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Abstract

In the current era of higher education, where there are pressures to both attract and

retain students in degree courses, two significant factors that influence student choices

are the reputation of the university and the quality of the courses offered. The research

undertaken in relation to this thesis is the latter factor dealing with course quality, and

in particular the development of new approaches and an innovative metric that may be

used to provide indicative guidance about the expected learning rigour to which students

will be exposed in the selected course.

While traditional approaches to assessing course quality have focussed on the examination

of student assessments, assignments, examination outcomes, project work and interviews

with staff and students, little has been done to examine the learning demands placed

upon the students. In this thesis, the specifications for the subjects in courses have been

scrutinised using the SOLO Taxonomy, and quantified by a method previously described

by Brabrand and Dahl (2007) to generate scores for the various subjects in a course. By

aggregation according to the course rules it has been possible to develop learning rigour

profiles for each year level in the course and an overall course profile which highlights

the different types of learning expectations for the course. In addition to the overall

course profile a numeric value labelled the C-Index has been calculated and it has been

proposed that this value should be interpreted as an indicator of the level of learning

rigour expectation for the course.

With the detailed level of analysis that occurred in constructing a course profile, a com-

posite view of the subjects in the course allowed for further grouping and analysis to

take place. When the subject data was compared within year levels it was clear that

some subjects appeared to place much higher learning demands on students than others.

Although being outside the scope of this research to determine whether such demands

were reasonable or not, the analysis has been able to identify where potential problems

may exist in courses when either the demands are too great or are not sufficiently strong



for the year level concerned. The methodologies used in this research are proposed as

being beneficial tools for university curriculum groups to assist in monitoring the internal

quality control aspects of the courses for which they are responsible.

The context of this research has been in the domain of Information Technology and Com-

puter Science, where course quality and accreditation are important matters. The tech-

niques proposed will provide additional tools to accreditation and benchmarking teams

by providing course profile information that may be used to support the observations

they make about the accompanying course materials.

The outcomes of this research include the creation of a new metric labelled the C-Index;

the description of a methodology to construct a course profile; a proposed method to

identify “subjects of interest” within a degree program; and the documentation of an

approach that may be used for course benchmarking either within a particular university

or across universities.
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Chapter 1

Introduction

1.1 Motivation

In the higher education sector a continuing issue remains at the forefront of the teach-

ing and learning agenda, and that is the quality of the degree programs offered. There

are many initiatives undertaken to investigate the quality of teaching, the quality of as-

sessment, the quality of graduates, and other output evaluations. Oliver et al. (2007)

highlighted the undertakings at Curtin University in mapping curricula as part of the

increased level of demand for accountability in the university sector and the potential

benefit in improved teaching and learning. In the Faculty of Science and Engineering at

Flinders University “... a strategic decision to appoint a dedicated Quality Assurance

(QA) Coordinator to assist in its preparations for the AUQA audit” was undertaken in

2005 (Smith and Martin, 2006). The University of Sydney noted that it was preferable

to focus on ‘quality enhancement’ rather than ‘quality assurance’ (McLean and Sachs,

2006). Keane and Labhrainn (2005) identified that substantial efforts in the develop-

ment of systems for evaluating teaching and course quality in higher education were

well established in the US, UK, and Australia, and was proposing the more systematic

introduction of such systems into the Irish University system. Most efforts are post-

event or post-process activities that have an important role in attempting to validate and

maintain institutional quality standards. Applications of this approach are particularly

1



Introduction CHAPTER 1

evident at times of course accreditations or during benchmarking processes when various

forms of documentation are provided as evidence of effective quality teaching, learning

and assessment processes being in place.

When these evaluation and audit processes occur, a significant element that is examined

is the documentation associated with a complete program (a degree, or a course) and

its component elements (the individual subjects, or topics, or courses). In particular,

the aims and objectives are reviewed, and then the outputs and deliverables associated

with the member items are examined and evaluated. The parenthesised terms above are

listed to show the variability in terminology usage across the education sector where for

example the term course may mean either a whole degree program in one institution or

a semester (subject) of study in another.

The main focus of this research is the initial part of this documentation, namely the

aims and objectives of individual component elements, and to propose that a profile can

be established for each of the subjects in a degree program, and by extension therefore

to arrive at an overall course profile that may be used as an indicator of course intent.

When implemented, this profile can be used to provide key stakeholders with a predictive

capacity that presently does not exist. For example, students could compare courses in a

quantitative manner to supplement their qualitative decision making on course selection.

University administrations could compare courses within their institution to confirm con-

sistency or identify inconsistency between department offerings. External course reviewers

and evaluators could establish baseline expectations for the conduct of their reviews and

audits. Being an input-side or pre-process activity, there is an inherent value in such a

profile being created.

While at first appearing to be either confronting, or perhaps an impossible dream, it

should be pointed out that many other areas of endeavour have metrics that are used

to provide initial expectations for evaluators on which to base their judgements. Simple

examples include the ‘degree of difficulty’ factor used in judging some Olympic events

such as diving, gymnastics, dance and similar. In the University research sector there

exists the h-index, an index that attempts to measure both the productivity and impact

of the published work of a researcher (Hirsch, 2005). Tofallis (2012) discussed the issue

2
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of attempting to modify the approach to determining university rankings in the UK, and

noted that “the ‘league tables’ . . . are here to stay”. One of the conclusions presented by

Oliver et al. (2004) after using the Bloom Taxonomy to analyse a number of Computer

Science subjects was that “. . . there may also be potential for using a Bloom analysis

in order to standardise results across a range of courses in a similar fashion to diving

competitions . . . ”. In the health sector in Australia the case-mix approach identifies a

‘standard’ time in hospital for various medical procedures, and in financial accounting

there exists the ‘standard cost’ for production of component items in manufacturing

processes. Why then should it not be possible to establish a baseline value that may

be used as an indicator to the educational potential of course-work studies? As will be

shown in the remainder of this thesis, a proposed course profile indicator is feasible.

1.2 Research Question

The fundamental question of this research is whether taxonomic tools are able to be

applied to the course objectives for university level Information Technology and Computer

Science courses to provide an indicator of course quality.

There are supporting questions that must be answered in order to arrive at a definitive

and supported result in answer to the primary question. In particular,

• Which taxonomy tools are appropriate for Information Technology and Computer

Science courses?

• Is there a suitable metric that is able to be derived using the taxonomy tools?

• Does the tool metric provide a useful measure for assessing the learning rigour of a

course?

• Do similar courses return a similar result using the metric?

3
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1.3 Contribution

There are several significant contributions that emerge in this thesis, which has exam-

ined the documentation of degree courses in the area of Computer Science, Information

Technology, and Software Engineering.

An underlying theme which has driven this is to consider the nature of technological

computing-oriented degree courses as having a faint alignment with software products.

Stemming from this is the idea that a student’s education is largely a software process

that generates a suitable outcome, a graduate, at the end of the process. In the tertiary

sector a great deal of effort is applied to the quality control stages at various output

levels, but there is little formal assessment done to evaluate the input specifications to

that process. An assertion that is made in this thesis is that the learning objectives

for the subjects in a degree course are equivalent to the specifications for a software

product, and may therefore be validated by a process that is separate from the output

testing which we know as subject assessment that confirms whether a student has met the

subject specifications or not. It is this external verification of the input-side specification

through the assessment of subject learning objectives that is a new approach in the

determination of a suitable metric for degree courses.

Following on from previous research in the area, the major contribution of this thesis

is the proposal of a course metric for degree courses, designated as the C-Index. There

is a formal definition given for both the C-Index, a metric to describe an evaluation of

the learning level expectation for a degree course, and the p-index, a companion metric

to describe the associated learning level expectations for the various year levels within

the degree course. The thesis chapters 4 and 5 provide detailed information about the

theoretical determination of these metrics and the supporting experimental evidence.

While the C-Index metric determination is conceptually straight-forward, the obvious

question that arises is whether it can support widespread usage. The extended experiment

described in Chapter 7 addresses this question and demonstrates the potential for the

metric to be applied in benchmarking exercises when reviewing degree courses in the

Computer Science and Information Technology domains. Future research options are to

4
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explore its applicability beyond these domain areas.

1.4 Thesis Structure

This thesis is organised in the following manner:

Chapter 1 introduces the topic area and describes the nature of the research problem

being addressed. An integral part of this introduction is to provide the motivation for the

research and to describe the primary research question and the supporting questions that

are necessary components leading to a qualified answer to the fundamental hypothesis of

the primary research question.

Chapter 2 presents a review of the literature within the area of relevant educational

theory, learning taxonomies, quality concepts and applications in the Computer Science

domain.

Chapter 3 describes the methodology used in this research and the rationale behind

the approach taken. It is an important chapter as it sets out the experimental design

philosophy and highlights the underlying structures of the models to be used in the

experimental components of the research.

Chapter 4 describes the initial calculation techniques explored using both the SOLO

Taxonomy and the revised Bloom Taxonomy on a known course where access to course

and subject coordinators was readily available. Although based on the methodology of

previous researchers in this area, the study was conducted to confirm the relevance to

the Australian context and to extend the methods used to create a course metric. With

the in-depth analysis of the individual subjects in a course a substantial amount of data

became available and the resultant aggregation of subject scores into frequency tables,

which are labelled SOLO Distributions (Brabrand and Dahl, 2007), enabled a course

profile to be constructed showing the relevant proportions of learning levels specified in

the degree. The course profile was most informative when presented graphically, showing

the shift of learning demands through each of the years of study and culminating in an

overall profile view. As highlighted in the discussion section of this chapter the results

5
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obtained using the SOLO scale and the Bloom scale were very similar.

Chapter 5 builds on the calculation methods described in Chapter 4 and proposes the

formalised mathematical structure for the creation of a Course Index, named as the C-

Index. The formal methods also describe the statistic p-index which is the nominated

term for an individual index score for a year level of a degree course. To support the

creation of the p-index and C-Index metrics, a more detailed study across several degree

courses in a known environment was undertaken and there are comparative results shown

and discussed in the latter part of this chapter.

Further analysis of the course data has been shown to be a potentially useful tool to

compare the expected learning demands of subjects within a course, and may therefore

be considered as a procedure to assist with the internal quality control of the subject

descriptors. While there is an expected amount of variation in learning demands from

one subject to another there is also an implicit expectation that the learning demands for

subjects in a particular year level should be approximately similar. Yorke (2003) makes a

similar assertion stating “ . . . most programmes in higher education are based on a set of

general assumptions in which the subject discipline, rather than student development, is

dominant.” Accordingly, Chapter 6 explores several approaches to improve the identifica-

tion of potential areas where the expression of the expected learning demands of subjects

may need to be reviewed. This chapter discusses the application of those techniques to

several courses and demonstrates the outcomes in both tabular and graphical formats.

A second consequence of close analysis of the subjects in a course was found to be that

courses could be compared in a quantitative manner, either internally within a single

institution, or externally across several institutions. A broader study across several uni-

versity courses was undertaken, and is described in Chapter 7. To control the experiment

and validate the metric as a comparative measure, courses from Australian Universities

in the areas of Computer Science, Information Technology, or Software Engineering were

selected where the details of the course schedule and rules, plus the behavioural objec-

tives or learning outcomes, were available on the University’s public web pages. The

investigation across several Australian Universities provides a potential application for

the methodology as a benchmarking tool. In the realm of benchmarking, it is clearly
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more valuable if the tool is applicable beyond the Australian boundaries, but this was

not incorporated in this thesis.

The overall project and research is reviewed in Chapter 8 where the methodology is

critiqued, and the results are analysed and discussed in detail.

Finally, Chapter 9 presents the conclusions and proposes several areas for future research

activity.
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Chapter 2

Related Literature

2.1 Overview

As indicated in the title of this thesis, this research brings together a number of different

elements from the domains of Learning Theory, Educational Learning Taxonomies, the

discipline of Computer Science and the concepts of quality in a higher education environ-

ment. In particular, the literature covered looked at Constructivist Theory and the works

of John Biggs, Bloom’s Taxonomy in its more recent revised form, the SOLO Taxonomy,

and a number of representative works demonstrating the application of these theories

and models to the teaching and learning of Computer Science. The discipline area of

Computer Science in the context of this thesis should be interpreted as an overarching

term that includes the more specific sub-disciplines of Computer Science, Information

Technology, and Software Engineering.

2.2 Relevant Learning Theory

2.2.1 Constructivist Theory

A popular branch of more contemporary learning theory is known as the constructivist

approach, which has the following attributes (Schmidt and Winterhalter, 2004):
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• Learning is the construction and refinement of knowledge structures in learners’

minds;

• The construction process depends mainly on the personal effort and engagement of

the learner;

• Knowledge cannot be transferred or trained, but must be built in each individual

learner; and

• Learning should be self-determined and situated in real-life situations.

Liu (2003) cites several authors in describing constructivist theory and proposes that

“. . . most constructivists agree on these four essential characteristics” which influence

learning as being:

• Learners construct their own learning;

• New learning depends on current understanding;

• Learning is facilitated by social interaction; and

• Meaningful learning occurs within authentic learning tasks.

It can be seen that these two views are very similar and emphasise the basis of the theory

as considering that learning is a cumulative process that builds upon previous experience

and knowledge. The secondary part of the theory is that the success of the approach is

dependent on the engagement of the learner and the recognition of the learning activities

being appropriately relevant to the learner. The applications of contructivist approaches

are seen in the stage-based models and problem-based learning (Wilson, 1996; Jonassen,

1999).

It is clear that under this model, the common teacher driven approach is inappropriate,

and, as a consequence, the function of the teacher becomes more about being a resource

that the student can use in their own synthesis of suitable knowledge structures. Adopting

this approach has a clear implication of workload pressures on teachers wishing to be able

to facilitate student learning when they have substantial numbers of students in their

classes. Wang (2011) identified that “. . . learning outcomes now represent the guiding

principles in curriculum design.” Wang particularly stressed the importance of carefully
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designing the intended learning outcomes for a course prior to implementing Outcomes

Based Education (OBE) successfully.

2.2.2 The Revised Bloom Taxonomy

Beyond the mere philosophy of teaching and learning, a number of studies have been

undertaken to explore the variety of approaches to the implementation of teaching, or

the practice of teaching. One of the key platforms that gained a great deal of support was

the taxonomy of educational objectives proposed by Bloom (1956), which subsequently

became widely referred to as “Bloom’s Taxonomy”. The underlying basis of Bloom’s

ideas were to create a framework for classifying the statements of what was expected

for students to learn through the teaching process. While the original publication of

Bloom’s work dates back to the 1950s, further discussion and analysis has taken place

over many years, and has been updated to now incorporate amended aspects in what is

described as the Revised Bloom Taxonomy (Anderson and Krathwohl, 2001; Krathwohl,

2002). In essence, the revised taxonomy has expanded the Knowledge dimension of the

original taxonomy and has become represented as a two-dimensional matrix mapping the

Knowledge dimension against the Cognitive dimension as shown in Table 2.1 (Krathwohl,

2002). Use of this tabular form allowed the analysis of the objectives of a unit or course

of study, and in particular, enabled an indication of the extent to which more complex

types of knowledge and cognitive processes were involved.

Table 2.1: Revised Bloom Taxonomy Matrix
Knowledge Cognitive Dimension

Dimension Remember Understand Apply Analyse Evaluate Create

Factual

Knowledge

Conceptual

Knowledge

Procedural

Knowledge

Metacognitive

Knowledge

In the accompanying table (Table 2.1), the terms in the cognitive dimension are self-
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explanatory, and similarly, the first three terms in the knowledge dimension are equally

self-explanatory. However, the fourth term, “Metacognitive Knowledge” requires further

explanation. In a related work, Pintrich (2002) discusses the importance of metacognitive

knowledge and expands on the three distinct types proposed by Anderson and Krathwohl.

Specifically, Pintrich considers the first type, “Strategic Knowledge”, as incorporating the

knowledge of strategies for learning, thinking and problem solving in the domain area.

The second type, “Knowledge about cognitive tasks”, includes the ability to discern more

about the nature of the problems to be solved and to begin to know about the “what”

and “how” of different strategies as well as “when” and “why” the strategies may be

appropriate. The third type, “Self-Knowledge”, includes understanding about one’s own

strengths and weaknesses with respect to learning.

It was found that this tabular form was able to be applied across a range of granularities,

from the fine-grained analysis of a module in a larger teaching program, to broader anal-

yses of subject objectives (Meerbaum-Salant et al., 2010; Fuller et al., 2007; Thompson

et al., 2008; Johnson and Fuller, 2006). The application of the revised Bloom Taxon-

omy matrix involves the examination of learning objectives and classifying them into the

appropriate cells of the matrix.

Several studies have investigated the suitability of the Bloom Taxonomy in the field

of Computer Science (Scott, 2003; Oliver et al., 2004; Whalley et al., 2006; He and

Brandt, 2007; Gluga et al., 2012a), and most appear to examine the various micro-level

aspects of individual subject components such as the practical tests, assignment work,

and examinations. That knowledge about the use of taxonomies is relevant to lecturers in

the field of Computer Science is emphasised in the study by Gluga et al. (2012a) in which

the project developed a training package in using the Bloom Taxonomy for the teachers

of a programming fundamentals subject. The broad aim of this project was to provide a

stronger appreciation of learning competence progression in programming subjects and

to then see a closer link between future teaching activities and the achievement of the

expressed learning objectives.

The analysis undertaken by Oliver et al. (2004) described the determination of a ‘Bloom

Rating’ using a scale of 1 to 6 corresponding to the cognitive levels of the Bloom Tax-
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onomy for parts of the assessment instruments in several subjects that were considered,

and concluded that there were observable differences in the two different subject streams

reviewed. In the first stream there were three subjects from a programming stream that

were examined, and in the second stream there were three subjects from a data communi-

cations and networking stream that were examined. It was highlighted in Sitthiworachart

(2004) that the Bloom levels 1 to 3 were considered as surface learning, and the levels 4

to 6 were viewed as deep learning.

2.2.3 The SOLO Taxonomy

A strong proponent of the constructivist approach was John Biggs, who coined the phrase

‘constructive alignment’ (Biggs and Tang, 2007), and describes it as “... we start with

the outcomes we intend students to learn, and align teaching and assessment to those

outcomes. The outcome statements contain a learning activity, a verb, that students

need to perform to best achieve the outcome ...”. The constructionist part flows from the

general philosophy that learning is built upon the activities that students carry out, with

learning resulting from what they do, and is not about what teachers do (Biggs, 2011).

The natural extension of this idea is that the teaching process is merely the catalyst to

learning.

Some of the key ideas are summarised on Biggs’ personal web-page (Biggs, 2011), partic-

ularly:

• Constructive alignment is an example of outcomes-based education (OBE). His

version is concerned with only improving teaching and learning and as such has

been successfully implemented in universities all over the world.

• Constructive alignment can be used for individual courses, for degree programmes,

and at the institutional level, for aligning all teaching to graduate attributes.

• The SOLO Taxonomy (Structure of the Observed Learning Outcome) helps to map

levels of understanding that can be built into the intended learning outcomes and

to create the assessment criteria or rubrics.
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A detailed discussion of the SOLO Taxonomy, which “provides a measure of the quality of

assimilation in terms of structural complexity” and leads to the ability to “assess student

work in terms of its quality . . . ” (Biggs, 2011), is given in several Biggs publications (Biggs

and Collis, 1982; Biggs, 1979, 1999; Biggs and Tang, 2007), but a succinct description is

available in Biggs (1979), which outlines the 5-level taxonomy as:

• Level 1 – Pre-Structural; The response has no logical relationship to the display,

being based on inability to comprehend, tautology or idiosyncratic relevance.

• Level 2 – Uni-Structural; The response contains one relevant item from the display,

but misses others that might modify or contradict the response. There is a rapid

closure that oversimplifies the issue.

• Level 3 – Multi-Structural; The response contains several relevant items, but only

those that are consistent with the chosen conclusion are stated. Closure is selective

and premature.

• Level 4 – Relational; Most or all of the relevant data are used, and conflicts resolved

by the use of a relating concept that applies to the given context of the display,

which leads to a firm conclusion.

• Level 5 – Extended Abstract; The context is seen only as one instance of a general

case. Questioning of basic assumptions, counter examples and new data are often

given that did not form part of the original display. Consequently a firm closure is

often seen to be inappropriate.

In this same publication, Biggs recognises that the SOLO Taxonomy is functionally close

to the Bloom Taxonomy, and also highlights that it has been applied across a wide range

of subject areas.

The application of the SOLO Taxonomy to the assessment of learning outcomes (objec-

tives) involves the review of the objectives in terms of the functionality expected at the

various levels. In particular, there are typical verbs associated with each level that are

likely to appear in statements of learning objectives. Important features associated with

the SOLO Taxonomy as presented by Biggs and Collis (1982) are the notions that the

SOLO Taxonomy is hierarchical and student learning tends to be progressive from the
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more quantitative outcomes associated with Levels 2 and 3, through to becoming more

qualitative at the higher Levels 4 and 5. Additionally the terms surface learning, at the

quantitative stage, and deep learning, at the qualitative stage are highlighted.

Slack et al. (2003) examined the relevance of the SOLO Taxonomy and the attributes

of students in gaining deep learning in their subject area, observing that “. . . students

who are personally involved in learning from real life situations are the ones who are

most likely to experience deep learning” and further cited other research (McAllister et

al (1997) in Slack et al. (2003)) identifying that “. . . the deep learning approaches were in

stark contrast to the surface learning approaches exhibited by students who sought only

to memorise and reproduce information or skills.”

Killen (2005) distinguishes between deep knowledge and deep understanding, explaining

that deep knowledge is considered as a characteristic of the content that students are

studying, and that deep understanding is something that develops in the mind of the

learner as they learn about deep knowledge. Killen further suggests that attaining deep

understanding would correspond to being classified at the highest levels on both the

SOLO Taxonomy and the revised Bloom Taxonomy, thus making it equivalent to the

more generally used deep learning expressed in both taxonomies.

2.3 Applications of Taxonomies in Learning Research

While there are many studies in the education sector that have explored the use of Bloom’s

Taxonomy (original or revised) and the SOLO Taxonomy in various ways, in the context

of this thesis the major focus is on the Science-oriented domain areas, and particularly

the Computer Science – Information Technology domain at University level.

