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Abstract 

Remotely Operated Vehicles (ROVs) are today commonly deployed in a range of 

underwater applications, including offshore oil and gas, defence, aquaculture and scientific 

research, mostly for inspection and intervention roles. In order to meet the requirements for 

these roles and operate underwater effectively, the vehicles need accurate navigation and 

control systems to allow the vehicle to manoeuvre and maintain station with little effort from 

the operator.  

This master’s thesis is concerned with two major phases: the first is modelling and system 

identification of an observation class mini ROV, named BlueROV2 Heavy; and the second 

is the design and development of a 6-DoF robust control system for this vehicle. Modelling 

and system identification comprises mathematical modelling and the subsequent estimation 

of the relevant parameters. The modelling of the BlueROV2 Heavy was carried out in 6-DoF 

and consists of developing the thruster model and the dynamic model of motion of the 

vehicle. A system identification approach of immersion tank testing with the use of on-board 

sensors is proposed for parameter estimation where the unknown parameters are estimated 

from the experimental data utilising the least squares algorithm. Due to unforeseen delays 

in receiving the BlueROV2 Heavy in time, these experiments could not be performed. 

Instead, the unknown parameters are currently determined by utilising the BlueROV2 

Heavy’s technical specifications in combination with published data of the BlueROV. 

The determined model from the system identification process was utilised to design the 6-

DoF control system for BlueROV2 Heavy in which a conventional PID controller and a 

nonlinear model-based PID controller were applied, respectively. The thesis examines and 

compares the performance of both controllers from results of simulations where the 

nonlinear model-based control system achieves significant improvement in accuracy 

especially when external disturbance is applied or when multiple movements or rotations 

are required. Monte Carlo method was applied to analyse the robustness of both control 

systems in consideration of random disturbances and uncertainties in the process model. 

The simulation results demonstrate that the designed 6-DoF nonlinear model-based control 

system is feasible to be implemented on the BlueROV2 Heavy. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background & Motivation 

Since there has been an increasing interest in studying, exploring and exploiting the oceans’ 

underwater environments in recent years, Unmanned Underwater Vehicles (UUVs) are 

becoming more and more prevalent and extensively utilised in surveying, scientific, industrial 

and military applications. Based on operations and shapes of the underwater vehicles, UUVs 

are generally classified into two categories: Autonomous Underwater Vehicles (AUVs) and 

Remotely Operated Vehicles (ROVs). An AUV can travel underwater independently for long 

distances without connected cables and command inputs from operators and often has a 

cylindrical shape, whereas an ROV is controlled by an operator via a tether and generally 

operates at low speeds in a certain range with the design of a box shape. Due to the features 

of ROVs, they have become widely used in the offshore industry for marine inspection. 

Fish farming is one of the most common types of aquaculture where floating cages with 

flexible nets are employed. In order to reduce the risk of fish escapes with limited operators 

and costs, the development of ROV technology is invaluable for underwater operations such 

as mooring and nets inspection. With the increase of the use and accessibility of ROVs to 

the public for effective and safe independent operations, the demand for applying autonomy 

onto ROVs has become significant for a large number of circumstances. In consideration of 

autonomous operations of an ROV, the development of a control system is then crucial for 

controlling the behaviour of the ROV. 

 

1.2 Problem Statement 

BlueROV2 Heavy from Blue Robotics (BlueRobotics 2018a) has been newly released in 

2018 providing configuration of eight thrusters and provides the capability of full six degrees 

of freedom (DoFs) control. Although BlueROV2 Heavy has a control system implemented in 

its platform, it uses an open-loop controller, which can provide control abilities for manual 

operation where a high level of precision is not required. Nevertheless, for autonomous 
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operations of an ROV, a robust control system is needed due to accuracy requirements and 

safety of the vehicle. 

The system properties for describing the behaviour of an ROV operating underwater can be 

investigated using models. The development of these models is challenging and time-

consuming in both theoretical development and experimental testing. The complexity 

involves highly nonlinear properties of an ROV, substantial unknown parameters in the 

models, incomplete state information provided by sensors containing noisy measurements, 

and system influenced by unpredictable disturbance such as currents in a coupled manner. 

However, knowing system properties allows us to optimise the control design and improve 

the accuracy and performance of the vehicle. Hence, this thesis will cover the modelling and 

identifying BlueROV2 Heavy’s system properties as well as developing a nonlinear model-

based control algorithm based on these properties. 

 

1.3 Objective 

The level of motion control of an ROV is based on the number of DoFs that could be 

controlled, which is depending on the thruster configuration of the vehicle. BlueROV2 Heavy 

was chosen for this project because its thruster configuration can provide the 6-DoF control 

ability. The full 6 DoFs gives ROV capability for movements and rotations in every possible 

direction. Accordingly, a 6-DoF control system allows the ROV to manoeuvre complex 

structures. Hence, the objective of this research is to develop a 6-DoF model of BlueROV2 

Heavy and to utilise this model to design a robust 6-DoF control system for BlueROV2 

Heavy. The objective can be subdivided into the following parts: 

1. Develop a 6-DoF mathematical dynamic model of BlueROV2 Heavy’s motion. 

2. Develop BlueROV2 Heavy’s mathematical thruster model by analysing thrust 

configuration. 

3. Identify unknown parameters of 6-DoF dynamic model of BlueROV2 Heavy. 

4. Identify thruster characteristics of BlueROV2 Heavy. 

5. Design a robust 6-DoF control system for BlueROV2 Heavy platform where a linear 

model-less controller and a nonlinear model-based controller will be developed 
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individually and perform simulations to evaluate the performance of both control 

systems. 

 

1.4 Approach 

First of all, an analytical study of theoretical models in 6 DoFs for underwater vehicles was 

undertaken while a literature review was carried out to examine current knowledge and 

existing solutions from previous UUV research. With the analysis of BlueROV2 Heavy’s 

physical characteristics and operating speeds, several assumptions were made for the 

dynamics of the vehicle in order to simplify the 6-DoF mathematical models and reduce the 

number of unknown parameters in the models. 

Next, a scheme of estimating parameters in the model was formulated based on the review 

of system identification. This proposed approach is comprised of performing a series of 

designed immersion tank experiments and then applying a suitable estimation technique to 

determine unknown parameters from experimental data. However, since the BlueROV2 

Heavy is currently not available for experiments, analysis of the ROV’s technical 

specifications and application of parameters derived from previous BlueROV research were 

applied. 

Finally, since the system properties of ROVs are nonlinear, with the use of attained system 

models, a nonlinear model-based controller was utilised to design a robust 6-DoF control 

system for BlueROV2 Heavy while a linear controller was also designed separately. Various 

predetermined experiments were operated to evaluate and compare the effectiveness and 

performance of linear model-less and nonlinear model-based controllers. 

 

1.5 Contributions and Thesis Organisation 

1.5.1 Outline of the Thesis 

Chapter 2 examines classification of ROVs and related research that have been done 

previously; and reviews a number of control solutions that have been applied for underwater 
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vehicles as well as mathematical modelling methods and system identification approaches 

for underwater vehicles. 

Chapter 3 describes the BlueROV2 Heavy package and its components. The capabilities of 

the vehicle and its operating system are concisely explained. The assembled BlueROV2 

Heavy is shown and the assertions on dynamics about BlueROV2 Heavy that were made 

are presented in this chapter 

Chapter 4 presents fundamental theories and procedures of 6-DoF mathematical models 

for underwater vehicles, organised by kinematic, kinetic and thruster models. The applied 

assumptions based on BlueROV2 Heavy characteristics for model simplification are also 

discussed. 

Chapter 5 presents a system identification approach of experiment design and estimation 

algorithm for determining the parameters in 6-DoF models derived in chapter 4. While the 

experimental platform is not available for performing experiments, parameters determined 

by analysing published technical specifications for the BlueROV2 Heavy and other available 

published literature relating to the BlueROV are used instead in this chapter. 

Chapter 6 concisely describes the control problem and proposes the 6-DoF nonlinear model-

based controller for the control system of BlueROV2 Heavy. The designed control system 

simulations are presented and the simulation results are discussed and compared with 

control system using linear model-less controller. 

Chapter 7 concludes the overall results and presents suggestions for further work. 

 

1.5.2 Contributions 

To the author’s knowledge, the modelling of the BlueROV2 Heavy and the development and 

analysis of the control algorithms are presented in this thesis are novel contributions. More 

specifically, the following highlights the contributions made to the thesis. 

1. Development of 6-DoF mathematical modelling of the BlueROV2 Heavy 

2. Proposal of system identification experiments for the BlueROV2 Heavy 
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3. Determination of parameters in the 6-DoF model of the BlueROV2 Heavy by utilising 

published technical specifications for the BlueROV2 Heavy and published literature 

relating to the BlueROV 

4. Development of a 6-DoF linear conventional PID control system and a 6-DoF 

nonlinear model-based PID control system for the BlueROV2 Heavy, and 

performance comparison of both algorithms by simulations 

5. Robustness analysis of both control systems by applying Monte Carlo simulations 

and statistical analysis 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter presents a comprehensive literature review on existing control algorithms, 

mathematical modelling methods and system identification approaches that have been 

applied for underwater vehicles while ROV classification and previously developed platforms 

with associated research are also examined. Accordingly, a feasible approach for 

developing a robust 6-DoF control system for BlueROV2 Heavy is proposed. 

 

2.1 ROV Classification and Related Works 

ROVs can be categorised into two major classes based on the purpose of use and their 

functions: observation class ROVs and work class ROVs (Capocci, Dooly et al. 2017). 

Observation class ROVs are utilised for visual inspection and light intervention tasks, 

whereas work class ROVs perform more serious subsea work and deep-water installations 

with manipulative capability and wide power variations. 

Capocci et al. presents a review of classification of ROVs in regard to size and capability, 

and discusses common subsystems of the ROV. Observation class ROVs, also called 

inspection ROVs, are generally small vehicles deployed in waters no deeper than a few 

hundred metres and their propulsion power is limited to several kilowatts. This class of ROVs 

can be subdivided into micro, mini and medium ROVs according to the size of the vehicle. 

They are often fitted with thrusters, imaging devices and various types of sensors. Work 

class ROVs can be divided into light and heavy work class models based on the level of 

heavy duty work they are able to carry out. However, work class ROVs employ considerable 

volume of equipment that leads to high overall system complexity and significant costs for 

operation. Hence, when the functionalities of these large ROVs are not required, observation 

class ROVs are preferred for a wide variety of applications (Capocci, Dooly et al. 2017). 

Christ and Wernli provide a manual on how to use small-scale observation class ROVs for 

inspection, survey and research purposes that can be applied in both scientific and industrial 
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studies (Christ and Wernli 2007). The history of ROV development and the technology 

improvement of observation class ROVs were addressed in this book. It then details 

necessary knowledge for the design and operations of underwater robotics and navigation 

tools to attain their mission results in an efficient way. Huang discusses the degree of 

autonomy for unmanned systems regarding operator controlled or program controlled by 

which they might be functioned under operation modes of fully autonomous, semi-

autonomous, tele-operation and remote control depending on the levels of human 

intervention (Huang 2004). 

A tethered ROV can be operated with autonomy and artificial intelligence. There are three 

main systems within the autonomy architecture of unmanned underwater vehicles, which 

are guidance system, navigation system and control system (Fossen 2002, Fossen 2011). 

The guidance system produces the desired path for the vehicle; the navigation system 

determines the current state of the vehicle, such as its position, velocity and acceleration; 

the control system provides command signals in controlling the vehicle in a multi-axis motion 

to follow its desired trajectory. The techniques of the design of these systems are discussed 

in detail in (Fossen 2002, Fossen 2011), and examples on different areas of research by the 

usage of ROVs will be examined in the following. 

Fernandes developed a model-based multiple input multiple output (MIMO) output feedback 

motion control system along with an open-loop guidance system for an observation-class 

ROV named Minerva using existing modelled parameters (Fernandes, Sørensen et al. 

2015). In the guidance system, a path generation scheme was used to produce efficient 

references of position, velocity and acceleration in order to guide the ROV’s motion, and a 

reference model was proposed to synthesise continuous references with respect to a single 

DoF motion. The applied motion control system contains dynamic positioning and trajectory 

tracking capabilities such that the ROV is capable of keeping position and heading angle at 

a depth of 70 m by controlling 4 DoFs of surge, sway heave and yaw of the ROV under the 

assumption that the remaining DoFs of roll and pitch are self-stable (i.e. metacentric stability) 

due to the design of the ROV. The author concluded that the use of the dynamic model 

achieves a steadier motion such that steadier hydrodynamic effects and less plant 

parameter variation would be induced as well as the higher overall motion accuracy could 

be obtained. 
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Sandøy designed uDrone, a model-based advanced control system containing both an 

observer and a controller for a mini ROV called BlueROV from Blue Robotics (Blue Robotics 

2016). The controller uses the estimated states produced by the observer and evaluates 

optimised corrective signals to control the vehicle. Although the BlueROV includes 6 

thrusters, the system was simplified to the 4-DoF control of surge, sway, heave and yaw 

motions. The author validated the design of the system by the implementation in Simulink 

and interfaced with Robot Operating System (ROS) (Sandøy 2016). Aili and Ekelund also 

modelled and developed a control system for BlueROV (Blue Robotics 2016) in which the 

model parameters were estimated using EKF-based sensor fusion method in order to design 

attitude, angular velocity and depth controllers. However, the attitude controller was not able 

to achieve a stable system while using the feedback linearisation (Aili and Ekelund 2016). 

Gonzalez designed and constructed an AUV named Mako, including mechanical and 

electrical systems (Gonzalez 2004). The system identification of Mako and the simulation of 

a control system were carried out for 4 DoFs of surge, heave, pitch and yaw motion control. 

Lapierre et al. proposed a nonlinear path following control system using Lypaunov theory 

and backstepping techniques and the simulation was performed for an underactuated AUV 

with the simplified dynamic model along a desired path (Lapierre, Soetanto et al. 2003). 

Image capturing is another main capability for ROVs. Jakobsen developed a software 

system for a micro ROV to inspect fish cage net integrity by analysing the video feed from 

the ROV. The algorithm processes and analyses camera sensor data in real-time, with the 

objective of generating control signals for the ROV to move in a pattern for the investigation 

of the whole cage net. Although this was not achieved as a result of the lack of sway motion 

ability of the ROV, it has proven the use of an autonomous ROV for aquaculture monitoring 

applications (Jakobsen 2011). In oceanography research, there are application examples in 

detecting and tracking underwater objects (Walther, Edgington et al. 2004), underwater 

environment mapping and reconstruction (Singh, Roman et al. 2007, Sedlazeck, Koser et 

al. 2009, Marsh, Copley et al. 2013). Table 2.1 to Table 2.3 lists a number of previously 

developed platforms and associated research. 
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Table 2.1 List of ROV Usage Research − 1 

Name Producer Area of Research Figure 

VORTEX 
VORTEX 
Degree 

Control Systems 
(Perrier and 
Canudas-De-Wit 
1996) 

 
(Perrier and Canudas-De-Wit 1996) 

Hercules 

Institute For 
Exploration 

(Ocean 
Exploration 

Trust) 

Image Mapping 
(Singh, Roman et al. 
2007, Roman, Inglis 
et al. 2010) 

 
(OceanExplorationTrust 2003) 

Seaeye 
Falcon 

SAAB 

Guidance and 
Control Systems 
(Soylu, Buckham et 
al. 2008) 

 
(SAAB 2002) 

Sub-Fighter 
7500 

(Minerva) 
SPERRE 

Control Systems 
(Svendby 2007, 
Dukan, Ludvigsen et 
al. 2011, 
Fernandes, 
Sorensen et al. 
2013, Dukan 2014, 
Fernandes, 
Sørensen et al. 
2015)  

(NTNU 2018) 
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Table 2.2 List of ROV Usage Research − 2 

Name Producer Area of Research Figure 

Sub-Fighter 
30 K 

SPERRE 

Control Systems 
for ROV 
Manipulator 
(Haugen 2012) 
for ROV (Dukan 
2014, Rist-
Christensen 2016) 

 
(SPERRE 2012) 

VideoRay 
PRO 3S 

VideoRay 
Computer Vision 
Systems (Jakobsen 
2011) 

 

 
(VideoRay 2018a) 

VideoRay 
Explorer 

VideoRay 

Image Analysis 
(Amado-Filho, 
Pereira-Filho et al. 
2012) 

 

 
(VideoRay 2018b) 

VideoRay 
PRO 4 

VideoRay 

Control Systems 
(Arnesen 2016, Mai, 
Pedersen et al. 
2017) 

 

 
(VideoRay 2018c) 
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Table 2.3 List of ROV Usage Research − 3 

Name Producer Area of Research Figure 

BlueROV BlueRobotics 

Control Systems 
(Aili and Ekelund 
2016, Sandøy 
2016, Yahya and 
Arshad 2016) 

 

 
(Sandøy 2016) 

BlueROV2 BlueRobotics 

Computer Vision 
Systems 
(Chalkiadakis, 
Papandroulakis et 
al. 2017) 

 

 
(BlueRobotics 2017) 

Isis 
National 

Oceanography 
Centre 

Image Analysis 
(Marsh, Copley et 
al. 2013) 
Computer Vision 
Systems (Erikson, 
Gansel et al. 2016) 

 
(NationalOceanographyCentre 2018) 

 

2.2 Review of Existing Control Solutions for Underwater Vehicles 

The fundamental principle of a feedback control system of an ROV is illustrated in Figure 

2.1 where the controller produces generalised control forces and the control allocation 

distributes these generalised control forces to the actuators (Fossen and Johansen 2006). 

