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Summary

Computational approaches to the fracture of engineering components or structures
are of ongoing research interest. The development of an accurate, robust and
efficient computational fracture framework is not an easy task. To properly account
for the effect of material microstructure on the overall response and to understand
structure-property connections, multiscale modelling is deemed necessary. However,
conventional multiscale approaches have limitations when simulating highly nonlin-
ear phenomena, such as strain localisation. In the presence of strain localisation, at
the macroscale the governing equations of equilibrium lose ellipticity, leading to the
mesh sensitivity of finite element solutions; furthermore, the homogenised response
with standard averaging methods depends on the size of a Representative Volume
Element (RVE).
This thesis aims to develop computational multiscale failure approaches for linking
fracture or failure events across scales in a manner that alleviates the difficulties
mentioned previously. To this end, two different continuous-discontinuous multiscale
approaches based on computational homogenisation are proposed. Both are capa-
ble of capturing the hardening and softening portions of the material response prior
to and after the strength limit. This is accomplished by coupling intact RVE models
with Gauss points within the predefined critical regions of macroscopic structures
at the beginning of analysis. After the material becomes unstable due to softening,
a new crack segment is inserted for which cohesive RVE models are assigned to
crack integration points. Such cohesive RVE models are associated with extended
computational homogenisation schemes in order to resolve RVE size dependence
in the presence of strain localisation.
Inspired by the classical crack band model of Bazant and Oh, the first multiscale
failure approach is developed on the basis of an extended computational homogeni-
sation scheme called macro-discontinuity enhanced FE2. The weakly periodic BCs
that are aligned with the localisation direction are employed to minimise the boundary
effects. One major advantage of this model is its simplicity since it does not require
the knowledge of evolution details of strain localisation at the microscale. However, it
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does not strictly enforce the kinematical consistency between the macroscopic crack
and microscopic strain localisation band. To this end, the second multiscale failure
approach is developed on the basis of the Failure-Oriented Multiscale Variational
Formulation (FOMVF) proposed in the literature. The FOMVF is built upon the
requirement of kinematic admissibility and the principle of multiscale virtual power.
For both multiscale failure approaches, the crack at the macroscale is represented
with the XFEM method to address mesh sensitivity issues. A series of numerical
studies are illustrated to show both multiscale failure approaches are capable of
handling strain localisation or fracture problems.
Multiscale failure modelling is then applied to explore the failure mechanisms of
cortical bone tissue. The effects of fracture properties of the cement line on the
effective fracture strength and toughness are investigated by means of microscopic
modelling. The extrinsic toughening mechanisms observed in the RVE models are
discussed. A three-point bending test for the cortical bone specimen is simulated
with the first multiscale failure modelling approach.
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Chapter 1

Introduction

1.1 Background

Research on advanced material design and assessment has been on the rise and
become the most important part of innovation in technologies in last few decades.
Natural or man-made composite materials are broadly applied across the spectrum
of industrial sectors, such as aerospace, defence, energy, manufacturing, construc-
tion and transport.
The majority of materials are heterogeneous, consisting of diverse constituents, and
displaying a complex topology of microstructures. Figure ?? shows a simplified
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Figure 1.1 Cement-based composite materials show different observation scales. Repro-
duced with permission from (Constantinides and Ulm, 2004), © 2004, Elsevier.

model of the four-level microstructure of concrete. At each observation scale, the
structure may display different deformation and failure mechanisms. Furthermore,
it is recognised that the constituents and their evolution and interactions largely
contribute to the mechanical performance of materials at coarser scales.
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Failure, especially fracture, reduces the load-bearing capacity, and would make
components or structures unfit for service in an engineering application. Figure 1.2
illustrates such an example of collapse caused by a severe earthquake in 2008 in
China. Therefore, damage tolerance design and fracture prediction are essential to
enhance and maintain the mechanical reliability of composite structures. However, it
is difficult to fabricate and test full-size specimens because of enormous experimen-
tal labour and cost. An alternative to experimental exploration is a computational
approach.

Figure 1.2 Steel framed building in ChuanXinDian Chemical Park in Shifang County, suffered
heavy damage during the 2008 Sichuan earthquake in China. Source: https://commons.
wikimedia.org/wiki/File:Shifa_Chuanxindian_earthquake_park_05.jpg, via Wikimedia
Commons.

With the aid of computational tools, the effects of the external environment (e.g.,
loading and chemicals) can be studied in great detail. To date, continuous efforts are
still being made to improve the predictive ability of computational models, particularly
for fracture. Phenomenological constitutive material models are typically employed
to describe highly nonlinear material behaviours at the structural scale. However, the
mathematical derivation of these material models is often obscure to derive and a
large set of material parameters are needed to calibrate. Furthermore, most of these
analytical material laws are not of high accuracy since they lack enough information
such as interactions from the fine scales.
To this end, brute-force simulation approaches can be potential options where the