2.3.1 The Brabrand-Dahl Study

One large-scale study conducted in Denmark across the courses offered at the University

of Aarhus and the University of Southern Denmark investigated the stated course ob-
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jectives of all the science course subjects at the two universities using SOLO Taxonomy

classifications (Brabrand and Dahl, 2007).

This study attempted to provide a quantitative value conversion from the qualitative base

of the taxonomy structure and considered some 550 syllabi from the science faculties at the

two universities. The approach in this study listed a number of typical verbs associated

with the SOLO Taxonomy, adopting the Biggs and Collis proposition that levels 2 and

3 provided mostly quantitative outcomes and levels 4 and 5 were more qualitative in

nature, as shown in Table 2.2. The mapping of each learning objective statement to a

value was then given by the level number that the verb(s) in the objective most closely

matched.

Table 2.2: Prototypical Verbs According to the SOLO Taxonomy (Brabrand and Dahl,

2007)

Quantitative Qualitative

SOLO 2 SOLO 3 SOLO 4 SOLO 5

Uni-structural Multi-structural Relational Extended Abstract

Paraphrase Combine Analyse Theorize

Define Classify Compare Generalize

Identify Structure Contrast Hypothesize

Count Describe Integrate Predict

Name Enumerate Relate Judge

Recite List Explain causes Reflect

Follow (simple) Do algorithm Apply Theory Transfer Theory

instructions Apply method (to its domain) (to new domain)

While the initial intention of using the SOLO Taxonomy is to classify learning objec-

tives into the appropriate SOLO categories, the work undertaken by Brabrand and Dahl

enabled a relative measure of competencies to be established across the courses in the

science faculties in the universities in the study. The body of evidence in the Brabrand

and Dahl work has established a method to create a quantitative measure based on the

statements of learning objectives.

The method used by Brabrand and Dahl in the examination of syllabi was to count

the frequencies of the verbs used in the learning objectives for the subjects and apply

an average to the subject. It was further enhanced by using what is described as a
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‘double-weight averaging scheme’, which meant that compound statements of learning

objectives such as “identify . . . and compare . . . ” would result in an averaging for that

single objective of (S2 + S4)/2. In this approach, the values 2 to 5 were applied to the

learning objectives based on their verb classification. The outcome of this method is to

create a singular value for each subject syllabus objective within the range 2 to 5, and

ultimately generate a single value for each subject. The SOLO-1 (Pre-Structural) level

was omitted as this is the ab-initio or näıve state which would not appear as part of any

learning objective as all teaching and learning activities would be targeted to levels 2 and

above. As described by the authors, there is an underlying assumption that the distance

between each SOLO level is equal to enable the values 2 to 5 to be used in this manner.

The term for this metric given by Brabrand and Dahl is “SOLO Average”. The equal

distance assumption is supported by a similar approach with the Oliver study (Oliver

et al., 2004) to analyse the cognitive difficulty of two streams of ICT subjects in which

the values 1 to 6 were used to correspond to the various levels of the Bloom Taxonomy

for assignment and examination tasks in each of three subjects from a programming

stream and each of three subjects from a data communications and networks stream. In

that study the relative weights of the elements comprising the assessments were used to

calculate an overall score which the authors labelled as the “Bloom Rating”.

In applying this approach, it becomes clear that the double-weight averaging scheme will

return a singular result in the range 2 to 5 for each subject. When examining various

syllabus statements it is also apparent that it is necessary to take an average of the scores

as individual subjects may have few or many learning objective statements. Therefore

the mean is a simple but effective method to arrive at a standardised score for a subject.

A by-product of applying the double-weight averaging scheme to the assessment of be-

havioural objectives occurred as Brabrand and Dahl counted the instances of each of the

descriptors in the various SOLO categories. In their analysis they examined the frequen-

cies of the descriptors in each of the SOLO-2 to SOLO-5 categories which they described

as the “SOLO Distribution”. Over the course of the study they were able to compare

the proportions of the various SOLO categories across domain areas.

In the paper discussion the method used to determine the SOLO Distribution could have
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been either of two possibilities. The first was to proportionalise the frequency count within

each of the learning outcome statements. That is the sum of the frequencies equalled the

number of learning outcome statements, or each learning outcome statement contributed

a value of 1 in the determination of the SOLO Distribution. This meant that where

learning outcomes were expressed in compound statement terms, the aggregations of the

SOLO scores may have resulted in fractional values. The distribution percentage was then

calculated relative to the number of learning outcome statements. This approach was used

in the analysis of an individual subject (Figure 10 in Brabrand and Dahl (2007)). The

underlying rationale for this choice was that each learning outcome for a subject should

have equal value rather than being distorted by individual counts that could occur with

the compound statements. For the purposes of this research the author has chosen to

label this as the ‘proportional’ approach.

The second possibility was to simply count the number of occurrences of the relevant verbs

that were given in the stated learning outcomes. Depending on how the learning outcome

statements were worded, complex and compound statements might contribute to giving a

higher number of SOLO verbs for a subject than would be the case with the proportional

approach. Those subjects with many learning outcome statements would also contribute

more raw count frequencies than those with few statements unless standardised by an

appropriate method. It was noted in a subsequent paper by Brabrand and Dahl that

using the raw counting method may have the effect of lowering the overall SOLO score

for a subject when the learning outcome statement contained a list of several content

elements at the same SOLO level (Brabrand and Dahl, 2009). For the purposes of this

research the author has chosen to label this as the ‘simplex’ approach.

The use of the SOLO classifications is quite simple at the conceptual level, and it also has

an implied equality of learning competencies within each level. Hence, any learning activ-

ity that is classified at a particular SOLO level may be thought of as being educationally

equivalent to every other learning activity at that level.

Interesting observations and conclusions reported in the Brabrand-Dahl study include:

• The terms ‘surface understanding (or surface learning)’ and ‘deep understanding
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(or deep learning)’ are easy to define in conjunction with the SOLO Taxonomy –

surface learning implying that the student is confined to action at the lower SOLO

levels (2-3), whereas deep learning implies that the student can act at any SOLO

level. Students producing a high-level response at SOLO 4-5 are deemed to have a

deep understanding of the subject matter;

• The contributing elements in the calculation of the SOLO average were able to be

used across individual subjects and whole courses, giving rise to a SOLO Distribu-

tion;

• There were notable differences between the SOLO Distributions for Computer Sci-

ence, Natural Science and Mathematics, with Computer Science scoring a higher

number of the upper level SOLO verbs than the other two domain areas.

2.3.2 Learning Taxonomies in Computer Science

More specific studies concentrating on the application of the SOLO Taxonomy to the

Computer Science domain have been undertaken in works such as that of Sheard et al.

(2008) “Going SOLO to Assess Novice Programmers”, and Lister et al. (2006) “Not

Seeing the Forest for the Trees: Novice Programmers and the SOLO Taxonomy”.

The Lister study claimed to apply the SOLO Taxonomy to “the study of how novice

programmers manifest their understanding of code . . . ”, which had not previously been

done. Important features of this paper were the interpretation of the five SOLO levels as

they related to the programming context in Computer Science; the observation that level

5, the extended abstract response, was unlikely to be observed in the focus group; and

that the SOLO taxonomy was a useful organising framework for comparing work relevant

to the testing of novice programmers.

The Sheard study built on the previous Lister study and aimed to address some of the

deficiencies or inconclusive outcomes of that work. The more interesting outcomes from

this study were that some support for the Lister assertion that a better SOLO reading

performance should produce a better code writing result was shown, and that a higher

level of SOLO responses was obtained from postgraduate students than undergraduate
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students in an introductory programming unit (asserted as being a result of postgraduate

students having developed higher level thinking skills during their undergraduate degree).

The nature of learning progression was a secondary part of the Brabrand-Dahl study

and is discussed comprehensively in “Using the SOLO taxonomy to analyze competence

progression in science curricula” (Brabrand and Dahl, 2009). The findings from this

study supported the use of the SOLO taxonomy as an analysis tool in a number of ways,

particularly:

• that “the use of the SOLO Taxonomy showed that competency progression in terms

of SOLO does indeed exist, . . . , from undergraduate to graduate level”;

• that “the SOLO Taxonomy has ‘been proven’ to be a good tool for analyzing com-

petence progression”;

• that “not all verbs have a fixed SOLO-level and that some are connected with the

faculty in question”; and

• that “the use of the SOLO language might hopefully result in more clear expla-

nations to respond to student questions about the relevance of topic matter, and

result in fewer non-operational and ambiguous learning objectives such as ‘under-

standing’.”

2.3.3 The ACM-IEEE Computer Science Curricula 2013 Re-

port

The ACM and IEEE-Computer Society have cooperated over many years to propose ap-

propriate suggestions about curriculum content in courses related to Computer Science,

Computer Engineering, Information Systems, Information Technology and Software Engi-

neering (ACM/IEEE, 2013). The Computer Science Curricula 2013 (CS2013) document

incorporates guidelines to address a “redefined body of knowledge” which was “the result

of rethinking the essentials necessary for a Computer Science curriculum.”

Interesting elements that appear in that report include the observations of:

• Terminology – adoption of the term “course” to mean an institutionally recognised
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unit of study, while noting that some institutions may also use other terminologies

such as “module” or “paper”;

• Bloom’s Taxonomy – acknowledgement of reference to Bloom’s Taxonomy in the

development of the three-level mastery classification system. While Bloom’s levels

were not chosen to be applied directly, the mastery classifications reflect aspects

of learning classifications that have some similarity to the Bloom levels. The three

mastery levels were described as

– Familiarity – implying student understanding of a concept at a basic awareness

level;

– Usage – implying the ability to use or apply a concept in a concrete manner;

and

– Assessment – implying that the student is able to consider a concept from

multiple viewpoints and select an appropriate approach from understood al-

ternatives.

• Learning Outcomes – are not of equal size and do not have a uniform mapping to

curriculum hours. Recognition was made that the proposed learning outcomes for

the body of knowledge courses may not exactly match those used by institutions.

• An updated list of Knowledge Areas to reflect changes in the discipline since the

previous revision in 2008.

While the CS2013 document provides a number of suggestions about content and possible

approaches in the various knowledge areas described in their Body of Knowledge, it

remains the domain of individual institutions to design their own degree programs which

may or may not align closely with those recommendations and suggestions. Equally,

the suggested three-level mastery classification scheme is not currently in common usage

within educational institutions, and will therefore not be covered further.

2.3.4 The CDIO Approach

CDIO (Conceive - Design - Implement - Operate) is an initiative aimed at improving

undergraduate education in engineering internationally. Originating at MIT (USA) and
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extending to other universities, it is underpinned by four tenets (Berggren et al., 2003):

• Curriculum reform to ensure that students have opportunities to develop the knowl-

edge, skills and attitudes to conceive and design complex systems and products;

• Improved level of teaching and learning necessary for deep understanding of tech-

nical information and skills;

• Experiential learning environments provided by laboratories and workshops; and

• Effective assessment methods to determine quality and improve the learning pro-

cess.

CDIO is more about a holistic approach to the teaching and learning in engineering

programs and is not an educational taxonomy as such. Accordingly it does not really fit

within the scope of this thesis.

2.3.5 Alternative Taxonomies

The application of the Revised Bloom Taxonomy and the SOLO Taxonomy to the Com-

puter Science discipline is not fully endorsed by researchers in the field of Computer

Science education and learning. When there have been difficulties in fitting the pecu-

liarities of the discipline, attempts have been made to either modify one or other of the

taxonomies or create a blended form that more closely meets their viewpoint. An exam-

ple of the hybrid approach was proposed in Meerbaum-Salant et al. (2010), where their

conclusion was that “the combined taxonomy captured the cognitive characteristics of

CS practice”. Notwithstanding the claim to there potentially being merit in the com-

bined taxonomy approach, there were some anomolies discovered, with a possible reason

being given that the taxonomy which required discrete classification categories may not

be entirely suitable for some aspects where a continuum of development across cognitive

categories would have been more appropriate.

In another case, it was suggested that there were problems in applying the Bloom tax-

onomy to the Computer Science discipline, referring to works of Lahtinen (2007) that
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describe the poor fit of cognitive tasks under the Bloom taxonomy framework for be-

ginning programming students (Fuller et al., 2007). In response to the difficulties, the

researchers proposed a revised taxonomy for application in the Computer Science disci-

pline, with a focus directed more towards programming related subject areas. There do

appear to be some strong arguments proposed for the case that neither the Bloom nor the

SOLO taxonomy provide a good fit for programming related tasks. However, program-

ming is just one aspect of Computer Science and Information Technology courses overall,

and the nature of this research has not addressed the appropriateness of either taxonomy

at the low-level detail of individual learning elements within subjects. Therefore, even

though the criticism of the Bloom and SOLO taxonomies for a number of programming

related tasks may be valid, it does not exclude their use in this research.

A different approach was taken in Bower (2008), where the objective was to create a

taxonomy of the task types found in computing disciplines. Again oriented more to the

programming types of tasks, the taxonomy presents a hierarchical list of task types which

were claimed to more closely match the types of learning activities expected of students

in the discipline area.

Although these various alternative taxonomy approaches were interesting they each tended

to focus on the detail level learning activities associated with the development of program-

ming language competency and problem solving skills. There are important messages in

these research initiatives and most propose further study to extend their findings, but

they are beyond the scope of this thesis.

2.4 Quality in the Higher Education Sector

When considering educational programs at any level there is always an underlying ques-

tion as to whether the program is a good one or not. This is especially the case in the

higher education sector where universities are being asked to be more accountable for

their operations. The two terms of quality and accountability are often used in a shared

close relationship sense as the improvement in one tends to drive improvement in the

other. Liu (2009) stated that “. . . accountability is needed in higher education for the
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same reasons that it is needed in K-12 education and in any other area of education.

Because a good education has become a pathway to opportunities and success, stake-

holders deserve to know whether institutions have done their best to maximize student

learning and have effectively utilized public resources.” Although Liu was discussing

the US Voluntary System of Accountability (VSA) for publicly funded institutions, the

sentiments expressed are another indicator of the greater focus being given to higher edu-

cation quality and accountability. In part this drive towards better educational programs

in the higher education sector has spawned the creation of a number of journals devoted

to quality matters, or as stated in Harvey and Williams (2010), “. . . it began as a result

of the Quality in Higher Education project, a funded project to explore the meanings of

quality in the early 1990s. In addition, the journal has provided a professional publication

for the International Network of Quality Assurance Agencies in Higher Education.”

There has been much debate over many years about the various interpretations of the

term ‘quality’ and what that means in the higher education sector context. One of the

more significant papers in this area was that of Melrose (1998) which proposed three

fundamental paradigms of curriculum evaluation, labelling them as functional, transac-

tional, and critical. It was further proposed in Harvey and Williams’ discussion of this

work (Harvey and Williams, 2010) that “any model or tool for curriculum evaluation

. . . developed by an institute or group of staff has an underlying philosophy . . . that can

be matched to one or more of these paradigms.”

The functional paradigm proferred by Melrose (1998) has been given an alternate label of

‘technical’ and has the key attribute of attempting to measure program outcomes against

pre-stated goals in order to comply with governmental or institutional objectives. Mel-

rose proposed that typically the evaluators working within this paradigm did so as an

independent expert whether working alone or within a team employed for the evalua-

tive task. Accordingly behavioural objective goal attainment models are representative

exemplars for this paradigm.

The transactional paradigm also has an alternate label of ‘naturalistic’, having a key

attribute of being based on “liberal humanism and subjectivist ethics” ((House, 1978)

cited in Melrose (1998)). Typical of this approach is the use of focus groups and inter-
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views to gather data to be interpreted by collaborative groups of relevant stakeholders

such as educators and students who plan and implement the evaluation process. It was

considered that this approach allowed for emergent change to planned programs as they

were underway.

The third of the paradigms, the critical paradigm, was considered to be ‘emancipatory’,

as it enabled learning communities to be self-evaluating, with critical reflection, and

ultimately empowered to set their own standards.

Although the functional paradigm may at first appear as the most attractive to university

administrations, Melrose has argued that this is appropriate for a compliance approach

and the application of interpreting quality as ‘fitness for purpose’. However it was also

pointed out that the transactional paradigm was a better classification where there was

input from the target audience regarding the program development, and indeed may have

a stronger link to the critical paradigm when quality is viewed as a transformation leading

to the notion of empowerment of the learner.

Other attempts to define quality in the higher education sector have been made, but Tam

(2001) has made a clear case to recognise various interpretations of quality depending

on context and viewpoint. In particular, Tam addresses the different roles and usages

of quality related terms including quality control, quality assurance, quality audit, quality

assessment, and indicator systems. Many of these are based on the loose association with

the manufacturing-production approach, examining inputs and outputs, and proceeds

to identify that the associated indicators do not give rise to being able to comment on

the student experience within the higher education realm. Perhaps the most significant

point arising from the discussion is that there are many different component parts that

contribute to the notion of quality in higher education, with no singular best approach

that covers all viewpoints. More simply, different stakeholders place higher value on

different indicators that best suit their interest.

Jordens and Zepke (2009) proposed that a curriculum be considered as a network com-

prising a number of elements and described it as “. . . the sum of learning experiences in a

unit of study (module, paper, course or programme) and encompasses discipline knowl-
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edge, teaching and learning activities and the learning environment in a structure that

facilitates the desired learning in the individual student.” Their subsequent deduction

was that the quality of a curriculum is determined by how well it achieves the purpose of

facilitating desired learning in a student or group of students. From this, the focus of the

measurement of quality moved towards the quality assurance processes, citing external

quality assurance agencies in higher education with a general aim of ensuring that “cur-

ricula meet similar quality standards.” They also noted that even though other authors

have suggested that education needs to take a transformative view of quality, the con-

temporary quality assurance approaches appear to neglect that view. Effectively, when

agencies, either internal or external, adopt a standards-based approach they are really

demonstrating a compliance mode typical of the functional paradigm.

There is a clear imperative that perceptions of quality are important in the higher edu-

cation sector as pointed out by Tofallis (2012) when he discussed the issue of attempting

to modify the approach to determining university rankings in the UK, and noted that

“the ‘league tables’ . . . are here to stay.” Accordingly, the manner in which the quality of

institutions or the courses they offer is significant as it will ultimately affect the number

of students attending or wishing to attend particular universities.

2.4.1 Quality Management

The concept of quality, or more particularly quality management, has taken on differ-

ent interpretations depending on the context and domain area in which it appears. It

has perhaps gained its greatest common usage in matters relating to manufacturing and

production industries and is often attributed to the work of Walter Shewhart in introduc-

ing scientific method in improving the work process during the 1920s (Zairi, 2013). His

work using statistical process control, and the subsequent efforts of Deming, Juran and

Crosby have led to the application of quality principles to management processes and the

term “Total Quality Management” has arisen to become a paradigm followed by many

enterprises (Zairi, 2013).

There is no particular reason why universities cannot adopt some or many of the quality
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management principles in the education process. It has been suggested that there are

five underlying quality management principles that need to be embraced (Kuei and Lu,

2013), which are:

• Facilitating increased awareness of quality and market signals;

• Enabling conditions for quality;

• Adopting a systems approach;

• Achieving greater communication and alignment between cross-organisational units;

and

• Examining for congruence with quality objectives.

One of the key elements that becomes clear when one delves further into the quality

management paradigm is the philosophy of continuous improvement and building quality

into the product. When applied to an educational program, the opportunities begin at

the course design and specification stage. Hence if one adopts the view that the learning

objectives or learning outcomes of the subjects in a course of study may be considered as

the specifications for the subjects in a degree program, then the level of learning rigour

that the course proposes may be gauged.

What has been shown in this chapter is that the use of learning taxonomies has been

investigated in many different ways across many segments of the Computer Science and

Information Technology fields. While a large proportion of these investigations appears

to have concentrated on the relevance of particular taxonomies to the teaching and learn-

ing of programming within Computer Science and Information Technology at University,

especially at the introductory or first-year level, sometimes resulting in attempts to create

more tailored versions or hybrid approaches, it is clear that the use of taxonomic tools

in the research of learning and teaching in Computer Science and Information Technol-

ogy courses is essential. It is equally important to recognise the nature of analysis and

evaluation criteria being used, and to understand the quality paradigm within which the

research was undertaken. As will be explained in the next chapter, the methodology for
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this research was based on applying taxonomic evaluation techniques across a number of

University level courses in the Computer Science and Information Technology field, with

the result that a new course profile metric was able to be determined.

27



Chapter 3

Methodology

The preceding chapter has discussed the importance of using educational taxonomies in

the research of teaching and learning in University courses generally, and in the fields

of Computer Science and Information Technology in particular. The strong body of

evidence from previous research has contributed to the creation of new applications of

techniques and the formulation of a new evaluation metric that enables course profiles

for degree programs to be determined.

This chapter describes the methodology of the approach undertaken in this research. It

contains the broad design criteria and a detailed explanation of the elements critical to the

significant parts of the research. In relation to the broad aim of the thesis as contributing

to part of the quality picture of degree courses, the approach is best classified as falling

within the functional paradigm.

3.1 Methodology Design Overview

In order to answer the key research questions of this thesis it was necessary to con-

sider an approach that would enable the analysis of the statements of individual subject

learning objectives or learning outcomes in a straight-forward manner. The data to be

assembled was extracted from University public documents containing course and subject

descriptions from several universities where degrees in Information Technology, Computer
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Science, or Software Engineering were offered. To achieve a valid research outcome, the

descriptors given by the universities was taken from the published web pages, and then

submitted to the analysis process for evaluation and subsequent analysis.

In the preliminary study stage, the data collection took place in a known environment

where the researcher had ready access to the subject coordinators to corroborate the

evaluation of behavioural objective statements. Once the interpretive learning had been

completed in this known environment, the broader research phase to examine the course

descriptions from other universities was able to be conducted.

Following the data collection, and using similar approaches to the Danish study, the data

were analysed across whole degree programs. The construction of a course metric was

devised, and trialled on the ‘known’ data. The proof of concept and formalisation of

appropriate metrics were completed, and then the formulaic model was tested.

While the established metrics were interesting, they would only become valuable if the

techniques were applicable across a wider range of data sets. Accordingly additional data

sets were constructed from the web pages of the selected Universities. Following the

gathering of a comprehensive set of data, the relevant data analyses were undertaken,

and conclusions about the proposed metrics were made.