Since control systems are based on the design of controllers, this section will review a variety 

of control algorithms that have been applied to underwater vehicles. 
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Controller
Control 

Allocation
ROV

 

Figure 2.1 Block diagram of a feedback control system (Fossen and Johansen 2006) 

 

2.2.1 Proportional Integral Derivative (PID) Control and PID Variations 

In control systems, the classical proportional-integral-derivative (PID) control is usually 

favoured for unmanned underwater vehicles and marine vessels in general (Fossen 1994, 

Strand 1999, Smallwood and Whitcomb 2004, Sørensen 2012) as well as for industrial 

control applications (Åström and Hägglund 2006, Raptis 2010). PID control was firstly 

introduced by Minorsky with a theoretical analysis of automatic steering systems for ships 

where he formulated the three control terms of proportional, integral and derivative, and 

used their impact on the controller output to employ optimal control (Minorsky 1922). His 

system was a single-input single-output (SISO) linear control system in which the applied 

PD and subsequently PID controllers were tuned empirically to control the heading of the 

ship automatically. Upon which, a conventional PID control system can be generalised to a 

nonlinear multiple input multiple output (MIMO) system (Fossen 1991). The PID controller 

is capable of removing steady state bias and predicting the future by integral and derivative 

operations, respectively as its integral, proportional and derivative feedback is on the basis 

of the past, the present and the future control error, respectively. As a result, it is a highly 

sufficient control method particularly when coupled nonlinear time varying plant dynamics of 

the process are low (Åström and Hägglund 1995). Since underwater vehicles are low speed 

travelling and generally identified as uncoupled dynamic models, PID controllers are 

commonly used due to its synthesis and the relative simplicity of implementation and a 

number of successful applications with experimental results shown can be found in literature 

(Perrier and Canudas-De-Wit 1996, Caccia and Veruggio 2000, Antonelli, Chiaverini et al. 

2001, Smallwood and Whitcomb 2004, Hoang and Kreuzer 2007, Dukan, Ludvigsen et al. 

2011, Fernandes, Sørensen et al. 2015). 
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The first dynamic positioning system was implemented by the use of traditional PID 

controllers in cascade for surge, sway and yaw motions in combination with notch filters to 

restrain the effects of wave forces under the assumption that the interactions are negligible 

(Sargent and Cowgill 1976). However, the integral action of the controller could not be 

sufficient due to couplings between motions of surge, sway and yaw. Furthermore, the 

introduction of motion measurements notch filtering results in the phase lag in the control 

loops.  

In several applications, the conventional PID controller has its performance limitations. 

When PID controllers are used alone, the exact trajectory tracking of nonlinear time varying 

dynamics cannot be achieved. Moreover, PID controllers are unable to dynamically 

compensate for unmodelled hydrodynamic forces of the vehicle. Yet by incorporating other 

techniques into the PID design it is possible to circumvent these limitations. The nonlinear 

model-based exact linearisation can be obtained either applying state feedback of the 

robotics computed torque control technique (Franklin, Powell et al. 1994, Silpa-Anan, 

Abdallah et al. 2000, Gonzalez 2004) or using reference feedforward terms (Smallwood and 

Whitcomb 2004, Fernandes, Sørensen et al. 2015) to exactly linearise the plant dynamics. 

Alternatively, since the process dynamics varies, two approaches have been suggested to 

automatically alter the gains of the PID controller with regard to adapting the corresponding 

variations in the dynamic properties to the process. The first method called gain scheduling 

updates the controller gains discretely based on measurable disturbance inputs (Caccia and 

Veruggio 2000, Sørensen 2012). The other approach of continuous adaptation (or self-

adaptation) tunes the system continuously on the basis of a measurement of its closed-loop 

performance. While Hsu implemented the dynamic positioning system using PI and model-

based adaptive controller on an ROV (Hsu, Costa et al. 2000), employing an nonlinear 

adaptive PD controller in the dynamic positioning for AUVs (Sun and Cheah 2003) and 

ROVs (Hoang and Kreuzer 2007) has been proposed. Antonelli developed a 6-DoF adaptive 

control algorithm for AUVs in the unknown dynamic parameters and time varying underwater 

environments validated by sufficient experimental results (Antonelli, Chiaverini et al. 2001). 

Perrier and Canudas-De-Wit designed a nonlinear robust control system using a PID 

controller with an additional nonlinear loop, and performed experiments on the VORTEX 

ROV (Perrier and Canudas-De-Wit 1996) while Alvarez et al presented the control of an 

AUV using a robust PID controller to undertake oceanographic sampling tasks (Alvarez, 
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Caffaz et al. 2009). More applications of the nonlinear robust adaptive control strategy for 

UUVs can be found in literature (Yuh 1990, Do, Pan et al. 2004, Li, Yang et al. 2012). 

 

2.2.2 Linear Quadratic Regulator/Gaussian (LQR/LQG) 

Another optimal control technique of model linearisation called linear quadratic regulator 

(LQR) operates a dynamic system and provides an automated design procedure to find a 

suitable state feedback controller by minimising the quadratic continuous time cost function 

so as to give the best possible performance. Wahl and Gilles presented an automatic track-

keeping control system using an LQR combined with a feedforward cancellation scheme 

(Wahl and Gilles 1999). Goheen and Jefferys presented a linear quadratic self-tuning 

controller of linearised plant models and the performance of controlling an ROV was 

examined by a nonlinear simulation (Goheen and Jefferys 1990). Arnesen developed motion 

control systems to allow the Videoray Pro 4 ROV to achieve path-following in which the 

heading and depth of the ROV were controlled by using a PID controller and an LQR, 

respectively (Arnesen 2016). As far as the uncertainty of the system and incomplete state 

information are concerned, the combination of a linear quadratic estimator (LQE) of a 

Kalman filter with a LQR forms the linear quadratic Gaussian (LQG) in order for systems to 

include Gaussian noise and for circumstances of that when the full state of the system might 

not be directly observed. Simple LQG controllers have been applied in Juul and others (Juul, 

McDermott et al. 1994, Naeem, Sutton et al. 2003, Sandøy 2016). 

 

2.2.3 Sliding Mode Control (SMC) 

Sliding mode control is a nonlinear control technique in which the dynamics of the nonlinear 

system are altered by employing a discontinuous control signal to cause the system slide 

along a prescribed path. Its methodology is described and derived in detail in literature (Utkin 

1977, Slotine and Sastry 1983). The primary benefit of sliding mode control is that the 

closed-loop response are insensitive to parameter variations and external disturbances so 

as to obtain good quality of trajectory tracking and achieve robust control. Yoerger and 

Slotine applied SMC in control of underwater vehicles concerning their highly nonlinear and 

time varying dynamics parameters as well as model uncertainties and disturbances, 
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whereupon they presented how this method deals with nonlinearities directly to produce 

robust controllers that perform predictably using a nonlinear vehicle simulations with modest 

amounts of computation required (Yoerger and Slotine 1985). Haugen proposed a suitable 

controller using SMC principle with the intention of forcing the manipulator of the SubFighter 

30K ROV to track a desired path in the joint space, though an alternative commercial control 

system was achieved by simulations that the robot was capable of following the generated 

joint trajectories (Haugen 2012). More examples of control systems for underwater vehicles 

based on the sliding mode approach to attain robust controllers with good simulation results 

of adapting the changing dynamics and operating conditions can be found in literature 

(Cristi, Papoulias et al. 1990, Healey and Lienard 1993, Gomes, Sousa et al. 2003, Soylu, 

Buckham et al. 2008). 

 

2.2.4 Intelligent Control 

Intelligent control algorithm is a class of control techniques that applies a number of artificial 

intelligence computing approaches to a control system that include fuzzy logic, neural 

networks, Bayesian probability, machine learning, genetic algorithm and evolutionary 

computation. Fuzzy logic and neural networks are the two most broadly used intelligent 

control algorithms. The fuzzy logic scheme performs many-valued logic in which the 

analogue input values are analysed as logical variables, and the truth values of variables 

are continuous values between 0 and 1, instead of discrete levels of truth (either 1 or 0). 

Raimondi and Melluso presented a closed-loop fuzzy motion control system on the basis of 

Lyapunov’s stability for an under-actuated ROV where the controller ensures robustness in 

relation to uncertainties caused by deep sea environment and saturation of the control 

signals and an Kalman filter was implemented to compensate measurement noises 

(Raimondi and Melluso 2010). Neural network controllers involve two stages of system 

identification and control where a neural network model of the plant is trained in the system 

identification stage for the control design. An adaptive neural network approach was applied 

in (Chu, Zhu et al. 2017) for an ROV trajectory tracking control system. Furthermore, several 

studies have proposed the combined use of fuzzy logic and neural network control 

techniques for underwater vehicles with numerical simulations (Mills and Harris 1995, Wang 

and Lee 2003). Although intelligent control algorithms contain considerable uncertainty and 
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can provide a control solution when the vehicle’s dynamics are not well known, the 

implementation of the controllers consist of their own mathematical complexity and require 

extensive computational resources as well as lengthy tuning processes. 

Recently, combinations of the various control solutions discussed above have been 

commonly used in the control of underwater vehicles such as sliding mode fuzzy controllers 

for an AUV (Song and Smith 2000), adaptive fuzzy sliding mode controller for ROVs 

(Sebastián and Sotelo 2007, Bessa, Dutra et al. 2010), and an adaptive neuro-fuzzy sliding 

mode based on genetic algorithm control system for an ROV (Javadi-Moghaddam and 

Bagheri 2010). The integration of different control schemes offers the benefits of combining 

each controller’s useful properties in order to increase robustness and fault tolerance of the 

overall control system. 

 

2.3 Review of Mathematical Modelling for Underwater Vehicles 

It is vital to investigate the physical properties of the model of the underwater vehicle for 

control system design for a number of purposes. Since underwater vehicles might operate 

under various operating conditions and they are highly complex mechatronic devices, 

nonlinearities due to hydrodynamic forces and kinematics of the vehicle are considerable. 

Hence, investigating and modelling these nonlinear influences is significant to the 

performance and robustness of the ROV control system. Besides, the technique of nonlinear 

control design offers the opportunity to directly compensate the model’s nonlinear dynamics. 

Furthermore, analysing the a priori information about the dynamic equations and kinematics 

of the underwater vehicle provides the ability to recognise the terms in the model that can 

be eliminated so as to simplify the model and allow a simpler nonlinear control design. Lastly, 

structural and parametric uncertainties will be introduced when a linear approximation of a 

nonlinearity is used. By identifying the nonlinearity, the structural uncertainty can be included 

in the model and the parametric uncertainty can be compensated by the use of adaptive or 

robust control algorithms (Fossen 1991). 

In spite of some proposed neural network modelling methods (Kodogiannis, Lisboa et al. 

1996, Sayyaadi and Ura 1999), most published work on system identification for underwater 

vehicles is based upon the dynamic equations of motion. Kalske presented a survey of 
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dynamic equations of motion for ROVs and submarine simulation (Kalske 1989). Modelling 

and simulation of ROVs have been analysed in the literature (Lewis, Lipscombe et al. 1984). 

Humphrey and Watkinson addressed the nonlinear and linear equations of motion of the 

AUV UNH-EAVE (Humphreys and Watkinson 1982) while Fossen and Sagatun described 

the nonlinear motion dynamics of the ROV in detail (Fossen 1991). 

The motions of a marine craft take effects in 6 DoFs, which are the set of independent 

movements along three directions defined as surge, sway and heave; and rotations about 

three axes defined as roll, pitch and yaw as illustrated in Figure 2.2. In many cases marine 

crafts are under-actuated, thus reduced-order models are commonly used in motion control 

systems. However, a 6-DoF model can be used when designing state-of-the-art control 

systems for a fully-actuated ROV so as to achieve controllability in all DoFs. 

 

2.3.1 Dynamic Model 

Dynamic modelling can be classified into two categories: kinematics and kinetics. 

Kinematics considers geometrical aspects of motion whereas kinetics investigates the 

forces that cause changes of motion. A vectorial representation can be exploited to model 

physical system properties of the vehicle in 6 DoFs. The use of physical system properties 

is beneficial as it allows the number of coefficients required for control system design to be 

reduced. It is expressed utilising reference frames of body-fixed frame and navigation frame, 

hence appropriate kinematic transformations between body frame and navigation frame 

needs to be obtained (Fossen 1994). The kinematic equations have been derived by the 

Euler angle representation based on ship steering framework (Abkowitz 1964). Alternatively, 

kinematics has also been derived and demonstrated using spacecraft systems (Kane, Likins 

et al. 1983, Hughes 1986). The analysis and derivation of quaternion kinematic was 

discussed in detail in Chou (Chou 1992). The more recent and detailed examination on 

kinematics can be found in literature (Goldstein 1980, Egeland and Gravdahl 2002). 
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Figure 2.2 Motion in 6 DoFs (Fossen 2011) 

 

In kinetics, the motion equations can be derived by using the Newton-Euler formulation on 

the basis of Newton’s Second Law or using Euler-Lagrange equation in mechanics (Fossen 

1991). Newtonian and Lagrangian mechanics have been discussed in detail in literature 

extensively (Goldstein 1980, Kane, Likins et al. 1983, Hughes 1986, Meirovitch 1990, 

Egeland and Gravdahl 2002). The physical properties of the system contain rigid-body and 

hydrodynamic models (Berge and Fossen 2000). By using the robot model, the rigid-body 

kinetics in complete 6 DoFs can be derived and represented in a vectorial form (Fossen 

1994, Fossen 2011). 

Two main theories of manoeuvring and seakeeping are often used to model the effect of 

external forces and moments on a marine craft. In manoeuvring theory, the vessel is moving 

in calm water without wave excitation and the hydrodynamic coefficients are assumed to be 

frequency independent such that the nonlinear mass damper spring system contains 

constant hydrodynamic coefficients whereas wave excitation is acknowledged in 

seakeeping theory. Since underwater vehicles are considered to operate below the wave 

affected zone, they can be modelled with constant added mass and damping coefficients 

(Fossen 2011). The hydrodynamic model of the manoeuvring theory is suitable for designing 

a control system based on system identification. This model can be used to compute mass, 

inertia, damping, and restoring forces, and the detailed discussion on this is found in 

literature (Newman , Sarpkaya and Isaacson 1981, Faltinsen 1990, Triantafyllou and Hover 

2003). 



19 
 
 

 

2.3.2 Thruster Model 

In order to compute optimal control inputs of the actuators of an underwater vehicle, thruster 

modelling should be applied as the thruster is the lowest layer in the control loop of the 

system. The desired thrust of each thruster can be determined by control allocation, which 

distributes the induced control forces to the thrusters in an optimum aspect. That is, the 

control allocation is the inverse of thruster model; therefore, the thruster control input signal 

can be computed with the use of the thruster model and the Moore-Penrose pseudo-inverse. 

The thrust configuration and thrust coefficient matrices for underwater vehicles are 

examined in detail in (Fossen 2011). However, accurately modelling thrusters is challenging 

in practice as thrust forces are influenced by motor model, hydrodynamic effects and 

propeller mapping. Several thruster modelling schemes for mapping relationship between 

the thrust and the control signal have been proposed to resolve these difficulties. While 

Yoerger et al. proposed a one-state model including motor dynamics (Yoerger, Cooke et al. 

1990), Healey et al. presented a two-state model containing dynamic flow effects to 

represent the four quadrant behaviour of thrusters using aerofoil propeller blades lift and 

drag force data to formulate thrust and torque equations (Healey, Rock et al. 1994). In 

Healey’s experimental results and comparison of two models, it was concluded that the two-

state model is capable of demonstrating the thrust overshoot in transient response whereas 

the one-state model is not. However, the two-state model of Healey’s is only valid when the 

forward speed of the underwater vehicle is around zero. Whitcomb and Yoerger compared 

both previous models by performing experimental verifications (Whitcomb and Yoerger 

1999) and additionally suggested two new model-based thrust control algorithms, yet high-

bandwidth fluid flow velocity sensors and highly accurate plant model parameters are 

required. In order for the model to match with experimental results better, instead of previous 

offline paradigm of thruster modelling, Bachmayer et al. proposed an online adaptive 

thruster identification algorithm to determine lift and drag coefficients using look-up tables 

(Bachmayer and Whitcomb 2003). Meanwhile, a three-state model with the transient effect 

in the flow included was presented (Blanke, Lindegaard et al. 2000) where non-dimensional 

propeller characteristics data from open water tests, thrust coefficient and advance ratio 

were utilised; still the model did not show a sufficient match with experimental results for the 

whole range of the advance ratio. As far as the effects of ambient flow velocity and angle 

are concerned, Kim and Chung proposed a more accurate three-state thrust modelling using 
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measurable states of ambient flow velocity and propeller shaft velocity to represent the 

thruster axial flow velocity (Kim and Chung 2006). 