https://commons.wikimedia.org/wiki/File:Shifa_Chuanxindian_earthquake_park_05.jpg
https://commons.wikimedia.org/wiki/File:Shifa_Chuanxindian_earthquake_park_05.jpg
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details of microstructures are explicitly resolved at the coarse scale, but they are not
feasible in practice since the computational burden is prohibitive. Therefore, during
the last two decades, a number of numerical and computational models, referred
to as multiscale models, have been proposed to get around this problem. These
are models based on the data of microstructures. One major category of multiscale
models is based on “homogenisation” ( similar to “coarse graining” in physics) (Ma-
touš et al., 2017). The fundamental idea behind homogenisation methods is to the
replace the heterogeneous material by an equivalent homogenous one. Among
homogenisation methods, one noticeable branch is computational homogenisation.
By means of computational homogenisation, a phenomenological constitutive model
is no longer needed for those material points coupled with micro samples, known as
Representative Volume Elements (RVEs) or Statistical Volume Elements (SVEs).
The conventional computational homogenisation methods have been successfully
applied to characterise the linear or nonlinear behaviour of heterogeneous materials.
Nonetheless, they show deficiencies when dealing with strain localisation problems,
which are common to the class of quasi-brittle materials. Upon strain localisation,
the existence of RVE is questioned. One major reason is the violation of the principle
of scale separation. Furthermore, the boundary value problem of statics at the
macroscale becomes ill-posed, when strain localisation occurs. This is caused by
the loss of ellipticity of stress governing equations. Existing regularisation techniques
or discontinuous crack approaches have to be employed. To date, several examples
of extended computational homogenisation schemes have appeared in the literature
which are able to deal with strain localisation. However, they have shortcomings
(e.g., complexity and practicability) and have not been widely applied to real-world
situations. Therefore, the development of computational homogenisation for captur-
ing material instability is still worth more attention.
In view of few practical applications of multiscale approaches, the developed mul-
tiscale failure modelling tool is applied to explore fracture mechanisms of cortical
bone.

1.2 Scope and outline

1.2.1 Scope

With the fact in mind that a comprehensive understanding of heterogeneous mate-
rials in terms of mechanical behaviours is not a simple task, this PhD work aims
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to explore some existing and well-developed computational failure and fracture ap-
proaches in the literature and to propose novel multiscale (two-scale) approaches
for structural and material failure problems. This project involves the disciplines of
continuum solid mechanics, numerical methods and computer science. Much effort
has been directed towards the final goal in mind, that computer-based simulations to
mimic real-world engineering structural fracture or investigate material degradation
mechanisms should be more reliable and effective. However, this is not a simple
task to accomplish, though a multitude of theories, approaches, and techniques are
there for references.
In this project, the following research questions need to be answered:

1. What is the state-of-art research in computational fracture mechanics?

2. The failure events such as microcracking and debonding in the microstructure
of hierarchical and heterogeneous materials adversely affect macrostructural
behaviour. How to capture the interplay between the failure events at the
microscale and the opening crack at the macroscale by means of multiscale
approaches that are built upon computational homogenisation?

3. How can the developed multiscale failure modelling techniques be applied to
the failure study of cortical ( compact ) bone, which possesses a multitude of
length scales in its structural composition?

1.2.2 Thesis outline

The thesis consists of seven chapters. The remainder of the thesis is organised as
follows:
Chapter 2 gives a comprehensive review of some existing computational methods to
fracture and multiscale modelling techniques. The research gaps are identified.
In Chapter 3, the theoretical basics and algorithmic aspects of several computational
fracture methods that will be used in the following chapters are explained.
Chapter 4 presents a new multiscale failure model that is based on an extended CH
scheme called the macro-discontinuity enhanced FE2. Theoretical derivation and
implementation details are elaborated. Numerical examples with direct numerical
simulation results as reference solutions are illustrated to demonstrate the effective-
ness of the multiscale failure model in dealing with strain localisation.
In Chapter 5, a new multiscale failure model that is based on the Failure-Oriented
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Multiscale Variational Formulation proposed in the literature is presented, with em-
phasis on the numerical implementation aspects.
Chapter 6 deals with the application of the multiscale failure modelling to study
cortical bone failure. The effects of fracture properties of cement lines on overall
strength and fracture toughness are explored. A three-point bending specimen made
of cortical bone is simulated with the multiscale approach presented in Chapter 4.
The thesis ends up with Chapter 7 where the main contributions are outlined and
future research directions are pointed out.

1.3 Notation

Three style of notation are adopted in this manuscript, namely indicial notation, tensor
notation and matrix notation. Equations in continuum mechanics are expressed
in indicial or tensor notation. Finite element formulations are expressed in matrix
notation. Three notation forms are illustrated by the inner product of two vectors

aibi = a · b = aT b . (1.1)

In indicial notation, the components of tensors are explicitly specified e.g., a vector
in indicial notation is hence represented by xi, where the index i ranges from one
to the number of spatial dimensions. Indices follow the convention of the Einstein
summation, that is, when an index variable appears twice in a single term and is not
otherwise defined, it implies summation of that term over all the values of the index.
In tensor notation, tensors of order one or greater are written in boldface. Lower
case bold-face letters are used for first-order tensors, whereas upper case bold-face
letters indicate high-order tensors. The major exceptions to this rule are the stress
tensor and the strain tensor which are second-order tensors, but are denoted by
lower case symbols as σ and ε. Major tensor operators include tensor products
denoted by ⊗ and inner product denoted by (·). The symbol ⊗s means the symmetric
part of a tensor product.
In matrix notation, the same symbols as for tensors are used to denote the matrices
but the connective symbols for indicating the operation are omitted. Symmetric high
order tensors are expressed in matrix or vector forms using Voigt notation. For
example, a two-dimensional stress tensor σ is written as a vector (σ11, σ22, σ12) in
Voigt notation, a two-dimensional strain tensor ε is written as a vector (ε11, ε22, ε12)
in Voigt notation and the corresponding fourth-order elastic stiffness tensor D is
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represented by a 3 × 3 matrix D. The right superscript T is used to represent the
transpose of a vector or matrix.
Subscripts M and m are used to indicate if a quantity belongs to the macroscale or
microscale, respectively. Symbols will be defined at their first appearance.

1.4 Numerical tools

All the computational implementation was performed in the open source platform
called OOFEM (Patzák, 2012), which is written in C++ and follows object oriented
programming paradigm. All the finite element meshes were generated with the Gmsh
(Geuzaine and Remacle, 2009). Matlab (MATLAB, 2014) was used to write several
scripts, such as generating the geometry of random microstructures and conducting
data analysis. 2D Plots were done in Gnuplot (Janert, 2010) and Paraview was used
for scientific visualisation purposes (Ayachit, 2015).