3.2 Design Elements

The initial data collection involved editing published course materials to extract the vari-

ous subject statements of learning objectives, along with an organisation chart to describe

the structure of the degree programs considered. A set of procedures was established to

enable the conversion of the objective statement collection into a database structure that

allowed for the classification of the statements by either or both the revised Bloom and

SOLO taxonomies.

It was found that the structure of degree programs have varying degrees of complexity

from university to university but generally fall into different classes of subjects within the

relevant degree program. In each year level, there is some mix of compulsory subjects,
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usually labelled as CORE subjects, choices from a specific restricted list, often labelled as

SELECTIVE subjects, and other more general subjects from basically an open list that

are labelled ELECTIVE subjects. In order to profile the degree programs effectively, it

was necessary to construct a mapping algorithm and establish some rules to be applied

in the quantification. Accordingly the approach taken was:

• all of the core and selective subjects were analysed individually;

• the contribution of the selective subjects was limited to the extent of selectives

required in the degree program, and a weighted average score was included in the

overall degree score calculation;

• as the general elective subjects were too numerous to uniquely identify, a weighted

average of the core subject score for that year level was used. The rationale for this

decision was that the elective subjects should be approximately equal in terms of

workload and cognitive skills that were required of the core subjects in the discipline

area at each year level of the degree program.

Looking at degree structure rules, typical examples may include statements such as

“. . . five of the following subjects from list A, plus two of those in list B, plus one general

elective . . . ” in each year level of the degree program.

3.3 Experimental Design

3.3.1 Stage One

The initial stage required a comprehensive review of relevant literature in the areas of

learning theory, educational taxonomies, and applications of these to the field of Com-

puter Science and Information Technology teaching and learning at University level. Al-

though there are many research studies that have been conducted over the last fifty years,

it was decided that only those that had relative recency should be used, given the dy-

namic nature of the discipline area. The exception to this underlying premise was in the
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case of any seminal works that were found, and which clearly needed to be mentioned

because of their significance to the research study of this thesis.

3.3.2 Stage Two

Having considered the previous work of Brabrand and Dahl (Chapter 2, Section 2.3.1),

a modified form of this study was undertaken to validate the approach in the Australian

environment. The similarity included using the same approach to determine subject

scores under the SOLO taxonomy to enable a consistency for comparison purposes, and

the extension was to repeat the experiment using the Revised Bloom taxonomy as well.

The use of both taxonomies enabled a comparative parallel experiment to occur on a

known data set base. The major differences from the Brabrand-Dahl study were that

the score distributions across the individual subjects enabled profiles to be created for

year levels, and overall degree programs, which was only briefly mentioned in the Danish

study, but were considered to be important in the Australian context.

The outcome of this important stage was the establishment of the quantitative measures

used in conjunction with course rules for a degree program, and the documentation of the

techniques used for the year-level and overall degree profile creation. The full discussion

of these elements are found in Chapter 4.

3.3.3 Stage Three

The experimental techniques used in the previous stage were reviewed and analysed in

order to create a formal specification for the metric calculation. Once specified formally,

the method was tested by applying the method to several known courses. In particular

the degrees of Bachelor of Information Technology, the Bachelor of Computer Science,

and the Bachelor of Engineering (Software) at Flinders University were used to validate

the mathematics of the method and the resultant C-Index scores.

The analysis of the results of this stage of the experiment effectively constitutes a proof

of concept for the theory proposed, and is discussed in detail in Chapter 5.
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3.3.4 Stage Four

With the accumulated data from the previous stage, opportunities for additional mean-

ingful analysis were pursued. Key motivating questions at this point were to consider

whether there were interesting observations able to be made from the data analysis and

to determine ways of interpreting those results.

3.3.5 Stage Five

Further studies of comparable degree programs in Computer Science and Information

Technology were examined to determine the effectiveness of the metric and distribution

results as a baseline comparison tool. Under the parameters outlined earlier, the degree

programs that were eligible for consideration were those which had a clearly defined set

of course structure rules and availability of the individual subject learning objectives on

the public pages of the university web-site. While a number of Australian University

sites were reviewed, the selected courses for comparison were the Bachelor of Informa-

tion Technology at Swinburne University, the Bachelor of Information Technology at the

University of Queensland, and the Bachelor of Information Technology at the University

of Newcastle.

3.3.6 Stage Six

Chapter 8 is devoted to an analysis of the experimental data and discussion of different

aspects of the results.

The final part of the experiment, discussed in Chapter 9, was to reflect on the research,

documenting the discussions about the experiment and drawing appropriate conclusions

from the data.
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Chapter 4

From Taxonomy to a Metric

This chapter discusses the quantification of course objectives using the Bloom and SOLO

taxonomies, and describes the method used to determine a metric representing the com-

bined value for the topics in a degree course. 1

The innovative application of previously described methods has given rise to numerical

values that assist in the evaluation of degree course specifications at several levels of

detail. Initially the analysis of individual subjects that comprise a degree course provides

a baseline set of scores. By aggregating those individual scores by year level, a set of year-

level scores can be generated. Finally the aggregation of the year-level scores produces

an overall score, or, as proposed in this thesis, a new value labelled the C-Index.

4.1 Context Introduction

For the purposes of this discussion the focus will be constrained to the undergraduate

degree programs of the higher education sector, and particularly to a single degree to

1A substantial part of the material in this chapter (and relevant parts of Chapters 1 & 2) was pre-

sented in the paper “A Quality Framework to Measure Course Objectives” at the Fourth International

Conference on E-Learning, Ostrava, Czech Republic, July 2013, and also in the journal paper “Construct-

ing a Course Profile by Measuring Course Objectives”, International Journal of Digital Information and

Wireless Communications (IJDIWC), 2013, Vol 3. Issue 4, pp 16-28.
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validate the approach. The initial goal was to confirm the validity of the Brabrand-Dahl

study as described in Section 2.3.1 in the Australian context using a known degree pro-

gram to provide a baseline measure, and then explore additional aspects that arise from

the data analysis. An undergraduate degree program is normally named a Bachelor of

. . . , and the specific example used in this chapter is a Bachelor of Information Technology.

In describing the Bachelor of Information Technology, it may be referred to as either the

Bachelor of Information Technology degree or the Bachelor of Information Technology

course.

4.2 The Higher Education Sector

Structurally, a degree program comprises a number of specified studies that must be

undertaken in an acceptable combination to satisfy the requirements of the particular

degree. Typically the studies are organised on a semester basis, and, depending on the

institution concerned, the studies may have the same weighting value in each semester,

or there may be differences. For each subject, there is a set of aims and objectives that

are intended to provide information about the content of the subject and the skills and

knowledge that a student should attain. To clarify the use of terms in this thesis, a brief

set of interpretation definitions and equivalences is given in Table 4.1 below:

Table 4.1: Terminology Interpretations
Term Meaning Alternative

Course A complete degree program Degree, award

Course Rule Specification for the combination of subjects Degree Regulations,

to be completed in order to satisfactorily Schedule of Study

complete the course

Subject A prescribed study program in a specific Topic, Course

discipline area, typically over one semester

Unit Value The effective weight of the subject in the Course credits,

student load, typically expressed as a fraction Credit Points,

of a full-time year Units

Learning A student learning objective written Learning Outcome

Objective in behavioural terms
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4.3 Relationship between Elements

The teaching component of the higher education enterprise may be viewed as a composite

set of the elements just discussed and arranged in an hierarchial order as shown in Table

4.2.

Table 4.2: Degree Hierarchy Structure
Degree Programs Course 1 Subject 1 Learning Objective 1

Learning Objective 2

. . .

Learning Objective m1

Subject 2

. . .

Subject n1

Course 2 Subject 1

Subject 2

. . .

Subject n2

. . .

At the subject level, the subject specification may be thought of as the set of the learning

objectives for that subject. Typically these are expressed in behavioural terms and are

therefore usually prefaced with a statement such as or similar to “On successful completion

of this subject the student will be able to . . . ”.

In practice, each degree/course has its own course aims and objectives, which are pre-

sumably addressed by one or more of the individual subject learning objectives. These

overarching aims and objectives are intended to convey a sense of the overall graduate

attributes that should be realised in the successful students, and provide some thematic

relevance or intent across the subjects in the course.

University standards require that each subject has an approved assessment and exami-

nation scheme, and a fundamental principle of university teaching is that the assessment

plan tests the achievement of the subject learning objectives. On the assumption that this

principle is valid and applied in every case, it is reasonable to assume that any student

who has received a passing grade has met the subject specifications. Of course the reality

is that the assessment of students is not quite so simplistic otherwise there would exist
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just Pass and Fail as the two possible outcomes for students. What students, educators,

and potential employers wish to see is a qualifier on the level of pass attained, so we have

grading systems that extend beyond the simple Pass/Fail criteria and include additional

classifications such as Credit, Distinction, and High Distinction. Some systems allocate

grades in the range A to E, or A to F, with similar interpretations being applied to the

final grade. Rather than being purely indicators of success, these categories generally

show some form of performance index, and may include other factors such as the way in

which students have applied themselves to the subject at hand. Typically those students

who engage well with the subject will achieve higher grades than those students who

minimise their efforts to satisfy the subject requirements. The relative performance of

students is used by universities world-wide and accumulated into a statistic known as

GPA (Grade Point Average). This statistic is then used for subsequent admissions to

other courses or for the award of scholarships.

An interesting question that arises is this:

Is it feasible to construct a meaningful a-priori profile of a degree course based on subject

learning objectives?

4.4 Determination of an individual subject profile

In order to achieve a satisfactory course profile, it is necessary to examine the individual

subjects that make up the course, and then aggregate the individual subject assessments

to create an overall view.

Fortunately there have been several studies undertaken in the field of learning objectives,

and two in particular deal with the development of taxonomies for learning objectives in

an attempt to provide qualitative approaches to the examination of learning objectives.

As discussed in Chapter 2 Section 2.2.2, the Revised Bloom Taxonomy has been a major

research platform in various branches of study with respect to student learning. It was

found that the tabular form of the Revised Bloom Taxonomy was able to be applied across

a range of granularities, from the fine-grained analysis of a module in a larger teaching

program, to broader analyses of subject objectives. The application of the Revised Bloom
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Taxonomy matrix involves the examination of learning objectives and classifying them

into the appropriate cells of the matrix as shown in Table 4.3. Although the classification

process is somewhat subjective in nature, by following a consistent approach a workable

set of data was able to be obtained.

Table 4.3: Revised Bloom Taxonomy Matrix (also shown as Table 2.1)

Knowledge Cognitive Dimension

Dimension Remember Understand Apply Analyse Evaluate Create

Factual

Knowledge

Conceptual

Knowledge

Procedural

Knowledge

Metacognitive

Knowledge

The second significant model is that proposed by Biggs in the form of the SOLO Tax-

onomy (Structure of Observed Learning Outcome), which is described as a “means of

classifying learning outcomes in terms of their complexity” and leading to the ability to

“assess student work in terms of its quality . . . ” (Biggs, 2011). Earlier publications from

Biggs (1979), which refers to an even earlier study by Collis and Biggs, outlines the 5 level

structure of the SOLO Taxonomy and discusses the intent and interpretation of each of

the 5 levels, also explained in detail in Chapter 2, Section 2.2.3:

1. Pre-Structural

2. Uni-Structural

3. Multi-Structural

4. Relational

5. Extended Abstract

The application of the SOLO Taxonomy to the assessment of learning outcomes (objec-

tives) involves the review of the objectives in terms of the functionality expected at the

various levels. In particular, there are typical verbs associated with each level that are

likely to appear in statements of learning objectives.
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The Brabrand-Dahl study discussed in Chapter 2, Section 2.3.1 described a consistent

method to provide a quantitative value conversion from the qualitative base of the taxon-

omy structure for the 550 syllabi from the science faculties at two universities in Denmark

(Brabrand and Dahl, 2007). The analysis of syllabi learning objectives in this study re-

sulted in a list of typical verbs associated with the SOLO Taxonomy, and identified levels

2 and 3 as providing mostly quantitative outcomes and levels 4 and 5 as being more qual-

itative in nature, as shown in Table 4.4 (and also Table 2.2). The mapping of learning

objective statement to a value was then given by the level number that the verb(s) in the

objective most closely matched.

Table 4.4: Prototypical Verbs According to the SOLO Taxonomy (Brabrand and Dahl,

2007)

Quantitative Qualitative

SOLO 2 SOLO 3 SOLO 4 SOLO 5

Uni-structural Multi-structural Relational Extended Abstract

Paraphrase Combine Analyse Theorize

Define Classify Compare Generalize

Identify Structure Contrast Hypothesize

Count Describe Integrate Predict

Name Enumerate Relate Judge

Recite List Explain causes Reflect

Follow (simple) Do algorithm Apply Theory Transfer Theory

instructions Apply method (to its domain) (to new domain)

The method employed by Brabrand and Dahl enabled a relative measure of competencies

to be established across the courses in the science faculties in the universities concerned

based on the stated learning objectives. The implied equivalence of learning activities

within the same SOLO level, and the equal distance assumption between levels were

significant pragmatic necessities to generate the type of result gained in this research.

This is somewhat different from the revised Bloom Taxonomy which differentiates knowl-

edge types within cognitive levels, but an interesting question arises to consider whether

similar approaches can be used with the revised Bloom Taxonomy as a classification and

metric determination tool. Under the equal distance assumption proposed in Brabrand

and Dahl, the cognitive levels within any one knowledge dimension should change by an

equal amount. Similarly, a constant distance value between knowledge dimension levels
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should apply within any one cognitive dimension. Accordingly, using an integral unit

value a score value table can be constructed as in Table 4.5. However, this in itself cre-

ates an issue – should the scoring table be constructed using column-first preference as

shown in this example or should it be constructed using row-first preference, or is there

some other pattern of scoring that should be used in this circumstance?

Table 4.5: Revised Bloom Ranking Schedule
Knowledge Cognitive Dimension

Dimension Remember Understand Apply Analyse Evaluate Create

Factual 1 5 9 13 17 21

Knowledge

Conceptual 2 6 10 14 18 22

Knowledge

Procedural 3 7 11 15 19 23

Knowledge

Metacognitive 4 8 12 16 20 24

Knowledge

Given that the revised Bloom Taxonomy matrix contains 24 cells, the resultant scale will

be in the range 1 to 24. In pure numeric terms the scores obtained using this scale will

be vastly different from those using the SOLO scale where the range is between 2 and 5.

However it is worth examining whether meaningful outcomes are obtained using the two

taxonomies.

Given that behavioural objectives are written as statements of intended student be-

haviours and learning outcomes, which is about the cognitive skills rather than the sub-

ject content, and acknowledging that subject content should become more in-depth as a

student progresses through their studies, it is reasonable to remove the depth of knowl-

edge factor in determining a profile that examines the cognate skills. Since the knowledge

dimension addresses the nature of content within a subject, the comparison is not really

comparing like with like by ranking against the SOLO scores. Therefore, to be more

reflective of a properly constructed test to compare similar items, namely the cognate

skills specified by learning objectives, an adjusted scale based purely on the cognitive

dimension by collapsing the knowledge dimension to a single integral value resulted in a

scoring range between 1 and 6, where 1 was assigned to Remember and 6 was assigned
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to Create. This is consistent with the approach adopted in Oliver et al. (2004) where the

Bloom scale was used to examine several programming subjects within an IT degree at

an Australian regional University, also using the integral values 1 to 6 in order to arrive

at an overall subject score.

With two possible measuring instruments available, the question of how to determine

an individual subject metric must now be answered. When reviewing syllabus learning

objectives it becomes clear that many are framed in compound terms that is to “do x and

do y”, or to “understand x, y, and z”. The evaluation of compound objective statements

can be resolved by one of three methods, namely:

i. to expand the compound statements into multiple simple statements, which in many

instances would create a much longer list of objectives. The potential problem with

this approach is that an objective of single intent but expressed in compound form

would provide a doubling or tripling of scores, thus inflating the score value of the

objective.

ii. to evaluate the compound statement and average the individual parts that would

be the simple statements under the expansion approach. In this method, the in-

flationary problem of the first method is overcome and it gives a score within the

scaling range for the specific objective. This is the method that was adopted by

Brabrand and Dahl.

iii. to use the maximum classification value obtained by inspecting the statement of

the learning objective. While simplistic in nature, this method tends to err on the

side of generosity when evaluating compound objective statements.

For consistency and comparison purposes it was decided in this research to adopt the

same approach as Brabrand and Dahl and use the ‘double-weight averaging scheme’.

4.5 Methodology Used

In this study the syllabi for a degree in Information Technology were examined and rated

in conjunction with the individual subject coordinators using both the SOLO Taxonomy

40



Taxonomy to Metric CHAPTER 4

and the revised Bloom Taxonomy scales. Consistent with the Brabrand-Dahl method, a

score in the range 2 to 5 was assigned for each objective under the SOLO ranking, and a

score in the range 1 to 6 was assigned for each objective under the revised Bloom ranking.

The average score for each objective was calculated when the objective was expressed in

compound terms, and then an overall average was calculated for each subject. The

relative weight of the subject is given in terms of its unit value, so this weighting was

applied to the subject score to arrive at the year level aggregate.

The scores obtained were then grouped by the year level of the course to consider whether

there were year level differences, and finally a score for the degree program was calculated.

In the particular degree program examined, there were three classes of subjects, the Core

subjects which were compulsory, Selective subjects where students have a narrow choice

from a limited list of subjects, and Elective subjects where students may choose from

a broad range of subjects. A total of 20 syllabi statements were examined in this degree

course to provide the data for the core and selective subjects. To effectively deal with

the mix of subject types, the following rules were applied:

a) The compulsory core subjects were evaluated as distinct entries;

b) The selective subjects were evaluated individually but the number of required selec-

tive subjects were included as cumulative average values. That is, where the course

rule made a statement such as “include 2 of the following 5 subjects . . . ”, then

the average score for the 5 subjects was calculated and weighted by the specified

number of selectives required;

c) The elective subjects needed for each year level were included as the average of the

core subjects for that year level.

4.5.1 Worked Example

To demonstrate the application of this approach, the Bachelor of Information Technology

degree at Flinders University was studied. This is a normal 3-year degree program, typical

of many similar degrees offered at universities in Australia and elsewhere. The degree

structure requires a total of 108 units, based on 36 units per year.
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For this degree, the course rule specifies (Flinders University, 2012c):

Core - Year 1 topics

36 units comprising:

COMP1001 Fundamentals of Computing (4.5 units)

COMP1101 Information and Communications Technology 1A (4.5 units)

COMP1102 Computer Programming 1 (4.5 units)

COMP1111 Information Technology Applications* (4.5 units)

COMP1401 Professional Skills in Computing** (4.5 units)

STAT1412 Data Analysis Laboratory* (4.5 units)

Plus 9 units of elective topics*** from across the University where entry

requirements are met.

Core - Year 2 topics

36 units comprising:

COMP2731 Software Engineering 1 (4.5 units)

COMP2741 Application Development (4.5 units)

COMP2761 Database and Conceptual Modelling (4.5 units)

COMP2772 Web-Based Systems Development (4.5 units)

ENGR2792 Software Engineering 2 (4.5 units)

Plus 9 units of elective topics from across the University where entry

requirements are met.

Plus one of:

BUSN3027 E-Business (4.5 units)

COMP2762 Operating Systems (4.5 units)

Core - Year 3 topics
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36 units comprising:

COMP3721 Enterprise Information Security (4.5 units)

COMP3732 Enterprise Systems (4.5 units)

COMP3751 Interactive Computer Systems (4.5 units)

COMP3771 Advanced Database (4.5 units)

ENGR3704 Project Management for Engineering and Science (4.5 units)

Plus 4.5 units of elective topics from across the University where entry

requirements are met.

Plus either:

COMP3782 Information Technology Project (4.5 units) AND

CSEM upper-level topic# (4.5 units)

OR

COMP3792 Information Technology Practicum (9 units)

Note: the variously asterisked subjects (topics) have supplemental information about

substitution with alternative similar topics if approved by the course coordinator.

As can be seen in this example, the year 1 studies comprise core topics and elective

topics, years 2 and 3 comprise core topics, selective topics, and elective topics. In order

to construct an overall degree profile, the individual subjects (topics) need to be examined

and classified separately. In the example below, the behavioural objectives or learning

outcomes are all effectively compound statements other than the last.

When looking at individual topics, in this case COMP1001, the stated learning outcomes

are:

At the completion of the topic, students are expected to be able to:

1. Be familiar with the fundamentals, nature and limitations of computation
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2. Be familiar with standard representations of data and the translation to and from

standard forms

3. Be aware of the structure of information systems and their use

4. Understand the social and ethical implications of the application of information

systems

5. Construct simple imperative programs

Discussion with the subject coordinator to confirm the interpretation of these objectives

resulted in the following assessments on the SOLO and Bloom scales as shown in Table

4.6. In order to conform to the double-weight averaging scheme, each of the component

parts of an objective was discussed and analysed, then listed in a schedule under each of

the SOLO and Bloom scales. The integer value associated with the level for each of the

component parts was summed, and then averaged to give a score for that objective. The

overall score for the subject (topic in the language of Flinders University) was calculated

by averaging the individual objective scores.

Table 4.6: COMP1001 Classification
SOLO SOLO Bloom Bloom Bloom Adjusted

Objective Analysis Score Analysis Score Adjusted Score

1 S3, S3, S4 3.3 B5, B6 5.5 B2, B3 2.5

2 S3, S3, S3 3.0 B5, B6 5.5 B2, B3 2.5

3 S3, S3 3.0 B5, B6 5.5 B2 2.0

4 S3, S3 3.0 B9, B10 9.5 B2, B4, B5 3.7

5 S4 4.0 B23 23.0 B6 6.0

Average 3.26 9.80 3.34

In the Danish study, a substantial effort of rewriting the intended learning outcomes had

been undertaken prior to the study being done (Brabrand and Dahl, 2007). This was

not the case in the test environment and therefore some interpretive efforts were made

to translate the statements into what they would most likely become in the language of

the SOLO Taxonomy. The SOLO Distribution for the subject in this example becomes

(0.67 + 1 + 1 + 1)/5 = 73% of S3 and (0.33 + 1)/5 = 27% of S4 using the proportional

distribution approach identified in Section 2.3.1, or 9/11 = 82% of S3, and 2/11 = 18%
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of S4 using the raw count or simplex approach also described in the same section. While

these values appear to differ significantly at the individual subject level, the research

looked at the whole degree course, and it was decided to investigate whether there was a

substantial difference overall between the simplex method and the proportional method

in determining the SOLO Distribution.

