

also called an exclusive constraint. To represent a disjoint super-

class/subclass relationship, the label {disjoint} is placed next to

the subclass association line. For example, in Figure 2.9 the sub-

classes of the Owner are disjoint, which means that a member of

Owner can be a private owner or a business owner, but not both.

– Overlapping. If the subclasses are overlapping, then an entity

instance of the superclass may be a member of more than one

subclass. To represent an overlapping superclass/subclass rela-

tionship, the label {overlapping} is placed next to the subclass

association line.

The disjoint/overlapping and complete/incomplete constraints of a super-

class/subclass relationship are distinct, giving rise to four categories: ‘com-

plete and disjoint’, ‘incomplete and disjoint’, ‘complete and overlapping’

and ‘incomplete and overlapping’ (Connolly and Begg, 2004).
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University

uName
address
distance
busNr

1 1..*

School

sName
building
headis composed of

Figure 2.10: UML aggregation.

In addition, UML provides for an aggregation10 shown by an open diamond

on the end of association line that points to the aggregated class to rep-

resent a collection of their component objects. The relationship between

the primitive objects and their aggregate object is called a whole/part

(Halpin, 2001) relationship or is described as is-part-of; the inverse is

called is-a-component-of (Elmasri and Navathe, 2007). For example, a

university is an aggregation of schools. Although this pattern can be mo-

delled by an ordinary association, aggregation provides a more semantically

correct way. Figure 2.10 describes that each university is composed of one

or more schools and each school is part of one university.

Arbitrary constraints in UML can be declared by writing a comment or

constraint in a note attached to the notations involved.

Languages. The OMG (OMG, 2008) has adopted UML as the standard nota-

tion for object methods (Muller, 1999). Several additions to the language

are incorporated into the UML including the Object Constraint Language

(OCL) and action semantics. As part of the UML, OCL provides the pos-

sibility of expressing constraints in a conceptual model unambiguously and

enabling query expressions that can be used in conjunction with UML data

models. Based on the OCL, a Unified Query Language (UQL) (Grinev and

Kuznetsov, 2002) is also proposed. The mapping of OCL expressions to

SQL (Demuth and Hussmann, 1999; Akehurst and Bordbar, 2001) as well

as the mapping of a UML class diagram schema into a relational schema

(Muller, 1999; Shah and Slaughter, 2003) are also provided.

Figure 2.9 shows an example of the UML class diagrams as discussed by Con-

nolly and Begg (2004). This depicts superclass Owner, with a PrivateOwner and

BusinessOwner as subclasses. The specialisation/generalisation of the Owner en-

tity is complete and disjoint (shown as {complete, disjoint}) as an Owner must

10An aggregation represents ‘has-a’ or ‘is-part-of’ relationships between entity types, where
one represents the ‘whole’ and the other the ‘part’ (Connolly and Begg, 2004).
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be either a private owner or a business owner, but cannot be both. Figure 2.9

also depicts two examples of aggregations, namely ‘Branch has Staff’ and ‘Branch

offers PropertyForRent’. In both relationships, the Branch entity represents the

‘whole’ and therefore the open diamond shape is placed beside this entity. In

addition, Figure 2.9 includes an association class that is connected to the asso-

ciation by a dotted line. This occurs as there are new attributes dateAdvert and

cost that result from a many-to-many association between Newspaper and Pro-

pertyForRent (the maximum multiplicity in each direction is ‘many’). If there are

no attributes that result from a many-to-many association, there is no association

class (Jewett, 2002-2006b).

2.7.4 A Comparison of ER, ORM and the UML Class

Diagram

While the NIAM/ORM approach may not be as popular as the ER/EER model,

it is a semantically powerful conceptual model as it is fact-oriented in nature that

allows for the capture of more business rules about the application domain in

diagrammatic form and is not impacted by changes that causes attributes to be

remodelled as relationships. Its conceptual schema are presented in an easy-to-

read graphical form which can be easily understood by everyone involved in the

design stage (Leung and Nijssen, 1987). Additional work by Leung and Nijssen

(1987, 1988) also reflects on an additional strength of NIAM/ORM in that its

well-formed conceptual schema can be transformed into an SQL Optimal Normal

Form (ONF)11 database schema.

Several researchers have also addressed the strengths of this model. Halpin

and Proper (1995) stated that ORM has advantages over the ER model in terms

of a populated and rich semantic notation. Laender and Flynn (1993) claimed

that the NIAM approach is more expressive in terms of a rich set of integrity

constraints. Song and Forbes (1991) also suggested that the NIAM approach

is more rigorous in its definition of constraints on the data represented in the

model. Additional work by Halpin (2001) concluded that the ORM method

has several advantages over the ER and UML approaches with respect to the

number of business rules that can be captured, greater stability when dealing

with application domain changes and easier verbalisation and population.

11ONF is a fifth normal form (5NF) with a minimum number of 5NF tables in the overall
schema (Nijssen and Halpin, 1989; Halpin, 1998).
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Table 2.2: Equivalent data structures in ER, ORM and the UML class dia-
gram.

ER ORM UML

Entity type Entity type Class

Entity Entity Object
(or Data value)

Attribute —a Attribute

Relationship type Relationship type Association

aNo corresponding concept; ORM uses relationship types rather than attributes.

As discussed by Halpin and Bloesch (1999) and Halpin (1998, 2001, 2004),

UML class diagrams are clearly superior to both ER and ORM for the detailed

design of object-oriented code e.g. Java or C++ programs. However, they are less

suitable for conceptual analysis since they lack a standard for the identification

of schemata e.g. uniqueness constraints on attributes and external uniqueness

constraints between association roles and attributes. In addition, UML does not

predefine any data types (Halpin, 2000) and does not impose any compatibility

constraints (Parent et al., 2006a), leaving these up to modellers to define their

own type systems and notations for the constraints.

Although each model possesses a construct which another lacks, this the-

sis has found that both the ER and ORM models are significantly similar in

their modelling power but distinctly different in their modelling methodologies

(i.e. top-down versus bottom-up) and diagrammatic representation. Laender and

Flynn (1993) also asserted that the similarities between the two models are that

they both can be implemented by the relational model.

Each model has its own peculiarities and vagaries in the way that the products

are used and implemented by designers/developers. Some prefer to use the ER

model rather than the ORM due to its simplicity. However, as design work

cannot be completed by only using the ER model, the designer must also possess

sufficient understanding of normalisation techniques after applying a process to

transform an ER schema to a relational schema. The use of these techniques

removes the relationships between the attributes that cause redundancies in the

relational database schema.

For beginners who lack normalisation knowledge, the ORM design method

is a suitable substitute. The strength in the ORM design method is in its use
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Table 2.3: Equivalent integrity constraints in ER, ORM and the UML class
diagram.

ER ORM UML

Key attribute Unique identifier —a

(chosen from 1-1 reference type)

Participation Mandatory role Multiplicity
(total/partial) (1..1, 1..*/0..1, 0..*)b

Cardinality Uniqueness Multiplicity
(1:1,1:N,N:1,M:N) (Intra-fact-type, Inter-fact-type) (1,*)c

—d Subtype Subclass

—e Exclusion XOR

aNo standard notation.
bThe multiplicities ‘1..*’ for mandatory-to-many and ‘1..1’ for mandatory-to-one while

the multiplicities ‘0..1’ for optional-to-one and ‘0..*’ for optional-to-many.
cEach role multiplicity consists of a specification of integer value, ‘*’ and ‘1’ are the most

common. The asterisk ‘*’ represents an unlimited upper bound.
dNo equivalent concept or term; this constraint is established by using subclasses in EER.
eNo equivalent concept or term; this constraint is established by using disjoint classes in

EER.

Table 2.4: Equivalent languages in ER, ORM and the UML class diagram.

ER ORM UML

GORDAS, GRAQULA ConQuer, RIDL OCL, UQL
GQL/ER, SQL/ER

SQL SQL SQL
(ER-to-relational (ORM-to-relational (UML-to-relational
mapping available) mapping available) mapping available)

of well-defined transformation algorithms and elementary relationships. In other

words, the ORM conceptual schema can be easily transformed into a fifth normal

form relational database schema (Leung and Nijssen, 1987, 1988; Puntheeranurak

and Chittayasothorn, 2002), with no resultant redundancy in the schemata.

However, a transformation of an ER schema only guarantees a first normal

form relational database schema which may need further normalisation. This

is a consequence of the way that relationship types in the ER model exist be-

tween entity types and thus the relationships between attributes which can cause

redundancy in a schema are not considered.

The basic similarities regarding data structures, constraints and languages in



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 51

Table 2.5: The data models in ten historical eras.

Era Data Model

Based on
DBMS/
Technology

Types of
Data Model

Hierarchical  Record type
 Parent-child relationship
 (PCR) type

Main
Data Structure

late 1960s
and 1970s

Logical IMS

Network
(CODASYL)

 Record type
 Set type

1970s Logical IDMS

Relational Relation
1970s  and
early 1980s

Logical RDBMS

Semantic
 Entity type
 Relationship type

late 1970s
and 1980s

Conceptual

Temporal
 relational

 Temporal relation
 Timestamp attribute

1980s and
1990s RDBMS

Object-oriented  Object
 Class
 Method

mid 1980s and
early 1990s

Logical ODBMS

Object-relational  Object+Relation
late 1980s and
early 1990s Logical ORDBMS

Graph Graph
late 1980s
and 1990s Conceptual

Multidimensional  Fact
 Dimension

late 1990s and
early 2000s

Logical  ROLAP
 MOLAP
 HOLAP

Semi-structuredlate 1990s  to
present

Logical
 Tree- XML

- RDF Graph
(Subject-predicate-object)

Web

- ER

- ORM/NIAM

- UML

 Entity type
 Label type
 Fact type
 Reference type

 Class
 Association

Logical

ER, ORM and UML class diagrams is summarised in Tables 2.2, 2.3 and 2.4,

respectively.

2.8 Evolution of Data Models

Data modelling plays an important role in the process of information system

development. The two main purposes of data modelling are to assist in the un-

derstanding of the meanings (semantics) of data and to facilitate communication

about the information requirements (Connolly and Begg, 2004). Data models

were first proposed in the late 1960s and since this time, a great number of new
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and extended data models have been proposed.

The purpose of this section is to summarise this evolution of data models.

Broadly speaking, the development of data models has occurred in distinctive

eras as shown in Table 2.5. The principal models developed during each of these

eras is described as follows:

Hierarchical. A hierarchical data model represents data as a record type that is

arranged into a tree-like structure. The hierarchical data model supports

two main types of structures: record types which are a collection of data

items; and parent-child relationship (PCR) types which define a 1:N re-

lationship between two record types. The most recognised example of a

hierarchical model database is an Information Management System (IMS)

designed by IBM, which was released in the late 1960s. An IMS database is

a collection of instances of record types, such that each instance, other than

root instances, has a single parent of the correct record type. Every record

in an IMS database has a hierarchical sequence key (HSK). The IMS has a

data manipulation language, DL/1, which is a ‘record-at-a-time’ language

based on discrete and sequential record processing.

Network. The network data model represents data as record types and set types.

Each set type defines a 1:N relationship between one instance of a record to

many record instances using pointer12 linking mechanisms. A record type

can participate as an owner or member in any number of set types. A net-

work data model organises a collection of record types, each with keys, into

a directed graph, rather than a tree. Thus, a given record instance can have

multiple parents, rather than just a single one, as is evident in the hierar-

chical model. This approach provides more flexibility than the hierarchical

model, but the programmer still has to know the physical representation of

the data to be able to access it. Similar to the hierarchical model, every

time the structure of the database changes, the physical storage and appli-

cation software also needs to be modified (Danielsen, 1998). The network

data manipulation language also involves one-record-at-a-time processing.

The standards for the network model were published in 1971 by the Confer-

ence on Data Systems Languages (CODASYL) Consortium and presented

in the CODASYL Data Base Task Group (DBTG) report (DBTG, 1971).

12Pointers provide fast access, but they also embed certain forms of data access in the system,
making it difficult to change the system to accommodate new requirements or to take advantage
of new data structures (Raymond et al., 1996).



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 53

Relational. A relational data model (Codd, 1970) presents all data as relations,

which can be accessed using a high-level non-procedural (set-at-a-time)

language. The use of a high level language can provide a high degree of

physical data independence. Hence, there is no need to specify a storage pro-

posal, as was required in both IMS and CODASYL. As this model negates

the need for pointers, the use of tables and records becomes much easier to

understand. This makes the development of programs more effective and

less dependent on changes in the physical representation of data. Most sig-

nificantly, a set-at-a-time (high-level relational query) language such as SQL

could give an efficient performance comparable to any one-record-at-a-time

language.

Semantic. A semantic data model is a data modelling technique that is used to

represent the meaning of data within the context of its interrelationships

with other data (Hammer and McLeod, 1981; Hull and King, 1987; Peck-

ham and Maryanski, 1988). A semantic data model is sometimes called a

conceptual data model. The logical data structure of a database manage-

ment system (DBMS), whether hierarchical, network, or relational, cannot

totally satisfy the requirements for a conceptual definition of data as it of-

fers little to aid database designers and users in interpreting the contents

of a database. Consequently, the need for better modelling approaches

to capture more of the semantics of an application to define data from

a conceptual view has led to the development of semantic data models.

Database designers can represent objects and their relationships in a nat-

ural and clear manner (similar to the way users view an application) by

using high level abstraction concepts such as aggregation, classification and

instantiation, subclass and superclass, attribute inheritance and hierarchies

(Navathe, 1992). Examples of well-known semantic data models include:

• the ER model (Chen, 1976);

• Object Role Modelling (ORM) (Halpin, 2001) (Its precursor was

called NIAM (Falkenberg, 1976; Nijssen, 1976, 1977; Nijssen and

Halpin, 1989; Verheijen and van Bekkum, 1982)); and

• the Unified Modeling Language (UML) (Booch et al., 2005;

Muller, 1999).

A detailed description of these models is previously given in Section 2.7.
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Object-oriented. An object-oriented data model is an adaption of the object-

oriented programming language paradigm for database systems that is used

to represent a collection of objects that are organised into classes defined

by complex values and methods (Kim, 1990). The model is based on the

concept of an encapsulation of data and code in an object (Silberschatz

et al., 1996). The behaviour of these objects is controlled by methods and

each method consists of code that manipulates or returns the state of the

object. As discussed by Bachman (1996), the major components of the

object-oriented concept are as follows:

• objects (and their relationships);

• inheritance and multi-type objects;

• abstract data type and operator overloading;

• encapsulation and entity methods; and

• tight integration of the database and programming language.

Object-relational. An object-relational data model is a combination of the

object-oriented and relational data models (Silberschatz et al., 1996). Based

on the solid foundation of the relational model, this hybrid object-relational

data model has an extended modelling power that supports object-oriented

concepts in both the data schema and the query language. The introduc-

tion of abstract data types allows for attribute states to be defined by more

complex types.

As discussed by (Malinowski and Zimanyi, 2008), this hybrid object-relational

data model supports:

• complex and/or multi-valued attributes;

• user-defined types with associated methods;

• system-generated identifiers; and

• inheritance among types.

Object-relational database management systems (ORDBMSs) are used to

support object-relational data models and are able to process the various

object-oriented features such as inheritance, polymorphism, embedded ob-

ject, complex objects, sets, lists and bags. ORDBMSs are mainly based on

the criteria defined by Stonbraker et al. (1990) that provides suggestions

on how to extend the capabilities of an RDBMS to include support for rich

object structures and rules (Danielsen, 1998).
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Temporal relational. A temporal data model includes timestamp attributes in

its schema and provides special semantics for the values of these attributes

for processing in its query language. A number of research efforts that

have added time to the relational model have been proposed (Jensen and

Snodgrass, 1996). A temporal relational data model is a relational data

model that uses temporal relations as the underlying data structure, with

operators that are all temporal (Böhlem, Busatto and Jensen, 1998). These

temporal relations are also defined by temporal attributes.

Research interest into time modelling has increased dramatically in the

1980s and 1990s. A recent bibliography contained 331 temporal database

papers from 1995 to 1998 (Wu, Jajodia and Wan, 1998). Since the advent

of semantic data models that try to capture more real-world meaning than

the relational model, a number of research proposals have appeared in the

literature that have attempted to add temporal aspects into the ER model

(Gregersen and Jensen, 1999) (refer to Chapter 3).

Graph. A graph data model is a model in which the data structures for the

schema and/or instances are modelled as a directed (and possibly labelled)

graph or as a generalisation of the graph data structure (Angles and Gutier-

rez, 2008). Data manipulation within the model is expressed by graph-

oriented operations and type constructors. Additionally, appropriate in-

tegrity constraints can be defined over the graph structure (Angles and

Gutierrez, 2008). Graph data models first appeared in the late 1980s for

representing complex structures of knowledge called G-Base (Kunii, 1987),

with more proposals appearing in the 1990s (Amann and Scholl, 1992;

Gemis, Paredaens, Thyssens and den Bussche, 1993; Güting, 1994; Levene

and Loizou, 1995).

Multidimensional. A multidimensional data model structures data into facts

and dimensions. A fact can be considered as data of interest which contains

some measures, and a dimension provides a set of attributes that charac-

terise the dimension. Two common multidimensional schemata are the star

schema and the snowflake schema. The star schema consists of a fact ta-

ble with a single table for each dimension while the snowflake schema is a

variation of the star schema in which the dimensional tables from a star

schema are organised into a hierarchy through normalisation (Elmasri and

Navathe, 2007).

Data warehouse and On-Line Analytical Processing (OLAP) systems are
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based on a multidimensional data model. OLAP is a technology that pro-

cesses data from a data warehouse into multidimensional structures to pro-

vide rapid response to complex analytical queries. The multidimensional

model supports OLAP functionality, i.e. querying, restructuring, classifica-

tion and summarisation.

OLAP technologies are used to implement a multidimensional model. Dif-

ferent architectures are used to store and process multidimensional data as

discussed by Malinowski and Zimanyi (2008) as follows:

• Relational OLAP (ROLAP). In ROLAP systems, multidimensional

data is implemented as relational tables organised in specialised struc-

tures called star schemata or snowflake schemata. ROLAP supports

extensions to SQL and special access methods to efficiently implement

the multidimensional data model and the related operators. ROLAP

systems provide better storage capacity than MOLAP systems.

• Multidimensional OLAP (MOLAP). In MOLAP systems, multidimen-

sional data is directly stored as special data structures, for example,

arrays. OLAP operations are implemented over these structures. MO-

LAP systems provide better performance when processing multidimen-

sional data queries.

• Hybrid OLAP (HOLAP). HOLAP systems combine both technologies,

benefiting from the storage capacity of ROLAP and the processing

capabilities of MOLAP. For example, HOLAP systems may store large

volumes of detailed data in a relational database, while aggregations

are kept in a separate MOLAP store.

Multidimensional data models appeared in the late 1990s (Chaudhuri and

Dayal, 1997; Franconi and Sattler, 1999; Gyssens and Lakshmanan, 1997;

Golfarelli, Maio and Rizzi, 1998; Vassiliadis and Sellis, 1999) and then later

into the early 2000’s (Jensen, Kligys, Pedersen Bach and Timko, 2004;

Lechtenbörger and Vossen, 2003; Martyn, 2004).

Semi-structured. A semi-structured data model is designed to model data with

flexible structures, e.g. documents and web pages (Buneman, 1997). Ex-

amples of well-known semi-structured data models include XML and RDF.

• XML. The eXtensible Markup Language (XML) data model struc-

tures data as an XML document consisting of the two concepts of ele-

ment and attribute (Elmasri and Navathe, 2007). Data is represented
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using hierarchical tree structures, which are represented as elements.

With the use of tags, data can be nested to create complex hierarchical

structures (Elmasri and Navathe, 2007). XML was developed by an

XML working group (originally known as the SGML editorial review

board) formed under the auspices of the World Wide Web Consortium

(W3C) in 1996 (Bray, Paoli, Sperberg-McQueen, Maler and Yergeau,

2006). As discussed in the W3C recommendation report (Bray et al.,

2006), XML documents are made up of storage units called entities,

which contain either parsed or unparsed data. Parsed data is made

up of characters, some of which form character data, and some which

form markup.

As discussed by Stonebraker and Hellerstein (2005), the data model

presented in XML schema has XML records that can (a) be hierar-

chical, as in IMS, (b) have ‘links’ (references) to other records, as in

CODASYL and semantic data models, (c) have set-based attributes, as

with semantic data models, and (d) inherit values from other records

in several ways, as with semantic data models. Hence, the structure

of a document can be very complex.

• RDF. The resource description framework (RDF) is a model of meta-

data that relies on the XML standard which has statements in the

form of subject-predicate-object expression. It provides interoperabi-

lity between applications that exchange machine-understandable in-

formation on the Web. The underlying structure of any expression

in RDF is represented as sets of triples, each triple consisting of a

subject, a predicate (verb) and an object of an elementary sentence

(Fromm, Polikoff, Obrst, Daconta, Murphy and Morrison, 2005; Klyne

and Carroll, 2004). Each triple represents a statement of a relationship

between the subject and the object (Angles and Gutierrez, 2008). A

set of such triples is called an RDF graph, which can be illustrated by

a node and directed-arc diagram (Klyne and Carroll, 2004). In sum-

mary, RDF is a directed, labelled graph data format for representing

information in the Web (W3C, 2008).

Table 2.5 (Page 51) presents the data model proposals in ten historical epochs,

along with their main data structure, types of data model, and the DBMS or

technology on which they are based.



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 58

2.9 Summary

Conceptual modelling is a semantically rich discipline aimed at capturing the

meaning of an application domain at a high level of abstraction. The importance

of conceptual modelling has been recognised by practitioners and researchers

as it provides a plan for building a database that can be used to capture user

requirements and to understand system complexity. Conceptual modelling is a

notoriously difficult activity that can not be treated algorithmically and requires

both ingenuity and experience (Badia, 2000).

The main focus of database technologies lies in the database design process.

This process consists of three phases, namely conceptual, logical and physical

design. The goal of conceptual design is to produce a high-level conceptual schema

for a database that is independent of a specific DBMS configuration. To achieve

this, conceptual (or semantic) data models are used and are expressed by means

of diagrams with a rich set of modelling constructs. The most popular conceptual

model for relational database design is the ER model and its extensions. The logi-

cal design maps this high-level conceptual schema to a logical schema formulated

according to the data model of the DBMS used for implementation.



Chapter 3

ER Modelling Extensions: A

Survey and Comparative Review

Over the past three decades since the original ER model was first published by

Chen in 1976, the ER modelling approach has gained worldwide acceptance in

database design, information system development and software engineering, and

has been extended by several authors. In line with Objective 1 of this thesis as

outlined in the Section 1.5 of Chapter 1, this chapter continues with the review of

new and extended data models for conceptual modelling. It provides background

information on the need for extensions to the ER model and delivers a survey

on various proposed extensions to this model, with the objective of defining a

survey framework proposals that can be used to categorise and compare the

various proposals. From this study nine common aspects and four criteria have

been identified that form a basic Classification of ER Modelling Extension (CERME)

framework.

This survey is organised as follows. Initially, an overview is provided that

introduces the central concept and key aspects of the CERME framework (Sec-

tion 3.1). Next, the deficiencies and weaknesses of the original ER model are ex-

amined (Section 3.2). The proposals within each of the CERME aspects are then

presented (Section 3.3). Using a common comparative framework, each proposal

is then assessed and compared with other ER modelling extensions (Section 3.4).

This chapter concludes with a summary of the lessons and understanding learned

from the exploration of the CERME framework (Section 3.5).

59
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3.1 Introduction

The ER model is the most influential conceptual model in the database commu-

nity. As discussed by Chen, Song and Zhu (2007), many different extensions of

the ER model have been developed in order to extend the original ER model

to achieve more semantic power. The widely researched extensions have in-

cluded the EER model (Elmasri and Navathe, 2007), the E2R model (Embley

and Ling, 1989), the HERM approach (Thalheim, 2000), the TimeERplus model

(Gregersen, 2005), the starER model (Tryfona, Busborg and Christiansen, 1999)

and the MDER model (La-Ongsri, Roddick and de Vries, 2008). These mo-

dels have been categorised according to an ER modelling extension classification

framework as described in the subsequent discussion.

Minimal research has been directed towards explaining and analysing the

available modelling methodologies and their extensions. This author has not

located any survey similar to that presented in this thesis that explores the area

of extending the semantics of the ER model, and any comparative reviews of any

ER modelling extensions based on the key criteria of (conceptual) data models.

This chapter presents such a survey and conducts a comparative review of

various ER extension proposals published between 1976 and 2008. Using the

results of this research, the information was analysed to identify trends or com-

mon themes within the survey results. These results showed that it was possible

to classify these extensions according to the specific area that each extension

was designed to deal with. These areas, or aspects, were able to be identified

as structural, data abstractions, temporal, spatio-temporal, data warehousing,

domain-specific applications, knowledge base, fuzzy data and XML data. As a

means of providing an overall descriptive term covering all these aspects, the term

Classification of ER Modelling Extensions (CERME) has been devised. Follow-

ing on from the review of the various proposals, a comparison of the proposals

under each main CERME aspects is presented. In addition, earlier survey and

bibliography papers as well as books that are relevant to each CERME aspect are

included.

The number of extensions to the original ER model that have appeared in

the literature is estimated to be more than 100 (cf. Patig (2006)) and have been

designed to deal with a wide range of applications requiring various levels of

semantics. This survey of the ER modelling extension population was conducted

to identify common extension aspects and criteria which can be used to categorise

and compare all various proposals. The CERME framework has identified the
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following nine aspects.

1. Structural Aspect. This category encompasses structural extensions of

the ER model. This broad group covers a wide range of ER structures

that are focused on overcoming the weaknesses of the basic ER structures

(entity types, relationship types and attributes) in order to enhance its

expressiveness. Extensions covering behaviours, events and constraints are

also included in this category.

2. Data Abstraction Aspect. This category deals with abstraction mecha-

nisms to capture (a) more complex relationships between entity types such

as superclass/subclass relationships and union types, (b) complex objects

and (c) category and inheritance and other items pertaining to the con-

cepts of generalisation and specialisation. Although this category has much

in common with the structural aspect, it is classed separately due to the

relatively large number of extensions grouped under this category and also

since many of the features are object-oriented in nature.

3. Temporal Aspect. This category discusses those extensions to the ER

model dealing with time.

4. Spatio-temporal Aspect. This category deals with those modelling as-

pects that relate to space and time information.

5. Data Warehousing Aspect. This category presents the conceptual mo-

delling of data warehouses that enrich the ER model with the features of

multidimensional views.

6. Domain-Specific Application Aspect. This category includes exten-

sions of the ER model that caters for the needs of modelling specific ap-

plications such as geographic data, multimedia, superimposed information,

electronic commerce and manufacturing.

7. Knowledge Base Aspect. This category focuses on data modelling of

knowledge in the ER/EER model that are expressed using natural language

or inference rules.

8. Fuzzy Data Aspect. This category concentrates on fuzzy extensions to

ER/EER models to represent uncertainty and imprecision in data and se-

mantics at a conceptual level.
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Table 3.1: Overview presentation of the CERME survey framework.

CERME Aspect Proposal Name Citation
Special
Name

Structural

Data Abstraction

 Embley and Ling (1989)

Based on
 Model

Higher-order Entity-Relationship Model

MesoData Entity-Relationship model

 Thalheim (1990, 2000)

 La-Ongsri et al. (2008)

HERM

MDER

Enhanced Entity-Relationship model Elmasri and Navathe (1994, 2007)

 Spaccapietra and Parent (1992) ECR+

EER

ER

ER

ER

ER

ER

Temporal
Time Extended EER model

Time Extended EER model Gregersen (2005)

Gregersen and Jensen (1998, 2004) EER

EER

Spatio-Temporal Tryfona and Jensen (1999)Spatio-Temporal ER model

Modeling of Application Data with Spatio-
temporal data

DIStributed design of SpaTIo-temporaL
data

Parent et al. (1999, 2006)

Ram et al. (2001)

STER

MADS

ER

ER

EER

Object base entity relationship
approach

DISTIL

Data
Warehousing

Sapia et al. (1998)
Multidimensional Entity-Relationship
model

starER model

MultiDimER model

Tryfona et al. (1999)

Malinowski and Zimanyi (2006)

ME/R

starER

MultiDimER ER

ER

ER

Domain-Specific
Application

Garzotto et al. (1994)Hypertext Design Model 2

Security Enhanced Entity-Relationship
model

Geographic Entity-Relationship model

Oh and Navathe (1995)

Hadzilacos and Tryfona (1997)

HDM2

SEER

Geo-ER ER

ER

EER

Knowledge
Base

Kerschberg et al. (1990)
Knowledge-based Entity-Relationship
model

Deductive Entity-Relationship model

Refined Entity-Relationship model

Han and Li (1992)

Shimazu et al. (2003)

KORTEX

Deductive-ER

RER ER

EER

ER

Fuzzy Data
Fuzzy ER model

FuzzyEER model Galindo et al. (2006)

Zvieli and Chen (1986) Fuzzy ER

FuzzyEER

ER

EER

MesoData Entity-Relationship model  La-Ongsri et al. (2008) ERMDER

XML Data
EReX model

XSEM-ER model Necasky (2007)

Mani (2004) EReX

XSEM-ER

ER

ER

a

a EER here is the Extended Entity-Relationship model described by Teorey et al. (1986)

E2R E2R model 

TIMEER 
TIMEERplus 

9. XML Data Aspect. This category includes the current research on the

conceptual models for XML based on the ER model.

Where possible, previous surveys, bibliographies and book references that

provide a substantial contribution to each CERME aspect are referred to in each

of the later discussions.

Table 3.1 provides an overview of the CERME framework that covers each

of these CERME aspects, along with their proposal name, main citation, special

name (or identifier), and the models on which they are based. All of these CERME

aspects can be attributed to increasing expressiveness of the ER model. By

introducing new constructs to the basic ER model, increased knowledge and

understanding can be captured through the addition of these new constructs

that can be assigned particular semantics.
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This study provides a summary of 32 years worth of research into ER mo-

delling extensions as proposed in the literature. This survey systematically analy-

ses the various aspects of each reviewed ER modelling extension, categorises each

proposal according to its CERME aspect and presents a comparative summary of

the features of each proposal. A detailed description of some of the proposals is

given in Appendix B.

3.2 Limitations of the ER Model

Both the classical ER model and other database models have significant inherent

limitations, so it is expected that a number of extension versions will be required

to overcome these deficiencies. Research into the basic limitations of the ER

model prove useful in raising awareness of these faults and to create the impetus

to consider approaches that can overcome these limitations. These ideas and con-

tributions can thus lead to the development and delivery of tangible specifications

of ER model extensions.

Research into the limitations of the ER model has been covered by a number

of researchers including Badia (2000, 2004), Embley and Ling (1989), Kroenke

and Gray (2006), Rolland and Cauvet (1992), Shekhar et al. (1999), Thalheim

(2000) and Chen (2006).

In the research by Badia (2000, 2004), it was pointed out that the basic

components of the ER model can only be combined in certain ways, not freely.

Specifically, these constraints dictate that only entities and relationships can have

attributes and only entities can be associated with relationships. Thus, the limi-

tations of the ER model can be summarised as below:

• Attributes cannot be defined to have attributes.

• Attributes cannot be associated with relationships.

• Relationships cannot be associated with other relationships.

Additionally, Thalheim (2000) presented the deficiencies of the ER model as

follows:

• The ER model is unable to represent hierarchical and higher-order relation-

ships. Only first-order relationships can be modelled.
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• Is-a relationship cannot be modelled naturally.

• The concept of weak entities is not theoretically based.

• The classical ER model does not use n-ary relationship.

• The basic approach (Teorey, 1990) in defining new entities as clusters of

entities and relationships leads to a loss of information.

• Sets, sequences and null-valued relationships cannot easily be represented.

• During database design, the type system requires the introduction of artifi-

cial and abstract types that do not carry any semantics in the application.

For example, if relationship types are restricted to binary types then n-ary

types (n>2) are represented by entity types and connecting relationship

types that are not independent and do not have their own significance.

• ER concepts often lack a clear statement of purpose for semantics. This

can result in different semantics being applied to the same concept, and the

intermixing of semantics of different constructs.

Embley and Ling (1989) further discuss the limitations of both the ER and

EER models as follows.

• The ER/EER models require designers to distinguish between attributes

and entities. This can cause downstream redesign to accommodate schema

integration such as where attributes and entities are mismatched or where

there is a need to accommodate any subsequent discovery of relationships

among items designated as attributes.

• Design work can not be completed in the ER model alone, and thus de-

signers have to use two different types of abstraction. In the first instance,

designers work with the ER diagrams. After applying a process to map

the ER schema to a relational schema, they work with relational schemata

using normalisation techniques in order to extract functional and join de-

pendencies from the real world semantics.

In the research by Rolland and Cauvet (1992), it was suggested that tra-

ditional conceptual models are limited by their emphasis on modelling static

aspects of the real world, thus requiring dynamic aspects to be integrated into

static conceptual models. Kroenke and Gray (2006) stated that human beings
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do not naturally consider and rationalise the relationships between entities and

their cardinalities in the same way that they are represented in the ER model. It

becomes unrealistic to expect users to understand the cardinality of relationships

unless the ER model can accurately reflect user perceptions. A further limitation

has been identified by Shekhar et al. (1999) who discussed that the ER model

is unable, at least intuitively, to capture some important semantics inherent in

spatial modelling.

The general practice of using conceptual models has proven that the underly-

ing theory and constructs are sound and have been effective in capturing the basic

semantics of applications. As applications become more complex and sophis-

ticated, such as in handling fast time-varying and time-dependent changes in

world states, modelling modifications and extensions become essential in order

to overcome the inadequacies of the basic model. On reflection of his own mo-

delling approach, Chen (2006) has identified the following weaknesses of existing

conceptual modelling, methodologies and techniques that need addressing:

• Using the constructs of existing conceptual models, it is very difficult to

model a wide spectrum of situations resulting from different degrees of

importance of relationships due to different perspectives.

• Current state-of-the-art techniques focus on pre-defined entities of interest

and their static relationships.

• As current database/knowledge-based systems only model snapshots of part

of the world of interest, there is no support for information and schema

changes or the storage of historical information.

• Virtually no constructs in the existing conceptual models are available for

modelling changes of the entity behaviours (e.g. weather pattern changes)

and the dynamic and time varying relationships between them.

• The schemata of the current data models are difficult to change dynamically.

The restrictive problems in the ER model or conceptual models are signifi-

cant and should be addressed through the enhancement or extensions of these

original models so as to produce better conceptual modelling methodologies and

techniques.
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3.3 Exploring ER Modelling Extensions

The original ER model (Chen, 1976) has attracted much research over the last

30 years and has been extended by more than 100 proposals (cf. Patig (2006)).

In the past decades, many papers on extending and modifying the original ER

model have been presented at the annual International Conference on Conceptual

Modeling (the ER conferences). These have also been posted on the main forum

for conceptual models and modelling at http://www.conceptualmodeling.org/.

In the exploration of ER extensions, this thesis has referred to the main

series of relevant conferences (ER, VLDB, ACM, SIGMOD, ICDE) and jour-

nals (ACM Transactions on Database Systems, ACM Computing Surveys, ACM

SIGMOD Record, Communications of the ACM, Data & Knowledge Engineer-

ing, IEEE Transactions on Knowledge and Data Engineering, Information Sys-

tems, Information and Software Technology, Information and Management, Jour-

nal of Database Management) up until 2008. Additionally, publications relat-

ing to the enhancement of ER models were accessed through various sources

such as the scientific literature digital library (http://citeseer.ist.psu.edu/), the

scholarly search engine (http://scholar.google.com/) and the ACM digital library

(http://portal.acm.org/). Relevant textbooks, technical reports and various other

papers were also included in the study.

For each of the nine CERME aspects, various proposals that extend the ER

model are examined and discussed. This examination covers a total of 23 propo-

sals. Whilst the sampling of these proposals was unbiased, the selection tech-

niques used aimed to ensure that all of the CERME aspects were covered equally.

Some of these proposals are described in detail in Appendix B. Earlier sur-

vey studies, published bibliographies and books that are relevant to each of the

CERME aspects are also included to provide details on trends, ideas, interesting

views and relevant research for further reference. Where the subject matter of

a proposal spans several CERME aspects, it will appear in multiple categories.

For example, the MDER model (La-Ongsri et al., 2008) appears under both the

fuzzy data and structural aspects.

3.3.1 Structural Aspect

There is a large variety of structural extensions of the ER model whose main aim is

to attempt to overcome the weaknesses of the ER model with regard to its basic

structures (entity types, relationship types and attributes). Other extensions
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relevant to structures include (a) behaviours (Schrefl, 1991), (b) events such as the

Deterministic Event-Tuned Entity-Relationship Modeling (DETERM) approach

(Falkenberg, 1993) that enhanced the ER model by considering not only static

phenomena, but also dynamic phenomena of the universe of discourse, viz. events,

and (c) constraints such as the Methods enhancement of the EER (MEER) model

(Balaban and Shoval, 2002) that extends the EER model with structure-based

update methods which are fully defined by cardinality constraints.

The limitation of the ER/EER model proposed by Embley and Ling (1989) is

subject to the following two problems; the ER/EER models require designers to

distinguish between attributes and entities, and the database design cannot be

completed by using the ER model alone. Thus, designers have to use two different

types of abstraction, namely, the ER model and a transformation to a relational

schema which may then need normalisation. These problems were addressed in

an improved ER approach called E2R (Embley and Ling, 1989).

The remaining weaknesses of the ER model are concerned with the way that

those structures are built and their composition. For example, the classical ER

model does not support the view of having attributes over attributes, relation-

ship types over attributes, or relationship types over relationship types. To deal

with the limited power of the model in supporting these basic relationship types,

various structural extensions to the ER model have been suggested. Tu and

Wang (1993) developed the Attribute-Relationship (AR) extension that allowed

relationships to be built at the attribute level. Thalheim (1990, 2000) presented

the Higher-Order Entity-Relationship Model (HERM) to allow for the definition

of new relationship types based on existing relationship types. Badia (2000)

proposed the concepts of Generalised Quantifiers (GQs) that provided for higher-

order operators which allowed relationships to be involved in other relationships.

Limitations of the ER model concerning relationship types were also discussed by

Camps Pare (2002) and Badia (2004). Their discussion indicates that there are

properties of ternary relationships that can not be represented in the ER model

nor captured in a relational model in the form of a key or integrity constraint.

In addition, recent extensions to the ER model have been suggested to deal

with its structural limitation with regard to entity types. For example, Jiménez

(2006) promoted the Reenhanced Entity-Relationship Model (REERM) that re-

defines the concept of entity and adds the construct event.

A further limitation of the ER model with regard to attributes is that there

is no support for data domains (Kroenke and Gray, 2006). The need to capture
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more domain semantics is growing due to the requirement to support more com-

plex and sophisticated applications. When designing models, basic attributes are

assigned to base data types. Complex attributes can be constructed by applying

constructors such as list, set and bag (also called multisets) to attributes that

have already been constructed. Most of these extensions are based on the notion

of complex types of attributes.

However, a recent extension to attribute domains, the Mesodata Entity-Rela-

tionship (MDER) model (La-Ongsri et al., 2008), uses complex domains based

on complex structures of mesodata type, such as tree and graph, to provide more

advanced semantics to the domain of an attribute, instead of using complex at-

tributes like other approaches. This maintains the usual basic attribute data types

such as integer, string and real whilst also accommodating attributes whose values

are based on complex domains. It also provides greater versatility by allowing

domains of an attribute in MDER to be defined according to an organisation’s

data type standards when data models are created.

Examples of ER modelling extensions with this CERME aspect include the

E2R, HERM and MDER models that are described below:

1. The E2R (E-squared-R) model. The E2R proposal (Embley and Ling,

1989) is based on the ER model and includes notions of generalisation/spe-

cialisation and lexical entity types. In this model, designers do not need to

distinguish between attributes and entities and it also supports normalisa-

tion at the model level. Synergistic database design occurs as a designer

interactively manipulates an E2R diagram until the desired properties are

attained. Design is performed by transforming a given E2R model into a

normalised E2R model that is guaranteed to generate normalised relations.

The main steps in this approach can be summarised as (a) capture the real-

world semantics in an improved EER model, (b) transform the EER model

into a normalised EER model, and (c) generate the normalised relations.

E2R modelling treats an attribute as a point of view rather than a basic

model construct and thus does not prematurely impose structure on the

database being designed. That is, time consuming decisions on whether

to use an entity type or attribute become inconsequential. Extensions

to the ER model that are necessary to add additional semantic-modelling

power, such as participation constraints, generalisation/specialisation, ag-

gregation/decomposition and power-sets, are included in the E2R model.

The implementation of this approach allows a user to store the E2R model
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with constraints that include both functional and multivalued dependen-

cies. Also, transformations allow a user to remove or reduce relationship

types that have redundancy.

2. The Higher-Order Entity-Relationship Model (HERM). The HERM

methodology (Thalheim, 1990, 2000) extends the ER model by using re-

lationships of higher degrees and relationships of relationships. This ap-

proach introduces the new concept of higher-order relationships which are

additional generalisations of the ER constructs to handle both the multi-

ple entity set participation in a given role of the relationship, as well as

the subclass, superclass and clustering concepts. This concept further ex-

tends the scope and concepts related to data abstraction and incorporates

a supporting set of operations and integrity constraints. HERM algebra is

introduced that defines the available manipulation operations in the model.

HERM uses set semantics for the definition of entity instances and rela-

tionship instances and also supports a mechanism for the translation to

relational, network and hierarchical schemata.

3. The Mesodata Entity-Relationship (MDER) model. The MDER

model (La-Ongsri et al., 2008) is a new approach proposed in this thesis

(Chapter 4) that extends the ER model and is also applicable to the EER

model. This approach provides richer semantics to attribute domains by in-

corporating the complex domain structures using mesodata concepts. New

constructs and constraints are proposed to capture domain semantics of an

attribute. The MDER model is based on the mesodata concept (de Vries

and Roddick, 2004; de Vries, Rice and Roddick, 2004). This approach pro-

vides the mesodata languages (MDDL and MDML), which are extensions to

SQL to define and manipulate the structure of domains (mesodata types).

The mechanism to transform a MDER schema to a relational schema is also

discussed (Chapter 8).

This thesis survey has identified the following relevant resource that covers the

ways that the ER model has been extended to enhance its structural aspect.

Thalheim’s book (2000) provides a theoretical basis for database modelling

and proposes a new ER model extension termed the HERM model. This model

supports relationships with higher degrees and relationships of relationships. The

model allows the specification of structures, behaviour and interaction. The book

also presents techniques for the translation of the ER model into object-oriented



CHAPTER 3. A SURVEY ON ER MODELLING EXTENSIONS 70

models and classical database models such as relational, hierarchical and network

models.

3.3.2 Data Abstraction Aspect

One of the most popular ER modelling extensions is the Enhanced Entity-Relation-

ship (EER) model proposed by Elmasri and Navathe (1994, 2007). This model

adds abstraction mechanisms such as superclass, subclass and category, including

attribute and relationship inheritance. These properties favour an object-oriented

approach. Other works include the Entity-Category-Relationship (ECR) model

(Elmasri, Weeldreyer and Hevner, 1985) that presents the concept of categories

to handle both multiple entity set participation in a given role of a relationship,

as well as subclass and superclass concepts, including multi-valued attributes.

Other contributions add object-oriented features (e.g. generalisation and in-

heritance, enforcement of the information hiding principle, abstract data type

encapsulation and message passing) in order to adapt the original ER model

to object-oriented database design. Examples include the Object-Oriented ER

(OOER) model (Navathe and Pillalamarri, 1988), the Behavior-Integrated ER

(BIER) model (Kappel and Schrefl, 1988), the Object-Oriented ER Model (OO-

ERM) (Gorman and Choobineh, 1991) and the object base entity relationship

(ERC+) approach (Spaccapietra and Parent, 1992). A summary of some of these

models can be found in the survey presented by Saiedian (1997).

The proposals of ERC+ and the most recent publications of EER models are

described below:

1. An object base entity relationship (ERC+) approach . The ERC+

approach (Spaccapietra and Parent, 1992) is an extended entity-relationship

model specifically designed to support complex objects and object iden-

tity. Two generalised relationships are supported, the classical is-a and

an additional may-be-a relationship. ERC+ thus provides for the choice

between optional and mandatory status (for attributes, for roles, and for

generalisations, using may-be-a relationships). Formal definitions and Data

Manipulation Languages (DML) of the ERC+ model are also discussed.

The ERC+ algebraic query language is presented and consists of ten primi-

tive operations which may be combined in any order to form algebraic ex-

pressions. Using this algebra, entity types with complex attributes are con-

structed. Tools to support the graphical description of database schemata
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and for graphical data manipulation are presented to aid the design and

development of database applications. A method of mapping from ERC+

to the relational model and object-oriented model is also demonstrated.

2. The Enhanced Entity-Relationship (EER) model. The EER model

(Elmasri and Navathe, 2007) enhances the ER model by incorporating

the concepts of superclass/subclass (or generalisation/specialisation), su-

perclass/subclass relationships, type inheritance (including various types of

constraints on specialisation/generalisation) and category. The concept of

category is used to deliver the UNION construct.

A class/subclass relationship proposed in EER is often called an is-a re-

lationship providing generalisation/specialisation. The constraints of to-

tal/partial and disjoint/overlapping can be applied to specialisation, gen-

eralisation and category. The EER-to-relational mapping algorithm is pro-

vided that can be used to create a relational schema from an EER schema.

This thesis survey has identified the following relevant resources that cover the

ways that the ER model has been extended to enhance its data abstraction aspect.