Chapter 2

Literature Review

In this chapter, some widely used methods in the fields of computational fracture
modelling and multiscale modelling are reviewed. The focus is restricted to finite
element based methods.

2.1 Computational fracture modelling

In the literature, a plethora of computational failure or fracture modelling methods
have been developed and further developments based on continuum mechanics or
discrete mechanics are taking place. Only continuum mechanics based methods
in the context of the Finite Element Method (FEM) will be examined in this review,
without any claim of completeness. The broad class of meshless methods and
discrete models is outside the scope of this review.
Failure simulations of quasi-brittle materials are of considerable research interest for
the following reasons:

• In engineering, most natural or man-made materials are heterogeneous at fine
scales and exhibit complicated progressive failure processes across length
and time scales.

• The need to ensure structural integrity calls for robust and efficient numerical
tools to model the damage evolution and crack propagation in structures.

• The introduction of strong discontinuities (e.g. cracks) in FEM approximations
is not a simple task. For example, the predicted response of a material with
discontinuities can be very sensitive to the mesh size and other geometrical
features of mesh such as direction.
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• Accurate representations of the crack opening and crack path are important
for accurately predicting global structural responses.

• Material failure may be of a complex mixed-mode form. In addition, surrounding
environmental factors, such as temperature and the presence of fluids and
chemical species, affecting material deterioration may need to be accounted
for.

2.1.1 Crack behaviour models

The mechanical behaviour of a physical crack can be described as traction-free or
cohesive. The major difference between these two models lies in whether or not
there are transmitted stresses between the two near-tip crack surfaces, provided by
different mechanisms such as uncracked ligaments and plasticity.

2.1.1.1 LEFM

Linear elastic fracture mechanics (LEFM) provides the fundamental principles and
methodologies concerned with assessing the integrity of elastic structures or compo-
nents with traction-free cracks under loading. The earliest work in LEFM can date
back to (Griffith and Eng, 1921) for the study of failure of brittle materials, where the
significant contribution was Griffith’s criterion. The Griffith’s criterion states that a
crack will propagate when the reduction in potential energy that occurs due to crack
growth is not less than the increase in surface energy needed for the creation of
new free surfaces. It is also assumed that energy dissipation takes place only at the
crack tip.

2.1.1.2 CZM

The applicability of the LEFM is restricted for cases where no initial cracks are
predefined (e.g., fracture study for geometry with notches) and the fracture process
zone is not small compared with the structural dimensions (e.g., concrete specimen
failure). Therefore, it lacks the ability to predict the failure onset of an intact structure
and even to capture the size effect prevalent in quasi-brittle materials (Bazant and
Planas, 1997, Bažant, 2000). This is the primary reason why the cohesive zone
models (CZM) (see Figure 2.1) have attracted so much research attention and
contributed to a number of successful engineering applications (Elices et al., 2002,
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Figure 2.1 Schematic of cohesive zone model.

Yang and Cox, 2005).
In the cohesive zone model, it is assumed that the effects of the nonlinear fracture
process zone (FPZ) are collapsed onto a displacement discontinuity surface, instead
of at the crack tip. The fundamental assumption for the cohesive zone model is that
material split or fracture is a progressive process at the microscale in the sense that
there are still cohesive forces that the material is able to transfer up to the final zero
stress state. As a consequence, the cohesive constitutive model represents the
failure characteristics of the material.
The pioneering theoretical work of cohesive zone models can be traced back to
Barenblatt (1962) and Dugdale (1960). They introduced the cohesive zone concept
from different perspectives during their studies of fracture of brittle and ductile
materials, respectively. The CZM development, in the form of nonlinear spring
foundations, was adopted by Ungsuwarungsri and Knauss (1987) to study crazing
in polymers considering the cohesive zone as a softening material, and by Song
and Waas (1993) to study delamination fracture in laminated composites. An
important aspect in the use of cohesive zone models is the characterisation of
traction-separation laws. The most widely employed forms among others include
the potential based exponential model proposed by Xu and Needleman (1994),
the trapezoidal model by Tvergaard and Hutchinson (1996) and the bilinear model
by Geubelle and Baylor (1998). Compared to the originally proposed exponential
cohesive laws in the literature, the bilinear models are favoured in some sense due to
the advantage of providing an adjustable initial slope to reduce artificial compliance.
Calibration examples of the fracture parameters involved in traction-separation laws
can be found in (Song et al., 2006, Alfano et al., 2009).
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2.1.2 Crack representations

The FEM is a well-established but constantly evolving numerical method which is
widely used to solve boundary value problems (BVPs). When simulating structural
or material failure with the FEM, a key question arises of how to represent cracks in
the discretisation. In the literature, implicit and explicit crack descriptions exist, see
Figure 2.2. The implicit crack representation simply smears the crack discontinuity
over some discretised region, being a row of single elements or a layer of several
elements in width. The kinematics are sketched in Figure 2.3(a). Alternatively, the
explicit crack representation geometrically models the actual displacement jump, as
in Figure 2.3(b). On the basis of these two representations at the discrete level, two
families of computational approaches to fracture are distinguished, the continuous
or smeared crack approaches and the discontinuous or discrete crack approaches.

(a) (b)

Figure 2.2 Two crack representation forms: (a) implicit (smeared) approach, and (b) explicit
(discrete) approach.