This process was repeated for each of the core and selective subjects in the course.

4.6 Results

In the Flinders University environment, a full-time student would normally undertake

36 units of study per year. This gives rise to a weighting factor for individual subjects

(topics) as a proportion of a full-time load. Hence 4.5 units has a weighting of 0.125, 9

units has a weighting of 0.25, 18 units has a weighting of 0.5, and other weightings can

be calculated similarly as a fraction of the 36 units.

Following the approach described in the previous section, the accumulated data for the

20 specific core and selective subjects of the degree are given in the following table (Table

4.7).

The rows labelled “Core Topic Average” are derived from the Core Topics, and this value

is used in the relevant year level elective (highlighted with *).

With further consideration of each year level, a weighted score under each of the three

taxonomy scales was determined and the following summary (Table 4.8) of classifications

for the subjects was obtained.

4.7 Discussion

In evaluating the behavioural objectives for the subjects in this degree there were several

interesting points that were revealed. These are discussed as separate items below.
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Table 4.7: BInfoTech Analysis
Subject Code Weight SOLO Score Revised Bloom Adjusted Bloom

COMP1001 0.125 3.26 9.80 3.34

COMP1101 0.125 3.20 10.03 2.90

COMP1102 0.125 3.50 10.07 4.00

COMP1111 0.125 3.67 10.75 3.56

COMP1401 0.125 3.13 11.67 3.98

STAT1412 0.125 3.67 12.00 3.67

Core Topic Average 3.43 10.72 3.57

Elective Yr 1* 0.250 3.43 10.72 3.57

COMP2731 0.125 3.25 9.75 3.25

COMP2741 0.125 3.63 9.375 3.13

COMP2761 0.125 3.42 10.06 3.75

COMP2772 0.125 3.92 12.50 4.50

ENGR2792 0.125 3.50 11.21 3.71

Core Topic Average 3.54 10.58 3.67

BUSN3027 0.125 3.78 11.78 3.44

COMP2762 0.125 3.63 11.00 3.25

Selective Average 0.125 3.71 11.39 3.35

Elective Yr 2* 0.250 3.54 10.58 3.67

COMP3721 0.125 4.00 11.62 4.36

COMP3732 0.125 4.13 10.13 4.25

COMP3751 0.125 3.70 14.17 4.17

COMP3771 0.125 3.39 15.25 3.67

ENGR3704 0.125 3.92 9.86 3.92

Core Topic Average 3.83 12.20 4.07

COMP3782 0.125 3.76 11.13 3.79

Upper level topic 0.125 3.83 12.20 4.07

COMP3792 0.250 4.08 9.50 4.00

Selective Average 0.250 3.94 10.58 3.93

Elective Yr 3* 0.125 3.83 12.20 4.07
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Table 4.8: SOLO vs Bloom Scores
Weighted SOLO Weighted Bloom Adjusted Bloom

Total Total Scores

First Year 3.43 10.72 3.57

Second Year 3.56 10.68 3.63

Third Year 3.85 11.80 4.04

Degree Total 10.84 33.20 11.24

Degree Average 3.62 11.07 3.75

Appropriateness of a Taxonomic approach. Two distinct taxonomic approaches

have been used in this study, namely the revised Bloom Taxonomy and the SOLO Tax-

onomy, as vehicles to investigate the learning outcomes or objectives of the subjects in a

particular course. A similar question has been raised with respect to the use of Bloom’s

Taxonomy in the Computer Science domain (Johnson and Fuller, 2006). In that work,

Johnson and Fuller proposed a slightly different structure to cater for “the idea that ap-

plication is the aim of computer science teaching”. No firm resolution was given, but the

issue of whether the Bloom Taxonomy is appropriately suitable in the Computer Science

arena was raised, and has been discussed in Chapter 2, Section 2.3.5. Other works have

proposed that the revised Bloom Taxonomy was useful in Computer Science teaching,

particularly where multiple staff members were involved in the subject (Thompson et al.,

2008).

Further developments and research into a computer-science specific learning taxonomy

have been undertaken by various researchers with a newer model addressing the perceived

deficiencies in both the Bloom and SOLO taxonomies (Fuller et al., 2007; Bower, 2008).

These research activities in concert with the Brabrand and Dahl efforts highlight and

support that a taxonomic approach is relevant, even though the taxonomic tools currently

available may not yet be the best fit, or may need some refinement for domain areas such

as Computer Science. The experience gained in this study suggests that it is more an

issue of interpretation of the standard descriptors used in the classifications rather than

changing the classification framework to suit the domain, otherwise one spawns a whole

new set of taxonomies for various discipline domains, each of which then need to be

validated.
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Current written form of the statements of behavioural objectives. The stan-

dard and consistency of the current behavioural objective statements was quite variable

for this course. A significant number were quite vague and therefore difficult to classify

appropriately. However, the vaguely expressed objectives were more easily classified us-

ing the Bloom Taxonomy than with the SOLO Taxonomy. The challenge for educational

institutions is to ensure that the stated learning objectives accurately reflect what is be-

ing taught, what is being expected of students, and subsequently what is proposed to be

learned in the subjects of the course.

Language-rich bias. The subjects which have a stronger focus on language elements

such as report writing and critiquing of subject materials tend to score more highly

in both taxonomies. Some subject areas such as computer programming may involve

quite complex levels of problem solving and formulation of creative approaches to resolve

issues, but these elements were not explicitly stated in the subject learning objectives.

Discussions with the subject coordinators highlighted that their impressions of some of

the tasks required of the students involved the higher order taxonomy classifications, yet

the subject learning objectives did not adequately express this.

Interpretation opportunities. The two dimensional nature of the Bloom taxonomy

makes subsequent investigation of comparative subsets somewhat more difficult compu-

tationally. On the other hand, the SOLO approach allows for more internal analysis to

be undertaken with relative ease, as can be seen in the simple scatter-plot of the subject

scores (Figure 4.1).

The SOLO Distribution for the course was calculated using both the proportional method

and the simplex method to determine whether there was either a close similarity or a

substantial difference. The proportional method results are shown in Table 4.9 and Figure

4.2 while the simplex method results are shown in Table 4.10 and Figure 4.3. Comparing

the two sets of data, there was a small difference in some of the component values, but

the overall view is very similar.

The nature of the simplex method (see Section 2.3.1) is that the simple counting method
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Figure 4.1: Scatter Plot of SOLO Levels in the Information Technology Degree

generates a higher number of SOLO scores when the learning outcome is expressed as a

compound statement. The proportional method (also in Section 2.3.1) is a little more

computationally complex, but it does more accurately reflect the assumption stated in the

later paper by Brabrand and Dahl (2009) that each learning outcome competence should

have a proportionate weight in the subject. When the data accumulated by the simplex

method is weighted according to the subject contribution to the course, the overall impact

may not be significantly different from the proportional method. As there is currently

no agreed ‘best’ way to determine the SOLO Distribution, and the goal of this research

is to review overall patterns, the simplex method was decided to be used in subsequent

analyses.
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Table 4.9: SOLO Summary of Subjects by Year Level (Proportional)

Solo2 Solo3 Solo4 Solo5

First Year 5% 53% 39% 4%

Second Year 5% 39% 47% 8%

Third Year 3% 25% 49% 11%

Overall 4% 39% 49% 8%

Figure 4.2: Relative SOLO Levels in the Information Technology Degree (Proportional)
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Table 4.10: SOLO Summary of Subjects by Year Level (Simplex)

Solo2 Solo3 Solo4 Solo5

First Year 5% 49% 39% 7%

Second Year 7% 41% 42% 10%

Third Year 4% 25% 55% 16%

Overall 5% 36% 47% 12%

Figure 4.3: Relative SOLO Levels in the Information Technology Degree (Simplex)

Using the adjusted Bloom scale to focus only on the cognitive dimension, a comparable set

of data was obtained with the equivalent statistic listed as the Adjusted Bloom Score in

Table 4.8, and the detailed breakdown is shown in Table 4.11 with the associated graphic

in Figure 4.4. It would appear that the adjusted one-dimensional Bloom approach could

be applied as readily as the SOLO approach.

Meaningful result? The process applied in this research project has demonstrated

that a statistic can be determined for a particular course of study. At this point of the

research the meaningfulness of that statistic is yet to be determined, either with the SOLO

Taxonomy or the Bloom Taxonomy. Subsequent work is required to provide comparative

data and overall calibration for this metric. What has been revealed is that the closer

analysis of the subject behavioural objectives for this degree across year levels does match
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Table 4.11: Bloom Summary of Subjects by Year Level
Bloom1 Bloom2 Bloom3 Bloom4 Bloom5 Bloom6

First Year 0% 21% 31% 22% 16% 10%

Second Year 6% 14% 26% 20% 22% 12%

Third Year 0% 11% 18% 37% 20% 13%

Overall 2% 15% 25% 26% 19% 12%

Figure 4.4: Relative Bloom Levels in the Information Technology Degree

the näıve expectations - namely that as one progresses through the degree studies from

first year to second year to third year there is a shift of emphasis from the lower more

functional or quantitative SOLO levels to the more sophisticated qualitative levels. The

data in Table 4.8 demonstrates an increasing “SOLO Average” through the year levels,

and provides a total of 10.84 for the course, or an average of 3.62 if one wanted to arrive

at a single indicator figure within the scaling range. This finding is consistent with the

findings of a separate study by Brabrand and Dahl (2009) that explored the use of the

SOLO Taxonomy to examine competence progression from undergraduate to graduate

level studies. An almost identical result was obtained when using the Bloom Taxonomy,

adjusted to consider only the cognitive elements. The fact of being able to establish a

metric suggests that there is an opportunity to further develop a set of expanded tools
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that may be useful in the quality and benchmarking domain for degree courses.

4.8 Conclusions

Traditionally it has been the case that teachers, academics and educators generally have

rejected the notions of measurement and accountability in respect of the teaching pro-

cess, even though they subject their students to exactly those elements. Many previous

attempts at measurement of the education sector have been derived from administrators

attempting to apply accounting principles which overlook many of the peculiarities of the

education sector and invariably fail or invoke feelings of angst and hostility towards their

implementation. This research has introduced a concept for a metric that is systemic

in nature, measuring attributes of the ‘system’ via the individual subjects that comprise

a course of study, and ultimately generates a measure for the overall course of study.

Being a pre-activity indicator it is independent of the approach taken by the teaching

team and the peculiarities of the particular cohort of students. Individual academics

have control over the attributes being measured in that they are the ones who write the

behavioural objectives for their subjects and therefore contribute to the specifications for

the subjects under their control as they have always done. How this metric is used within

academia and the meanings and interpretations associated with it remain to be seen in

future works.

One of the major findings in this part of the research was that the standard of written

behavioural objectives in the course examined was somewhat inconsistent. Some of the

subjects had well-formed statements and made it clear about what was intended in the

subject. Others were vague and provided minimal useful information about the sub-

ject content or intended student expectations. It was noted in the work of Gluga et al.

(2012b) that a specific training program had been created for computer science educators

on applying Bloom to the classification of programming questions. From an institutional

perspective, a recommendation would be to tighten the statements of behavioural objec-

tives to improve the subject specifications. With better and more consistent statements

of objectives the key stakeholders who make use of those subject specifications will be
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better informed, and more reliable data based on those stated objectives may be obtained.

This research has demonstrated that it is feasible to construct a course profile for a de-

gree using either the SOLO Taxonomy or the amended Bloom Taxonomy to evaluate the

subject learning objectives for the course. Although the numeric values given in Table

4.8 are potentially useful indicators, the distribution of expected learning activity across

year levels has proven to be much more interesting and informative when displayed ei-

ther in tabular form (Table 4.10, Table 4.11), or graphically as in Figure 4.3 and Figure

4.4. When used in conjunction with other examination tools and inspection of output

artefacts, the profile of expected learning activities in the course may be a valuable in-

strument that finds application in course comparisons, benchmarking, and the evaluation

of course quality.

The language-rich subjects tended to score higher in the methodology used in this re-

search. Although this may be a slight impediment to the technically oriented courses, the

overall influence of the language-rich subjects tends to be overshadowed by the inherent

ratio of technical to less/non-technical subjects in structuring technically oriented degree

programs.

The next stage associated with this research is to expand the data sets involved and

make decisions about the relative ease of assessing courses on the basis of a taxonomic

analysis of subject learning objectives, to investigate the ways to better interpret the

results obtained, and to assess the usefulness of the approach in course benchmarking.
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Formalising the Metric

The approach given in the previous chapter established a method for documenting a

course profile for a university degree course. The formalisation of the technique and

application of that method to other degree courses in conjunction with the comparative

analysis aspects between three known sets of data is the subject of this chapter. 1

The establishment of a standardised technique is a critical element to the widespread

application and use of a statistical measure. Accordingly, it is necessary to express the

calculation of this metric in a formal mathematical manner, as described in the subsequent

sections.

5.1 Defining the C-Index

It is proposed that the C-Index is a measure of the cognitive learning level prescribed by

a course of study based on the stated learning objectives. In this research it has been

based on the SOLO taxonomy of learning objectives, but could be equally well determined

from an analysis based on the revised Bloom taxonomy, as the similarity between the two

taxonomies has been demonstrated in the earlier work in Chapter 4. Although the choice

1A substantial amount of the material in this chapter (and relevant parts of Chapters 1, 2 & 4)

was presented in the paper “Course Quality Starts with Knowing Its C-Index” at the InSITE 2014

Conference, University of Wollongong, New South Wales, Australia, July 2014.
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between using the SOLO taxonomy or the revised Bloom taxonomy within this definition

appears to be arbitrary, there appears to be more support for using the SOLO taxonomy

in this manner, partly because the classification of learning objectives and tasks is more

clearly visible within the SOLO framework.

It has previously been shown that a statistical measure labelled as the SOLO score can

be determined for a particular subject (Brabrand and Dahl, 2007). By extension across

a complete degree program, as described in Chapter 4, the weighted mean of the SOLO

scores will generate a standardised score for the individual year levels within a course,

and the accumulation of these weighted means gives rise to the C-Index for the course. In

order to accommodate different course lengths – some three-year degrees, some four-year

degrees, and perhaps longer – it is necessary to standardise the overall value obtained. The

most straight-forward approach then is to use a measure of central tendency; calculating

the mean of the various year-level scores determines the overall C-Index for a course.

Given that the C-Index is a statistic based on the cognitive learning levels in a degree

course, the specific interpretation should be deemed to be a Course-Index.

Formally, the C-Index is expressed as:

C = 1
y

∑y
i=1

∑ni
j=1wijSij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.1)

where

Sij = SOLO score for subject j in year i of the course;

wij = the weight of the subject expressed as the fraction of a full-time year of study;

ni = number of subjects included in the full-time year of study for year i;

y = year levels in the course of study.

Further explained, the statistic is calculated by determining the SOLO score for each

subject prescribed in the course schedule for the particular degree program, and then

aggregated according to the subject weight in the given year of the course. The resultant

figure will be a weighted average SOLO score or p-index for the particular year level of

the course. The term p-index is chosen to represent a partial assessment of the overall

course. By repeating over each of the other year levels, a set of p-index values is obtained

and then the mean of these year-level indices returns the course C-Index.
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Hence, an alternative expression for the C-Index could be given as:

C = 1
y

∑y
i=1 pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2)

where

pi = year-level p-index =
∑ni

j=1wijSij , for the subjects in that year-level.

There are of course other definitions of C-Index, one being in the realm of association

theory (Garcia, 2012), and another being a software tool for indexing books, journals and

other textual material (Indexing Research, 2012). However, this being a quite different

domain area, the author sees no real terminology conflict.

5.2 Applying the C-Index

The data for this part of the study was obtained in the same manner as the initial data,

but restricted to just applying the SOLO scale rather than both the SOLO and Bloom

scales, and assembled in the same way using the same assumptions with respect to the

core, selective, and elective subjects. In order to make a controlled comparison, three

degree courses from the same School at Flinders University were chosen, and their relevant

course rules were applied accordingly. The specific courses were

1. Bachelor of Information Technology (Flinders University, 2012c)

2. Bachelor of Computer Science (Flinders University, 2012a)

3. Bachelor of Engineering (Software) (Flinders University, 2012b)

There was some overlap of data between the Bachelor of Computer Science and the

Bachelor of Information Technology degree, with both of these particular degrees having

some subjects in common, and to a lesser extent the Bachelor of Engineering (Software).

The Bachelor of Engineering (Software) was included for two reasons – the first being

that it is related to the other two degrees, but secondly it is a four-year degree program

to compare with three-year degree programs. There were 20 subjects that were analysed

in the Bachelor of Information Technology, 28 subjects in the Bachelor of Computer
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Science, and 44 subjects in the Bachelor of Engineering (Software). In the Bachelor of

Information Technology there were a relatively small number of selective and elective

subjects, which meant that only 20 subjects were evaluated. With the greater number of

selective subjects in the Bachelor of Computer Science, a larger number of subjects were

required to be evaluated. The reason for there being a substantially higher number of

subjects evaluated in the Bachelor of Engineering (Software) is that there are multiple

streams from which to choose in that degree. The streams were treated in a similar

manner to the selective subjects to arrive at an average score for the streams.

5.2.1 Comparison of Results

Application of the methodology resulted in the following outcomes for the three degrees.

Table 5.1: Course Comparison Scores
BInfoTech BCompSc BEng(SW)

Course Weighted Weighted Weighted

Year Level SOLO Scores SOLO Scores SOLO Scores

First Year 3.43 3.45 3.55

Second Year 3.56 3.63 3.68

Third Year 3.85 3.77 3.87

Fourth Year - - 4.00

Degree Total 10.84 10.85 15.10

C-Index 3.62 3.62 3.78

As can be seen in the accompanying results table (Table 5.1), for each of the degrees

there was an increasing progression in the weighted SOLO scores through each year of

the study program, which was both expected and reassuring. It was expected in that one

would hope that the learning required in each year of a course did become more involved

and more demanding and that the statement of learning outcomes accurately reflected

this. It was reassuring that the courses examined did display this characteristic.

Interestingly, the BInfoTech and BCompSc C-Index values were the same even though

their individual year-level scores were slightly different. A partial explanation for this

outcome is that these two courses share a significant number of common subjects in their

study program.
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The difference in the C-Index for the BEng(SW) degree highlights the impact of a four-

year degree compared to a three-year degree, where there is the expectation that the later

year subjects will contain more advanced work, and these results support that assertion.

Other statistical measures were explored (see Table 5.2), including the sample standard

deviation to consider the spread of the data, and a year-weighted mean. In the accompa-

nying Table 5.2 the value for the year-weighted mean has been calculated using a simple

integral value of the year level (1 for first year, 2 for second year, 3 for third year and 4

for fourth year) and then normalised by the sum of the weights. With so few data points

the standard deviation is unlikely to reveal any particularly useful information for an

individual course at the overall level. Its application is more likely to be relevant when

used as a comparative value to compare similar or related courses, or perhaps discipline

areas.

Table 5.2: Course Comparison Other Scores
BInfoTech BCompSc BEng(SW)

Course Weighted Weighted Weighted

Year Level SOLO Scores SOLO Scores SOLO Scores

First Year 3.43 3.45 3.55

Second Year 3.56 3.63 3.68

Third Year 3.85 3.77 3.87

Fourth Year - - 4.00

Degree Total 10.84 10.85 15.10

C-Index 3.62 3.62 3.78

Std Deviation .210 .160 .199

Yr-Weighted Mean 3.69 3.67 3.85

What can be seen from Table 5.2 is that the BInfoTech displays the greatest amount

of spread, by virtue of having the largest standard deviation value, and the BCompSc

displays the least amount of spread based on the year-level scores.

Under the hypothesis that later year subjects are perceived to be ‘more important’ than

early year subjects, a calculation was performed to determine the weighted mean score

based on year level. While this does slightly bias the outcome towards the later year

scores, it is debatable as to whether it provides a better view of the course, or whether it

is simply an unnecessary complicating factor. It could validly be argued that the material
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content of later year studies does require higher order cognitive skills at the SOLO 4 and

SOLO 5 levels, but this has only become possible because of the formative learning that

has occurred in the earlier years of study and the development of learning maturity in the

student. As a result the educational rigour may be viewed as being comparable across

the year levels of the course as it is more closely matched to what a student can be hoped

to achieve at that stage in their educational development. This could be considered as

their expected learning potential. Consequently it follows that the year-weighted mean

is more likely to be an unnecessary complication on the calculation than being able to

provide a more meaningful C-Index value.

Interpreting the C-Index

While the mathematical calculations have returned a quantitative value under the method

described, the question that arises is “What does it mean?”. When looking at the under-

lying assumptions upon which the methodology is based, two elements in particular are

significant. The first is the equal distance assumption proposed in the initial Brabrand-

Dahl study (2007), where the progression from one SOLO level to the next was deemed to

be of equivalent difficulty. The second is the implied assumption that all of the learning

tasks within a particular SOLO level are at least approximately equal.

Figure 5.1: C-Index Level of the BInfoTech Degree

Accordingly, the C-Index value of 3.62 for the Bachelor of Information Technology degree

in the data set is beyond SOLO Level 3, and is nearing the achievement of SOLO Level
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4. The same initial comment applies to the other two degrees in this data set. Knowing

that SOLO Level 3 items are classified as multi-structural and includes learning tasks

such as classification and application of method, compared with SOLO Level 4 where the

tasks are classified as relational and require analysis and application of theory, the scores

indicate a substantial learning expectation is required of students in these courses. From

the interpretation given by Brabrand and Dahl, this places the overall average of expected

learning outcomes well into the qualitative or deep-learning region rather than the more

quantitative surface-learning area. Importantly, in the definition of the SOLO Taxonomy

levels it is clearly stated that the levels are cumulative (Biggs and Collis, 1982), which

means that the learning skills achieved at Level 4 include those from the lower Level 3

(and Level 2).