Survey Paper:

Saiedian (1997) surveyed major extensions to the ER model, in particular, en-

hancements related to generalisation and object-oriented adaptions. This research

also provides an overview of ER models and points out the close relationship be-

tween ER modelling and object-oriented data modelling. This research has led to

the adoption of object-oriented design techniques that have significantly improved

the modelling power of the original ER model. These object-oriented features in-

clude generalisation and inheritance, enforcement of the information hiding prin-

ciple, abstract data type encapsulation and message passing. Saiedian’s research

discusses three object-oriented ER models (the OOER, BIER and OOERM) that

further explores this CERME aspect.

Book:

Elmasri and Navathe’s book (2007, 5th edition) introduces the fundamental

concepts necessary for designing, implementing and using database systems and

applications. It presents clear explanations of theory and design, broad coverage

of models and real systems, and an up-to-date introduction to modern database

systems and technologies. Sections of this book focus on data abstractions, se-

mantic data modelling concepts and an integration of those concepts leading to
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the EER model and EER diagrams. A discussion about relational database design

using ER-and EER-to relational mapping is also presented.

3.3.3 Temporal Aspect

Temporal aspects of the real world are pervasive and important for most appli-

cations. Not surprisingly, several enhancements to the data models have been

proposed in an attempt to support the modelling of time. Time has been incor-

porated into many data models, such as semantic data models, object-oriented

data models, relational data models and deductive databases. As this thesis sur-

vey is focused on the ER model, the attention of this survey is only on those ER

model extensions that facilitate the capture of time-varying information.

The modification of the ER model to capture time-varying information has

gained increasing popularity within the database research community over the

last two decades. A number of the temporally enhanced ER models have been

presented, for example:

• the Temporal Entity-Relationship Model (TERM) (Klopprogge, 1981; Klop-

progge and Lockeman, 1983);

• the Relationships, Attributes, Keys, and Entities (RAKE) model (Ferg,

1985);

• the Model for Objects with Temporal Attributes and Relationships (MO-

TAR) (Narasimhalu, 1988);

• the Temporal EER (TEER) model (Elmasri and Wuu, 1990; Elmasri et al.,

1993);

• the Semantic Temporal EER (STEER) model (Elmasri et al., 1990; Elmasri

and Kouramajian, 1993);

• the Entity-Relation-Time (ERT) model (Theodoulidis et al., 1991a,b) and

its refinement (McBrien, Seltveit and Wangler, 1992);

• the Temporal ER (TER) model (Tauzovich, 1991);

• the TempEER model (Lai et al., 1994); and

• the TERC+ model (Zimanyi et al., 1997).
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All of these models are extensions to the ER/EER model. For a detailed de-

scription of all the above models, refer to the comprehensive survey by Gregersen

and Jensen (1999). This thesis examines a number of more recent models that

capture temporal aspects of information, such as those detailed below:

1. The Time Extended EER (TimeER) model. The existing temporal

ER models represent quite diverse approaches to capture temporal aspects

of data at the conceptual level. The TimeER approach (Gregersen and

Jensen, 1998, 2004) retains the existing ER constructs and their associated

semantics and simply makes them temporal. The model introduces new

temporal constructs that provide implicit temporal support and includes

snapshot-reducible attribute types (temporal single valued, temporal multi-

valued, temporal composite and temporal derived attribute types) as well

as snapshot-reducible participation constraints. The model also supports

both valid time and transaction time including lifespans.

The TimeER model extends the EER model to support four distinct types

of temporal aspects, namely, valid time, lifespan, transaction time and user-

defined time. Two additional participation constraints, snapshot and life-

span, are also proposed and the method of mapping the TimeER model

to the relational model is also presented. The research does not, however,

provide for a query language that can be used to query the temporal ER

database.

2. The Time Extended EER (TimeERplus) model. The TimeERplus

(Gregersen, 2005) model is a recent refinement of the TimeER model offer-

ing enhanced modelling constructs applicable to attributes in four aspects;

time sequence attributes, an update pattern for attributes, an observation

pattern for attributes and an explicit notation for specifying changes to the

database schema.

TimeERplus extends TimeER by including time sequence attributes, up-

date and observation patterns for attributes (Jensen and Snodgrass, 2000)

and schema changes (Roddick, Craske and Richards, 1994). All modelling

structures and integrity constraints are the same as those of the TimeER

model, but no query language for this temporal ER database is provided.

This thesis survey has identified the following relevant resources (listed in

alphabetical order by first author) that cover the ways that the ER model has

been extended to enhance its temporal aspect.
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Survey Papers:

Gregersen and Jensen (1999) surveyed ten temporally enhanced ER models,

provided a comprehensive list of 19 design properties of temporal ER models,

and evaluated the models according to those properties. Their research explores

different ways of conveniently capturing the temporal aspects of data at the con-

ceptual level and consolidates these concepts and ideas so as to assist with future

research in temporal ER modelling. As both their research and this thesis are

focused on surveying extensions to the ER model, their research provides valuable

reference material that complements this thesis survey. Rather than re-examine

these previously proposed ER model extensions, this thesis refers the reader to

Gregersen and Jensen’s survey.

Özsoyoǧlu and Snodgrass (1995) surveyed many temporal and real-time data

models. Their research covers the time domain, temporal queries, real-time data

and query languages, and temporal and real-time DBMS implementation. Their

survey attempts to capture and summarise the major concepts, approaches and

implementation strategies that have been discovered through temporal and real-

time database research. The evaluation of temporal and real-time query lan-

guages along several dimensions are also discussed. Their work mainly examines

the inclusion of time into relational data models and object-oriented data models.

While their research does not consider those ER model extensions that incorpo-

rate time, it does cite a reference to some of these extensions.

The survey by Roddick and Patrick (1992) covered those information systems

that incorporated the concept of time and identified potential impacts on tem-

poral data modelling, artificial intelligence and various practical implications of

these time concepts. Their research investigates the handling of time in data

modelling which includes only two of the temporal ER models, the TERM and

RAKE models. Their research does not consider the evaluation and comparison

of the models.

Roddick and Spiliopoulou (2002) surveyed various aspects of temporal data

mining and reviewed research contributions that are related to temporal know-

ledge discovery. Their survey includes a discussion of temporal rules and their

semantics, temporal mining environments and the discovery of temporal rules

that can identify key items of interest. As their research is more directed towards

the area of using temporal databases for data mining, its value for data modelling

is limited.

Theodoulidis and Loucopoulos (1991) surveyed nine approaches to specify
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and use time in conceptual modelling. The approaches were evaluated using a

devised comparative framework based on time semantics, model semantics and

temporal functionality. Their research included only two of the temporal ER

models, namely, TERM and the Entity, Relationship, Attribute, Event (ERAE)

model. The likely reason for this is that the focus of the research was on the

investigation of ontologies and the properties of time in the broader context of

information systems and conceptual modelling.

Bibliographies:

Wu et al. (1998) collected 331 temporal database papers, most of which were

published between 1995 and 1998. Adding to the six previous bibliographies

(Bolour, Anderson, Dekeyser and Wong, 1982; Kline, 1993; McKenzie, 1986;

Soo, 1991; Stam and Snodgrass, 1988; Tsotras and Kumar, 1996), this is the

seventh bibliography concerning temporal databases. Their bibliography adopts

a different classification method that divides papers into Models, Database de-

signs, Query languages, Constraints, Time granularities, Implementations, Access

methods, Real-time databases, Sequence databases, Data mining, Concurrency

and Other papers.

Books:

A recent book devoted to temporal data and relational model is by Date,

Darwen and Lorentzos (2003). This book provides an in-depth description of the

foundations and principles on which temporal DBMSs are built. These founda-

tions and principles are firmly rooted in the relational data model.

Snodgrass’s book (2000) provides a general introduction and extensive cover-

age of temporal data with a great number of examples from real application

database systems that have been designed and built to record information over

time.

3.3.4 Spatio-Temporal Aspect

The spatio-temporal concept is created by combining the concepts of space and

time, and in practical terms, this is achieved through recording spatial views (e.g.

objects and layers) in time (e.g. time point and time interval). As described by

Pelekis, Theodoulidis, Kopanakis and Theodoridis (2004), the development and

research into spatio-temporal databases started in the early 1990s and has princi-

pally dealt with applications characterised by both spatial and temporal seman-

tics. Some research has concentrated on the conceptual modelling of geographical
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applications, mainly dealing with space, location and dimensionality of objects,

spatial relationships and space-depending attributes, such as the Geo-ER model

(Hadzilacos and Tryfona, 1997). For a summary of the Geo-ER model refer to

the domain-specific application aspect (Page 81).

Since the spatial and temporal database models were integrated into the

spatio-temporal database models, a number of extensions have been proposed

that use object-oriented approaches. These have included Spatio-temporal UML

(STUML) (Price, Ramamohanarao and Srinivasan, 1999), Extended spatio-tempo-

ral UML (Ext. UML) (Price, Tryfona and Jensen, 2000), an object-oriented data

model for geographic applications (OMT-G) (Borges, Davis Jr and Laender, 2001)

and the Tripod spatio-historical data model (Griffiths, Fernandes, Paton and

Barr, 2004). As these models are extensions to the UML and Object Modeling

Technique (OMT) methodologies, they are outside the scope of this thesis survey.

Examples of the extensions of the ER/EER model that include space and

time are described below:

1. The Spatio-Temporal ER (STER) model. The STER model (Try-

fona and Jensen, 1999) is an extension of the basic ER model that in-

cludes spatio-temporal entities, attributes and relationships for modelling

spatio-temporal information. STER offers support for the spatial data types

(point, line and regions) and geometries (and various combinations thereof),

and for temporal aspects (existence time (et) for objects, valid time (vt) for

attributes and relationships, and transaction time (tt) for all constructs).

Support for both valid time and transaction time is represented as bitem-

poral (bt). However, STER omits to provide integrity constraints or any

supporting language.

2. The Modeling of Application Data with Spatio-temporal features

(MADS). The MADS approach (Parent et al., 1999, 2006a) is a concep-

tual spatio-temporal model based on the EER model. It caters for multi-

associations, a larger number of semantic descriptors for relationship types

(in particular, generation and transition) and supports diversity in the way

constraints are handled. The orthogonality principle is an important aspect

of MADS that adds different modelling dimensions (i.e. spatial and tempo-

ral characteristics). MADS also allows for additional multi-representation

functionality resulting in further potential model extensions (Parent, Spac-

capietra and Zimányi, 2006b). However, MADS does not yet support trans-

action time. Integrity constraints, query languages and the translation



CHAPTER 3. A SURVEY ON ER MODELLING EXTENSIONS 77

process to facilitate an implementation of current DBMSs and GISs are

provided.

3. DIstributed design of SpaTIo-temporaL data (DISTIL). DISTIL

(Ram, Snodgrass, Khatri and Hwang, 2001) is another recent design tool

that assists in the design and modelling of spatio-temporal databases. DIS-

TIL classifies spatio-temporal conceptual design into two steps:

• Firstly, capture the current reality of an application using an ER based

conventional conceptual model, without consideration of any spatial

aspects.

• Secondly, annotate the schema with spatial and temporal semantics of

the application.

DISTIL is an annotation-based approach to spatio-temporal conceptual

modelling that captures various aspects related to temporality and spatial-

ity such as valid time, transaction time, events, states, position, geometry

and shape. In particular, DISTIL provides a mechanism to capture se-

mantics related to granularity and indeterminacy. Furthermore, schemata

developed via DISTIL can be saved as XML schemata (Khatri, Ram and

Snodgrass, 2006). However, a detailed description of the associated con-

straints and languages is not covered in their proposal.

This thesis survey has identified the following relevant resources (listed in alpha-

betical order by first author) that cover the ways that the ER model has been

extended to enhance its spatio-temporal aspect.

Survey Papers:

Abraham and Roddick (1999) surveyed spatio-temporal models proposed in

the literature and also included other aspects covering representation, spatial

access methods, conceptual models, spatial database languages, scaling and ac-

curacy issues, query optimisation and visualisation. However, no ER model ex-

tensions that capture spatio-temporal information are introduced in their survey.

Friis-Christensen, Tryfona and Jensen (2001) surveyed six existing proposals

for the modelling of geographic and spatio-temporal data of which five are based

on the object-oriented approach and the remainder, STER, that is based on

the ER model. Their research presents a list of requirements that is used to

identify critical properties of geographical data models. These surveyed models
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are assessed using the list of requirements and a summary of the evaluation is

presented.

Pelekis et al. (2004) surveyed different types of spatio-temporal data models

and used a comparative framework to evaluate the benefits of each approach.

An overview of notable achievements within spatio-temporal database research

together with suggestions for future spatio-temporal database research are also

provided. Their research discusses the extended ER model, STER, which caters

for the capture of spatio-temporal information.

Wang, Zhou and Lu (2000) surveyed various aspects of spatio-temporal data

management covering data models, indexing structures, query evaluation and

architectures. Their research only refers to one of the spatio-temporal ER models,

STER.

Bibliographies:

Al-Taha, Snodgrass and Soo (1994) collated a number of reference papers that

consider spatio-temporal aspects. The bibliography is an updated version of the

previous bibliography produced by Al-Taha, Snodgrass and Soo (1993).

Roddick, Hornsby and Spiliopoulou (2001) collated those papers primarily

concerned with mining temporal, spatial and spatio-temporal data. As the biblio-

graphy uses broader categories covering Theses, Surveys, Books and Previous

Bibliographies, it provides valuable reference material. Additional considerations

and directions for further research into spatial and temporal databases can be

found in Roddick, Hoel, Egenhofer, Papadias and Salzberg (2004).

Books:

Ott and Swiaczny’s book (2001) deals with the integration of temporal infor-

mation in Geographical Information Systems (GIS). It reflects upon theoretical

ideas on the interrelations between space and time and includes practical exam-

ples taken from various types of applications (spatial/environmental analysis,

demographics, history and business data warehousing).

Parent et al.’s book (2006a) focuses on modelling spatial and temporal infor-

mation, presenting the MADS data modelling approach that covers both data

modelling and data manipulation features. This presented material serves as a

valuable reference in its discussions of how these concepts relate to the traditional

data modelling approaches. Visual notations and examples are extensively used

to illustrate how various constructs can be used. The book is of major impor-

tance and interest in the areas of spatio-temporal databases and geographical

information systems.
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3.3.5 Data Warehousing Aspect

From the discussions by Malinowski and Zimányi (2006), the structures of data

warehouses (DWs) are re-examined using a multidimensional view of data includ-

ing dimensions, hierarchies and measures. These concepts are applied to OLAP

systems that allow for interactive data warehouse querying using operations such

as drill-down and roll-up, which need hierarchies in order to automatically aggre-

gate the measures to be analysed.

It is well known that data warehouses are centred upon decision support rather

than transaction support, and that they are based on multidimensional modelling

requiring specialised design techniques. This is reflected in the literature which

has focused on the multidimensional modelling facets of conceptual modelling

for data warehouses. Current research is thus directed towards advanced mul-

tidimensional features with proposals that have extended UML (Abelló, Samos

and Saltor, 2006; Luján-Mora, Trujillo and Song, 2006) and the ER model (Ma-

linowski and Zimányi, 2006; Sapia, Blaschka, Höfling and Dinter, 1998; Tryfona

et al., 1999). A more recent model, the Generalising Conceptual Multidimen-

sional Data (CGMD) model, extends the ER model for data warehouses through

additional constructs of aggregated entities that allow for their interrelationships

with the other parts of the schema (Kamble, 2008).

Examples of extensions of the ER model that support multidimensional views

of data are described below:

1. The Multidimensional Entity-Relationship (ME/R) model. The

multidimensional element plays a major role in the design of a data ware-

house. ME/R (Sapia et al., 1998) extends the ER model to express the

multidimensional structure of the data. ME/R includes two specialised

relationship types and a specialised entity type allowing the adequate con-

ceptual representation of the multidimensional data view to be compliant

with OLAP schemata. These are as follows:

• a special entity type, termed the dimensional level,

• two special relationship types connecting dimensional levels:

– a special n-ary relationship type, termed a fact relationship type,

– a special binary relationship type, termed a classification relation-

ship type.



CHAPTER 3. A SURVEY ON ER MODELLING EXTENSIONS 80

However, the ME/R model does not discuss the features of the models with

regard to integrity constraints and languages.

2. The starER model. StarER (Tryfona et al., 1999) addresses the mo-

delling requirements of a data warehouse and incorporates the star structure

into the constructs of the ER model. Their research presents new special

relationship types for hierarchies and includes an evaluation of the starER

model. Examples from a mortgage data warehouse environment are used

to illustrate how the model can be used to represent complex information

at the conceptual level. However, starER omits to define the features of the

model to address integrity constraints and languages.

3. The MultiDimER model. MultiDimER (Malinowski and Zimányi, 2006)

is a conceptual multidimensional model based on the ER model that in-

cludes constructs for data warehouse and OLAP modelling. The model

offers some important features for representing different kinds of hierar-

chies, levels and fact relationships. Both graphical and textual notation, as

well as a formal definition are included. Hierarchy features are important

for analysis and form part of the advanced features for a multidimensional

model. The model provides exclusive integrity constraints and introduces

a mechanism to allow for the mapping of these hierarchies to the relational

model. However, a language for the model is not provided.

In addition to the multidimensional view of data, a temporal extension of the

MultiDim model (Malinowski and Zimanyi, 2008) has been recently introduced

and provides temporal support (valid time, transaction time and lifespan) for

levels, attributes, hierarchies and measures. Refer to Malinowski and Zimanyi

(2008) for a detailed discussion on the implications of this proposal on temporal

data warehouse design.

As new data warehouse applications and architectures move towards web-

based technologies, data modellers and designers must deal with the challenges

of automating the conceptual design process when some or most data sources

reside on the web (Rizzi et al., 2006). Some attempts have been made in this

direction, mainly aimed at building a web warehouse conceptual schema from

XML data (Vrdoljak, Banek and Rizzi, 2003).

This thesis survey has identified the following relevant resources (listed in al-

phabetical order by first author) that provide the necessary data modelling and
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design techniques for the data warehousing aspect.

Books:

Imhoff, Galemmo and Geiger’s book (2003) thoroughly describes the data

modelling techniques used to construct multipurpose, stable and sustainable data

warehouses used to support business intelligence.

Malinowski and Zimanyi’s book (2008) explains the conventional data ware-

house design in detail, particularly complex hierarchy modelling. Additionally, it

addresses two innovative domains recently introduced to extend the capabilities

of data warehouse systems, namely the management of spatial and temporal in-

formation. Its presentation covers different phases of the design process, such as

requirements specification, conceptual, logical and physical design.

3.3.6 Domain-Specific Application Aspect

This category focuses on a variety of extensions to the ER models that are relevant

to specific application domains such as:

• geographical information systems (Hadzilacos and Tryfona, 1997; Vert, Stock

and Morris, 2002),

• hypermedia (Garzotto, Mainetti and Paolini, 1994; Bowers, Delcambre and

Maier, 2003),

• superimposed information (Murthy, Delcambre and Maier, 2006),

• web applications (Feyer and Thalheim, 1999),

• electronic commerce (Karlapalem, Dani and Krishna, 2001),

• multimedia (Velez, 1985), and

• manufacturing (Flory and Giard, 1988; Moyne, Teorey and Leo C. McAfee,

1991).

Examples of the proposals for hypermedia, security and geographical applica-

tions are summarised below:

1. The Hypertext Design Model 2 (HDM2). HDM2 (Garzotto et al.,

1994) is the evolution of the Hypertext Design Model (HDM) (Garzotto,
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Paolini and Schwabe, 1993) and is an extension of the classical ER model.

The concept of access structure (i.e. index and guided tour), the notion

of anchors, and the definition of the dynamic behaviour of guided tours

are extremely important in hypermedia applications but are not covered in

the traditional ER approach. The main features of HDM2, with respect to

HDM, are an improvement of the access mechanisms, a generalisation of

the notion of link, an extension of the notion of derivation, definitions of

hyperviews and a refinement of the definition of browsing semantics. Neither

integrity constraints nor languages are defined in HDM2.

2. The Security Enhanced Entity-Relationship (SEER) model. The

SEER model (Oh and Navathe, 1995) extends the conceptual level of the

EER model to deliver a model that handles security schemata and autho-

risation history details. This model proposes a two-layered representation

of data with the first layer based on the traditional ER model and the

secondary layer used to deal with security schemata and authorisation his-

tories. This framework aims to serve as a common data model that provides

independence from other different access control mechanisms supported by

the participating DBMSs. Neither integrity constraints nor languages are

defined in SEER.

3. The Geographic Entity-Relationship (Geo-ER) model. This model

is based on the study of spatial aspects that call for special modelling tech-

niques and constructs to deliver conceptual designs for geographic applica-

tions. Geo-ER (Hadzilacos and Tryfona, 1997) is presented as a model that

extends the ER model to integrate the concepts of aggregation and group-

ing. Geo-ER includes spatial entity types and spatial relationship types,

geographic entities’ position, and space-depending attributes to express the

semantics of space. In addition, two new constructs, spatial aggregation

and spatial grouping, are added to express the spatial dimension of com-

plex geographic entity types. Neither integrity constraints nor languages

are defined in Geo-ER.

This thesis survey has identified the following relevant resources (listed in al-

phabetical order by first author) that provide the necessary data modelling and

design techniques for the domain-specific application aspect.
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Books:

DeMers’s book (2005) discusses spatial and mapping concepts, the compo-

nents of GIS systems and the process of designing and implementing a GIS sys-

tem.

Elangovan’s book (2006) discusses the fundamentals of GIS, database creation

and analysis in GIS and advanced GIS applications.

Longley, Goodchild, Maguire and Rhind’s book (2005) gives a comprehensive

treatment of the field of GIS ranging from the fundamental principles to the

advanced features.

Shekhar and Chawla’s book (2002) discusses issues and approaches providing

a wide range of applications and methods for spatial data management that are

at the core of GIS.

3.3.7 Knowledge Base Aspect

Since the 1990s, a series of research achievements that are relevant to knowledge

bases have been reported from such fields as statistics, database management

and machine learning (Shimazu, Momma and Furukawa, 2003). For example,

in the field of database management, deductive databases have been proposed

to combine logic programming with relational databases to construct systems

that support applications with very large datasets. As the ER model provides

an effective tool for organising the design of relational databases, it is a natural

extension that it should also be used to assist in the design of deductive databases

(Han and Li, 1992). In the field of machine learning, a logic approach called

Inductive Logic Programming (ILP) is a machine learning technique that has

been effective for deducing rules based upon qualitative and structural data.

This aspect includes ER extensions that are concerned with knowledge based

modelling or knowledge organisation within deductive databases (Battista and

Lenzerini, 1993; Han and Li, 1992; Kerschberg, Baum and Hung, 1990; Storey,

Goldstein, Chiang and Dey, 1994) and inductive learning based on predicate logic

(Shimazu et al., 2003).

Examples of proposals for ER extensions that deal with knowledge, deductive

database and inductive learning are discussed as follows:

1. The Knowledge-based Entity-Relationship model (KORTEX). KO-

RTEX (Kerschberg et al., 1990) is a prototype expert database system that
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supports knowledge-based extensions of the Extended ER (EER) model

(Teorey, Yang and Fry, 1986) and incorporates knowledge-based concepts

such as rules and virtual objects. The main KORTEX knowledge com-

ponents are inferred attribute values and virtual objects. For inferred at-

tributes, their value may be determined by a function calculation or through

inference rules. In the case of virtual objects, they can represent entities or

relationships and are also referred to as inferred views. For virtual entities,

their actual values are inferred by the system from a related entity. From

a users’ perspective, these virtual objects appear as distinct objects in the

system.

A variety of tools have been provided that assist in the maintenance of

KORTEX such as in verifying the internal validity of inference rules or in

supplying schema information to the user. Although KORTEX utilises a

variety of constructs within the model, no supporting language has been

provided with this prototype.

2. The Deductive Entity-Relationship (Deductive-ER) model. This

proposal applies the ER approach to the design of deductive databases and

delivers a deductive-ER model (Han and Li, 1992) that is an integration of

two data models:

• a typical ER model and its refinements, and

• a typical Horn-Clause-Based logic data model.

A major motivation for the development of a deductive-ER model is the

need to organise knowledge in deductive databases. As a deductive database

is a deductive extension of a relational database, the model inherits many

features from relational and ER models. The outcome is an integrated

language called Deductive-ER, which takes advantage of both relational

and logic data languages and facilitates the construction of a structured

deductive database.

The Deductive-ER model provides the capability to define and manipulate

real, virtual and hybrid components, generalisation hierarchies, integrity

constraints and complex data objects (including tuple-valued, list-valued,

text-valued, set-valued and null-valued attributes). A data definition and

manipulation language is built into this model and is termed Deductive-ER.

The proposal also caters for the specification and use of constraints.
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3. The Refined Entity-Relationship (RER) model. RER (Shimazu

et al., 2003) is an extended ER model that accommodates an additional

feature for each attribute (of an entity) and each relationship, which is used

to determine whether the value of these has been derived from another at-

tribute or relationship. These features are compliant with the input data

identification rules for Inductive Logic Programming (ILP) systems. As

ILP is one of the most expressive machine-learning algorithms, the RER

model facilitates adaptive data mining by directly connecting relational

databases and ILP systems. Their research provides specifications on the

interface based on the RER model that enables ILP systems to access re-

lational databases. However, the proposal does not include a discussion of

constraints or query languages that are specific to the RER model.

This thesis survey has identified the following relevant resources (listed in al-

phabetical order by first author) that provide the necessary data modelling and

design techniques for the knowledge base aspect.

Books:

Ohsuga, Kangassalo, Jaakkola, Hori and Yonezaki’s book (1992) collated con-

ference papers that have a main theme of information modelling and knowledge

bases. Their article list is classified according to the following topics: Theory

of Concepts and Conceptual Modelling, Acquisition and Elicitation of Modelling

Knowledge, Knowledge Representation I and II, Database Design, Knowledge

Base Design and Software Engineering, and Different Approaches to Conceptual

Modelling.

A revised version of this book (Kangassalo, Jaakkola, Ohsuga and Wangler,

1995) includes a survey of European-Japanese research on information modelling

and knowledge bases.

3.3.8 Fuzzy Data Aspect

Fuzzy data (imprecise or uncertain data) can arise whenever subjective judge-

ments or evaluations are part of the stored database (Yazici, George, Buckles

and Petry, 1992). The concept of fuzzy data has been incorporated into database

technologies in order to deal with ambiguous and uncertain data, provide support

to queries based on natural linguistics, and to allow for the modelling of data that

is inherently fuzzy. Extending data models to cater for imprecise and uncertain
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information is of particular interest given the incomplete nature of information in

the real world. Consider the example where you are given the information ‘David

may be 62 years old’. Whilst this information retains some element of validity,

the exact value is indeterminant.

Within the context of relational databases, research into the use of fuzzy data

has predominantly occurred during the last two decades. The aim of this has been

on allowing the storage of imprecise or fuzzy data and developing query constructs

that can process and extract this information (Galindo, Urrutia and Piattini,

2006). More recent efforts have focused on fuzzy object-oriented databases. Re-

search into extending conceptual models to deal with fuzzy data has included the

Fuzzy IFO model (Ma, Ma and Zhang, 2000), which has focused on the modi-

fication to objects to deal with different levels of fuzziness, especially for is-a

relationships.

Other research that extends conceptual models has included the Fuzzy Ex-

tended Entity-Relationship (FEER) (Ma, Zhang, Ma and Chen, 2001), Fuzzy ER

(Zvieli and Chen, 1986) and Fuzzy Enhanced Entity-Relationship (FuzzyEER)

(Galindo et al., 2006) models. The aim of these models is to deal with different

types of uncertainty in order to improve the expressiveness and usefulness of the

base ER/EER models. More recent proposals such as the AR-enriched-ER (AR-

EER) model (Chen, Ren, Yan and Guo, 2007), have attempted to extend the ER

model based on association rules (AR) to deal with more general, flexible and

linguistic based knowledge in fuzzy association rules. The transformation from

an AR-EER schema to a relational schema is also discussed in this proposal.

The major concepts of the Fuzzy ER and FuzzyEER models considered in

this thesis include:

1. The Fuzzy ER model. Fuzzy ER (Zvieli and Chen, 1986) is an extension

of the ER model to incorporate fuzzy set theory, where fuzzy entities, at-

tributes and relationships are represented graphically in the model. Their

proposal considers fuzziness at three levels:

(a) The first level refers to the fuzziness at the model level, relating to

fuzzy entity types, fuzzy relationship types and fuzzy attributes.

(b) The second level concerns the fuzziness at the occurrence/instance

level of entities or relationships.

(c) The third level is related to the fuzziness in attribute values.
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Whilst fuzzy participation constraints and cardinality constraints have been

discussed in their research, the model does not provide any query language

or the method of mapping the Fuzzy ER data model to a relational database.

2. The FuzzyEER model. FuzzyEER (Galindo et al., 2006) extends the

EER model with fuzzy semantics and fuzzy notations to represent impre-

cision and uncertainty in entities, attributes and relationships. FuzzyEER

presents various fuzzy features for fuzzy modelling, e.g. fuzzy values in the

attributes, the degree of fuzziness of the value of an attribute, fuzzy enti-

ties, fuzzy relations, fuzzy aggregation, fuzzy constraints, and so on. The

possibility of expressing constraints by using the power and flexibility of

fuzzy set theory is a key feature that distinguishes their approach from var-

ious other fuzzy data treatments (Zvieli and Chen, 1986; Chen and Kerre,

1998; Ma et al., 2001; Ma, 2005, 2006). Their approach considers many of

the essential modelling facilities including participation constraints, fuzzy

cardinality constraints and the method of mapping the FuzzyEER model to

the relational data model. A query language termed a Fuzzy SQL (FSQL)

is also provided for use with the fuzzy database.

Note that the fuzzy data aspect also includes the MDER model (La-Ongsri

et al., 2008) as some information of complex structures that are used to describe

the domains of an attribute in MDER is inherently imprecise or fuzzy. For exam-

ple, location attributes such as City or Zip code that are constructed as a weighted

graph usually involve various forms of uncertainty such as close to, adjacent to

or in proximity.

This thesis survey has identified the following relevant resources (listed in alpha-

betical order by first author) that cover the ways that the ER model has been

extended to enhance its fuzzy data aspect.

Survey Papers:

A recent review paper by Ma and Yan (2008) introduces fuzzy database models

based on fuzzy relational and object-oriented databases. The paper also presents

an overview of imperfect information and fuzzy set theory. The paper precludes

any examination of fuzzy conceptual data models.

Yazici et al. (1992) surveyed two conceptual modelling approaches, the ER

model and the IFO model, that have been extended to incorporate fuzzy and

imprecise data. Their research also proposes relational models that may exist



CHAPTER 3. A SURVEY ON ER MODELLING EXTENSIONS 88

in either first normal form (1NF) or non-first normal form (Non-1NF) which are

capable of representing imprecise information.

Books:

The recent book by Galindo (2008) contains a collection of chapters devoted

to research on fuzzy information processing in databases. The book delves into

two critical challenges of fuzzy databases, namely what processes can be used to

extract fuzzy data and secondly, how can fuzzy data be stored in a database. The

book also offers topics about fuzzy data mining such as the extraction of fuzzy

association rules.

Galindo et al.’s book (2006) examines extensions of EER models to provide

fuzzy capabilities. Their research forms the basis of a proposal, termed the Fuzzy-

EER model. Some of the extensions of the proposal include fuzzy attributes, fuzzy

aggregations, and other assorted specialisations such as fuzzy degrees and fuzzy

constraints.

Ma’s book (2005) covers the then current research and practical applications

of fuzzy conceptual models (in particular, in ER/EER and UML model), fuzzy

databases (mainly, object-oriented databases and relational databases) and the

fuzzy XML model. Processes to transform fuzzy XML and fuzzy EER models

into fuzzy databases are also presented.

Another book by Ma (2006) presents further advances for imprecise and un-

certain engineering information from a fuzzy database modelling perspective.

3.3.9 XML Data Aspect

The evolution of XML from a simple data exchange format to the native data

format of application components has led to its widespread use within many

application areas and its gradual acceptance as a fundamental element of any

system (Sengupta and Wilde, 2006). In recent years, application designers have

adopted XML schema to describe their requirements as a logical data model.

This cannot be achieved through the use of traditional conceptual models since

they do not have the modelling capacity to accommodate XML features.

Over the last decade, a number of extended conceptual models for XML data

have been proposed in the literature. These extensions are based on ORM (Bird,

Goodchild and Halpin, 2000), UML (Combi and Oliboni, 2006; Lu, Yang and Liu,

2006; Routledge, Bird and Goodchild, 2002), and ER models such as XSEM-ER
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(Nečaský, 2007), EReX (Mani, 2004), XER (Sengupta, Mohan and Doshi, 2003),

X-Entity (Lósio, Salgado and Galvão, 2003) and ERX (Psaila, 2000). These latter

XML-based conceptual models that are based on the ER model are of particular

relevance to this thesis survey.

Examples of these XML based ER models are described below:

1. The EReX (ER extended for XML) model. EReX (Mani, 2004)

extends the ER model with additional XML features that accommodate a

specification of structures (i.e. categories) and constraints (i.e. coverage and

order) which can be modelled using the ER model. The proposal provides

a mechanism to translate an EReX schema into XML, but difficulties arise

in dealing with the notion of document order. Document ordering is part of

the overall ordering of elements covered by XML, but in the case of EReX,

there is no corresponding notion of what these global documents represent

in real world applications. While the model uses standard XML, it does

not provide any additional operators or inferencing rules for querying and

manipulating XML data.

2. The XSEM-ER model. The main features of XML data are hierarchi-

cal and irregular structures, ordering and mixed contents. XSEM extends

the ER model to represent these features through a two phase approach

(Nečaský, 2007). Firstly, XSEM-ER is used to produce a model represent-

ing the overall non-hierarchical conceptual schema of a domain and from

this first step non-hierarchical XSEM-ER constructions are generated. In

the second phase, operators transform these constructions into XSEM-H

constructions to provide a hierarchical organisation of all the structures.

Whilst the model uses standard XML and provides for integrity constraints

within the model, it omits to provide any additional operators or inferencing

rules for querying and manipulating XML data.

Another recent proposal for conceptual representation of XML content struc-

tures is the ER-XML model (Al-Kamha, Embley and Liddle, 2007) that extends

the XER model proposed by Sengupta et al. (2003). Their study discusses the

requirements necessary for the conceptual modelling of XML which address or-

dering, irregular and heterogeneous structure, document-centric data, constraints

and logical level mapping.

This thesis survey has identified the following relevant resources (listed in alpha-

betical order by first author) that cover the ways that the ER model has been
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extended to enhance its XML data aspect.

Survey Papers:

Nečaský’s survey (Nečaský, 2006) describes five existing conceptual models

for XML, two of which are based on the ER model with the remainder are based

on the hierarchical approach. The survey proposes a list of requirements that

are considered as an essential feature of any XML based conceptual model, and

compares these various surveyed models against these requirements.

Sengupta and Mohan (2003) surveyed eight data models for XML, only one

of which is related to extensions of conceptual modelling for the ER model. The

study classifies the models according to three characteristics, namely physical,

formal and conceptual.

Book:

Chaudhri, Rashid and Zicari’s book (2003) provides useful reference material

on general XML data management. One section of this book provides an XML-

based data model that is of particular relevance to this aspect.

3.4 A Comparative Study of ER Modelling Ex-

tensions

A conceptual model is a type of a data model. From a formal viewpoint, a

data model possesses at least three components, namely a structure component,

an integrity component and a manipulative component (Codd, 1980; Date and

Darwen, 1992). These components can be applied to any application created for

an organisation (Date and Darwen, 1992).

The CERME framework has identified four key criteria that can be used as a

common framework for comparing all the surveyed models. These include data

structures, integrity constraints, languages and transformations. The first three

have been previously identified in the key considerations of a conceptual data

model (Chapter 2). A detailed description of these criteria is as follows:

Data Structures. A data structure of a data model is a representation of the

modelling constructs used to describe a database schema. Fundamental

modelling constructs of conceptual data models are represented by entity

types, relationship types and attributes.
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Integrity Constraints. Integrity constraints are general statements and rules

that define the set of consistent database states, or rules for determining

how a state may change, or both (Codd, 1980).

Languages. In the context of standard data models, languages define the algebra

of operations, calculus, DDL and DML. In general, these are commonly

referred to as query languages. A query language is a collection of opera-

tors or inferencing rules that can be applied to any valid instances of the

data structure types of the model, with the objective of manipulating and

querying data in those structures to achieve the required result (Codd,

1980).

Transformations. As the ER model is not supported by any DBMSs, another

mechanism is required to translate the ER schema into a logical model repre-

sentation (such as relational, object-relational or XML schemata) that can

support implementation. This mechanism is referred to as a transformation.

Transformation processes are crucial in creating logical schemata that serve

as the basis for any database implementation. For this reason it is included

as a necessary characteristic of the comparison framework.

The need for customising ER-based applications has led to a great deal of

research on developing extensions to the traditional ER model, which has aimed

at providing increased expressiveness and incorporating a richer set of semantics

into databases. This thesis survey shows that during the 1980s and 1990s, research

into extending the ER model was predominantly focused on temporal aspects. In

the current era, research has shifted more towards the use of XML data aspects

and developing modelling techniques to support this.

This thesis survey also illustrates how few of these proposals for ER extensions

are able to fulfil all the key considerations or criteria (data structures, integrity

constraints and languages) of conceptual data models. The main proposals that

have been considered in the CERME framework are shown in Table 3.2, along

with a tabular comparison of whether each can support the essential features of

data models. As discussed by Codd (1980), any extension that omits to define

integrity constraints or languages in their data models should be regarded as

being incomplete. Table 3.2 shows these deficiencies in the surveyed models.

Thus, the focus of any research into new extensions of conceptual data models

must clearly address these two criteria as they are essential in providing the key

to understanding how structures behave.
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Table 3.2: A comparison of the main CERME proposals (“
√

” indicates support).

No.

1.

Proposal Year
Data

Structure
Integrity

Constraint
Language

Structural Aspect

HERM

Data Abstraction Aspect

2.

3. MDER

1989

1990/2000

2008

 

Trans-
formation

Temporal  Aspect

4.

5.

ERC+

EER 1994/2007

1992

6.

7.

1998/2004

2005

Spatio-Temporal Aspect

8.

9.

STER

DISTIL

MADS

10.

1999

1999/2006

2001

12.

13.

11. ME/R

starER

MultiDimER 2006

1999

1998

Domain-Specific Application Aspect

14.

15.

16.

HDM2

SEER

Geo-ER

1994

1995

1997

17.

18.

19.

Deductive-ER

RER

KORTEX 1990

1992

2003

Knowledge Base Aspect

Data Warehousing Aspect

20.

21.

3.

FuzzyEER

MDER

Fuzzy ER 1986

2006

2008

Fuzzy Data Aspect

22.

23. XSEM-ER

EReX 2004

2007

XML Data Aspect

E2R 

TIMEER 

TIMEERplus 

It is also expected that the key criteria (data structures, integrity constraints

and languages) that have been identified as representing the core properties of

conceptual data model can also be used as a guideline in identifying the new

modelling constructs or components that must be considered whenever a new

data model is proposed. These criteria have also been used to form the common

basis for the comparative examination of all the CERME proposals.

This study includes previous survey papers, bibliographies and books that

are relevant to each of the CERME aspects. Through this survey, it is apparent

that research is predominantly focused on expanding the expressiveness and ap-

plicability of models, rather than in surveying existing proposals or undertaking

further research into the fundamental theory of modelling. For instance, there
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Table 3.3: Resources available for each CERME aspect.

No.

1.

CERME Aspect
Survey Paper Bibliography Paper Book

Structural
Thalheim (2000)

Resources

2. Data Abstraction  Saiedian (1997) Elmasri and Navathe
 (2007)

3. Temporal 1) Gregersen and Jensen
                (1999)
2) Ozsoyoglu and Snodgrass
                (1995)
3) Roddick and Patrick
                (1992)
4) Roddick and Spiliopoulou
                (2002)
5) Theodoulidis and
      Loucopoulos
                (1991)

1) Date et al. (2003)
2) Snograss (2000)

1) Bolour et al. (1982)
2) Kline (1993)
3) McKenzie (1986)
4) Soo (1991)
5) Stam and Snodgrass
             (1988)
6) Tsotras and Kumar
             (1996)
7) Wu et al. (1998)

4. Spatio-Temporal 1) Abraham and Roddick
               (1999)
2) Friis-Christensen et al.
               (2001)
3) Pelekis et al. (2004)
4) Wang et al. (2000)

1) Ott and Swiaczny
           (2001)
2) Parent et al.
           (2006)

1) Al-Taha et al. (1993)
2) Al-Taha et al.  (1994)
3) Roddick et al. (2001)
4) Roddick et al. (2004)

5. Data Warehousing 1) Imhoff et al. (2003)
2) Malinowski and
    Zimanyi  (2008)

6. Domain-Specific
Application

1) DeMers (2005)
2) Elangovan (2006)
3) Longley et al. (2005)
4) Shekhar and
    Chawla (2002)

7. Knowledge Base 1) Ohsuga et al.
         (1992)
2) Kangassalo et al.
          (1995)

Kangassalo et al.
        (1995)

8. Fuzzy Data 1) Galindo (2008)
2) Galindo et al. (2006)
3) Ma (2005)
4) Ma (2006)

1) Ma and Yan (2008)
2) Yazici et al. (1992)

9. XML Data
 Ghaudhri et al.
         (2003)

1) Necasky (2006)
2) Sengupta and Mohan
             (2003)

has been much research on fuzzy databases and incorporating XML into concep-

tual modelling, but there have been limited survey reviews of these areas. This

bias has provided a good reference point for identifying opportunities for further

potential areas of research. Table 3.3 provides a summary of the resources that

are available to support each of the CERME aspects.
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3.5 Summary

Discussion on the enhanced power for modelling has accompanied the ER ap-

proach for three decades and this will continue into the future. As argued by

Badia (2004) and Kroenke and Gray (2006), no conceptual model will ever be

able to fully capture all the semantics of an application. Thus, the limitations

of each ER model must be weighed up against their benefits, such as their ease

of use, intuitive appeal and clarity of semantics. Establishing a balance between

the expressiveness of a model and its complexity of use will always be a challenge

for database developers and researchers.

The motivation behind various extensions to the ER model is to enhance data

model expressiveness. In this context, the term expressiveness is used to represent

any required meaning. This is achieved through proposed constructs that can be

assigned given meanings (semantics).

This study proposes that various semantic features can be supported through

a classification system referred to as the CERME framework. This framework

classifies ER extensions according to the following nine CERME aspects:

• structural,

• data abstractions,

• temporal,

• spatio-temporal,

• data warehousing,

• domain specific applications,

• knowledge base,

• fuzzy data, and

• XML data.

It is clear that there are substantial weaknesses with the traditional ER model

that require the enhancement of various new extensions to the model. Research

must be directed to overcoming these limitations and to deliver a data model that

is sufficiently adaptable to deal with emerging user needs and the complexity of
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applications. As stated by Chen (2006), this vision must not be constrained by

restrictive constructs, and must have sufficient versatility to deal with all aspects

of the real world, its changes and activities under different perspectives.

Periodic surveys of new model proposals should be undertaken in an attempt

to maintain this surveyed model list and to document any new CERME aspects

and proposals that must be considered. For instance, any future research into ex-

panding the ER model to handle the semantics of ontologies should be added into

this list. Greater awareness of the potential for new semantics, content and ap-

proaches can lead to the development of more advanced, high-quality conceptual

level information systems (Spaccapietra, March and Kambayashi, 2002).

This thesis survey contributes to the general understanding of the various

potential uses and applicability of the various extensions of the ER model that

have been promoted over the last three decades. This work reflects upon some of

the common limitations of the extensions that have been proposed and provides

guidelines on core elements that must be considered for all new conceptual models.

This guide and survey will serve as a valuable reference for future research.

The CERME framework has been a useful mechanism to categorise those ER

model extensions that have been designed to deal with specific aspects associ-

ated with modelling while also incorporating an assessment of their completeness

according to the criteria of data structures, integrity constraints, languages and

transformation.

This framework is a valuable tool that can assist developers in raising aware-

ness of what needs to be considered when developing new proposals. Specifically,

the comparison chart in Table 3.2 identifies which conceptual data model propo-

sals can be considered as complete within each of the CERME aspects. Using this

guide, researchers have a valuable point of reference for evaluating the complete-

ness of their proposed data models and for identifying prior effective examples

of modelling extensions that may inspire new proposals in their specific area of

research interest.



Chapter 4

Mesodata in Conceptual

Modelling

This thesis chapter serves to provide some of the answers to support Objectives

1 and 2 of the thesis as stated in Chapter 1 (particularly Section 1.5.1) and as

indicated in Figure 1.3. The focus of this chapter is in exploring the concep-

tual modelling extensions to accommodate the concept of mesodata and how this

concept can be used to increase the expressiveness of conceptual modelling ap-

proaches. Mesodata modelling is a recently developed approach for enhancing a

data model’s capabilities by providing for more advanced semantics to be asso-

ciated with the domain of an attribute. Mesodata supplies both an inter-value

structure to the domain and a set of operations applicable to that structure that

may be used to facilitate additional functionality in a database. Through each of

the following chapter sections, the thesis demonstrates that conceptual models are

able to retain more meaningful information pertaining to their model of their real

world application if they were able to incorporate the semantics of complex data

types into the attribute domains. This chapter investigates the accommodation

of mesodata into the entity-relationship and object role modelling techniques,

presenting the Mesodata Entity-Relationship (MDER) model and Mesodata Ob-

ject Role Modelling (MDORM), which show how the mesodata concept can be

incorporated into conceptual modelling methodologies to include the semantics

of complex domain structures.