The smeared crack approaches introduce a strain localisation band with concen-
trated strains. Outside this band the material normally undergoes elastic unloading.
Strain localisation may occur due to the mechanism of material softening. Material
softening is realised in smeared crack approaches by defining the material constitu-
tive laws with strain softening (e.g., continuum damage models and plasticity models
with softening). The smeared crack approaches have two distinct versions, the local
smeared crack approach (the crack band approach as proposed in (Bažant and
Oh, 1983) ) and the family of fully regularised smeared crack approaches. They
share common features of the bounded strains at the crack and assuming standard
stress-strain constitutive equations.
In the local smeared crack approach, only a single element transverses the width
of the strain localisation band as shown in Figure 2.2(a). The displacement jump
presents two (finite) weak discontinuities (that is, discontinuities in strains) across
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Figure 2.3 Schematic of weak and strong discontinuities: with (a) continuous displacement
and discontinuous strain at the crack, and (b) discontinuous displacement and infinite strain
at the crack.

the intersections between the strain localisation element and the adjacent ones.
The fully regularised smeared crack approaches are formulated within continuum
damage mechanics and mostly employ more elements across the strain localisation
band, which leads to a smoother variation of the displacement and strain fields over
the band width. The significant difference between two versions is that the fully
regularised smeared crack approaches recover the ellipticity of the underlying partial
differential equations, whereas the other does not.
In the discrete crack approaches, the crack can be placed along inter-element edges
or embedded in a single element as shown in Figure 2.2(b). Due to the appearance
of the strong displacement discontinuity, the strains at the crack become infinite and
need to be interpreted in a distributional sense, see Figure 2.3(b). Therefore, the
standard stress-strain constitutive laws are no longer meaningful at the crack. For
this reason, upon crack initiation based on some criterion, the displacement jump
across the crack needs to be related to the stress vectors (tractions) on the crack
surfaces. In a displacement-driven FE analysis, a traction-separation law is usually
introduced instead of a stress-strain law for describing the cohesive crack behaviour.
The link between the smeared crack approaches (either local or fully regularised)
and the discrete crack approaches is an active research issue (Planas et al., 1993,
Bazant and Planas, 1997, Borst et al., 2004, Cazes et al., 2009). However, generally
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speaking, a smeared crack can be regarded as a sort of regularisation of a discrete
crack over a certain width, while on the other hand, a discrete crack can be inter-
preted as the limit case of a smeared crack with a vanishing width. Moreover, these
two crack representations are considered equivalent to each other from a viewpoint
of energetic equivalence.

2.1.3 Continuous (smeared) crack approaches

2.1.3.1 Local smeared crack approach

The “local” in the phrase “local smeared crack approach” means that this approach
is built on conventional continuum mechanics assumptions, which are distinguished
from the generalised continuum mechanics theories. The local smeared crack ap-
proach does not take into account any discontinuities in the topology of FE meshes;
instead the cracked material is assumed a continuum, whose constitutive law is
equipped with a strain softening branch after the peak stress to account for the
effects of cracks at the microscale.
This approach was first taken by Rashid (1968) to deal with cracking in prestressed
concrete vessels. Due to the simplicity of the smeared crack concept, for many
years it almost monopolised the modelling of crack propagation. However, later on it
was realised that if a smeared crack is only one element across, the total dissipated
energy is severely dependent on the size of the element (Bazant and Planas, 1997).
The dissipated energy tends to null upon mesh refinement, which is obviously not
physical. To remove this fault, Bažant and Oh (1983) proposed the seminal crack
band model in the context of continuum mechanics. This crack band model is quite
similar to the cohesive crack model developed by Hillerborg et al. (1976) in the
context of fracture mechanics. In these models, it was suggested that the notion
of strain softening numerically mimicked should not be considered as a character-
istic of the material, but it is actually closely connected to the fracture energy of
the material and the size of the finite element within the strain localisation band to
recover an objective representation of the energy dissipation. This regularisation on
the post-peak stress-strain branch, related to fracture energy and the element size,
is satisfactory to remove mesh size sensitivity of the solution.
Besides the mesh size sensitivity drawback, the directional mesh-bias dependency is
another problem, which however is more difficult to solve. If the spatial discretisation
is deliberately arranged in such a manner that the elements edges on the crack path
are aligned to the crack propagation direction (so-called “well-aligned” finite element
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meshes), the solutions obtained become more satisfactory (Cervera et al., 2010a).
However, this fact has not generally been recognised, as stated in (Cervera and
Chiumenti, 2006b).
To alleviate this directional mesh-bias dependency, several solutions have been
proposed in the literature. Specific FE formulations have been developed for this
purpose. Belytschko et al. (1988) introduced an assumed strain field that incorpo-
rated a localisation band rather than just a discontinuity. This localisation field can be
triggered in a state of homogeneous strain, whereas the additional modes in (Ortiz
et al., 1987) are triggered only in the presence of bilinear displacement fields. This
methodology was further elaborated by Simo and Rifai (1990) and resulted in the
class of Enhanced Assumed Strain (EAS) finite elements.
Along a different track, tracking algorithms widely used in the context of discrete
crack approaches have been considered as an auxiliary device in local smear crack
approaches for alleviating the mesh-bias dependency, see (Cervera and Chiumenti,
2006b,a).