 

2.4 Review of Parameter Estimation Methods for Underwater Vehicles 

2.4.1 Experimental Approaches 

There have been a wide range of methodologies proposed to estimate the hydrodynamic 

coefficients of dynamic equations of motion for unmanned underwater vehicles. 

Conventional methods include tow tank experiments by using the underwater vehicle itself 

(Goheen 1986) or a scale model of it (Nomoto and Hattori 1986) while measuring the forces 

and moments applied to the vehicle under various operating circumstances. A routine 

dynamic testing of utilising a Planar Motion Mechanism (PMM) above the towing tank was 

introduced (Goodman 1960) to shift the ROV in a planar motion. Since a PMM mounted in 

a towing tank can move the ROV in multiple directions by rotating the ROV, it allows a 

complete model identification of hydrodynamic coefficients in all 6 DoFs to be attained. 

However, PMMs are fairly costly and the test procedures consume significant amount of 

time. 

Another approach of on-board sensor based identification uses the measured data from on-

board sensors along with information of thrust control signals to determine the most 

important dynamic parameters by a set of designed simple water tests (Indiveri 1998, 

Caccia, Indiveri et al. 2000, Smallwood and Whitcomb 2003). The main advantage of using 

on-board sensors is that there is no external equipment required and it can be carried out 

every time the vehicle setup is altered. In other words, this approach is cost effective and 

highly repeatable that suits variable configuration ROVs. Nevertheless, during these 

experiments, the motion of the vehicle needs to be restrained at a single DoF to identify the 

simplified uncoupled model. Thus, the effectiveness of the results considerably relies on the 

accuracy of the sensors and test procedures performed. Moreover, using only on-board 

sensor data to identify the forces applied to the ROV by the thrusters can be challenging as 

a result of the effects of thruster-hull and thruster-thruster interactions (Goheen and Jefferys 

1990). 
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As a consequence, a number of on-board sensor based identification methods have been 

proposed in the interest of accurate hydrodynamic parameter estimation. Since the 

underwater vehicle dynamic equations of motion can be described as a set of equations that 

are linear with respect to the parameters, the least squares (LS) technique is one of the 

most common methods for estimation (Goheen and Jefferys 1990, Caccia, Indiveri et al. 

2000, Smallwood and Whitcomb 2003, Gonzalez 2004, Ridao, Tiano et al. 2004). Caccia et 

al. presented an offline identification estimating hydrodynamic coefficients by LS on the 

basis of position measurements from both a compass and a digital altimeter (Caccia, Indiveri 

et al. 2000) whereas Smallwood and Whitcomb proposed an online adaptive parameter 

identification using LS with the data of position provided by a Sonic High Accuracy Ranging 

and Positioning System (SHARPS) time-of-flight hard-wired acoustic navigation (Smallwood 

and Whitcomb 2003), though a SHARPS is relatively expensive. More recently, the 

employment of computer vision-based navigation systems has become a popular option for 

estimating the position of the vehicle in identification (Ridao, Tiano et al. 2004, Chen, Chang 

et al. 2007) as they are low-cost and able to provide accurate location data although 

developing vision-based navigation algorithms can be time-consuming. 

In addition, Abkowitz firstly proposed and implemented another estimation technique of 

utilising Extended Kalman Filter (EKF) in finding hydrodynamic coefficients for surface 

vessels (Abkowitz 1980) and an EKF-based identification application for ships was 

presented by (Liu 1993) while Goheen and Jefferys suggested to optimally integrate 

measurements from different sensors using EKF for underwater vehicle identification 

(Goheen and Jefferys 1990) and an application for the NPS Phoenix AUV on surge motion 

parameter identification based on EKF was described by (Marco and Healey 1998). 

Additionally, an application of combining both LS and EKF techniques for an ROV 

identification was proposed by (Alessandri, Caccia et al. 1998). 

The classical free decay test applied in determining hydrodynamic coefficients has been 

introduced by Morrison and Yoerger in which the ROV oscillated in the water using three 

springs and the parameters in a single DoF of heave motion were identified while the position 

data was measured by SHARPS (Morrison and Yoerger 1993). Ross et al. proceeded to 

apply this method to a multiple DoFs of surge and sway motions of an UUV, which is 

connected to four springs and the method was validated by computer simulations (Ross, 

Fossen et al. 2004). However, the precise states of the vehicle are required for this method 
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and a sufficient localisation system such as SHARPS is costly. The use of pendulum is 

another type of free decay experiments in which the scaled ROV model is attached to a 

pendulum instead of springs and the displacement of the pendulum is measured over time 

(Eng, Lau et al. 2008, Yi and Al-Qrimli 2017). The motion of the pendulum can be interpreted 

by the dynamics equations to obtain the hydrodynamic parameters of the scaled model and 

the corresponding values for the full scale ROV can be predicted by scale-up. Yet, the results 

attained can differ widely with various initial conditions. 

 

2.4.2 Numerical Approaches 

A Numerical approach of Computational Fluid Dynamic (CFD), which solves the Navier-

Stokes equations in fluid dynamics has been used for hydrodynamic computations of 

underwater vehicles in recent years (de Barros, Dantas et al. 2008). The hydrodynamic tests 

such as PMM towing tank experiments can be simulated by using CFD software so as to 

obtain hydrodynamic coefficients. CFD programs that have been used to determine the 

hydrodynamic model of the ROV include ANSYS Fluent (Zhang, Xu et al. 2010), Wave 

Analysis MIT (WAMIT) combined with the use of Computer-aided design (CAD) software 

(Eng, Chin et al. 2014, Chin, Lin et al. 2017), Phoenisc (Sarkar, Sayer et al. 1997), and 

Wave Analysis by Diffraction and Morison Theory (WADAM) (Eidsvik 2015). The numerical 

method provides a feasible alternative when hydrodynamic test facilities and instrumentation 

are not available. However, since the numerical approach of CFD is not able to capture the 

highly turbulence effect, the accuracy of its analysis is limited. 

 

2.5 Summary 

The literature review has comprehensively examined the methods of system identification 

and control solutions for underwater vehicles as well as related previous works on ROVs. 

This shows that there are a number of options available and each algorithm has its 

advantages and limitations. Therefore, these properties of these methods have been 

analysed with respect to the use of BlueROV2 Heavy for inspection and intervention. In 

order to attain maximum controllability for the BlueROV2 Heavy, a full 6-DoF control system 

will be developed applying the following approaches: 
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• Dynamic equations of motion modelling using vectorial representation 

• Static and dynamic experiments of immersion tank testing using on-board sensors for 

hydrodynamic parameter estimations 

• Bollard pull tests in immersion tank for thruster characteristics identification 

• The least squares algorithm for determining unknown parameters from experimental 

data 

• 6-DoF nonlinear model-based PID controller for controlling BlueROV2 Heavy in 6 DoFs 

The next chapter describes the ROV BlueROV2 Heavy applied in this project as well as 

introduces its hardware, thrusters, capabilities and assumptions that can be made for the 

vehicle. 
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CHAPTER 3  

EXPERIMENTAL PLATFORM: BLUEROV2 HEAVY 

This chapter introduces the system of the ROV used in this thesis, named BlueROV2 Heavy 

(BlueRobotics 2018a). A brief introduction of the vehicle’s hardware components, thrusters 

and capabilities is presented. Additionally, a list of assumptions made on the basis of 

BlueROV2 Heavy’s features is presented. 

 

3.1 BlueROV2 Heavy Overview 

The Blue Robotics BlueROV2 Heavy, as shown in Figure 3.1, is an observation class mini 

ROV that is capable of depths of 100 metres. It is an upgraded configuration of BlueROV2 

and includes four horizontal and four vertical thrusters of type T200 thrusters in order to 

produce 6-DoF control capacity. On the BlueROV2 Heavy, a companion computer uses a 

Raspberry Pi 3 as the processing unit, which is running Ubuntu 14.04 Robot Operating 

System (ROS), an open-source meta-operating system for software development of robot 

applications (Quigley, Conley et al. 2009). The Raspberry Pi 3 is connected to a 3DR 

Pixhawk autopilot and a live streaming HD video camera. The Pixhawk autopilot has multiple 

on-board sensors including a compass, gyroscopes and accelerometers that can determine 

the attitude of the vehicle. Moreover, an external water pressure sensor is also connected 

to the autopilot by I2C bus for depth measurement. The autopilot collects sensor data and 

sends control input signals to electronics speed controllers (ESC) for controlling thrusters 

whereas the companion computer streams HD video to the surface workstation. The ROV 

is self-powered by the use of an on-board battery that supports the vehicle up to 4 hours of 

continuous operation.  

On the surface, a topside computer is likewise running Ubuntu 14.04 ROS and a gamepad 

controller is supported for manual operation. Communication between the ROV and the 

topside is made via a 300 metres long neutrally buoyant CAT5 tether cable connected at 

either end to a Fathom-X Tether interface board. Figure 3.2 depicts the hardware of ROV 

components and topside components as well as their communication. 
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Figure 3.1 The BlueROV2 Heavy Configuration Retrofit Kit (BlueRobotics 2018a) 
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Figure 3.2 Diagram of hardware components on the BlueROV2 Heavy and the topside and their 

connections. Communication between BlueROV2 Heavy and the topside computer is made via 

Ethernet signals whereas connection between the on-board operating processing unit Raspberry Pi 3 

and the autopilot Pixhawk is made through USB. 

3.2 BlueROV2 Heavy Type T200 Thrusters 

BlueROV2 Heavy has eight thrusters of type T200 thrusters (BlueRobotics 2018c) depicted 

in Figure 3.3 with four horizontal and four vertical thrusters as the configuration illustrated in 

Figure 3.4. BlueRobotics provides thrusters in clockwise and counter-clockwise propeller 

orientation to minimise torque reactions. In Figure 3.4, green thrusters and blue thrusters 

illustrate counter-clockwise propellers and clockwise propellers, respectively. These 

thrusters are controlled by pulse width modulation (PWM) signals sent from the Pixhawk 

autopilot to motor controllers. 
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 Figure 3.3 The T200 Thruster of the BlueROV2 Heavy (BlueRobotics 2018c) 

 

 

Figure 3.4 BlueROV2 Heavy thruster configuration from top-down view. Green and blue thrusters 

indicate counter-clockwise and clockwise propellers, respectively. (BlueRobotics 2018b). 

 

The PWM signal ranges from 1100 to 1900. The maximum forward thrust (about 50 Newton 

at operating voltage of 16 V) is produced with PWM signal of 1900 and the maximum reverse 

thrust (about 40 Newton at operating voltage of 16 V) is produced with PWM signal of 1100. 

With the PWM signal of 1500, zero thrust occurs with a dead zone of ±25, meaning that zero 

thrust is produced within the PWM signal range between 1475 and 1525. 
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3.3 Assumptions of BlueROV2 Heavy on Dynamics 

In Fossen (Fossen 2011), a complete 6-DoF dynamic model of kinetics for underwater 

vehicles written in vectorial representation is given by: 

           𝑀𝜈̇ + 𝐶(𝜈)𝜈 + 𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏                                                          (3.1) 

These various matrices 𝑀,𝐶(𝜈) and 𝐷(𝜈), and vector 𝑔(𝜂) (will be described in the following 

chapter) contain more than 300 unknown parameters in total. As a result, estimation of all 

parameters is infeasible. Yet, based on the features and operating speeds of the vehicle, 

several assumptions can be made to simplify the dynamic model and reduce the number of 

unknown parameters in the model. The assumptions that have been made for the dynamics 

of the BlueROV2 Heavy are listed in the following: 

1. Since BlueROV2 Heavy operates at relative low speeds (i.e. less than 2 m/s), lift 

forces can be neglected. 

2. BlueROV2 Heavy is assumed to have port-starboard symmetry and fore-aft 

symmetry; and the centre of gravity (CG) is assumed to be located in the symmetry 

planes. 

3. BlueROV2 Heavy is assumed to be hydrodynamically symmetrical about 6-DoF. 

Accordingly, the motions between DoFs of the vehicle in hydrodynamic can be 

decoupled. 

4. BlueROV2 Heavy is assumed to operate below the wave-affected zone. As a result, 

disturbances of waves on the vehicle are negligible. 

 

3.4 Summary 

An overview of the system of BlueROV2 Heavy was presented in this chapter. A number of 

assumptions made for the vehicle were also demonstrated. The following chapter discusses 

the mathematical modelling of BlueROV2 Heavy in 6-DoF along with applying these 

assumptions to simplify the dynamic model of the vehicle.  
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CHAPTER 4  

MODELLING OF THE ROV 

Mathematical models of an ROV will be developed in this chapter. Fundamental theories 

applied in this thesis for modelling an ROV are described in Fossen (Fossen 2011), which 

demonstrates the mathematical models for all types of marine vessels with full 6 DoFs. The 

dynamic equations of motion of an ROV adopted from Fossen’s vectorial robot model 

(Fossen 2011) contain the kinematic equation (4.1) and the kinetic equation (4.2) as below: 

      𝜂̇ = 𝐽(𝜂)𝜈                                                                                     (4.1) 

            𝑀𝜈̇ + 𝐶(𝜈)𝜈 + 𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏                                                          (4.2) 

The kinematics in (4.1) describes geometrical aspects of the ROV’s motion in terms of 

motion representation in different coordinate systems whereas the kinetics in (4.2) analyses 

the forces and moments inducing the ROV’s motion. These various matrices, vectors and 

their features in (4.1) and that in (4.2) will be described in Section 4.2 and Section 4.3, 

respectively while the notation used in generalised vectors of 𝜂, 𝜈 𝑎𝑛𝑑 𝜏  will be firstly 

introduced in Section 4.1. Section 4.3 will derive the 6-DoF forces and moments produced 

by thrusters for BlueROV2 Heavy and the distribution of generalised control forces to 

thrusters, which are thruster model and control allocation, respectively. 

 

4.1 Notations 

The motion of an ROV in 6 DoFs can be represented in a vectorial form using the SNAME 

notation (SNAME 1950) in Table 4.1 where six individual coordinates are generalised to 

describe the position and orientation; and their time derivatives describe the linear and 

angular velocities of the vehicle. 
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Table 4.1 The SNAME notation for marine vessels (SNAME 1950) 

No. DoF Forces and moments 
Linear and angular 

velocities 
Positions and Euler 

angles 

1 Surge X 𝑢 𝑥 

2 Sway Y 𝑣 𝑦 

3 Heave Z 𝑤 𝑧 

4 Roll K 𝑝 𝜙 

5 Pitch M 𝑞 𝜃 

6 Yaw N 𝑟 𝜓 

 

According to the SNAME notation (SNAME 1950), the generalised pose and velocity 

coordinates can be addressed by (4.3) and (4.4) vectors, respectively. 

     𝜂 = [𝑥  𝑦  𝑧  𝜙  𝜃  𝜓]𝑇                                                                             (4.3) 

     𝜈 = [𝑢  𝑣  𝑤  𝑝  𝑞  𝑟]𝑇                                                                              (4.4) 

In addition, their sub-vectors are given by using the following vector notations: 

Position  𝑝 = [
𝑥
𝑦
𝑧
] ∈ ℝ3                                                                                                          (4.5) 

Euler angles  Θ = [
𝜙
𝜃
𝜓
] ∈ 𝑆𝑂(3)                                                                                                  (4.6) 

Linear velocity 𝑣 = [
𝑢
𝑣
𝑤
] ∈ ℝ3                                                                                                         (4.7) 

Angular velocity 𝜔 = [
𝑝
𝑞
𝑟
] ∈ ℝ3                                                                                                         (4.8) 

where ℝ3 denotes the three dimensional of Euclidean space and 𝑆𝑂(3) indicates the three 

dimensional sphere in which three angles are defined on the interval of [−π, π) for 𝜙 and 𝜓, 

and the interval of (−π/2, π/2) for 𝜃. Moreover, the force vector with components associating 

the 6 DoFs is given by (4.9), which describe the forces and moments acting on the ROV 

with its sub-vectors given by (4.10) and (4.11). 