The structure of this chapter is as follows. Section 4.1 provides an overview to

this topic. Section 4.2 contains a discussion on the concept of mesodata approach.

Section 4.3 shows how mesodata can be accommodated into the ER model. Sec-

tion 4.4 discusses the accommodation of mesodata into the ORM technique. Sec-

96
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tion 4.5 presents examples of MDER and MDORM schemata. Section 4.6 provides

some general insights and outlines the directions of future work.

4.1 Introduction

The process of conceptual modelling plays a major role in assisting the description

of some part of the real world, the Universe of Discourse (UoD), as a concise

description of the user’s database requirements. The conceptual model ignores

physical level aspects such as the physical storage structure, indexes, clustering

and access paths, as well as external level aspects such as user views, screen forms

and report interfaces. The result is a conceptual schema that is independent of

the DBMS but which can be implemented by mapping onto a logical schema

supported by the chosen data model (relational, object-oriented, object-relational

and so on) (Halpin and Proper, 1995).

While the entities, their attributes and the relationships between entities are

explicitly denoted, in a typical conceptual model of an enterprise any under-

standing of the domains of the attributes is only implicitly included, at best.

For example, attributes such as DayofWeek, DiseaseCode or Colour would rarely

have their semantics recorded in the conceptual model. Mesodata makes a strong

distinction between the type of an attribute and its domain (the open or closed

set of values that an instance of an attribute is permitted to take). It should be

noted that while complex types in the relational and object-oriented data models

have been widely explored, complex domain structures have not been examined

to the same depth.

Several extensions have been presented to enrich the semantic expressive-

ness of the original entity-relationship (ER) model (Chen, 1976) by providing,

for example, the valence concept (Baumann, 1989), representation for security

semantics (Pernul, Winiwarter and Tjoa, 1993), dynamic phenomena (events)

(Falkenberg, 1993), fuzzy data types (Galindo et al., 2006), multidimensional

data (Sapia et al., 1998) and abstraction mechanisms, such as specialisation, ag-

gregation, association and categories (Batini et al., 1992; Elmasri et al., 1985;

Elmasri and Navathe, 2007). The regular ER model is focused on the modelling

of static structures and as a result, there are several temporal extensions (Klop-

progge, 1981; Tauzovich, 1991; Theodoulidis et al., 1991a; McBrien et al., 1992;

Zimanyi et al., 1997) which add dynamic aspects to the ER model. Refer to

Chapter 3 for a discussion on other extensions to the ER model.
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There have been similar extensions to Object Role Modelling (ORM). As

with the ER model, ORM is a powerful semantic conceptual model. ORM has

gained the attention of the conceptual modelling community and is now sup-

ported by a variety of modelling tools such as VisioModeler, Microsoft’s Visio

Enterprise 2000, DogmaModeler and NORMA. Research has explored its use in

conceptual modelling, including ORM-based approaches for modelling contex-

tual information (Henricksen, Indulska and McFadden, 2005), e-tutorial systems

(Leelawatananon and Chittayasothorn, 2004), web systems (De Troyer, Caste-

leyn and Plessers, 2005) and in-house decision support systems (Pierson and

Cruz, 2005). ORM has also been used for business rules as a markup language

(Demey et al., 2002) as well as for an ontology engineering framework and tool

(Jarrar et al., 2003). Reactive behaviour (Halpin and Wagner, 2003) and tempo-

ral extensions have been proposed (Pornphol and Chittayasothorn, 2004; Proper,

Hoppenbrouwers and van der Weide, 2005). Extensions to ORM’s precursor,

NIAM (Nijssen, 1977, 1985), have also been proposed (Puntheeranurak and Chit-

tayasothorn, 2002; Creasy, 1989; Chankuang and Chittayasothorn, 2004; Yuliana

and Chittayasothorn, 2005), including a transformation from NIAM into Opti-

mal Normal Form (ONF)1 (Leung and Nijssen, 1987, 1988), a set of rules for

schema conversion from NIAM to EER and vice versa (Song and Forbes, 1991),

a semantic comparison of the ER model and NIAM (Laender and Flynn, 1993)

and the EER model and NIAM (Kim and March, 1995), as well as an analyti-

cal evaluation of NIAM’s grammar for conceptual schema diagrams (Weber and

Zhang, 1996).

However, with the exception of work such as FuzzyEER (Galindo et al., 2006),

most extensions to the ER/EER and NIAM/ORM models do not deal with the se-

mantics of complex attribute domains. In the classical models, attribute domains

are, in practice, restricted to simple scalar types such as the set of integers, reals,

character strings and so on. This thesis argues that in order to reflect real-world

domains, a conceptual modelling tool should be powerful enough to represent

the semantics of complex attribute domains such as graphs, trees and lists. As

a simple example, consider the extensive use of reference or lookup files — files

that simply enumerate the values that an attribute may take. These reference

files may either refer to information that can be designed as non-inclusion or

inclusion, as shown in the example in Figure 4.1. In practice, as they require

an additional relationship type and entity type to be included, these are often

1ONF is 5NF with a minimal number of relations.
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PERSON PERSON COUNTRY

PersonID CountryOfBirthName

WAS_BORN_IN

PersonID Name CountryOfBirth

(a) (b)

N 1

Figure 4.1: Examples of reference files (a) non-inclusion, and (b) inclusion.

left off conceptual diagrams with their existence noted elsewhere2. More complex

domains, such as hierarchies, cannot be easily included at all.

Mesodata adds power to the relational data model by providing greater se-

mantics to the domain of an attribute by allowing attributes to be defined over

complex domain structures (de Vries and Roddick, 2004). Importantly for back-

wards compatibility, the type of an attribute remains a simple scalar type; it is

the domain of the attribute that allows the values taken by the attribute to be

placed within some complex structure.

Consider the example of an attribute CountryofBirth that is defined as

CHAR(30), where country names exist within the domain which is a weighted

graph. This domain of CountryofBirth includes all country names (current and

superceded), which are then accessible to the DBMS with the extended SQL

operators. Assuming these exist in table countryrel, mesodata can be used to

create a relational table as follows:

CREATE DOMAIN COUNTRIES

AS wgraph

OF CHAR(30)

OVER countryrel;

CREATE TABLE person (

PersonID CHAR(6) NOT NULL,

Name CHAR(40),

.

.

.

CountryOfBirth COUNTRIES,

.

.

.

PRIMARY KEY PersonID,

.

.

.

After defining CountryOfBirth over the mesodata domain COUNTRIES, the query

SELECT PersonID

FROM person

WHERE CountryOfBirth EQUALTO ‘USA’;

would return those people where their country of birth is equivalent to any value in

the domain that is synonymous with ‘USA’, namely ‘U.S.’, ‘US’, ‘USA’, ‘America’,

2This issue also leads to semantic ambiguity as discussed by Wand et al. (1999).
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‘United States’, ‘United States of America’, etc. In this case, EQUALTO is an

operation available to domains defined as wgraph. Without mesodata, the user

would have to enumerate each of these values and may still remain unaware of

changes or other variations to the country name.

The Object-Oriented Data Model (OODM) and the Object-Relational Data

Model (ORDM) have both emerged in response to the increasing complexity

of database applications. Moreover, semantic extensions such as Data Blades

in Informix and Data Cartridges in Oracle enhance an RDBMS by providing

a specific data type extension for some application domains, such as spatial,

time series, text or image databases (Elmasri and Navathe, 2007; Stonebraker,

Brown and Moore, 1999). A number of data types and various operators on the

data types have been provided, for example, spatial data types include point,

line, polygon, path, circle and so on and spatial operators including overlap,

contains, above, below, nearest and so on. Such extensible data types have

been implemented as add-on packages that can be included as abstract data

type (ADT) libraries whenever users need to implement the types of application

they support (Elmasri and Navathe, 2007). None of these provides the semantic

extension offered by the mesodata concept. Furthermore, although the support

for additional or extensible data types in ORDBMS seems similar to mesodata

modelling, there is a distinct difference in that the former provides specific data

type extensions for complex attributes while mesodata provides the ability to

describe and use complex domains.

To date, the incorporation of mesodata into conceptual modelling has not

been adequately investigated. Since the structure of the domain is an important

design decision, it is believed that the conceptual schema itself should be modified

to support domain semantics with respect to complex data types. To that end,

this thesis shows how mesodata can be accommodated into two well-known but

very different modelling techniques to demonstrate how the mesodata concept

can be extended to enhance the semantics of complex domain structures in data

modelling. The Mesodata Entity-Relationship (or MDER) model is presented here

as an extension to the ER/EER model and the Mesodata Object Role Modelling

(or MDORM) as an extension to the ORM model.

For MDER, the concepts of mesodata entity type, mesodata mapping and

total mesodata domain participation constraint are introduced. A transformation

algorithm from an MDER schema into a corresponding relational database schema

is provided in Chapter 8. These proposed extensions are similar (and orthogonal)

to those of the Enhanced Entity-Relationship (EER) model that extend the ER
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model’s representational capabilities. The EER model allows the use of additional

concepts such as subclass, superclass and category (Elmasri and Navathe, 2007)

while the MDER model allows the use of mesodata types, mesodata domains and

the mesodata layer to represent the richer semantics of complex data types for

attribute domains.

The second example, MDORM, extends ORM. ORM is a popular, fact-

oriented model with several strengths with respect to richer business rule capture,

greater stability given changes to any application domain and easier verbalisation

and population (Halpin, 2001). MDORM introduces new constructs that are able

to represent the mesodata concept within a conceptual schema. The proposed

constructs are integrated with the existing features of the ORM approach with-

out any conflict with current ORM diagrammatic notations. The concepts of

mesodata value type and mesodata mandatory role constraint are defined. An

algorithm to transform an MDORM conceptual schema into a relational database

schema is provided in Chapter 8.

Some complex structures can also be expressed as complex objects formulated

using the Unified Modelling Language (UML) (Booch et al., 2005; Muller, 1999).

However, this thesis suggests that the distinction between objects and domain

values is important since not every complex domain structure also meets the

intuitive concept of an object. From a semantic point of view, the data component

is the kernel of the object component because data types are commonly used

as attribute domains as well as for query results (Engels et al., 1992). This

thesis thus argues that complex data types should directly be modelled in the

conceptual schema to reflect the structures and complexities of some real world

domain to meet the challenges of new application development trends. As with

the investigation of mesodata in ORM, this thesis suggests that mesodata can

also be modelled in UML class diagrams to represent the structures of complex

domains.

4.2 Mesodata Approach

Mesodata is a recent modelling approach to facilitate the definition of attributes

over complex domain structures such as graphs, trees and lists thus providing for

more advanced semantics to the domain of an attribute and enhancing a data

model’s capabilities (de Vries et al., 2004).
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Figure 4.2: Mesodata layer between metadata and data (based on de Vries,
2006).

4.2.1 What is Mesodata?

Mesodata is a concept that provides an intermediate conceptual layer of domain

definition between the metadata and data as shown in Figure 4.2 to accommo-

date the definition of complex domain structures within the database (de Vries,

2006; de Vries and Roddick, 2004). This new layer is introduced to the rela-

tional database which is traditionally a two-layered framework consisting of the

metadata and the data (de Vries and Roddick, 2007). This middle layer, called

mesodata, separates the schema definition of an attribute from the semantics of

its domain (de Vries, 2006; de Vries and Roddick, 2004, 2007). Commonly used

data structures, such as lists, graphs and trees (called mesodata types), and opera-

tions for the manipulation of these data structures are defined in the mesodata

layer.

Earlier research by de Vries (2006) and de Vries and Roddick (2007) pointed

out the important difference between a graph as a mesodata type and a graph as

a user-defined abstract data type (ADT) as follow:

• In the former, an attribute in a relation would take as its value from an

instance of an elementary type that exists within a graph.

• In the latter, the value of the attribute exists in the relation.

In other words, a mesodata type represents the structure of the domain

whereas an ADT represents the structure of the data value. In addition, un-

like the provision of libraries of user-defined ADTs, a mesodata type graph is not



CHAPTER 4. MESODATA IN CONCEPTUAL MODELLING 103

Table 4.1: Examples of mesodata types and their operators (adapted from
de Vries and Roddick (2007)).

Mesodata Type Operator (Extended SQL Operator)

GRAPH NEXTTO

WGRAPH NEXTTO, CLOSETO, FAR, EQUALTO

DGRAPH NEXTTO

DWGRAPH NEXTTO, CLOSETO, FAR

TREE INTREE, DESCENDENT, PARENT, CHILD, SIBLING, ANCESTOR

WTREE CLOSETO, FAR, INTREE, DESCENDENT, PARENT, CHILD,

SIBLING, ANCESTOR

LIST NEXT, PREVIOUS, FIRST, LAST, INBETWEEN

CLIST NEXT, PREVIOUS, INBETWEEN

SET INSET

Tri-State Logical MAYBE

directly accessible or manipulable through the attribute (de Vries, 2006). Rice,

Roddick and de Vries (2006) further extend the mesodata concept to accom-

modate attribute domains defined over multiple types. Their work identifies the

important distinction between mesodata techniques and object-oriented concepts,

in that the former introduces the idea of storing complex domain values in the

databases while the latter are concerned with complex attribute values. Earlier

discussion regarding mesodata concepts can be found in de Vries (2006), de Vries

and Roddick (2004), de Vries et al. (2004), de Vries and Roddick (2007) and Rice

et al. (2006).

4.2.2 Key Components of Mesodata

As discussed by de Vries (2006), de Vries and Roddick (2004) and de Vries et al.

(2004), mesodata includes the following key components to facilitate the imple-

mentation of semantically-rich domains.

Mesodata layers. A mesodata layer contains domain structures such as graphs

and trees, including their values and inter-relationships and is able to accom-

modate domain variability by mapping between different representations.

Mesodata Types and Operators. Mesodata types are domain structures that

are typically in the form of complex data types with built-in operators for
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Table 4.2: Examples of mesodata types and the structure of source relations.
(adapted from de Vries and Roddick (2007)).

Mesodata Type Source Schema

GRAPH R (FROM, TO)
WGRAPH R (FROM, TO, WEIGHT)
DGRAPH R (FROM, TO)
DWGRAPH R (FROM, TO, WEIGHT)

TREE R (PARENT, CHILD)
WTREE R (PARENT, CHILD, WEIGHT)

LIST R (SEQUENCE, ITEM)
CLIST R (SEQUENCE, ITEM)

SET R (ITEM)

Tri-State Logical —

manipulation and comparison that can be used to develop mesodata do-

mains. Table 4.1 presents examples of mesodata types with operators that

can be executed over domain structures. These operators extend the cur-

rently available SQL operators and enhance querying power. Having defined

a domain of an attribute over a mesodata type, these additional operators

become available according to the mesodata type selected. Mesodata types

are populated by values that are stored in source relations.

Source Relations. A source relation is used to hold the specific structural in-

formation for the domain. The structure of the source relation relies on the

mesodata type selected as shown in Table 4.2. For example, the weighted

graph (WGRAPH) mesodata type presents a structure of the source relation

as R (FROM, TO, WEIGHT), where R is a name of a source relational schema

and has a composite key consisting of both attributes (denoted by under-

lining both FROM and TO attributes) as a primary key for the schema.

Mesodata domains. A mesodata domain is built by matching a mesodata type

with a base type and a source relational schema to hold the specific struc-

tural information for the domain. An example of the base type, such as

INTEGER or CHAR(12), could form a simple domain or it could in turn be-

come a mesodata domain based on a mesodata type, for example, a weighted

graph of integers or strings.
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Table 4.3: A relation zipcoderel (an example of a source relation for the mesodata
type weighted graph).

Zipcode1 Weight

ZIPCODEREL

Zipcode2

0.0

0.1

0.1

0.1

0.2

0.1

0.15

0.15

5042

5042

5042

5042

5042

5050

5050

5050

.

.

.

.

.

.

.

.

.

5042

5050

5043

5047

5051

5051

5043

5047

4.2.3 Example Use of Mesodata

As discussed by de Vries and Roddick (2007), modelling data in traditional rela-

tional databases requires specifying attributes over a restricted set of data types.

In general, these modelling techniques capture the format of the data value but

do not capture information about the attributes domain or how a specific value

may be related to other values within that domain.

Consider the example of an attribute within a database that is used to record a

zip code. Basic data types of this attribute have standard collating sequences that

may be defined as CHAR(4). However, interpreting zip code to capture advance

semantics such as closeness requires a domain knowledge of the unit of measure

and its relationships to other values (de Vries and Roddick, 2007). For example,

the zip code Bedford Park 5042 is adjacent to zip codes 5043, 5047 and 5050

(refer to Figure 4.6(b), Page 110).

The mesodata solution for the attribute Zipcode is to use the mesodata type

WGRAPH for defining the mesodata domains of zip code. The operators such as

NEXTTO, CLOSETO and EQUALTO are then available to operate over this domain

structure. To define such domains based on mesodata type WGRAPH, it also requires

the source relational schema that describes the specific structural information of

the weighted graph. For example, assume this source exists in a relation zipcoderel

(Table 4.3), which has a composite key (Zipcode1 and Zipcode2) as a primary key

for this relation. Thus, a mesodata type weighted graph and its source relational

schema can be used to create the mesodata domain for attribute Zipcode, that

can then be used to relate Zipcode to the mesodata domain as shown below:
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CREATE DOMAIN LOCATIONS

AS wgraph

OF CHAR(4)

OVER zipcoderel;

CREATE TABLE person (

Emp ID CHAR(4) NOT NULL,

Name CHAR(30),

.

.

.

Zipcode LOCATIONS,

.

.

.

PRIMARY KEY ... );

To provide answers to questions such as Find all persons who live in suburbs

adjacent to zip code 5042, the following type of query can be used:

SELECT Name

FROM person

WHERE Zipcode NEXTTO ‘5042’;

This would return those persons recorded with any of zip codes adjacent to ‘5042’,

which in this case are ‘5043’, ‘5047’ and ‘5050’. In this case, NEXTTO is an operator

available to domains defined as WGRAPH. Note that the values of Zipcode that

result from this query exist within a weighted graph of LOCATIONS domain, not

in a relation person.

4.3 The Mesodata Entity-Relationship (MDER)

Model

Conceptual data modelling is typically carried out using graphical tools allowing

users to model enterprise data and their relationships in an intuitive way. The

Entity-Relationship Model (ER) (Chen, 1976) is a high-level conceptual data

model consisting of inter alia entity types, relationship types and attributes.

These basic components, visually represented by the Entity-Relationship dia-

gram, are used to view (and to reach some form of agreement on) the real world

as a construct of entity types and associations between entity types.

This thesis presents an extension to the ER model, termed the MesoData

Entity-Relationship (or MDER) model, which includes the concepts of mesodata

types, mesodata domains and the mesodata layer. Such concepts are modelled as

mesodata entity types. At the conceptual level, the focus is on the structure of the

data used in an organisation, the relationships between values and the constraints

imposed on their use. MDER also includes the idea of mesodata mappings and

introduces a total mesodata domain participation (TMDP) constraint. All of the
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Figure 4.3: Symbols of major components in the MDER model.

original ER concepts and symbols remain available together with the new concept

of mesodata entity type. Additionally, EER extensions are orthogonal to the

MDER extension and can also be included. Figure 4.3 shows symbols for the

major components in the MDER model comprising the basic ER constructs, the

new mesodata entity types, the mesodata mappings and the TMDP constraint.

Formally, there are three main criteria for considering the representation of

data models — data structures, integrity constraints and languages. The follow-

ing sections describe how these criteria apply to the MDER model.

4.3.1 MDER Data Structures

The MDER model includes all the modelling constructs and concepts of the

ER/EER models. In addition, it extends the attributes in the ER/EER model

with the support of mesodata domains.

The basic mesodata construct is a complex domain structure termed the meso-

data type, while the enumerated values, that can be taken from a simple data type

or another mesodata type, are termed the mesodata domain. These constructs

are modelled as mesodata entity types. In addition, mesodata includes map-

ping to convert a value from source relations to a domain value. This is modelled

as mesodata mappings.
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COUNTRIES

WGRAPH

Figure 4.4: A COUNTRIES mesodata entity type with WGRAPH mesodata type (as
per the example discussed in Section 4.1).

4.3.1.1 Mesodata Entity Types

A mesodata entity type is a complex-domain entity type that represents a meso-

data domain for an attribute. Each mesodata entity type has a name and a

mesodata type. For example, a COUNTRIES mesodata entity type may have the

name COUNTRIES and a weighted graph (WGRAPH) mesodata type. This WGRAPH

mesodata type has built-in operators such as NEXTTO and CLOSETO for manipu-

lating values provided in the graph structure. Conceptually, all mesodata is stored

in a mesodata layer (although in practice, they may be split between other system

files and user relations as appropriate).

Mesodata entity types in MDER are depicted as hexagons: the top section

holds the name of mesodata domain, the bottom section the mesodata type as

shown in Figure 4.4.

Mesodata Type. The mesodata type defines the domain structure and is typi-

cally a complex data structure (such as a graph, tree or list). It is also

likely to have associated operations (refer to EQUALTO in the example in

Section 4.1 and NEXTTO in the example in Section 4.2). In general, the

range of mesodata types is fixed by the database implementation although

a variety of specialisations may be available (e.g. for graphs, users can

choose from weighted or unweighted, directed or undirected, etc.). It is also

possible to define a complex mesodata type in terms of another mesodata

type (a directed graph of circular lists for example).

The weighted graph mesodata type is constructed with built-in operators

(such as CLOSETO and EQUALTO) and stores relationships and paths between

nodes providing the metrics for proximity and adjacency. The weighted

arcs between two data values (nodes), with values from 0 to 1, represent the

degree of similarity. An example of weighted graph is shown in Figure 4.5.

While an attribute’s type is normally a simple scalar type, the domain

from which the values are taken can have a complex internal structure (i.e.
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Figure 4.5: An example of a Suburb connectivity.

mesodata type) that is not only a collection of values but also characterises

the way in which these values are related. That is, a mesodata type consists

of a set of values which can be structured, for example, as a graph, a tree,

a list, etc., together with a set of operations (functions). The values are

provided in a source relation (Figure 4.6(a)).

Mesodata Domain. A domain is a set of values representing some property. In

most cases, the values that constitute a domain are implied through its data

type. Similarly, the values that constitute a mesodata domain are specified

by a mesodata type.

The mesodata domain is a set of atomic values taken from either a simple

domain or another mesodata domain. For example, a weighted graph of

characters refers to a weighted graph mesodata type being constructed from

a base type in which its component nodes are characters. An attribute

defined over such a domain would take an instance of an elementary value

that exists within the mesodata structure.

In the example in Figure 4.6, the base type for the Suburb attribute would

remain unchanged (e.g. CHAR(25)) as would the data values. The Sub-

urb would take its value as an instance of a base type that exists within

a weighted graph mesodata type, where the intrinsic operations such as

CLOSETO are defined to operate over such specific domain structures.

Figure 4.7 shows an example in which the three of the five attributes of

person (namely Dept, Suburb and Salary) are defined over mesodata domains

NEWDEPTS and OLDDEPTS, LOCATIONS and SALARIES respectively (the second with

total mesodata domain participation). An attribute with more than one associ-

ated mesodata domain can take its value from any of the linked domains (which
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Figure 4.6: An example of Suburb attribute referencing a weighted graph meso-
data type (a) a source relation for the weighted graph mesodata type, (b) a
weighted graph mesodata type and (c) a person relation .

can be of use in dealing with changes to domain structure (cf. de Vries and

Roddick (2004, 2007)).

The definition of mesodata domain can be specified by three associated com-

ponents: (1) the mesodata type, (2) the simple (base) data type of an associated

attribute, and (3) the source schema describing a specific structure of the meso-

data type. These components can be explicitly declared to create a mesodata do-

main and to allow attribute specifications to refer to the mesodata domains (refer

to a transformation from the MDER schema to a relational schema in Chapter 8).

4.3.1.2 Mesodata Mappings

A mesodata mapping between a mesodata entity type and an attribute defines

a set of mappings required to interpret a data value within a specific and well
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Figure 4.7: An MDER Example.

recognised concept. This includes mapping to convert a value from source rela-

tions to a domain value. Mesodata mapping, which is typically created and used

internally by the system, is specified to convert a value to its meaning. Built-in

mesodata mappings also allow regularly used mappings to be accommodated in

the DBMS to provide additional functionality.

Consistent with other EER extensions, the MDER diagrammatic notation for

mesodata mapping is represented as a circled m as demonstrated in Figures 4.3

and 4.7. A mesodata mapping connecting an attribute to more than one meso-

data domain is shown by the mesodata mapping connected to attribute Dept in

Figure 4.7.

4.3.2 MDER Integrity Constraints

A database schema is a formal and abstract definition of the semantics and con-

straints of the corresponding real-world system (Lukovic, Ristic and Mogin, 2003).

The set of integrity constraints that arise from business rules are crucial to the

structure of a database schema in order to maintain data consistency.

Constraints are specified on database schema to reflect restrictions on data

values in the real-world. Constraints can be specified in various ways including

their specification in the schema of the data model via the DDL so that the

DBMS can automatically enforce them while others need to be checked within

application programs.

The MDER model includes all the contraints of the ER/EER models. In ad-

dition, it includes one new constraint — the total mesodata domain participation

or TMDP, requiring an attribute to take its value from one of the values recorded

in the mesodata domain. If these constraints are not imposed then an attribute

may take any value consistent with the attribute’s base domain. An attribute

that references a mesodata type can be defined to participate either totally or
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partially. The TMDP constraint specifies that every attribute value must corre-

spond to values that exist within the mesodata domain. If TMDP is not specified

the value must still adhere to the base type but may hold values not enumerated

in the domain.

In MDER diagrams, TMDP is shown as a double line connecting the partici-

pating attribute to the mesodata mapping as shown in Figures 4.3 and 4.7.

4.3.3 MDER Languages

Each relational DBMS provides a Data Definition Language (DDL) for defining

the conceptual and internal schemata, including their mappings, and a Data

Manipulation Language (DML) for manipulating and querying the data. As the

implementation of the mesodata was based on a relational database, the mesodata

language specified by de Vries (2006) and de Vries et al. (2004) was given as an

extension to SQL to define and manipulate the mesodata type.

The mesodata DDL (MDDL) extends SQL’s DDL commands (such as CREATE,

ALTER and DROP) to implement mesodata types. For instance, the CREATE DOMAIN

command was extended to allow for the specification of the complex domain

structure (the mesodata type) in the mesodata layer, and the CREATE TABLE

command was extended to allow attribute specifications to refer to the mesodata

domains. Similarly, the mesodata DML (MDML) extends SQL’s DML commands

to query records that are defined over the mesodata domains. For example, the

SELECT statement was extended to allow for the new mesodata operators which

are associated with the mesodata types.

4.4 The Mesodata Object Role Modelling (MD-

ORM) Model

Like the ER model, ORM cannot handle the semantics of complex attribute do-

mains. To capture such semantics, ORM must be extended to capture mesodata

domains and types. This thesis introduces an extension to ORM, termed the

Mesodata Object Role Modelling (or MDORM) which allows the mesodata con-

cepts to be modelled with ORM’s value types. It is assumed that the reader

already has a basic familiarity with ORM; a detailed discussion of database de-

sign using ORM approach can be found elsewhere (Nijssen and Halpin, 1989;

Halpin, 2001).
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Figure 4.8: ORM Symbols Extension.

Compared with the top-down structured design methodology of the ER model,

ORM can be considered as a bottom-up approach since it builds up from atomic

objects in terms of elementary relationships. The ORM design method, some-

times known as a binary semantic model (Kent, 1984) and often referred to as

NIAM (Nijssen and Halpin, 1989; Verheijen and van Bekkum, 1982), is a fact-

oriented approach for modelling information at a conceptual level. It was deve-

loped in the early 1970s based on the binary approach (Senko, 1975, 1976) and is

well established as a conceptual modelling tool for relational databases. With its

emphasis on fact types, ORM is also called fact-oriented modelling (Nijssen and

Halpin, 1989).

As discussed by Halpin (1998) and Halpin and Morgan (2008), ORM differs

from both ER and UML, in that it makes no explicit use of attributes as a base

construct but instead uses the relationship type to express all fact types. For

example, instead of using CountryOfBirth as an attribute of person, ORM uses

the relationship type Person was born in Country. This attribute-free approach

leads to stable semantics in conceptual model and conceptual queries (attributes

may evolve into entities or relationships). For example, if it is decided to record

the population of a country, then CountryOfBirth needs to be reformulated as

a relationship. To do this in ORM, the country type is simply declared to be

independent. The object type country may be populated by a reference object

that contains those country codes of interest.

As an extension of ORM, MDORM supports all the current ORM concepts and

symbols together with the new concepts of mesodata value type and mesodata

mandatory role constraint. Figure 4.8 shows the graphical notations for the

additional constructs.
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Figure 4.9: Example of a Suburb where the suburb names have the WGRAPH

structure and are restricted by the mesodata mandatory role constraint.

4.4.1 MDORM Data Structures

MDORM includes all the modelling contructs and concepts of ORM. In addition, it

extends value types in ORM with mesodata types. The idea behind the MDORM

approach is to provide a seamless extension to the ORM model. Starting with the

basic ORM model, a mesodata type is added to the value type, termed a mesodata

value type. A mesodata value type is a value type whose values are associated

with a mesodata type. This is indicated by placing a MT (mesodata type) in a

dotted ellipse (refer Figure 4.8). The MT can be labelled as, for example, TREE,

GRAPH or WGRAPH that represents a mesodata type.

Each mesodata value type is annotated as a name of mesodata type in a

dotted ellipse. Figure 4.9 expresses a relationship between a suburb entity type

and the WGRAPH value type. When verbalising information from this example as

elementary facts, the elementary sentences are stated as follows:

—Employee with employeeNr ‘3320’ lives in the Suburb.

—Suburb with suburbname ‘Bellevue Heights’ has structure as WGRAPH.

4.4.2 MDORM Integrity Constraints

ORM has a powerful and extensive graphical notation for representing con-

straints. Several researchers have addressed the strengths of this model in terms

of a rich set of integrity constraints (Halpin, 2001, 2004; Halpin and Bloesch, 1999;

Laender and Flynn, 1993; Song and Forbes, 1991). In practice there are usually

several other kinds of constraints that need to be considered since business rules

representing a certain aspect of a business domain or policy may change regularly.

MDORM includes all the constraints of ORM. Additionally, it proposes a new

constraint applicable to mesodata domains. Similar to the TMDP constraint

as discussed in Section 4.3, mesodata modelling requires a constraint, termed

the Mesodata Mandatory Role (MMR) constraint, to indicate that the values of

the object type must be taken from one of the values recorded in the mesodata
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Figure 4.10: MDER diagram for an example INVENTORY database.

domain. This is specified as a black dot on the entity type that connects to the

roles of mesodata reference types. The mesodata reference types are relationships

between entity types and the mesodata value types. This constraint, as shown

in Figure 4.9, declares that every instance in the population of the role’s suburb

involving the WGRAPH must play that role.

4.4.3 MDORM Languages

The first implementation of mesodata (de Vries, 2006) was based on the relational

model (Codd, 1970, 1979), which is the most widely implemented data model in

current commercial databases. Due to this popularity, this thesis continues this

approach and uses SQL in providing support for languages in the MDORM model.

The use of the language support for MDORM is demonstrated in the transfor-

mation of an MDORM schema into a relational schema as discussed in Chapter 8.

In particular, examples of the use of Mesodata DDL (MDDL) is demonstrated in

the process associated with specifying schema definitions in that chapter.
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4.5 Example MDER and MDORM Schemata

The motivation behind MDER and MDORM is to provide easy-to-use constructs

with which to capture the semantics of an attribute’s domain while keeping the

graphical representation simple. Thus, the number of additional elements re-

quired is kept to a minimum and should be easy to learn and use. Note that the

inclusion of mesodata may also have the effect of simplifying a conceptual model

by replacing relationships with reference entities. For example, a person entity

type linked with a relationship type of was born in to a country entity type (as

described earlier in Figure 4.1) could be more appropriately described using an

enumerated list for the countries mesodata domain. In practice, ER and ORM

diagrams which include reference/lookup file entities are not uncommon.

As an example database application, consider the INVENTORY schema shown

in Figures 4.10 and 4.11, based on the ER model and ORM approach respectively,

which keeps track of products, orders, suppliers and customers. Typically dis-

cussions between a user and the analyst/modeller often contain examples of the

queries that an organisation wishes to be able to execute over their data. Consider

the following queries, none of which is particularly unusual:

List all orders for a chair or lounge (of any description) which is some shade of

green,

List all products held which are similar, but not identical, in colour to the stan-

dard stock colours,

List all customers who live close to the Norwood store,

List all customers who live close to their suppliers, and

List all customers whose area code does not correspond to their zip code.

Each of these queries would require knowledge of the domain. Thus, the

attributes ProdType, Colour, Zipcode and AreaCode in the MDER schema and

the mesodata value types in the MDORM schema are identified as requiring a

complex domain so as to assist with providing such answers.

4.6 Summary

This chapter shows that capturing semantics of complex domain structures has

become increasingly important in dealing with emerging information demands
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Figure 4.11: MDORM schema for an example INVENTORY database.

and that these semantics should be explicitly represented in conceptual schemata.

Mesodata can be a very powerful mechanism to map such semantics directly into

SQL.

A mechanism for accommodating mesodata into two conceptual modelling

methodologies has been presented — the Mesodata Entity-Relationship (MDER)

model and Mesodata Object Role Modelling (MDORM). The proposed constructs

are simple and easy to use without introducing any conflict with current methods

and mesodata modelling in ER and ORM and can be easily learned by database

designers. Incorporating mesodata domains can also enhance the power of a

DBMS’s query language by adding advanced semantic concepts to comparison

operators used to retrieve information from databases.

While the focus of this research was on the Entity-Relationship model and

Object Role Modelling, this thesis explores the wider modelling issues relating to

mesodata as a conceptual tool. As well as investigating the accommodation of the

mesodata in other modelling approaches (such as UML) this thesis suggests that

the complexity of (and some of the restrictions relating to) current ontologies can

be reduced. In some worked examples of larger ER models this thesis has found

that either the ER model can be simplified using mesodata (by removing purely

referential entities) and/or the semantics of the model can be enhanced through
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the inclusion of additional constructs that can be assigned given meanings into

the model.

In conjunction with this research that incorporates mesodata into two different

modelling approaches, this thesis has found that the ORM approach (attribute-

free approach) can be naturally extended and annotated with mesodata concepts

and constraints more so than attribute-based modelling approaches such as ER

and UML. As this research aim focuses on the broad issues relating to conceptual

modelling, other challenges still remain in other modelling areas such as with the

methodologies used for data warehousing.

The value of the suggested models that have been introduced in this chapter

is ultimately measured in the practicability of their schemata that can be ma-

nipulated by a relational database system (refer to Chapter 8). This chapter has

served to address Objective 2 of the thesis, namely to extend conceptual data

models to enhance expressiveness. The practicability of these models is covered

under Objective 4 that describes how these models can be mapped to the par-

ticular implementation platform to show the validity of the suggested conceptual

models, which is discussed in Chapter 8.



Chapter 5

Ontology in Conceptual

Modelling

This thesis chapter serves to provide some of the answers to support Objectives

1 and 2 of the thesis as stated in Chapter 1 (particularly Section 1.5.1) and as

indicated in Figure 1.3. The focus of this chapter is in exploring the concep-

tual modelling extensions to incorporate the concept of ontologies and how this

concept can be used to increase the expressiveness of conceptual modelling ap-

proaches. With the increasing complexity of applications and user needs, recent

research has shifted from a data information level to a human semantic level in-

teraction. Research has begun to address the increasing use and development

of ontologies in various applications, strongly motivated by the semantic web

initiative. However, existing conceptual models are not rich enough to incorpo-

rate ontologies in one single conceptual schema. To improve this situation, it

is necessary to refine modelling formalisms and make them more expressive and

semantically sound. It is argued that conceptual modelling methodologies would

be semantically richer if they were able to express the semantics of a domain that

arises in concrete application scenarios. This chapter investigates the incorpora-

tion of ontologies into three conceptual modelling methodologies, presenting the

Ontological Entity-Relationship (OntoER) model, Ontological Object Role Mo-

delling (OntoORM) and the Ontological Unified Modelling Language (OntoUML)

Class Diagram. An extended conceptual framework for modelling ontologies is

also discussed.

The structure of this chapter is as follows. Section 5.1 provides an overview to

this topic. Section 5.2 introduces an insight into ontologies. Section 5.3 contains

further discussion on the concept of ontological class hierarchy modelling. Sec-

119
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tions 5.4, 5.5 and 5.6 show how ontologies can be accommodated into these con-

ceptual modelling approaches — the ER, ORM and UML class diagram, respec-

tively. Section 5.7 presents examples of OntoER/OntoORM/OntoUML schemata,

followed by a summary in Section 5.8.

5.1 Introduction

Ontologies have been applied in a multitude of areas in computer science. The

first significant growth of interest in the subject appeared in the mid 1990s which

was motivated by the need to create principled representations of domain know-

ledge for the knowledge sharing and reuse community in the field of artificial

intelligence (AI) (Guizzardi, 2006). A major challenge with ontologies is how to

access, store and manage them. This research direction has included:

• supporting ontology-based semantic matching, querying and referential con-

straints in RDBMS (Das, Chong, Eadon and Srinivasan, 2004; Chong, Das,

Eadon and Srinivasan, 2006; Necip and Freytag, 2003) leading to recent

advances in ontology management in DBMSs such as those introduced by

Oracle,

• implementing ontology systems or tools that support ontology-based ap-

plications (Corcho, Fernández-López and Gómez-Pérez, 2003; Cui and

O’Brien, 2000; Dameron, Noy, Knublauch and Musen, 2004; Valo, Hyvönen

and Komulainen, 2005), such as Protégé, which is an ontology and

knowledge-base editor that allows the user to construct a domain ontology,

customise data entry forms and enter data (Protégé, 2008).

Another challenge driving the database community is to create better data

models. These research projects have attempted to use conceptual data modelling

in supporting ontologies (Jarrar et al., 2003; Spaccapietra et al., 2004). For exam-

ple, this has included research into methodologies for supporting database design

creation and evaluation that makes use of domain-specific knowledge about an

application stored in the form of domain ontologies (Sugumaran and Storey, 2006,

2002). In a further example, a theory of ontology was promoted that can be used

to clarify the meaning of relationship constructs that are widely used to undertake

conceptual modelling (Wand et al., 1999).

However, the conceptual modelling for ontologies and its transformation into

relational database schema, has not been adequately investigated. This thesis
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supports the argument that introducing ontologies into conceptual modelling can

enhance the semantics of the model. This thesis suggests extensions to high-

level conceptual models to represent the relationship between ontologies and the

underlying conceptual schema.

With the increasing complexity of actual application scenarios and user needs,

there is a requirement to shift from the data and information level to the hu-

man semantic level interaction. Consequently, semantic representation becomes

important and to maximise the level of semantics requires that these representa-

tions become increasingly explicit. Humans learn to deal with the ambiguity of

language by understanding the context in which terms are used. Data rich sys-

tems can emulate this by referencing data through structures such as ontologies

that represent terms and their interrelationships (Das et al., 2004).

The main deficiency with traditional conceptual modelling practice is that

ontologies are not semantically represented. This problem requires investigation

to refine modelling formalisms to allow for the integration of ontologies into the

conceptual schema. This thesis argues that conceptual modelling methodologies

must be expanded to facilitate ontologies, including the reuse of existing ontolo-

gies, to enrich the semantic expressiveness of the data model. In addition, this

approach caters for the ability to query the data in the context of its associated

ontologies in the same way as querying simple relational data.

Consider a particular example of a medical database application that requires

ontologies, specifically the knowledge associated with a hierarchical domain. For

a simple application of a patient’s visit to a doctor, a relational table with a Di-

agnosis attribute as shown in Figure 5.1 (a) can describe the type of diagnosis of

a patient as identified by a physician at a visit date. The diagnosis attribute’s do-

main is a hierarchical structure which can be represented as a diagnosis ontology

shown in Figure 5.1(b).

Consider the following question: how can those patients that have been diag-

nosed with immune deficiency conditions be identified? The expected human res-

ponse would be by identifying those patients with AIDS and so on. This response

occurs as humans have the ability to combine data with the domain knowledge

that AIDS is a type of immune deficiency condition, and in many instances this

connection is made automatically at a subconscious level. However, the fact that

AIDS is a type of immune deficiency condition is not explicitly represented in the

data as shown in the Table in Figure 5.1(a), but belongs to the domain knowledge

of diagnosis ontology as shown in Figure 5.1(b).



CHAPTER 5. ONTOLOGY IN CONCEPTUAL MODELLING 122

(a)

(b)

Cancer
patientsJRA

Immune disorder

Autoimmune
diseases

Rheumatoid
arthritis

Acquired
immunodeficiency

Primary immune
deficiency

EczemaAllergies
Immune deficiency

conditions

SCIDAIDS

Hay fever

...

Diabetes
...

...

......

Neurodermatitis

...

...
is-a

Date Diagnosis PatientID Physician_
LicenceNo

4/01/2008

15/02/2008

7/11/2007

6/12/2007

19/12/2007

14/01/2008

0001

0002

0003

0004

0005

0006

A1515

B0092

C0185

D1006

E0005

F0006

VISIT

Hay fever

Neurodermatitis

Rheumatoid arthritis

AIDS

SCID

Diabetes

Figure 5.1: A portion of a medical database (a) the base table of patients visiting
a doctor, and (b) a diagnosis ontology.

Within the medical database, the relational DBMS allows us to query on these

attributes: Date, Diagnosis, PatientID and Physician LicenceNo. This expressive

power of traditional queries is relational complete. However, for querying such

attributes whose domain, for example, is related in the ontology hierarchy (by re-

lationships such as is a), the traditional query is limited such as in the situation

where it is necessary to identify those patients who are diagnosed with immune

deficiency conditions. In this scenario, a query on a conventional database appli-

cation could be constructed using the equality operator (=) as shown below:

SELECT PatientID

FROM visit

WHERE Diagnosis = ‘Immune deficiency conditions’;

This traditional SQL query will fail to return any results that semantically

satisfied the query condition since none of Diagnosis’s values in the table will

match ‘Immune deficiency conditions’. In other words, the domain knowledge re-

quired to answer such queries is not present in the relational table in Figure 5.1(a).

To provide semantically correct answers, the DBMS must not only know that Di-

agnosis denotes a disease but also the diseases’ semantics, which is illustrated in

the diagnosis ontology in Figure 5.1(b). This traditional query can be shifted

from query-by-value to query-by-meaning to perform ontology-based semantics

as follows:

SELECT PatientID

FROM visit

WHERE Diagnosis INTREE ‘Immune deficiency conditions’;
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The INTREE operator allows matching of the terms based on the specified

relationship is a in the diagnosis ontology. That is, the above query will return

all patients who are diagnosed with ‘Immune deficiency conditions’, or any of its

subclasses by consulting the referenced ontology.

This chapter explores how conceptual modelling can be improved by intro-

ducing ontologies into the model. To date, the incorporation of ontologies into

conceptual modelling has not been adequately investigated. To show how on-

tologies can be accommodated into conceptual modelling methodologies, three

well-known but different modelling techniques are used to demonstrate how the

semantics of a specific domain knowledge can be incorporated into data mo-

delling. The Ontological Entity-Relationship (OntoER) model is presented here

as an extension to the ER/EER model, the Ontological Object Role Modelling

(OntoORM) as an extension to the ORM and the Ontological Unified Modelling

Language (OntoUML) class diagram as an extension to the UML class diagram.

This chapter further extends the use of mesodata concepts (Chapter 4) to in-

troduce ontologies into conceptual modelling. Such ontologies include an existing

ontology’s class hierarchy of, for example, a relevant ontology of diseases (Wrong-

Diagnosis.com, 2008) and the National Cancer Institute’s (NCI) Cancer Ontology

(Mindswap, 2008). It is anticipated that mesodata can provide common domain

structures that can be used to accommodate the backbone ontology that is repre-

sented by the hierarchical organisation of concepts through the is-a relationship.

This chapter thus defines the ontology’s class hierarchy in the mesodata layer and

use the TREE mesodata type to represent such ontologies. In addition, mesodata

itself can be considered as an ontology (Subsections 5.2.2 and 5.2.3).

As this chapter uses common domain structures of the mesodata concept as

a basis for the ontological modelling framework, it uses many of the concepts

previously discussed in Chapter 4.

5.2 Review of Ontologies

As the concept of ontology is the key feature of this thesis research, it is neces-

sary to define what an ontology is. This section provides a basic introduction

to ontologies that includes different definitions of ontologies, type of ontologies

and terminological clarifications of ontologies, and further comparisons between

ontologies and conceptual data models.
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5.2.1 What is Ontology?

Ontology is a term having different meanings in the disciplines of philosophy and

computer science. The term Ontology (Greek. on = being, logos = to reason)

in its original sense is a philosophical discipline (Sure, 2003) concerned with the

nature of being and existence. In philosophy, ontology is the science of what

is, of the kinds and structures of objects and properties in every area of reality

(Smith, 2003). Ontology in this sense is often used by philosophers as a synonym

of ‘metaphysics’ as defined by Aristotle. Ontology can be referred to as the study

of conceptions of reality or the study of being or existence. It seeks to describe

the basic categories and relationships of being or existence to define entities and

types of entities within its framework.