2.1.3.2 Fully regularised smeared crack approaches

The local smear crack approach can furnish a good tool for capturing the material
deterioration and loss of load carrying capacity of structures. However, this approach
is locality based and the loss of ellipticity of the underlying mathematical stress gov-
erning equations for rate independent constitutive laws still remains (Pijaudier-Cabot
and Bažant, 1987). In the last few decades, the mechanics community preferred to
attribute the mesh dependence of strain softening problems to this ill-posedness of
the underlying BVP from the viewpoint of mathematical formulations (De Borst et al.,
1993). Therefore, one has rigorous justifications for the fact that the discrete FE
solutions are not convergent to the exact solutions with respect to mesh refinement.
Also, people may associate the directional mesh-bias to the loss of ellipticity (Cervera
and Chiumenti, 2006b).
To assure the well-posedness of the boundary value problem, considerable efforts
have been made to apply generalised continuum mechanics theories to resolve
the difficulties with material softening. Pertinent work includes the micropolar the-
ory (Aifantis, 1984, Steinmann and Willam, 1991), non-local integral-type models
(Pijaudier-Cabot and Bažant, 1987, Jirasek, 1998), gradient enhanced damage mod-
els (Peerlings et al., 1996, Geers et al., 1998) and phase field models (Francfort and
Marigo, 1998, Verhoosel and de Borst, 2013) for modelling strain localisation. These
generalized continuum mechanics theories introduce a material characteristic length.
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We categorise this large class of approaches as fully regularised smeared crack
approaches, different from the crack band approach which is partially regularised
with fracture energy.
A common feature of regularised smeared crack approaches is the introduction of a
characteristic length parameter as “localisation limiter” into the constitutive models
to preclude the occurrence of sharp strains and to limit the strain localisation to a
band of finite width. In physics, this length is closely related to the size and aver-
age spacing of microcracks, and the size of inhomogeneities in materials (Bažant
and Jirásek, 2002). The micropolar theory introduces independent rotational de-
grees of freedom additional to the translational degrees of freedom (Steinmann and
Willam, 1991). In the nonlocal integral-type damage approaches (Pijaudier-Cabot
and Bažant, 1987, Bažant and Jirásek, 2002), the local stress at a material point of
interest is dependent on the deformation of its neighbourhood. A common practice is
to perform a weighted averaging of certain internal variables (e.g. equivalent strain)
within such a volume, determined by the introduced length parameter. Similar to
the nonlocal theory, the gradient dependent or enhanced continuum theory with the
advantage of being strictly local in a mathematical sense has been widely used first
for the plasticity theory (De Borst and Mühlhaus, 1992) and then for isotropic damage
models by Peerlings et al. (1996). In (Peerlings et al., 1996), a gradient formulation
can be conceived as the differential counterpart to the integral formulation.

2.1.4 Discontinuous (discrete) crack approaches

Discontinuous or discrete crack approaches are geometrically realistic considering
the fact that cracks are nothing else but real discontinuities within the material itself.

2.1.4.1 Cohesive elements

As a discretisation technique, cohesive elements are the simplest method to incor-
porate the cohesive zone model in the context of FE analysis. The crack behaviour
(displacement discontinuity) is simulated with cohesive elements equipped with a
traction-separation law. In such simulations, cohesive elements are naturally placed
between neighbouring continuum elements along the potential propagation path.
Situations with crack paths known in advance include delamination of laminated
composites (Schellekens and De Borst, 1993a, Alfano and Crisfield, 2001) and
fibre-matrix debonding (Xu and Needleman, 1993). Camacho and Ortiz (1996)
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presented a stress-based extrinsic cohesive law where a new surface is adaptively
created by duplicating nodes which were previously bonded.

Remark 1 Under the name of nonlinear spring models, cohesive calculations were
introduced in (Ungsuwarungsri and Knauss, 1987, Song and Waas, 1993, 1995).

2.1.4.2 EFEM and XFEM

Simo et al. (1993) presented kinematics of strong discontinuities and introduced the
notion of strong discontinuity analysis (SDA). As mentioned there, the continuum
softening modulus is reinterpreted in the distributional sense to make mathematical
and physical sense of the continuum equations. Based on Simo’s work, discontinuity
Embedded Finite Element Methods (EFEM) have been developed in the references
(Armero and Garikipati, 1996, Oliver, 1996, Oliver et al., 1999, Borja, 2000, Jirásek,
2000, Wells and Sluys, 2001a, Oliver et al., 2014). The main goal of the EFEM is
to provide a non intrusive way to embed a strong discontinuity in a single element.
(Oliver et al., 2002) showed the links between SDA and nonlinear decohesive frac-
ture mechanics. The regularised kinematic state of discontinuity can be regarded as
a means to model the formation of a strong discontinuity as the collapsed state of a
weak discontinuity.
The eXtended Finite Element Method (XFEM) has seen a significant amount of
development and various applications, since its inception (Belytschko and Black,
1999, Moës et al., 1999). The XFEM is able to resolve non-smooth features such
as discontinuities, singularities, high gradients, compared to standard FEM. This
is achieved by incorporating enrichment functions into the approximation space by
exploiting the concept of partition of unity of shape functions. Sukumar et al. (2000)
employed the XFEM in three-dimensional fracture mechanics. Sukumar and Prévost
(2003) discussed the aspects of computer implementation. Daux et al. (2000) dealt
with arbitrary branched and intersecting cracks with the XFEM. Wells and Sluys
(2001b) combined the XFEM with cohesive zone models to simulate the propaga-
tion of cohesive cracks. Zi and Belytschko (2003) developed a new formulation for
elements containing the crack tip of cohesive cracks. Asferg et al. (2007) formulated
a partly cracked tip element for three-node constant strain elements for cohesive
crack growth, permitting variations in the discontinuous displacement field on both
sides of the discontinuity. Remmers et al. (2003) proposed to represent cohesive
cracks with a set of overlapping cohesive segments inserted into finite elements by
exploiting the XFEM. Unger et al. (2007) applied the XFEM to simulate concrete
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fracture and compared different criteria for predicting the propagation direction of
cohesive cracks. Hansbo and Hansbo (2004) proposed an alternative formulation of
the XFEM, called the phantom node method, where the original element is replaced
by two elements initially coincident. The phantom node method is employed to
study splitting in laminates by Van der Meer and Sluys (2009). Liu and Borja (2008)
presented an incremental quasi-static contact algorithm for path-dependent frictional
crack propagation in the framework of the XFEM, where the contact constraint was
embedded within a localised element by a penalty method. The XFEM was also
adopted to study crack growth in saturated porous media (Khoei et al., 2014) and
the topology optimisation of structures (Belytschko et al., 2003). A comprehensive
review can be found in (Belytschko et al., 2009, Fries and Belytschko, 2010).
A comprehensive comparison (Oliver et al., 2006) has been performed between the
EFEM and XFEM, which showed that both the numerical accuracy and the efficiency
of the EFEM is largely improved by the adoption of elemental enrichment instead
of nodal enrichment in the XFEM. Wu et al. (Wu et al., 2015) enhanced the EFEM
by combining the advantages of the XFEM and EFEM. In their work, a non-uniform
discontinuity mode was considered as in the XFEM. As well, the condition of traction
continuity was applied in the statically optimal form as in most EFEMs. A novel
robust method called variational multiscale cohesive model (VMCM), inspired by
(Garikipati and Hughes, 1998), has been proposed (Rudraraju et al., 2010, 2012a).
It shares a significant degree of similarity to the EFEM, but is formulated following
the classical variational multiscale paradigm (Hughes et al., 1998). This method
starts with the additive decomposition of the displacement field into coarse and fine
scale parts and incorporates a discontinuous function for resolving displacement
discontinuity within a continuum element.
There are some other notable contributions to discrete crack modelling, e.g. aug-
mented FEM (Ling et al., 2009), floating node method (Chen et al., 2014), extended
cohesive damage model (Li and Chen, 2017) and continuum decohesive finite ele-
ment method (Prabhakar and Waas, 2013, Lin et al., 2019) inspired by the VMCM,
just to name a few. They have been developed for handling discrete crack geometries
and already have presented promising applications mainly to composite structures.