A corollary of the equal-distance assumption is that the SOLO scales may be considered

as a continuous scale that then allows a graphical representation to be given, either at

the summary overall level view (see Figure 5.1), or at the more detailed year-level view

(see Figure 5.2).

Figure 5.2: Relative Year Level SOLO Scores in the Degree Courses

Another representation for the comparison of degree courses is given in Figure 5.3, which
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Figure 5.3: Comparative Degree Course Indices

shows a simple plot of the overall C-Index for each distinct degree against the SOLO

Score.

When the C-Index is used in conjunction with the SOLO Distribution for a degree (for

example the BInfoTech degree discussed in Chapter 4 and displayed in Table 4.10 and

Figure 4.3) the value of 3.62 suggests that the course aims to require students to undertake

learning near the SOLO Level 4. The Distribution data indicates that approximately 60%

of the course is oriented to deep understanding (SOLO-4 and SOLO-5) and around 40%

of the course is oriented towards surface learning (SOLO-2 and SOLO-3) (Brabrand and

Dahl, 2007).

This finding is consistent with the findings of the separate study by Brabrand and Dahl

(2009) that explored the use of the SOLO taxonomy to examine competence progression

from undergraduate to graduate level studies.

The Effect of Averaging

The method used to determine the subject year-level scores and the course C-Index

involves a number of repetitions of using averaging techniques. There is some validity in

the argument that repeated averaging may throw into question the merit of the statistic

obtained as the overall granularity of the data set may become coarser. One of the strong
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criticisms of the mean as a measure of central tendency is that it is unduly affected by

extreme observations (Moore and McCabe, 2003; Selvanathan et al., 2007), but in this

case there is no opportunity for extreme values to occur as the scoring range is between 2

and 5. However it is proposed that the resultant value is a guidance number that should

be used in conjunction with other factors rather than being taken as a stand-alone value

on which to base interpretations and judgements.

Summary

This chapter has contributed two significant elements to the thesis. Firstly the formal

statement of the method to calculate the C-Index makes it clear how to combine the

analysis of SOLO scores into subject scores, followed by generating a year-level score

using the weighting factor of the the contribution of each subject to a student’s year of

study, and finally averaging the year-level scores over the full degree program to produce

the course C-Index. It has been proposed that the C-Index value may be used as an

indicator of the level of learning rigour that can be expected for the course in question.

The second contribution was to introduce potential ways to view the initial result of the

C-Index calculations as either a simple placement on a linear scale for the overall value,

or in a more detailed view of the respective year-level scores, or as a simple scatter-plot

when used to compare several degree courses.

In this chapter the data examined was from several degree programs at a single university.

The goals were to explore the C-Index calculation on known courses, and to investigate

supplementary analytical techniques based on that data. The results obtained have vali-

dated the methods used and have clarified the concepts introduced. In the next chapter,

the main goals are to explore approaches to using the C-Index calculation methods for

application in internal quality control.
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Internal Quality Control

The approach given in the previous chapters established a method for documenting a

course profile for a university degree course, and provided a formal mathematical de-

scription of the technique used to determine the C-Index for a course. The C-Index

calculation involves a number of detailed analyses of individual subjects in order to pro-

vide a set of subject SOLO scores which can be aggregated under the course rules to

arrive at the final C-Index value. Those intermediate calculations generate a set of data

which may potentially enable further analysis to be performed in a meaningful way. Using

the three previously examined courses, a comparative analysis of the intermediate data

to consider opportunities for application as internal quality control tools is the subject

of this chapter.

6.1 C-Index as an Internal Quality Control Tool

It has been proposed that the C-Index value may be used as an indicator of course rigour,

or the level of learning expectation within the course. When reviewing the summary

values shown in the accompanying table (Table 6.1) it can be seen that the C-Index

values for each of the three courses are not too dissimilar, although there appears to be

a greater amount of variation in the standard deviations for the three courses. One of

the questions that arises is whether each of the courses displays a comparable amount
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of rigour? A second question that arises is whether the learning expectation at each

year level is appropriate for each of the courses? To answer these questions it becomes

necessary to drill down to the more detailed levels of the underlying data and investigate

the individual subject scores in a comparative manner.

Table 6.1: Course Comparison Scores
BInfoTech BCompSc BEng(SW)

Course Weighted Weighted Weighted

Year Level SOLO Scores SOLO Scores SOLO Scores

First Year 3.43 3.45 3.55

Second Year 3.56 3.63 3.68

Third Year 3.85 3.77 3.87

Fourth Year - - 4.00

Degree Total 10.84 10.85 15.10

C-Index 3.62 3.62 3.78

Std Deviation .210 .160 .199

6.1.1 Comparing Subject Rigour

According to the glossary of educational terms prepared by the Great Schools Partner-

ship (2014) (available at http://edglossary.org/rigor) “The term rigor is widely used by

educators to describe instruction, schoolwork, learning experiences, and educational expec-

tations that are academically, intellectually, and personally challenging.” The Southern

Cross University (2014) discusses intellectual rigour as part of its set of graduate at-

tributes, emphasising intellectual rigour as “ . . . having clarity in thinking and an ability

to think carefully, deeply and with rigour when faced with new knowledge and arguments.

. . . It also relates to the ability to analyse and construct knowledge with depth, insight and

intellectual maturity.” If all subjects demanded the same level of rigour, then it would be

reasonable to expect each to have the same SOLO score. It is clear in the calculations of

SOLO scores that they are not all the same, and therefore one must ask “how different are

they?” or perhaps more appropriately, “how close are they?” in terms of their learning

expectations as described by the statements of learning objectives.

When one typically begins looking for statistical support to answer such questions, a

usual approach is to make assumptions about the data being normally distributed or
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approximately normally distributed. In such cases it becomes possible to make use of

elements such as the Central Limit Theorem and the properties of normally distributed

data including the so-called ‘Empirical Rule’ or the ‘68-95-99.7 Rule’ where (approxi-

mately) 68% of observations lie within one standard deviation, 95% of observations lie

within two standard deviations and 99% of observations lie within three standard devi-

ations. (Selvanathan et al., 2007; Moore and McCabe, 2003) However, with small data

sets, the approximately normal assumption cannot be made. Selvanathan et al. (2007)

suggests that one should work with sample sizes of at least 100 wherever possible in using

the Chi-Square test for normality of a data set as smaller data sets usually fail to reject

the null hypothesis that the data are normally distributed. Alternatively, using the mean

and standard deviation values and not reliant on the assumption of a normal distribu-

tion, under Chebyshev’s Theorem (Selvanathan et al., 2007), at least 75% of observations

should lie within two standard deviations of the mean, and at least 90% of observations

should lie within three standard deviations of the mean. Using the data calculated pre-

viously and shown (again) in Table 6.1, a re-evaluation of the subject SOLO-scores in

the courses based on their closeness to the overall C-Index can be determined. Using

the two-standard deviation and three-standard deviation values as control limits above

and below the C-Index, a different view of the course data emerges. The results of this

analysis is shown for each of the three degrees in Table 6.2.

Table 6.2: SOLO Score Distributions by Course
Subject SOLO Score Range # of Subjects # of Subjects # of Subjects

BInfoTech BCompSc BEng(SW)

More than 3 std dev below mean 0 1 0

Between 2 and 3 std dev below mean 1 3 0

Within 2 std dev of mean 17 19 41

Between 2 and 3 std dev above mean 2 2 2

More than 3 std dev above mean 0 3 1

Initial observations suggest that the degrees BInfoTech and BEng(SW) appear to be

consistent in terms of their statements of learning objectives, but the BCompSc seems to

have too many subjects that fall outside the acceptable limits, and may therefore become

subjects of interest. Hence, using the data in the examples in this section, a course review

of the BCompSc might choose to look back over the individual subjects and consider the
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Figure 6.1: BCompSc Subject Analysis – Overall

learning requirement specifications of subjects where the subject SOLO score was outside

the range of either two or three standard deviations from the mean - ie. 3.30 to 3.94 for

two standard deviations from the mean, or 3.14 to 4.10 for three standard deviations

from the mean. A graphical representation of this data is shown in Figure 6.1, where

the overall C-Index is plotted and the two and three standard deviation boundaries are

highlighted so that it is clear as to which subjects fall outside the relevant boundary

limits.

Under this proposed analysis method for the BCompSc degree, there are potentially

4 subjects (14%) that could come under some scrutiny as they fall outside the three

standard deviation range, or 9 subjects (32%) that are outside the two standard deviation

range. Under Chebyshev’s Theorem this observation is abnormal since there should be

at most 10% outside the three standard deviation limits and at most 25% outside the

two standard deviation limits.
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For those which are below the range boundaries the question that arises is whether the

stated or expected learning demands should be raised to be more consistent with other

subjects in the degree or is it that the statement of learning objectives is inadequately

expressed and therefore does not match the level of learning rigour that will be demanded

of the students? In either case the observation that the subject SOLO score falls below a

boundary level implies that there is some degree of inconsistency when compared with the

other subjects in the course. This at least suggests that a review of the subject learning

objectives may be needed.

For those above the range boundaries the converse applies, resulting in the question of

whether too much is being asked of the students in that degree program at that stage of

their learning, or equally the expression of learning expectation may be higher than that

being delivered? As with those that fall below the boundary levels, those that lie above

the boundary levels are equally identified as being worthy of further review.

Depending on the outcomes to those review questions, it may be that if the statements of

learning objectives are deemed to be appropriate then other questions could be framed in

terms of the learning support being provided to the students to enable them to better cope

with the higher levels of learning expectation. It is also important to identify the year level

of the subjects that are flagged as being of interest. In the above example it was noted

that four of the five subjects above the upper boundaries were final year subjects, and of

those below the range boundaries the lowest scoring subject was a first-year introductory

subject and the other three subjects in the two to three standard deviation range included

one first-year subject, one second-year subject and one third-year subject.

A different view could be held when looking at the data from a different perspective.

For example, the scatter plot chart in Figure 4.1 showed a clear upwards trend for the

BInfoTech subjects, and this is similarly the case for the BCompSc in Figure 6.1, so the

simple control limits based on the overall course C-Index may not necessarily reveal what

was hoped. The underlying proposition of using control limits in the production setting is

that the expected output is the same or within a particular tolerance level. Therefore, in

the academic setting we would normally expect the SOLO scores to increase from year to

year, yet equally have an expectation that the academic rigour in each year level should
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be approximately similar. Hence it may be better to perform the analysis based on the

year-level means, which would give a stepped set of control limits upon which to frame

the evaluations. This may be the most appropriate approach given that the method of

calculating the C-Index is based on averaging year-level scores.

6.1.2 Examination of Year-Level Scores

To further explore the step-wise approach to examine the subjects in each year level, a

scatter-plot was prepared with the individual subject SOLO-scores grouped by year level

in the course. Overlaid on the scatter-plot were the year-level means for each year level

and control limit boundaries of two standard deviations. In the first part of the analysis

the overall course standard deviation was used, but it could also be considered that the

year-level standard deviation may be more appropriate for analysing subject data, and

this approach has been used in the second part of this analysis.

Analysis with Overall Standard Deviation

The results of the first part of this analysis are shown in the accompanying charts (Figure

6.2, 6.3 and 6.4).

In this view, the BInfoTech subjects appeared to be within the control limits in the first

two years of the degree, and there was one subject just under the lower control limit in

the third year of the program.

The BCompSc subjects appeared to be quite satisfactory in the first year of the degree,

having just one subject slightly outside the control limits above and below; the second year

program suggested that there was one subject notably above the two standard deviation

control limit and one slightly below; and the third year program had one subject notably

below the lower control limit and two subjects slightly above the upper control limit.

The earlier observation of 9 subjects being outside the two standard deviation boundaries

should now be amended to note that there are more likely to be only 5 subjects from the

second and third year programs that may fall into the subject of interest category.
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Figure 6.2: BInfoTech Subject Analysis

A similar analysis of the BEng(SW) subjects really only highlighted three subjects that

are of interest, namely one in each of the second and third year programs that may be

under-specified relative to the other subjects, and one second year subject that is above

the upper control limit. There were three other subjects that were only just outside the

two standard deviation control limit.

Analysis with Year-Level Standard Deviation

When a further investigation of the data was conducted using the year level segmentation,

and applying the year-level standard deviation values to determine the control limits a

somewhat different view was obtained. In particular, it was found that there was a

difference in the standard deviations of the SOLO Scores in each year of study.

For the BInfoTech, the standard deviations of the SOLO Scores in year one, two, and
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Figure 6.3: BCompSc Subject Analysis

three were 0.210, 0.208, and 0.252 respectively. While not significantly different from the

overall standard deviation of 0.210, the increased third-year value changed the outcome

to suggest that all subjects were within the two standard deviation control limit, as shown

in Figure 6.5.

The greatest difference was seen in the BCompSc data where, compared with the overall

standard deviation of 0.16, the standard deviations for year one, two and three were 0.201,

0.297, and 0.257 respectively. When the year-level standard deviations were overlaid on

the scatter-plot data (Figure 6.6), it appeared that all subject scores lie within the two

standard deviation control limits.

A similar outcome was evident in the analysis of the BEng(SW) data, where the use
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Figure 6.4: BEng(SW) Subject Analysis

of the year-level standard deviations to calculate the 2-standard deviation control limits

highlighted just one third year subject that was slightly below the lower control limit

(Figure 6.7).

It is beyond the scope of this research to answer those questions relating to the structure

of the learning objectives, for that is the task of the course architects and curriculum

designers of those subjects. What is shown however, is that this approach may be used

as a tool to highlight or flag particular subjects as being worthy of further scrutiny for the

reasons mentioned. What has been revealed is that a year-level segmentation of degree

study programs is far preferable to considering simply the overall C-Index and placing

control limits around that value. By definition, where there is an increasing progression

of year-level SOLO Scores – that is, an upward trend line – then applying control limits

around that C-Index would naturally expose the lower scoring subjects in the early years

and the higher scoring subjects in later years as being outside the control limits.
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Figure 6.5: BInfoTech Subject Analysis by Year Level

Although the simpler approach is to use the overall course standard deviation as the

metric upon which to calculate control limits for each year level, the analysis conducted

tends to support the proposition that the year-level analysis is more appropriate. In terms

of interpretation, it becomes clear as to which year levels within the degree program have

the greatest amount of variation in SOLO Scores, simply by observing the year levels

with the highest standard deviations. Again, it is the role of the course architects and

curriculum designers to determine the reasonability factors for the subjects in the degree.

It may be the role of university academic administrations to consider the establishment

of standards and policies that they may impose on various departments to ensure some

level of compliance with C-Index metrics and allowable variations.

This can best be demonstrated by reviewing a comparative table (Table 6.3) in which

the year-level SOLO Scores and the corresponding year-level standard deviations are
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Figure 6.6: BCompSc Subject Analysis by Year Level

seen all together. In addition to highlighing where the greatest variations occur within

courses in terms of the proposed learning rigour, the table also shows how an average

of the year-level standard deviations would be a more representative value to use as a

simple metric than the calculated course standard deviation when that is calculated as

the simple standard deviation of the year-level SOLO Scores. This is particularly evident

in the BCompSc course where the average over the three year-level standard deviations

is 0.252, yet the initial calculated course standard deviation is 0.160. In a practical sense,

it would be more appropriate to use this “mean course standard deviation” as the metric

on which to calculate control limits in order to highlight the subjects of interest that

may require review and revision of their stated learning objectives if a single standard

deviation value was to be used.
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Figure 6.7: BEng(SW) Subject Analysis by Year Level

This chapter has contributed two significant elements to the thesis. Several approaches to

the analysis of the underlying SOLO scores were investigated with the overall conclusion

being that year-level analysis was the most appropriate method to adopt. The graphi-

cal charts based on a simple scatter plot of subject SOLO scores, segmented by course

year-level, and overlaid with year-level means and two year-level standard deviations as

boundary limits enabled a clear visual representation of where potential subjects of in-

terest were in relation to the other subjects in the course. The subjects of interest may

be viewed as outliers in the course data set and therefore are highlighted as potentially

worthy of further scrutiny with respect to the statements of learning objectives.

It was suggested that it is the role of curriculum assessment groups to determine whether

the statements of learning intent are specified as being too simple or too difficult. Impor-

tantly it was highlighted that there were several potential standard deviation values that

could be used. In the first instance there was the initial course standard deviation which

was calculated from the aggregated year-level scores. It was demonstrated that this value
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Table 6.3: Year-Level Standard Deviation Distributions by Course
Course

BInfoTech BCompSc BEng(SW)

Year Level SOLO Std. Dev. SOLO Std. Dev. SOLO Std. Dev.

Year 1 3.43 0.194 3.45 0.201 3.55 0.131

Year 2 3.56 0.198 3.63 0.297 3.68 0.278

Year 3 3.85 0.225 3.77 0.257 3.87 0.274

Year 4 – – – – 4.00 0.225

Average 3.62 0.206 3.62 0.252 3.78 0.227

Calculated

Course 0.210 0.160 0.199

Std. Dev.

was too imprecise to be used for further decision making. The second approach was to

use the year-level standard deviations, on the basis that the year-level segmentation was

most likely to be more reflective of the way the course structures were viewed. A third

option was proposed as using the mean of the year-level standard deviations as an overall

indicator of the subjects’ learning rigour variability within the course.

From the point of view of internal quality control, the data in Table 6.3 clearly highlighted

the year-levels within courses where the greatest disparity in subject SOLO scores exists,

namely those with the highest value in the standard deviation column. In the event

of a course review, the second year program of the BCompSc and the second year pro-

gram of the BEng(SW) should be good starting places to consider the learning rigour

comparability.

Another option that would be available to University administrations through their cur-

riculum advisory committees would be to review courses across faculties or perhaps

University-wide and establish course specification performance metrics where standard-

ised allowable variations were documented. Since the SOLO Taxonomy approach has a

known range of values, it would be quite feasible to consider the subject learning out-

comes for courses and create a standard that reflected the allowable variation that had

been agreed to or prescribed. In a practical sense such a standard would state some-

thing along the lines of “. . . the year-level standard deviation for the subject learning

outcome SOLO Scores in the . . . degree should not exceed 0.25 . . . ” and the curriculum
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management group would then have a means to examine individual courses for internal

consistency, and even to make appropriate comparisons across different courses. Using

the C-Index calculations also enables those curriculum committees to compare the learn-

ing rigour specified at each year-level of individual courses based on the year-level means,

and this too could be used as an indicator of comparability between courses. Ultimately,

it would be equally possible to specify a faculty or University-wide standard for the ac-

ceptable ranges of year-level means as a measure of course learning rigour. For example,

it may be that a University chooses to specify that the first-year mean SOLO Score should

lie between 3.40 and 3.60; the second-year mean SOLO Score should lie between 3.55 and

3.75; the third-year mean SOLO Score should lie between 3.70 and 3.90; the fourth-year

mean SOLO Score should lie between 3.85 and 4.05; or other range values deemed appro-

priate. (Note: The values given in the examples in this paragraph are purely arbitrary

for demonstration purposes.)

In this chapter the data examined was from several degree programs at a single university.

The goals were to explore the C-Index calculation on known courses, and to investigate

other analytical techniques based on that data. The results obtained have validated the

methods used and have proven the concepts introduced. In the next chapter, the main

goals are to extend the data sets to degree programs from other universities in Australia,

and test whether the analytical methods devised are applicable in the wider context.
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Benchmarking

In the previous chapter it was shown that comparative profiles for degree courses were

able to be prepared using the data from a single institution in a related discipline area. In

order for the techniques described to have wider applicability, it was necessary to apply

those analytical methods to the courses of other institutions’ degree programs.

Accordingly, the aim of this part of the research was to demonstrate that the techniques

were robust and applicable to ‘any’ degree program. It will be shown in the remainder

of this chapter that the analytical methods were effective in their application to other

courses. The profiling techniques and calculation of C-Index values for degree courses

has meant that there is now a quantitative metric that can be used as part of the bench-

marking processes that are so important to universities as they strive to maintain quality

standards.

7.1 Selection of Courses

For the purposes of this part of the research it was necessary to obtain appropriate

data from more than one university. However, in order to minimise the introduction

of additional variables in the research, the course data selected was chosen to be from

universities offering a degree in Information Technology. To maintain data independence,

it was further decided to restrict the course data to those universities where both the

78



Benchmarking CHAPTER 7

course rules and detailed subject descriptions containing the behavioural objectives or

learning outcomes were publicly available on the university web site. Given the initial

part of the research was conducted in Flinders University in South Australia, it was

also decided that the comparisons made should come from Universities in other states in

Australia.

Initially those universities in Australia that offered degrees in Information Technology

were selected as potential data sources, with their selection being based on whether there

was a clear statement of the course structure as well as making available the detailed

subject descriptions including the behavioural objectives or learning outcomes. While

there were quite a number of universities that could have satisfied this requirement, a

small cross-section across several states with universities of different types were decided

upon. In Australia there are currently four groups of Universities and another ‘group’

of those which are not members of one of the other groups (Australian Education Net-

work, 2014). Those groups are the ‘Group of Eight’ (go8), the ‘Australian Technology

Network’ (ATN), the ‘Innovative Research Universities’ (IRU), and the ‘Regional Univer-

sities Network’. Although not specifically relevant, a university comparable with Flinders

University (IRU member) was deemed to be necessary as well as at least two others. In

particular the following universities and degree courses in Australia were selected:

• Swinburne University of Technology – Bachelor of Information Technology (Swin-

burne University, 2012). Swinburne University is located in Melbourne in the State

of Victoria. (non-member group)

• University of Queensland – Bachelor of Information Technology (University of

Queensland, 2014). The University of Queensland is located in Brisbane in the

State of Queensland. (go8 member)

• University of Newcastle – Bachelor of Information Technology (University of New-

castle, 2014). The University of Newcastle is located in Newcastle, a regional city

on the east coast of New South Wales. (IRU member)

It was found that a fairly common practice among Australian universities was to offer a

particular degree program with students being able to choose from one of several streams
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of interest to construct a degree using their main interest area as a major component of

the degree. In an in-depth analytical study of these degree programs, each of the major

streams would have been analysed to build a set of alternative pathway scores. However,

for the proof-of-concept approach it was decided to review either the generic pathway if

available, or a more traditional software engineering or application development stream

if it was necessary to focus on a streamed major to comply with the specific degree

requirements.