    𝜏 = [𝑋  𝑌  𝑍  𝐾  𝑀  𝑁]𝑇                                                                           (4.9) 
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Force on ROV 𝑓 = [
𝑋
𝑌
𝑍
] ∈ ℝ3                                                                                                       (4.10) 

Moment on ROV 𝑚 = [
𝐾
𝑀
𝑁
] ∈ ℝ3                                                                                                     (4.11) 

Therefore, the general motion of an ROV in 6 DoFs can be described by the following 

vectors: 

Position and orientation vector  𝜂 = [
𝑝
Θ
] ∈ ℝ3 × 𝑆𝑂(3)                                             (4.12) 

Linear and angular velocity vector  𝜈 = [
𝑣
𝜔
] ∈ ℝ6                                                              (4.13) 

Force and moment vector   𝜏 = [
𝑓
𝑚
] ∈ ℝ6                                                              (4.14) 

 

4.2 Kinematic Model 

4.2.1 Reference Frames 

When modelling an ROV, the following two reference frames need to be defined to describe 

the motion: 

• NED: The North East Down world frame with axes {𝑛} = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) and origin 𝑜𝑛 

• BODY: The body reference frame with axes {𝑏} = (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) and origin 𝑜𝑏 

The NED world frame refers to the real world in which the 𝑥𝑛, 𝑦𝑛, and 𝑧𝑛 axes point towards 

north, east and downwards normal to the Earth’s surface, respectively. The origin 𝑜𝑛  is 

defined at an arbitrary longitude and latitude position. The body frame of an ROV is a moving 

coordinate frame that is fixed to the vehicle. The origin 𝑜𝑏  is generally defined at the 

geometric centre of the vehicle in order to exploit physical symmetries. As depicted in Figure 

4.1, the 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 axes point towards the ROV’s forward direction, the right-hand side 

of the ROV and vertically downwards from the ROV, respectively. Both geographic reference 

frames use the right-handed Cartesian coordinate system. 
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Figure 4.1 ROV Body Frame Coordinate System 

Backing Image from BlueROV2 Heavy (BlueRobotics 2018a) 

A vector that is decomposed in one coordinate frame can be transformed to another using 

a rotation matrix. For instance, 𝑉𝑥 ∈ ℝ3 is a vector 𝑉 in reference frame 𝑥, and by applying 

the rotation matrix 𝑅𝑥
𝑦
, this vector can be transformed to the reference frame 𝑦, which is 

denoted 𝑉𝑦 ∈ ℝ3. This transformation operation of a vector 𝑉 between two reference frames 

from 𝑥 to 𝑦 is then given by (4.15). 

      𝑉𝑦 = 𝑅𝑥
𝑦
 𝑉𝑥                                                                              (4.15) 

Since the Newtonian mechanics are represented in the body frame by (4.2), (4.1) is used to 

convert it from the body frame {b} to the NED world frame {n} where the body-fixed velocity 

𝜈 is expressed in {b} and the vehicle position 𝜂 is expressed in {n}. In the next section, the 

kinematic relation between {b} and {n} in (4.1) will be presented. 

 

4.2.2 Transformations Between BODY and NED 

Euler Angle Transformation 

The Euler angles Θ in (4.6), defining the rotation angles about the x, y, and z axes as roll 𝜙, 

pitch 𝜃, and yaw 𝜓, can be used in the velocity transformation between BODY and NED. 

The transformation for linear velocities from {b} to {n} is given by: 

      𝜈𝑛 = 𝑅𝑏
𝑛(Θ)𝜈𝑏                                                                          (4.16) 
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where 𝜈𝑏 and 𝜈𝑛 are the linear velocity vectors in {b} and {n}, respectively; and 𝑅𝑏
𝑛(Θ) is the 

rotation matrix from {b} to {n} and computed as: 

     𝑅𝑏
𝑛(Θ) = 𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜙)                                                              (4.17) 

where 

    𝑅𝑧(𝜓) = [
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

]                                                          (4.18) 

    𝑅𝑦(𝜃) = [
cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
]                                                           (4.19) 

    𝑅𝑥(𝜙) = [
1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

]                                                          (4.20) 

Hence, the rotation matrix can be represented by: 

𝑅𝑏
𝑛(Θ) = [

cos𝜓 cos 𝜃 −sin𝜓 cos𝜙 + cos𝜓 sin 𝜃 sin 𝜙 sin𝜓 sin𝜙 + cos𝜓 cos𝜙 sin 𝜃
sin𝜓 cos 𝜃 cos𝜓 cos𝜙 + sin𝜙 sin 𝜃 sin𝜓 −cos𝜓 sin𝜙 + sin 𝜃 sin𝜓 cos𝜙
−sin 𝜃 cos 𝜃 sin𝜙 cos 𝜃 cos 𝜙

]    (4.21) 

Similarly, the transformation of angular velocities is given by: 

     Θ̇ = 𝑇Θ(Θ)𝜔
𝑏                                                                            (4.22) 

where 𝜔𝑏 and Θ̇ are the angular velocity vectors in {b} and {n}, respectively; and 𝑇Θ(Θ) is 

the angular transformation matrix from {b} to {n} and derived as: 

   𝑇Θ(Θ) = [

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 −sin𝜙
0 sin 𝜙 / cos 𝜃 cos𝜙 / cos 𝜃

]                                                (4.23) 

As a consequence, the 6-DoF kinematic equation can be represented in vector setting by: 

   𝜂̇ = 𝐽(𝜂)𝜈     ⟺      [
𝑝̇

Θ̇
] = [

𝑅𝑏
𝑛(Θ) 03×3
03×3 𝑇Θ(Θ)

] [𝜈
𝑏

𝜔𝑏]                                     (4.24) 

Hence, the transformation matrix from the vehicle body frame to the NED world reference 

frame using Euler angle transformation is given by: 

     𝐽Θ(𝜂) = [
𝑅𝑏
𝑛(Θ) 03×3
03×3 𝑇Θ(Θ)

]                                                                   (4.25) 



33 
 
 

 

Quaternions Transformation 

In order to avoid the singularity and discontinuity of the Euler angles, the use of unit 

quaternions containing four parameters is an alternative method. According to the study of 

quaternion kinematics (Chou 1992), a quaternion 𝑞 is defined as a complex number formed 

by four units: 

     𝑞 = [𝑞0  𝑞1  𝑞2  𝑞3]
𝑇                                                                              (4.26) 

where 𝑞0 is a real parameter and the other three units are imaginary parameters. They can 

be determined by using one rotation 𝜃 around a unit vector 𝑢 = [𝑢1  𝑢2  𝑢3]
𝑇 (i.e. |𝑢| = 1) as 

(Chou 1992): 

The real part   𝑞0 = cos
𝜃

2
                                                                                               (4.27) 

The imaginary part  [

𝜀1
𝜀2
𝜀3
] =

[
 
 
 
 𝑢1 sin

𝜃

2

𝑢2 sin
𝜃

2

𝑢3 sin
𝜃

2]
 
 
 
 

                                                                                    (4.28) 

As a consequence, the quaternion can be represented by: 

    𝑞 = [

𝑞0
𝜀1
𝜀2
𝜀3

] =

[
 
 
 
 
 
 cos

𝜃

2

𝑢1 sin
𝜃

2

𝑢2 sin
𝜃

2

𝑢3 sin
𝜃

2]
 
 
 
 
 
 

= [
cos

𝜃

2

𝑢 sin
𝜃

2

]                                                                  (4.29) 

Since the unit quaternion satisfies 𝑞𝑇𝑞 = 1, the transformation matrix for linear velocity 

transformation in (4.30) is obtained given by (4.31). 

     𝑝̇ = 𝑅𝑏
𝑛(𝑞)𝜈𝑏                                                                             (4.30) 

where 

        𝑅𝑏
𝑛(𝑞) = [

1 − 2(𝜀2
2 + 𝜀3

2) 2(𝜀1𝜀2 − 𝜀3𝜂) 2(𝜀1𝜀3 − 𝜀2𝜂)

2(𝜀1𝜀2 − 𝜀3𝜂) 1 − 2(𝜀1
2 + 𝜀3

2) 2(𝜀2𝜀3 − 𝜀1𝜂)

2(𝜀1𝜀3 − 𝜀2𝜂) 2(𝜀2𝜀3 − 𝜀1𝜂) 1 − 2(𝜀1
2 + 𝜀2

2)

]                    (4.31) 

In addition, the transformation matrix for angular velocity transformation in (4.32) is obtained 

given by (4.33). 
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     𝑞̇ = 𝑇𝑞(𝑞)𝜔
𝑏                                                                             (4.32) 

where 

     𝑇𝑞(𝑞) =
1

2
[

−𝜀1 −𝜀2 −𝜀3
𝜂 −𝜀3 𝜀2
𝜀2
−𝜀2

𝜂
𝜀1

−𝜀1
𝜂

]                                                            (4.33) 

As a result, the 6-DoF kinematic equation can be represented using the unit quaternions by 

seven equations for 𝜂 = [𝑁  𝐸  𝐷  𝜂  𝜀1  𝜀2  𝜀3]
𝑇: 

   𝜂̇ = 𝐽(𝜂)𝜈     ⟺      [
𝑝̇
𝑞̇
] = [

𝑅𝑏
𝑛(𝑞) 03×3
04×3 𝑇𝑞(𝑞)

] [𝜈
𝑏

𝜔𝑏]                                       (4.34) 

Hence, the transformation matrix from the vehicle body frame to the NED world reference 

frame using quaternion representation is given by: 

    𝐽𝑞(𝜂) = [
𝑅𝑏
𝑛(𝑞) 03×3
04×3 𝑇𝑞(𝑞)

]                                                                    (4.35) 

4.3 Kinetic Model 

The kinetic dynamic equation of an ROV’s motion in (4.2) is derived from the Newton-Euler 

formulation. In Equation (4.2), 𝑀  is the system inertia matrix, 𝐶(𝜈)  is the Coriolis and 

centripetal matrix, 𝐷(𝜈)  is the hydrodynamic damping matrix, 𝑔(𝜂)  is the vector of the 

gravitational and buoyancy forces, 𝜏 is the external force and moment vector acting on the 

ROV and 𝜈 is the generalised velocity vector represented in {b}. If the water current is 

considered, since 𝑀 and 𝐶(𝜈) contain rigid-body dynamics and hydrodynamic parts, the 

model can be expressed by: 

   𝑀𝑅𝐵𝜈̇ + 𝐶𝑅𝐵(𝜈)𝜈 + 𝑀𝐴𝜈̇𝑤 + 𝐶𝐴(𝜈𝑤)𝜈𝑤 + 𝐷(𝜈𝑤)𝜈𝑤 + 𝑔(𝜂) = 𝜏                          (4.36) 

where 𝑀𝑅𝐵 ∈ ℝ6×6  and 𝑀𝐴 ∈ ℝ6×6  are the rigid-body and added mass matrices, 

respectively; 𝐶𝑅𝐵(𝜈) ∈ ℝ6×6 is the rigid-body Coriolis and centripetal matrix induced by 𝑀𝑅𝐵 

due to the rotation of the body frame about the NED world frame while 𝐶𝐴(𝜈) ∈ ℝ6×6 is the 

added mass Coriolis and centripetal matrix induced by 𝑀𝐴 due to the rotation of the body 

frame about the NED world frame, and 𝜈𝑤 is the relative velocity vector determined by: 

      𝜈𝑤 = 𝜈 − 𝜈𝑐                                                                               (4.37) 
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4.3.1 Rigid Body Dynamics 

In accordance with the derivation of rigid body equations of motion by applying Newtonian 

formulation (Fossen 2011), the rigid-body mass matrix is computed as: 

   𝑀𝑅𝐵 =  

[
 
 
 
 
 𝑚

0
0
0

𝑚𝑧𝑔
−𝑚𝑦𝑔

0
𝑚
0

−𝑚𝑧𝑔
0

𝑚𝑥𝑔

0
0
𝑚
𝑚𝑦𝑔
−𝑚𝑥𝑔
0

0
−𝑚𝑧𝑔
𝑚𝑦𝑔
𝐼𝑥

−𝐼𝑦𝑥
−𝐼𝑧𝑥

𝑚𝑧𝑔
0

−𝑚𝑥𝑔
−𝐼𝑥𝑦
𝐼𝑦

−𝐼𝑧𝑦

−𝑚𝑦𝑔
𝑚𝑥𝑔
0

−𝐼𝑥𝑧
−𝐼𝑦𝑧
𝐼𝑧 ]

 
 
 
 
 

                              (4.38) 

where 𝑚 is the mass of the vehicle, 𝐼𝑥, 𝐼𝑦 and 𝐼𝑧 are the inertia moments about the 𝑥𝑏, 𝑦𝑏, 

and 𝑧𝑏  axes in {b}, and 𝐼𝑥𝑦 = 𝐼𝑦𝑥 , 𝐼𝑥𝑧 = 𝐼𝑧𝑥  and 𝐼𝑦𝑧 = 𝐼𝑧𝑦  are the inertia products (Fossen 

2011); 𝑟𝑔 = [𝑥𝑔  𝑦𝑔  𝑧𝑔]
𝑇 is the position of the centre of gravity (CG) in relation to the centre 

of the vehicle. Since the origin of the body-frame 𝑜𝑏 is placed at the geometric centre of the 

ROV, the vehicle has symmetry in the xz-plane (port-starboard) and xy-plane (fore-aft). 

Accordingly, the rigid-body mass matrix can be simplified as (4.39) in which 𝑥𝑔 = 𝑦𝑔 = 0 and 

𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0 are assumed whereas 𝑧𝑔 ≠ 0 under the consideration that CG might not 

be the origin of 𝑜𝑏 on the z axis. 

    𝑀𝑅𝐵 =  

[
 
 
 
 
 
𝑚
0
0
0

𝑚𝑧𝑔
0

0
𝑚
0

−𝑚𝑧𝑔
0
0

0
0
𝑚
0
0
0

0
−𝑚𝑧𝑔
0
𝐼𝑥
0
0

𝑚𝑧𝑔
0
0
0
𝐼𝑦
0

0
0
0
0
0
𝐼𝑧]
 
 
 
 
 

                                        (4.39) 

Subsequently, using the skew-symmetric cross-product operation on 𝑀𝑅𝐵 yields the result 

of the rigid-body Coriolis and centripetal matrix 𝐶𝑅𝐵(𝜈) given by: 

   𝐶𝑅𝐵(𝜈) =  

[
 
 
 
 
 0

0
0
0

−𝑚𝑤
𝑚𝑣

0
0
0

𝑚𝑤
0

−𝑚𝑢

0
0
0

−𝑚𝑣
−𝑚𝑢
0

0
−𝑚𝑤
𝑚𝑣
0

−𝐼𝑧𝑟
𝐼𝑦𝑞

𝑚𝑤
0

−𝑚𝑢
𝐼𝑧𝑟
0

−𝐼𝑥𝑝

0
0
0

−𝐼𝑦𝑞

𝐼𝑥𝑝
0 ]

 
 
 
 
 

                                  (4.40) 
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4.3.2 Vehicle Hydrodynamics 

Added Mass and Coriolis 

In hydrodynamic terms, the added mass matrix 𝑀𝐴  and the added mass Coriolis and 

centripetal matrix 𝐶𝐴(𝜈)  can be derived by applying an energy approach based upon 

Kirchhoff’s equation (Fossen 2011). The added mass of an ROV in a fluid is determined by 

the added mass matrix 𝑀𝐴 defined as: 

   𝑀𝐴 = −

[
 
 
 
 
 
 𝑋𝑢̇

𝑌𝑢̇
𝑍𝑢̇
𝐾𝑢̇

𝑀𝑢̇

𝑁𝑢̇

𝑋𝑣̇

𝑌𝑣̇
𝑍𝑣̇
𝐾𝑣̇

𝑀𝑣̇

𝑁𝑣̇

𝑋𝑤̇

𝑌𝑤̇
𝑍𝑤̇
𝐾𝑤̇

𝑀𝑤̇

𝑁𝑤̇

𝑋𝑝̇

𝑌𝑝̇
𝑍𝑝̇
𝐾𝑝̇

𝑀𝑝̇

𝑁𝑝̇

𝑋𝑞̇

𝑌𝑞̇
𝑍𝑞̇
𝐾𝑞̇

𝑀𝑞̇

𝑁𝑞̇

𝑋𝑟̇

𝑌𝑟̇
𝑍𝑟̇
𝐾𝑟̇

𝑀𝑟̇

𝑁𝑟̇ ]
 
 
 
 
 
 

                                                   (4.41) 

where 𝑀𝐴 is assumed to be a symmetrical matrix: 𝑀𝐴 = 𝑀𝐴
𝑇. The hydrodynamic derivatives 

are represented using the SNAME notation (SNAME 1950). For example, the hydrodynamic 

derivative 𝑍𝑢̇ is the hydrodynamic added mass force Z in the z direction (in heave) due to 

an acceleration 𝑢̇ along the x axis (in surge), expressed by: 

                                                                     𝑍𝑢̇ =
𝜕𝑍

𝜕𝑢̇
                                                                                    (4.42) 

Note that for most practical applications, the off diagonal terms of 𝑀𝐴 are small compared 

with the diagonal ones. In particular, since motions between DoFs of BlueROV2 Heavy in 

hydrodynamic are assumed to be decoupled, the off diagonal terms of 𝑀𝐴 can be neglected. 