2.1.5 Tracking algorithms

One of the most important ingredients in modelling crack propagation is the deter-
mination of when and how a crack will propagate. The first involves a postulated
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fracture or damage initiation criterion, whereas the second deals with the identi-
fication of the crack propagation direction and potential crack paths. In order to
realistically mimic an actual crack path, tracking algorithms are a crucial aspect,
complementary to the kinematic representation of a crack.
A tracking algorithm serves as a device to identify the direction of crack propagation,
recognise the consolidated crack and assign the new crack path during the simula-
tion. It is typically used in intraelement discrete crack approaches (XFEM or EFEM)
with a strong discontinuity captured inside elements. As stated in (Saloustros et al.,
2018), the a tracking algorithm can help choose the expected solution by minimising
the number of potential ones, provide a more realistic crack representation especially
for curved cracks and limit the energy dissipation outside the crack to reflect the
localising character after material softening. In the discrete crack approaches, the
enforcement of crack path continuity is beneficial for avoiding spurious stress locking
induced by incompatible deformation modes between adjacent elements (refer to
(Jirásek and Zimmermann, 2001) for more details).

2.1.5.1 Local tracking algorithms

The underlying idea behind local tracking algorithms, a branch of tracking algorithms,
is to identify the elemental crack location on an element-by-element basis. In local
tracking algorithms, the coordinates of crack tips are stored for each crack only when
a converged solution is found. The crack propagation direction is computed locally
from the stresses or strains within the element or averaged over a small circular
domain (in 2D). The local tracking algorithm was discussed in (Alfaiate et al., 2002,
Dias-da Costa et al., 2009) for the EFEM, in (Moës et al., 1999) for the XFEM, and
in (Cervera et al., 2010b) for the local smeared crack approach.

2.1.5.2 Global tracking algorithms

Oliver et al. (2004), Oliver and Huespe (2004) proposed a global tracking algorithm
which is based on solving an additional linear anisotropic heat conduction-like BVP
at each time step accompanying the standard mechanical BVP for failure. The
unknown field variable θ of the newly introduced BVP is a scalar whose isolevel
curves (in 2D) represent those candidate crack paths from which the envelope
labelled by a constant value of the i − th crack root element is the expected crack
position. In a discrete solution setting, the crack path identification is performed by
looping through all the domain elements and compare their values for θ with values



18 Literature Review

associated to all the cracks in case of multiple non-intersecting cracks. In order
to provide a non-uniform field, two arbitrary values for θ should be prescribed, at
least, in two nodes. This global tracking algorithm was combined with discrete crack
modelling techniques, the EFEM in (Oliver et al., 2004), the XFEM in (Dumstorff and
Meschke, 2007), and the local smeared crack approach in (Cervera and Chiumenti,
2006b,a).
Although the global tracking algorithms have drawbacks, compared to local tracking
algorithms, such as computationally demanding, code invasive, inability to deal
with intersecting cracks, it is worth mentioning that their extension to the three-
dimensional case is straightforward and simple (Oliver et al., 2004, Jäger et al.,
2008) compared to the level set methods to be discussed below.

2.1.5.3 Level set methods
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Figure 2.4 Level set functions for discrete crack representation.

Level set methods are the most commonly used techniques for tracking and updat-
ing moving interfaces or propagating cracks. The level set method was originally
introduced for tracking the evolution of closed boundaries. Later on, Belytschko et al.
(2001) and Stolarska et al. (2001) modified the original version for use in the context
of XFEM for the crack representation. To track an open crack in terms of connectivity,
two (or three) level set functions are essential, one for the crack surface, one (or two)
for each crack tip. The crack surface and crack tips are identified by corresponding
zero level values (Duflot, 2007), refer to Figure 2.4. Note that the zero level set must
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not be updated behind the tip to consider that a material point remains cracked once
cracked. In a discrete solution setting, the level set values can be readily interpolated
with nodal values using the standard FE approximation basis for the displacement
interpolation. For instance, to represent a crack with curvature within an element,
higher-order interpolation for level sets has been considered (Stazi et al., 2003).