7.2 Data Analysis

7.2.1 Swinburne University BIT

The Bachelor of Information Technology offered by Swinburne University appears to have

a slightly unusual structure based on the interpretations gained from their public website

information. A highlighted strength is the Industry Based Learning, which is a little

confusing in that the detailed specifications for the subject suggest 0 credit points, yet

the degree rules indicate the Industry Based Learning counts for 100 credit points. This

degree course is a 3-year full-time degree program with traditional semesters 1 and 2,

supplemented by a summer semester between years 1 and 2, and again between years

2 and 3. The course schedule requires a total of 400 credit points, with 100 of those

allocated as Industry Based Learning and the other 300 being comprised of 24 subjects,

each with a unit value of 12.5 credit points. On this basis, the nominal weight for each

subject is therefore 0.125, although there is a slightly uneven distribution of when the

subjects are actually studied according to the recommended study sequence. Additionally

the two blocks of Industry Based Learning were deemed to have a value of 50 credit points

each with a corresponding weight of 0.500.

In the calculations made, the list of published ICT electives was averaged by their subject

code being in the 1xxx or 2xxx classifications (4 subjects) as electives for the second year

program, and the 3xxx or 4xxx electives (20 subjects) were averaged to determine the

third year elective scores. Although the course rule does allow another 14 suggested non-
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ICT electives or other non-ICT electives subject to other factors, these were not used in

the calculations of the elective subject scores. The core and selective subjects comprised

32 distinct subjects to be assessed. The results of the individual subject assessments are

given in Appendix B.1 and Appendix B.2.

Overall, an analysis of the Swinburne Bachelor of Information Technology degree returned

a C-Index value of 3.49, which is a little less than the score obtained for the Flinders

degree. The profile of the degree, based on the SOLO Distribution obtained is given

in Figure 7.1, and this shows similar characteristics to other degree courses examined,

although it does appear to be somewhat under-stated in the higher order SOLO Level 5

(5% at third year level, compared with 16% in the Flinders degree).

Figure 7.1: Swinburne BIT Analysis Summary

Observations

When a comparable year-based analysis was undertaken using the year-level SOLO Scores

and the associated year-level standard deviations as described in the previous chapter,

the picture revealed was more interesting (see Table 7.1 and Figure 7.2). In particular,

there did not appear to be a clear upward trend of learning expectation across the degree.

81



Benchmarking CHAPTER 7

While there was an expected and familiar learning rigour jump from first year to second

year, there was no corresponding jump in the third year expectations. Rather, it seemed

to taper off after second year with there being negligible difference between the second

year SOLO Score (3.58) and the third year SOLO Score (3.59).

Using the techniques described in the previous chapter on internal control, a set of control

limit boundaries for two and three standard deviations for each year level was prepared,

and is shown in Table 7.2. As seen in Figure 7.2 there was one subject in the first year

program that was below the two standard deviation lower control limit, one subject in

second year that was close to the upper control limit and all other subjects were within

the two standard deviation control limit boundaries. The other point of interest was that

just one of the subjects listed in the degree had a SOLO Score of 4 or above.

Table 7.1: Swinburne BIT Year Level Summary
Year Level Mean Std Dev

First Year 3.30 0.222

Second Year 3.58 0.244

Third Year 3.59 0.125

Overall C-Index 3.49

Table 7.2: Swinburne BIT Subject Control Limits
Control Limits First Year Second Year Third Year

Year-Level Standard Deviation 0.222 0.244 0.125

3 std dev below mean 2.63 2.85 3.22

2 std dev below mean 2.85 3.09 3.34

Year-Level Score (mean) 3.30 3.58 3.59

2 std dev above mean 3.74 4.07 3.84

3 std dev above mean 3.96 4.32 3.97
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Figure 7.2: Swinburne BIT Subject Analysis by Year Level
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7.2.2 University of Queensland BInfTech

The University of Queensland offers several variants of the Bachelor of Information Tech-

nology. There is a generic offering with no majors of study, a version with one major of

study, another version with two single majors of study, and a version with a dual major of

study (University of Queensland, 2014). The majors are appropriate sequences of related

subjects that enable students to build particular specialisations into their degree stud-

ies such as Computer Systems and Networks, Human-Computer Interaction, Software

Design, Games Modelling, Health Informatics, Information Security, and others.

Whilst it would be possible to determine C-Index scores for each of the variant options,

for consistency with other University courses, only the variant with no majors has been

evaluated in this research.

The unit value system adopted by the University of Queensland assigns two units to a

typical semester subject. Hence the normal degree program of 48 units over three years

would typically involve a student undertaking 16 units per year, or four subjects per

semester. There are several project-based or research-based subjects that may be taken

in the final year of the study program depending on student choices and these have a

four-unit value. The course information for the degree is quite broad in its specification,

giving only general unit requirements for the completion of the degree. At the time of the

research being conducted, it appeared that there had been a revision to the course and

a consequent renaming of the subjects as the listed recommended study program guide

referred to subjects with either a different name or a different subject code. Hence the

data gathered refers to the course as it would be from 2015.

The stated requirement for the Bachelor of Information Technology (BInfTech) – no major

option – for students commencing in 2015 was shown as:

BInfTech with no major, #48 comprising -

a. at least #18 from Part A; and

b. at least #6 from Part B, with at least #2 from Part B1; and

c. at least #8 from Part C; and

d. the balance from electives being courses from Part D or other courses approved

by the Executive Dean; with no more than #8 of level 1 courses.
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As with other courses examined, the University of Queensland degree has a mix of com-

pulsory subjects (core), selections from a limited range of subjects (selective), and a

broader range of elective subjects. In the above schedule of degree requirements, Part

A lists the compulsory subjects (10 in total), Part B lists the introductory electives (9

subjects), Part C lists the advanced electives (17 subjects), and Part D lists the other

electives (21 subjects). The subjects in Part B and Part C were considered as selec-

tive subjects as they were more domain specific, and those in Part D were regarded as

recommended electives, but not specifically evaluated as were the other subjects.

With the less specific course directives in the requirements statement, the interpretation

of subjects undertaken in each year level has been done on a more generically aggregated

basis. As a result the data obtained may not be properly reflective of the true learning

expectations for students in this degree course.

Observations

What can be seen is that the University of Queensland course does present a quite similar

overall profile to the other courses that were examined in this discipline area, although

the first and second year subjects appeared to score a little lower than the other courses

observed, which has meant that the profile suggests a not so strong focus on the higher

order learning activities in those earlier years. However, this view is countered by the

strong impact of the third year subjects which appear to be much more demanding in

their proposed learning rigour. The sharp jump can be seen in the profile graphic (Figure

7.3) where the higher order learning expectations (SOLO 4 and SOLO 5) account for

59% in third year compared with 33% in second year, and the marked increase in the

year-level score from 3.27 to 3.71 (Table 7.3).

Table 7.3: University of Queensland BInfTech Year Level Summary
Year Level Mean Std Dev

First Year 3.18 0.156

Second Year 3.27 0.257

Third Year 3.71 0.278

Overall C-Index 3.39
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Figure 7.3: University of Queensland BInfTech Analysis Summary

Upon examining the scores of the University of Queensland subjects by year level it was

clear that effectively all of the subjects fell within the two standard deviation control

limits with only a small number of subjects that might come under consideration as

‘subjects of interest’ – one in first year, one in second year and two in third year that

were around the upper control limits and one third year subject that was close to the

lower control limit (Figure 7.4). There was only a small difference between the first year

and second year year-level scores, but a much more significant upwards shift in the third

year-level score. Potentially this could be interpreted as an indicator to highlight that

perhaps the second year subjects could need to be reviewed as a whole in order to provide

a smoother progression from first year to second year to third year in this degree.
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Table 7.4: University of Queensland BInfTech Subject Control Limits
Control Limits First Year Second Year Third Year

Year-Level Standard Deviation 0.156 0.257 0.278

3 std dev below mean 2.71 2.50 2.88

2 std dev below mean 2.86 2.76 3.16

Year-Level Score (mean) 3.18 3.27 3.71

2 std dev above mean 3.49 3.79 4.27

3 std dev above mean 3.64 4.05 4.55

Figure 7.4: University of Queensland BInfTech Subject Analysis by Year Level
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7.2.3 University of Newcastle BIT

As with the other universities considered, the University of Newcastle Bachelor of Infor-

mation Technology has some degree of flexibility in its offering. The course was revised to

a new structure and format from the beginning of 2014, and the descriptions, especially

in the course specification, contain references to the previous structure. The requirements

for the completion of the degree state (University of Newcastle, 2014):

The 240 units required to complete the degree must include:

a. All core courses (100 units);

b. A major sequence (80 units);

c. Electives (as many units as are required to bring the total units up to 240 units.

Some students may wish to apply this to a second major. Students can elect to

count core course INFT3970 IT Major Project towards one major only).

Please note:

No more than 100 units in total at 1000 level will be counted towards the award.

At least 60 units must be completed at 3000 level.

In the degree program there are four majors defined, namely:

• Data Analytics Major;

• Digital Media and Entertainment Major;

• Enterprise Information Technology Major; and

• Software Development and Applications Major.

and each has a nominated set of compulsory courses and a set of directed courses which

are the preferred electives for students in that major stream to choose. The course rules

for the degree are generous in that the directed subjects are not mandated as needing

a specific number of them within the major stream, but clearly it would be sensible for

students undertaking the relevant major to select subjects from the directed subjects list.

For the purposes of this research only the Software Development and Applications Ma-

jor was chosen to be examined as this appeared to be closest to a generic Bachelor of

Information Technology as seen in other universities.
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Each of the subjects (courses in the University of Newcastle jargon) in this degree is based

on a value of 10 units other than the major project subject which is 20 units. Over a

typical three year program, each year would then require 80 units, which gives a subject

equivalent full-time load of 0.125 for a 10-unit subject.

The structure of this degree is quite flexible in that it does allow a reasonable number

of elective subjects to be chosen in areas within the degree theme or from outside the

degree speciality. As with other degrees investigated the list of elective subjects was too

numerous to examine each one individually. It would be possible for an internal curricu-

lum group to identify the most common set of electives normally chosen by students,

but that information was not readily available under the approach taken in this research.

Accordingly, since there was not a specific constraint on the number of directed subjects

at each year level, the calculation method for this degree was to use the selective subjects

average, weighted to the balance of subjects needed beyond the core subjects in each year

level to determine the year-level scores and ultimately the overall C-Index.

Observations

The results of the analysis for the University of Newcastle Bachelor of Information Tech-

nology degree are shown in Table 7.5, and this data shows a good amount of progression

from year one to year two to year three in the learning rigour demands, with the overall

C-Index for the degree being calculated as 3.49. The corresponding profile for the degree

is shown in Figure 7.5, where that learning rigour progression is quite clear. It was noted

that there was a strong increase in the higher order SOLO levels over the three year

program going from 32% in first year up to 64% in third year.

From the internal quality control perspective, the subjects in the revised course structure

all fall within the two standard deviation control limit boundaries, although there appears

to be one subject in first year and one subject in third year that can be labelled as subjects

of interest as they are close to the lower control limit boundaries, and one subject in third

year that is close to the upper control limit boundary (See Figure 7.6).
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Figure 7.5: University of Newcastle BIT Analysis Summary

Table 7.5: University of Newcastle BIT Year Level Summary
Year Level Mean Std Dev

First Year 3.18 0.214

Second Year 3.51 0.183

Third Year 3.79 0.333

Overall C-Index 3.49

Table 7.6: University of Newcastle BIT Subject Control Limits
Control Limits First Year Second Year Third Year

Year-Level Standard Deviation 0.214 0.183 0.333

3 std dev below mean 2.54 2.96 2.79

2 std dev below mean 2.75 3.15 3.12

Year-Level Score (mean) 3.18 3.51 3.79

2 std dev above mean 3.61 3.88 4.45

3 std dev above mean 3.82 4.06 4.79
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Figure 7.6: University of Newcastle BIT Subject Analysis by Year Level
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7.3 Benchmarking Results

There have been two distinct approaches to benchmarking described in this thesis. In the

earlier developmental part where several different degree courses from a single university

were evaluated, it was shown that the evaluation approach enabled a set of year-level

scores to be calculated for the individual degree programs. The approach and those

results were given in Chapter 5, with a summarised version shown here in Table 7.7.

Table 7.7: Course Scores – Single University
BInfoTech BCompSc BEng(SW)

Course SOLO Std SOLO Std SOLO Std

Year Level Score Dev Score Dev Score Dev

First Year 3.43 0.194 3.45 0.201 3.55 0.131

Second Year 3.56 0.198 3.63 0.297 3.68 0.278

Third Year 3.86 0.225 3.77 0.257 3.87 0.274

Fourth Year - - 4.00 0.225

C-Index 3.62 3.62 3.78

From an institutional viewpoint the data can be examined across degree programs to

ascertain whether there is a comparable level of learning rigour displayed in each year level

of the courses, and equally to determine whether each of the degrees have a comparable

C-Index. It was previously discussed that the implied progression from one year level to

the next in learning rigour expectations should be seen in increasing year-level scores is

evident in this group of degrees that were examined. The other factor which becomes a

corollary to that implied progression assumption is that a four-year degree should score

higher than a three-year degree, resulting in a higher C-Index, and this was also evident

in the data shown.

The underlying questions that curriculum review committees might ask when presented

with this data include some of the following:

• Are the C-Index values appropriate for these courses?

• Are the year-level programs comparable across the courses?

• Is the amount of year-level progression in learning rigour expectation suitable in

each course?
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• Is the standard deviation in expected learning rigour acceptable in each year level

in each course?

• Is the relative proportion of low-order and high-order learning appropriate in each

course?

The last of these questions requires one to look at the SOLO Distributions for each course

at either the overall level or at the detailed year-level. The comparative overall SOLO

Distributions for the three Flinders University courses examined, namely the Bachelor

of Information Technology, the Bachelor of Computer Science, and the Bachelor of En-

gineering (Software) are shown in the accompanying Figure 7.7. The detailed profile for

the Bachelor of Information Technology was previously given in Chapter 4, Figure 4.3.

Figure 7.7: Comparisons of Flinders University Courses

The higher order SOLO levels of SOLO-4 and SOLO-5 indicate expectations of deep

learning compared with the more superficial learning demands at SOLO-2 and SOLO-

3 levels. The courses shown have combined SOLO-4 and SOLO-5 proportions of 58%,

60% and 65% respectively. This demonstrates a level of consistency across those courses,

which are from the same general field of study domain.
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The second approach to benchmarking occurs when the course evaluation process is ap-

plied to comparable courses across different institutions. In the earlier part of this chapter,

the Bachelor of Information Technology courses at three different universities were ex-

amined with both profile determination and C-Index calculations being performed. The

same set of questions is applicable to cross-institutional reviews, and the accompanying

table (Table 7.8) shows the summarised data for the different universities whose courses

were examined.

Table 7.8: Course Scores – Multiple Universities
Flinders Swinburne Queensland Newcastle

Course SOLO Std SOLO Std SOLO Std SOLO Std

Year Level Score Dev Score Dev Score Dev Score Dev

First Year 3.43 0.194 3.30 0.222 3.18 0.156 3.18 0.214

Second Year 3.56 0.198 3.58 0.244 3.27 0.257 3.51 0.183

Third Year 3.86 0.225 3.59 0.125 3.71 0.278 3.79 0.333

C-Index 3.62 3.49 3.39 3.49

On the basis of the data presented, there were several potentially interesting observations

that could be made. In the first instance, there is the observation that the University of

Queensland degree has the lowest C-Index of the four universities examined. Similarly

the Swinburne University third-year program scored the lowest of the final year programs.

The greatest amount of subject score variation was seen in the third-year program at the

University of Newcastle and the least amount was in the third-year program at Swinburne

University.

When the overall course profiles for these four courses were compared (see Figure 7.8) it

appeared that the University of Queensland course was not as strong in the higher order

learning rigour demands as the other three universities. Possible reasons for this outcome

were discussed in the earlier section (Section 7.2.2) where that course was discussed in

greater detail. The profiles for the University of Newcastle and Swinburne University

courses were very close to one another, and the Flinders University course appeared to

score a little higher in the overall higher order learning rigour demands.

While it is possible to compare the courses against each other, as has been done in this

case, the ultimate benchmarking tool would have established a baseline standard against
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which the courses would be compared. At this point in time, such a standard does not

exist, but it is proposed that the techniques described in this thesis may become a starting

point for such course standardisations.

Figure 7.8: Comparisons of Bachelor of Information Technology Courses

This chapter has combined the techniques and approaches described in earlier chapters to

demonstrate the applicability of those techniques to the benchmarking of courses across

universities. The data collection involved the retrieval of subject learning outcomes for

each of the required core subjects and selective subjects in conjunction with the course

rules for each of the degree programs at the universities selected. The number of subject

evaluations conducted were 31 from Swinburne University, 36 from the University of

Queensland, and 23 from the University of Newcastle. For each university the subjects

were grouped by year level and identified as core or selective subjects according to the

relevant course rules. From these appropriately scored data, year-level scores, SOLO

Distributions, C-Index calculations, year-level standard deviations and course profiles

were prepared. For analytical and comparison purposes the data were presented in both

tabular and graphical formats, with supplemental annotations showing the upper and

lower control limit boundaries at the two standard deviation mark based on year-level

scores.
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In the next chapter a review of the methodology, techniques, approaches, and an analysis

of this research will be discussed.

96



Chapter 8

Analysis and Discussion

This chapter reflects on the approach taken, reviews the results obtained from the various

experiments conducted in this research, and discusses those results in relation to the

research questions posed initially.

8.1 Methodology Discussion

The methodology that has been used in this research was based on the well-established

SOLO Taxonomy to go beyond the initial ideas proposed when that taxonomy was first

devised. In the educational theory domain, the use of taxonomies has typically been

qualitative in their application to educational programs and their relative components.

Research undertaken by Brabrand and Dahl suggested a conversion of the qualitative

into the quantitative through the use of the ‘double-weight averaging scheme’ to arrive at

the SOLO Average score for an individual subject or group of subjects, and a subsequent

SOLO Distribution which was derived from counting the number of descriptors in the

relevant SOLO categories. An interesting point of difference from that study was that

the Danish study had been conducted after a major undertaking to revise the subject

statements of learning outcomes was completed, whereas in this research the candidate

courses in the Universities considered contained a mix of well-formed statements and

older-style statements that did not align as closely with the terminologies of the SOLO

97



Analysis and Discussion CHAPTER 8

Taxonomy. Where Brabrand and Dahl were able to more straight-forwardly classify the

‘intended learning outcomes’, in this research a more subjective judgement was required

to interpret the estimated likely intention of the stated objectives and learning outcomes.

Accordingly, the first part of the research was done in conjunction with experienced sub-

ject coordinators to assist in the interpretation of the behavioural objectives or learning

outcomes for the subjects under their control. The outcome from this part of the ap-

proach was to gain a level of confidence in being able to reasonably accurately interpret

the intent of the stated learning outcomes in a consistent manner within a familiar disci-

pline area. With this knowledge, combined with restricting the data sets to the domain

of Information Technology and Computer Science degrees, the subjectivity in classifying

all of the behavioural objectives and learning outcomes for the constituent subjects was

consistent across the project. Because there was this element of subjectivity involved

rather than a purely objective classification method, a valid concern is whether other re-

searchers would obtain results that were quite close to those presented in this thesis. It is

certainly possible that personal bias could influence the judgements made about the clas-

sification and subsequent scoring of individual subjects when other researchers apply the

methodologies described in this thesis. However, it is also a reasonable belief that higher

education professionals are both prudent and responsible when making assessments on

educational matters. Consequently the approach proposed should be sufficiently robust

to accommodate individual differences in the interpretation of stated learning objectives,

particularly when those evaluations are undertaken by specialists in the relevant discipline

area.

The initial data collection was taken from a known University site (Flinders University),

where full and ready access to course and subject information was available, to enable

a controlled study to take place to validate the techniques used and effectively confirm

the proof of concept for the proposed theory. The expanded study was undertaken to

assess the methods against external data sources, using similar degree programs from

other Australian Universities. The choice of institution was based on whether there

were readily accessible statements about the course rules and the subject content for the

selected degrees.
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The varying complexity of course rules at different institutions and the difficulty of re-

trieving some of the subject information effectively resulted in not being able to automate

most of the detail level analysis. The statements of behavioural objectives and learning

outcomes varied from very brief and vague to being quite verbose and detailed. Accord-

ingly, a simple mapping of these statements into SOLO classifications was not possible,

and a more extensive manual process was required to calculate the individual SOLO

scores for each objective, and then determine the SOLO Average for each subject.

In the selected domain for this research, namely the fields of Information Technology,

Computer Science, and Software Engineering, the course rules tend to be more tightly

specified than for other more generic courses such as a Bachelor of Science or a Bachelor of

Arts, yet even so they still varied quite a lot between the institutions examined. Equally

the subject statements of behavioural objectives or learning outcomes varied considerably

from being quite vague to being very specific, and also from simple clear statements

to complex compound statements. These factors meant that the interpretation of the

statements usually required a judgement to be made about the intent of the statement

as much as what was actually stated.

Once the individual subject learning outcomes had been assessed, the determination of

the subject SOLO Score and its SOLO Distribution was a relatively simple calculation

that was used in the overall aggregation of data for the year level. In the Brabrand

and Dahl study the method used to determine the SOLO Distribution was based on

a proportional contribution of SOLO scores in each of the intended learning outcomes.

This meant that when a single learning outcome was expressed in a compound form

with differing SOLO levels, a fractional contribution for each of those SOLO levels was

applied to the overall SOLO Distribution for the subject. The alternative approach,

labelled the simplex approach (see Section 2.3.1), was to use the raw count of the number

of SOLO levels described in the learning outcomes for the subject. After comparing the

two approaches it was decided to adopt the simplex approach to determine the SOLO

Distributions as it was computationally a little simpler; the differences between the two

methods were not substantial at the overall level, although they may be observed to be

more significantly different at the individual subject level; and potentially more straight-
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forward to follow for casual users of the methodology. The subsequent calculation of

year-level scores was dependent on the complexity of the course rule for the course, and

again required an individually constructed calculation template for each year level. The

final aggregations for overall analysis of the course, including the course profile and the

internal quality control charts were the most straight-forward segments to produce.