Subsequently, the added mass matrix 𝑀𝐴 can be simplified as: 

    𝑀𝐴 = −

[
 
 
 
 
 
𝑋𝑢̇

0
0
0
0
0

0
𝑌𝑣̇
0
0
0
0

0
0
𝑍𝑤̇
0
0
0

0
0
0
𝐾𝑝̇

0
0

0
0
0
0
𝑀𝑞̇

0

0
0
0
0
0
𝑁𝑟̇]

 
 
 
 
 

                                                        (4.43) 

Accordingly, the nonlinear hydrodynamic Coriolis and centripetal matrix 𝐶𝐴(𝜈), a function of 

added mass matrix, can be calculated as: 
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   𝐶𝐴(𝜈) =  

[
 
 
 
 
 0

0
0
0

𝑧𝑤̇𝑤
−𝑌𝑣̇𝑣

0
0
0

−𝑧𝑤̇𝑤
0

𝑋𝑢̇𝑢

0
0
0
𝑌𝑣̇𝑣
−𝑋𝑢̇𝑢
0

0
−𝑧𝑤̇𝑤
−𝑌𝑣̇𝑣
0

𝑁𝑟̇𝑟
−𝑀𝑞̇𝑞

𝑧𝑤̇𝑤
0

𝑋𝑢̇𝑢
−𝑁𝑟̇𝑟
0

𝐾𝑝̇𝑝

0
−𝑋𝑢̇𝑢
0

𝑀𝑞̇𝑞

−𝐾𝑝̇𝑝

0 ]
 
 
 
 
 

                               (4.44) 

 

Hydrodynamic Damping 

There are four major sources causing hydrodynamic damping for a marine craft, including 

potential damping, wave drift damping, skin friction and damping due to vortex shedding 

(Fossen 2011). Yet, the effects of potential damping and wave drift damping are neglected 

for underwater vehicles. Subsequently, the ROV damping 𝐷(𝜈) can be approximated with a 

linear damping term 𝐷𝐿 caused by skin friction and a quadratic damping term 𝐷𝑁𝐿(𝜈) mainly 

due to vortex shedding expressed by: 

      𝐷(𝜈) = 𝐷𝐿 + 𝐷𝑁𝐿(𝜈)                                                              (4.45) 

Similarly, the damping matrix is derived to be diagonal due to decoupling such that the linear 

and quadratic damping matrices are given by (4.46) and (4.47), respectively. 

    𝐷𝐿 = −𝑑𝑖𝑎𝑔[𝑋𝑢, 𝑌𝑣, 𝑍𝑤, 𝐾𝑝, 𝑀𝑞 , 𝑁𝑟]                                                 (4.46) 

        𝐷𝑁𝐿(𝜈) = −𝑑𝑖𝑎𝑔[𝑋𝑢|𝑢||𝑢|, 𝑌𝑣|𝑣||𝑣|, 𝑍𝑤|𝑤||𝑤|, 𝐾𝑝|𝑝||𝑝|,𝑀𝑞|𝑞||𝑞|, 𝑁𝑟|𝑟||𝑟|]               (4.47) 

where 𝐷𝐿 and 𝐷𝑁𝐿(𝜈) are determined from experiments. Hence, the overall hydrodynamic 

damping matrix 𝐷(𝜈) is obtained as: 

𝐷(𝜈) = −

[
 
 
 
 
 
𝑋𝑢 + 𝑋𝑢|𝑢||𝑢|

0
0
0
0
0

0
𝑌𝑣 + 𝑌𝑣|𝑣||𝑣|

0
0
0
0

0
0

𝑍𝑤 + 𝑍𝑤|𝑤||𝑤|

0
0
0

0
0
0

𝐾𝑝 + 𝐾𝑝|𝑝||𝑝|

0
0

0
0
0
0

𝑀𝑞 +𝑀𝑞|𝑞||𝑞|

0

0
0
0
0
0

𝑁𝑟 + 𝑁𝑟|𝑟||𝑟|]
 
 
 
 
 

         (4.48) 
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4.3.3 Hydrostatics 

In hydrostatics, the forces and moments acting on the ROV due to the gravitational and 

buoyancy forces are called restoring forces. Given that 𝑚 is the mass of the vehicle, 𝑔 is the 

acceleration of gravity, 𝜌 is the water density and ∇ is the volume of fluid displaced by the 

ROV, the weight of the body 𝑊 and buoyancy force 𝐵 are determined by: 

     𝑊 = 𝑚𝑔                                                                                    (4.49) 

      𝐵 = 𝜌𝑔∇                                                                                    (4.50) 

The centre of buoyancy (CB) of the vehicle is defined as 𝑟𝑏 = [𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏]
𝑇. If the centre of 

the vehicle’s body frame is placed at the centre of buoyancy, 𝑟𝑏 becomes: 

      𝑟𝑏 = [0, 0, 0]𝑇                                                                           (4.51) 

Since the vehicle has symmetry in the xz-plane and xy-plane, the position of the centre of 

gravity (CG) of the vehicle 𝑟𝑔 becomes: 

    𝑟𝑔 = [𝑥𝑔  𝑦𝑔  𝑧𝑔]
𝑇 = [0, 0, 𝑧𝑔]

𝑇                                                           (4.52) 

Then the overall restoring force vector 𝑔(𝜂)  can be calculated using Euler angle 

transformation written as: 

         𝑔(𝜂) =

[
 
 
 
 
 

(𝑊 − 𝐵) sin 𝜃
−(𝑊 − 𝐵) cos 𝜃 sin𝜙

−(𝑊 − 𝐵) cos 𝜃 cos𝜙
𝑧𝑔𝑊cos 𝜃 sin𝜙

𝑧𝑔𝑊sin 𝜃

0 ]
 
 
 
 
 

                                                      (4.53) 

Alternatively, the gravitational and buoyancy force vector 𝑔(𝜂)  can be computed using 

quaternions expressed as: 

            𝑔(𝜂) =

[
 
 
 
 
 
 
(𝐵 −𝑊)(2𝜀1𝜀3 − 2𝜀2𝜂)
(𝐵 −𝑊)(2𝜀2𝜀3 − 2𝜀1𝜂)

(𝑊 − 𝐵)(2𝜀1
2 + 2𝜀2

2 − 1)
𝑧𝑔𝑊(2𝜀2𝜀3 + 2𝜀1𝜂)

𝑧𝑔𝑊(2𝜀1𝜀3 − 2𝜀2𝜂)

0 ]
 
 
 
 
 
 

                                                   (4.54) 
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4.4 Thruster Model and Control Allocation 

Thruster Model 

The control force due to a thruster can be represented by (assuming linearity): 

      𝐹 = 𝐾𝑢                                                                                       (4.55) 

where 𝑢 is the control input and 𝐾 is the thrust coefficient, which is a scaling factor mapping 

from the control input to the thrust force. Since BlueROV2 Heavy contains 8 thrusters, the 

thruster forces can be represented using a vector 𝐹 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8]
𝑇, the control 

inputs can be represented using a vector 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]
𝑇, and the thrust 

coefficient 𝐾 is a diagonal matrix expressed as: 

         𝐾 = 𝑑𝑖𝑎𝑔[𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8]                                       (4.56) 

Given the force vector 𝑓 = [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧]
𝑇 and the moment arms 𝑟 = [𝑙𝑥, 𝑙𝑦, 𝑙𝑧]

𝑇, the forces and 

moments in 6 DoFs can be determined by: 

    𝜏 = [
𝑓

𝑟 × 𝑓
] =

[
 
 
 
 
 
 

𝐹𝑥
𝐹𝑦
𝐹𝑧

𝐹𝑧𝑙𝑦 − 𝐹𝑦𝑙𝑧
𝐹𝑥𝑙𝑧 − 𝐹𝑧𝑙𝑥
𝐹𝑦𝑙𝑥 − 𝐹𝑥𝑙𝑦]

 
 
 
 
 
 

                                                               (4.57) 

Hence, considering BlueROV2 Heavy with 8 thrusters, the generalised forces and moments 

in 6 DoFs 𝜏 ∈ 𝑅6 due to 8 thrusters in terms of control inputs 𝑢 ∈ 𝑅8 can be then modelled 

as: 

     𝜏 = 𝑇(𝛼)𝐹 = 𝑇(𝛼)𝐾𝑢                                                                         (4.58) 

where 𝑇 = [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8] ∈ ℝ6×8 is the thrust configuration matrix and 𝛼 ∈ 𝑅8 is the 

thrust rotation angle vector. As a consequence, the thrust configuration matrix 𝑇 can be then 

computed by using Equation (4.57). Figure 4.2 depicts the top view, front view and section 

view of BlueROV2 Heavy thruster configuration. Accordingly, the moment arms of 8 

thrusters relative to centre of gravity (CG) are computed and listed in Table 4.2. 
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Figure 4.2 Top view and front view of BlueROV2 Heavy thruster configuration.  

Backing Image from BlueROV2 Heavy Retrofit Documentation (BlueRobotics 2018b). 

 

Table 4.2 Moment arms of 8 thrusters of BlueROV2 Heavy 

𝑇𝑖 𝑙𝑥𝑖 (mm) 𝑙𝑦𝑖 (mm) 𝑙𝑧𝑖 (mm) 

𝑇1   156   111 85 

𝑇2   156 −111 85 

𝑇3 −156   111 85 

𝑇4 −156 −111 85 

𝑇5   120   218 0 

𝑇6   120 −218 0 

𝑇7 −120   218 0 

𝑇8 −120 −218 0 
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The rotation angles for horizontal thrusters of 𝑇1  to 𝑇4  are 𝜋/4 , −𝜋/4 , −3𝜋/4  and 3𝜋/4 , 

respectively and thruster 𝑇5  to 𝑇8  are vertical thrusters without horizontal rotations. 

Subsequently, the forces and moments produced by thruster 𝑇1 can be computed by: 

    𝜏1 =

[
 
 
 
 
 
 

𝐹𝑥1
𝐹𝑦1
𝐹𝑧1

𝐹𝑧1𝑙𝑦1 − 𝐹𝑦1𝑙𝑧1
𝐹𝑥1𝑙𝑧1 − 𝐹𝑧1𝑙𝑥1
𝐹𝑦1𝑙𝑥1 − 𝐹𝑥1𝑙𝑦1]

 
 
 
 
 
 

=

[
 
 
 
 
 

𝐹1 cos(𝜋/4)
−𝐹1 sin(𝜋/4)

0
𝐹1 sin(𝜋/4) × 0.085
𝐹1 cos(𝜋/4) × 0.085

−𝐹1 sin(𝜋/4) × 0.156 − 𝐹1 cos(𝜋/4) × 0.111]
 
 
 
 
 

=

[
 
 
 
 
 
0.707
−0.707

0
0.06
0.06

−0.1888]
 
 
 
 
 

𝐹1     (4.59) 

Hence, 

      𝑡1 =

[
 
 
 
 
 
0.707
−0.707

0
0.06
0.06

−0.1888]
 
 
 
 
 

                                                                       (4.60)  

By following the same procedure, the forces and moments produced by total 8 thrusters are 

found to be: 

𝜏 = 𝑇(𝛼)𝐹 =

[
 
 
 
 
 
0.707
−0.707

0
0.06
0.06

−0.1888

0.707
0.707
0

−0.06
0.06

0.1888

−0.707
−0.707

0
0.06
−0.06
0.1888

−0.707
0.707
0

−0.06
−0.06

−0.1888

0
0
−1

−0.218
0.120
0

0
0
1

−0.218
−0.120

0

0
0
1

0.218
0.120
0

0
0
−1

0.218
−0.120

0 ]
 
 
 
 
 

[
 
 
 
 
 
 
 
𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6
𝐹7
𝐹8]
 
 
 
 
 
 
 

       (4.61) 

Therefore, the thrust configuration matrix 𝑇 for BlueROV2 Heavy is given by: 

      𝑇 =  

[
 
 
 
 
 
0.707
−0.707

0
0.06
0.06

−0.1888

0.707
0.707
0

−0.06
0.06

0.1888

−0.707
−0.707

0
0.06
−0.06
0.1888

−0.707
0.707
0

−0.06
−0.06

−0.1888

0
0
−1

−0.218
0.120
0

0
0
1

−0.218
−0.120

0

0
0
1

0.218
0.120
0

0
0
−1

0.218
−0.120

0 ]
 
 
 
 
 

        (4.62) 

 

 

 

 



42 
 
 

 

Control Allocation 

Control allocation computes the control input signal 𝑢 to apply to the thrusters such that the 

overall desired control forces 𝜏 can be generalised. Since the control forces and moments 

due to thrusters with regard to control inputs are expressed by (4.58), the control input vector 

can be derived as: 

     𝑢 = 𝐾−1𝑇−1𝜏                                                                            (4.63) 

However, since the thrust configuration matrix 𝑇 for BlueROV2 Heavy is non-square, the 

Moore-Penrose pseudo-inverse 𝑇+ is applied given by: 

     𝑇+ = 𝑇𝑇(𝑇𝑇𝑇)−1                                                                     (4.64) 

Hence, the control input vector 𝑢 can be calculated as: 

     𝑢 = 𝐾−1𝑇+𝜏                                                                             (4.65) 

 

4.5 Summary 

The vectorial representation of dynamic model and the thruster model of BlueROV2 Heavy 

has been presented in this chapter while assumptions were applied to simplify the complex 

dynamic model. The derived models will be utilised extensively for the vehicle’s system 

identification and control system design in the following chapters. The next chapter will 

demonstrate the estimation of unknown parameters in the derived models.  
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CHAPTER 5  

SYSTEM IDENTIFICATION 

In order to identify the system property of the BlueROV2 Heavy, the parameters in the 

dynamic and the thruster models derived in the last chapter need to be estimated. This 

chapter firstly presents a system identification approach that could be performed in the 

immersion tank with the use of on-board sensors. While the experimental platform is 

currently not available for estimating parameters experimentally, necessary parameters are 

determined by analysing the BlueROV2 Heavy’s technical specifications (BlueRobotics 

2018b) and published literature relating to BlueROV (Sandøy 2016). 

 

5.1 System Identification Approach 

The experimental system identification of a complete ROV model requires a complete state 

information that is complex, lengthy and expensive (Caccia, Indiveri et al. 2000). Several 

schemes for estimating parameters in the ROV model have been reviewed in Section 2.4. 

With the application of a system identification approach demonstrated in Indiveri (Indiveri 

1998) and Caccia (Caccia, Indiveri et al. 2000), a methodology of immersion tank testing 

system identification using on-board sensors is proposed to identify the parameters in the 

dynamic model. This approach exploits the characteristics of the vehicle and assumes 

decoupling between DoFs in hydrodynamics. As a consequence, each DoF can be 

conducted independently and the experiments become highly repeatable. This approach 

involves a combination of static and dynamic experiments for each DoF and then utilises 

the least squares algorithm to estimate parameters from the experimental data. 

Since each DoF can be treated individually, the dynamic model in Equation (4.2) can be 

adapted to be written into a single DoF as the following: 

 𝑚𝜉𝜉̇ + 𝑑𝜉𝜉 + 𝑑𝜉|𝜉|𝜉|𝜉| + 𝑔𝜉 = 𝜏𝜉                                                       (5.1) 

where 𝜉 is the velocity for a particular DoF, 𝑚𝜉  represents the system inertial parameter 

containing rigid-body mass 𝑚𝑅𝐵,𝜉 and added mass 𝑚𝐴,𝜉  components, 𝑑𝜉  and 𝑑𝜉|𝜉| are the 
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linear and quadratic damping parameters, 𝑔𝜉 is the gravitational and buoyancy force and 𝜏𝜉 

is the force applied to the vehicle; all the above parameters are for the considered DoF. 

 

5.1.1 The Least Squares (LS) Technique 

The least squares method is a commonly used regression analysis approach for 

approximating unknown parameters from overdetermined systems of equations by 

minimising the sum of residuals. Since the dynamic model in single DoF described in 

Equation (5.1) is a linear expression with respect to the parameters, the LS technique is 

used to estimate parameters for each DoF from a set of experimental data due to its ease 

of implementation. Equation (5.1) can be expressed in a regression form given by: 

             𝑦 = 𝐻𝜃                                                                                 (5.2) 

where 𝑦 is a vector of known values, 𝐻 is a deterministic model matrix containing measured 

data from experiments, and 𝜃 represents the parameter vector that needs to be estimated. 

From the experimental data, the number of equations are larger than the number of unknown 

parameters, which is an overdetermined system. The LS technique is used to estimate the 

parameter 𝜃 by minimising the sum of squares of the residuals to fit the equations best. The 

parameter can be then estimated by using the following equation (Indiveri 1998): 

      𝜃 = (𝐻𝑇𝐻)−1𝐻𝑇𝑦                                                                      (5.3) 

Additionally, the standard deviation of the estimated parameter is calculated given by: 

          𝜎̂𝜃 = √𝑑𝑖𝑎𝑔(𝐻𝑇𝐻)−1𝜎̂2                                                                  (5.4) 

where 𝜎̂2 is the estimated Gaussian zero mean measurement noise variance given by: 

                                                            𝜎̂2 =
(𝑦 − 𝐻𝜃)𝑇(𝑦 − 𝐻𝜃)

dim(𝑦) − dim (𝜃)
                                                              (5.5) 

The error of the estimated parameter is defined by: 

                                                                            𝜍 =
𝜎̂𝜃

|𝜃|
                                                                                  (5.6) 
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5.1.2 Static Experiments 

Static experiments are utilised to identify damping parameters that concern measuring the 

velocity of the vehicle using on-board sensors when the steady-state speed condition holds. 