2.1.6 Transition from continuous to discontinuous cracks

Both kinds of continuous and discontinuous crack approaches show limitations.
A continuous approach is more appropriate for capturing crack initiation while a
discontinuous one provides a more realistic way for describing crack propagation. To
take advantage of them, in recent years, attempts have been made to combine them
to capture the entire fracture process. A transition criterion is required from a diffuse
damage state to a discrete sharp crack. Most of such transition schemes are based
on the consideration of energetic equivalence (Cazes et al., 2009). Simone et al.
(2003) described material degradation with a implicit gradient damage model and
introduced traction-free discrete cracks at fully damaged positions. Thus, in the final
stage of failure, the spurious damage growth known in the continuous model can be
effectively avoided. Cuvilliez et al. (2012), Wu et al. (2014) coupled implicit gradient
damage models and cohesive zone models in which way the switch from diffuse
damage to cohesive cracks can be made at any damage level. Bobiński and Tejch-
man (2016) developed a transition algorithm between a non-local continuum damage
model and XFEM, where the transition was carried out when softening parameter for
cohesive cracks exceeded a predefined value. Wang and Waisman (2016) proposed
a coupled continuous and discontinuous approach where an integral-type nonlocal
continuum damage model was coupled with an extrinsic discrete interface model
implemented within the XFEM. The transition was established via an equivalent
thermodynamic framework. The dissipated energy was obtained numerically and
weakly matched at the transition.

2.2 Multiscale modelling

Multiscale modelling of failure has been a major subject of research in the mechanics
community during the last two decades. Applications arise in many engineering fields
such as the design and analysis of mechanical components and large structures.
In the sequel, we will summarise the work in this area, especially with emphasis



20 Literature Review

on two-scale failure modelling. The term “multiscale” here refers to multiple length
scales. The focus will be on two scale situations. Three categories of multiscale
methods can be classified according to the computational structure, as shown in
Figure 2.5.
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Figure 2.5 Different multiscale modelling approaches: (a) sequential, (b) concurrent and (c)
semi-concurrent.

2.2.1 Introduction

Most materials are heterogeneous and multiscale. Multiscale methods furnish
great promise to exploit the physically existing multiscale character of the material.
Comprehensive review in this direction can be found in (Kanouté et al., 2009) for
composites, (Otero et al., 2018) for computational homogenisation, (Geers et al.,
2010, Matouš et al., 2017) for nonlinear problems, and (Nguyen et al., 2011b)
particularly for failure.

2.2.2 Sequential multiscale methods

In these methods ( Figure 2.5a ), information is passed in one direction from the
fine scale to the coarse scale. The information exchange is accomplished in a
preprocessing step before the coarse scale analysis starts. In most situations,
apparent elastic constants are extracted by virtual numerical testing on a unit cell by
numerical homogenisation procedures (a unit cell is such that its periodical repetition
constitutes the microstructure, resulting in a ordered representation). In some
cases, these material constants can also be obtained in a closed-form by analytical
homogenisation techniques but with limited applications to simple microstructure
topologies (Hill, 1963, Nemat-Nasser and Hori, 2013). For a complex heterogeneous
structure, the numerical homogenisation methods are recommended and frequently
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used in practice to compute effective elastic constants of the homogenised media.
Though the sequential multiscale methods are successful in deriving effective or
homogenised behaviour for heterogeneous media, the main weakness is that they
are unable to handle complex material behaviour, such as material softening and
strain localisation, which involves an evolution or dynamic character.

2.2.3 Concurrent multiscale methods

Concurrent multiscale methods are strong coupling techniques that couple the fine
and coarse scale discretisations into a single system of algebraic equations to be
solved, as illustrated in Figure 2.5b. This strong coupling calls for techniques to
couple the meshes of coarse scale and fine scale and moreover efficient algorithms
for adaptive addition of fine scale features. The transition to fine scale is performed
as a consequence of adaptive local refinement. When confronting softening and
strain localisation phenomena, these methods, owing to strong coupling across
scales, do not suffer from the RVE size dependence and macro-element sensitivity
of solutions as in the computational homogenisation. Furthermore, failure processes
can be accurately described, from crack nucleation, through crack coalescence
up to the formation of a stress-free crack. Another advantage is that, compared
to the direct numerical solutions, the concurrent multiscale methods employ fewer
computational resources due to the local refinement in discretisation.
In the literature, the variational multiscale method introduced by Hughes et al. (1998)
has become the theoretical paradigm for a large class of new schemes for multiscale
failure. Relevant works include (Loehnert and Belytschko, 2007, Hund and Ramm,
2007, Hettich et al., 2008, Mergheim, 2009, Rudraraju et al., 2010, 2012a). Common
features among these are the two-scale decomposition of the displacement field
into a coarse-scale and a fine-scale component (fluctuation), and the specification
of locality assumptions on fine-scale solutions. Concurrent multiscale methods for
material failure based on domain decomposition methods were given in (Guidault
et al., 2007, Lloberas-Valls et al., 2012). The domain decomposition methods
split the global domain into two parts, one discretised by a coarse mesh wherein
the response is smooth and the other wherein the fluctuations are severe so that
microstructural details are needed to be explicitly resolved. The fine-scale domain
can embody strain localisation or high gradients so that these methods are ideal for
modelling material failure.
Note that the concurrent multiscale methods, due to strong coupling, are best suited
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to problems where the coarse and fine scales are not far separated. If this is not the
case, computational homogenisation methods to be discussed in the following are
favoured when strong scale jumps are required.