8.2 Results Interpretation

Using the methodology proposed in this thesis, a C-Index value has been obtained for

the degree courses reviewed. As has been previously discussed, there are just five levels

of the SOLO Taxonomy, and the scoring system provides a value potentially in the range

1 to 5, but is actually only in the range 2 to 5 since all learning activities are aimed at

levels 2 or above. Even using decimal values to say 2 decimal places, as has been done

in the calculations shown, the resultant value is in a scaling range that is foreign to most

readers. For example, is there a significant difference between a degree course which has

a C-Index of 3.25 compared with one that has a C-Index of 3.68?

An earlier discussion in Chapter 2, Section 2.2.3 (Biggs and Collis, 1982) pointed out that

the SOLO Taxonomy classifications were cumulative in nature, implying achievement at

Level 4 also meant that Level 3 and Level 2 skills were mastered. Combined with the

equal distance assumption, it became possible to create a linear scale on which the C-

Index scores could be plotted. However the limited range of the scale 1 to 5 makes it

difficult to gauge differences unless they are quite substantial.

Most educators are familiar with percentage scales, so there appears to be potential

merit in converting the C-Index values to a number in the range 1 to 100. One simplistic

approach would be simply to adjust the C-Index to a percentage value, based on the

maximum score being 5. Hence in the above example, 3.25 would convert to 65.0%, and

3.68 would convert to 73.6%. Academics would readily concede that there is a noticeable

difference in these two percentage scores.

However, even this is not a true reflection, as the effective range is just 2 to 5, so a more
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accurate conversion should highlight the progression from 2 to 3 to 4 to 5 by accentuating

the difference regions. Accordingly a proposed scaling formula is (C-Index - 1) * 25,

resulting in 3.25 converting to 56.25, and 3.68 converting to 67.0, which both lie in the 1

to 100 range, but support slightly different viewpoints. In particular, if we examine the

‘breakpoint scores’, the conversion points can be seen in the following table (Table 8.1),

which also shows the simple percentage breaks.

Table 8.1: Scaled C-Index Scores
C-Index Score Simple Scaled SOLO

(Breakpoints) Percentage Score

2 40.0 25.0

3 60.0 50.0

4 80.0 75.0

5 100.0 100.0

If one considers the widely held view (Biggs and Collis, 1982; Brabrand and Dahl, 2007)

that surface learning occurs at Levels 2 and 3, and deep learning occurs at Levels 4 and 5,

and that most academics would hope that the degrees in which they teach would aim more

towards deep learning, then a scale that proposes an outcome in what the academic world

considers to be advanced levels of achievement is more likely to be accepted. Equally, an

ordinary level of achievement should have a resultant score at around a typical passing

grade score. To this end, the mapping algorithm proposed does deliver such scores, with

the score of 50 being the differentiation point between the surface learning scores and the

deep learning scores.

If one were to adopt the Scaled SOLO Score approach, those degree programs that scored

closer to 50 than 75 could be thought of as providing largely superficial coverage of

their subject areas, whereas the higher scores promise an intention of demanding deeper

coverage of their subject areas. By virtue of considering the underlying premise of this

research, namely that the examination of behavioural objectives and/or learning outcomes

of the subjects in a degree course, the calculated results present an intention of what is

proposed to be covered within the degree, and the depth of learning that should be

achieved by a student in that course. What can be concluded from this approach is that

a significant difference in the course specification analysis may be used as an indicator of
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course quality if we associate quality with depth of coverage.

Returning to the data collected in this study and applying the Scaled C-Index Score, the

results can be seen in Table 8.2.

Table 8.2: Scaled C-Index Result Scores
Degree Course C-Index Score Scaled C-Index

Flinders University BCompSc 3.62 65.50

Flinders University BEng(SW) 3.78 69.50

Flinders University BInfoTech 3.62 65.50

Swinburne University BIT 3.49 62.20

University of Queensland BInfTech 3.39 59.75

University of Newcastle BIT 3.49 62.20

At first glance, one might be tempted to say that the Flinders University BInfoTech offers

the most rigorous Information Technology degree (of those degree courses examined) in

terms of learning expectation placed upon students. However, the research process has

assessed the statements of behavioural objectives or proposed learning outcomes, so a

more appropriate interpretation of the data would be that each of the courses examined

have a significant proportion of surface learning and make a good attempt at developing

deep learning.

8.3 Specific Outcomes and Contributions

There have been several distinct outcomes arising from this research, each of which con-

tributes new knowledge to the discipline areas of Computer Science and Information

Technology, and the associated development of educational programs in these areas.

8.3.1 Course Profiling

The application of the quantification of behavioural objectives using the double weighted

averaging scheme proposed by Brabrand and Dahl using the SOLO Taxonomy gives rise

to a SOLO Average for an individual subject of study. When applied over a set of related

subjects according to the course rules for a degree program, the methodology described
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in this thesis then generates a year-level score for each of the year levels in the degree,

and by aggregating the number of SOLO classifications for each subject in the year level a

SOLO Distribution can be determined to highlight the proportion of each type of SOLO

classification in each year level. The subsequent aggregation across the whole of the

degree program then gives the overall Course Profile and the C-Index.

The terms SOLO Average and SOLO Distribution are inherited from the Brabrand and

Dahl study. New terms developed as part of this research are:

1. Year-Level Score;

2. Course Profile; and

3. C-Index;

4. SOLO Distribution – proportional method; and

5. SOLO Distribution – simplex method.

Although the year-level score is an intermediate item that is used in calculating the course

C-Index, in itself it may not at first appear to be particularly important. However it is a

good indicator when viewed in relation to the other year-level scores to see whether the

progression of learning rigour demands seems reasonable for the particular degree course.

It does become significant when comparing one course against another in that it can be

noted that year-level scores are or are not approximately equivalent, thus implying that

the different courses may be demanding similar levels of learning rigour (or not).

The Course Profile appears to have great merit for tasks such as capturing a quick

snapshot of the nature of learning expectation in a course. Another potential application

for using the Course Profile would be in the marketing of the degree program to future

students, highlighting the pattern of learning expectation as they move from first year

through to their final year.

The C-Index is a single value statistic which attempts to assess the overall learning rigour

proposed for a degree course. Its value as an indicator is yet to be proven in wider testing
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but it does have the potential to highlight the extent to which deep learning can be

anticipated in the particular degree.

In determining a SOLO Distribution for a course it was found that there were two possible

approaches to calculating the contribution of SOLO levels for an individual subject.

The proportional method assigned a proportional value of SOLO level for each learning

outcome, and then the sum of each of the level scores was divided by the number of

learning outcomes and converted to a percentage to give the subject SOLO Distribution.

The simplex method aggregated the raw counts of each of the SOLO levels expressed

in the learning outcomes, which meant that complex and compound learning outcome

statements could over-emphasise some SOLO levels in a subject. When expressed as a

percentage value this was observed to be different from the proportional method scores

for an individual subject. However, in the overall weighted aggregation, where the ‘big

picture’ view was the major focus, the individual differences became less significant.

8.3.2 Internal Quality Control

The Internal Quality Control contribution has arisen from a more detailed study of the

individual subjects and their SOLO Average scores within the degree. It was found that

grouping the subjects by their year levels enabled some degree of comparative analysis

to be undertaken. In all degree programs examined there was a reasonable amount of

variation in the SOLO Average scores within year levels. By using the standard deviation

statistic a nominal two standard deviation set of control limits was applied to the year-

level score to highlight those subjects that were close to or outside the upper and lower

control limits.

The new terms developed for considerations about internal quality control were:

1. Subjects of Interest

2. Control Limit Boundaries

In this era of standardisation and normalisation, the determination of Subjects of Interest

within courses can become most valuable to highlight where learning rigour expectations
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may be too high or too low for the year of study. It has been pointed out previously

that there may well be valid reasons for the individual subjects appearing as Subjects

of Interest, but the process should be seen as a great benefit to University Courses and

Curricula groups during their course review and development periods. The secondary

benefit which comes as a direct result of having performed these analyses is that the

same data would allow external reviewers and course benchmarking panels to readily

identify focus areas for their purposes.

The Control Limit Boundaries proposition is based on using the SOLO Scores for the set

of subjects within each year level of the course and determining the standard deviation

of those scores. The Year-Level Score is calculated as the weighted mean of the subject

SOLO Scores, and the Control Limit Boundaries are calculated for each year level as

two standard deviations above and below the Year-Level Score. There is an underlying

assumption that each of the subjects in a particular year level should have a similar level

of learning rigour for the internal quality control approach to function as described.

8.3.3 Course Benchmarking

The concept of course benchmarking is common in Australian Universities, particularly

in the science, engineering, and technological areas where many of the courses are subject

to accreditation by external professional societies to satisfy the academic requirements

for membership by the course graduates. Current tools used tend to be based on out-

puts – examination papers, assignments, projects, and similar. While these are essential

elements, to date there has been little on the course specification side that can provide

helpful information to benchmarking teams and accreditation panels. The research un-

dertaken in this thesis has considered the preliminary information for the subjects in a

course of study, namely the behavioural objectives or learning outcomes that have been

specified. The research proposition is that these items express the learning rigour expec-

tation for each of the subjects in a course, and by applying the methodologies described

it is possible to arrive at a value to represent that learning rigour expectation, which has

been labelled as the C-Index.
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The C-Index is not intended to replace the current benchmarking tools, but rather to sup-

plement them. When used in conjunction with the Course Profile information, whether

tabular or graphical, benchmarking teams may be able to conduct their benchmarking

exercises more efficiently as they would have the course intent information as well as the

course output information to review. The positive feature of using pre-delivery material is

that the variables of the nature of the student cohort, the factors of the teaching team(s)

and other environmental issues are removed. As discussed in the earlier section on this

matter, student cohorts change from year to year, teaching groups change, environmental

factors including changes to resources such as equipment and software can impact sig-

nificantly so that overall the course outputs will have some variation from year to year,

yet the course specifications remain stable over a period of years and will only change at

course review times.

8.4 Limitations

As with any developmental work in a new area there are limitations as to what can

be done, and the research in this thesis is no exception. A number of the issues and

potential problems have been discussed in earlier sections of this thesis, but a more

succinct grouping of those limitations is listed below:

1. The resulting subject SOLO Scores were very much dependent on the quality of

the expression of the learning outcomes and behavioural objectives. Where sub-

jects had been relatively recently updated it was obvious that greater attention had

been given to attempting to express the learning outcomes in more taxonomy spe-

cific language in many cases. There appeared to be evidence of a greater knowledge

of appropriate learning theory and educational taxonomy jargon for some of those

subjects. Not every subject in every university examined could lay claim to that,

but anecdotally at least it appears to strengthen the argument that greater atten-

tion to learning outcome descriptions is becoming a higher priority in Australian

Universities.
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2. Where learning outcomes were expressed in complex compound statements it was

necessary to parse the different ideas being defined to best determine the SOLO

levels covered in the statement as well as the number of each type. In some cases the

outcomes were a similar task level across several sub-topic areas within the subject,

and therefore may have received a score of 3 instances at SOLO-2 for example. In

other cases there were several distinct outcomes at differing SOLO levels, and may

therefore have been scored at 2 instances of SOLO-3 and 1 instance of SOLO-4 for

example.

3. A criticism that could be levelled at this research is that of subjectivity and bias,

where the researcher has been required to make judgemental decisions about classi-

fications of learning outcome statements. During the initial stages of this research

the interpretation of learning outcome statements was undertaken with subject co-

ordinators in order to develop some degree of expertise in determining the intent

of the statements. Thereafter that expertise was applied to other subjects and

assessments were made on the basis of that early learning. The issue of bias was

minimised by constraining the research to fields of study with which the researcher

was familiar – that is the areas of Information Technology, Computer Science and

Software Engineering. In extending this research, it would be preferable to have

curriculum specialist teams from within the domain area to evaluate the subject

learning outcomes to minimise the subjectivity and bias elements.

4. One of the obvious limitations of using the SOLO scores is the very narrow band of

values that can be applied in the coding of the learning outcomes, where the choices

are 2, 3, 4, or 5. When combined with the relatively small set of common verbs used

to describe learning outcomes, and the possibility that the learning outcomes have

been created by less well-informed academics, it means that there is likely to be

only a small observable difference in scores for subjects across year levels. It could

be possible for example that a specific learning objective appeared to be the same

in a first-year subject, a second-year subject, and repeated in a third-year subject,

yet the expected depth of learning may be quite different. To clarify this, a sample

learning objective of “describe the structure of a relational database . . . .” could
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be part of an introductory computing subject, repeated in a subsequent database

subject, and repeated again in an advanced database subject, yet the intended

learning expectations would be quite different for each of those subjects. Based

purely on the verb “describe”, each of these would be classified as SOLO-3.

Using this same example, it becomes clear that the authors of the learning outcomes

do need to be more aware of how learning outcome statements may impact on the

interpretations of these subject specifications. In the event that institutions decide

to adopt the approaches described in this thesis, it is recommended that appropriate

training be given to those people who are to apply such coding techniques to the

statements of learning objectives for the purpose of preparing course profiles and

associated analyses.

5. It was highlighted in section 2.3.1 that individual subjects may have few or many

learning objective statements. Whether this is a considered decision by the subject

administrator as needing to specify many outcomes to cover the subject matter, or

a disingenuous attempt as ‘needing to put something down’ without giving a great

deal of thought to what was stated, is an unknown factor. Presumably the curricu-

lum managers in Universities would mediate what was stated prior to widespread

publication of those learning objective statements.

Should the theories proposed in this thesis become adopted by Universities, there

is another possibility that subject administrators might choose to manipulate their

learning objective statements to return a higher subject SOLO Score, and poten-

tially overstate the level of expected learning demand for the subject. Although

this would be feasible for a subject administrator to be “smart” about using the

descriptions to boost the SOLO Score, it should ultimately be moderated by the

other internal quality control processes the University would have in place that

confirmed a strong correlation between what was stated as intended and what was

being delivered and/or achieved in the subject.

6. The approaches described in this thesis are really only applicable to courses where

the course rules are well defined and have sufficient specificity to allow the associated

C-Index calculations to be performed relatively easily. Those courses which offer
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many optional pathways make it difficult to reliably determine course profiles and C-

Index values. Nevertheless it would be feasible to evaluate ‘typical’ course selections

and highlight the corresponding course profiles and C-Index values for these more

broad-based degree courses.

7. In the discussion of the methodology for this research (Section 8.1) it was pointed

out that the complexity of course rules meant that a modified template needed to

be created for each year level of each course that was examined. The high level

of manual intervention needed posed a natural restriction on the breadth of study

that was able to be achieved, and further poses a potential restriction on subsequent

researchers who wish to expand on this study.
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Chapter 9

Conclusions and Future Work

9.1 General Concluding Remarks

The motivation for this research has been to explore the hypothesis that “taxonomic tools

are able to be applied to the course objectives for university level Information Technology

and Computer Science courses to provide an indicator of course quality” (see Section 1.2

and below in Section 9.1.1). It has been shown that the application of a new methodology

and formalised approach has enabled the quantification of subject behavioural objectives

or learning outcomes in such a way that a profile for a university course of study can be

established when using those stated subject objectives as input. In so quantifying the

subject objectives and applying the course rules for the degree program an instrument

has been created that can contribute to the information base of various stakeholders

associated with that degree. This may include university departments, faculties, and

central administrations to enable them to assess the projected perception of the levels of

study required in their degrees. It may also provide supporting data to external agencies

such as accreditation panels and benchmarking teams when considering matters such as

course quality and standards. Another stakeholder group who may find such information

useful in their decision making is the end-user client – the student and perhaps their

parents, along with advisers at schools and universities. The course profiles determined

during this research have applications in university marketing and publicity to show the
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proposed levels of educational rigour for those degree programs that have constructed

course profiles using the approach described in this thesis. As highlighted in Chapters 4

and 5, the graphical representation that is derived from the quantification of the course

subject objectives can be a useful supplement to the current word-based descriptors of

degree courses.

9.1.1 Research Question Outcomes

In order to properly conclude this thesis it is necessary to return to the initial research

questions to examine the outcomes of the research in relation to those questions.

The fundamental question of this research is whether taxonomic tools are able to be applied

to the course objectives for university level Information Technology and Computer Science

courses to provide an indicator of course quality.

There are supporting questions that must be answered in order to arrive at a definitive

and supported result in answer to the primary question. In particular,

• Which taxonomy tools are appropriate for Information Technology and Computer

Science courses?

• Is there a suitable metric that is able to be derived using the taxonomy tools?

• Does the tool metric provide a useful measure for assessing the learning rigour of a

course?

• Do similar courses return a similar result using the metric?

The fundamental research question has been answered in the affirmative in the introduc-

tory comments for this chapter, and in the discussion chapter in Section 8.3.1 in particular

where the resultant outcome of the application of the techniques described have given

rise to the new concept of a course profile and the new metric labelled the C-Index.

The first of the supporting questions on the clarification of which taxonomy tools are

appropriate is discussed more fully in Section 9.2.1, where it has been stated that either
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the SOLO Taxonomy or the revised Bloom Taxonomy could be used, although the C-

Index results would be different as the two taxonomies do use different scales.

The answer to the second of the supporting questions has been clearly identified through-

out the thesis, and the C-Index is a new metric that has been proposed. This is further

discussed in Section 9.2.3.

The third of the supporting questions relating to the usefulness of the C-Index has been

highlighted in Sections 8.3.2, 8.3.3, 9.2.4, and 9.2.5.

The fourth of the supporting questions concerning the similarity between comparable

courses was discussed at various stages, in particular in Sections 8.3.3 and 9.2.5.

9.1.2 Overall Remarks

It has been demonstrated that the methodology does indeed return a degree profile and a

corresponding C-Index for the course. The very nature of the C-Index is that it proposes

an intended level of educational rigour for the relevant degree. This of course does not

prescribe what is actually delivered in the degree program, as that will be determined

by the way in which the teaching teams choose to deliver the material and the demands

they place upon students in the learning and assessment practices at each stage of the

degree. However, as a guidance figure, the C-Index can be used to interpret some of the

unstated impressions relating to the degree program. What is not stated, and cannot be

determined from the structure of the existing sets of learning outcomes observed, is the

level of learning needed in order to pass a particular subject. In the courses examined,

there were no indications about which learning outcomes were essential, desirable, or

optional. Whether it would be feasible to prescribe the subject Pass/Fail criteria based

on the statements of learning outcomes could be the subject of further research.

The degree courses chosen in this research have all been from the Information Technology

and Computer Science domain to demonstrate the efficacy of the approach, and that

there is some consistency across the domain area. On the basis of the investigations

undertaken, it appears that some of the courses are aiming towards the more practical
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side of the domain area by specifying more strongly the application and implementation

considerations while other courses aim to provide a more strategic approach with stronger

considerations in attempting to get students to extend their thinking into higher order

issues that involve making sound judgements and predictions. A common feature that

was evident from the analysis of the SOLO Distributions by year level is that in almost

every case there was a significant component of low-level superficial coverage of subject

matter in the first year of the course, giving way to increased levels of higher order

learning expectations in later years of study.

The issue of subjectivity in the analysis of the behavioural objectives and learning out-

comes has been discussed earlier, and this is a valid concern. At some point of course,

someone has to make a decision whenever classifications of anything are made. In the in-

stance where some may argue that the decision-making is subjective, others might equally

argue that they are ‘exercising their professional judgement’. For this particular field of

assessing educational statements of learning outcomes, there is less likelihood of indis-

criminant subjectivity as the assessors are more likely to be professional people making an

informed judgement of the material they are examining. However, by following a struc-

tured approach in a consistent manner the inaccuracies that may have arisen through

subjective assessments of learning outcome statements have been minimised. For sub-

sequent researchers to extend upon this research approach it would require some initial

assessor familiarisation to be undertaken to again ensure a relatively consistent outcome

was obtained.

9.2 Specific Outcomes and Contributions

There have been several specific outcomes from this research which can also be viewed

as contributions to the area.
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9.2.1 The Use of Educational Taxonomies in Computer Science

The use of educational taxonomies is widespread in all fields of study, but there have

been some concerns raised about the appropriateness of their use in the field of Computer

Science. The arguments for and against were presented in Chapter 2, and the research

in this thesis has been based on the affirmative view that educational taxonomies are

indeed relevant to the field of Computer Science. The matter of whether a new taxonomy

should be created for the field of Computer Science was rejected, at least at the strategic

level. The issue of being able to better accentuate the aims of application development

and implementation in existing taxonomies was acknowledged. Although this can cause

potential under-valued scoring in some of those subject areas, degrees in either Computer

Science or Information Technology do comprise more than just application development

and implementation, and so the overall impact is not such a major concern. Careful

reconstruction of the learning objectives to more accurately reflect the learning skills

required of the student, particularly those that would be classified at the higher order

taxonomy levels, are needed in a number of the subjects examined in this research.

The two major educational taxonomies in common use are the Bloom Taxonomy (either

in its original form or in the newer revised form), and the SOLO Taxonomy. It has been

shown within the context of this research that either taxonomy could have been used,

but for consistency with other studies the taxonomy of choice was the SOLO Taxonomy.

9.2.2 Validation of Other Studies

While there were many previous studies in the field of Computer Science that explored

the use of educational taxonomies in various ways, the one major study that became

the platform from which to launch this research was that conducted by Brabrand and

Dahl in Denmark, in which they proposed a method to quantitatively establish both a

metric and a distribution of results based on the application of numeric values to the

subject learning outcomes according to classification against the SOLO Taxonomy. In

that work they defined the terms SOLO Average and SOLO Distribution and introduced

a technique called the double-weight averaging scheme.
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The approach was applied to the subjects of a particular degree in the Australian context

to confirm the method described as being both workable and applicable. Following the

validation of the approach, the subsequent steps were to shift from a broad discipline

oriented focus to a narrower course oriented focus to investigate what the analytical

techniques might reveal, and then to extend that analysis across several courses. The

outcome from those studies was that a method had been developed to compare degree

courses at the specification level for similarity or difference.

Although there was a difference in the focus of the research, the underlying techniques that

were adopted were based on the Brabrand and Dahl methods, and there were sufficient

similarities in results to validate the methodology and also the observation of progression

as year-levels increase.