In static experiments, a particular force for a specific DoF is applied to the vehicle, and when 

the vehicle achieves the steady state speed, the velocity is constant whereas the 

acceleration is zero. Under this condition, this constant velocity and this particular force are 

recorded. For a single DoF, the dynamic model in (5.1) turns into: 

    𝑑𝜉𝜉 + 𝑑𝜉|𝜉|𝜉|𝜉| + 𝑔𝜉 = 𝜏𝜉                                                                     (5.7) 

where 𝜉̇ = 0 and the system inertia term of 𝑚𝜉 is eliminated from the model. Since the force 

𝜏𝜉 and the gravitational and buoyance 𝑔𝜉 are known, the linear damping term 𝑑𝜉 and the 

quadratic damping term 𝑑𝜉|𝜉| are the only unknown parameters that can be estimated by 

using the least squares technique for quadratic curve fitting of velocities 𝜉 and drag forces 

(i.e. 𝜏𝜉 − 𝑔𝜉). In the expression of Equation (5.2), for 𝑛 inputs, the vector of known values 𝑦 

are drag forces for the considered DoF turning into: 

      𝑦 = [

𝜏𝜉,1 − 𝑔𝜉
𝜏𝜉,2 − 𝑔𝜉

⋮
𝜏𝜉,𝑛 − 𝑔𝜉

]                                                                          (5.8) 

The matrix 𝐻 consists of the experimental data of constant velocities turning into: 

  𝐻 = [

𝜉1   𝜉1|𝜉1|
𝜉2   𝜉2|𝜉2|

⋮
𝜉𝑛   𝜉𝑛|𝜉𝑛|

]                                                                       (5.9) 

The unknown parameter vector 𝜃 of damping turns into: 

      𝜃 = [
𝑑𝜉
𝑑𝜉|𝜉|

]                                                                                (5.10) 

Hence, the damping parameters can be estimated using Equation (5.3). By applying the 

same procedure for each 6 DoFs individually, damping parameters in 6 DoFs can be then 

attained. 
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5.1.3 Dynamic Experiments 

Dynamic experiments are employed to identify inertia parameters that involve measuring 

the acceleration and velocity of the vehicle when the vehicle is accelerating. In dynamic 

experiments, a sinusoidal force for a specific DoF is provided to the vehicle while measuring 

the acceleration and the velocity of the vehicle using on-board sensors. Since the 

parameters of damping terms have been identified in the static experiments, the remaining 

parameters of the inertial term can now be determined. For a single DoF, the dynamic model 

in (5.1) can be rearranged to the following: 

     𝑚𝜉𝜉̇ = 𝜏𝜉 − 𝑔𝜉 − 𝑑𝜉𝜉 − 𝑑𝜉|𝜉|𝜉|𝜉|                                                     (5.11) 

where terms of 𝜏𝜉, 𝑔𝜉, 𝑑𝜉 and 𝑑𝜉|𝜉| are known; therefore, the only unknown term of inertia 

parameter 𝑚𝜉 can be estimated utilising the least squares technique where 𝑦,𝐻 and 𝜃 are 

now turning into: 

    𝑦 =

[
 
 
 
𝜏𝜉,1 − 𝑔𝜉 − 𝑑𝜉𝜉1 − 𝑑𝜉|𝜉|𝜉1|𝜉1|

𝜏𝜉,2 − 𝑔𝜉 − 𝑑𝜉𝜉2 − 𝑑𝜉|𝜉|𝜉2|𝜉2|

⋮
𝜏𝜉,𝑛 − 𝑔𝜉 − 𝑑𝜉𝜉𝑛 − 𝑑𝜉|𝜉|𝜉𝑛|𝜉𝑛|]

 
 
 

                                             (5.12) 

  𝐻 =

[
 
 
 
𝜉1̇
𝜉2̇
⋮
𝜉𝑛̇]
 
 
 

                                                                                    (5.13) 

     𝜃 = 𝑚𝜉                                                                                        (5.14) 

Similarly, the system inertia parameter can be estimated using Equation (5.3). Note that the 

system inertia parameter 𝑚𝜉  includes containing rigid-body mass 𝑚𝑅𝐵,𝜉 and added mass 

𝑚𝐴,𝜉 where the rigid-body mass is known from an a priori information of measured data of 

the vehicle. Hence, the added mass can be attained by: 

      𝑚𝐴,𝜉 = 𝑚̂𝜉 −𝑚𝑅𝐵,𝜉                                                                 (5.15) 

Likewise, by applying the same procedure for each 6 DoFs individually, system inertia 

parameters in 6 DoFs can be obtained. 
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5.2 Parameter Determination 

Due to the lack of the access to BlueROV2 Heavy, the system identification experiments 

have not been able to be carried out. As a consequence, the parameters in the dynamic 

models were determined by analysing the BlueROV2 Heavy’s technical specifications 

(BlueRobotics 2018b) and available published literature relating to the BlueROV (Sandøy 

2016). Technical specifications of the BlueROV2 Heavy from BlueRobotics (BlueRobotics 

2018b) provide the vehicle’s physical information such as mass of 11.5 kg and net buoyancy 

of 0.2 kg. Accordingly, the weight of the body and the buoyancy force are computed in 

Equation (5.16) and Equation (5.17), respectively. 

     𝑊 = 𝑚𝑔 = 11.5 × 9.81 = 112.8 (𝑁)                                             (5.16) 

        𝐵 = 𝑁𝑒𝑡 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 +𝑊 = 0.2 × 9.81 + 112.8 = 114.8(𝑁)                      (5.17) 

In previous BlueROV research by Sandøy, the distance between the centre of gravity (CG) 

and the centre of buoyance (CB) was found to be 0.00019 metres. In the case of BlueROV, 

the thruster configuration can only produce 4-DoF control of surge, sway, heave and yaw. 

Accordingly, roll and pitch motions are passively stable such that a reasonable distance 

between CG and CB is required to produce adequate restoring forces to keep the vehicle 

stable; however, the value of 0.00019 metres is not conceivable for this circumstance. As a 

result, a representative value of 0.02 metres was chosen. By placing the centre of the 

vehicle’s body frame at the centre of buoyancy, 𝑟𝑏 = [0, 0, 0]𝑇. Under the assumption of the 

centre of gravity with respect to the centre of buoyancy is 0.02 metres, 𝑟𝑔 = [0, 0, 0.02]𝑇. 

Since there is no available parameter information in roll and pitch motions (considered 

negligible) from previous BlueROV research, the inertia moments about 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 axes 

for BlueROV2 Heavy are assumed to be identical and determined using the yaw moment of 

inertia data from Sandøy. Ergo the a priori information is produced as shown in Table 5.1 

that can be used to form the restoring force and moment vector and the rigid-body mass 

matrix. 

The unknown hydrodynamic parameters of the added mass and damping were also 

determined by analysing published literature from Sandøy as illustrated in Table 5.2 and 

Table 5.3, respectively. Likewise, due to the limited information for roll and pitch motions, 

the added mass about 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 axes are assumed to be identical and determined by 
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the data of yaw motion as well as for the damping parameter determination. The determined 

and computed parameters from Table 5.1 to Table 5.3 will be used to perform control system 

design simulations for the vehicle. 

Table 5.1 A Priori information for parameters in rigid body dynamics and restoring forces 

Parameter Value 

𝒎 11.5 (kg) 

𝑾 112.8 (N) 

𝑩 114.8 (N) 

𝒓𝒃 [0, 0, 0]𝑇 (m) 

𝒓𝒈 [0, 0, 0.02]𝑇 (m) 

𝑰𝒙 0.16 (kg m2) 

𝑰𝒚 0.16 (kg m2) 

𝑰𝒛 0.16 (kg m2) 

 

Table 5.2 Determined added mass parameters 

DoF Added Mass Value 

Surge 𝑋𝑢̇ −5.5 (kg) 

Sway 𝑌𝑣̇ −12.7 (kg) 

Heave 𝑍𝑤̇ −14.57 (kg) 

Roll 𝐾𝑝̇ −0.12 (kg m2/rad) 

Pitch 𝑀𝑞̇ −0.12 (kg m2/rad) 

Yaw 𝑁𝑟̇ −0.12 (kg m2/rad) 

 

Table 5.3 Determined linear and quadratic damping parameters 

DoF 
Linear 

Damping 
Value 

Quadratic 
Damping 

Value 

Surge 𝑋𝑢 −4.03 (Ns/m) 𝑋𝑢|𝑢| −18.18 (Ns2/m2) 

Sway 𝑌𝑣 −6.22 (Ns/m) 𝑌𝑣|𝑣| −21.66 (Ns2/m2) 

Heave 𝑍𝑤 −5.18 (Ns/m) 𝑍𝑤|𝑤| −36.99 (Ns2/m2) 

Roll 𝐾𝑝 −0.07 (Ns/rad) 𝐾𝑝|𝑝| −1.55 (Ns2/rad2) 

Pitch 𝑀𝑞 −0.07 (Ns/rad) 𝑀𝑞|𝑞| −1.55 (Ns2/rad2) 

Yaw 𝑁𝑟 −0.07 (Ns/rad) 𝑁𝑟|𝑟| −1.55 (Ns2/rad2) 



49 
 
 

 

5.3 Thrust Identification 

Since the thrust force applied to the ROV in the dynamic model is based on the control input 

from the motors, it is necessary to identify the thrust coefficient that represents the mapping 

from the control input signal to the thrust force. The thrust force can have considerable loss 

due to the effect of thruster-thruster and thruster-hull interactions. Hence, the bollard pull 

test in immersion tank is proposed to identify thrust characteristics experimentally. In this 

test, BlueROV2 Heavy is attached to a bracket that is connected to a 6-axis load cell. 

Thereupon, the thrust forces in 6-DoF are measured from the load cell while applying control 

input signals to thruster motors. Thruster coefficients can then be estimated with the use of 

the least squares technique explained in Section 5.1. 

However, as BlueROV2 Heavy is not yet available for performing the immersion tank bollard 

pull tests, the thrust coefficient is alternatively identified making use of thrust mappings data 

of T200 thruster illustrated in Figure 5.1 provided by BlueRobotics (BlueRobotics 2018c) at 

this stage. Within the PWM operating range, the map depicts linear relationships with input 

signal and a zero thrust dead zone. The linear relationships are used to approximate the 

thrust coefficient of Equation (4.56) in the thrust model of Equation (4.58) discussed in 

Section 4.4. Since the eight thrusters of BlueROV2 Heavy are identical using T200 and the 

maximum thrust produced is about 40 Newton at least (including forward and reverse 

directions) at operating voltage of 16 V, the thrust coefficients of 𝐾1 to 𝐾8 in Equation (4.56) 

are approximated to 40. Therefore, the thrust coefficient matrix 𝐾 is determined as below: 

   𝐾 = 𝑑𝑖𝑎𝑔[40, 40, 40, 40, 40, 40, 40, 40]                                            (5.20) 

5.4 Summary 

In this chapter, a system identification approach of immersion tank testing has been 

demonstrated for identifying parameters in the vehicle’s mathematical models derived in 

Chapter 4. Although these tests could not be executed due to the unavailability of the 

experimental platform, the unknown parameters were currently determined by making use 

of the BlueROV2 Heavy’s technical specifications and published literature relating to the 

BlueROV. The next chapter will then use these determined parameters to perform 

simulations of control system design for BlueROV2 Heavy. 
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Figure 5.1 T200 thruster: thrust vs control input signal mapping (BlueRobotics 2018c) 
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CHAPTER 6  

CONTROL OF THE ROV 

The control of an ROV involves a number of challenges due to complex nonlinear forces 

acting on the vehicle, uncertainties in the dynamic model as well as unpredictable 

disturbances from the environment. Currently, the BlueROV2 Heavy can be controlled by 

an operator through a gamepad controller that sends command signals to the vehicle. Figure 

6.1 depicts the currently supported open-loop control system block diagram for BlueROV2 

Heavy. While this type of control systems has a simple layout, they have low accuracy due 

to the lack of a feedback mechanism. Therefore, they are only suitable for manual 

operations. 

Automated control is a behaviour of regulating a process without requiring human operations 

where a feedback mechanism is essential to produce a reliable result. Figure 6.2 depicts 

the feedback (or closed-loop) control system block diagram for an ROV in which the 

observer provides the feedback of output (i.e. an estimate of the ROV’s current state), a 

reference model provides the desired state for the vehicle, and the feedback controller uses 

the difference between the desired output and the measured value of output to produce 

control forces. Note that both Figure 6.1 and Figure 6.2 are ideal circumstances without 

disturbances effecting the ROV. 

This chapter presents two controller techniques individually applied in the design of control 

systems. The simulation study of each control algorithm is demonstrated and robustness 

analysis of these control systems is examined by using Monte Carlo method. 
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Figure 6.1 Open-loop control system block diagram (currently supported for BlueROV2 Heavy) 
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Figure 6.2 Feedback control system block diagram 

 

6.1 Control System Design 

The control system of underwater vehicles contains a controller (or control law) component 

and a control allocation component. The controller generates control forces that need to be 

provided for the vehicle whereas the control allocation distributes these control forces to the 

thrusters of the vehicle. Control allocation can be implemented by using Equation (4.65) in 

Section 4.4 while a range of controller design strategies that have been implemented on 

underwater vehicles are discussed in Section 2.2. Due to the simplicity and flexibility of the 

PID control algorithm, a linear conventional PID controller and a nonlinear model-based PID 

controller are chosen and individually applied for designing a 6-DoF control system to control 

the position of the BlueROV2 Heavy. This section presents how these algorithms are 

designed for controlling an ROV. 
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6.1.1 Linear Conventional PID Control 

The fundamentals of the PID controller is to utilise an error signal that is generated from the 

difference between the desired state and the current state of the plant. For controlling the 

position of the ROV in order for the vehicle to follow a certain trajectory, this can be 

expressed by: 

      𝑒 = 𝜂𝑑 − 𝜂                                                                                   (6.1) 

where 𝑒 is called the tracking error, 𝜂𝑑 is the desired position of the ROV and 𝜂 is the current 

position of the ROV. This error signal in the body frame 𝑒𝑏 is then employed to produce a 

corrective action by applying forces to the vehicle. The generated force by PID is given by: 

       𝜏𝑃𝐼𝐷 = 𝐾𝑃𝑒
𝑏(𝑡) + 𝐾𝐼 ∫ 𝑒𝑏(𝑡′)𝑑𝑡′

𝑡

0
+𝐾𝐷

𝑑𝑒𝑏(𝑡)

𝑑𝑡
                                           (6.2) 

where 𝐾𝑃 is the proportional gain, 𝐾𝐼 is the integral gain, 𝐾𝐷 is the derivative gain, and 𝑒𝑏 is 

the error signal in the body frame determined by: 

      𝑒𝑏 = 𝐽𝑇(𝜂)𝑒                                                                                (6.3) 

In the design of 6-DoF control for BlueROV2 Heavy, a simple multi-DoF PID controller is 

comprised of six uncoupled single DoF controllers such that each controller is designed for 

each DoF. In this design, a heuristic method of the Ziegler-Nichols tuning method (Ziegler 

and Nichols 1942) was utilised to tune the gains of the PID controller due to its feasibility 

and simplicity. A relative high proportional and derivative gains were produced to rapidly 

response to desired positions and provide damping to the motion of the vehicle, respectively 

whereas a small integral gain was utilised for adjusting the steady-state error.  

A block diagram of the linear conventional PID control system for the ROV is illustrated in 

Figure 6.3 where Equation (6.2) is employed for the 6-DoF PID controller that takes the 

position tracking error in the body frame 𝑒𝑏 to generate forces and moments in 6 DoFs while 

Equation (4.65) is utilised for the control allocation.  
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Figure 6.3 Linear conventional PID control system block diagram 

In the ROV system, firstly, thruster system generates control forces in 6 DoFs. Then kinetics 

determines the acceleration in the body frame for the given forces, and kinematics defines 

the vehicle’s velocity in the world frame 𝑣𝑛 due to the velocity in the body frame. Note that 

disturbances from the environment influences the dynamics of motion of the ROV. Lastly, 

the position of the vehicle is determined in the next integrator and then fed back into the 

controller after being transformed to the body frame using inverse kinematics. 

6.1.2 Nonlinear Model-based PID Control 

The concept of the model-based control is to integrate a plant model of dynamics into the 

control system. Since the dynamic properties of the ROV is highly nonlinear, exploiting the 

understanding of the vehicle’s dynamics is beneficial to providing an efficient control in 

comparison to the traditional approach. In the nonlinear model-based PID control system 

design, the dynamic model of the ROV is utilised to produce a 6-DoF predictive force and 

the model-based PID is used to provide a corrective force in 6 DoFs to adjust the error in 

the model. This is advantageous in that the model error and nonlinearities tend to be smaller 

than the dynamics themselves. 

In the predictive force generation, a virtual reference trajectory strategy is introduced for the 

design of trajectory tracking. With the use of a scalar measure of tracking in Fossen (Fossen 

1994), a virtual reference 𝑥𝑟 can be defined that satisfies: 

      𝑥𝑟̇ = 𝑥𝑑̇ + 𝜆𝑒𝑏                                                                            (6.4) 

where 𝜆 > 0 is the control bandwidth that describes the amount of tracking error to the 

overall tracking performance, and 𝑒𝑏 is the tracking error in the body frame given by (6.3). 