In computer science, ontologies were developed in artificial intelligence to

facilitate knowledge sharing and reuse (Fensel, 2001). More recently, ontolo-

gies are becoming widespread in fields such as knowledge engineering, knowledge

representation, knowledge management, information integration, electronic com-

merce and the semantic web. Artificial intelligence and database management

systems are fields where ontologies have been used as a means to add a formal

and computable semantic dimension. The area of data and schema integration for

heterogeneous databases is a recent example (Beneventano, Bergamaschi, Guerra

and Vincini, 2003). Many definitions of ontologies have been given in the last

decade; however, there is no agreed definition of what ontology is in computer

science. A variety of definitions for ontologies are as follows:

— An ontology is an explicit specification of a conceptualization (Gruber,

1993).

Gruber’s definition has been widely cited in literature and accepted by most onto-

logical engineers. Based on Gruber’s definition, many other variants have been

proposed, adding emphasis to different features of the model.

— An ontology is a formal, explicit specification of a shared conceptualization

(Borst, 1997).

The Gruber definition was modified slightly by Borst who added that the specifi-

cation must be formal and the conceptualisation should be shared. This definition

has also been clarified in Studer, Benjamins and Fensel (1998), Fensel (2001) and

Gailly and Poels (2007) as follows: A ‘conceptualization’ refers to an abstract

model of some phenomenon in the world by having identified the relevant con-

cepts of that phenomenon. ‘Explicit’ means that the type of concepts used, and
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the constraints on their use are explicitly defined. For example, in medical do-

mains, the concepts are diseases and symptoms, the relationship between them

are causal and a constraint is that a disease cannot cause itself. ‘Formal’ means

that the ontology should be machine-readable. ‘Shared’ indicates that an onto-

logy captures consensual knowledge, namely information that is not private to an

individual, but accepted by a group.

— An ontology is a logical theory accounting for the intended meaning of a for-

mal vocabulary, i.e., its ontological commitment to a particular conceptualisation

of the world (Guarino, 1998).

Guarino further refined the notion of conceptualisation by applying the theory of

logic. This definition would be applicable to ontologies developed using logic.

— An ontology defines a common vocabulary for researchers who need to share

information in a domain. This includes machine-interpretable definitions of basic

concepts in the domain and relationship among them. (Noy and McGuinness,

2001).

This definition emphasises that ontology is the term used to refer to the shared

understanding of some domain of interest.

— An ontology is a hierarchically structured set of terms for describing a

domain that can be used as a skeletal foundation for a knowledge base (Corcho

et al., 2003).

This definition includes some highlights about the hierarchical representation of

concepts and their relationships as well as knowledge bases. According to this

definition, the same ontology can be used for building several knowledge bases,

that would share the same skeleton or taxonomy. An ontology, together with all

of the individual instances of its classes, constitutes a knowledge base; however,

the boundary between the notion of ontology and the notion of knowledge base

is somewhat blurred (Noy and McGuinness, 2001).

— An ontology is a data model that represents a set of concepts within a

domain and the relationships between those concepts.

This definition covers fundamental concepts in the domain and relationships

among those concepts.

— An ontology is a formal specification of a perspective. If two people agree

to use the same ontology when communicating, then there should be no ambiguity

in the communication. To enable this, an ontology codifies the semantics used to

represent and reason with a body of knowledge (OwlSeek.com, 2008).
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This is another recent definition provided by the website owlseek.com. It is

understood to be an explicit formal description of a wider view that is used to

refer to the shared understanding of a domain of interest. The important aspect

of this definition is that it creates a shared understanding of a domain.

In addition, a set of constraints can be associated with the ontology to specify

semantics of the concepts and/or relationships. Ontologies can be considered as

conceptual schemata, intended to represent knowledge in the most formal and

reusable way possible (Davies, Studer and Warren, 2006). Ontologies may also

be thought of as semantically rich metadata capturing the information content

of the underlying data repositories (Mena and Illarramendi, 2001).

In this section, the most relevant definitions of ontology have been collected.

Based upon these various contributions, this thesis uses an informal understand-

ing of ontology that defines it as a declarative model of a domain using abstrac-

tions called concepts/terms and the relationship among them. In other words, an

ontology is a set of terms of interest in a particular information domain and the

relationships among them.

More formally, an ontology can be represented as a pair O:=(C,E) where C

is a set of concepts and E is set of edges. E ∈ (a, b, r) where a, b ∈ C, and r is

the type of relationship between two concepts which defines the semantic (is-a,

syn-of, is-part-of, etc.) and the algebraic properties (transitivity, symmetry,

reflexivity, etc.) of the relationship. Is-a and syn-of are transitive (if A is-a B

and B is-a C, it follows that A is-a C). Is-a is not symmetric (A is-a B excludes

that B is-a A) while syn-of is symmetric (A syn-of B, then B syn-of A). Is-a

and syn-of are reflexive (A is-a A, A syn-of A); both are semantically correct but

ineffective in terms of data description. Thus, is-a and syn-of relationships can

be expressed as a transitive property and syn-of can be expressed as a symmetric

property as follows:

Transitivity: ∀x y z is-a(x,y)∧is-a(y,z) → is-a(x,z)

∀x y z syn-of(x,y)∧syn-of(y,z) → syn-of(x,z)

Symmetry: ∀x y syn-of(x,y) → syn-of(y,x)

Semantics of other relationships which are dependent on the domain of the

ontology always need to be specified (Necip and Freytag, 2005).
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Figure 5.2: Different types of ontology. Arrows represent specialisation rela-
tionships (from Guarino, 1998).

5.2.2 Types of Ontology

The purpose of this section is to provide a general understanding of the vocabu-

lary used to classify ontologies. There are several types of ontology which may

be identified to fulfil different roles in the process to model the domain. Guarino

(1998) proposed types of ontology based on their level of dependence on a par-

ticular task or point of view as shown in Figure 5.2.

Top-level ontologies. Top/upper-level ontologies (or generic ontologies) define

very broad concepts or common objects that are generally applicable across

a wide range of domain ontologies. They contain a core glossary in terms

that can be used to describe a set of domains and provide general notions

under which all root terms in existing ontologies should be linked. There

are several standardised generic ontologies available for use, such as the

Upper Cyc Ontology (Lenat, 1995), the Suggested Upper Merged Onto-

logy (SUMO) (Niles and Pease, 2001), WordNet (Fellbaum, 1998) and a

Description Ontology for Linguistic and Cognitive Engineering (DOLCE)

(Gangemi, Guarino, Masolo, Oltramari and Schneider, 2002). These stan-

dards provide a structure and a set of general concepts from which domain

ontologies (e.g., medical, financial, engineering, etc.) can be constructed.

Top-level ontologies are also referred to as foundation ontologies and as

common sense ontologies (Fensel, 2001).

Domain ontologies. Domain ontologies (or domain-specific ontologies) capture

the knowledge valid for a specific/particular type of domain, or part of the

world of interest. These represent the particular meanings of terms as

they apply to that domain (e.g. electronic, digital, medical, etc.). For

example, the term mouse has different meanings in different contexts. An

ontology about the domain of computer hardware would model mouse as a
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Figure 5.3: Ontological categories (from Lassila and McGuinness, 2001).

computer input device while an ontology about the domain of creature would

model it as an animal. These ontologies provide vocabularies about the

concepts within a domain and their relationships and the rules governing

that domain. The concepts in domain ontologies are usually specialisations

of concepts already defined in top-level ontologies.

Task ontologies. Task ontologies provide terms specific for particular tasks (e.g.

‘hypothesis’ belongs to the diagnosis task ontology), by specialising the

terms in the top-level ontologies.

Application ontologies. Application ontologies describe concepts that depend

upon both a particular domain and task, and often combine specialisations

of both the corresponding domain and task ontologies. These concepts

often correspond to roles played by domain entities while performing a

certain task. Application ontologies are application-dependent containing

all the definitions needed to model the knowledge required for a particular

application.

In addition, Lassila and McGuinness (2001) classified ontologies based on the

richness of their internal structure according to the following categories: con-

trolled vocabularies, glossaries, thesauri, informal is-a hierarchies, formal is-a

hierarchies, formal instances, frames, value restriction and general logical con-

straints as illustrated in Figure 5.3. The main categories and their meanings as

described by McGuinness (2003), Corcho et al. (2003) and Lassila and McGuin-

ness (2001) are summarised as follows:

• Controlled vocabularies. Controlled vocabularies (a finite list of terms) are

one of the simplest notions of a possible ontology. A typical example of this

category is a catalogue.

• Glossaries. Glossaries are lists of terms with their meanings. The mean-

ings are specified as natural language statements. This provides a form

of semantics or meaning since humans can read and interpret the natural

language statements.
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• Thesauri. Thesauri provide some additional semantics in their relationships

between terms. They give information such as synonym relationships, but

do not supply an explicit hierarchy. For example, traveller, passenger and

customer could be considered as synonyms in the travel domain.

• Informal is-a hierarchies. Informal is-a hierarchies refer to specifications of

term hierarchies such as those used by Yahoo. Such a hierarchy is not a

strict subclass or is-a hierarchy. For example, the terms car rental and

hotel are not kinds of travel but they could be modelled in informal is-a

hierarchies below the concept travel, because they are key components of

the travel and allow the user to select either a car rental for the trip or an

accommodation.

• Formal is-a hierarchies. Formal is-a hierarchies include strict subclass

hierarchies. In these systems, if A is a superclass of B and an object is

an instance of B then it necessarily follows that the object is an instance

of A. Strict subclass hierarchies are necessary to exploit inheritance. In

the travel domain, subclasses of the concept trip could be flight, train and

cruise.

• Formal is-a hierarchies that include instances of the domain. Formal is-

a hierarchies that include instances of the domain are broad classification

schemes with some schemata only including class names while others in-

clude individual content. For example, the flight description ‘QF720’ is an

instance of flight.

• Frames. Frames are class hierarchies that include properties associated with

each object class. Properties become more useful when they are specified

at a general class level and then inherited consistently by subclasses and

instances. Properties can be inherited by classes of the lower levels of

the formal is-a taxonomy. For example, the wine class may associate

with properties (hasSugar, hasColor, hasMaker, madeFromGrape) and may

inherit one property (locateIn) from its superclass.

• Ontologies that express value restriction. Ontologies that express value re-

striction are a more expressive point in the ontology categorisation which

includes value restrictions, or restrictions placed on the values that can fill

a property. Each property is associated with a range class with values of

the property being restricted to instances of the range class. For example,

the hasMaker property takes values that are instances of the winery class.
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• Ontologies that express general logical constraints. Ontologies that express

general logical constraints are ontologies where the schema properties can

expand dynamically according to the amount of gathered information. This

method often takes the form of a mathematical formula where the value of

the property is based on possible values of a different variable. For example,

a logical constraint in a travel domain is that it is not possible to travel from

Australia to New Zealand by train.

• Ontologies that express logical constraints with more detailed relationships.

Ontologies that express logical constraints with more detailed relationships

are very expressive ontology languages such as that seen in Ontolingua (Far-

quhar, Fikes and Rice, 1997) or Cyc’s knowledge representation language

(CycL) (Genesereth, 1991) that allow ontologists to specify first order logic

constraints between terms and more detailed relationships such as disjoint

classes, disjoint coverings, inverse relationships, part-whole relationships,

etc.

Note that some researchers consider the previous categories (of catalogues,

glossaries and thesauri) to be ontologies but most prefer to have an explicit hier-

archy included before it is considered to be an ontology (Lassila and McGuinness,

2001).

In this chapter, mesodata can be considered as an ontology as it possesses an

unambiguous interpretation of structures (e.g. a TREE mesodata type). Similarly,

an existing class hierarchy can be considered as an ontology as it holds strict

hierarchical subclass relationships between terms (e.g. an is-a relationship).

5.2.3 Terminological Clarifications of Ontologies

The range of ontology terminology as discussed by Smith and Welty (2001) is

illustrated in Figure 5.4, which depicts a wide range of different types of specifi-

cations that have been termed ontologies in the literature. These specifications

range from a simple catalog containing, for example, the products that a com-

pany sells, to a lexicon of terms with natural language definitions (thesaurus), to

formal logical theories (Guizzardi, 2005).

The different types of specifications as described by Smith and Welty (2001)

are summarised below:
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complexity

without automated
reasoning

with automated
reasoning

a catalog

a set of
text files

a glossary

a thesaurus

a collection of
taxonomies

a collection of
frames

a set of general
logical constraints

Figure 5.4: Different types of specifications classified as ontologies in the
computer science literature (from Smith & Welty, 2001).

• Catalogs. Catalogs are the most simplest ontologies that provide simple

natural language texts and allow string matching.

• Text files. Text files are sequences of readable characters such as letters,

digits, punctuation or white space. This simplicity allows a wide variety of

programs to display their contents.

• Glossaries. Glossaries provide natural language descriptions of terms, with

an imposed structure in the text (indexing by terms).

• Thesauri. Thesauri provide, in addition to descriptions of terms, relation-

ships to both general and more specific terms within a common hierarchy.

• Taxonomies. Taxonomies are structures in which properties of generic

classes can be applied to those properties of more specific class definitions.

The fields of knowledge representation, database and software engineering

mostly use ontologies conceived as taxonomies.

• Frames. Frames extend the concept of taxonomies to include the relation-

ships between objects and restrictions on classes of objects that can be

related to each other.

• Logical constraints. Logical constraints are the most expressive and complex

form of ontologies that use the axioms of full first order, higher order or

modal logic.

Some types of these specifications that are classified as ontologies as described

by Smith and Welty (2001) correspond to some of a list of ontological categories

as previously discussed by Lassila and McGuinness (2001). Such types of specifi-

cations include glossaries, thesauri and frames. However, it is a debatable point
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Figure 5.5: Ontology spectrum (adapted from Obrst, 2003).

whether the simple categories such as catalogs, text files and glossaries as dis-

cussed above are classed as ontologies. The argument is that such terms are

insufficiently qualified to truly define an ontology, viz. an ontology as a repre-

sentation of a conceptual system that is characterised by specific purposes. This

results in a number of different interpretations for the term ontology and is dis-

cussed in depth by other authors. In the work of Obrst (2003) and Fromm et al.

(2005), the authors provide four different interpretations (taxonomy, thesaurus,

conceptual model and logical theory) for the term ontology as an ontology spec-

trum depicted in Figure 5.5. The ontology spectrum describes a range of semantic

models of increasing expressiveness and complexity.

Included in the figure as described by Fromm et al. (2005) are models and lan-

guages, for example, the relational data model and XML on the lower left followed

by XML schema, the ER model, the XML Topic Map Standard (XTM), Resource

Description Framework/Schema (RDF/S), Unified Modelling Language (UML),

Mesodata, Web Ontology Language (OWL), through to First Order Logic (the

predicate calculus). From this point, the spectrum then extends beyond modal

logic and becomes largely theoretical. Mesodata, which is a recently developed

approach for enhancing a data model’s capabilities by providing for more ad-

vanced semantics to be associated with the domain of an attribute, has also been

included in the ontology spectrum as shown in Figure 5.5.

The four different interpretations of the term ontology are as described in

Fromm et al. (2005) and are summarised as follows:



CHAPTER 5. ONTOLOGY IN CONCEPTUAL MODELLING 133

Taxonomy. Taxonomy is the simplest form of semantic model ranging at the

low end of expressiveness. A common taxonomy can be considered as a

hierarchy (categorising or classifying) of terms with each being a subclass of

a more general term. The association between two terms becomes a hierar-

chical structure like the parent-child relationship. Taxonomies are useful

for classifying things, but they are not useful for modelling the meaning of

things.

Thesaurus. Thesaurus is a higher order form of semantic model than a taxono-

my as its associations contain additional inherent meaning. In other words,

a thesaurus is a taxonomy with some additional semantic relationships in

the form of a controlled vocabulary. However, a thesaurus is not explicitly

a form of taxonomy hierarchy. The nodes in a thesaurus are terms meaning

words or phrases. These terms have narrower than or broader than relation-

ships to each other. A thesaurus also includes other semantic relationships

between terms such as synonyms.

Conceptual model. Conceptual model is a semantic model in which relation-

ships are explicitly specified. Both conceptual model and logical theories

can be considered ontologies, the former a weaker ontology, the latter a

stronger ontology. Unlike a taxonomy which is commonly shown as a tree,

i.e. a hierarchical structure with child nodes having only a single parent, an

ontology typically takes the form of a graph, i.e. a network with branches

across nodes (representing other relationships) and with some child nodes

having links from multiple parents. This variability in connectivity pro-

vides tremendous flexibility in dealing with concepts since many concep-

tual domains can not be expressed adequately within either a taxonomy or

a thesaurus.

Logical theory. Logical theory is the most expressive form of semantic model

ranging at the high end of the spectrum. Simple ontologies are merely

subclass hierarchies or a network of connections providing limited clues that

a computer can use to determine meaning; richer ontologies can include, for

example, rules and constraints governing these connections. Improvements

in languages such as OWL that can express more meaning and approaches

to model-based programming increase the ability to move from conceptual

models to logical theories, enabling computers to do automated reasoning,

without the need for human coding steps.



CHAPTER 5. ONTOLOGY IN CONCEPTUAL MODELLING 134

In summary, an ontology may have different definitions and may take a variety

of interpretations from simple taxonomies with minimal hierarchy of knowledge

(only parent/child relationships) to thesauri (extended vocabularies) including

words and synonyms, to conceptual models having more complex relationships,

and to logic theories including very complex, expressive and meaningful know-

ledge.

In addition, since ontologies are widely used for different purposes (e.g. know-

ledge management, e-commerce, semantic web, intelligent integration informa-

tion, etc.) in different communities (e.g. knowledge engineering, databases and

software engineering), the ontology community distinguishes ontologies that are

mainly taxonomies as lightweight ontologies, while models offering stricter con-

straints and therefore more actionable semantics are known as heavyweight on-

tologies. Lightweight ontologies include concepts, concept taxonomies and rela-

tionships between concepts and properties that describe concepts. Lightweight

ontologies are usually less restrictive. Heavyweight (also sometimes referred to

as fully fledged) ontologies add axioms and constraints to the lightweight ontolo-

gies. Heavyweight ontologies usually provide complete definitions (of concepts,

relationships, etc.). This models a domain in a deeper way and provides more

restrictions on the semantic domain.

The existing ontology’s class hierarchy presented in this chapter is analogous

to the lightweight ontology that is defined as a set of elements connected by some

structures, i.e. is-a hierarchy. The use of mesodata as an ontological concept

extends beyond lightweight ontologies as it provides more complex relationships

and expressive domain knowledge to conceptual models.

5.2.4 Ontologies versus Conceptual Data Models

Ontologies have both similarities and differences when compared with conceptual

data models. In general, an ontology is an explicit specification of a conceptualisa-

tion that describes the semantics of data for sharing and reuse and should capture

domain knowledge in a machine-readable form in order to provide a consensus

and shared understanding of the domain. A conceptual data model is used to

model the Universe of Discourse (UoD), entities and relationships corresponding

to particular user requirements that are independent of their implementation.

Ontological modelling is concerned with capturing the relevant entities of a

domain into an ontology of that domain using an ontology specification language
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such as OWL or RDF that is based on a small set of basic, domain independent

ontological categories (Guizzardi, Herre and Wagner, 2002). On the other hand,

conceptual modelling is concerned with identifying, analysing and describing the

essential concepts and constraints to capture a user’s view of some domain in

a formal conceptual schema with the help of diagrammatic modelling that is

expressed in metamodels, like the ER/EER model, NIAM/ORM and UML class

diagrams.

There are some similarities between ontologies and conceptual data models in

that both are represented by a modelling grammar with similar constructs (El-

Ghalayini, Odeh and McClatchey, 2006). For example, concepts/classes/types

in ontologies correspond to entity types in conceptual data models. Thus, the

methodologies of developing both models have common activities (Fonseca and

Martin, 2007). However, as discussed by Spaccapietra (2008), there are two

important differences. Firstly, an ontology targets data description relevant to

the wider community whereas a conceptual data model targets data management

for a given organisation. Secondly, an ontology describes what is known about the

real world (open world assumption) while a conceptual data model prescribes how

the world of interest is (closed world assumption). In the open world assumption,

information in the ontology may be incomplete. Instances are accepted as long

as they do not contradict the knowledge described, e.g. tertiary students should

be linked to a university but if they are not, it could be assumed that this will

be done later. Conversely, with the closed world assumption, instances have

to comply with the schema and constraints, e.g. students must be linked to a

university.

Another obvious point regarding the differences between ontologies and

schema definitions as described by Fensel (2001) and Gómez-Pérez, Fernández-

López and Corcho (2004) is that an ontology must be a shared and consensual

terminology because it is used for information sharing and exchange. An elabo-

rated comparison between database schemata and ontologies can be found in

Fonseca and Martin (2007), Meersman (1999) and Spyns, Meersman and Jarrar

(2002).

In summary, it is apparent that ontologies and database schemata are closely

related. As both are abstract concepts in conceptual data models, the distinction

between conceptual schemata and ontology representations is somewhat blurred.

Through this thesis research, the major differences between ontologies and con-

ceptual schemata have been identified as follows:
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• Ontologies are developed to define the meaning of terms used in some do-

main while conceptual schemata are developed to model some data, and

• Some ontologies are used to describe a type level including instances at the

basic ground level while conceptual schemata are used to describe the type

level (no instances).

Without an inclusion of instances, ontologies can be considered as either a sub-

type hierarchy or an aggregation hierarchy, which shows a significant similarity

between ontologies and conceptual schemata in terms of descriptions of the type

level.

5.3 Ontology-Based Conceptual Data Modelling

Conceptual modelling is a very important phase in designing a successful database

application (Elmasri and Navathe, 2007). As conceptual modelling accommodates

more of the concepts for specifying terms of interest in a particular domain and

the relationships among them, it is clear that the information about the domains

are strongly related to conceptual modelling. This section presents conceptual

modelling that incorporates an ontology as a domain knowledge for database

design.

5.3.1 Using Ontology for High-Level Conceptual Data

Models

Ontologies can be considered as domain-oriented concepts consisting of terms de-

noting abstract concepts, their relationship and constraints. Concept definitions

in ontology are similar to schema definitions in relational databases as well as

classes in object-oriented databases. Ontologies are suited to represent high-level

(conceptual) schema, which is independent of the implementation level. The rela-

tionships between three associated components; ontologies, conceptual schemata

and relational schemata are shown in Figure 5.6.

Figure 5.6 shows a simplified description of the conceptual design that suc-

cessfully captures a conceptual domain. Ontologies can be incorporated into

conceptual design as a conceptual domain schema, extending a high-level concep-

tual data model, the ER/EER model, ORM and UML class diagram to represent

the knowledge of application domain being modelled.
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Figure 5.6: A simplified diagram to illustrate the relationship between ontologies
and the underlying conceptual (and logical) schemata.

From this research, an ontology can be viewed as a structure of terms of

interest in a particular information domain and the relationships among them as

shown in Figure 5.1(b) (Page 122). It helps capture the semantics of a domain

as it can suggest what terms might appear in an application domain and how

they are related to other terms. The main purpose of an ontology is to make

the information content explicit in a manner independent of the underlying data

structures that may be used to store information in a data repository. Ontologies

are thus abstractions and can describe different types of data organisations such

as relational tables and textual and image documents (Mena and Illarramendi,

2001).

Another important feature of ontologies is that it must be machine-readable.

In conforming with this principle, the conceptual domain schema can be corres-

pondingly transformed from the high-level data model into the implementation

data model for use in commercial relational or object-relational DBMSs. This

step is called data model mapping or logical design, where the results become

the database schema in the implementation model of the DBMS (Elmasri and

Navathe, 2007). That is, the structured ontologies from the ER/EER, ORM and

UML class diagrams can be processed and translated into SQL.

5.3.2 Ontology’s Class Hierarchy Modelling

The concept of Ontology can be easily applied to the term domain as it describes

the concepts and the relationships that hold between those concepts representing

features of some domain of interest. This chapter suggests that the classical

ontology’s class hierarchy that is represented by the hierarchical organisation of

concepts through the is-a relationship, can be introduced into conceptual models
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to provide richer semantics and such ontologies can be modelled using mesodata

concepts. This chapter uses common domain structures to represent ontological

hierarchies. It is expected that a set of built-in mesodata operations would be

used to facilitate semantic domain queries using modified database query language

syntax.

The ontology’s class hierarchy modelling is described in terms of data struc-

tures, integrity constraints and languages as follows:

Data Structures. The basic ontological class hierarchy constructs consist of

terms (also called concepts or classes) and their relationships, basically rep-

resented by hierarchical structures. Note that individuals (or instances)1

are the basic ground level objects of an ontology. However, an ontology

need not include any individuals.

• Terms. Terms are the core concepts related to the domain and include

abstract groups, sets, collections or type of objects. They may contain

individuals, other classes or a combination of both. For example, in the

publisher domain, obvious terms include reviewer, author and paper; the

term author would contain all the individuals that are authors in the domain

of interest. Terms are usually hierarchically organised through a structuring

relationship such as is-a (superclass, subclass) or part-of. For example,

consider the terms Person, Reviewer and Author — both Reviewer and

Author might be a subclass of Person (with Person as superclass of Reviewer

and Author). Terms are represented as squares as shown in Figure 5.7 and

can be considered as entity types in the ER model. The word concept and

class are sometimes used in place of term. Terms and classes are concrete

representation of concepts.

1The research on an ontology is sometimes particularly detailed such as having instances
of classes within ontologies while another research suggests that the recording of instances or
ground content should be done by the information system itself under the guidance of the con-
ceptual schema (Fonseca and Martin, 2007). In general, ontologies should not include instances
of its concepts corresponding to the assertion by Stevens, Goble and Bechhofer (2000) who
stated that an ontology should not contain any instances as it is supposed to be a conceptu-
alisation of the domain. The combination of an ontology with associated instances is what is
known as a knowledge base. Obrst (2003) suggested that ontologies and knowledge bases are
distinguished by their types of assertions. Ontologies define generic or class-level assertions,
about entities, their properties and relationships. Knowledge bases are instance (or equivalent
fact) bases, and define instance-level assertions based on class-level properties and relationships
inherited from the ontological assertions. At the ontological level, a Person Lives at a Location
Having an Address. At the knowledge base level, ‘Lyn’ is an instance of a Person and lives at
‘the FMC Flats on Flinders Drive, Bedford Park, South Australia’ is an instance of a Location
Having an Address.
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Figure 5.7: An example of a representation of terms and relationships.

• Relationships. Relationships represent a type of interaction between terms

(or concepts) of the domain. Essentially, the hierarchical organisation of

terms through the inheritance (is-a) relationship constitutes the backbone

of an ontology. Other kinds of relationships like part-whole (part-of) or

synonym (syn-of) or application specific relationships might exist. Fur-

thermore, a set of logical axioms is often associated with the ontology to

specify semantics of the relationships (Necip and Freytag, 2005). Rela-

tionships can also be either transitive or symmetric (refer to Section 5.2).

Relationships are represented as arrows linking terms together. Figure 5.7

shows a representation of terms and relationships linking the terms.

The addition of the is-a relationship has created a hierarchical organisation

which is also know as taxonomy, a tree-like structure (or more generally, a

partially ordered set) that clearly depicts how objects relate to one another.

In such a structure, each object is the ‘child’ of a ‘parent’ class (some lan-

guages restrict the is-a relationship to one parent for all nodes, but many

do not). In addition to standard is-a and part-of relationships, ontologies

often include additional types of relationship that further refine the seman-

tics they model. These relationships are often domain-specific and are used

to answer particular types of questions. An ontology consists of a number

of relationships. However, the majority of semantic relationships in an on-

tology are concerned about the relation between two terms related in the

hierarchy by the semantic relationships such as is-a or is-subclass-of.

The idea behind the modelling of semantic relationships in ontologies is to use

the common domain structures provided by mesodata concepts in handling dif-

ferent types of relationship. For example, the hierarchical is-a relationship can

be easily modelled by a TREE mesodata type. Table 5.1 shows an example of

the corresponding usages of terms within semantic relationships in ontology and
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Table 5.1: Corresponding use of terms between semantic domain relationships
and common domain structures

TREE

Semantic (domain)
relationships between terms

Common domain structures
(Mesodata Types)

is-a
is-subclass-of
related-to
part-of
instance-of
member-of
kind-of
locatedIn
livesIn
hasSibling
hasChild
hasParent
hasAncestor
Insubtree

syn-of SYNONYM

adjacentTo
closeTo
inProximity
equalTo

WGRAPH (Weighted Graph)

first and last
next and previous
inbetween...and...

LIST

adjacentTo GRAPH

next and previous
inbetween...and... CLIST (Circular List)

WTREE
(Weighted Tree)

is-a
.
.
.
Insubtree
closeTo

common domain structures.

Integrity Constraints. Constraints provide a method of precisely defining the

semantics of data and play an essential role in establishing the quality of a

database and its correct evolution (Parent et al., 2006a). Most often con-

straints are restrictions placed upon attribute values, forcing conformance

to application rules. Also, most data models come with integrity constraints

that can be specified using predefined clauses of the associated data defini-

tion language. For example, the standard SQL allows the specification of

uniqueness constraints (using PRIMARY KEY and UNIQUE clauses) and refer-

ential constraints (using FOREIGN KEY clauses) (Parent et al., 2006a).

Traditional integrity constraints are limited to dealing with attribute value

domains that refer to ontologies. Thus, it is desirable that the deploy-

ment of the ontology’s hierarchy model will enable attribute values to be

validated against the ontology to ensure that only valid attribute values

(those belonging to the domain or subset of terms) are stored in the onto-

logy. This ontology-based referential constraint (Chong et al., 2006) can be
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viewed as an extension to the traditional referential constraint mechanism

in a RDBMS that enforces foreign key relationships between a referencing

table and another table in the database. The key difference is that the

domain of attribute values is identified by the referenced ontology.

The ontology-based referential constraint is similar to the total domain

participation (TDP) constraint proposed in OntoER (Section 5.4) and thus

the TDP constraint can be used to restrict attribute values by referencing

ontologies. This can be applied to the ontological mandatory role (OMR)

constraint in OntoORM (Section 5.5) and the ontological type (OT) con-

straint in OntoUML class diagram (Section 5.6) in the same way as the

TDP constraint.

Languages. As an ontology should be machine readable with the data managed

by DBMSs, it is desirable that the ontology can be managed using the

same framework so that users are able to query ontologies (semantic in-

formation) in the same way as querying relational data (instead of dealing

with multiple heterogeneous data repositories). Such queries can extract

more information out of relational data if the relational data are associ-

ated with ontologies in the domain of the relational data. For example, if

a column in a relational table contains names of diseases, a query asking

for a match on ‘Immunodeficiency Syndrome’, will be able to retrieve rows

containing the value ‘AIDS’ providing that this value of ‘AIDS’ from the

NCI Cancer Ontology (Mindswap, 2008) is correctly interpreted as a type

of ‘Immunodeficiency Syndrome’ (Chong et al., 2006).

As the Mesodata DDL (MDDL) and Mesodata DML (MDML) specified

by de Vries (2006) and de Vries et al. (2004) provide extensions to the

standard SQL necessary to implement the integration of complex domains

into a relational database, it is also possible to utilise them to provide richer

ontology-based semantic querying capability.

5.4 The Ontological Entity-Relationship (Onto-

ER) Model

Introducing the semantics of the domain into conceptual models can be done by

reusing pre-existing ontologies. It is worth considering pre-existing ontologies if

they can be refined and extended from existing sources for a particular domain.
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Figure 5.8: Symbols of major components in the OntoER model.

Many ontologies are available in electronic forms on the web. For example, a

knowledge base of NCI cancer ontology (Mindswap, 2008) captures detailed se-

mantic relationships among genes, diseases, drugs and chemicals, anatomy, organ-

isms and proteins. A relevant ontology of diseases (WrongDiagnosis.com, 2008)

provides information about symptoms, diseases and diagnoses.

This thesis presents the Ontological Entity-Relationship (OntoER) model to

show how common domain structures can be used to accommodate an existing

ontology’s class hierarchy into the ER model, thus enhancing conceptual model-

ling techniques. Additionally, EER extensions are orthogonal to the OntoER

extension and can also be included.

5.4.1 OntoER Data Structures

Consistent with MDER, all of the MDER concepts and symbols remain available

together with a new concept of an ontological entity type for hierarchies. Onto-

logical entity types and ontological mappings in OntoER are similar to mesodata

entity types and mesodata mapping in MDER, respectively.

Figure 5.8 shows symbols for the major components in the OntoER model com-

prising the basic ER constructs, ontological entity types, ontological mappings

and a TDP constraint.
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Figure 5.9: A DISEASES ontological entity type with TREE ontological data type
of an existing class hierarchy.

5.4.1.1 Ontological Entity Type

An ontological entity type is a complex-domain entity type that represents a do-

main for an attribute. Each ontological entity type has a name and an ontological

data type. Ontological data types are common domain structures such as a tree,

weighted tree, graph or weighted graph whose values/instances are structures of

the attribute domain typically available together with operators for manipulation

and comparison. A mesodata type is mainly used to define such common domain

structures in OntoER.

Ontological entity types in OntoER are depicted as hexagons with two sections:

the top section for the name of the ontology (domain), the bottom section for onto-

logical data type. Ontological entity types referring to an existing ontology’s class

hierarchy are modelled as TREE in the bottom section for ontological data type

together with a triangle symbol enclosing a hierarchy as illustrated in Figure 5.9.

In this example, the ontological entity type may have the name DIAGNOSES and

an ontological data type TREE, which is well equipped with built-in operators

such as INTREE for manipulating values provided in the existing ontology’s class

hierarchy. Conceptually, to the users’ view, ontological schema holds ontology

terms whose meaning is specified by ontological data in the system-defined table

within the RDBMS.

Thus, a portion of a diagnosis ontology as shown in Figure 5.1(b) (Page 122)

can be modelled using a TREE mesodata type to represent a structure of this

ontology. By using a TREE mesodata type definition, a set of operations (such as

INTREE, SIBLING and DESCENDENT) thus become applicable to the ontology. It

has the source schema R (PARENT,CHILD) which has a composite key or attributes

Parent and Child as a primary key to describe the structure of the diagnosis

ontology. Nodes further down the tree are more specific. Any node in a tree with

both a child and a parent can be a concept corresponding to the term (or class)

used in the ontology hierarchy. Also, connections between nodes in the tree can be

represented by the semantic relationship is-a in the hierarchical structure since
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Figure 5.10: An OntoER Example.

the lower of two connected nodes is contained within the upper node. This can

also provide richer querying capability that can be performed over the semantic

domain. For instance, the operators such as INTREE are defined to operate on

ontology data over a specific TREE ontological data type.

5.4.1.2 Ontological Mapping

The modelling of an existing ontology’s class hierarchy requires mapping to con-

vert a data value to a domain value. An ontological mapping between an ontolo-

gical entity type and an attribute defines a set of mappings required to interpret

a data value within a domain context.

Consistent with MDER extensions, OntoER diagrammatic notation uses the

symbol of a circled om to represent ontological mapping as shown in Figures 5.8

and 5.10. Figure 5.10 shows how Diagnosis and Specialisation attributes can

be associated with a diagnosis ontology, which is an existing ontology’s class

hierarchy. A portion of which is shown in Figure 5.1(b) (Page 122).

5.4.2 OntoER Constraints

The OntoER model includes all the constraints of the ER/EER models. Addi-

tionally, an integrity constraint, total domain participation (TDP), is introduced

into the OntoER model to restrict attribute values by referencing ontologies. Con-

sistent with the TMDP constraint in MDER, an attribute that references an on-

tological data type can be defined to participate either totally or partially. The

TDP constraint specifies that every attribute value must correspond to values

which exist within the ontology (domain). In other words, data stored in the
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attribute must always come from existing terms in that domain. If the TDP is

not specified, the value must still adhere to the base type.

In OntoER diagrams, the TDP is shown as a double line connecting the partici-

pating attribute to the ontological mapping as shown in Figure 5.8. For example,

the double line connecting Diagnosis to the ontological mapping as shown in

Figure 5.10 indicates TDP, meaning that for the population of Diagnosis, every

instance must be taken from one of the values stored in the DIAGNOSES onto-

logy. This constraint also imposes on the Specialisation attribute (Figure 5.10).

The domain values for these attributes are generated from a portion of diagnosis

ontology shown in Figure 5.1(b) (Page 122).

5.4.3 OntoER Languages

As discussed earlier (Chapter 4 and Subsection 5.3.2), Mesodata DDL (MDDL)

and Mesodata DML (MDML) are extensions to SQL to enable the integration

of ontologies into a relational database, removing the need for specially written

application code to manage the ontological structures. Using these languages

can provide a powerful mechanism to map ontology-based semantics directly into

SQL.

The use of the language support for OntoER is shown in the transformation

of an OntoER schema into a relational schema as discussed in Chapter 8. In

particular, examples of the use of MDDL is demonstrated in the process associated

with specifying schema definitions in that chapter.

5.5 The Ontological Object Role Modelling

(OntoORM) Model

Object Role Modelling (ORM) is a conceptual modelling approach that has both

verbal and graphical syntax and is based on a sound theoretical foundation. In

recent years, ORM has gained much interest as a tool for modelling business rules.

Like the ER model, ORM does not adequately cope with the semantics of specific

domain knowledge. To address this, an extension to ORM is proposed, termed

the Ontological Object Role Modelling (or OntoORM) that allows an existing

ontology’s class hierarchy, which describes a hierarchy of values, to be modelled

with label types in ORM.
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Ontological label type C
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Symbol Meaning
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ontology's class hierarchy)

C

C

C r A

Figure 5.11: An extension of the ORM Symbols .

5.5.1 OntoORM Data Structures

Consistent with MDORM, all of the OntoORM concepts and symbols remain avail-

able together with a new concept of ontological label types for hierarchies. The

ontological label types and ontological mandatory role constraints in OntoORM

are similar to ontological value types and mesodata mandatory role constraints in

MDORM. Figure 5.11 shows symbols for the major components in the OntoORM

model.

Building upon the basic ORM model, the common domain structures are

applied to a label type (or a value type), termed an ontological label type. An

ontological label type is a label type whose values are associated with ontologies.

This is represented by the name of the common domain structure that is enclosed

by a dashed ellipse (refer to Figure 5.11). The triangle symbol enclosing a hierar-

chy for label types denotes the values referenced within an (existing) ontology’s

class hierarchy.

Each ontological label type is annotated as a named ellipse, with dashed lines.

A name of an ontological label type is denoted by common domain structures (e.g.

a tree, graph, weighted tree or list). Figure 5.12 shows a TREE ontological label

type with the triangle symbol enclosing a hierarchy associated with a role played

by a Disease entity type. Such an association between an entity type and an

ontological label type is termed an ontological reference type. The ontological

reference type shown in Figure 5.12 refers to a Disease where its code’s values are

structured as a TREE and which is to be found within a hierarchy of values of an

existing ontology’s class hierarchy.
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Figure 5.12: A Disease where the disease’s codes are associated with a TREE
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Figure 5.13: A simple OntoORM diagram.

5.5.2 OntoORM Integrity Constraints

Similar to the TDP constraint discussed in OntoER, the OntoORM model includes

all the constraints of the ER/EER models. Additionally, OntoORM requires a

constraint to indicate that the values of the object type must be taken from one

of the values recorded in the ontology — the ontological mandatory role (OMR)

constraint. This constraint is denoted as a black dot on the object type con-

necting to the roles of ontological reference types which are relationships between

entities and ontological values (examples in Figures 5.11 and 5.12). Figure 5.12

shows the ontological mandatory role constraint declaring that every instance in

the population of the role’s object type involving ontological values must play

that role. This constraint is similar to a conventional ORM’s mandatory role

constraint. The difference is that it imposes on all instances of the object type

associated with the ontological reference types rather than just those involving

the conventional ORM fact types or reference types.

Figure 5.13 shows a simple OntoORM model. Object types are displayed as

named ellipses, with solid lines for object (entity) types and dashed lines for label

(value) types. Label types that are labelled with common domain structures

are ontological label types. Associations are named sequences of roles, where

each role appears as a box connected to the object type playing it. Associations



CHAPTER 5. ONTOLOGY IN CONCEPTUAL MODELLING 148

that indicate the reference scheme (1:1 naming convention) may be abbreviated

in parentheses (e.g. personNr) next to the name of the entity type. A black

dot indicates that the role is mandatory (e.g. each Person has a Name). Arrow-

tipped bars over one or more roles are uniqueness constraints, indicating that each

instance populating that role sequence is unique. This example includes three

uniqueness constraints for binary associations: N:1 (for example, each person

lives in at most one city, and each city is lived in by many persons); 1:N (each

person may have many phone numbers, but each phone number belongs to at

most one person); and 1:1 (each person has at most one name, and each name

identifies at most one person). A dashed ellipse TREE indicates an ontological

label type. The black dot indicates that a role (between entities and ontological

values) is mandatory (e.g. each Country has a TREE structure) meaning that the

ontological mandatory role constraint is imposed on an object type’s population

associated with ontological reference types. For the population of country name,

each instance must be taken from one of the values stored in the ontology.

5.5.3 OntoORM Languages

Consistent with OntoER, OntoORM uses the Mesodata DDL (MDDL) and Meso-

data DML (MDML) (de Vries, 2006; de Vries et al., 2004), extensions to SQL, to

provide richer ontology-based semantic querying capability.

The use of the language support for OntoORM is demonstrated in the trans-

formation of an OntoORM schema into a relational schema as discussed in Chap-

ter 8. In particular, examples of the use of mesodata data definition commands

is demonstrated in the process associated with specifying schema definitions in

that chapter.

5.6 The Ontological Unified Modelling Language

(OntoUML) Class Diagram Model

The Unified Modelling Language (UML) is becoming widely used as a common

language for creating models of object-oriented software and its acceptance as

the Object Management Group (OMG) standard is helping it gain wide support

in industry (Halpin, 1999b; OMG, 2005). Several types of diagrams e.g. dia-

grams for (a) use cases, (b) static structures (class and object diagrams), (c) be-

haviour (communication, formerly known as collaboration, state-chart, activity
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and sequence diagrams), and (d) implementation (component and deployment

diagrams) (Halpin, 1999b) are provided by UML to assist developers of object-

oriented programming. For data modelling purposes, UML2 uses class diagrams

to show the important abstractions in the system and their interrelationships.

The main constructs of UML are classes, attributes, associations and

multiplicity constraints. Classes have properties in the form of attributes and

provide abstract services in the form of operations. In addition, classes can be re-

lated to each other through associations. Typically, classes in UML are depicted

as named rectangles with three sections: the top section for the name of the class,

the middle section for the attributes of the class and the bottom section for the

operations (methods) of the class. For the purpose of this discussion, the section

on operations is ignored. Whilst UML includes multiplicity constraints on the

association roles, it does not have a standard notation for attribute uniqueness

constraints. This may reflect the nature of object-oriented implementation where

objects can be uniquely identified by system generated object identifiers called

oids.

The underlying concept of UML may seem to be similar to that of ER dia-

grams. If the method/operation property of a class is ignored, it is reasonable to

suggest that object modelling is similar, in concept, to data modelling (Shah and

Slaughter, 2003). A class, an association between classes and a multiplicity of

attributes in UML corresponds to an entity type, relationship type and cardinality

in the ER model, respectively. Detailed discussions on UML may be found in

Booch et al. (2005).

One of the fundamental differences between UML (as well as the ER model

for that matter) and ORM is that whenever an attribute is used in UML, ORM

uses a relationship instead. As is the case for the ER model and ORM, modelling

an ontology in UML has not been well investigated. In this respect an extension

to UML is proposed, termed the Ontological Unified Modelling Language (or

OntoUML) Class Diagram model. This model will allows ontologies to be included

in the conceptual schema by defining ontological class types and ontological type

constraints.

2This chapter will use the abbreviation UML to mean UML class diagrams
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Ontological Name
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Child {PK}: Char

(a) (b)

Figure 5.14: A representation of ontological class types (a) general notation (b)
example of a DISEASES ontological class type.

5.6.1 OntoUML Data Structures

The OntoUML class diagram defines an ontology (i.e. domains of an attribute)

independently of the usual class, termed ontological class types. These ontological

class types are typically depicted as rectangles with two sections: the top section

for the ontological name and ontological data type of the class, the bottom section

for the attributes of the class as shown in Figure 5.14(a).

Figure 5.14(b) shows an ontological class type DISEASES with a TREE ontolo-

gical data type that refers to an existing ontology’s class hierarchy, as represented

by the addition of the triangle symbol enclosing a hierarchy. A list of attributes

comprising Parent and Child corresponds to a TREE ontological data type. The

symbol {PK} indicates a primary identification.

5.6.2 OntoUML Integrity Constraints

From a more general perspective, it is also necessary to allow users to express

integrity constraints at the conceptual schema level (Parent et al., 2006a). For

modelling applications dealing with ontologies, constraints in a domain know-

ledge should be addressed. Similar to the TDP and OMR constraints discussed in

OntoER and OntoORM models, respectively, the OntoUML class diagram intro-

duces the ontological type (OT) constraint to enable attribute domain values to be

validated against the ontologies. Ontological type constraints are used to restrict

possible domain values of the attributes in that these values must be taken from

one of the values recorded in the ontology.

UML allows standard and user-defined constraints to be added in braces. In

OntoUML class diagrams, the notation {OT} is used after the attribute name to

signify the ontological type constraints, as shown in Figure 5.15. In UML, the

more complex constraints can be specified informally in an attached note. In the
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zipCode {PK} {OT}: ZIPCODES
city:  Char
state: Char

lives in0..* 1..1

Figure 5.15: A simple OntoUML class diagram.

absence of a standard UML notation, it is at the discretion of the modeller to

decide whether such constraints are specified and it is perhaps not surprising that

for many of the UML models that one encounters in practice, these constraints

are simply omitted (Halpin, 1999b).