9.2.3 Creation of a Course Metric

Repeated application of the analytical techniques led to the formulation of a working

model that enabled the creation of new tools for making course comparisons. In partic-

ular, new concepts that have now been defined are the p-index, a year-level weighted

SOLO Average score, the C-Index, a degree program metric, and the Course Profile,

a graphical representation of the SOLO Distributions across the various year levels of the

course.

As highlighted in the discussions section (Chapter 8), the C-Index represents a quanti-

tative value that can be used as a metric to indicate the overall level of academic rigour

that may be expected in a degree program. Its merit is primarily as a guidance metric

that proposes to suggest the depth of learning that a student should be prepared for in

that degree.

In the development of the working model for this research it became clear that an impor-

tant outcome of the research was the year-level profile that describes the shift in emphasis

of learning requirements as students progress through their studies. In the domain area

researched, namely the field of Information Technology and Computer Science, there was

a marked shift away from the low-level superficial coverage of material in first year to the
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higher level quantitative and qualitative requirements in later years. Many of the degree

programs examined have specified similar proportions of learning outcomes at Level 3

and Level 4 of the SOLO Taxonomy, and the main point of difference appeared to be in

the proportion of Level 5 requirements. The matter of two approaches to determining

the profile distribution, namely the proportional method and the simplex method, was

discussed, and in this research the simplex method was used to prepare course profiles.

Subsequent extensions to this research could focus on exploring those two methods to de-

termine the best approach that becomes most widely applicable and generally accepted.

9.2.4 Course Internal Quality Control

While the course profile, at either the overall level or the more detailed year level, was an

important contribution, the additional data analysis on the base-level data demonstrated

the variability in subject SOLO Scores. After considering a number of statistical measures

and graphical representations of the data, the view that the differences in learning rigour

expectations were of particular interest from a strategic management perspective emerged.

Looking at the year-level score for a course, it was proposed that this value should be

representative of the learning rigour for the subjects in that course at that year level.

The corollary to that proposition was that subjects whose SOLO Score was too far away

from that representative value, by virtue of being well above or well below, should be

candidates for review as they may be expecting too much from students or conversely

not expecting enough for that year level.

The distance measure used was the standard deviation value, which is a statistical mea-

sure of spread for a set of data. In particular the boundary limits chosen were defined

as two standard deviations either side of the year-level score, where the standard devia-

tions were calculated for each year level, and these were labelled as the Control Limit

Boundaries. Those subjects whose SOLO Score fell outside the Control Limit Bound-

aries were identified as Subjects of Interest, and therefore became potential candidates

for review. Equally, subjects that lay very near the Control Limit Boundaries were also

recommended to be considered as potential candidates for review.
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The information conveyed in the Internal Quality Control graphics should be of great

benefit to University Curriculum Committees and Course Standards groups as they move

towards meeting the increased standardisation and accountability initiatives in the uni-

versity sector.

9.2.5 Course Benchmarking

While the initial part of this research was conducted at a single University, and the

analyses were done on several different degree courses, the secondary part of the research

was to investigate the applicability of the method on a broader scale. Given that the

underlying base technique had been adopted from an overseas environment and validated

in the local context, it should have been the case that broader application would be

successful.

It has been shown in Chapter 7 that the techniques used in this research are applicable

to the Australian context. The limiting factors have been found to be in the complexity

of course structures, the level of public availability of detailed course information, and

the quality of the statements of behavioural objectives and learning outcomes. In some

cases the rules for the course structure were not sufficiently clear, and in other cases

the underlying details of individual subject content such as the behavioural objectives or

learning outcomes were not able to be retrieved unless one was an enrolled student. There

were difficulties in interpretation, and therefore classification, arising from either vague

or ambiguous statements in the learning outcomes, or mixed statements that confused

content matter with learning outcome. Courses which were specific in nature, such as

a Bachelor of Computer Science, were sufficiently distinct to allow an analysis to occur,

whereas generic degrees such as a Bachelor of Arts or Bachelor of Science would be much

more difficult upon which to attempt this type of analysis.

However, despite the difficulties mentioned, for the courses where there was sufficient clar-

ity of course structure and availability of behavioural objectives and learning outcomes,

the methodology and techniques have been effective.

With regard to the use of the Course Profile and C-Index as aids to benchmarking of
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courses, the limited range of the C-Index scores between 2 and 5 makes fine-grained

interpretive comparisons somewhat difficult. Accordingly the concept of the Scaled C-

Index was discussed in Chapter 8 to convert the range into a more easily interpreted

range between 1 and 100. Importantly the scaling algorithm was designed to provide

a breakpoint at 50 to identify the surface learning scores at 50 or below, and the deep

learning scores at above 50. Hence, the interpretation for benchmarking purposes is that

the further past 50 a course scores, then the greater amount of deep learning is being

prescribed for the course. There is an implicit suggestion that the more deep learning

a course provides then the better the ‘quality’ of the course. This re-scaling of the C-

Index was not tested on academics during this research, but has been put forward as a

proposition only. It therefore remains as a research question in any future research arising

from this thesis.

9.3 Future Work

This research has provided a valuable foundation for future work in the evaluation of

degree programs using a taxonomic analysis of subject behavioural objectives and learning

outcomes. In this thesis the particular domain area field of study was that of Computer

Science and Information Technology, and the methodology proposed, the techniques used

and the model for analysis that was developed have been confirmed at the proof of concept

level. Future works in this area that are seen as both viable and important are to extend

the study base more widely at both national and international levels, and to investigate

the applicability of the techniques to other domain areas.

A useful by-product of this research would be for universities to re-visit their statements

of learning outcomes to more closely align the student learning requirements with more

precise language that is indicative of the intention of the subjects in question, and which

gives a clearer statement in the language of contemporary educational taxonomies. A

potential result of such actions would be that a more objective analysis of course infor-

mation could be undertaken and the information could be presented in both the course

profile graphic form and the C-Index metric form, which could then appear in the relevant
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course marketing materials.

There are clear messages about the reviewing of learning outcome statements for uni-

versities wishing to evaluate and improve the overall quality of their courses. In domain

areas where the accreditation of courses by external professional bodies and associations

is a significant feature of their status, the development of improved learning outcome

statements should contribute to a more straight-forward benchmarking process, and the

documentation of C-Indices and Course Profiles should facilitate this by providing an in-

dication of what the accreditation assessors can expect from the courses being evaluated.

These tools will never be stand-alone elements for course evaluation as they are simply

measures of intent, offering promises of the level of educational rigour that should be

present in the particular course. What is actually delivered by the educational institu-

tion and the learning that is undertaken by students in the course is another aspect that

course evaluators need to assess in order to arrive at an overall view of course quality,

but having instruments such as the C-Index and Course Profile will enable them to make

a judgement about whether what is promised is being delivered.
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Flinders University Course Data

The appendix sections contain the summarised data obtained in this research after the

individual subject evaluations have been completed. The data shown in this Appendix

includes the degree course data for the three courses examined at Flinders University.

1. The Bachelor of Information Technology – BInfoTech

2. The Bachelor of Computer Science – BCompSc

3. The Bachelor of Engineering (Software) – BEng(SW)
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A.1 Appendix A1 - Flinders University BInfoTech

The Bachelor of Information Technology data in this appendix contains the subject eval-

uation data using the SOLO Taxonomy scores, the Revised Bloom Taxonomy scores

and the Adjusted Bloom Taxonomy scores as discussed in Chapter 4, and the individual

subject weights.
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Table A.1: Flinders BInfoTech Data Analysis
Subject Code Weight SOLO Score Revised Bloom Adjusted Bloom

COMP1001 0.125 3.26 9.80 3.34

COMP1101 0.125 3.20 10.03 2.90

COMP1102 0.125 3.50 10.07 4.00

COMP1111 0.125 3.67 10.75 3.56

COMP1401 0.125 3.13 11.67 3.98

STAT1412 0.125 3.67 12.00 3.67

Core Topic Average 3.43 10.72 3.57

Elective Yr 1* 0.250 3.43 10.72 3.57

COMP2731 0.125 3.25 9.75 3.25

COMP2741 0.125 3.63 9.375 3.13

COMP2761 0.125 3.42 10.06 3.75

COMP2772 0.125 3.92 12.50 4.50

ENGR2792 0.125 3.50 11.21 3.71

Core Topic Average 3.54 10.58 3.67

BUSN3027 0.125 3.78 11.78 3.44

COMP2762 0.125 3.63 11.00 3.25

Selective Average 0.125 3.71 11.39 3.35

Elective Yr 2* 0.250 3.54 10.58 3.67

COMP3721 0.125 4.00 11.62 4.36

COMP3732 0.125 4.13 10.13 4.25

COMP3751 0.125 3.70 14.17 4.17

COMP3771 0.125 3.39 15.25 3.67

ENGR3704 0.125 3.92 9.86 3.92

Core Topic Average 3.83 12.20 4.07

COMP3782 0.125 3.76 11.13 3.79

Upper level topic 0.125 3.83 12.20 4.07

COMP3792 0.250 4.08 9.50 4.00

Selective Average 0.250 3.94 10.58 3.93

Elective Yr 3* 0.125 3.83 12.20 4.07
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A.2 Appendix A2 - Flinders University BCompSc

The accompanying table shows the evaluation data for the Bachelor of Computer Science

course using the SOLO Taxonomy only. The individual subject weights are also listed.
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Table A.2: Flinders BCompSc Data Analysis
Subject Code Weight SOLO Score

COMP1001 Fundamentals of Computing 0.125 3.43

COMP1101 Information and Communications Technology 1A 0.125 3.11

COMP1102 Computer Programming 1 0.125 3.57

COMP1401 Professional Skills in Computing 0.125 3.27

MATH1121 Mathematics 1A 0.125 3.67

Core Topic Average 3.41

MATH1122 Mathematics 1B 0.125 3.64

STAT1412 Data Analysis Laboratory 0.125 3.80

Selective Average 0.125 3.72

Elective Yr 1* 0.250 3.41

COMP2711 Computer Programming 2 0.125 3.54

COMP2731 Software Engineering 1 0.125 3.20

COMP2761 Database and Conceptual Modelling 0.125 3.45

COMP2762 Operating Systems 0.125 3.67

COMP2781 Computer Mathematics 0.125 3.88

COMP3712 Computer Programming 3 0.125 4.14

ENGR2782 Computer Networks 0.125 3.75

ENGR2792 Software Engineering 2 0.125 3.40

Core Topic Average 3.63

COMP3751 Interactive Computer Systems 0.125 3.67

COMP3771 Advanced Database 0.125 3.30

COMP3772 Computer Science Project 0.125 3.69

ENGR3704 Project Management for Engineering and Science 0.125 3.90

Core Topic Average 3.64

COMP3721 Enterprise Information Security 0.125 4.00

COMP3722 Theory and Practice of Computation 0.125 4.18

COMP3732 Enterprise Systems 0.125 4.00

COMP3742 Intelligent Systems 0.125 4.21

COMP3752 Computer Game Development 0.125 3.83

ENGR2711 Engingeering Mathematics 0.125 3.50

ENGR2721 Microprocessors 0.125 3.77

ENGR3701 Computer Organisation and Design 0.125 3.94

ENGR3791 Software Engineering 3 0.125 3.75

Selective Average 0.500 3.91
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A.3 Appendix A3 - Flinders University BEng(SW)

This appendix shows the results of the evaluation of the subjects in the Bachelor of

Engineering (Software) course using the SOLO Taxonomy for scoring.
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Table A.3: Flinders BEng(SW) Data Analysis – years 1 and 2

Subject Code Weight SOLO Score

COMP1001 Fundamentals of Computing 0.125 3.43

COMP1102 Computer Programming 1 0.125 3.57

ENGR1201 Digital Electronics 1 0.125 3.47

ENGR1202 Analog Electronics 1 0.125 3.67

ENGR1401 Professional Skills for Engineers 0.125 3.32

MATH1121 Mathematics 1A 0.125 3.67

MATH1122 Mathematics 1B 0.125 3.64

Core Topic Average 3.54

PHYS1332 Engineering Physics 1 0.125 3.50

STAT1412 Data Analysis Laboratory 0.125 3.80

Selective Average 0.125 3.65

COMP2731 Software Engineering 1 0.125 3.20

COMP3712 Computer Programming 3 0.125 4.14

ENGR2701 Engineering Programming 0.125 3.54

ENGR2711 Engineering Mathematics 0.125 4.00

ENGR2792 Software Engineering 2 0.125 3.40

Core Topic Average 3.66

Stream 1 – Electronics

ENGR2712 Electronic Design and Automation 0.125 3.85

ENGR2721 Microprocessors 0.125 3.77

ENGR2722 Signals and Systems 0.125 3.88

Stream 1 Average 0.375 3.83

Stream 2 – Computing

COMP2761 Database and Conceptual Modelling 0.125 3.45

COMP2762 Operating Systems 0.125 3.67

ENGR2782 Computer Networks 0.125 3.75

Stream 2 Average 0.375 3.62

Stream Average 0.375 3.73
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Table A.4: Flinders BEng(SW) Data Analysis – years 3 and 4

Subject Code Weight SOLO Score

COMP2781 Computer Mathematics 0.125 3.88

ENGR3704 Project Management for Engineering and Science 0.125 3.90

ENGR3791 Software Engineering 3 0.125 3.75

Core Topic Average 3.89

ENGR3700 Engineering Practicum 0.375 4.18

ENGR3710 International Engineering Practicum 0.375 4.00

Selective Average 0.375 4.09

Stream 1 – Electronics

COMP2761 Database and Conceptual Modelling 0.125 3.45

ENGR3701 Computer Organisation and Design 0.125 3.94

Stream 1 Average 0.250 3.70

Stream 2 – Computing

COMP3751 Interactive Computer Systems 0.125 3.67

COMP3771 Advanced Database 0.125 3.30

Stream 2 Average 0.250 3.48

Stream Average 0.250 3.73

ENGR4710A Engineering Project 0.125 4.43

ENGR4710B Engineering Project 0.125 4.00

ENGR4791 Software Engineering 4 0.125 3.58

Core Topic Average 4.00

COMP4701 Advanced Enterprise Security 0.125 4.33

COMP4702 Computer Supported Cooperative Work 0.125 3.89

and Groupware

COMP4706 Advanced Conceptual Modelling and 0.125 4.00

Knowledge Engineering

COMP4707 Advanced Data Mining 0.125 4.00

COMP4709 Computational Genomics 0.125 4.20

COMP4712 Embodied Conversational Agents 0.125 4.00

COMP4716 Information Retrieval and Text Processing 0.125 3.85

COMP4720 Advanced Studies in Computer Science 0.125 4.00

ENGR4708 Scalable Computing 0.125 4.00

ENGR4720 Advanced Studies in Engineering 0.125 3.83

ENGR4761 Image Processing 0.125 3.67

ENGR4742 Standards, Ethics and Compliance 0.125 4.17

Selective Average 0.500 3.99

Elective Yr 4* 0.125 4.00
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Other Australian Universities

Course Data

The data shown in this Appendix includes the degree course data for selected Australian

Universities offering a Bachelor of Information Technology. The selected universities were:

1. The Bachelor of Information Technology – Swinburne University of Technology

2. The Bachelor of Information Technology – University of Queensland

3. The Bachelor of Information Technology – Newcastle University
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B.1 Appendix B1 - Swinburne University BIT

Table B.1: Swinburne BIT Data Analysis – year 1
Subject Code Weight SOLO Score

Semester 1

HBC110N Accounting for Managers 0.125 2.94

HIT1401 Introduction to Business Information Systems 0.125 2.71

HIT1402 Database Analysis and Design 0.125 3.13

HIT1403 ICT Environments 0.125 3.36

Choose one of:

HIT1301 Algorithmic Problem Solving, or 0.125 3.34

HIT1404 Introduction to Programming in .NET 0.125 3.65

Selective 1 Average 0.125 3.50

Semester 2

HBSH100 Behaviour and Communication in Organisations 0.125 3.50

HIT2405 Requirements Analysis and Modelling 0.125 3.52

HIT2422 Database Systems 0.125 3.38

HIT2416 Enterprise Systems 0.125 3.38

Choose one of:

HIT2302 Object-Oriented Programming or 0.125 3.35

HIT2425 Business Systems Programming in .NET 0.125 3.30

Selective 2 Average 0.125 3.33

Summer Semester

HIT3407 Information Systems Project Management 0.125 3.31

HIT3405 Business Process Modelling 0.125 3.25

Choose one of:

HIT3408 Information Systems Risk and Security or 0.125 3.57

HIT3413 Business Intelligence 0.125 3.48

Selective 3 Average 0.125 3.52

Core Subject Average 3.25

First Year Score 3.30
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Table B.2: Swinburne BIT Data Analysis – years 2 and 3
Subject Code Weight SOLO Score

Stage 2

Semester 1

HIT2414 Mobile Business and Connectivity 0.125 3.69

HIT3410 Systems Acquisition and Implementation Management 0.125 3.24

Elective 0.125 3.33

Elective 0.125 3.33

And choose one of:

HIT2037 Software Development in Java or 0.125 3.63

HIT3303 Data Structures and Patterns or 0.125 3.86

HIT3304 Database Programming or 0.125 3.41

HIT3119 Enterprise Java or 0.125 3.83

HIT3421 Database Implementation or 0.125 3.39

HIT3412 Business Information Systems Analysis 0.125 3.64

Selective Average 0.125 3.63

Semester 2

HIW051 Industry-Based Learning 0.500 3.67

Summer Semester

HBSH200 Organisation Behaviour 0.125 4.00

Second Year Score 3.58

Stage 3

Semester 1

HIW052 Industry-Based Learning 0.500 3.67

Semester 2

HIT3424 Information Systems Management 0.125 3.50

HIT3044 Professional Issues in Information Technology 0.125 3.70

Elective 0.125 3.41

Elective 0.125 3.41

And choose one of:

HIT3416 Industry Project (Analytical) or 0.125 3.69

HIT3427 Configuring Business Information Systems Solutions 0.125 3.56

Selective Average 3.62

Core Subject Average 3.62

Third Year Score 3.59
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B.2 Appendix B2 - University of Queensland

BInfTech
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Table B.3: University of Queensland BInfTech Data Analysis
Subject Code Weight SOLO

Score

First Year Subjects

CSSE1001 Introduction to Software Engineering I 0.125 3.00

DECO1100 Design Thinking 0.125 3.44

DECO1400 Introduction to Web Design 0.125 3.00

DECO1800 Design Computing Studio I – Interactive Technology 0.125 3.27

INFS1200 Introduction to Information Systems 0.125 3.06

MATH1061 Discrete Mathematics 0.125 3.29

Second Year Subjects

DECO2800 Design Computing Studio 2 – Testing & Evaluation 0.125 3.25

CSSE2002 Programming in the Large 0.125 3.33

INFS2200 Relational Database Systems 0.125 3.30

COSC2500 Numerical Methods in Computational Science 0.125 2.97

CSSE2010 Introduction to Computer Systems 0.125 3.13

CSSE2310 Computer Systems Principles and Programming 0.125 3.33

DECO2200 Graphic Design 0.125 3.83

DECO2300 Digital Prototyping 0.125 3.63

DECO2500 Human-Computer Interaction 0.125 3.38

SCIE2100 Introduction to Bioinformatics 0.125 2.96

Third Year Subjects

DECO3800 Design Computing Studio 3 – Proposal 0.125 3.69

DECO3801 Design Computing Studio 3 – Build 0.125 3.83

CSSE3006 Special Projects in Comp. Systems and S/W Eng. 0.250 3.60

COMP3301 Operating Systems Architecture 0.125 4.00

COMP3506 Algorithms & Data Structures 0.125 3.67

COMP3702 Artificial Intelligence 0.125 3.75

COMS3000 Information Security 0.125 3.88

COMS3200 Computer Networks I 0.125 3.36

COSC3000 Visualization, Computer Graphics & Data Analysis 0.125 3.17

COSC3500 High-Performance Computing 0.125 3.58

CSSE3002 The Software Process 0.125 3.42

DECO3500 Social & Mobile Computing 0.125 3.95

DECO3850 Physical Computing & Interaction Design Studio 0.250 4.00

INFS3200 Advanced Database Systems 0.125 4.25

INFS3202 Web Information Systems 0.125 4.00

INFS3204 Service-Oriented Architectures 0.125 4.25

INFS3222 Systems Analysis & Design 0.125 3.50

MATH3201 Scientific computing: adv. techniques and app... 0.125 3.69

MATH3202 Operations Research & Mathematical Planning 0.125 3.63

MATH3302 Coding & Cryptography 0.125 3.54
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B.3 Appendix B3 - University of Newcastle BIT
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Table B.4: University of Newcastle BIT Data Analysis
Subject Code Weight SOLO

Score

First Year Subjects

CORE

COMP1050 Internet Communications 0.125 3.13

INFT1001 Foundations of Information Technology 0.125 3.21

INFT1004 Introduction to Programming 0.125 3.25

DIRECTED

INFO1010 Introduction to Information Systems and Technology 0.125 2.75

GENG1003 Introduction to Procedural Programming 0.125 3.42

MATH1510 Discrete Mathematics 0.125 3.03

SENG1110 Introduction to Software Engineering 1 0.125 3.39

SENG1120 Introduction to Software Engineering 2 0.125 3.25

Second Year Subjects

CORE

INFT2009 Systems Modelling 0.125 3.40

INFT2031 Systems & Network Administration 0.125 3.50

INFT2040 Database Management Systems 0.125 3.25

DIRECTED

SENG2050 Introduction to Web Engineering 0.125 3.43

DESN2270 Web Multimedia 0.125 3.75

Third Year Subjects

CORE

INFT3100 Project Management 0.125 4.00

INFT3920 Contemporary Issues in Information Technology 0.125 4.30

INFT3970 IT Major Project 0.250 3.64

DIRECTED

COMP3260 Data Security 0.125 4.00

INFT3007 The Information Resource 0.125 3.63

INFT3940 Information Technology Applications 0.125 3.83

INFT3960 Games Production 0.125 3.42

SENG3130 Software Architecture & Quality Management 0.125 3.44

SENG3300 User Interface Design 0.125 3.17

SENG3400 Network and Distributed Computing 0.125 3.67
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