Since the velocity 𝑣 is the time derivative of the position (i.e. 𝑣 = 𝜂̇), for a defined virtual 

reference position 𝜂𝑟, the following is satisfied: 

      𝑣𝑟 = 𝑣𝑑 + 𝜆𝑒𝑏                                                                             (6.5) 
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where 𝑣𝑟  is called virtual reference velocity and 𝑣𝑑  represents the desired velocity. 

Furthermore, the virtual reference acceleration 𝑣𝑟̇ is given by: 

           𝑣𝑟̇ = 𝑣𝑑̇ + 𝜆(𝑣𝑑 − 𝑣 )                                                                      (6.6) 

where 𝑣𝑑̇  represents the desired acceleration and 𝑣  represents the current velocity. 

Accordingly, a predictive force produced by the dynamic model of kinetic equation takes the 

form: 

   𝜏𝑀 = 𝑀𝑣𝑟̇ + 𝐶𝑅𝐵(𝜈)𝜈 + 𝐶𝐴(𝜈𝑤)𝜈𝑤 + 𝐷(𝜈𝑤)𝑣𝑤𝑟 + 𝑔(𝜂)                            (6.7) 

where 𝜈𝑤 = 𝜈 − 𝜈𝑐  is relative velocity defined in Section 4.3 and 𝑣𝑤𝑟  is relative virtual 

reference velocity determined by: 

     𝑣𝑤𝑟 = 𝑣𝑟 − 𝜈𝑐 = 𝑣𝑑 + 𝜆𝑒𝑏 − 𝜈𝑐                                                          (6.8) 

Hence, the resulting predictive force by the model is given by: 

      𝜏𝑀 = 𝑀(𝑣𝑑̇ + 𝜆(𝑣𝑑 − 𝑣 )) + 𝐶𝑅𝐵(𝜈)𝜈 + 𝐶𝐴(𝜈𝑤)𝜈𝑤 + 𝐷(𝜈𝑤)(𝑣𝑑 + 𝜆𝑒𝑏 − 𝜈𝑐) + 𝑔(𝜂)        (6.9) 

In addition to the predictive force, the PID controller based on the dynamic model is utilised 

to adjust the error in the model applying Equation (6.2) with relatively small gains of the PID. 

Thereupon, the nonlinear model-based PID controller takes the sum of the predictive force 

by the dynamic model and the corrective force by the PID given by: 

     𝜏 = 𝜏𝑀 + 𝜏𝑃𝐼𝐷                                                                           (6.10) 

Finally, the control law for the nonlinear model-based PID controller is computed given by: 

         𝜏 = 𝑀(𝑣𝑑̇ + 𝜆(𝑣𝑑 − 𝑣 )) + 𝐶𝑅𝐵(𝜈)𝜈 + 𝐶𝐴(𝜈𝑤)𝜈𝑤 + 𝐷(𝜈𝑤)(𝑣𝑑 + 𝜆𝑒𝑏 − 𝜈𝑐) + 𝑔(𝜂) 

                    +𝐾𝑃𝑒
𝑏(𝑡) + 𝐾𝐼 ∫ 𝑒𝑏(𝑡′)𝑑𝑡′

𝑡

0

+ 𝐾𝐷

𝑑𝑒𝑏(𝑡)

𝑑𝑡
                                                                         (6.11) 

Figure 6.4 represents a block diagram of the nonlinear model-based PID control system for 

the ROV in which the 6-DoF predictive force is produced by applying Equation (6.9) and a 

6-DoF corrective force is generated by using Equation (6.2) resulting the overall form of 

Equation (6.11). The state information of position and velocity of the ROV is fed back into 

the model-based controller for keeping up the respective tracking errors. External 

disturbance such as water current is also fed into the controller such that the model-based 

control system takes account of the current effect on the vehicle. 
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Figure 6.4 Nonlinear model-based PID control system block diagram 

 

6.2 Control System Simulations & Result Analysis 

In order to verify the designed control systems in Section 6.1, a simulation study is 

undertaken. The position tracking controller in Figure 6.3 and Figure 6.4 are implemented 

using Equation (6.2) and (6.11) respectively, whereas the ROV plant is implemented using 

the BlueROV2 Heavy model derived in Chapter 4 along with the determined parameters in 

Section 5.2 and 5.3. The ROV’s current state information is assumed to be obtained from 

the on-board sensors of the vehicle and the theoretical values are simulated using the output 

of the ROV model. In order to simulate 6-DoF control of ROV’s position, simulations of step 

responses are firstly performed for each DoF individually. Following this, a reference 

trajectory is generated for the ROV to follow. Simulations will be carried out in Matlab 

Simulink and simulation results will be presented in this section. 

 

6.2.1 Linear Conventional PID Control 

By using the Ziegler-Nichols tuning method (Ziegler and Nichols 1942), the gains of the 6-

DoF PID controller are tuned as listed in Table 6.1 in the simulation. 

Table 6.1 The gains used in the 6-DoF PID controller 

6-DoF PID Surge Sway Heave Roll Pitch Yaw 

KP 3 3 3 4 4 2 

KI 0.2 0.2 0.2 0.3 0.3 0.1 

KD 2.5 2.5 0.5 0.5 1 0.5 
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For all simulations, the initial position of the ROV was set to a depth of 10 m as below: 

            𝜂 = [0  0  10  0  0  0]𝑇                                                                (6.12) 

Note that the vehicle’s position 𝜂 is expressed in the NED world frame {n}. The simulation 

results of step responses for 6 DoFs by the 6-DoF conventional PID controller are shown in 

Figure 6.5. It can be seen that although there are some significant overshoot in surge and 

sway motions, overall motion in each DoF was controlled such that all motions have 

converged to their goal positions. However, for certain DoFs, it requires a fair amount of time 

to converge especially in roll, pitch and heave motions. 

The second simulation sector of path following involves a generated path for the desired 

position that is set to be: 

      𝜂𝑑 = [0  0  10  0  0  0]𝑇 → [5  0  10  0  0  0]𝑇 → [5  5  10  0  0  0]𝑇 → [0  5  10  0  0  0]𝑇     (6.13) 

Figure 6.6 presents the path following simulation results in 3D and 2D of xy plane 

perspectives while no external disturbance is applied whereas Figure 6.7 shows that while 

the disturbance of water current is applied on the x and y position with current speed of 0.1 

m/s, meaning that the velocity of water current in 6-DoF is given by: 

            𝜈𝑐 = [0.1  0.1  0  0  0  0]𝑇                                                          (6.14) 

Note that the green arrow describes the direction of the generated path; and the orange 

arrow represents the direction of the water current. As can be seen in Fig. 6.6, the system 

follows the path well and achieves the goal positions even though with overshoots in x and 

y directions when there is no disturbance affecting the system. However, Fig. 6.7 reveals 

that after adding current disturbance, the system does not follow the path sufficiently. This 

is because the dynamic property of the ROV is highly nonlinear, the linear PID control 

system cannot cope with the dynamic effects of external forces on the vehicle efficiently. 
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(a) Surge motion                                                         (b) Roll motion 

  

(c) Sway motion                                                         (d) Pitch motion 

  

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.5 Step responses for the position in 6 DoFs using conventional PID 
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      (a) 3D view                                                                (b) 2D view 

Figure 6.6 Path following simulation results with linear PID without external disturbance 

 

  

      (a) 3D view                                                                (b) 2D view 

Figure 6.7 Path following simulation results with linear PID applying current speed of 0.1 m/s on the x 

and y directions 
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6.2.2 Nonlinear Model-based PID Control 

Likewise, with the use of the Ziegler-Nichols tuning method (Ziegler and Nichols 1942), the 

gains of the 6-DoF model-based PID controller are tuned as listed in Table 6.2. It can be 

seen that the used gains of the model-based PID are relatively small compared with the 

gains in Table 6.1. This is because in the model-based control system, the majority of control 

forces is contributed from the predictive force by the ROV’s dynamic model and the residual 

error is corrected by the PID controller. 

Similarly, step response simulations for 6 DoFs were performed firstly as the results shown 

in Figure 6.8. It is noticeable that the model-based PID control system produces slight 

overshoot and achieves the goal positions quickly. These features are highly desirable since 

the vehicle does not require significant direction reverse to accomplish the desired position 

and demands relatively small energy which results in efficient performance. 

Next, the path following simulation results by the nonlinear model-based PID control system 

without external disturbance applied are shown in Figure 6.9 whereas Figure 6.10 presents 

the path following simulation results when a water current disturbance is applied on the x 

and y position with current speed of 0.1 m/s described by Equation (6.14). It can be seen 

that simulations results in Fig. 6.9 and Fig. 6.10 are almost identical, with sufficient 

performance, meaning that the system has high level of resistance to current disturbance at 

speed of 0.1 m/s. This is because the model-based control system exploits the dynamic 

model of the ROV so that considers the nonlinearity of the dynamic effects by the 

disturbance. 

 

Table 6.2 The gains used in the 6-DoF model-based PID controller 

6-DoF PID Surge Sway Heave Roll Pitch Yaw 

KP 1 1 1.2 0.3 0.3 0.3 

KI 0.001 0.001 0.001 0.001 0.001 0.001 

KD 0 0 0 0.3 0.3 0.3 
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(a) Surge motion                                                         (b) Roll motion 

  

(c) Sway motion                                                         (d) Pitch motion 

  

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.8 Step responses for the position in 6 DoFs using model-based PID 
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      (a) 3D view                                                                (b) 2D view 

Figure 6.9 Path following simulation results with model-based PID without external disturbance 

 

  

      (a) 3D view                                                                (b) 2D view 

Figure 6.10 Path following simulation results with model-based PID applying current speed of 0.1 m/s 

on the x and y directions 
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6.2.3 Performance Comparison of Linear Model-less and Nonlinear Model-based 

PID Control Systems 

A performance comparison of model-less and model-based PID control systems in terms of 

settling time and overshoot of step responses in 6 DoFs are listed in Table 6.3.  Note that 

the settling time is defined as the time required for the response remains within 2% of the 

final value; and step responses of simulations in all DoFs have converged to the desired 

positions within 2% of steady-state error for both control systems. Table 6.3 demonstrates 

that the model-based PID control system has significant performance improvement 

compared with the linear PID control system although it requires longer time for computation. 

Note that the maximum updated rate for model-less and model-based control systems are 

1.5 kHz and 640 Hz, respectively. As a control system generally does not require processing 

speed faster than 100 Hz, both designed control systems are fast enough for 

implementation. In summary, with 138% longer processing time, the model-based control 

has at least 42% of improvement in settling time and at least 62% of improvement in 

overshoot. Since the conventional PID control is linear and symmetric with constant gains, 

it is best suited to linear systems but suboptimal for nonlinear systems whereas the nonlinear 

model-based PID control system makes use of the dynamic model of the plant that results 

in responding dynamic effects on the system efficiently. 

 

Table 6.3 Performance comparison of model-less and model-based control systems 

 Settling Time Overshoot Computation Time 

 
Model-

less 

Model-

based 
Diff(%) 

Model-

less 

Model-

based 
Diff(%) 

Model-

less 

Model-

based 
Diff(%) 

Surge 36 s 21 s −42% 28.69% 5.49% −81% 

0.656 
ms per 
iteration 
(1.5kHz) 

1.563 
ms per  
iteration 
(640Hz) 

138% 

Sway 41 s 22 s −46% 30.68% 5.33% −83% 

Heave 49 s 23 s −53% −− 6.68% −− 

Roll 52 s 5.2 s −90% −− 1.32% −− 

Pitch 52 s 5.2 s −90% −− 1.32% −− 

Yaw 16 s 5.2 s −67% 6.6% 2.51% −62% 
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6.3 Robustness Analysis of Control Systems 

In this section, a set of representative Monte Carlo simulations are performed to examine 

the robustness of the linear model-less PID and the nonlinear model-based PID control 

systems with various scenarios. The first circumstance of simulations involve uncertainties 

of hydrodynamic parameters in the ROV’s dynamic model to analyse how they affect the 

performance of both systems. In the second scenario, disturbance of water currents are 

taken into account in the simulation. Higher current speed introduces more current forces 

onto the vehicle, thus the two control systems’ limitations on currents will be investigated. 

The third subset of simulations are performed while model uncertainties and water currents 

both occur. All Monte Carlo simulations are performed on a 100-trial basis and with an initial 

position of 10 m in depth as in Equation (6.12). The statistical analysis of both systems’ 

robustness will be represented and compared. 

 

6.3.1 Effect of Model Uncertainty 

The first simulation subset considers model uncertainties within ±10% variation in 

hydrodynamics while no external disturbance is applied. In the simulations, each 

hydrodynamic parameter is added with a uniformly distributed noise between 10% lower 

and 10% higher of its value. Figure 6.11 compares the simulation results of model-less and 

model-based control systems in terms of the mean and standard deviation of 100 trials of 

step responses for 6 DoFs. Overall, both systems are reasonably robust with respect to 

model uncertainties such that while ±10% variation in hydrodynamics is introduced, the 

maximum diversity of responses produced is only about 1.5%. It is noticeable that the two 

systems have similar sensitivity towards hydrodynamic uncertainties where the variations in 

translational motions (around 1.5%) are slightly less than that in rotational motions (around 

1%). Interestingly, in most motions, the model-based control system marginally has higher 

diversity in response (maximum 0.5% higher) than the model-less control system. This is 

because the model-based control system makes the use of the dynamic model of the ROV, 

thus its performance relies on the accuracy of the model more than the model-less control 

system in general. 
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(a) Surge motion                                                         (b) Roll motion 

    

(c) Sway motion                                                         (d) Pitch motion 

   

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.11 Comparison of step responses for 6 DoFs based on model-less and model-based control 

systems using Monte Carlo simulations with model uncertainties 
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6.3.2 Effect of Current Disturbance 

This second study investigates the effect of environmental disturbance of currents on the 

performance of the designed control systems while the model uncertainty is not considered. 

Since the ocean current is commonly assumed to be constant and irrotational in the inertial 

frame when describing its effects on marine vehicles (Fossen 2011), a water current is 

generated in the x, y and z directions in the simulations. The current velocity is set to 0.25 

m/s with an added uniformly distributed noise 𝜀 between 10% lower and 10% higher of the 

current speed. Hence, the velocity of water current in 6-DoF is given by: 

   𝜈𝑐 = [0.25 + 𝜀,   0.25 + 𝜀,   0.25 + 𝜀, 0, 0, 0]𝑇                                        (6.15) 

Figure 6.12 compares the simulation results of using model-less and model-based control 

systems in presenting the mean and standard deviation of 100 trials of step responses in 6 

DoFs. It can be seen that the water current affects the performance of the model-less control 

system considerably in terms of settling time and overshoot where it takes much longer (over 

1.5 times) to converge in most DoFs (surge, sway, heave and yaw) after applying current, 

and the overshoot in translational motions have increased dramatically (to between 55% 

and 97%). On the other hand, the model-based control system shows its sufficient 

robustness in regard to current disturbance such that its performance remains with similar 

settling time in all DoFs and reduced overshoot in some DoFs (surge, sway and yaw) in the 

presence of water current. In addition, with ±10% variation of the current speed, the 

maximum diversity of responses produced by the model-based control system is only about 

1% whereas that is about 7.5% by the model-less system. 

Since the model-based control system exploits the dynamic model and considers the 

nonlinearity of the current effect on the vehicle, the error for linearisation in the model-based 

PID controller is much smaller than that in the model-less PID controller. Hence, the model-

based control system results in a much more accurate control behaviour and performance 

whereas the model-less control system is only effective for a relatively small range from the 

tuning point.  
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(a) Surge motion                                                         (b) Roll motion 

  

(c) Sway motion                                                         (d) Pitch motion 

  

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.12 Comparison of step responses for 6 DoFs based on model-less and model-based control 

systems using Monte Carlo simulations applying water current at 0.25 m/s (within ±10% variation) in 

the x, y and z directions 
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Next, a further study investigates the effect of various current speeds on the two control 

systems and explores the limitations of the current levels these two control systems can 

manage respectively in terms of adequate settling time and steady-state errors in all DoFs. 

The simulations were performed while applying each level of current velocities individually 

ranging from 0.1 m/s in step of 0.1 m/s until the controller is unable to converge to the desired 

state. An added uniformly distributed noise between 10% lower and 10% higher of the 

current speed is also applied. Figure 6.13 and Figure 6.14 represents statistical analysis 

comparison of the settling time and steady-state errors respectively in 6 DoFs for both 

model-less and model-based control systems. Overall, increments in the current speed has 

a far more noticeable impact on the performance of model-less control system than that of 

model-based control system in a way that both settling time and steady-state errors by the 

model-less control system rise significantly in most DoFs whereas that with the model-based 

control system varies in a limited range with marginal increase over the increase of the 

current speed. Moreover, the limitations on currents of the model-less and model-based 

control systems are found to be 0.4 m/s and 1.1 m/s, respectively as it can be seen from the 

Figure 6.14 where systems start failing to converge to their goal positions in some motions. 