Figure 5.15 shows a simple OntoUML class diagram of the geographical loca-

tion whose zip code’s domain refers to an ontology. The ontological class types

define the domain of zip codes independently of the ZipLocation class. The Zip-

Location class has the additional attributes of the city and state where it is

located. In UML the domain of any attribute may optionally be displayed after

it, suffixed by a colon (Halpin, 1999b). In OntoUML class diagrams, the ontologi-

cal domain for the zipCode attribute are identified by appending the ontological

name. For example, ZIPCODES could be appended after zipCode to provide the

ontological domain of an attribute.

Relationships in UML, which are referred to as associations, are drawn as

lines between classes. Lines can be enhanced with relationship names and mul-

tiplicities. In Figure 5.15 lives in is a relationship name, with the black arrow

indicating the direction in which the relationship is read. Multiplicities3 are the

same as cardinalities in the ER/EER model. The 0..* (or *) multiplicity indicates

‘zero or more’. The 1..1 multiplicity for ZipLocation denotes total participation

and a single value in the association. This association between ZipLocation and

Contact can be described as ‘Each contact lives in one and only one ZipLocation’

and ‘Each ZipLocation is home to zero or more Contacts’.

The ontological type constraints should be specified in the schema. This

concern is consistent with the context recommended by Parent et al. (2006a)

that integrity constraints should be expressed at the conceptual schema level. In

3A star (*) represents the many side of a 1:N or M:N association. The number 1 indicates
the one side of a total 1:1 or 1:N association. The notation 0..1 denotes partial participation in
the association.
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OntoUML class diagrams, the {OT} constraint applied to the zipCode attribute

indicates that the values of the attribute domain must be taken from one of the

values stored in the ontologies in the same way as the TDP and OMR constraints

in OntoER and OntoORM model, respectively.

5.6.3 OntoUML Languages

Consistent with OntoER and OntoORM, OntoUML uses the Mesodata DDL

(MDDL) and Mesodata DML (MDML) (de Vries, 2006; de Vries et al., 2004),

which are extensions to SQL, to provide a powerful mechanism to map ontology-

based semantics directly into SQL.

The use of the language support for OntoUML is shown in the transforma-

tion of an OntoUML schema into a relational schema as discussed in Chapter 8.

In particular, examples of the use of mesodata data definition commands are

demonstrated in the process associated with specifying schema definitions in that

chapter.

5.7 Example of OntoER, OntoORM and Onto-

UML Class Diagram Schemata

Consider a MEDICAL database schema that keeps track of patients, their diag-

nosed diseases, drug treatments and their allocated physicians. Figures 5.16,

5.18 and 5.19 show the ontological schema for such a database based on the ER,

ORM and UML class diagram, respectively.

During the design phase of this database, discussions between a user and

the analyst/modeller often contains examples of the queries that an organisation

wishes to be able to execute over their data. Consider the following queries, none

of which is particularly unusual:

List all patients who are diagnosed with immune deficiency conditions,

List all physicians who are specialised in immune disorder,

List all physicians who study at a medical school in Australia,

List all physicians who live close to Flinders Medical Centre, and

List all patients who live close to their physicians.
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Figure 5.16: OntoER schema for an example MEDICAL database.

A conventional database application could express the queries using an equal-

ity operation as shown, for example, in the following way:

SELECT PatientID

FROM visit

WHERE Diagnosis = ‘Immune deficiency conditions’;

SELECT Name

FROM physician

WHERE Specialisation = ‘Immune disorder’;

According to the data shown in Figure 5.1(a) (Page 122), none of the above

queries will return any results. The first would not identify patients diagnosed

with ‘AIDS’, ‘Diabetes’ or ‘SCID’ since none of those terms identically match

the term ‘Immune deficiency conditions’. Likewise, the second query would not

identified physicians specialised in ‘AIDS’, ‘Diabetes’ or ‘SCID’ since none of

those terms identically match the term ‘Immune disorder’. These queries produce

false results as they fail to associate the term ‘Immune deficiency conditions’ with

other more specific types identified by the terms ‘AIDS’, ‘Diabetes’, or ‘SCID’,

as shown in the diagnosis ontology that is graphically illustrated in Figure 5.1(b)

(Page 122).

Similarly, the domain knowledge providing the location of a medical school is

required to answer the third query. Without a semantic support, like the diagnosis

ontology (Figure 5.1(b)) or location ontology (Figure 5.17), it is difficult for the

DBMS query processor to solve such vocabulary ambiguities. In this case, such
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Figure 5.17: A portion of the medical school location ontology.

ontologies provide additional meanings for the database values related to a certain

attribute. These meanings are expressed through the relationships between the

corresponding concepts (Necip and Freytag, 2003).

Clearly, the domain knowledge required to answer such queries is not present

in the relational table. A conventional database system does not take into account

the semantics pertaining to a specific domain. In order to provide semantically

correct answers, the DBMS must have access to definitions that describe the

meaning of referenced terms or concepts.

Similarly, the point of interest of the fourth and fifth queries lies in the under-

standing of data semantics rather than simple transactional or analytical data

processing. In processing these queries, the different aspects of address/location

such as proximity or adjacency are of particular relevance. Thus, the DBMS

must also be able to identify those locations with zip codes that are considered

geographically close to that of the location of primary consideration.

Each of these queries requires knowledge of the domain. For the example

in Figure 5.16, the attributes Diagnosis, Specialisation, Name, City, AreaCode

and Zipcode are identified as requiring knowledge of the domain through their

reference to the associated ontologies. In the particular case of the Diagnosis

and Specialisation attributes, these are associated with the DIAGNOSES ontology

of an existing ontology’s class hierarchy (shown in Figure 5.1(b), Page 122). The

double line from Diagnosis and Specialisation to the circled om indicates a total

participation, meaning that every attribute value of Diagnosis and Specialisation

must be recorded in the DIAGNOSES ontology.
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Figure 5.18: OntoORM schema for an example MEDICAL database.

In most cases, the values that constitute a domain are implied through its data

type. Similarly, the values that constitute an ontological domain are specified

by ontological data types using the common domain structures provided by the

mesodata types. Applying this framework to the given example, the Name and

City attributes refer to the LOCATIONS ontology of an existing ontology’s class

hierarchy (shown in Figure 5.17). In this process, the TDP constraint is also

applied to both attributes in the same way as the Diagnosis and Specialisation

attributes.

In Figure 5.16, the Zipcode attribute of PATIENT and PHYSICIAN entity types

refers to the ZIPCODES ontology, the domain structures of which are generated

according to a weighted tree mesodata type. The single line from the Zipcode

attribute to the circled om indicates a partial participation, meaning that some

or part of the Zipcode attribute values adhere to the base data type. Likewise,

the AreaCode attribute refers to the AREACODES ontology, the domain structures

of which are generated according to a graph mesodata type. Like the Zipcode

attribute, the TDP is not mandatory restricted, meaning that the AreaCode

attribute values adhere to the base data type.

By accommodating ontologies into conceptual modelling, it is no longer dif-

ficult to express queries that manipulate both the data and their meaning. In

response to the previous queries example, such queries can now be expressed as

follows:
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Figure 5.19: OntoUML class diagram for an example MEDICAL database.

SELECT PatientID

FROM visit

WHERE Diagnosis INTREE ‘Immune deficiency conditions’;

SELECT Name

FROM physician

WHERE Specialisation INTREE ‘Immune disorder’;

SELECT LicenceNo

FROM study

WHERE Name INTREE ‘Australia’;

SELECT Name

FROM physician

WHERE Zipcode CLOSETO ‘Flinders Medical Centre’;

SELECT PatientID, Name

FROM patient p, visit v, physician ph

WHERE p.PatientID = v.PatientID

AND v.LicenceNo = ph.LicenceNo

AND p.Zipcode CLOSETO ph.Zipcode;

Incorporating ontology-based semantics into conceptual modelling greatly en-

hances modelling of the semantic domain of database applications. Applications

that have to work with domain-specific knowledge such as Healthcare applica-

tions, BioInformatics and Geographical Information Systems can take great ad-

vantage of this facility.
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5.8 Summary

Bringing together the concepts of common domain structures provided by meso-

data and existing ontology’s class hierarchies allows for the benefit of both prac-

tices to be merged, providing further research opportunities in incorporating on-

tologies into conceptual modelling techniques. The ER model, ORM and UML

have a well-accepted conceptual model that can be used for capturing user’s re-

quirements. However, to establish a better communication between designers

and users to understand the semantic domain, it is important that ontologies are

explicitly represented in conceptual modelling.

In this chapter, a mechanism for incorporating ontologies in conceptual mo-

delling techniques has been presented — the Ontological Entity-Relationship

(OntoER) model, Ontological Object Role Modelling (OntoORM) and Ontological

Unified Modelling Language (OntoUML) Class Diagrams. These aim to support

a rich class of the ontology-based semantics in conceptual modelling that can be

adopted through the common domain structures based on mesodata concepts.

The new proposed conceptual framework facilitates the reuse of existing onto-

logy’s class hierarchy through the reusable TREE mesodata type that enriches the

semantic expressiveness of data modelling using simple enhancements to standard

SQL.

As well as promoting the incorporation of the backbone ontologies that are

represented by the hierarchical organisation of concepts through the inheritance

(is-a) relationship in conceptual data model, it is expected that other kinds

of common semantics used in information modelling like synonym and related-

to can also be included using the mesodata concept. The work presented here

describes an attribute’s domain within the context of a single ontology. This

concept could be extended to address the case when the domain of an attribute

references concepts from multiple ontologies. An additional suggestion for future

research is in the use of (and combinations of) other kinds of various relationships

(e.g. the spatial-temporal) or the semantics of a particular application associated

with the ontology, to specify semantics of the relationships within the domain

knowledge.



Chapter 6

Polymorphic Relationships in

Entity-Relationship Modelling

This thesis chapter serves to provide some of the answers to support Objectives

1 and 2 of the thesis as stated in Chapter 1 (particularly Section 1.5.1) and

as indicated in Figure 1.3. The focus of this chapter is in exploring the con-

ceptual modelling extension to incorporate the concept of links as polymorphic

relationships and how this concept can be used to increase the expressiveness of

conceptual modelling approaches. Despite the flexibility offered by the existing

ER/EER models there remains a number of conceptual modelling problems that

have not been adequately resolved. Many of these relate to the relatively re-

stricted (and static) modelling of relationships and cardinality constraints. This

chapter explores the utility of links as overloaded polymorphic relationships and

shows how some of the outstanding conceptual modelling issues can be handled

in an intuitive manner if a revised view of links is adopted.

The structure of this chapter is as follows. Section 6.1 provides an introduc-

tion to this topic. Existing relationships as well as cardinalities on typical ER

modelling relationships are examined in Section 6.2. Next, problems and moti-

vating examples are addressed in Section 6.3. In Section 6.4, the term link is

introduced to represent overloaded polymorphic relationships. Three additional

issues, cardinality, default value and precedence, are raised in Section 6.5 in the

context of modelling overloaded polymorphic relationships, followed by a sum-

mary in Section 6.6.

158
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6.1 Introduction

Much of the research that deals with the understanding of the real world and

representing it in a conceptual model uses some form of the entity-relationship

model as a means of representation (Storey, 2005). Most conceptual modelling

methodologies are concerned with entities and relationships between entities. Re-

lationships between entities are fundamental to the representation and support

of semantics. Until now, the focus has been on simple hierarchical structures of

relationships such as is-a/role-of, instance-of/member-of and is-part-of.

However, real world relationships between entities are much more complex and

it may not be possible to represent them by using the basic relationships of the

ER model. Relationships across domains may not necessarily be hierarchical in

nature and their evaluation may require complex information requests involving

user-defined functions and fuzzy (or approximate) matching of objects (Sheth

et al., 2003). For example, consider the relationship ‘earthquake causes tsunami’.

The location and time of the tsunami are largely indeterminant, requiring a fuzzy

(or approximate) calculation based on the initial earthquake event. Thus, the

temporal and spatial proximity between two events are the main aspects of this

relationship (Sheth et al., 2003).

While research on the nature of relationships has received some attention in

the literature, many database design practices restrict their use to simple, bi-

nary relationships to represent associations between entities (Ullrich, Purao and

Storey, 2000). One of the most difficult problems, and one of the most common

errors in database design, is the misrepresentation of relationships or incorrect

decisions on whether to use ternary (or other higher-degree relationships) or mul-

tiple binary relationships to handle complex modelling (Song and Jones, 1993).

As the choice between an n-ary relationship or multiple binary relationships is of-

ten not clear, the appropriateness of the conceptual design depends heavily on the

semantics of the application (Elmasri and Navathe, 2007). Proposed extensions

that help the designer to identify the correct degree of a relationship and to rep-

resent a relationship properly include an analysis of binary relationships within

a ternary relationship in ER modelling (Song and Jones, 1993), a generalised

framework for analysing relationships during conceptual modelling of real-world

applications (Dey, Storey and Barron, 1999), and a comprehensive ontology for

classifying the semantics of relationships (Purao and Storey, 2005).

In addition, other types of relationship have been proposed to extend the ex-

pressiveness of the ER model. For example, the superclass/subclass (or is-a)
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relationship was introduced as part of the EER model and higher-order relation-

ships were introduced to form the HERM model (Thalheim, 2000). In HERM,

the concept of a higher-order relationship allows relationship types to be defined

with components that are also relationship types. In other words, this model per-

mits relationships among relationships. NIAM/ORM (Halpin and Morgan, 2008;

Nijssen and Halpin, 1989) also allows these kinds of relationships. The represen-

tation of the semantics in relationships has been extended using object-oriented

concepts, such as aggregation or relationship types that are a component of an-

other relationship type (Fahrner and Vossen, 1995; Rochfeld and Negros, 1992;

Storey, 1991). There remains, however, a number of outstanding conceptual mo-

delling problems and this thesis argues that these can be addressed by allowing

an overloaded form of polymorphic relationship.

As discussed by Bachman (1996), polymorphism is another major feature of

object-oriented design. Polymorphism may manifest itself in several forms in

object-oriented systems. One of these forms is that which is called a complex

relationship. Complex relationships support the idea that an entity may be as-

sociated with a set of entities whose exact nature is not fully known. All that

is known is that they have a certain behaviour pattern through which they are

related to the first entity. In addition, certain types of relationship may bind

the instance of one entity type to instances of two or more second entity types.

To deal with this situation, polymorphism has the ability to define additional

constraints that apply to the various instances that are involved.

Polymorphism comes in two forms — ad-hoc and universal (Cardelli and Weg-

ner, 1985). Overloading is an example of the former, in which the number and

type of the parameters supplied determines the behaviour. In the case of over-

loaded functions, the number and type determine the specific function invoked

while in the case of a relationship, it determines the semantics of the relationship

in terms of the participating entities. While polymorphism has previously been

explored in terms of changes in type for ORM (Halpin and Proper, 1995), this is

the first instance of research dealing with changes in the number of participating

instances.

This chapter introduces the concept of a link as a specialised form of polymor-

phic (overloaded) relationship. This chapter highlights one of the deficiencies of

conceptual modelling in dealing with the situation where the specific information

for any relationship is indeterminate and shows how this can be overcome through

the use of overloaded relationships by retaining the same attached entities but

allowing for variations on the number of instances an entity can play a role in
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a relationship. Two distinct aspects of polymorphic relationship modelling are

variable numbers of entity instances participating in a relationship and the iden-

tical semantics of each entity instance participating in a relationship. The formal

definition of link types is presented, along with cardinality constraints that can

be imposed on links. Finally, the two issues of default values and precedence are

discussed.

6.2 Review of Relationship Types in Concep-

tual Modelling

Relationships are an important part of conceptual modelling since they represent

associations between entities. In addition to serving as a connection between

entities or between a pair of classes, a relationship carries inherent semantics in

the form of constraints and other functionalities. These include inheritance and

specialised query capabilities that allow a given organisation to be modelled more

precisely (Halper, Liu, Geller and Perl, 2003; Storey, 1993; Woods, 1988). This

section reviews the expressiveness of relationships including the cardinalities and

participations of relationships that are used to describe some characteristics of

the relationship.

6.2.1 Types of Relationship

Modelling constructs are an important component of conceptual models and are

a strong determinant of the expressive power of the model. Most conceptual

modelling methodologies are constructed with entities and relationships. Rela-

tionships are thus one of the fundamental constructs in conceptual modelling.

A typical relationship is usually defined as an association between two or more

entities. The number of connections between these entities and the relationship

determine the degree, order and dimension of the relationship (Rochfeld and Ne-

gros, 1992). Cardinalities indicate the associative capacity of each entity involved

in the relationship.

Capturing some of the semantics of the real world are clearly represented

through the use of relationships. Halper et al. (2003) discussed that a seman-

tic relationship is a data modelling construct that connects between entities

and has inherent constraints and other functionalities that precisely reflect the

characteristics of the specific relationship in an application domain. Examples



CHAPTER 6. POLYMORPHIC RELATIONSHIPS IN ER MODELLING 162

of semantic relationships include is-a, part-whole, role-of, ownership and

materialisation. Such relationships are important in the construction of data

models for advanced applications.

Various types of relationship (or association) are used in modelling the real

world. Three common types of relationship that are defined in the literature

(Dahchour, Pirotte and Zimányi, 2005; Kerschberg and Weishar, 2000; Potter

and Kerschberg, 1988) are summarised as follows:

1. Classification. A classification relates a class with a set of objects sharing

the same properties via is-instance-of or is-of relationships. An object

must be an instance of at least one class. Classifications provide a means of

grouping specific object instances together which can be considered to be

an object type (Kerschberg and Weishar, 2000). For example, James is an

instance of class Person.

2. Generalisation. A generalisation1 relates superclasses to their specialisa-

tions2 called subclasses. In other words, object types are abstracted into

a higher level object type via an is-a relationship. For example, Vehicle

is a generalisation (or superclass) of Car, or Car is a subclass of Vehicle.

Subclasses inherit all properties (attributes, methods, roles and integrity

constraints) from their superclasses. Subclasses may have defined new pro-

perties.

3. Aggregation. An aggregation represents a relationship, in which one en-

tity represents a larger entity (whole or composite), consisting of smaller

entities (parts). This kind of relationship is also known as is-part-of,

has-a or part-whole. For example, Car is an aggregation of Body, Engine

and Wheel.

These generic relationships are powerful abstraction mechanisms that are used

in conceptual modelling (Batini et al., 1992). Data abstractions are well-accepted

in conceptual modelling and have been applied to all of these listed types of

relationshiip. Generalisation and aggregation were later adopted by the object-

oriented models.

1Generalisation is the process of minimising the difference between entities by identifying
their common features (Connolly and Begg, 2004).

2Specialisation is the process of maximising the differences between members of an entity
by identifying their distinguishing features (Connolly and Begg, 2004).
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As discussed by Connolly and Begg (2004), the two main purposes of data

modelling are to assist in the understanding of the meaning (semantics) of the

data and to facilitate communication about the information requirements. The

additional concept of aggregation should only be used when the organisation data

is too complex to easily represent using only the basic relationships of the ER

model.

Other types of relationship such as membership and temporal are also impor-

tant to data modelling (Kerschberg and Weishar, 2000; Potter and Kerschberg,

1988) as discussed below:

Membership. A membership is an abstraction mechanism that especially sup-

ports the is-member-of relationship between entity (object) types.

Temporal. A temporal relationship is used to model specific tasks that are re-

lated to the relative distances between events or entities in time or space.

6.2.2 Constraints on Relationship Types

Relationship types usually have certain restrictions that limit the possible com-

binations of entities and relationship types that may participate in the corre-

sponding relationship set (Elmasri and Navathe, 2007). For binary relationships

in the ER model, two main types of constraints are defined as cardinality and

participation as described below:

Cardinality Constraints. A cardinality constraint specifies the maximum

number of relationship instances that an entity can participate in. In El-

masri and Navathe (2007), this is called a cardinality ratio or maximum

cardinality constraint. Often, only two values, ‘one’ and ‘many’, are con-

sidered for the maximum cardinality constraint. The cardinality constraints

of a binary relationship are generally referred to as a one-to-one (1:1), one-

to-many (1:N) and many-to-many (M:N). For example, in Figure 6.1 the

manages relationship is 1:1 with a maximum value of 1 on both sides of the

relationship.

Participation Constraints. A participation constraint specifies the minimum

number of relationship instances that an entity can participate in. In El-

masri and Navathe (2007), this is also called existence dependency or a

minimum cardinality constraint. At least two values, ‘zero’ or ‘one’ are
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EMPLOYEE DEPARTMENT

EmpID DeptNo

(1,1)

Cardinality

MANAGES
(0,1)

"Each department
is managed by
one employee"

"Each employee
manages one
department"

"All department are
managed"(total
participation for
department)

"Not All employee
manage departments"
(partial participation for
employee)

Participation

Look-across
approach

Look-across
approach

Figure 6.1: Cardinality and participation constraints for the employee manages
department (1:1) relationship.

considered for the minimum cardinality constraint. The participation of

entities in a relationship appears as the minimum values for the relation-

ship. If the minimum cardinality = 0, then the participation of an entity in

a relationship is called a partial (optional) participation. If the minimum

cardinality = 1, then the participation of an entity in a relationship is called

a total (mandatory) participation.

Note that maximum cardinality, as always, must be greater than or equal to

the minimum cardinality to ensure that nonsensical cardinalities, such as (2,1),

are avoided for the relationship (Storey, 1993). It is important to note that the

participation for a given entity in a relationship is represented by the minimum

value on the opposite side of the relationship (Connolly and Begg, 2004). For

example, in Figure 6.1, the partial participation for the employee entity in the

manages relationship is shown as a minimum value of 0 beside the department

entity and the total participation for the department entity in the manages re-

lationship is shown as a minimum value of 1 beside the employee entity. The

participation constraint in Figure 6.1 can also be denoted using a double line and

a single line to represent the respective total and partial participation as shown

in Figure 6.2.

As discussed by Galindo et al. (2006), the (min,max) notation can be used

to express participation and cardinality constraints since if min = 0 then the

relationship is dealing with a partial participation, and if min > 0, the relationship

is dealing with a total participation. Alternatively, if max = 1, the relationship
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Figure 6.2: Another representation of cardinality and participation constraints
of Figure 6.1.

will be 1:1 or 1:N (on the side of 1), and if max > 1 (or max = N), the relationship

will be M:N or 1:N (on the side of N).

The literature definition of cardinality constraints are varied. In Chen’s origi-

nal ER model (Chen, 1976), the cardinality constraint can be defined as look-

across constraints based on how many entities can be seen through a relationship

type of a certain entity (Thalheim, 2000). Alternatively, the interpretation of

the participation constraint can be defined as look-here (Hartmann, 2003). This

has led to two different notations of expressing the cardinality and participation

constraints in relationships. In a further work by Ferg (1991), these two nota-

tions are referred to as the Chen approach (Chen, 1976)3 and Merise approach

(Rochfeld and Tardieu, 1983)4. In Figure 6.2, the participation and cardinality

can be considered as look-here and look-across approaches, respectively whereas

in Figure 6.1 both constraints can be considered as look-across approaches.

Both approaches represent the same semantics in binary relationships but

the way they are expressed is different. It is possible that the use of these two

approaches can result in the conceptual schema being misunderstood. In the case

of n-ary (n≥3) relationship types, the definitions of cardinality and participation

constraints are more complex, not well understood and have a slightly different

3The Chen approach defined the cardinality constraint as a look-across constraint that con-
siders only the maximum cardinality and that for binary relationships it must be 1:1, 1:N or
M:N (Ferg, 1991).

4The Merise approach defined the cardinality constraint using a look-here interpretation of
the participation. This cardinality notation is placed near the constrained entity while in the
Chen approach, the cardinality notation is placed at the opposite end (Ferg, 1991).
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SUPPLIER PROJECT

SuppID ProjID

SUPPLY

PART

PartID

(1,N) (0,N)

(1,N)

Figure 6.3: Constraints of the ternary SUPPLY relationship.

meaning to that for binary relationships. The use of both the Merise and the Chen

approaches for n-ary relationship types to simultaneously represent the semantic

constraints is effectively unworkable as such constraints cannot be replaced or

expressed by each other (Ferg, 1991; Hartmann, 2003; McAllister, 1998). For

this reason, most ER modelling textbooks suggest to use only one of the possible

approaches.

Generally, when the Chen approach is used, the constraint (the number of

possible instances) of an entity type in an n-ary relationship is determined by fix-

ing values/instances of the other (n-1) components. For example, the constraint

for a ternary relationship represents the number of entity instances/occurrences

of a particular entity in a relationship where the values for the two other enti-

ties are fixed. Consider the ternary supply relationship between supplier, part and

project as shown in Figure 6.3. To determine the constraint of the project entity,

the two values of supplier and part are first fixed, then the number of possible

occurrences (minimum, maximum) of the project entity are counted. The same

procedure is applied to supplier (with pairs of project and part instances) and part

(with pairs of supplier and project instances). In Figure 6.3, it can be seen that

the participation constraint of project is zero, that is, there are instances of the

supply relationship that associate instances of supplier and part entities, but with

no instance of project. This leads to difficulties in identifying the relationship

instances where information is indeterminate.

The polymorphic relationships presented later in this chapter show another

option to handle the situation where the specific information for any relationship

is indeterminate.

6.3 Motivation

The current modelling paradigms, including the ER/EER model, do not ade-

quately address a number of difficult conceptual modelling issues. Consider the
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Figure 6.4: Two design diagrams for Example 1 (a) duplication of the Colour
attribute and (b) an SPJ relationship requiring dummy instances.

following example:

[Example 1.] The ABC Company manufactures three types of widget

— widayes, which are always blue (irrespective of the manufacturer),

widbees, which the ABC Company paints blue (but which other manu-

facturers produce in other colours), and widseas that are by default

black but which can be painted according to the project on which they

are used. The XYZ Company manufactures widayes, green widbees

and has recently made a test batch of red widdees that are as yet

unused on any project.

In order to capture this, two diagrams can be designed:

1. a diagram where the colour attribute is repeated at three levels, as shown

in Figure 6.4(a), and

2. a diagram shown in Figure 6.4(b) where some of the semantic information

is lost and which uses dummy projects and suppliers.

The problem here is that one or more of the identifying attributes for the

Supplier-Part-Project (SPJ) relationship may be missing thus requiring either

the alternative, redundant values (such as for the former case above) or key value

substitution (as nulls conflict with entity integrity constraints) to overcome the

deficiency (the latter case). In both of these cases, the querying and updating of

the resulting database is made more complicated by the complexity of the rela-

tionship. Similar problems apply to binary relationships. Consider the following

example:
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DRUG
Drugcode

DoseForm

IS_PRESCRIBED
_FOR

CONDITION

DoseForm Condcode

Figure 6.5: Duplication of Form and Dose attributes.

[Example 2.] A drug has a standard form (tablet, capsule, etc.) and

dosage. For a relatively small number of conditions, either or both of

the form and dose may be varied.

Once again, the Form and Dose attributes need to be repeated as shown in

Figure 6.5. Note that the repetition of the attributes is not due to their taking

different roles different roles but rather whether the associated condition is known.

In most cases, a condition will reflect the relevant values for a standard dose and

form. Thus operationally, three non-mutually-exclusive scenarios can occur:

• The standard form and dose are duplicated for most conditions.

• Those conditions taking the standard form and dose are given a value of as

standard for form and dose.

• Those conditions taking the standard form and dose are given null values.

Unless adequately controlled, any system may potentially use all of these design

solutions and thus inheriting these same problems.

Finally, consider the following example:

[Example 3.] Details of meetings between groups of staff and students

are required to be stored. Meetings can be held between two or more

people.

In this case, meetings can be modelled as shown in Figure 6.6. In particular note:

• the creation of a supertype person together with a relationship between two

persons as shown in Figure 6.6(a). Apart from the additional modelling

overhead, this example demonstrates the problems that may arise from

the potential exponential explosion of instances as the number of persons

participating in the meeting increases.
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Figure 6.6: Three options for the modelling of meetings.

• the development of an entity type meeting requiring the use of a system-

generated key. Once again, this may involve the creation of a supertype

person (Figure 6.6(b)) or the creation of two separate relationships — stu-

dent participated in and staff member participated in (Figure 6.6(c)).

In addition to the static modelling problems described above, Chen (2006)

pointed out that the static nature of current models also makes the modelling

of dynamic situations difficult. This affects the modelling of behaviours and

perspectives.

6.4 Links as Overloaded Polymorphic Relation-

ships

Object-oriented programming languages extensively use overloading5 to activate

a method to operate differently according to the type and number of parameters

passed to it. For example consider a line method. Using two parameters (from and

to) a single default black line is produced e.g. public Line (double x, double

y). When three parameters are used, a line colour can be selected e.g. public

Line (double x, double y, char colour). Effects can vary according to the

types of parameters passed, such as where one is a point, another a direction

and a third a distance, e.g. public Line (double x, double theta, double

distance). In all these cases the same method is used, and the same outcome

can be achieved (i.e. a line), but the enabling code differs. That is, the method

has been ‘overloaded’.

5Overloading is a special case of the more general concept of polymorphism, from the Greek
meaning ‘having many forms’ (Connolly and Begg, 2004).
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6.4.1 Link Type Structure: Formal Definition

A variety of types of relationship have been discussed and different types of

relationship may exist in the same diagram (Chen, 1977). This thesis suggests

that a user using a polymorphic relationship, or link, can vary the number of

instances of an entity participating in an instance of a relationship. This section

provides a more formal definition of a link type as an overloaded polymorphic

relationship. The structural constraints of a link type are given in Section 6.5.

The ER model is based on a strong mathematical foundation. Like the rela-

tional model it uses mathematical relations to express the relationships between

entities. A relationship in the ER model is defined as an ordered tuple of en-

tities. In other words, a cartesian product of entities is a relationship, while in

the relational model a cartesian product of data domains is a relation (Chen,

2002). A relationship type R can be defined as a subset of the cartesian product

E1 × E2 × . . .× En (Elmasri and Navathe, 2007; Chen, 2002) as follows:

R = {r1, r2, . . . , rn}

ri = [ei1 , ei2 , . . . , ein ] | ei1 ∈ E1, . . . , ein ∈ En

Similarly, a link type L is a set of associations among n entity types

E1, E2, . . . , En. The following notations are used for a formal definition of a

link:

e : entity

E; e ∈ E : entity type (or set)

l : link

L; l ∈ L : link type (or set)

For links, a link type L can similarly be defined as a mathematical relation,

however, this allows each ei in L to exist zero or more times. Note that this

retains the need for Ei not to be distinct in order to maintain the semantics of

roles.

L = {l1, l2, . . . , ln}

li = [(e1)
κ1 , (e2)

κ2 , . . . , (en)κn ] | (e1)
κ1 ∈ E1, (e2)

κ2 ∈ E2, . . . , (en)κn ∈ En

Given an instance e ∈ Ei, the set of all instances of Ei that participate in L
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is defined as L(Ei,e) ⊂ L. The cardinalities of Ei with respect to L are given by

κi = α |L(Ei,e)|

where α indicates that the term α may be repeated according to the cardinality

κ specified for ei and |L(Ei,e)| means the number of instances in the set {L(Ei,e)}.
Importantly, if ∀i : κi = 1 then a link degrades gracefully to a relationship.

It should also be noted that each instance of Ei can participate in L zero or

more times, which means {e|L(Ei,e) = ∅} or {e|L(Ei,e) 6= ∅}, respectively. However,

a missing link instance still retains the degree of a relationship. Note also that

where κi > 1 then the role played by all instances ei must be the same (that is,

a link cannot be used to substitute for an employer-employee relationship).

6.4.2 Link Type Representation

This work utilises a more restrictive form of overloading, in the form of a link

type6. Importantly, any given link imparts the same semantic connection regard-

less of the type and number of participating entities. Consider the SPJ relation-

ship from the prior example as shown in Figure 6.4(b). This can be expressed

as a link type as shown in Figure 6.7(a). The SPJ link provides an association

between the three entity types for two purposes. Firstly, to record that a seman-

tic association exists, and secondly to provide a value for Colour in the context

of that association. For the SPJ link, the semantics of supplier provides part for

project is interpreted such that if there is no project instance then the project for

which the supplier provides part does not matter. Similarly, if neither a supplier

nor project instance is provided then SPJ is simply interpreted as part has default

colour.

While this polymorphic link greatly simplifies the visual representation, its

main advantage is in its overloading of the SPJ association. In Example 1,

widseas supplied by the ABC Company are by default black but may be painted

according to the project. In this case, an instance can be added to link only to

supplier (ABC Company) and part (widsea) with a colour of black, while further

instances, linked to all three entities, can provide the colour specific to an indi-

vidual project. In Example 3, meetings between staff and students can consist

6Since both polymorphic and non-polymorphic relationships are likely to exist in any given
schema, to avoid confusion between the two concepts the shorter term link has been adopted
to refer only to the former. This also varies the symbol used in ER diagrams to be a pentagon.
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Figure 6.7: Examples 1 and 3 redrawn as links.

of a variable number of each. Figure 6.7(b) shows the had meeting link for which

a variable number of instances of each of staff and student that can participate.

Cardinalities are discussed in more detail in Section 6.5.

In ER/EER modelling, the recording of cardinalities indicates the maximum

number of instances of a relationship that a single instance of an entity can

participate in. Since an instance of a relationship must be associated with exactly

one instance of each linked entity, this also effectively implies the maximum

number of times that an entity can be associated with any other entity. In many

cases this is sufficient. However, there are instances, such as those discussed in

Section 6.3, where there may be a maximum cardinality between any two entity

types that is lower than the cardinality of a specific entity with another entity

type.

In Figure 6.7(a), for example, an instance of a supplier may participate in

many SPJ links and an SPJ link may include zero or one supplier, whereas an SPJ

link must include exactly one part. Participation constraints can be considered

as a form of cardinality and can be used for links in the same way as they are

for relationships7. In developing links, this thesis acknowledges that some degree

of semantic ambiguity may result as discussed by Wand et al. (1999). However,

this thesis argues that the benefits of such an extension outweigh the additional

consideration a designer may have to expend.

7Without the specification of a total participation constraint (TPC) the common cardinality
of one-to-many implicitly means zero or one-to-zero to many. Adding a TPC essentially changes
the lower limit on the number of relationships an entity can/must participate in from zero to
one. Thus, the common cardinalities are effectively zero-to-one, zero-to-many, exactly one,
one-to-many and many-to-many. Refer to the discussion in Section 6.5.
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Figure 6.8: A link type (a) three types of cardinality in a binary link (b) a
suggested diagrammatic format. The α cardinality position ensures backward
compatibility.

6.5 Cardinality, Default Value and Precedence

for Link Types

The overloading of relationships gives rise to the three additional issues: (1) an

expansion of the ideas of cardinality for a link type; (2) the concept of default

values to overcome the missing information in the entity integrity constraint; and

(3) the concept of precedence to handle multiple conflicting values.

6.5.1 Cardinality Constraints on Link Types

Since link types can vary the number of instances of an entity that can participate

in an instance of a link type, the concept of cardinality and participation must

be re-examined. In general, each relationship instance ri in R is an association of

entities, where the association includes exactly one entity from each participating

entity type. For links, there are three types of cardinality as shown in Figure 6.8.

The cardinalities designated with the suffix ‘1’ indicate that they either relate

to the number of instances of E1 that can match to a single instance of L or E2,

or the number of instances of L that can be related to E1. This can occur for:

α (entity-to-entity) cardinalities. These correspond to the number of in-

stances of one entity that can be linked to a given instance of another

entity through (any number of instances of) L. This type corresponds to

the cardinalities available under the current ER/EER modelling technique.

Note that α cardinalities only make sense in binary relationships (which is
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why they are often omitted in ternary and higher relationships). In Fig-

ure 6.7(b) it would correspond to the statement Each staff member may

only meet with each student once.

β (entity-to-link) cardinalities. These correspond to the number of instances

of an entity that can participate in a given instance of L. In Figure 6.7(b) it

would correspond to the statement Each meeting may only have one staff

member present.

γ (link-to-entity) cardinalities. These correspond to the number of instances

of L that a given instance of an entity may participate in. For example, in

Figure 6.7(b) it would correspond to the statement Each staff member may

only meet with one student at a time.

Including the concept of participation as a cardinality constraint, the com-

mon cardinality ratios for binary relationship types are zero-to-one, zero-to-many,

exactly one, one-to-many and many-to-many. These cardinalities can also be ap-

plied to binary link types.

6.5.2 Default Values for Link Types

Solutions to the problem of missing information in the design of databases has

been widely addressed and the most commonly adopted technique to model miss-

ing data is null values (Codd, 1986; de Tré, de Caluwe and Prade, 2004). However,

the absence of a specific value can be resolved in the following two ways:

Null Value. This signifies the absence of information that occurs when the value

is unknown, inapplicable or one of the many other semantics of a null value8.

8Much of the research on the semantics of null values in relational databases dates to the
1970s and 1980s (Codd, 1970; Lacroix and Pirotte, 1976; Maier, 1983; Zaniolo, 1984; Roth,
Korth and Silberschatz, 1989; Imieliński and Lipski, 1984; Vassiliou, 1979). The two definitions
of nulls as given by Codd (1970) are missing and applicable, and missing and inapplicable.
Zaniolo (1984) later proposed a third definition as, essentially, a lack of knowledge about the
attribute’s applicability, or no information.

Subsequently, various logical approaches were proposed to handle null values. For example,
the commonly-used three value logic includes true, false (often by virtue of a value’s absence
— q.v. the closed-world assumption (Reiter, 1978)), and a maybe value that indicates that the
results may be true (Yue, 1991; Codd, 1979). A four value logic has also been proposed that
includes an additional truth value representing the result of evaluated expressions which have
inapplicable values (Codd, 1986; Gessert, 1990). Approaches to accommodating null values in
practical systems include the work of Motro (1988) who uses the ideas of conceptual closeness to
fill the vacancies represented by a null value and Roth et al. (1989) who suggests the inclusion of
nulls in NF2 databases. Null values have also been studied in relation to schema evolution and
integration (Kim and Seo, 1991; Roddick, 1995) and distributed databases (Chan and Roddick,
2006).
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This value can be applied to non-key attributes only.

Default Value. This signifies the existence of information when a specific attri-

bute value is not necessary for the relationship being described. Thus, the

use of a default value in a key attribute does not imply a null value but

rather an if not otherwise specified value.

The concept of default values to provide an alternative approach in some

situations has been discussed (Date and Darwen, 1992). Default values have

been suggested to store properties related to the existence of data such as exists

but not at the moment, exists but not known, exists but under change, and usually

only one default value is allowed (Thalheim, 2000).

To provide more clarity, the marker δ is used to indicate that the values

provided hold unless more specific information is available. It also indicates a

unique attribute value if it is used in a key attribute. Thus, the closed world

assumption (Reiter, 1978) continues to hold and no recourse to 3-valued or 4-

valued logic is required. Note also that the use of a default value does not violate

the idea of primary key uniqueness — at most one tuple can have a specified key

value regardless of whether it contains default values or not.

One the advantages provided by polymorphism is the ability to naturally pro-

vide for default values. In Example 1 (Page 167), the default colour for widseas

can be specified as a binary link to part and supplier while a widsea coloured

green by the ABC Company for the Foreshore project can be specified as a ternary

link to part, supplier and project. Using the δ notation, potential combinations

from this scenario can lead to the following information:

[Example 4.] Sample instances in the SPJ link type

Partid Suppid Projid Colour

Widaye δ δ blue

Widaye ABC Company δ δ

Widaye XYZ Company δ δ

Widbee ABC Company δ blue

Widbee δ Regius white

Widbee XYZ Company δ green

Widsea ABC Company Foreshore green

Widsea ABC Company δ black

Widdee XYZ Company δ red
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Any query on this information requesting the colour of Widseas on the Civic

project will return the default value of black.

6.5.3 Precedence

Given the nature of default values and the need to provide a degree of certainty

over what values are taken, a system of precedence is needed to ascertain the

values taken in specific circumstances. This will also help to clarify what happens

when multiple conflicting values are specified. Such multiple conflicting values

occurs, for example, in Example 4 when enquiring about the colour of Widbees

supplied by the ABC Company for the Regius project.

This thesis thus adopts the following rules when determining the value of an

attribute.

1. Where multiple instances fulfil a relational query, all are returned. For

example,

SELECT colour FROM SPJ

WHERE partid = "Widbee";

returns both blue, white and green.

2. Tuples comprised entirely of default value markers are not returned. For

example,

SELECT colour FROM SPJ

WHERE partid = "Widaye";

returns blue.

3. Where a query does not return a result, then the results of the highest

degree, more general query are returned. For example,

SELECT colour FROM SPJ

WHERE partid = "Widsea"

AND suppid = "ABC Company"

AND projid = "Civic";
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returns black.

To provide clarification on the results, the following precedence rules can

be applied:

(a) Determine the query degree. The query degree refers to the number of

entity key values specified in a query Q over a link type L. For example,

the query above has a query degree of 3.

(b) Apply the query degree to achieve the results. The results are the

union of queries when query terms are omitted such that the query

degree is successively reduced until the result is non-null or the query

degree = 1. For example, the query above is rewritten as:

SELECT colour FROM SPJ

WHERE partid = "Widsea"

AND suppid = "ABC Company"

UNION

SELECT colour FROM SPJ

WHERE partid = "Widsea"

AND projid = "Civic"

UNION

SELECT colour FROM SPJ

AND suppid = "ABC Company"

AND projid = "Civic";

If this query does not return any results then the query degree is re-

duced further until a result is achieved.

6.6 Summary

A number of areas are presented for further investigation. In particular, the

concept of links are presented in this thesis as a modelling tool only. To make

these operational, a method of mapping them to the relational model is required

in the same way that basic relationships are mapped. Generally, the links can be

handled in the same way as relationships but not always.

It is possible that further extensions may be more focused on query languages,

such as SQL, that may be particularly useful in supporting link processing. A

minor extension has been discussed in Subsection 6.5.3.
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As discussed earlier in Subsection 6.4.1, links can degrade gracefully to rela-

tionships. It is possible that this notion could be applied to the situation where

schema is ill-formed, but where there is a need to store information rapidly such

as the case for rapidly evolving events. It may be possible that links can provide

solutions to some of the problems in active conceptual modelling as identified by

Chen (2006).



Chapter 7

Data Modelling in Rapidly

Changing Complex Environments

This chapter proposes a rapid conceptual modelling framework that builds upon

the underlying technology components such as a knowledge base, hypotheses and

analysis routines, using the previously presented concepts of mesodata, ontologies

(Chapters 4 and 5) as a general ontology storage component, and the previously

presented concept of links as polymorphic relationships (Chapter 6) as part of a

common conceptual schema component. These components are used to form an

architecture for a novel conceptual modelling approach — Low Instance-to-Entity

Ratio (LItER) modelling. LItER modelling introduces an overarching architecture

that incorporates hypothesis, knowledge base and ontology support together with

a common conceptual schema. This allows data to be stored immediately and

for a more refined conceptual schema to be developed later. The LItER model at-

tempts to provide a platform and modelling technique to handle rapidly changing

phenomena.

The structure of this chapter is as follows. Section 7.1 provides an introduc-

tion to this topic. In Section 7.2, some outstanding conceptual modelling issues

relating to systems and data issues are presented. Section 7.3 discusses the late

binding of the conceptual model. Section 7.4 proposes the LItER model with an

examination of its schema, architecture and characteristics. Section 7.5 presents

a summary of the model.

179
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7.1 Introduction

There is a growing recognition that data has to be integrated rapidly where in-

vestigation of the data is urgent. This demands data modelling techniques that

facilitate the rapid exploration of data which accommodates automated data

analysis techniques. As discussed by Roddick et al. (2008), a number of issues

with current conceptual modelling methodologies that affect the ability of infor-

mation systems to deal with rapid data acquisition and assimilation include:

• The storage of data and the retrieval of information must take priority over

the full definition of a schema describing that data.

• The number of instances for each entity is relatively low resulting in the

data definition process taking a disproportionate amount of effort.

• The underlying structural changes are subject to information loss as a result

of changes to the schema’s information capacity.

• The structure of the information is only partially known or for which there

are multiple, perhaps contradictory, competing hypotheses as to the under-

lying structure.

As discussed by Roddick, Ceglar and de Vries (2007), dealing with sudden

events require systems capable of rapidly tracking and explaining the phenomenon

for a number of reasons:

• to eliminate, or at least limit, any immediate damage caused by the event;

• to explain how an event occurred or was allowed to occur, including accom-

modating alternative hypotheses as to why the event happened;

• to assist in any subsequent investigations, including the generation of infer-

ences regarding the people or other agents that may have been involved;

• to expose weaknesses in measures designed to prevent such events; and

• to prevent such events happening again.

The impact of such scenario on information systems can vary widely but given

that such events are largely unexpected, the rapid development of information
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systems capable of answering questions is clearly important. Unfortunately, cur-

rent conceptual modelling techniques are not capable of handling some of the

vagaries of these situations (Chen, 2006).

Roddick et al. (2007) further discusses that in the case of unexpected events,

the data necessary to assist in dealing with these events fall into two categories:

• context-specific data that could not reasonably have been foreseen, and

• referential or global data (such as ontologies, classifications, taxonomies,

etc) that can be compiled in advance and used as needed.

What is therefore required is a conceptual structure within which contextual

data can be loaded and waiting but which can also rapidly accommodate any

other data that might be deemed necessary.