These results also indicate that the settling time based on the model-based system and the 

current speed of 1.1 m/s correspond to the physical limitation of the vehicle. 

 

6.3.3 Effect of Model Uncertainty and Current Disturbance 

The final scenario includes the presence of both model uncertainties (hydrodynamics 

variation ranging within ±10%) and environmental disturbance of constant irrotational current 

of 0.25 m/s in the x, y and z directions added within ±10% uniformly distributed noise. Figure 

6.15 depicts the step responses in 6 DoFs with both model-less and model-based control 

systems in the form of the mean and standard deviation of 100-trial results. It is noticeable 

that while the model-based control system presents a much better overall performance on 

the mean than the model-less, the response variation produced with the model-based is 

greater than that by the model-less especially in rotational motions. This is because 

compared to model-less control, the model-based control system has greater resistance to 

current disturbance, while it has higher sensitivity to the accuracy of the dynamic model. 
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(a) Surge motion                                                         (b) Roll motion 

    

(c) Sway motion                                                         (d) Pitch motion 

    

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.13 Settling time comparison of step responses for 6 DoFs based on model-less and model-

based control systems using Monte Carlo simulations with increasing current speeds (within ±10% 

variation) in the x, y and z directions 
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(a) Surge motion                                                         (b) Roll motion 

     

(c) Sway motion                                                         (d) Pitch motion 

   

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.14 Steady-state error comparison of step responses for 6 DoFs based on model-less and 

model-based control systems using Monte Carlo simulations with increasing current speeds (within 

±10% variation) in the x, y and z directions 
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(a) Surge motion                                                         (b) Roll motion 

   

(c) Sway motion                                                         (d) Pitch motion 

  

(e) Heave motion                                                         (f) Yaw motion 

Figure 6.15 Comparison of step responses for 6 DoFs based on model-less and model-based control 

systems using Monte Carlo simulations in the presence of model uncertainties and current speed of 

0.25 m/s with random noise in the x, y and z directions 
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6.3.4 Robustness Analysis of Model-less and Model-based Control Systems 

In this section, the robustness of the model-less PID and the model-based PID control 

systems are analysed based on previous three circumstances of Monte Carlo simulations 

and compared using statistical analysis techniques. The robustness analysis investigates 

system performance based on the settling time, steady-state errors and overshoot of step 

responses in 6 DoFs. Figure 6.16 compares analysis results for both designed control 

schemes with regards to model uncertainties simulated in Section 6.3.1. Overall, both 

systems’ performance in rotational motions have high level of resistance to model 

uncertainties. On the other hand, the model uncertainty has greatest impact on settling time 

in heave motion with model-less control and in sway motion with model-based control as 

well as noticeable impact on the accuracy of heave motion control by model-less system 

whereas the overshoot by both control scheme are insignificantly sensitive to model 

uncertainties in general. 

Figure 6.17 compares analysis results of both control systems in relation to current 

disturbances simulated in Section 6.3.2. In general, the model-based control scheme 

demonstrates a superior resistance to current disturbance and its variation in all DoFs if it is 

within the limitation of the system. In contrast, the water current has an significant impact on 

the performance of the model-less control scheme where the mean of settling time and 

overshoot have increased substantially in translational motions (note that currents are 

assumed to be irrotational in the simulations). Additionally, the current variation has 

noticeable impact on overshoot and control accuracy in translational motions with the model-

less system. 
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       (a) Settling Time                                                       (b) Steady-state error 

 

(c) Overshoot 

Figure 6.16 Robustness analysis comparison of two control schemes regarding model uncertainties 
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       (a) Settling Time                                                       (b) Steady-state error 

 

(c) Overshoot 

Figure 6.17 Robustness analysis comparison of two control schemes regarding current disturbance 

Figure 6.18 compares analysis results of two control systems for the circumstance of both 

model uncertainties and water currents simulated in Section 6.3.3. It can be seen that 

although the mean performance in settling time and overshoot of the model-based control 

is superior to that of the model-less control especially in translational motions, the accuracy 

and settling time based on the model-based control in most DoFs varies in a larger but 

acceptable range due to its sufficient resistance to current disturbance but reliance on the 

model accuracy. To sum up, according to the analysis based on these three circumstances 

of Monte Carlo simulations, the nonlinear model-based PID control system demonstrates an 

effective and robust performance in relation to moderate model uncertainties and 

environmental disturbance of currents whereas the linear model-less PID control scheme is 

resistant to model uncertainties yet not providing sufficient performance in the presence of 

current disturbance. 
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       (a) Settling Time                                                       (b) Steady-state error 

 

(c) Overshoot 

Figure 6.18 Robustness analysis comparison of two control schemes concerning both model 

uncertainties and current disturbance 

6.4 Summary 

In this chapter, a linear conventional PID controller and a nonlinear model-based PID 

controller have been developed respectively for the control system design of the BlueROV2 

Heavy. Both designed control systems were simulated using Matlab Simulink to examine 

and compare their performance. Additionally, the robustness of the two systems have been 

analysed using Monte Carlo trials. The simulation results and statistical analysis 

demonstrate the effectiveness and robustness of the nonlinear model-based PID control 

system that is feasible to be implemented on the BlueROV2 Heavy for controlling its position 

while the linear model-less PID control system requires much longer time to achieve the 

desired position and is sensitive to the dynamic effect of environmental disturbance on the 

vehicle.  
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CHAPTER 7  

CONCLUSION 

7.1 Summary 

This chapter will summarise the main components of the work achieved in this thesis and 

present conclusions highlighting relevant findings and observations from simulation results. 

Following this, recommendations of possible directions for future work will be presented. 

The development of system modelling, identification and control systems for an ROV named 

BlueROV2 Heavy have been presented in this thesis. In the first phase of this thesis, a 

complete 6-DoF ROV’s system modelling was conducted using a vectorial representation 

presented in Chapter 4. This includes the thruster model and the dynamic model of 

kinematics and kinetics where various matrices that form the mathematical model were 

derived on the basis of Fossen’s work (Fossen 1994, Fossen 2002, Fossen 2011). In order 

to simplify the complex dynamic model and reduce the extensive unknown parameters, 

several assumptions made for the BlueROV2 Heavy based on its characteristics and 

relatively low speed operations were discussed in Section 3.3. 

Inspired by the work of Indiveri (Indiveri 1998) and Caccia (Caccia, Indiveri et al. 2000), a 

system identification approach in immersion tank with the use of on-board sensors was 

proposed in Section 5.1 for determining parameters in the dynamic model. This approach 

employs static experiments for identifying damping parameters where the velocity of the 

vehicle is constant and the acceleration is zero; and utilises dynamic experiments for 

identifying system inertia parameters where the acceleration of the vehicle is non-zero. This 

approach is highly repeatable and cost effective, which makes it suited for the BlueROV2 

Heavy as the vehicle is easily configurable and fully customisable. The bollard pull test in 

immersion tank with the use of a 6-DoF load cell was proposed in Section 5.3 for identifying 

thruster coefficients in the thruster model. Using an estimation technique of the least squares 

algorithm to estimate parameters from the experimental data was demonstrated in Section 

5.1.1. However, due to the unavailability of the BlueROV2 Heavy, system identification 

experiments were not carried out. Alternatively, parameters in the models were determined 

by analysing the BlueROV2 Heavy’s technical specifications from BlueRobotics 
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(BlueRobotics 2018b) and published literature relating to BlueROV from Sandøy (Sandøy 

2016) presented in Section 5.2 and 5.3. 

In the second phase of this thesis, a simulation study of the control system design was 

presented, with the use of the system model and parameters determined for the BlueROV2 

Heavy, in Chapter 6. Various controller algorithms applicable to an underwater vehicle were 

discussed in detail, as presented in Section 2.2. Two 6-DoF control systems of linear model-

less and nonlinear model-based were developed for the vehicle based upon the PID control 

algorithm presented in Section 6.1 due to its simplicity, practicability and ease of 

implementation. Step response of each DoF and path following simulations using these two 

control systems as well as result analysis and their performance comparison were presented 

in Section 6.2. Section 6.3 presented the results and analysis of a set of representative 

Monte Carlo simulations under various operating conditions in order to investigate the 

robustness of these two control systems. Three scenarios were set as in the presence of 

the model uncertainty, the current disturbance and the combination of the two. These 

simulation results were analysed based on the mean and standard deviation of the step 

responses for all DoFs based on 100 trials. Using statistical analysis and representation of 

boxplots, the robustness of two systems were examined and compared for control 

performance and accuracy. 

 

7.2 Conclusions 

Based on the work presented in this thesis, several conclusions can be drawn regarding the 

findings from the simulation studies. These conclusions are concerned with the performance 

of the two developed control systems in relation to settling time, steady-state error, 

overshoot and robustness to environmental disturbances and model uncertainties.  

In the first simulation study of step response and path following simulations, it was seen that 

both the 6-DoF linear model-less PID and the 6-DoF nonlinear model-based PID control 

systems were able to track a simple trajectory (i.e. a single DoF is excited at a time) in all 6 

DoFs without external disturbances. Although the technique of the linear conventional PID 

controller is relatively simple to implement, it produces long settling time for certain DoFs 

(about 50 secs in heave, roll and pitch) and noticeable overshoot in surge and sway motions 
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(about 30%). Furthermore, due to the highly nonlinear properties of the ROV’s model, linear 

control schemes are incapable of producing sufficient manoeuvring performance in the 

presence of current disturbance from the external environment. The nonlinear model-based 

PID control system was formed by extending the PID controller with the concept of model-

based control. In this design, the vehicle’s dynamic model is taken advantage of to produce 

a predictive force and the PID controller is utilised to provide a corrective force for the 

residual error. As a result, the model-based control system has at least 42% of improvement 

in settling time and at least 62% of improvement in overshoot with 138% longer processing 

time whereas both systems are fast enough for implementation (i.e. the maximum updated 

rate for model-less and model-based control systems are 1.5 kHz and 640 Hz while a control 

system generally require processing speed of 100 Hz). 

In the second simulation study of robustness analysis using Monte Carlo simulations, it was 

found that both model-less and model-based control systems are relatively insensitive (with 

1.5% change) to the model uncertainty (with a ±10% variation in hydrodynamic parameters) 

in most DoFs (especially in rotational motions). The noticeable impacts of the model 

uncertainty were found to be on settling time in heave motion (greatest) and on steady-state 

error on heave motion with the model-less control; and on settling time in sway motion with 

the model-based control. In the presence of current disturbance, the model-based control 

demonstrates a superior robustness whereas the average settling time and overshoot have 

increased substantially in translational motions (currents were assumed to be irrotational) 

with the model-less control. The operational limits regarding current disturbance for model-

less and model-based control were found to be current speed of 0.4 m/s and 1.1 m/s, 

respectively. For the scenario of both model uncertainties and water currents, the overall 

performance in settling time and overshoot of the model-based control is superior to that of 

the model-less control due to its sufficient resistance to current disturbance. However, since 

the model-based control relies on the accuracy of the model to a certain degree, the 

performance of settling time and steady-state error varies in a larger range compared with 

the model-less control. According to the statistical analysis of simulation results based on 

these three scenarios, the nonlinear model-based PID control system was validated to be 

robust with regards to moderate model uncertainties (±10% variation in hydrodynamic 

parameters) and current disturbance up to 1.1 m/s current speed whereas the linear model-
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less PID control system less insensitive to model uncertainties yet not capable of handling 

disturbances and only effective for a relatively small range from the tuning point. 

 

7.3 Recommendations for Future Work 

This section presents a summary of intended and possible work that could be undertaken 

to increase the accuracy of system identification and expand the functionality of the control 

system. 

 

7.3.1 Improvement of System Identification 

In this thesis, the unknown parameters in the derived models of BlueROV2 Heavy were 

currently determined by analysing technical specifications and published literature relating 

to BlueROV that could potentially have significant inaccuracy due to the effects of 

hydrodynamic, thruster-hull and thruster-thruster interactions, and different configuration of 

BlueROV. Therefore, once the BlueROV2 Heavy is available, it is essential to perform the 

system identification experiments for higher accuracy in identifying parameters. 

The proposed system identification approach exploits the characteristics of the ROV and 

assumes decoupling between DoFs in hydrodynamics. As a consequence, hydrodynamic 

parameters for each DoF can be estimated independently with the use of the vehicle’s state 

measurements obtained by on-board sensors. Under the consideration of measurement 

noise from on-board sensors, a state observer algorithm is then necessary to process the 

available measurements to attain an estimate of the position and velocity of the vehicle with 

minimal noise corrupting the solution. This estimated information from the observer can be 

also utilised in the state feedback control. This can be achieved by employing a recursive 

Bayesian filtering technique, which comprises the Kalman filter family and the particle filter 

family. Due to the highly nonlinear dynamic properties of the ROV, a nonlinear observer 

such as an Extended Kalman Filter (EKF) or non-Gaussian filtering of the particle filter can 

be chosen for their ease of implementation. The implementation examples for the EKF and 

the particle filter for ROV’s observer can be found in literature of Dukan et al. (Dukan, 

Ludvigsen et al. 2011) and Zhao et al. (Zhao, Skjetne et al. 2014), respectively. 
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While various assumptions were placed on the vehicle to simplify its 6-DoF model and 

reduce the number of unknown parameters in the model, the accuracy of the obtained model 

might be decreased due to accumulated approximations. Therefore, relaxation of 

assumptions improves the accuracy of the ROV’s model and ultimately leads to a more 

robust control system. In the kinetic equation of motion, the system inertia and hydrostatic 

terms can be attained by measuring, which are relatively accurate. However, the damping 

terms of hydrodynamics are depending on motion of fluid surrounding the vehicle and 

sensitive to the velocity that are challenging to obtain accurately. Hence, it is recommended 

to incorporate significant off-diagonal parameters of damping matrices to minimise 

assumptions and increase accuracy. Note that determining which off-diagonal terms are 

significant needs to be investigated in the future by utilising data from experiments. 

 

7.3.2 Improvement of Controller 

In the control system design, the gains of the PID controllers for both designed systems will 

need to be refined when model parameters for the BlueROV2 Heavy are updated and 

obtained from experimental system identification to attain optimal values. The developed 

control systems in this thesis concern position control of the vehicle for ROV’s inspection 

and intervention purposes. The next stage is to include speed control to expand system 

capacity for surveying and mapping by integrating a desired velocity and the estimated state 

of velocity into the control system. This can be realised by applying a common technique 

used in robotics named computed torque control (Scıavıcco and Siciliano 1996). This 

approach conducts state feedback linearisation that utilises a nonlinear mapping to 

transform the nonlinear system dynamics into a linear system. The examples of 

implementation of this approach for underwater vehicles can be found in literature (Silpa-

Anan, Abdallah et al. 2000, Smallwood and Whitcomb 2004). 

As existing control solutions reported in the literature review presented in Chapter 2, the PID 

controller is one of the control algorithms for underwater vehicles. The modern control 

technique of sliding mode control is becoming increasingly used due to its relatively simple 

implementation (Marco and Healey 2001) and insensitivity to model uncertainties and 

external disturbances and has been demonstrated to achieve robust control (Gomes, Sousa 

et al. 2003, Soylu, Buckham et al. 2008, Haugen 2012). However, a particular limitation of 
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the conventional sliding mode control is the phenomenon of chattering, which is a high 

frequency oscillation introduced by the discontinuity in the control law. This oscillation can 

lead to unmodelled dynamics, excessive power consumption and system instability. 

Nevertheless, the chattering effect of sliding model control can be reduced by introducing a 

boundary layer around the sliding surface by applying saturation function (Slotine and Li 

1991) or the sigmoid function (Edwards and Spurgeon 1998) under a continuous control 

law. Alternatively, another chattering elimination method is using higher order sliding modes 

to hide control discontinuity in its higher derivatives (Fridman and Levant 1996, Bartolini, 

Ferrara et al. 1998).This approach has been realised in literature presenting enhanced 

accuracy and robustness to external disturbances. Since sliding mode control can produce 

more accurate solution and has an equivalent computation load to model-based PID control, 

it is recommended for future development. 

 

7.4 Epilogue 

In summarising this thesis, it can be seen, through representative and quantitative 

simulations, that a 6-DoF control system utilising model-based control framework provides 

accurate and robust control performance compared with the linear conventional controller. 

While both developed control systems have satisfactory computation time for 

implementation, simulation results demonstrate significant performance improvement (i.e. 

at least 42% settling time reduction and at least 62% overshoot reduction) by the nonlinear 

model-based control (with the cost of 138% more processing time). Furthermore, it was seen 

that the nonlinear model-based control responses to dynamic effects of disturbances on the 

system efficiently and has a much larger operational range (up to 1.1 m/s current speed 

compared with up to 0.4 m/s current speed for model-less control). To conclude, from this 

thesis it is evident that the developed 6-DoF nonlinear model-based PID control system is 

feasible to be implemented in controlling the position of the BlueROV2 Heavy in all 6 DoFs. 
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