In addition, Howard (2008) discusses that the importance of a common con-

ceptual data model is increasingly being recognised in providing a data model

that spans organisations’ applications and data sources. It defines data relation-

ships that span multiple data repositories. To build such infrastructure is not

simple and for this reason common conceptual data models are not widely avail-

able. Howard (2008) has suggested three main challenges to using a common

conceptual model as follows:

• establishing a consensus on what defines a common conceptual model;

• creating definitions of all those mappings between applications and the com-

mon conceptual data model; and

• the management of ongoing changes; both the common conceptual model

and application-specific models will evolve throughout the entire develop-

ment and maintenance lifecycle to reflect changes in business requirements.

From the above discussions, the major questions to be addressed in this chap-

ter include:

• What is the best method for accommodating multiple, diverse and complex

datasets within a single model that can provide support to multiple users

with different requirements?

• Is the concept of common conceptual data models viable?
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• How are related technologies (such as data mining) and the concepts

previously presented in this thesis (such as ontologies) able to be accom-

modated in a conceptual modelling framework?

• Can conceptual modelling techniques allow rapid and simultaneous storage

of data and data modelling?

This chapter outlines a new modelling approach, LItER modelling (Roddick

et al., 2008), that allows for rapid data modelling. This model accommodates

both context-specific and referential data and, as the model possesses a common

conceptual schema, the data can be recorded in a (temporal) database environ-

ment with all of the advantages that such a database offers, including security,

auditing and decision justification.

7.2 Significant Issues in Driving Rapid Concep-

tual Modelling Techniques

Rapidly changing information technology systems and user needs are by far the

most prominent of forces that drive the focus of conceptual modelling techniques,

so they are better able to handle complex, multi-channelled data in a sometimes

chaotic mix of user needs and application environments. This section outlines

some outstanding issues that affect rapid conceptual modelling techniques.

7.2.1 Systems Issues

As discussed by Roddick et al. (2008), some types of information systems are not

well served by using these common information system development techniques.

These include:

• systems where the immediate storage of data takes priority over data

organisation, with the development of a conceptual schema becoming a

secondary issue. For some systems, a mechanism to collect and store data

is required more rapidly than the database design phase will permit. This

includes systems designed rapidly in response to an immediate need (Chen,

2006).
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• systems for which the number of entity types is large in comparison with the

number of instances stored. For these systems, the overhead of conceptual

modelling can be high and can lead to short-cuts such as the aggregation

of inappropriate entity types.

• systems that undergo substantial structural change. While schema con-

version and schema’s information capacity changes do not always result

in a loss of information1, systems that regularly undergo structural change

often lose information. Such systems include those used for hypothesis crea-

tion such as scientific databases (Shoshani and Wong, 1985), criminology

systems (Chen, Zeng, Atabakhsh, Wyzga and Schroeder, 2003) and adhoc

models established to track evolving phenomena.

• situations where the structure of the information is only partially known

or where there are multiple, sometimes competing (although equally valid)

models of the same data. While XML can handle semi-structured schema

in which instances may possess varying structure, the overall schema is still

largely formalised. However, this approach deals with systems where the

existence of different entity types and the attributes they possess are largely

unknown or where there is no agreement on the structure. Such systems

include those that aim to handle empirical evidence in which the overall

structure may be changed as ideas are developed and the evidence may still

be in the process of being discovered. Where conflict between data and

schema arises in these types of systems, no assumptions can be made as to

whether the data or the schema are at fault.

All of these aspects are exhibited, to a greater or lesser extent, by any system

set up to handle sudden events and/or rapidly changing systems. While the

traditional forms of conceptual modelling may eventually handle these types of

systems through trial and effort, the overhead and side effects of doing so are often

excessively high. In practice, the conceptual modelling step (and its associated

benefits provided by the use of a DBMS) are often bypassed because of this

overhead, resulting in systems lacking the functionality offered by databases.

1As discussed by Roddick and de Vries (2006), the limits for practical schema versioning in
a database D are such that S1

p
≡ S2 iff I ′(D|S1) → I ′(D|S2) is bijective where I ′(D|Sn) is the

set of all instances of Sn inferable from D given the constraints of Sn.
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7.2.2 Data Issues

In addition to the types of system issues outlined above, Roddick et al. (2008) has

identified data issues that are common in the modelling and implementation of

even conventional systems. Some of these data issues are also apparent in rapid

deployment systems and some are affected by ambiguity in the application world.

Consider the following motivating example of the widgets manufacturing sys-

tem, that was previously introduced in Chapter 6, which is based around the

part-subpart and the supplier-part-project structures.

The ABC Company manufactures three types of widget — widayes,

which are always blue (irrespective of the manufacturer), widbees,

which the ABC Company paints blue (but which other manufacturers

produce in other colours), and widseas that are by default black but

which can be painted according to the project on which they are used.

The XYZ Company manufactures widayes, green widbees and has re-

cently made a test batch of red widdees that are as yet unused. Wi-

dayes are not only sold by themselves but are also used to make widseas.

Widayes are also known as ayewids.

Some of the problems illustrated in this example that may lead to further data

modelling difficulties include:

• Any collections of objects must be treated in the same manner as the ob-

jects themselves, often transitively, sometimes recursively. For example, if

a batch of widayes are found to be defective then there may also be some

widseas that also need to be recalled. This particularly occurs where groups

are referred to in place of individuals (either through metonyms, holonyms

or hypernyms).

• Attribute values are often introduced into the system in ways that are not

directly comparable despite conforming to the domain’s type definition. For

example, widayes may be described as blue, dark blue, x3333cc, royal blue,

PMS286 and so on. Despite being relatively common, synonyms, such as

widayes and ayewids in the example, are not well accommodated. While

data coercion is sometimes possible, this is not always a solution as the

provenance and integrity of the original data may need to be maintained.

Recent research into the incorporation of mesodata into conceptual mo-

delling (La-Ongsri et al., 2008) discussed in Chapter 4, the introduction
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Figure 7.1: An example schema for a parts example (from Roddick et al. (2008)).

of ontologies into conceptual models for database design (Chapter 5) and

earlier research into the support for mesodata (de Vries et al., 2004; de Vries

and Roddick, 2007) may assist here.

• Relations formed from n-ary or binary many-to-many relationships in many

conventional modelling techniques (such as ER/EER) must, for reasons of

entity integrity, have a stored instance for all its associated entities. In some

cases this is either not possible or not desirable and the common practice is

to either deform the model to suit a small fraction of the instances or, more

commonly, to create dummy or default codes to circumvent this constraint.

Consider the above widgets example. As widayes only come in blue there

may be no requirement to record the supplier or the project but for widbees

and widseas the project must be recorded if a specific colour is needed. In

the case of red widdees, the location of where the colour is to be stored is

not as obvious. Classical modelling would require colour to be recorded in

two (or more) places in the model, for example, in a schema such as that

depicted in Figure 7.1.

7.3 Late Binding the Conceptual Modelling

The latest trends in conceptual modelling are to rapidly build applications to

deal with dynamic and evolving world environments. To sustain this level of

development, the following two ideas can assist with the support of this approach.

7.3.1 Deferred Schema Deployment

Rapid application development relies on the rapid collection, collation and as-

similation of information into a database. In many cases, the data has loose
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associations and patterns and a specific schema is not required in advance. The

build options are flexible — the schema can be specified at a later stage or omit-

ted altogether. The nature of this approach suggests that schemata should be

in the form of common conceptual schemata that are easy to change or that can

evolve so as to be consistent with the data.

Based on this interpretation, Stonebraker and Hellerstein (2005) infer that

whilst there can be some structure to the data, data instances can vary in the

fields that are present and how they are represented. Specific schemata cannot

be created to handle all the possible combinations of entities, relationships and

occurrences. Typically data comes in a semi-structured form, such as free text,

which can be parsed to find information of interest, and then segmented into

appropriate attributes for each schema.

In contrast, when using traditional conceptual data modelling techniques, the

data must be rigidly structured and must conform to a schema. The schema is

first specified before any data can be stored in the database. The database is

always consistent with the pre-existing schema as the DBMS rejects any records

that are not consistent with the schema (Stonebraker and Hellerstein, 2005). This

modelling technique can be called a schema first methodology.

7.3.2 Common Conceptual Schemata

Common conceptual schemata are consensually agreed structures that are used

within interoperable environments to unify their disparate component databases,

with varying native conceptual schemata (MacFarlane, McCann and Liddell,

1996). They define all the data relationships and meanings that exist between

different data items and then map existing applications and data definitions to

the common data model. As discussed by Howard (2008), a common conceptual

schema effectively provides a bridge between the different meanings associated

with each of the applications. These structures can thus facilitate data interop-

erability between applications.

As discussed by Roddick et al. (2008), the situation where the storage of

data precedes the conceptual model creation requires that a different position be

adopted in that a generic or common conceptual model must exist for the initial

data storage in the absence of the more specialised model. However, having

established a common conceptual model, specialisations to that model can be

developed incrementally through the testing and imposition of constraints.



CHAPTER 7. RAPID CONCEPTUAL MODELLING 187

For example, consider a scenario in which a University’s student and faculty

data is stored in a common storage structure (ignore for the moment the details

of that storage structure). In the absence of any specialised schema, reference to

entities and attributes must be phrased in terms of the structures provided by

the common data model.

Over time, constraints could be tested and added, providing more specialisa-

tion and eventually providing a level of structure consistent with a conventional

conceptual schema. These may be tested, for example, through the discovery of

induced dependencies (Roddick, Craske and Richards, 1996). For example, con-

sider a constraint in a relationship between a doctoral student and a supervisor.

An occurrence where a doctoral student has exactly one supervisor is theore-

tically possible, and if it is considered sensible, the constraint could be added.

Labels could also be added so that conventional query languages, such as SQL,

can function.

The advantages to this approach as discussed by Roddick et al. (2008) include:

• The deployment of multiple, perhaps conflicting, structures can be selec-

tively delayed such as where the overall plan involves transitioning between

structures or the staged development of hierarchies of schema.

• Multiple modelling paradigms can be used. For example, an EER model can

be superimposed to provide a schema view while graph-oriented structures

could be tested between data elements.

• The use of a common conceptual schema provides the ability to construct

general utilities as well as facilitating schema integration.

• A common conceptual model lends itself to data mining as an a priori

defined structure that will not mask hidden associations.

The intent of a common schema is to provide the flexibility to store all the necessa-

ry data, whilst retaining sufficient simplicity that avoids all the overheads associ-

ated with creating a full conceptual model. This chapter argues that the proposed

LItER modelling method provides a common structural model capable of accom-

modating data derived from a variety of situations but which remains sufficiently

structured to retain the semantics of the data.



CHAPTER 7. RAPID CONCEPTUAL MODELLING 188

Entity Property

Event

OntologyOntology

Xonyms

Xonyms

role value

security levelsignature

quality

provenance

LinkLink

Spatio-
temporal

Non-spatio-
temporal

Figure 7.2: LItER schema (from Roddick et al. (2008)).

7.4 LItER Modelling

The LItER approach developed by Roddick et al. (2008) resulted from a practical

industry need to generate systems rapidly where the full nature of the system

is not known in advance but where some initial preparation (for example, the

collection of mesodata and/or ontologies) can be undertaken. Such areas include

national security, natural disaster and large-scale incidents where the finer de-

tails are unlikely to be known in advance. The LItER approach uses a common

schema, the LItER Schema, as discussed in Section 7.4.1 and shown in Figure 7.2,

embedded within an overarching architecture as discussed in Section 7.4.2 and

shown in Figure 7.3.

7.4.1 The LItER Schema

The schema consists of three primary meta-entity types, Entities, Properties and

Events, together with a ternary Link (a form of polymorphic (overloaded) relation-

ship type). Events and Links are temporally referenced. Specifically, the model

consists of the following components:

Entities. These represent objects in the model. This includes not only elemen-

tary objects such as those that might be represented by strong and weak

entities in an EER model, but also components and aggregations of enti-

ties. If data is obtained from multiple sources, the same entity may also be

recorded more than once (linked by a synonym link). The only attribute

directly recorded is the entity’s identifier (which might be user or system

supplied). All other attributes are recorded through reference to a property.
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Properties. These allow the description of properties that can be associated

with either an entity or an event. A property may be associated with an

ontology which can be used by the constraint manager/hypothesis checker

or by the query language as appropriate.

Events. These allow the recording of spatio-temporal elements. Once again, the

only attribute directly recorded is the event’s identifier.

Links. Links allow entities, properties and events to be combined. LItER uses an

overloaded form of polymorphism (as discussed in Chapter 6) that specifies

that links can occur between all or any of Entities, Events or Properties.

Additionally, more than one of each can participate in a link with the sole

requirement being that a link must include at least two identifying instances.

Thus, a link can allow:

• one or more entities to be associated with a describing property, op-

tionally with a value of that property. Note that the value may also

be provided as a simple formula that may include a variable (such as

> 25 or P (Age).E(Christopher) + 2). This allows facts such as ... is

over 25 or ... is 2 years older than Christopher to be recorded2.

• one or more events to be associated with a describing property, option-

ally with a value for that property.

• a link between an entity and an event such that an entity’s role in the

event can be recorded, and

• a relationship between two entities.

Links have a number of optional predefined attributes as follows:

Value. A value provides a qualification for the relationship being described.

For example, Entity Mary linked to Property Nationality might have

the value Australian.

Role. A role provides a qualification for the relationship being described.

For example, Entity Luke linked to Event Phone Call might have the

role Caller.

2Specifically, this allows first order formulae over constants or variables participating in the
link plus those accessible through graph traversal. For example, P (Age).E(Christopher)+2 ref-
erences the value associated with the link between the entity with entity identifier Christopher
and the Property Age, while max(P.(Age).E(∗).P (InDept[Consultant].Sales)) returns the
maximum Age of all entities with a link to Property InDept with a value of Sales and a role
of Consultant.
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Quality. A quality provides a measure of confidence (such as a probability)

to the link.

Security level. A security level provides a mechanism for restricting ac-

cess to data.

Provenance. A provenance provides a mechanism to record the owner or

source of the data.

Ontologies and Xonyms. These are an integral part of the model.

Ontologies. Within the context of this model, full ontologies are defined as

complex domain structures associated with properties. Such ontologies

are similar to the mesodata concept presented in Chapter 4 including

its use for modelling ontologies as discussed in Chapter 5 (also refer to

its precursor in de Vries et al. (2004); de Vries (2006)).

Xonyms. These are a variety of common binary references that are widely

used to allow common linkages between objects to be recorded more

simply. For example, a Person can be found to be the same as another.

A Meeting is a form of Communication and so on. In these cases

synonym and hypernym references would be created respectively.

Other Xonyms include acronyms, holonyms (and meronyms), hyper-

nyms (and hyponyms), metonyms, pseudonyms and synonyms. The

alternative, merging Entities, would result in a loss of both informa-

tion and provenance, particularly if the reason for the merge was later

discredited.

Extending query languages and data mining routines to interpret the se-

mantics of ontologies and Xonyms and building these into the model should

not be a difficult task. It is possible that some systems may not require any

changes for this to occur, such as in the case of association mining routines

which may be given their input data with all synonyms resolved.

7.4.2 The LItER Architecture

While the LItER model is independently useful, an overarching architecture has

been developed that maximises the benefits of the model (as shown in Figure 7.3).

Some of the important points are discussed below.

Analysis Routines. Four sets of routine are made available to the user:
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Figure 7.3: LItER architecture (from Roddick et al. (2008)).

Predicate Definition and Data Dictionary. These provide a resource

to allow easy reference to data items.

Query Languages. It is possible to provide a form of SQL which resolves

the terms provided by reference to the Predicate Definitions and Data

Dictionary. For example, the query:

SELECT EmpNAME

FROM EMPLOYEE

WHERE EmpAGE < 25;

may, depending on how the data was organised, be resolved by the

following operations:

EMPLOYEE ::= {E(*).P(WorkFor)}
EmpNAME ::= P.(HasName).EMPLOYEE

P.HasAge ::= V.(WasBorn).E(*) - TODAY()

EmpAGE ::= P.(HasAge).EMPLOYEE

The first statement creates a set of instances of Entity. The second

returns the value for the link to the Property HasName. The third

creates a virtual property of HasAge which exists for all instances of

Entity with a link to an Event of type WasBorn. The last returns the

desired values for all instances of EMPLOYEE.

Constraint Manager/Hypothesis Checker. This allows the creation
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of structures that are either used to constrain the data or as a pu-

tative hypotheses that can be checked against the data.

Data Mining Routines. One of the drawbacks of many data mining sys-

tems is the lack of reusability caused, in part, by changes in the man-

ner in which data is stored. LItER accommodates data mining rou-

tines by utilising a common schema. The techniques of graph mining

(Chakrabarti and Faloutsos, 2006) and association mining (Ceglar and

Roddick, 2006) have been found to be particularly useful. For most

purposes, these routines are fairly generic and independent of the data.

For example, consider a graph mining routine that seeks to characterise

modes of communication between actors. If any other graph uses the

same LItER schema, then the routine can also access entities within

these other graphs if they are linked to the principal entity through

some event. This method of linking across different databases could,

for example, be used to identify actors that are all affected by a trans-

mission of infection.

A Knowledge Base. In most cases the knowledge base uses the same LItER

architecture. Importantly, visualisation routines can operate over the know-

ledge base and this can take advantage of multiple runs and different forms

of data mining.

A General Ontology Storage Area. This can be populated independently of

the data storage providing the benefit that it can be prepared prior to

the loading of data. To date, the use of ontologies has been restricted to

complex structures of attribute values as discussed within the context of

the mesodata concept (Chapters 4 and 5).

The LItER architecture can be realised through technology integration (e.g.

data mining, knowledge based technologies, hypotheses, probabilistic reasoning

and temporal auditing, etc.) and by combining related concepts (e.g. mesodata,

ontologies, polymorphic relationships, etc.) and modelling techniques. Initial

ideas on the use of the LItER architecture suggested that there may be utility

in adopting a common meta-schema that may be able to be translated to a

conventional model. This process may require certain assumptions to be applied

and various aspects such as those described in Subsection 7.2.1 would need to be

addressed.
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_IN

Identifier

WAS_BORN
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Figure 7.4: Two design choices (from Roddick et al. (2008)).

7.4.3 The LItER Characteristics

The LItER model as discussed by Roddick et al. (2008) has a number of important

modelling characteristics as follows:

1. As objects in a system can play many different roles, entities are not di-

rectly associated with a specific type. Instead their types are recorded by

virtue of the properties (and potentially the property-value pairs) that they

can hold. Thus, objects that are owners may be identified through the

property is an owner (cf. the category concept of Elmasri et al. (1985)).

For instance, Australians can be identified through the property-value pair

of having nationality with value Australian. Significantly, this allows the

creation of heterogeneous sets — being Australian is, of course, a property

that could be assigned to more than just people.

2. As the data stored in such a system is often used for hypothesis creation,

the model must also allow for temporal auditing and probabilistic reason-

ing. Furthermore, such systems often obtain data from various sources and

therefore not only must the provenance of the data be recorded but also, as

far as practicable, the format and content of the data must be maintained.

Thus, a data matching capability becomes an essential component of the

system.

3. Relationships, and their cardinalities, are induced rather than explicitly

stored. In many cases, the choice of whether a property of an object should

be an attribute or a relationship to an entity type representing the concept is

largely determinant on the data available (for further discussion on semantic

ambiguity, refer to Wand et al. (1999)).
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Consider the example in Figure 7.4 that shows how the schema can vary

depending on whether an attribute or a relationship type and entity type are

used. In this determination process, the LItER model mirrors the bottom-up

approach used by ORM.

4. Unlike the EER Model, relationships (referred to here as links to avoid

confusion) are polymorphic, and can vary a number of Entities to provide

the key for a link type.

For example, the property has colour may be specified with a part number

and the project and/or with just a part number. In LItER, this polymorphic

use of relationships (Chapter 6) is allowed subject to the absence of any

constraint forbidding it.

5. Models can be gradually refined with the successive addition of constraints.

This resultant collection of constraints can be used to either validate data

(either before or after DBMS commit), validate the schema or to determine

contradictory information. Furthermore, constraints can take the form of

hypotheses, in which ideas can be tested so as to ascertain the extent of

missing information.

Note that the systems for which the LItER model is most suited do not neces-

sarily have low volumes of data. What distinguishes this particular model is that

it can handle a diverse range of information, perhaps with some data coming from

large databases combined with the structure of other information being more or

less specific to one or a few entities only.

7.5 Summary

The LItER model and architecture as discussed by Roddick et al. (2008) is being

developed as a result of genuine industry requirements and has been applied in

both defence and health industry environments. Interestingly, as has been noticed

in some data mining research (Spencer, 2001), a cascade effect has been observed

in that there appears to be a positive correlation between improvements to overall

connectivity between data objects and the amount of data that has been added

into the system.

There has been considerable discussion as to the role of Reiter’s closed world

assumption (Reiter, 1978) and whether it always remains valid in the context of
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some systems. How these can accommodate negative information is a subject of

ongoing investigation.

Despite a number of inadequacies, such as its restriction that ontologies must

conform to the concepts of mesodata domains, the LItER model continues to

generate substantial interest. Specifically, its ability to quickly bring together

data from a variety of data sources and to open up new areas for subsequent

investigation and research have been of great interest.



Chapter 8

From Conceptual Design to

Logical Design for the Relational

Data Model

This chapter focuses on how to design a relational database schema based on

a proposed conceptual schema. This chapter presents the procedures to create

a relational schema from a Mesodata Entity-Relationship (MDER), a Mesodata

Object Role Modelling (MDORM), an Ontological Entity-Relationship (OntoER),

an Ontological Object Role Modelling (OntoORM) and an Ontological Unified

Modelling Language (OntoUML) schema. This discussion relates the constructs of

the MDER and MDORM models presented in Chapter 4 and the constructs of the

OntoER, OntoORM and OntoUML class diagram models, presented in Chapter 5.

The structure of this chapter is organised as follows. Section 8.1 provides an

overview to this topic. Next, a brief introduction to the relational data model

is discussed in Section 8.2. Sections 8.3 and 8.4 present an additional step of

a transformation algorithm to convert the mesodata constructs in the MDER

and MDORM schemata into a relational schema. Next, Sections 8.5, 8.6 and 8.7

continue to present the mapping algorithm by describing how to map ontological

constructs of the OntoER, OntoORM and OntoUML class diagram schemata into

a relational schema, followed by a summary in Section 8.8.

196
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8.1 Introduction

During the process of database design, the schema may undergo transformation

from one model to another. For example, the schema of a database application

may be initially described using the ER model in the form of the ER diagram. It

may then be mapped into the relational data model which uses structured query

language (SQL) to define the schema (Navathe, 1992).

Since commercial DBMSs rely upon the relational model and do not support

either of the ER models or any other conceptual models, several algorithms that

translate an ER schema into a relational schema have been investigated in the

literature. The theory, concepts and processes used to transform a conceptual

schema into a relational schema are described in most database textbooks (e.g. for

the ER/EER model (Batini et al., 1992; Connolly and Begg, 2004; Elmasri and

Navathe, 2007; Kim and Seo, 1991; Teorey et al., 2006), for the NIAM/ORM

(Halpin and Morgan, 2008; Halpin, 2001; Nijssen and Halpin, 1989), for the

HERM model (Thalheim, 2000), for the MADS (Parent et al., 2006a) and for

the fuzzyEER model (Galindo et al., 2006)). In addition, most publications focus

on the mapping from a traditional ER schema to a relational schema (Chen, 1976;

Dumpala and Arora, 1981; Parńe, 2002; Teorey et al., 1986) whilst few deal with

the mapping from temporally extended ER schema to relational schema (refer

to Theodoulidis et al. (1991a) and Gregersen, Mark and Jansen (1998)). These

approaches mostly use common principles which are based on the same basic

methodology.

With the increasing use of ontologies in various applications and the need to

provide tools to support ontologies, there is now a significant and urgent focus on

improving the query reformulation task in DBMSs. To achieve this, the mapping

of information between the ontology and the underlying database must exist

(Necip and Freytag, 2005). To assist with this, this chapter also provides a

mapping of ontological constructs discussed in Chapter 5.

It is unlikely that a complete mapping of all constructs and constraints in the

source schema can be represented directly in terms of structures and constraints

of the chosen logical model and thus any information-reducing transformation

needs to be manipulated and realised through application programs.

Typically a high-level (conceptual) schema must be mapped onto a logical

schema in order for the database to be populated and queried. As the relational

data model is simple and easy to use and SQL has become the dominant relational
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language used in the commercial environment, this thesis thus focuses on mapping

to a relational schema using SQL.

8.2 The Relational Data Model

Relational databases have been successfully used for several decades for storing

information in many application domains. Nowadays, the relational data model

is the most often used approach for storing persistent information and is likely to

remain so in the foreseeable future (Malinowski and Zimanyi, 2008).

The relational data model was first proposed by Codd (1970) as a mathe-

matical basis for analysis and modelling of data. The model provides: (a) data

independence by elevating the model higher, away from the physical implementa-

tion details; (b) a formal methodology for addressing redundancy; (c) efficacy of

database structures; and (d) greater powers in terms of set-at-a-time operations

on the model (Navathe, 1992).

Whilst database management systems (DBMSs) have been configured for

the various implemented data models (hierarchical, network, relational, object-

oriented, etc.), the relational data model proposed by Codd (1970) has been the

most widely used since it has a solid theoretical foundation and is based on a

simple data structure, i.e. a relation. In the mid 1970s, the development of con-

ceptual modelling approaches, also called semantic data models, was presented.

These models are used in the preliminary phase of the database design process

to analyse the real world to create a formal description of the user requirements.

The result is a conceptual schema which is independent of the DBMS. Where the

models are not directly supported by a commercial DBMS, they can still provide

value as schema design tools. This allows schemata to be first designed using

a high level conceptual model and then translated into one of the classical data

models, for example, relational, for implementation.

As discussed by Navathe (1992), the relational data model was a landmark

development as it provided a mathematical foundation to the discipline of data

modelling based on the notions of sets and relations. Due to its simplicity of

modelling, it gained a wide popularity among business application developers. A

number of well-known commercial DBMS products (e.g. DB2, Oracle, MS SQL

Server, Informix and Ingres) provide access to the relational model for a wide

variety of users.
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Tuples

PROPERTY_FOR_RENT

Street SuburbPropertyNo RoomTypeZipcode Rent

PB6                16 Kelvin Rd          Bedford Park             5042                House

PB12               2 Nalark St            Bellevue Height         5050                Townhouse

PK14               4 Somie Dr            Kensington                5068                Flat

Attributes

Relation Name

Domain value
assigned to

attribute  Rent R
e
l
a
t
i
o
n

3                        300

3                        260

2                        220

Figure 8.1: An example of a relation PROPERTY FOR RENT.

The representation of the relational model corresponding to the components

of a data model is described as follows:

Data structures. The relational data model organised data in the form of re-

lations. These relations consist of tuples of information defined over set

attributes. Relations, tuples and attributes are formal terminologies that

are used to label what are informally known as tables, rows and columns,

respectively. The attributes, in turn, are defined over a set of atomic do-

mains of values. The specification of a domain is commonly determined

from the data types associated with the data values that span the domain

(Elmasri and Navathe, 2007). Typically relational implementations provide

a few basic domains, such as integer, real, float, date and string. Figure 8.1

shows a sample of a data structure for a relational model for an example of

a relation PROPERTY FOR RENT.

Integrity Constraints. There are two types of constraints that fall under the

schema-based constraints category for the relational data model. The first,

called the entity integrity constraint, ensures that no records are duplicated

and that no primary key value can be NULL. It guarantees uniqueness of

keys. This constraint is more formally defined and referred to as a primary

key. A primary key attribute of a relation is depicted as an underlined at-

tribute. The second, called the referential integrity constraint, ensures that

whenever an attribute in one relation derives values from a key of another

relation, those values must be consistent. This constraint is more formally

defined and referred to as a foreign key. For example, in Figure 8.2, the at-

tribute OwnerNo of PROPERTY FOR RENT gives the owner number to which

each property belongs and can assume two potential states. Either the

value in each PROPERTY FOR RENT will match the OwnerNo value (primary

key) of some tuple in the PRIVATE OWNER relation, or it will have a value of

NULL if the property for rent does not belong to a private owner or will

be assigned to a private owner later. In Figure 8.2 this referential integrity
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PropertyNo Street

PROPERTY_FOR_RENT

Suburb Zipcode Type Room Rent OwnerNo

OwnerNo FName

PRIVATE_OWNER

LName Address TelNo

Referential Integrity Constraint

Figure 8.2: A referential integrity constraint displayed on a sample relational
schema.

constraint is depicted by an arrow connecting OwnerNo, a foreign key of

the PROPERTY FOR RENT relation, to a primary key of the PRIVATE OWNER

relation.

Languages. The relational model has an associated algebra which includes

operations of selection, projection, join as well as the set operations of

union, intersection, difference, cartesian product and so on. The set-at-

a-time nature of these operations makes them very powerful since entire

tables become arguments of operators.

Relational query languages such as the Structured Query Language (SQL)

and Query By Example (QBE) are declarative, emphasising what has to

be done rather than how to do it. With fourth-generation language (4GL)

queries, a single statement can be used to perform operations on whole

tables, or set of rows, at once and thus 4GLs such as SQL are set-oriented

rather than record oriented (Halpin, 2001). SQL is a commonly used high

level non-procedural (declarative) language used for creating, manipulating

and retrieving data from RDBMSs. Due to its very common usage, it

has become a de facto standard for the data processing industry. SQL is

composed of two main sub-languages, a Data Definition Language (DDL)

and a Data Manipulation Language (DML). The DDL is used to define the

schema of a database. The DML is used to modify (i.e. add, update and

delete) and to query data in a database. The set of SQL DDL commands

defining the relational schema of Figure 8.2 is as follows:

CREATE TABLE private owner (

OwnerNo CHAR(10) NOT NULL,

FName CHAR(20),

LName CHAR(25),

Address CHAR(40),

TelNo CHAR(20),

PRIMARY KEY (OwnerNo);
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CREATE TABLE property for rent (

PropertyNo CHAR(10) NOT NULL,

Street CHAR(30),

Suburb CHAR(30),

Zipcode CHAR(4),

Type CHAR(20),

Room NUMERIC,

PRIMARY KEY (PropertyNo),

FOREIGN KEY (OwnerNo) REFERENCES private owner(OwnerNo));

As discussed by Navathe (1992), the main argument against the relational data

model is its flatness of structure, through which it loses the valuable information

contained in the relationships or links among the data. It therefore clearly lacks

the features for expressiveness and semantic richness which explains why the

semantic data models are a preferred tool. This argument may be supported

by the fact that the relational data model is a logical model targeted toward

particular implementation platforms while the conceptual data model aims at

expressing concepts as closely as possible to the user’s perspective (Malinowski

and Zimanyi, 2008).

8.3 Transformation from the MDER Schema to

a Relational Schema

The transformation of the MDER schema follows the same patterns as with other

ER and EER schema, but differs in that the additional mesodata entity types

must also be transformed. In common with all other ER and EER components,

mesodata constructs are also characterised with relations and constraints. The

transformation of MDER components is an extrapolation of the ER schema trans-

formation, with the addition that mesodata must also be considered and processed

in a manner consistent with the other components. In other words, mesodata

constructs must be processed by well-defined algorithms to generate a relational

schema.

The seven steps of the usual mappings for ER-to-relational and the addi-

tional eighth and ninth steps of the EER-to-relational mapping algorithm are

maintained (Elmasri and Navathe, 2007) with an additional tenth step to handle

mesodata. This tenth step is described below and uses the MDER conceptual

schema diagram for the INVENTORY database example to illustrate the mapping

procedure. The INVENTORY MDER schema is shown again in Figure 8.3.
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Figure 8.3: MDER schema for an example INVENTORY database.

Step 10: Mapping of Mesodata Entity Types. For the mapping of each

mesodata entity type in the MDER schema, undertake the following three sub-

steps. The first creates the source relational schemata, the second the domain

definition and the third the attribute specification in order to reference the meso-

data domain.

Substep 10A: For each mesodata entity type M attached to attribute A, create

a source relational schema R that corresponds to the mesodata type of M.

The primary key of R is dependent on the mesodata type of M.

Applying this Substep to the INVENTORY MDER schema example would

create, for example, the COLGRAPH source relational schema that corresponds

to the WGRAPH mesodata type which comprises the required attributes {Value,
LinkedItem, Weight} and has a composite key (Value, LinkedItem) as a pri-

mary key for the COLGRAPH schema.

The corresponding source relational schemata for each mesodata entity types

in Figure 8.3 are shown in Figure 8.4.

Note that any end-user can both view and modify these source relational

schemata. The full result of mapping the MDER schema Figure 8.3 into a rela-

tional schema is given in Appendix C.
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ZIPTREE

Value LinkedItem

COLGRAPH

Value

CATLIST

Value LinkedItem

AREAGRAPH

Weight

Value Child Weight

Figure 8.4: Mapping the mesodata entity types.

Substep 10B: Create the mesodata domain definition MD over the correspond-

ing source relational schema R. Use the mesodata type of M, the base type of

A and the name of R in the AS, OF and OVER clause of the CREATE DOMAIN

statement, respectively.

Applying this Substep to the INVENTORY MDER schema example, the

CATEGORIES, COLOURS, ZIPCODES and AREACODES mesodata domains are created

over their corresponding source relational schemata created in Substep 10A. For

example:

CREATE DOMAIN CATEGORIES

AS list

OF CHAR(50)

OVER catlist;

CREATE DOMAIN COLOURS

AS wgraph

OF CHAR(15)

OVER colgraph;

CREATE DOMAIN ZIPCODES

AS wtree

OF CHAR(15)

OVER ziptree;

CREATE DOMAIN AREACODES

AS graph

OF NUM(2)

OVER areagraph;

Substep 10C: For each attribute A associated with a mesodata entity type M,

alter the domain of A to be MD.

Applying this Substep to the INVENTORY MDER schema example, the do-

mains of these ProdType, Colour, AreaCode and Zipcode attributes will be modi-

fied as CATEGORIES, COLOURS, AREACODES and ZIPCODES, respectively. As a fur-

ther example, the SQL for a definition of a product table that has ProdType and
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Colour attributes is modified as follows:

CREATE TABLE product (

ProdID CHAR(6) NOT NULL,

ProdType CATEGORIES CLOSEDa,

Colour COLOURS CLOSED,

ListPrice NUMERIC,

CostPrice NUMERIC,

SuppCode CHAR(5),

PRIMARY KEY (ProdId),

FOREIGN KEY (SuppCode) REFERENCES supplier(SuppCode));

aThe SQL Clause CLOSED indicates that there is a TMDP constraint on the attribute
(refer to Chapter 4).

The full SQL schema definition for the example INVENTORY database is given

in Appendix D.

8.4 Transformation from the MDORM Schema

to a Relational Schema

One of the attractions of ORM is its ability to be easily mapped to the relational

model. Since each fact type represents an elementary fact, the relations mapped

from ORM are all in fifth normal form (5NF) (Leung and Nijssen, 1987, 1988;

Puntheeranurak and Chittayasothorn, 2002). Consequently, there is no resultant

redundancy in the schemata. Compared to the ER model, the transformation

from an ER schema guarantees only a first normal form (1NF) relational database

schema, and thus the relational schemata may need further normalisation. This

can occur as the relationship types in the ER model are only those between the

entity types, while the relationships between the attributes (functional dependen-

cies) that can lead to redundancies, are not taken into consideration.

This thesis has extended the Optimal Normal Form (ONF) algorithm (Leung

and Nijssen, 1987; Nijssen and Halpin, 1989) to incorporate the mesodata con-

structs. The three steps of the ONF grouping algorithm (Nijssen and Halpin,

1989) are maintained with an additional fourth step to handle mesodata. This

fourth step is described below and uses the MDORM conceptual schema diagram

for the INVENTORY database example to illustrate the mapping procedure. The

INVENTORY MDORM schema is shown again in Figure 8.5.
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Figure 8.5: MDORM schema for an example INVENTORY database.

Step 4: Mapping of Mesodata Value Types. For each mesodata value

type in the MDORM schema, there are three substeps. The first creates the

source relational schemata for the specific structure of mesodata type, the second

substep the mesodata domain definition and the third substep the reference to

the mesodata domains.

Substep 4A: For each mesodata value type MT, create a source relational

schema R that corresponds to the mesodata type of MT. The primary key

of R is dependent on the mesodata type of MT.

Applying this Substep to the INVENTORY MDORM schema example, for the

WGRAPH value type, the COLGRAPH source relational schema is created correspond-

ing to the WGRAPH as COLGRAPH (Value, LinkedItem, Weight). The primary

key for this schema is a composite key (Value and LinkedItem).

The source relational schemata for the mesodata value types are identical to

those created with MDER. Note that any end-user can both view and modify

these relational schemata.

Substep 4B: Create the mesodata domain definition MD over the corresponding

source relational schema R. Use the mesodata value type MT, the base data

type of the associating entity type’s identifier E and the name of R in the

AS, OF and OVER clause of the CREATE DOMAIN statement, respectively.
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Applying this Substep to the INVENTORY MDORM schema example, the

CATEGORIES, COLOURS, AREACODES and ZIPCODES mesodata domains are created

in the same way as with MDER. For example, in the particular case of the WGRAPH

mesodata value type, the COLOURS mesodata domain is created by using the

WGRAPH in the AS clause, CHAR as the base data type of colourname, an identifier

of the Colour entity type, in the OF clause and colgraph as the source relational

schema (created in Substep 4A) in the OVER clause. The COLOURS mesodata do-

main is created as:

CREATE DOMAIN COLOURS

AS wgraph

OF CHAR(15)

OVER colgraph;

Substep 4C: For each entity type E associated with mesodata value types MT,

alter the domain of an identifier of E to be MD.

Applying this Substep to the INVENTORY MDORM schema example, the do-

main of these entity types’ identifiers — prodtypename, colourname, zipcodeNr and

phoneNr are modified to become CATEGORIES, COLOURS, ZIPCODES and AREACODES

mesodata domains, respectively. For example, consider a zipcode schema result-

ing from the mapping of MDORM schema, the domain of zipcodeNr is altered from

CHAR(4) to become the ZIPCODES mesodata domains as shown in the following

SQL:

CREATE TABLE zipcode (

zipcodeNr ZIPCODES NOT NULL,

statecode CHAR(3),

PRIMARY KEY (zipcodeNr));

Note that as the mesodata mandatory role (MMR) constraint is not imposed

on the Zipcode entity type (refer to Figure 8.5). Thus, the SQL clause CLOSED

does not apply to zipcodeNr (cf. Substep 10C of Section 8.3).

8.5 Transformation from the OntoER Schema to

a Relational Schema

In common with all other ER and EER components, ontologies are also charac-

terised with relations and constraints. The transformation of OntoER components
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Figure 8.6: OntoER schema for an example MEDICAL database.

is an extrapolation of the ER schema transformation, with the addition that on-

tologies must also be considered and processed in a manner consistent with the

other components. In other words, ontology components must be processed by

well-defined algorithms to generate a relational schema.

The seven steps of the usual mappings for ER-to-relational and the addi-

tional eighth and ninth steps of the EER-to-relational mapping algorithm are

maintained (Elmasri and Navathe, 2007) with an additional tenth step to handle

ontologies. This tenth step is described below and uses the OntoER conceptual

schema diagram for the MEDICAL database example to illustrate the mapping

procedure. The MEDICAL OntoER is shown again in Figure 8.6.

Step 10: Mapping of Ontological Entity Types. For each ontological entity

type in the OntoER schema, undertake the following four substeps. The first cre-

ates the source relational schemata, the second creates the domain definition, the

third creates the attribute specification in order to reference the ontological do-

mains, and the fourth handles the total domain participation (TDP) constraints.

Substep 10A: For each ontological entity type O attached to attribute A,

create a source relational schema R that corresponds to the ontological data type

of O. The primary key of R is dependent on the ontological data type of O.

Applying this Substep to the MEDICAL OntoER schema example would create
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the DIAGTREE source relational schema corresponding to the TREE ontological

data type containing the hierarchy of diagnosis ontology comprising the required

attributes {Term1, Term2} representing the domain knowledge that defines the

relationship between two terms. A primary key of this schema is a composite key

(Term1,Term2). Similarly, the ZIPWTREE source relational schema is created that

corresponds to the WTREE ontological data type, formally comprising a ternary

form of the required attribute {Parent, Child, Weight}. A primary key of this

schema is a composite key (Parent, Child). The corresponding source relational

schema for the ontological entity types in Figure 8.6 is shown in Figure 8.7.

Node1 Node2

AREAGRAPH

Term1 Term2

DIAGTREE

Parent Child Weight

ZIPWTREE

Term1 Term2

LOCTREE

Figure 8.7: Corresponding source relational schemata for the ontological entity
types.

Note that any end-user can both view and modify these source relational

schemata. The full result of mapping the OntoER schema in Figure 8.6 is given

in Appendix C.

Substep 10B: Create the ontological domain definition D over the corre-

sponding source relational schema R. Use the ontological data type of O, the base

data type of A and the name of R in the AS, OF and OVER clause of the CREATE

DOMAIN statement, respectively.

Applying this Substep to the MEDICAL OntoER schema example, the

DIAGNOSES, ZIPCODES, LOCATIONS and AREACODES ontological domains are cre-

ated over their corresponding source relational schemata (created in Substep 10A)

as follows:

CREATE DOMAIN DIAGNOSES

AS tree

OF CHAR(50)

OVER diagtree;

CREATE DOMAIN ZIPCODES

AS wtree

OF CHAR(15)

OVER zipwtree;
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CREATE DOMAIN LOCATIONS

AS tree

OF CHAR(50)

OVER loctree;

CREATE DOMAIN AREACODES

AS graph

OF CHAR(15)

OVER areagraph;

Substep 10C: For each attribute A connecting to an ontological entity type O,

alter the domain of A to be the ontological domain definition D.

Applying this Substep to the MEDICAL OntoER schema example, there are

seven attributes — Specialisation, Diagnosis, City, Name, AreaCode and two

Zipcode connecting to the ontological entity type. The domains of these at-

tributes need to be modified in the same manner as the Specialisation, Zipcode

and Areacode attributes as illustrated in the SQL data definition of physician

table as shown below:

CREATE TABLE physician (

LicenceNo CHAR(6) NOT NULL,

Name CHAR(40),

Specialisation DIAGNOSES,

Number CHAR(6),

Street CHAR(15),

City CHAR(15),

State CHAR(15),

Zipcode ZIPCODES,

LocalCode CHAR(10),

AreaCode AREACODES,

PRIMARY KEY (LicenceNo),

.

.

.

In this case, the domains of Specialisation, Zipcode and AreaCode at-

tributes are modified to be the DIAGNOSES, ZIPCODES and AREACODES ontological

domains, respectively. The full SQL schema definition in which the domain of

these seven attributes have been altered is included in Appendix D.

Substep 10D: If attribute A of entity type E has total domain participation

(TDP) into O then make the attribute A a foreign key into a corresponding source

relational schema R.

Applying this Substep to the MEDICAL OntoER schema example, Specialisa-

tion, Diagnosis, City and Name attributes possess the TDP constraint. Thus,

the Specialisation attribute of PHYSICIAN entity type becomes a foreign key
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into a source relational schema DIAGTREE. Similarly, the Diagnosis attribute of

VISIT entity type becomes a foreign key into a source relational schema DIAGTREE,

and so on. The TDP constraint for Specialisation can be illustrated in SQL

data definition for physician table using FOREIGN KEY clause as shown below:

CREATE TABLE physician (

LicenceNo CHAR(6) NOT NULL,

Name CHAR(40),

Specialisation DIAGNOSES,

Number CHAR(6),

Street CHAR(15),

City CHAR(15),

State CHAR(15),

Zipcode ZIPCODES,

LocalCode CHAR(10),

AreaCode AREACODES,

PRIMARY KEY (LicenceNo),

FOREIGN KEY (Specialisation) REFERENCES diagtree(Term1),

.

.

.

The definition of the TDP constraint that is imposed on Diagnosis, City

and Name attributes is applied in the same manner as for the Specialisation

attribute. These foreign key references can be represented as the dashed line

arrows linking between the related attributes as shown in the full schema mapping

in Appendix C.

8.6 Transformation from the OntoORM schema

to a Relational Schema

This thesis has extended the Optimal Normal Form (ONF) algorithm (Leung and

Nijssen, 1987; Nijssen and Halpin, 1989) to incorporate ontological constructs.

The three steps of the ONF grouping algorithm (Nijssen and Halpin, 1989) are

maintained with an additional fourth step to handle ontologies. This fourth step

is described below and uses the OntoORM conceptual schema diagram for the

MEDICAL database example to illustrate the mapping procedure. The MEDICAL

OntoORM schema is shown again in Figure 8.8.

Step 4: Mapping of Ontological Label Types. For each ontological label

type in the OntoORM schema, there are four substeps. The first substep creates

the source relational schemata for the selected common domain structure, the

second substep creates the ontology domain definition, the third substep creates
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Figure 8.8: OntoORM schema for an example MEDICAL database.

the reference to the ontology domains, and the fourth substep handles the onto-

logical mandatory role (OMR) constraints.

Substep 4A: For each ontological label type C, create a source relational

schema R that corresponds to the common domain structure of C. The primary

key of R is dependent on the common domain structure of C.

Applying this Substep to the MEDICAL OntoORM schema example would cre-

ate the DIAGTREE source relational schema corresponding to the common domain

structure TREE as DIAGTREE (Term1, Term2). The primary key for this schema

is a composite key which is shown as the underlined Term1 and Term2. The cor-

responding source relational schemata of the ontological label types in Figure 8.8

are identical to those for OntoER.

Note that any end-user can both view and modify these source relational

schemata.

Substep 4B: Create the ontological domain definition OD over the corre-

sponding source relational schema R. Use the common domain structure of C,

the base data type of the associating entity type’s identifier E and the name of R

in the AS, OF and OVER clause of the CREATE DOMAIN statement, respectively.

Applying this Substep to the MEDICAL OntoORM schema example, the
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DIAGNOSES, ZIPCODES, AREACODES and LOCATIONS ontological domains are cre-

ated over their corresponding source relational schemata (created in Substep 4A)

as was the case with OntoER. Consider the case of the DIAGNOSES ontological

domain. Its create statement uses the common domain structre TREE in the AS

clause, CHAR as the base data type of dname, an identifier of the Diagnosis entity

type in the OF clause, and diagtree as the source relational schema in the OVER

clause. The DIAGNOSES ontological domain is created as:

CREATE DOMAIN DIAGNOSES

AS tree

OF CHAR(50)

OVER diagtree;

The creation of the ZIPCODES, AREACODES and LOCATIONS ontological domains

can be applied in the same way as with the DIAGNOSES ontological domains. Note

that ontological domains with the same hierarchy of values can be reused. For

example, the ontological domain DIAGNOSES which has values based on an exis-

ting ontology’s class hierarchy diagnosis (Figure 5.1(b), Page 122), can be also

used for the Specialisation entity type.

Substep 4C: For each entity type E associated with ontological label types C,

alter the domain of an identifier of E to be OD.

Applying this Substep to the MEDICAL OntoORM schema example, these

entity types — Specialisation, Diagnosis, City, School, Areacode and two

Zipcodes are associated with ontological label types and therefore the domains

of each of these entity types’ identifiers will be modified to become ontological

domains. For the case of creating a visit schema the SQL data definition al-

ters the domain of Dname (an identifier of Diagnosis entity type) to become the

DIAGNOSES ontological domain as follows:

CREATE TABLE visit (

Vdate DATE NOT NULL,

Dname DIAGNOSES,

PatientID CHAR(6),

LicenceNo CHAR(6),

PRIMARY KEY (DATE),

.

.

.

Substep 4D: If entity type E is constrained by an ontological mandatory role

(OMR) then make an identifier of E a foreign key into a corresponding

source relational schema R.
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Applying this Substep to the MEDICAL OntoORM schema example, the

Specialisation, Diagnosis, City and Name entity types are constrained by

OMR and thus each of these entity types’ identifiers becomes a foreign key into

a corresponding source relational schema (created in Substep 4A). Consider the

case of an identifier (dname) of Diagnosis entity type which becomes a foreign key

into a DIAGTREE relational schema. The handling of OMR for Diagnosis entity

type in OntoORM can be illustrated in the SQL data definition for the visit

table using the FOREIGN KEY clause as shown below:

CREATE TABLE visit (

Vdate DATE NOT NULL,

Dname DIAGNOSES,

PatientID CHAR(6),

LicenceNo CHAR(6),

PRIMARY KEY (DATE),

FOREIGN KEY (PatientID) REFERENCES patient(PatientID),

FOREIGN KEY (LicenceNo) REFERENCES physician(LicenceNo),

FOREIGN KEY (Dname) REFERENCES diagtree(Term1));

This constraint can also be represented as the dashed line arrows linking to

the referring attributes as shown in Figure 8.9.

Term1 Term2

DIAGTREE

Vdate

VISIT

Dname PatientID LicenceNo

Figure 8.9: Mapping an OMR constraint in OntoORM.

8.7 Transformation from the OntoUML Schema

to a Relational Schema

One of the best features of relational databases is that they are well established,

supported by a very well-known, and proven, underlying mathematical theory. In

addition, the structures of a relational database are simple. The transformation

of the OntoUML model to a relational schema aims to retain the simplicity of the

relational constructs.

The transformation of the UML class diagram into the relational schema has

been discussed in Muller (1999) and Shah and Slaughter (2003). The steps of such
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Figure 8.10: OntoUML schema for an example MEDICAL database.

mapping are not mentioned explicitly as with the ER/EER-to-relational or the

ORM-to-relational mapping. However, a further process to handle the mapping

of ontological constructs in OntoUML class diagrams can be included. This extra

process is described below and uses the OntoUML conceptual schema diagram

for the MEDICAL database example to illustrate the mapping procedure. The

schema of the MEDICAL OntoUML class diagram is shown again in Figure 8.10.

Mapping of ontological class types. For each ontological class type in the

OntoUML schema, undertake the following four steps. The first creates the source

relational schemata, the second creates the domain definition, the third creates

the attribute specification in order to reference the ontological domains, and the

fourth handles the OT constraints.

Step 1: For each ontological class types O, create a source relational schema

R that consists of a list of attributes of O. The attribute denoting a {PK} symbol

becomes the primary key of R.

Applying this Substep to the MEDICAL OntoUML schema example, the source

relational schema DIAGTREE (Term1, Term2) is created for the DIAGNOSES onto-

logical class type. The primary key of DIAGTREE is a composite key (Term1,
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Term2). The corresponding source relational schemata for all of the ontological

class types in Figure 8.10 are the same as those with OntoER (refer to Figure 8.7).

Note that any end-user can both view and modify these source relational

schemata.

Step 2: Create the ontological domain definition D over the corresponding

source relational schema R. Use the ontological data type of O, the base data type

of the associated attributes of the usual class and the name of R in the AS, OF

and OVER clause of the CREATE DOMAIN statement, respectively.

Applying this Substep to the MEDICAL OntoUML schema example, the

DIAGNOSES, ZIPCODES, AREACODES and LOCATIONS ontological domains are cre-

ated over their corresponding source relational schemata (created in Step 1) as

was the case with OntoER. Consider the case of the LOCATIONS ontological do-

main (refer to Figure 8.10). Its create statement uses the tree ontological data

type in the AS clause, CHAR as the base data type of Name and/or City attributes

of the usual class in the OF clause and loctree as the source relational schema

in the OVER clause as shown below:

CREATE DOMAIN LOCATIONS

AS tree

OF CHAR(50)

OVER loctree;

Step 3: For each attribute A of the usual class referring to the ontological class

type, modify the domain of A to be D.

Applying this Substep to the MEDICAL OntoUML schema example, the at-

tributes of Specialisation, Diagnosis, City, Name, AreaCode and Zipcode of the

usual classes, all refer to the ontological class type. Thus, the domains of these

attributes will be modified to be the corresponding ontological domains (created

in Step 2).

Consider the case of the creation of a schema of the Physician usual class.

The SQL data definition alters the domain of Specialisation, Zipcode and Area-

Code attributes to be the DIAGNOSES, ZIPCODES and AREACODES ontological do-

mains, respectively as was the case for OntoER (Section 8.5, Substep 10C).

Step 4: If attribute A of the usual class is constrained by {OT}, then make

the attribute A a foreign key into a corresponding source relational schema R.
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Applying this Substep to the MEDICAL OntoUML schema example, the Spe-

cialisation, Diagnosis, City and Name attributes of the usual classes all possess

the {OT} constraint. Therefore, these attributes become a foreign key into a cor-

responding source relational schema (created in Step 1). The handling of {OT}
is applied in OntoUML class diagram in the same way as in OntoER. Consider the

case of the Name and City attributes of the School usual class. These attributes

become a foreign key into a LOCTREE relational schema. The handling of the

{OT} constraint for Name and City can be illustrated in a SQL data definition

for school table using FOREIGN KEY clause as shown below:

CREATE TABLE school (

Name LOCATIONS NOT NULL ,

City LOCATIONS,

PRIMARY KEY (Name),

FOREIGN KEY (Name) REFERENCES loctree(Term1),

FOREIGN KEY (City) REFERENCES loctree(Term1));

This constraint can be represented as the dashed line arrows linking to the

referenced attributes as illustrated in the full schema mapping as was the case

for OntoER in Appendix C.

As many database designers and users have familiarity with the modelling

techniques of the ER model, they prefer viewing database schemata as ER dia-

grams. In this case, an optional mapping may be desirable to first map a UML

class diagram to an ER/ERR diagram (a translation of a UML class diagram to

an ER diagram can be found in Ou (1998)) and then apply the transformation

algorithm provided by the ER/EER model (and the OntoER model) to produce

the relational schema.

8.8 Summary

The transformation process and its steps presented in this thesis follow a prag-

matic approach. It facilitates a practical working system that can capture the

semantics of complex attribute domains, i.e. the mesodata system, leading to the

delivery of a target schema that supports implementation. This chapter continues

to assert the pragmatism of the modelling techniques presented in this thesis.

A summary of the transformation process to create a definition of a complex

domain of an attribute based on the mesodata or ontology concepts is given as

follows.
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1. Define the source relational schema for describing the structure of mesodata

types (or ontological data type/common domain structures) selected. With

reference to the example in Figure 4.6 (Page 110), the source relational

schema suburbrel that corresponds to the structure of the WGRAPH mesodata

type is defined by:

CREATE TABLE suburbrel (

Suburb1 CHAR(25) NOT NULL,

Suburb2 CHAR(25) NOT NULL,

Distance NUMERIC,

PRIMARY KEY (Suburb1, Suburb2);

2. Define the mesodata domains (or ontological domains). With reference to

the example in Figure 4.6 (Page 110), the LOCATIONS mesodata domain is

defined by:

CREATE DOMAIN LOCATIONS

AS wgraph

OF CHAR(25)

OVER suburbrel;

3. Define the attribute specification to refer to the mesodata domains (or on-

tological domains). With reference to the example in Figure 4.6 (Page 110),

the Suburb attribute that references to the LOCATIONS mesodata domain is

defined by:

CREATE TABLE person (

EmpID char(4) NOT NULL,

Name char(40),

Dept char(25),

Suburb LOCATIONS,

Salary NUMERIC),

PRIMARY KEY (EmpID);

4. Handle the integrity constraints that are imposed on the models. The SQL

Clause CLOSED is introduced to handle constraints in MDER and MDORM

models and the FOREIGN KEY statements are introduced to handle con-

straints in the OntoER, OntoORM and OntoUML models. The handling of

the constraints that are imposed on such models is discussed in the mapping

procedures in this chapter and is summarised as follows:

• To handle the total mesodata domain participation (TMDP) con-

straints in the MDER model (or the mesodata mandatory role (MMR)
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constraints in the MDORM model), the SQL Clause CLOSED can be

used as shown below:

CREATE TABLE person (

EmpID char(4) NOT NULL,

Name char(40),

Dept char(25),

Suburb LOCATIONS CLOSED,

Salary NUMERIC),

PRIMARY KEY (EmpID);

• To handle the total domain participation (TDP) constraints in the

OntoER model (or the ontological mandatory role (OMR) constraints

in the OntoORM model or the ontological type (OT) constraints in the

OntoUML model), the FOREIGN KEY statements can be used as shown

below:

CREATE TABLE person (

EmpID char(4) NOT NULL,

Name char(40),

Dept char(25),

Suburb LOCATIONS,

Salary NUMERIC,

PRIMARY KEY (EmpID),

FOREIGN KEY (Suburb) REFERENCES suburbrel(Suburb1));

Producing a logical schema from a conceptual schema essentially involves

moving away from a formalism designed to represent perceptions of the real world

to a different formalism designed to provide for a data representation that best

supports efficient techniques for data management, in particular while retrieving

the stored data (Parent et al., 2006a).

As there is substantial difference between the expressive power of conceptual

and logical data models, the translation process in moving from conceptual to

logical design implies a semantic loss (Malinowski and Zimanyi, 2008; Parent

et al., 2006a). This often occurs for the reason that the target data model either

has inadequate or non-existent concepts to match those of the source schema. The

usual response is to accept a degraded level of service and to request application

developers to embed code to support the full translation requirements. These

application programs may use mechanisms such as triggers or stored procedures,

or embed integrity constraints into the schema declarations to provide for the

missing service (Parent et al., 2006a).



Chapter 9

Conclusions and Future Research

The overall purpose of this thesis is to promote better practices in conceptual

modelling and to integrate more semantics from real world application knowledge

into database schemata. This research is focused on exploring the potential uses of

sophisticated domain semantics to extend conceptual models and to tackle some of

the modelling issues of semantics that are not easily accommodated in traditional

conceptual models. The thesis also presents mapping algorithms to transform the

constructs of the proposed models to the constructs of the widely implemented

relational model including a novel approach to conceptual modelling.

This chapter discusses conclusions about the work presented in this thesis.

A summary is presented at the end of each of the preceding chapters, however

in this chapter, the focus is on three topics, namely: (1) the principle research

contributions of this thesis (Section 9.1); (2) discussions on future research in the

subject area (Section 9.2); and (3) final conclusions (Section 9.3).

9.1 Research Contributions

The focus of this section is on summarising the main points of the research con-

tributions through answering the following research questions that were initially

posed in the introduction chapter.

9.1.1 A Survey on ER Modelling Extensions

What existing extensions to the ER model have been previously des-

cribed in the body of research literature?
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The diverse range of the extended ER models that have been developed and

researched reflects a growing interest in the use of this model to provide a greater

level of understanding and organisation within database modelling. This thesis

examines all the proposed ER extensions as compiled by the author and groups

each proposal according to their expressiveness of enhancing the ER model. In

presenting each model, this thesis describes the features of each according to

the key considerations of the conceptual data model, namely; data structures,

integrity constraints and languages. A comparison of the features of each model

is then presented, using the Classification of ER Modelling Extension (CERME)

framework. Through this exploration of the various aspects of ER extensions, a

consolidated overview of ER extensions has been compiled that will serve as a

valuable reference point for future research.

9.1.2 Accommodating Mesodata into Conceptual Mo-

delling Methodologies

How can mesodata be modelled in conceptual modelling methodolo-

gies?

This question is answered in this thesis by investigating how mesodata

(de Vries et al., 2004) can be incorporated in conceptual modelling methodologies

to allow more advanced semantics to be associated with the domains of an at-

tribute. The new extended conceptual models, MDER and MDORM, proposed in

this thesis support advanced semantics for attribute domains in database design

techniques. The models are simple and intuitive. Querying domain level data is

as easy as querying relational data.

In addition to providing richer semantics, both MDER and MDORM can pro-

vide solutions in the area of information and schema changes. This can be

achieved through one of the key properties of mesodata of being able to sup-

port schema changes, in particular, attribute changes whilst preserving semantic

correctness and information content.

9.1.3 Incorporating Ontology-based Semantics in Concep-

tual Modelling

How can ontologies be modelled in conceptual modelling methodolo-

gies?
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One of the main contributions of this thesis is to show how ontologies can be

integrated into conceptual modelling methodologies thus generating an extended

conceptual framework that can be used for capturing the domain knowledge into

conceptual data models. As proposed in Chapter 5, The combination of the

concepts of common domain structures and an existing ontology’s class hierarchy

creates a much richer level of semantics within conceptual models.

This method of integrating ontologies has been tailored to suit three concep-

tual modelling techniques, namely, the ER model, ORM and UML class diagrams.

By incorporating the semantic relationships of ontologies in the domain know-

ledge, more meaningful information about attribute domains can be explicitly

represented in conceptual schemata. The aptly named OntoER, OntoORM and

OntoUML class diagram models proposed in this thesis are capable of support-

ing sophisticated domain semantics that can be applied in a simple and intuitive

manner. The key features of these new models are:

• support for high-level conceptual data models with expandability for do-

main data that have a set of operations applicable for their utilisation;

• minimal syntax changes required to support the extended modelling con-

structs that protects the simplicity of the models;

• simplicity of use even for more complex relationships associated with the

domain knowledge; and

• utility of the desirable features of mesodata and ontologies that allows the

domain of an attribute to change over time without requiring changes to

the schema.

9.1.4 Polymorphic Relationships in ER Modelling

How can the relatively restricted and static modelling of relationships

be modified to handle a broad spectrum of situations, or is there a

more feasible approach to model overloaded relationships?

Basic relationships may not be flexible enough to solve the overloaded relation-

ships applicable to a challenging application. This thesis presents polymorphic

relationships to denote the links of overloading associations among entities in

ER modelling. These links that represent polymorphic (overloaded) relationships

retain the same semantics of each entity instance participating in a link but pro-

vides a varying flexibility on how many instances of an entity that can play a role
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in a link. These intuitive rules govern the defaulting of values where there is no

specific information to determine the initial state value of an entity.

The idea of polymorphic relationships in ER modelling is an adaption of the

idea of overloading in object-oriented programming and contributes to a unique

and significant extension of the semantics of such relationships in data modelling.

9.1.5 Rapid Conceptual Modelling

How can these presented modelling constructs be related to a

(re)design of conceptual modelling approaches to facilitate the rapid

exploration of data?

Rapid conceptual modelling is a new modelling approach intended to define a

common schema that allows data to be either stored immediately or retained for

the later refinement and development of the conceptual schema. In traditional

conceptual modelling, a specified schema needs to be developed first before any

data can be stored. This new rapid conceptual modelling concept differs from

traditional modelling aspects in that the data can be stored immediately within

a framework of a common conceptual schema even in the absence of a more spe-

cialised schema. This technique is compatible with existing conceptual modelling

methodologies and expands the ability of traditional modelling to manage the

modelling of data in rapidly changing complex environments.

This approach supports the rapid development of complex applications which

can be realised through an integration of the work presented in this thesis (the

support for mesodata and ontologies and a form of polymorphic relationship)

together with other related technologies (such as data mining, knowledge based

technologies, hypotheses, probabilistic reasoning, temporal auditing, and so on).

A rapid conceptual modelling methodology, the LItER model (Roddick et al.,

2008), can be advocated as an initial perspective on the active conceptual mo-

delling paradigm (Chen, 2006; Chen et al., 1999, 2008) that aims towards data

management of the future.

9.1.6 Data Model Mapping

How can the presented modelling constructs be mapped into the rela-

tional database schema?
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Mappings play a major role in guiding and managing the overall efficiency

of information systems, and is crucial for validating the conceptual model (Es-

culier and Friesen, 1995). The MDER, MDORM, OntoER, OntoORM and On-

toUML models support direct translation into classical database models (rela-

tional models) that serve as the implementation platform, whilst preserving nor-

mal forms.

9.2 Future Research Directions

The research directions discussed below indicate potential extensions of concep-

tual modelling. Using the same premises as presented in this thesis, it would

be relatively easy to extend this work to include more conceptual perspectives

on wider or additional modelling dimensions, e.g. multidimensional modelling in

data warehousing. Other suggestions predict that active conceptual modelling

will be the next frontier of research.

9.2.1 Extending This Work

With increasing demand for the support of more complex applications, the cap-

turing of more semantics is highly important. Exploring how additional semantics

can be gathered and represented in conceptual models is a further possible re-

search direction. The work presented in this thesis indicates other potential areas

for future research as detailed below:

1. Accommodating ontologies into data warehousing methodologies.

There are interesting possibilities for future research on the topic of accom-

modating ontologies (including mesodata) into data warehousing methodo-

logies. Two aspects of this topic could be useful. The first investigative

challenge is in determining how to apply ontologies to multidimensional

modelling based on the star and snowflake schemata. The second challenge

is in investigating a method of mapping ontological constructs of multidi-

mensional models into the constructs of ROLAP (Relational On-Line Ana-

lytical Processing) architecture. This mapping would focus on identifying

transformation algorithms to create a ROLAP schema from an ontologi-

cal multidimensional schema. This would rely upon schema transformation

procedures that are commonly used for mapping between different levels.

This suggested research could be pursued along the lines of the semantic
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expressions and a data model mapping as proposed in this thesis (refer to

Chapters 4, 5 and 8).

2. Extending attributes’ domains. As discussed in Chapter 5, another

possible direction of research is to extend the use of ontologies (including

mesodata) to describe an attribute’s domain. The work presented in this

thesis describes an attribute’s domain within the context of a single onto-

logy. This could be extended to address the case where the domain of an

attribute references multiple ontologies.

Additionally, the inclusion of different relationship types such as spatial-

temporal relationships for attribute domains can be undertaken using an

approach that is consistent with a generic style of modelling formalism (such

as common domain structures) as discussed in Chapter 5. These directions

would add further merit to the reusability opportunities of ontologies and

show how other kinds of relationship extensions could be suitably repre-

sented to enrich the semantic expressiveness of conceptual data models.

3. Mappings. Since most DBMSs used in industry are relational, the devel-

oped models should ideally include appropriate mappings for the particular

implementation platform. Thus, the further investigation of the processes

to transform between the conceptual and logical levels that can be applied

to polymorphic relationships and the LItER model is a worthwhile area of

research. The outcome should deliver a well-defined mapping algorithm to

transform links as overloaded modelling constructs into a relational schema.

In addition, the method of mapping the LItER model to the accepted con-

ceptual modelling methods is an interesting challenge that should be con-

sidered.

4. Using ontologies as a solution for semantic conflict. Another direc-

tion of research that could be useful in conceptual modelling is in using

ontologies as a solution for resolving semantic conflict. Conceptual mo-

delling should provide a sound semantic coherence. Semantic conflict in

heterogeneous systems is caused by the redefinition of the particular state

of an entity in such a way that it may no longer hold any of the expected

range of values of the real world. This prevents information integration

from accomplishing semantic coherence (Han and Qing-zhong, 2004). As a

consequence, one could consider ontologies to help solve semantic problems

as another challenging direction of research.



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 225

9.2.2 New Areas to Explore: Advances in Conceptual

Modelling

Traditional conceptual modelling concentrates on modelling static views (referred

to as a snapshot by the temporal database community) resulting in a fixed repre-

sentation of the real world domain (Chen, 2006; Chen et al., 2008). The dynamics

and changes of evolving scenarios seem particularly promising for defining and

driving advanced conceptual modelling.

The key areas for future advances in conceptual modelling are in database

technologies and modelling techniques, as discussed below.

1. Advanced database technologies. Database technologies have ex-

panded their application significantly ranging from classical applications

(e.g. payroll, inventory), multimedia and temporal data (e.g. maps, satel-

lite pictures, radar signals) to more complex applications, verging on AI

(Esculier and Friesen, 1995). However, most of this database technolo-

gy is based on a static data model, recording the most recent informa-

tion only as a single snapshot in time. Thus, the notions of temporal

and spatial features, time-varying and cause-effect relationships between

events/phenomena, and fuzzy data are not fully supported by current

DBMSs. Unfortunately commercial reality focuses Research and Develop-

ment energies on the performance and implementation considerations of

database technologies at the expense of significant pioneering research into

developing new practical models. Consequently, data modellers are unable

to deal with the evolving and changing world state, with the effect that

rapid environmental changes are not adequately handled.

The solution lies in more knowledgeable and adaptive data management sys-

tems, capable of managing a more comprehensive description of the world

(Spaccapietra et al., 2008) or new types of databases along the lines of in-

formation and software technologies that support the Internet. Advanced

database technologies and DBMS can be realised through technology in-

tegration (e.g. AI, software engineering, information/knowledge manage-

ment, cognitive science, neuroscience, etc.), which will stimulate the next

major advance in the development of conceptual modelling (Chen et al.,

2008).

In parallel, the development of new information management technologies

and DBMS, which have a new meaning in the context of the Internet, also
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calls for new modelling techniques (Chen et al., 2008).

2. Advanced modelling techniques. With the advent of the Internet, con-

ceptual modelling is shifting to the proposed active paradigm (Chen et al.,

2008). Active conceptual modelling (Chen, 2006; Chen et al., 1999, 2008)

is a new framework aimed at describing all aspects of a domain, its ac-

tivities, and changes under different perspectives using multi-perspective

knowledge and human recognition. Conventional conceptual modelling for

database design is a simple case of such modelling (Chen et al., 2008).

A challenge for the next generation of conceptual modelling is the develop-

ment of new methods of conceptualisation and different ways of viewing

reality as a single dynamic model. This will integrate the following aspects

into a theoretical framework of conceptual models (Chen et al., 2008):

• time, space and perspective dimensions (e.g. temporal and spatial

entities, time-varying relationships and temporal events);

• management of continuous change and learning; and

• behaviours of evolving systems (including model evolution, patterns,

interpretation and uncertainty).

This approach will assist in the understanding of relationships within chang-

ing environments, potentially raising the level of awareness of society in

understanding the current world state, enabling it to be better prepared

to deal with future uncertainties. This active model will have significant

impacts on future research directions, not only on the frameworks and ar-

chitectures of current database and knowledge technologies but also on the

current interpretations and viewpoints of data modelling.

9.3 Conclusions

This thesis presents extensions to conceptual modelling methodologies to cap-

ture more advanced semantics by incorporating mesodata and ontologies in the

models and introducing polymorphic relationships. As no comprehensive survey on

extensions to the Entity-Relationship (ER) model that covers various semantic

aspects exists, this thesis presents a consolidated review of the various aspects

of extensions to the ER model, termed the CERME framework that forms the

basis of common aspects and comparative criteria which can be use to categorise
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and compare all various proposals and which describes the key features of each

proposal. Additionally, this thesis presents a useful, pragmatic and significant

contribution to conceptual modelling by introducing the procedures to transform

the constructs of the proposed conceptual models into a logical model which

serves to assist in the database implementation. The transformation from MDER,

MDORM, OntoER, OntoORM and OntoUML schemata to a relational schema is the

first step to gain practical relevance in real world database applications. Further-

more, a novel approach to conceptual modelling, the LItER model, is presented

to introduce a common conceptual schema and an overarching architecture to

facilitate the modelling of data in rapidly changing complex environments.

These contributions demonstrate that the theory and work presented in this

thesis is of sound and useful merit and has genuine applicability to real world

situations. Not only have these new semantic extensions of conceptual modelling

resolved some limitations of conceptual modelling, but it is anticipated that this

innovative approach, the LItER model, can assist in providing a solid foundation

for new and emerging application designs in the context of the active conceptual

modelling paradigm as suggested by Chen (2006) and Chen et al. (2008).

The subject matter of conceptual modelling is inherently abstract and be-

comes increasingly complex when providing richer semantics or more expressive-

ness. For this reason, the number of the proposed components have been mini-

mised in order to simplify the concepts discussed so as to assist in the easier

understanding of this topic.



Appendix A

Publications Resulting from This

Thesis

The following journal and conference articles have been published as a result of

work associated with this thesis.

La-Ongsri, S., Roddick, J. F. and de Vries, D. (2008), Accommodating meso-

data into conceptual modelling methodologies, Information and Software Tech-

nology 50(5), 424-435.

This journal paper introduces the use of mesodata concepts for conceptual

modelling. It further discusses (a) how to incorporate mesodata into entity-

relationship and object role modelling approaches with a focus on capturing se-

mantics of complex domain structures associated with attributes, and (b) how to

map it to relational schemata. This paper is related to Chapters 4 and 8 and has

been revised and updated before inclusion.

Roddick, J. F., Ceglar, A., de Vries, D. and La-Ongsri, S. (2008), Postponing

schema definition: Low Instance-to-Entity Ratio (LItER) modelling, in P. P. Chen

and L. Y. Wong, eds, Active Conceptual Modeling of Learning, Vol. 4512 of

Lecture Notes in Computer Science, Springer, pp. 206-216.

This paper introduces a new conceptual modelling approach that would allow

the data to be recorded in a database by adopting a common conceptual schema.

This new methodology can be realised through the integration of, for example, a

knowledge base, data mining routines and ontology storages that will allow rapid

and simultaneous storage of data and data modelling. This paper is fully covered

in Chapter 7 and has been revised and updated before inclusion.
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Appendix B

Sample Proposals from the

CERME Framework

This appendix provides a more detailed description of some of the proposals

examined in the CERME framework (Chapter 3). For the following proposals,

their descriptions are presented based on the key considerations of a conceptual

data model, namely data structures, integrity constraints and languages.

Note that the following representative models are a summary of the original

proposals. For elaborated descriptions of these models, this thesis refers the

reader to their original sources using the citations provided.

B.1 The Enhanced Entity-Relationship (EER)

Model

The EER model (Elmasri and Navathe, 2007) enhanced the ER model by in-

corporating the concepts of superclass/subclass (or generalisation/specialisation),

superclass/subclass relationships, type inheritance (including various types of con-

straints on specialisation/generalisation) and category. The concept of category

is used to model the UNION construct into the ER model.

Data Structures. The EER model includes all the modelling constructs and

concepts of the ER model. In addition, it extends entity types in the ER

model with the new types of subclasses, superclasses and categories as de-

tailed below.
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EMPLOYEE

MANAGES

SSN

Birth_Date

Address

Name

Fname Lname
Mname

SECRETARY TECHNICIAN ENGINEER MANAGER CONTRACT_
EMPLOYEE

SALARIED_
EMPLOYEE

d d
Pay_Scale Salary

PROJECT

BELONGS
_TO

TRADE_UNION

Typing_Speed

Tgrade Eng_Type

Figure B.1: Subclasses and specialisation in EER diagram (adapted from El-
masri and Navathe (2007)).

• Subclasses. A subclass is a specialisation of a superclass, such that each

member of a subclass must be a member of the superclass. In other words,

an entity in the subclass represents the same real-world entity from the

superclass and can possess values for its specific attributes as well as values

that are consistent with the superclass attributes. For this reason, type

inheritance is a significant concept associated with subclasses. That is,

an entity that is a member of a subclass inherits all the attributes of the

entity as a member of the superclass as well as all the relationships in

which the superclass participates. Subclasses are shown in rectangles in

EER diagrams.

Specialisation is the process of defining a set of subclasses of an entity

type; this entity type is called the superclass of the specialisation (Elmasri

and Navathe, 2007). A specialisation through which the subclasses are

connected to the superclass is represented by lines to a circle.

• Superclasses. A superclass is a generalisation of one or several subclasses.

The term generalisation refers to the process of defining a generalised entity

type from the given entity types. Superclasses are shown as rectangles in

EER diagram, in a similar way to entity types.

• Categories (or union types). A category is a subclass of the UNION of the dis-

tinct entity types. In other words, it is a subclass with various superclasses.

A category has two or more superclasses that may represent a distinct entity

type while other superclass/subclass relationships always have a single su-

perclass. A category to which the subclass is connected to the superclasses
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is represented by a line to the circle with a ∪ symbol together with an arc

with the subset symbol connecting the circle to the category (subclass).

Integrity Constraints. The EER model includes all the constraints of the ER

model. Additionally, it proposes three other constraints applicable to spe-

cialisation and category.

• Disjointness constraints on specialisation. A disjoint constraint specifies that

the subclasses of the specialisation must be disjoint. This means that an

entity can be a member of at most one of the subclasses of the specialisation.

This is shown in the EER diagrams by placing a circled ‘d’, as shown in

Figure B.1.

If the subclasses are not constrained to be disjoint, their sets of entities

may overlap; that is, the same entity may be a member of more than one

subclass of the specialisation. Overlapping specialisations, which are the

default, are represented by a circled ‘o’.

• Completeness constraints on specialisation. This constraint may be total or

partial. A total specialisation constraint specifies that every entity in the

superclass must be a member of at least one subclass in the specialisation.

This is shown in the EER diagrams by using a double line to connect the su-

perclass to the constraint circle. Consider the example in Figure B.1. If eve-

ry EMPLOYEE must be either a CONTRACT EMPLOYEE or a SALARIED EMPLOYEE,

then the specialisation {CONTRACT EMPLOYEE, SALARIED EMPLOYEE} repre-

sents a total participation. A single line is used to display a partial spe-

cialisation, which precludes an entity from belonging to any subclass. For

example, if some EMPLOYEE entities do not belong to any of the subclasses

{SECRETARY, ENGINEER, TECHNICIAN} (as shown in Figure B.1), then that

specialisation is partial.

• Completeness constraints in category. A category can be total or partial.

A category is total if it holds the union of all entities in its superclasses,

whereas if a category is partial, it holds only a subset of the union. A total

category is represented by a double line connecting the category and the

constraint circle, whereas partial categories are indicated by a single line.

Languages. EER provides the mapping of EER model constructs to rela-

tional constructs by extending the ER-to-relational mapping algorithm. To

achieve this, EER uses SQL rather than introducing its own languages.
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In summary, the EER model presents the concept of a subclass and its

superclass including the rules related to attribute/relationship inheritance. A

class/subclass relationship proposed in EER is often called an is-a relation-

ship providing generalisation/specialisation. The constraints total/partial and

disjoint/overlapping can be applied to specialisation, generalisation and category.

B.2 The Time Extended EER (TimeER) Model

The TimeER model (Gregersen and Jensen, 1998, 2004) extends the EER model

as defined by Elmasri and Navathe (1994) to include built-in temporal support for

entities, relationships, superclass/subclass and attributes. The model supports

four distinct types of temporal aspects, namely valid time, lifespan, transaction

time and user-defined time.

As discussed by Gregersen and Jensen (1998, 2004), new temporal constructs

are presented to describe the fundamental features of the TimeER model. The

annotations added to the modelling constructs are used to indicate which tem-

poral aspects are to be captured. These are LS indicating lifespan, VT indicating

valid time, TT indicating transaction time, LT indicating lifespan and transaction

time and BT indicating valid and transaction time.

Data Structures. The TimeER extends the basic constructs in the EER model

by providing support for (a) lifespans and transaction time for both regular

and weak entity types, (b) valid time and transaction time for relationship

types, (c) valid time and transaction time for all attribute types, and (d)

time inheritance. These are described as follows:

• Entity types supporting lifespans and transaction time. If the lifespan or the

transaction time of an entity type is to be captured, this is indicated by

placing a LS (LifeSpan) or a TT (Transaction Time) in the upper right corner

of the entity rectangle, respectively. If both lifespan and the transaction

time are captured, a LT (Lifespan and Transaction time) is placed in the

rectangle corner instead. Entity types that capture at least one temporal

aspect are termed temporal entity types; otherwise, they are termed non-

temporal.

Temporal aspects can be applied to both regular and weak entity types.

For example, if it is required to capture both the life span and transaction
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time of employee entity type, this can be modelled in the TimeER model

as shown in Figure B.2.

EMPLOYEE
LT

Figure B.2: The temporal entity type employee (from Gregersen and Jensen
(1998)).

• Relationship types supporting valid time and transaction time. If a temporal

aspect is captured for a relationship type, the indication is placed in the

lower corner of its diamond symbol (such as VT appearing in the relationship

type WORKS FOR as shown in Figure B.3).

     Budget

WORKS_FORSSN

Birth_Date

Address

Name

Fname Lname
Mname

Hours/week
    Salary

EMPLOYEE
LS

VT
PROJECT

BTID

Expenses
Income

BT

Figure B.3: The temporal relationship type WORKS FOR (from Gregersen and
Jensen (1998)).

• Attributes supporting valid time and transaction time. If a valid time of an

attribute is captured, a VT is placed to the right in the attribute symbol

oval. If a transaction time is captured, a TT is placed instead. If both the

valid time and the transaction time is captured, a BT (BiTemporal) notation

is used. If no temporal aspects of an attribute are captured, the attribute

is called non-temporal.

For example, if it is required to capture the valid time and the transaction

time of the Salary attribute of an employee, this can be modelled in the

TimeER model as shown in Figure B.4.

• Subclasses inherit the temporal aspects of their superclasses. This model pro-

vides support for specifying superclass/subclass relationships by extending

the syntax of the EER model to include temporal attributes in the sub-

classes. Consider the example where lifespans for employee entities need to

be captured and where secretary is defined as a subclass of the employee en-

tity type, which also requires the lifespan to be recorded. Lifespan does not



APPENDIX B. SAMPLE PROPOSALS FROM THE CERME FRAMEWORK234

SSN

Birth_Date

Address

Name

Fname Lname
Mname

    Salary

EMPLOYEE
LS

BT

Figure B.4: The temporal (single-valued) attribute Salary (from Gregersen and
Jensen (1998)).

need to be separately defined for secretary as both the lifespan and trans-

action time for secretary are already established as a consequence of this

rule that subclasses inherit all properties, and thereby also the temporal

support, of their superclasses. According to the rule of inheritance, new

properties can be added, but it is not possible to delete or modify inherited

properties.

Integrity Constraints. Two additional participation constraints (snapshot and

lifespan) are proposed in the TimeER model.

• Snapshot participation constraints. The snapshot participation constraints

are a fundamental feature of the model and describe the constraint of the

participation of the entities of each isolated point in time. The snapshot

participation of an entity type E with respect to a relationship type R

is represented by placing min and max values in parentheses by the line

connecting entity type E with relationship type R as shown in Figure B.5.

If min = 0 then the participation of the entities of E is optional. If min

≥ 1 then the participation is total (mandatory). If max = 1, this means

that the entities of E can not participate in more than one relationship at a

time, whereas a max = n, with n > 1 means that E entities can participate

in n relationships at a time.

RE
(min,max)

Figure B.5: Representation of snapshot participation constraints in TimeER
(from Gregersen and Jensen (1998)).

• Lifespan participation constraints. Lifespan participation constraints are an

advanced feature of the model that describe the participation of an en-

tity in a relationship over the entire existence time of the study. For ex-

ample, it can be used to state that an employee can be assigned to any
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number of projects, but only one project at a time, and at least one over

the entire employment. While the snapshot participation constraint en-

sures that an employee participates in exactly one relationship at any point

in time, the lifespan participation constraint expresses participation con-

straints throughout the existence time of the entities, namely over the entire

employment period.

The life span participation constraint of an entity type E with respect to a

relationship type R is represented by placing min and max values in square

brackets by the line connecting entity type E with relationship type R as

shown in Figure B.6. The lifespan participation constraint specified for the

participation of an entity type with respect to a non-temporal relationship

type must be the same as a specified snapshot participation constraint, and

for this reason they can be omitted from the diagrams.

RE
(min,max)

[min,max]

Figure B.6: Representation of lifespan participation constraints in TimeER
(from Gregersen and Jensen (1998)).

The use of both participation constraints as shown in Figure B.7, states that

any employee must be assigned to at most one project at a time, but must

be assigned to at least one project during the employment period. Refer

to Gregersen and Jensen (2004) for a detailed discussion of combinations of

snapshot and lifespan participation constraints.

     Budget

WORKS_FORSSN

Birth_Date

Address

Name

Fname Lname
Mname

Hours/week
    Salary

EMPLOYEE
LS

VT
PROJECT

BTID

Expenses
Income

BT

[1,N]

(1,1) (1,N)

Figure B.7: The temporal relationship type WORKS FOR with participation con-
straints (from Gregersen and Jensen (1998)).

Languages. The TimeER model does not provide a query language for this

temporal ER database. An alternative proposition is to convert the tempo-

ral constructs of the temporal ER model into conventional ER constructs
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Table B.1: Assigning temporal aspects to ER constructs (from Tryfona and
Jensen (1999)).

Entity types Attributes Relationship types

Existence time Yes No No
Valid time No Yes Yes
Transaction time Yes Yes Yes

(Zimanyi et al., 1997) and then reuse the traditional ER/EER-to-relational

mapping. This solution may be attractive for minor extensions to the ER

model. Another solution is to create an algorithm that can map temporal

ER diagrams directly to relational schemata.

In summary, this approach introduces new temporal constructs that provide

implicit temporal support and includes snapshot reducible attribute types (i.e.

providing temporal single valued, temporal multi-valued, temporal composite and

temporal derived attribute types) as well as snapshot reducible participation con-

straints. The model also supports both valid time and transaction time including

lifespans.

B.3 The Spatio-Temporal ER (STER) Model

The STER model (Tryfona and Jensen, 1999) extends the original ER model to

capture spatio-temporal aspects of information. This extension accommodates

the combined time and space information into each basic ER construct. These

new constructs are described below:

Data Structures. All basic constructs of the ER model can have spatial and/or

temporal extent; however, not all types of time (i.e. existence time, valid

time and transaction time) can be assigned to each construct. For example,

STER defines that existence time can be attached to only entity types

while transaction time can be attached to all constructs i.e. entity types,

relationship types and attributes (Table B.1).

• Temporal entity types. Entity types can be assigned existence and tran-

saction time. Support for existence time for an entity type in STER is

indicated by placing an ‘et’ in a circle in the upper-right corner for the
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entity type as shown in Figure B.8(a). The detailed representation diagram

is shown in Figure B.8 (b) indicating that ‘existence time/id’ values consist

of pairs of ‘existence time’ and ‘id’ values. The shorthand notation is con-

venient as it concisely states that the existence times of the entities should

be captured in the database.

ExistenceTime/ID    Entity Type Entity Type

(a)

et
ID

ExistenceTime
(b)

Figure B.8: Entity type capturing existence time (a) shorthand (b) detailed
representation (from Tryfona and Jensen (1999)).

• Spatial entity types. STER entity types can be defined to capture space,

i.e. to have a particular geometry attribute. STER supports three spatial

geometric types (point, line and region) and their combinations. The letters,

‘s’, ‘P’, ‘L’ or ‘R’, in a circle in the lower-right corner of an entity type

specify the type of spatial support. Letter ‘s’ stands for Spatial and is used

to indicate a spatial entity type whose exact geometric type is unknown.

Letters ‘P’, ‘L’ and ‘R’ specify geometric types Point, Line and Region,

respectively. Examples of a spatial entity type is shown in Figure B.9.

      Entity Type

(a)

s

(b)

PR
LANDPARCEL

Figure B.9: Spatial entity types (a) general notation (b) capturing Point and
Region (from Tryfona and Jensen (1999)).

• Spatio-temporal entity types. Spatial entity types with temporal dimensions

are called spatio-temporal entity types. The temporal aspects (valid time,

transaction time and bitemporal time (both valid and transaction time)) of

spatial entity types are recorded by placing ‘svt’, ‘stt’ or ‘sbt’ in a circle

in the lower-right corner of the entity type as illustrated in Figure B.10.

Note that if the geometric types of the geometric figures of the entity types

are known, the ‘s’ can be replaced with ‘P’, ‘L’ or ‘R’ or a combination of

these as appropriate. This is placed in a circle in the lower-right corner of

the entity type as illustrated in Figure B.10.
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      Entity Type

(a)

svt

(b)

PbtCAR

Figure B.10: A Spatio-temporal entity type with valid time support (a) general
notation (b) example recording of a car’s position with valid and transaction time
support (from Tryfona and Jensen (1999)).

• Temporal descriptive attributes. Values of attributes of entities denote facts

about the entities and thus have both valid and transaction time aspects.

A circle with a ‘vt’ or a ‘tt’ in the upper-left corner of an oval denoting

an attribute indicates that valid or transaction time, respectively, is to be

captured. A circle with ‘bt’ (bitemporal) indicates that both temporal

aspects are to be captured. An attribute with valid time support is shown

in Figure B.11.

Entity Type

(a)

vt

(b)

Attribute CAR vtColour

Figure B.11: An attribute with valid time support (a) general notation (b)
example recording of a car’s colour and its valid time (from Tryfona and Jensen
(1999)).

• Spatial attributes. Facts captured by attributes may also have associated

locations in space, which are described as sets of geometric figures. To

capture this spatial aspect of an attribute, a circle with an ‘s’ is used, as

shown in Figure B.12. Figure B.12 (a) depicts the general representation of

a spatial attribute, while Figure B.12 (b) shows an example of a ‘soil type’

value of a land parcel that is associated with a set of spatial regions (‘R’).

Entity Type

(a) (b)

LANDPARCEL SoilType
R

Spat_Attribute
s

Figure B.12: A spatial attribute (a) general notation (b) example of SoilType
as a spatial attribute (from Tryfona and Jensen (1999)).

• Spatio-temporal attributes. Spatial attributes with temporal dimensions are

termed spatio-temporal attributes. The temporal aspects (valid and trans-

action time) of spatial attributes are recorded by placing ‘svt’, ‘stt’ or
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‘sbt’ in lower-right corner of the entity type as illustrated in Figure B.13.

As with entity types, if the geometric types of the geometric figures of

the attributes are known, the ‘s’ can be replaced with ‘P’, ‘L’ or ‘R’ or a

combination of these as appropriate.

Entity Type

(a) (b)

LANDPARCEL
SoilType

Rvt

Attribute
svt

Figure B.13: A spatio-temporal attribute in STER (a) general notation (b)
example of SoilType as a spatio-temporal attribute (from Tryfona and Jensen
(1999)).

• Temporal relationship types. Temporal aspects (valid and transaction time or

both) can be attached to relationship types in the same way as attributes.

• Spatial relationship types. Spatial relationship types in STER are associa-

tions between the geometries of the spatial entities. For example, the rela-

tionship traverses between cities and rivers relates the geometries of entities

of these two spatial entity types.

• Spatio-temporal relationship types. A spatio-temporal relationship type is

a spatial relationship type with time support. Figure B.14(a) shows the

general representation of a spatio-temporal relationship type, while Fig-

ure B.14 (b) depicts the example of changes to the relationship traverses

between cities and rivers as recorded over time.

Note that, the previous discussion about temporal, spatial and spatio-

temporal attributes also applies to attributes of relationship types.

Spatial Entity
Type 1

(a) (b)

Spatial Entity
Type 2

Spatial
Relationship

vt

CITY RIVERTRAVERSES
vt

Figure B.14: A spatio-temporal relationship type (a) general notation (b) exam-
ple of traverses as a spatio-temporal relationship type (from Tryfona and Jensen
(1999)).

Integrity Constraints. There is no formal notation for constraints provided by

STER other than those constraints provided by the spatial and temporal

relationships such as topological and metric relationships (Friis-Christensen

et al., 2001).
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Languages. No query and manipulation languages are considered by STER.

In summary, STER is an extension of the basic ER model which in-

cludes spatio-temporal entities, attributes and relationships for modelling spatio-

temporal information. STER offers support for the spatial data types (point, line

and regions), for geometries as well as combinations thereof, and for the temporal

aspects (existence time (et) for objects, valid time (vt) for attributes and rela-

tionships and transaction time (tt) for all constructs). Support for both valid

time and transaction time is represented as bitemporal (bt).

B.4 The Modelling of Application Data with

Spatio-temporal features (MADS)

The MADS approach (Parent et al., 2006a, 1999) is a conceptual spatio-temporal

model based on the extended entity-relationship model (EER) model.

Data Structures. The modelling constructs provided by MADS extends the

basic EER constructs as described below:

• Spatial, temporal and spatio-temporal object types. A Spatial (temporal)

object type is an object type that holds spatial (temporal) information

pertaining to the object itself as a whole. This is in contrast to other

models where the spatial information only pertains to one of its components

or characteristics, or to a link between the object and other objects. For

example, a road object type in a cartographic database can be defined as

a MADS spatial object type if it bears the information on the extent of

the roads, such that it can be used to create a geographic map of the road

network. An employee object type in a staff database can be defined as a

MADS temporal object type if it bears the information over all the time

periods when the person has been a regular employee of the company (as

opposed to the discrete employment stages such as pre-hiring, training,

sabbatical leave or outsourced).

• Relationship types. In addition to the basic ER relationship types, MADS de-

fines multi-association relationship types and spatial, temporal and spatio-

temporal relationship types. MADS also supports semantic enhancements

to the basic relationship types in the form of aggregation, generation and
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transition. For a detailed discussion of these characteristics, refer to Parent

et al. (2006a, 1999).

– Multi-association relationship types. As discussed by Parent et al.

(2006a), a multi-association relationship type is a relationship type

that links, for each role, a non-empty set (or list) of instances of the

linked object type. In other words, multi-association relationships link

groups of objects (entities), rather than single objects. Consequently,

each role in a multi-association relationship type bears two pairs of

(minimum, maximum) cardinalities. The first pair is the conventional

relationship type that defines for each object instance how many re-

lationship instances it can be linked to via the role. The second (ad-

ditional) pair defines for each relationship instance how many object

instances it can link with this role and has a minimum value of 1.

Multi-association relationship types are visually represented by a dou-

ble ellipse as shown in Figure B.15.

Building
Scale 15'000

Corresponds
Building

Scale 25'000
(0,1) (1,n) (1,n) (0,1)

Figure B.15: An example of a multi-association relationship type (from Parent
et al. (2006a)).

– Spatial, temporal and spatio-temporal relationship types. These hold spa-

tial and/or temporal information pertaining to the relationship as a

whole, in the same way as object types. For example, a crosses rela-

tionship type may be defined to hold the spatial extent covered by the

intersection of two roads. Crosses thus become a spatial relationship

type.

• Spatial, temporal and spatio-temporal attributes. A Spatial (temporal) at-

tribute is a simple attribute whose value domain belongs to one of the

known spatial (temporal) data types. A spatio-temporal attribute is a

time-varying spatial attribute. Each object and relationship type, whether

spatio-temporal or not, can have zero, one, or more spatial, temporal and

spatio-temporal attributes. For example, a road object type may include,

in addition to its spatial extent, a spatial attribute restAreas holding the

spatial extent of all rest areas along the road.



APPENDIX B. SAMPLE PROPOSALS FROM THE CERME FRAMEWORK242

Integrity Constraints. MADS uses new kinds of integrity constraints that are

embedded in the data model to deal with spatial and temporal data (refer

to detailed discussion in Parent et al. (2006a)). MADS suggests the use of

predefined spatial coverage, partition and disjointedness constraints in asso-

ciation with spatial aggregation relationships. Thus, whenever topological

constraints are applied to specific pairs of related instances, they can be

conveyed by associating a topological constraint semantic to the relation-

ship between these instances. As suggested by Parent et al. (2006a), these

constraints may be expressed using a specific integrity constraint specifica-

tion language, rather than being embedded as data modelling constructs.

In summary, constraints in MADS are defined by topological (temporal)

predicates.

Languages. The MADS model includes an algebraic data manipulating language

that can be used to support querying and updating. MADS also provides

a description of the translation process to facilitate an implementation into

current DBMSs and GISs. Such translation processes have also been im-

plemented in tools used with the MurMur project (Parent et al., 2006b).

In summary, MADS supports multi-associations and a larger number of se-

mantic features of relationships (in particular, generation and transition) as well

as providing some diversity in the way constraints are handled. The orthogo-

nality principle is an important aspect in the MADS model in adding different

modelling dimensions i.e. spatial and temporal characteristics. MADS also caters

for multi-representation functionality in the model providing the opportunity for

further extensions (Parent et al., 2006b). Some of the deficiencies of MADS are

that it does not yet support transaction time, nor uncertainty.

As discussed by Khatri et al. (2006), MADS allows geospatiality to be asso-

ciated with object types, attributes, relationships and aggregation. Additionally,

space and time features are supported via abstract data types (ADT) while spa-

tial ADTs provide shape and location information and temporal ADTs support

timestamps. Spatial entities are associated with a spatial ADT e.g. point and

line.
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B.5 The DIstributed design of SpaTIo-temporaL

data (DISTIL)

DISTIL (Ram et al., 2001) is another recent design tool that provides a design

support environment for modelling spatio-temporal databases. This approach

classifies spatio-temporal conceptual design into two steps:

• capture the current reality of application using a conventional ER concep-

tual model, without considering the spatial aspects, and then

• annotate the schema with spatial and temporal semantics of the application.

This approach integrates the semantics related to space and time into a tradi-

tional conceptual model without adding any special constructs. DISTIL empha-

sises the idea of orthogonality that allows the new features to be associated with

any structural constructs of the data model since these constructs of conceptual

modelling (i.e. entity types, relationship type and attributes) are orthogonal to

space and time.

Data Structures. The base data structures of DISTIL are entity classes (entity

types in the ER model), interaction relationships (relationship types in the

ER model) and attributes that are used for developing a core schema. Once

the basic structure has been established, the spatial and temporal aspects

of the application are then identified and annotated in the core schema.

Refer to Ram et al. (2001) for a detailed description of the methods used

to annotate such a schema.

Integrity Constraints. The detailed description of how constraints are used in

DISTIL is not provided in the presented model (Ram et al., 2001).

Languages. An adequate language to support DISTIL is not provided in the

presented model. However, it does provide a logical mapper to convert

a conceptual schema to a relational schema with spatial support. This

is implementable in a relational DBMS and the mapper can generate an

SQL3/Temporal Logical Schema that can be implemented in a temporal

DBMS.
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In summary, DISTIL is an annotation-based approach to spatio-temporal con-

ceptual modelling capturing various aspects related to temporality and spatial-

ity such as valid time, transaction time, events, states, position, geometry and

shape. In particular, DISTIL provides a mechanism to capture semantics related

to granularity and indeterminacy. DISTIL provides the benefit that the model

can be saved as XML schemata (Khatri et al., 2006). Refer to Khatri et al. (2006)

and Ram et al. (2001) for details related to this prototype system.

B.6 The starER Model

The starER model (Tryfona et al., 1999) combines the constructs of the ER model

(Chen, 1976) with the star structure that is used to manage the data in data

warehouses. It has been proposed that this model can be used in the conceptual

modelling of data warehouses and has already been tested in a mortgage business

environment.

Data Structures. The modelling constructs of the starER model are as follows:

• Fact sets. A fact set, depicted as a circle (Figure B.16), represents a set

of real-world facts sharing the same characteristics (or properties). A fact

set is always associated with time. From a semantic viewpoint, this can

be explained by the reason that a fact set refers to data that has been

generated over time, i.e. data is generated in terms of facts that occur over

discrete instances of time.

payback loan
loan id

loan type

at

week

repayment

loan dimension

M 1

day month quarter year

M

N

time dimension

Figure B.16: An example of a starER diagram (from Tryfona et al. (1999)).

• Entity sets. This construct, depicted as rectangle (Figure B.16), represents

a set of real-world objects with similar properties. It has the same meaning

and symbol as in conventional ER modelling. Additionally, time, as well as
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the other entity sets associated with a fact, are the dimensions of that fact.

Dimensions consist of hierarchies and/or other relationships among other

entity sets.

• Relationship sets. A relationship set represents a set of associations among

entity sets and fact sets and is depicted as a diamond (Figure B.16). Rela-

tionship sets among entity sets can be of type specialisation/generalisation,

aggregation or membership as shown in Figure B.17.

PERSON

COMPANY

CUSTOMER

BRANCHES COMPANY

COMPANY

DEPT 1

DEPT 2

Specialisation/
generalisation

Aggregation

Complete
membership

Figure B.17: Examples of specialisation, aggregation and membership relation-
ship types (from Tryfona et al. (1999)).

• Attributes. Attributes are static properties of entity sets, relationship sets

and/or fact sets and are illustrated by ovals (Figure B.16). Fact set proper-

ties can be of type stock, flow or value-per-unit. This is indicated by an ‘S’,

‘F’, or ‘V’ on the left of the attribute symbol, respectively.

Integrity Constraints. No integrity constraints are considered by starER.

Languages. No query and manipulation languages nor any mappings are pro-

vided by starER.

In summary, starER addresses the modelling requirements of a data warehouse

and combines the star structure with the constructs of the ER model. Special

types of relationship have been included to support hierarchies.

B.7 The MultiDimER Model

The MultiDimER model (Malinowski and Zimányi, 2006) is a conceptual multi-

dimensional model that includes constructs for data warehouse and OLAP mo-

delling. The MultiDimER model is mainly based on the existing ER model

constructs. The model offers some important features for representing different

kinds of hierarchies, levels and fact relationships.
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Data Structures. A MultiDimER schema is defined as a finite set of dimension

and fact relationships. A dimension is an abstract concept for grouping

data that shares common semantics within the domain being modelled. It

represents either a level or one or more hierarchies. Levels are presented as

entity types. Every instance of a level is called a member.

• Hierarchies. A hierarchy contains several related levels that are used for

roll-up and drill-down operations. A representation of hierarchies is shown

in Figure B.18(b). For two consecutive levels of a hierarchy, the higher and

lower levels are termed parent and child, respectively. A hierarchy level

that has no child level is called a leaf. The top most level that has no pa-

rent is termed the root. The root represents the most general view of data.

MultiDim represents different types of hierarchies at both a conceptual and

logical level such as symmetric hierarchies, asymmetric hierarchies, gen-

eralised hierarchies, non-strict hierarchies, multiple alternative hierarchies

and parallel dependent hierarchies.

Level name

Key attribute
Other attributes

Level name

Key attribute
Other attributes

Level name

Key attribute
Other attributes

Fact
relationship

name

Measure
attributes

(1,N)

(0,N)

(1,1)

(0,1)
Criterion

(a) (b)

(c) (d) (e)

Figure B.18: Notations for a multidimensional model: (a) level, (b) hierarchy,
(c) cardinalities, (d) analysis criterion, and (e) fact relationship (from Malinowski
and Zimányi (2006)).

• Level types. A level type corresponds to a regular entity type in the ER

model. Levels contain one or more key attributes and may also have other

descriptive attributes. The granularity of measurement in a fact relationship

is determined by the key attributes in a leaf level or the level forming a

dimension without any hierarchy.

• Relationship types. A relationship type between child and parent levels of a

hierarchy corresponds to a binary relationship in the ER model. A relation-

ship joining child and parent levels is characterised by the cardinalities and
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the analysis criterion. Cardinalities (Figure B.18(c)) indicate the minimum

and the maximum numbers of members in one level that can be related to a

member in another level. The analysis criterion (Figure B.18(d)) expresses

different structures used for analysis, e.g. for a geographical location or an

organisational structure.

• Fact relationship types. A fact relationship type corresponds to an n-ary

relationship type in the ER model. A fact relationship (Figure B.18(e))

represents an n-ary relationship between leaf levels. These are often the

focus of data mining analysis and may contain attributes commonly called

measures. Measures usually store numerical data applicable to leaf members

that reflect aggregated values of a hierarchy traversal. An example of the

use of fact relationship types is illustrated in the conceptual model of a

Sales Data Warehouse as shown in Figure B.19.

Product

Product number
Product Name
Description
Size
Distributor name
Distributor location

Sales Facts

Category

Name
DescriptionProduct

groups

Department

Name
Description

Quantity
Sales
Cost
No. clients

Time

Date
Event
Weekday flag
Weekend flag
Season

Store

Store number
Store name
Store address
Sales group district
Sales group region
City name
City population
State name
State population
State area
State major activity

Figure B.19: A conceptual multidimensional schema of a Sales Data Warehouse
including a hierarchy in the Product dimension (from Malinowski and Zimányi
(2006)).

Integrity constraints. MultiDimER proposes exclusive constraints depicted by

the symbol
⊗

that are used to indicate that the paths for each member are

exclusive. These constraints are necessary as the generalised hierarchy that

is defined at the schema level contains multiple exclusion paths sharing

the same levels. All of these paths represent one hierarchy and are shared

whenever the same analysis criteria is used. At the instance level, each

member of the hierarchy only belongs to one path.

Languages. No particular query language has been designed for MultiDimER,

however, the proposal does provide for a general mapping of the Multi-

DimER model to the relational model.
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In summary, MultiDimER represents graphic notations for different types of

hierarchies at a conceptual level. This allows for a clear distinction of each type

of hierarchy taking into account their differences at the schema as well as the

instance levels. MultiDimER provides for advanced features of a multidimen-

sional model by accommodating hierarchical structures that can be used for data

analysis. The model caters for the mapping of these hierarchies in the relational

model.

B.8 The FuzzyEER Model

FuzzyEER (Galindo et al., 2006) extends the EER model by incorporating fuzzy

semantics and fuzzy notations to represent imprecision and uncertainty in entities,

attributes and relationships.

Data Structures. The principal constructs used in this model are fuzzy at-

tributes, fuzzy entities and fuzzy relationships. A detailed discussion on

all the constructs supported by the FuzzyEER proposal are provided by

Galindo et al. (2006).

• Fuzzy attributes. A fuzzy attribute is a property of entities or relationships

that have fuzzy (imprecise) values. It is classified into 4 types: Type 1, 2,

3 and 4.

– Fuzzy attribute Type 1. The representation of attributes1 in the Fuzzy-

EER model is different from the classical attributes of the EER model.

This type is represented by a normal circle with a line that joins it to

the entity. The T1 notation is placed before the name of an attribute

as shown in Figure B.20.

The fuzzy attributes can be defined with an optional value list, rep-

resented by {L1,L2,...} that is included next to attribute names (Fig-

ure B.20). These labels are defined in the data dictionary of the model.

Note that the Type 1 also allows the declaration of fuzzy labels that

can be used in different operations (e.g. queries). However, the Type

1Attributes in the EER model are represented by the oval symbol notation. Attribute names
are enclosed in oval symbols and are attached to their entity type by straight lines. However,
in the FuzzyEER model, these symbols are replaced by a circle, and attribute names are placed
outside the circle.



APPENDIX B. SAMPLE PROPOSALS FROM THE CERME FRAMEWORK249

EMPLOYEE

Employee_ID

T2: Age {young, mature, elderly}

T1: Height

Figure B.20: Entity employee with fuzzy attributes Type 1 and Type 2 (from
Galindo et al. (2006)).

1 is different from other fuzzy types in that it does not validate fuzzy

information, and is restricted to simply allowing for fuzzy processing.

In the example of Figure B.20, there are two fuzzy attributes of the

employee entity: Height and Age. Height is defined as a fuzzy Type

1 attribute and its domain covers the set of values in the interval, for

example, (0, 2.5). Height is a precise attribute, however, it can be

defined using linguistic labels (such as ‘short’, ‘medium height’ and

‘tall’) when manipulating this data in queries. In this example, it is

presumed that the height is known, but if this is not the case, the null

value is stored.

– Fuzzy attribute Type 2, 3 and 4. This representation is similar to Type

1, however a circle of zigzag lines and the notations T2, T3 or T4 are

used instead. This is illustrated in the example of Figure B.20, where

Age is a fuzzy Type 2 attribute, and its domain corresponds to a

fuzzy set of ages considered as numerical values (ordered referential),

allowing linguistic labels such as ‘young’, ‘mature’ and ‘elderly’.

These labels are defined as possibility distributions as shown in Fig-

ure B.21. For example, the label ‘young’ is defined as a trapezoidal

function with four characteristic values of (0/15, 1/20, 1/25/, 0/30).

This example also demonstrates a degree of confidence with this label,

such as where the age 26 belongs to the range ‘young’ with a degree

of confidence of 0.8.

• Fuzzy entities. A fuzzy entity is an entity with an attribute that possesses

a membership degree (with any meaning). The notation of a fuzzy entity

type is displayed as a rectangle with dashed lines. It has a fuzzy attribute

representing the degree of certainty, which is displayed as a dashed circle

connected to the entity with a dashed line as shown in Figure B.22.

In this example, the employee fuzzy entity is associated with an attribute

that stores the total number of hours worked per week, where Q(h) is the
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young

Degree

mature elderly
1

0.8

Age

20 2526 30 40 45 5517

Figure B.21: Possibility distributions for the linguistic labels of the fuzzy T2
attribute: Age (from Galindo et al. (2006)).

EMPLOYEE

Employee_ID

Weekly_Hours(h)

Q(h)=min{1,h/m}Gmembership 

Figure B.22: Fuzzy entity with a membership degree (adapted from Galindo
et al. (2006)).

calculus of the degree of membership and h represents the number of hours

worked per week. Consider Q(h)=min{1, h/m}, where m is the minimum

number of hours for total membership. If m = 35, then an employee who

works for 15 hours will be considered as an employee with a degree of 0.43

(the result of the division 15/35). This demonstrates how the degree can

be maintained in diverse calculations.

• Fuzzy relationships. A fuzzy relationship is a relationship that links between

one or more entities and has at least a fuzzy degree defined by the expression

Gn, where n is the meaning of a fuzzy degree in each specific context (refer

to Galindo et al. (2006) for a clarification of fuzzy degree associated with

each value of an attribute). The notation of a fuzzy relationship type is

displayed as a diamond with a dashed line with a degree attribute as shown

in Figure B.23.

In this example, the district entity can have the attributes (District ID,

Name, Quality). The Quality attribute is defined as a fuzzy attribute Type

3 with the labels: {Low, Regular, Good, Excellent}. The relationship of

proximity of the neighbourhoods can be represented as the fuzzy relation-

ship Close To. This expresses that a proximity degree exists between any

two districts. It is represented by the degree GProximity.

Integrity Constraints. The major constraints that are introduced in Fuzzy-

EER are as follows.
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DISTRICT

CLOSE_TO

District_ID

Name

T3:Quality {Low, Regular, Good, Excellent}

GProximity 

Figure B.23: A portion of an example of a fuzzy relationship (from Galindo
et al. (2006)).

• Fuzzy participation constraints. A fuzzy participation constraint of an entity

in a relationship can be made fuzzy by using a relative fuzzy quantifier.

Let E1 and E2 be two entities and R a relationship between them. A fuzzy

participation constraint of E1 in R is represented by using a zigzag line

joining E1 and R, with a quantifier Q labelling this line, followed optionally

by one or two thresholds, [γ] or [γ, δ].

As discussed by Galindo et al. (2006), a fuzzy quantifier can be written in

three ways:

1. quantifier without a threshold (a default threshold is γ = 0.5). For

example, approx 2;

2. quantifier with a threshold γ. For example, approx 8[0.25]; or

3. quantifier with two thresholds γ and δ, with γ < δ. For example,

approx 3[0.25, 0.75].

The threshold γ = 0.2 in ‘almost all[0.2]’ (Figure B.24) indicates the mini-

mum degree with which this quantifier must be fulfilled in the database.

This example illustrates how fuzzy qualifiers such as ‘almost all’ have been

used to define the participation of employee in this relationship. Refer to

Galindo et al. (2006) for a detailed discussion on the fuzzy participation

constraint in relationships.

EMPLOYEE PROJECTWORKS
_FOR

Almost all[0.2]

Figure B.24: An example of a fuzzy participation constraint, using the fuzzy
quantifier almost all (from Galindo et al. (2006)).



APPENDIX B. SAMPLE PROPOSALS FROM THE CERME FRAMEWORK252

• Fuzzy cardinality constraints. A fuzzy cardinality constraint is defined with

two quantifiers, separate by a colon (:), named as Q1:Q2. Fuzzy cardinality

constraints establish fuzzy conditions on each instance in a specific and

unique way (refer to Galindo et al. (2006) for a detailed discussion about

fuzzy conditions).

EMPLOYEE PROJECT
WORKS

_FOR

Less_than_approx_3 [0.8] : Approx_8  [0.4]

Figure B.25: An example of a fuzzy cardinality constraint in a FuzzyEER
model. (from Galindo et al. (2006)).

In the example of Figure B.25, these constraints express the condition that

each employee works for a maximum of approximately three projects, and

each project has approximately eight employees, thus requiring both con-

straints to be satisfied with the minimum fulfilment degrees indicated in

square brackets.

Fuzzy participation and cardinality constraints can be expressed as a fuzzy

(min,max) notation on relationships as shown in Figure B.26, where both min

and max can have values, and are both fuzzy quantifiers (Galindo et al., 2006).

EMPLOYEE PROJECT
WORKS

_FOR

(0, approx 3[0.25,0.75]) (approx 2, approx 8[0.25])

Figure B.26: An example of fuzzy (min,max) notation in a FuzzyEER model.
(from Galindo et al. (2006)).

In the example, the constraint on the employee side indicates that an employee

may work for no projects (0 as minimum) and up to approximately three projects

as a maximum. The two values (0.25 and 0.75) indicates the minimum and

maximum degree of a quantifier. The constraint cannot be fulfilled to a degree

of less than 0.25, but can be fulfilled where the degree is greater than or equal to

0.75. At the same time, the number of employees in each project is restricted to

a maximum of approximately eight (with a minimum degree of 0.25).

Languages. The concepts of the FuzzyEER model can be translated to the

relational model, and a mapping algorithm is provided to facilitate this.

Some of the FuzzyEER notations may be used in the FSQL (FuzzySQL)

server that enhances the basic SQL to deal with fuzzy queries and operations
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(Galindo et al., 2006). This proposal also provides a tool called FuzzyCASE

to help with system design.

In summary, FuzzyEER model is an extension of the EER model with fuzzy

semantics and notations that allows imprecise and uncertain information to be

represented at a conceptual level. Other extensions to the ER model that have

attempted to deal with fuzzy (or vague) data have been researched (Zvieli and

Chen, 1986; Chen and Kerre, 1998; Ma et al., 2001; Ma, 2005, 2006), but none

of these refer to the possibility of expressing constraints using the tools offered

by fuzzy set theory (Galindo et al., 2006). FuzzyEER presents various fuzzy

features for fuzzy modelling, e.g. fuzzy attribute values, membership degrees,

fuzzy entities, fuzzy relations, fuzzy aggregation and fuzzy constraints.

B.9 The ER extended for XML (EReX) Model

The EReX model (Mani, 2004) is an extension to the ER model which includes

categories, coverage constraints and order constraints.

Data Structures. This approach proposes categories of entity types that can

be modelled using category relationship types. Category relationship types

are similar to is-a relationship types in the EER model and are depicted

as an arrow from its category entity type to its categorised entity type as

shown in Figure B.27. These differ from the is-a relationship type in that a

categorised entity type may have an empty key. The example in Figure B.27

shows the categorised person entity and its reviewer and author categories.

The key of person is empty.

Name

PERSON

REVIEWER AUTHOR

Address

WRITES

REVIEWS

PAPER
M

NM

N

Figure B.27: An example of an EReX schema.
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Integrity Constraints. EReX introduces coverage and order constraints. There

are two kinds of coverage constraints, total coverage and exclusive cover-

age, which can be specified for categories and for roles of entity types in

relationship types. Coverage constraints have been previously discussed in

Elmasri et al. (1985).

• Total coverage constraints. A total coverage constraint specifies that the

union of sets of instances of all included categories or roles must be the

same as a set of instances of the categorised entity type or the entity type

with the included roles.

Note that in the EReX diagram there are no specific graphic notations

for expressing the coverage constraints. Instead, these are represented as

a text notation with mathematical operations. In the example schema in

Figure B.27, the total coverage constraint is defined as Reviewer + Author

= Person that specifies that each person is either a reviewer or an author

as no other roles are allowed.

• Exclusive coverage constraints. An exclusive coverage constraint specifies the

disjunction between the sets of instances of the included categories or roles.

• Order constraints. An order constraint is specified for entity types in a rela-

tionship type. For instance, if an ordering on entity type E in relationship

type R is specified, then for a given entity e of E the relationship instances

in R with e as a participant are ordered. This constraint is depicted as

a thick line between E and R, as indicated in Figure B.27. This example

shows that there is an ordering specified on the paper entity type in the

writes relationship type which means that the authors of a given paper are

ordered.

Languages. This model provides an algorithm to translate an EReX schema to

an XML schema that can be used as a logical model for an XML database.

However, this proposal does not provide any additional operators or infer-

encing rules for querying and manipulating XML data.

In summary, EReX extends the ER model with additional XML features pro-

viding structural and constraint specifications that can be modelled using tradi-

tional ER modelling methodologies. A method of translating an EReX schema to

XML is also provided. While XML utilises the notion of document order, where

all the elements are ordered, there is no equivalent use of these concepts in EReX.
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B.10 The XSEM-ER Model

The XSEM-ER model (Nečaský, 2007) extends the classical ER model to model

XML data. This model is generated in two stages associated with the XSEM

model (Nečaský, 2007). The first stage is used to create an overall conceptual

schema of the application domain that has been designed using the XSEM-ER

model. The second stage uses XSEM-H to convert the structures generated by

XSEM-ER into hierarchical organisations of the data. As this thesis is only

concerned with ER modelling extensions, only the first part of the XSEM model

is described, namely the XSEM-ER model.

Data Structures. The basic modelling constructs (entity types, relationships

type and attributes) of the XSEM-ER model are essentially the same as

those of the ER model. These XSEM-ER constructs differ from the ER

model in the following 3 ways: (1) a list of attributes of an entity type and

a list of attributes of a relationship type are ordered; (2) an entity type can

have an empty key or it can have a non-empty key composed of optional

attributes; and (3) a weak entity type is depicted using a hexagon appended

to the entity box, rather than surrounding the box with double lines as in

the ER model. This approach also proposed new modelling constructs, data

node types and cluster types, for modelling semi-structured, irregular and

heterogeneous data.

• Data node types. For modelling semi-structured data, a data node type is

used to represent unstructured data values assigned to a given entity. It is

depicted as an ellipse with a name of data node type, such as a VisitDesc

data node type as shown in Figure B.28. This example shows the situation

of a patient visiting a physician as discussed by Nečaský (2007). For each

visit date, the physician writes a descriptive log of the visit details. This

description is unstructured text that is assigned to the visit; it is not an

attribute value of the visit. This log is intermixed with anamneses and new

examination details from the visit. To model this mixture of descriptions,

the VisitDesc data node type is used as shown in Figure B.28.

• Cluster types. A cluster type is used to model irregular and heterogeneous

data and to group relevant constructs used to model mixed content in XML

documents. These can be classified as outgoing and incoming cluster types

as described below:
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Hospital

 name

Patient

 name

Examination

- result

Visit

 date

Physician

 name

Clinic

 name

  -    since

Department

 name

Anamnesis

- result

VisitDesc

Employ

Figure B.28: XSEM-ER data node types and cluster types (from Nečaský
(2007)).

– Outgoing cluster types. An outgoing cluster type represents a union of

entity types, and is used to model irregular and heterogeneous data.

It can be used as a participant of another outgoing cluster type, a

participant of a relationship type or as a determinant of a weak en-

tity type. Outgoing cluster types that have evolved from the notion

of HERM cluster types (Thalheim, 2000) are depicted as
⊕

and are

connected by a solid line with a relationship type or weak entity type

in which they participate as shown in Figure B.28. Each participant of

the cluster type is connected by an arrow emanating from the circle to

the participant. This example illustrates an irregular modelling struc-

ture with patients able to visit physicians at hospital departments as

well as at separate clinics. To model this situation, an outgoing cluster

type Department
⊕

Clinic is used as shown in Figure B.28.

– Incoming cluster types. Incoming cluster types are used for grouping

relationship types, weak entity types and data node types that have

the same participant/determinant/parent. These are called parent of

the incoming cluster type, and are depicted as
⊕

and is connected by

a solid line with its parent. Each participant/determinant/parent is

connected by an arrow going to this cluster type circle. In conjunction

with data node types and ordering constraints, incoming cluster types

are used to model mixed content in XML documents. For example, the

incoming cluster type (Visit, Examination
⊕

Anamnesis
⊕

VisitDesc)

can be used to create a description of an overall medical situation for a

patient, covering current examination and visit details, as well as their
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anamnesis as shown in Figure B.28. An example of XML represen-

tation of such a description as discussed by Nečaský (2007) is shown

below:

<visit><date>26-09-2008</date>

<patient>

<name>John Black</name>

</patient>

<physician>

<name>Bill White</name>

</physician>

<department><name>Department A</name>

<hospital>

<name>Hospital B</name>

</hospital>

</department>

Because of the family

anamnesis (<anamnesis>...</anamnesis>)

there is a suspicion of liver cancer.

Thus, I made a laboratory examination

(<examination>...</examination>)...

</visit>

Integrity Constraints. This model proposes the use of ordering constraints

that extend the notion of cardinality constraints in the ER model. There

are two types of ordering constraints. The first specifies ordering on hierar-

chical projections of relationship types and the second specifies ordering on

incoming cluster types.

Languages. The XSEM-ER model does not provide for any additional operators

or inferencing rules for querying and manipulating XML data. This research

does suggest that future work can investigate new algorithms that can be

used for the translation of XSEM-H schemata to the logical XML level.

In summary, the main features of XML data are its hierarchical and irregu-

lar structure, with both ordered and mixed content. XSEM extends the ER

model to represent these features by allowing XSEM-ER to model an overall

non-hierarchical conceptual schema of a domain, followed by the use of XSEM-

H to model a hierarchical organisation of the structures. Thus, the hierarchical

organisation is derived from the transformation of the XSEM-ER constructs to

XSEM-H constructs.



Appendix C

The Full Schema Mapping for

MDER and OntoER models

As support for Chapter 8, this appendix provides the full mapping of MDER

and OntoER model constructs for relational schemata. The extended mapping

algorithm includes additional steps of an algorithm that are used for converting

the mesodata constructs in the MDER model and ontological constructs in the

OntoER model into relational schemata.

The results of the full mapping of the INVENTORY MDER schema and the

MEDICAL OntoER schema into a relational database schema are presented in

Figures C.1 and C.2. Their results also include the schemata that result from

using the basic ER/EER-to-relational mapping algorithm.

C.1 The Result of the Full Mapping of the IN-

VENTORY MDER Schema

The result of a full mapping of the INVENTORY MDER schema in Figure 8.3 into

a relational schema is shown in Figure C.1.

C.2 The Result of the Full Mapping of the

MEDICAL OntoER Schema

The result of a full mapping the MEDICAL OntoER schema in Figure 8.6 into a

relational schema is shown in Figure C.2.

258
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ZIPTREE

Value LinkedItem

COLGRAPH

Value

CATLIST

Value LinkedItem

AREAGRAPH

ProdID ProdType

PRODUCT

Colour CostPrice ListPrice SuppCode

AreaCodeLocalCodeCustNr

CUSTOMER

Name

OrderNr

PRODUCT_ORDER

ProdID Qty

OrderNr

ORDER

Date CustNr

SuppCode Name

SUPPLIER

HouseNr Street City State Zipcode
Mapping

original
ER/EER

constructs

Mapping Mesodata
Entity types

Weight

Value Child Weight

HouseNr Street City State Zipcode

Limit Balance

Figure C.1: Result of mapping the INVENTORY MDER schema into a relational
schema.

C.3 Correcting the Schema: Normalisation

The transformation from an ER schema only guarantees the first normal form

(1NF) relational database schema, and thus the relational schemata may need

further normalisation1. This may be required as the relationship types in the

ER model are only between entity types, while the relationships between the

attributes (functional dependencies) which can lead to redundancies are not taken

into consideration.

One of the key concepts of relational database design is to prevent unnec-

essary duplication of data. Consider the PATIENT and PHYSICIAN schema from

Figure C.2 that is shown with functional dependencies in Figure C.3. To under-

stand why the PATIENT and PHYSICIAN schema may need further normalisation,

it is first required to understand the concept of a functional dependency (FD) (re-

fer to detailed discussions in Date (2003) and Elmasri and Navathe (2007)). In

the example, both the PATIENT and PHYSICIAN schemata are not in third normal

form (3NF) as they have a non-key attribute functionally determined by other

non-key attributes.

This is illustrated with the Zipcode attributes that can be used to identify the

1Normalisation is a methodology used to analyse an association between attributes to extract
functional and join dependencies from the real-world semantics.
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MedCode

Name Code

Node1 Node2

AREAGRAPH

Term1 Term2

DIAGTREE

Parent Child Weight

ZIPWTREE

Term1 Term2

LOCTREE

LicenceNo Name

PHYSICIAN

Specialisation HouseNr Street City State Zipcode AreaCode LocalCode

MedCode

MEDICINE

Name

Date

PRESCRIPTION

QtyPerDay NoOfDays

Code

PROFESSION

Description

LicenceNo

STUDY

Date

Name

SCHOOL

City

Date

VISIT

Diagnosis PatientIDLicenceNo

PatientID Name

PATIENT

BloodTypeDoB HouseNr Street City State Zipcode Phone

Mapping original
ER/EER constructs

Mapping ontological constructs
- Ontological entity types

  (Substep 10A)

- TDP constraints (dashed
line arrows)

  (Substep 10D)

Date

SCHEDULE

FromTime ToTime LicenceNo

Figure C.2: Result of mapping the MEDICAL OntoER schema into a relational
schema.

State attribute. In other words, this use of the State attribute is redundant as

it can be inferred from Zipcode values. Thus, the notation FD: Zipcode → State

holds in both PATIENT and PHYSICIAN.

Normalisation is used to remedy this problem resulting in the schema decom-

position as shown in Figure C.4. This method includes:

1. Decompose and set up the new schema that includes the non-key at-

tribute(s) that functionally determine(s) other non-key attribute(s). The

determinant attribute (the left-hand side of the FD), becomes the primary

key of the new schema. In this example, Zipcode becomes a primary key of
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PatientID Name

PATIENT

BloodTypeDoB HouseNr Street City StateZipcode Phone

LicenceNo Name

PHYSICIAN

Specialisation HouseNr Street City StateZipcode AreaCode LocalCode

FD

FD

FD

FD

Figure C.3: The PATIENT and PHYSICIAN schema with their functional depen-
dencies.

PatientID Name

PATIENT

BloodTypeDoB HouseNr Street

StateZipcode

Phone

LicenceNo Name

PHYSICIAN

Specialisation HouseNr Street Zipcode AreaCode LocalCode

ZIPLOCATION

Zipcode City

City

Figure C.4: Normalisation into 3NF.

a new schema ZIPLOCATION.

2. Leave the determinant attribute in the original schema, where it now be-

comes a foreign key into the new schema.

To normalise PATIENT schema into 3NF, it is decomposed into the two

schemata: new PATIENT and ZIPLOCATION. The new PATIENT and PHYSICIAN

schemata are constructed by removing the State attributes. The new ZIPLOCA-

TION schema, shown in Figure C.4, contains the Zipcode and State attributes.

Both the PATIENT and ZIPLOCATION schemata are in 3NF. Normalisation of the

PHYSICIAN schema into 3NF can be achieved in the same way as the PATIENT

schema. Since the two new ZIPLOCATION schemata derived from decomposing

the PATIENT and PHYSICIAN schemata have exactly the same key attribute and a

non-key attribute, the single ZIPLOCATION schema can be used that is referenced

by both the PATIENT and PHYSICIAN schemata as shown in Figure C.4. Note that

the schema in Figure C.4 is also in fifth normal form (5NF).

A result of the normalised MEDICAL OntoER schema is shown in Figure C.5.

All relational schemata in Figure C.5 are in 5NF.
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Figure C.5: A normalised schema of the MEDICAL OntoER schema.



Appendix D

The Full SQL Data Definition

Language (MDDL and DDL)

This appendix details the full data definition SQL commands consisting of MDDL

(Mesodata DDL) and DDL for the INVENTORY and MEDICAL schemata ex-

amples that are based on the MDER schema (Figure 8.3) and OntoER schema

(Figure 8.6), respectively. The CREATE statement can be used to create tables,

mesodata domains, ontological domains, domain’s references for attributes and a

source table for the domains as well as other constructs (such as total mesodata

domain participation (TMDP) or total domain participation (TDP) constraints).

The method of defining either mesodata or ontological data is described below:

1. Create the source relational schema corresponding to the structure of meso-

data types (or ontological data types/common domain structures) selected

using the CREATE TABLE command. An example of the source relational

schema for describing the mesodata type WTREE is created as below:

CREATE TABLE ziptree (

Value CHAR(15) NOT NULL,

Child CHAR(15) NOT NULL,

Weight NUMERIC,

PRIMARY KEY (Value, Child));

2. Create the domain over the source relational schema using the CREATE

DOMAIN command.

CREATE DOMAIN ZIPCODES

AS wtree

OF CHAR(15)

OVER ziptree;

263
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3. Reference attribute to the domain created in step 2, using the CREATE TABLE

command. Example of Zipcode attribute referencing the ZIPCODES domain

is as below:

CREATE TABLE customer (

CustNr CHAR(6) NOT NULL,

Name CHAR(40),

HouseNr CHAR(6),

Street CHAR(15),

City CHAR(15),

State CHAR(15),

Zipcode ZIPCODES,

LocalCode CHAR(10),

.

.

.

4. Handle integrity constraints that are imposed on the models. Consider the

following two cases:

• to handle the TMDP constraints in the MDER model (or the MMR

constraints in the MDORM model), the SQL Clause CLOSED can be

used as shown below:

CREATE TABLE product (

ProdID CHAR(6) NOT NULL,

ProdType CATEGORIES CLOSED,

Colour COLOURS CLOSED,

ListPrice NUMERIC,

CostPrice NUMERIC,

SuppCode CHAR(5),

PRIMARY KEY (ProdId),

.

.

.

• to handle the TDP constraints in the OntoER model (or the OMR con-

straints in the OntoORM model or the OT constraints in the OntoUML

model), the FOREIGN KEY statements can be used as shown below:

CREATE TABLE school (

Name LOCATIONS NOT NULL ,

City LOCATIONS,

PRIMARY KEY (Name),

FOREIGN KEY (Name) REFERENCES loctree(Term1),

FOREIGN KEY (City) REFERENCES loctree(Term1));
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D.1 SQL Data Definition Statements for Defining

the INVENTORY Schema

The relational schema from the mapping of the INVENTORY MDER schema in

Figure C.1 (Page 259) is defined using the following statements:

CREATE TABLE catlist (

Value CHAR(50) NOT NULL,

PRIMARY KEY(Value));

CREATE DOMAIN CATEGORIES

AS list

OF CHAR(50)

OVER catlist;

CREATE TABLE colgraph (

Value CHAR(15) NOT NULL,

LinkedItem CHAR(15) NOT NULL,

Weight NUMERIC,

PRIMARY KEY (Value, LinkedItem));

CREATE DOMAIN COLOURS

AS wgraph

OF CHAR(15)

OVER colgraph;

CREATE TABLE ziptree (

Value CHAR(15) NOT NULL,

Child CHAR(15) NOT NULL,

Weight NUMERIC,

PRIMARY KEY (Value, Child));

CREATE DOMAIN ZIPCODES

AS wtree

OF CHAR(15)

OVER ziptree;

CREATE TABLE areagraph (

Value NUM(2) NOT NULL,

LinkedItem NUM(2) NOT NULL,

PRIMARY KEY (Value, LinkedItem));

CREATE DOMAIN AREACODES

AS graph

OF NUM(2)

OVER areagraph;

CREATE TABLE product (

ProdID CHAR(6) NOT NULL,

ProdType CATEGORIES CLOSEDa,

Colour COLOURS CLOSED,

ListPrice NUMERIC,

CostPrice NUMERIC,

SuppCode CHAR(5),

PRIMARY KEY (ProdId),

FOREIGN KEY (SuppCode) REFERENCES supplier(SuppCode));

aThe SQL Clause CLOSED indicates that there is a TMDP constraint on the attribute.
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CREATE TABLE customer (

CustNr CHAR(6) NOT NULL,

Name CHAR(40),

HouseNr CHAR(6),

Street CHAR(15),

City CHAR(15),

State CHAR(15),

Zipcode ZIPCODES,

LocalCode CHAR(10),

AreaCode AREACODES,

Limit NUMERIC,

Balance NUMERIC,

PRIMARY KEY (CustNr));

CREATE TABLE supplier (

SuppCode CHAR(5) NOT NULL,

Name CHAR(40),

HouseNr CHAR(6),

Street CHAR(15),

City CHAR(15),

State CHAR(15),

Zipcode ZIPCODES,

PRIMARY KEY (SuppCode));

CREATE TABLE order (

OrderNr NUMERIC NOT NULL,

Date DATE,

CustNr CHAR(6) NOT NULL,

PRIMARY KEY (OrderNr),

FOREIGN KEY (CustNr) REFERENCES customer(CustNr));

CREATE TABLE product order (

OrderNr NUMERIC NOT NULL,

ProdId CHAR(6) NOT NULL,

Qty NUMERIC,

PRIMARY KEY (OrderNr, ProdId),

FOREIGN KEY (OrderNr) REFERENCES order(OrderNr),

FOREIGN KEY (ProdID) REFERENCES product(ProdID));

D.2 SQL Data Definition Statements for Defining

the MEDICAL Schema

The normalised relational schema of the MEDICAL OntoER schema in Figure C.5

(Page 262) is defined using the following statements:

CREATE TABLE diagtree (

Term1 CHAR(30) NOT NULL,

Term2 CHAR(30) NOT NULL,

PRIMARY KEY (Term1, Term2));

CREATE DOMAIN DIAGNOSES

AS tree

OF CHAR(50)

OVER diagtree;
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CREATE TABLE zipwtree (

Parent CHAR(30) NOT NULL,

Child CHAR(30) NOT NULL,

Weight NUMERIC,

PRIMARY KEY (Parent, Child));

CREATE DOMAIN ZIPCODES

AS wtree

OF CHAR(15)

OVER zipwtree;

CREATE TABLE areagraph (

Node1 CHAR(30) NOT NULL,

Node2 CHAR(30) NOT NULL,

PRIMARY KEY (Node1, Node2));

CREATE DOMAIN AREACODES

AS graph

OF CHAR(15)

OVER areagraph;

CREATE TABLE loctree (

Term1 CHAR(30) NOT NULL,

Term2 CHAR(30) NOT NULL,

PRIMARY KEY (Term1, Term2));

CREATE DOMAIN LOCATIONS

AS tree

OF CHAR(50)

OVER loctree;

CREATE TABLE ziplocation (

Zipcode ZIPCODES NOT NULL,

State CHAR(15),

PRIMARY KEY (Zipcode));

CREATE TABLE patient (

PatientID CHAR(6) NOT NULL,

Name CHAR(40),

DoB DATE,

BloodType CHAR(2),

HouseNr CHAR(6),

Street CHAR(15),

Zipcode ZIPCODES,

City CHAR(15),

Phone CHAR(10),

PRIMARY KEY (PatientId),

FOREIGN KEY (Zipcode) REFERENCES ziplocation(Zipcode));

CREATE TABLE physician (

LicenceNo CHAR(6) NOT NULL,

Name CHAR(40),

Specialisation DIAGNOSES,

HouseNr CHAR(6),

Street CHAR(15),

Zipcode ZIPCODES,

City CHAR(15),

LocalCode CHAR(10),

AreaCode AREACODES,

PRIMARY KEY (LicenceNo),
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FOREIGN KEY (Specialisation) REFERENCES diagtree(Term1),

FOREIGN KEY (Zipcode) REFERENCES ziplocation(Zipcode);

CREATE TABLE visit (

Date DATE NOT NULL,

Diagnosis DIAGNOSES,

PatientID CHAR(6),

LicenceNo CHAR(6),

PRIMARY KEY (DATE),

FOREIGN KEY (PatientID) REFERENCES patient(PatientID),

FOREIGN KEY (LicenceNo) REFERENCES physician(LicenceNo),

FOREIGN KEY (Diagnosis) REFERENCES diagtree(Term1));

CREATE TABLE medicine (

MedCode CHAR(10) NOT NULL,

Name CHAR(50)

PRIMARY KEY (MedCode));

CREATE TABLE prescription (

Date DATE NOT NULL,

MedCode CHAR(10) NOT NULL,

QtyPerDay CHAR(6),

NoOfDay INTEGER(2),

PRIMARY KEY (Date, MedCode),

FOREIGN KEY (Date) REFERENCES visit(Date);

FOREIGN KEY (MedCode) REFERENCES medicine(MedCode));

CREATE TABLE schedule (

Date DATE NOT NULL,

FromTime Time,

ToTime Time,

PRIMARY KEY (Date),

FOREIGN KEY (LicenceNo) REFERENCES physician(LicenceNo));

CREATE TABLE profession (

Code CHAR(10) NOT NULL,

Description CHAR(40),

PRIMARY KEY (Code));

CREATE TABLE school (

Name LOCATIONS NOT NULL ,

City LOCATIONS,

PRIMARY KEY (Name),

FOREIGN KEY (Name) REFERENCES loctree(Term1),

FOREIGN KEY (City) REFERENCES loctree(Term1));

CREATE TABLE study (

LicenceNo CHAR(6) NOT NULL,

Name DIAGNOSES NOT NULL,

Code CHAR(10) NOT NULL,

Date DATE,

PRIMARY KEY (LicenceNo, Name, Code),

FOREIGN KEY (LicenceNo) REFERENCES physician(LicenceNo),

FOREIGN KEY (Name) REFERENCES school(Name),

FOREIGN KEY (Code) REFERENCES profession(Code));
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