2.2.4 Semi-concurrent multiscale methods

Semi-concurrent multiscale methods as in Figure 2.5c exchange data between
two separate scales. One widely used method among semi-concurrent multiscale
methods is the FE2 method (also known as computational homogenisation), with the
superscript “2” indicating that two scales are involved (Feyel and Chaboche, 2000).
In FE2 method, the element method is used at both scales.
In computational homogenisation (CH) based methods (or FE2), the effective macro-
scopic constitutive behaviour is defined on the fly during the simulation. The validity
of CH methods relies on the underlying assumption of strong scale separation and
the existence of an RVE (Hill, 1963). The scale separation signifies that the charac-
teristic length at the coarse scale should be far larger than that at the fine scale so
that the fluctuations of field variables are not pronounced at the coarse scale. As a
result, the material behaviour at a point at the coarse scale is representative of the
fine scale behaviour in a statistical sense. The first-order CH is a widely used one
of which the earliest development can date back to the time around the year 2000
(Smit et al., 1999, Feyel and Chaboche, 2000, Terada et al., 2000, Kouznetsova
et al., 2001, Miehe et al., 2002). As mentioned by Matouš et al. (2017), the scale
separation principle may be violated either when the macroscopic fluctuations are
fairly small due to strain localisation or high gradients, or when a microscopic char-
acteristic length is relatively large because of large microstructural constituents or
the presence of long-range correlations. For that reason, the standard first-order
homogenisation scheme fails for these situations.
Modified and extended CH schemes on the basis of the standard first-order ho-
mogenisation scheme have been developed to overcome the deficiencies of the
standard first-order CH. A typical example is the second-order CH which couples the
first-order continuum microstructure to the higher-order gradient continuum at the
coarse scale. This allows for moderate localisation of the coarse-scale field and it
captures the effect of the size of the microstructure into the homogenisation scheme.
Seminal works include (Geers et al., 2001, Kouznetsova et al., 2004, Kaczmarczyk
et al., 2008, 2010a). The implementation of the second-order CH scheme is usually
more involved than the first-order CH scheme owing to the incorporation of strain
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Figure 2.6 The semi-concurrent multiscale method proposed by Nguyen et al. (2012c) for
modelling mode-I cohesive failure. Reprinted with permission from (Karamnejad and Sluys,
2014), © 2014, Elsevier.

gradient and associated higher-order stress.
Although the second-order can resolve problems of moderate strain localisation
and high gradients within the RVE, when the macroscopic fluctuations are close to
the order of the fine scale during the loading, as is the case of strain localisation
phenomena, the assumption of scale separation does not hold any longer as pointed
by Gitman et al. (2007).
Representative works include (Matouš et al., 2008, Belytschko et al., 2008, Hirschberger
et al., 2009, Verhoosel et al., 2010, Souza and Allen, 2011, Nguyen et al., 2011a,
2012c, Coenen et al., 2012a, Unger, 2013, Karamnejad and Sluys, 2014, Bosco
et al., 2015, Oliver et al., 2015, Toro et al., 2014, 2016a, Petracca et al., 2016, Sven-
ning et al., 2017b, Turteltaub et al., 2018) to name a few. Most of these works attempt
to extract from the microscale problem an objective effective macro crack response
in the form of traction-separation laws, as shown in Figure 2.6. More specifically,
the localisation of an RVE is interpreted as the formation of a strong discontinuity
on the macroscale model. A coupled-volume multiscale method that abandoned
the separation of scales principle was introduced in (Gitman et al., 2008) where the
area associated with a macroscale integration point, rather than the macroscale
integration point itself, was closely linked to the size of RVE.
Although CH based multiscale modelling has enormous advantages compared
to full-scale resolution methods, its real-world applications remain very restricted,
regarding algorithmic complexity and computational costs, in particular for highly
nonlinear phenomena. Such challenges can be alleviated by considering model
order reduction and parallel computing techniques.
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Model order reduction techniques aim to reduce the dimension of the state-space
system and hence to decrease computational expense, while retaining the dominant
characteristics of the original system. In multiscale modelling, the reduced basis is
computed on the basis of a number of so-called snapshots, which are determined
from a series of pre-computations on the RVE model subjected to different loading
conditions. Relevant examples of in the context of multiscale modelling can be found
in (Yvonnet et al., 2009, Kerfriden et al., 2013, Oliver et al., 2017, Zhang and Oskay,
2017). Parallel computations for CH based multiscale modelling are naturally feasible
because the local RVE computations are independent of each other. Nguyen et al.
(2012d) presented a parallel implementation of the discontinuous CH method for
simulating cohesive cracks.

2.3 Research gaps

This chapter has reviewed the widely used computational fracture approaches
and multiscale modelling approaches in the literature. The following gaps can be
identified in the course of literature study:

• Although many extended CH based multiscale models for fracture or strain
localisation problems have been proposed, most of them are complex in their
formulation or implementation. There seems to be a need for developing a
simple but working CH based multiscale failure model.

• Some of the existing multiscale failure models have made confusing hypotheses
during formulating. Therefore, it is necessary to have a multiscale failure
framework derived from rigorous variational principles.

• Although multiscale failure modelling has been applied to concrete and com-
posite materials, less effort has been made to study toughening mechanisms
and failure events across length scales in cortical bone.



Chapter 3

Computational approaches for
modelling cracks

This chapter details several popular numerical approaches for modelling damage
or cracks in the literature. In the computational mechanics community, these ap-
proaches have been under extensive research and development for solving various
failure or fracture problems and improving their numerical performance. These nu-
merical approaches will be employed in the multiscale failure modelling approaches
discussed in the following chapters. In Section 3.1, the FEM is briefly reviewed to
provide fundamental notions for other nonlinear FEM-based approaches. Section
3.2 focuses on two continuous crack approaches: the local smeared crack approach
(3.2.2) and the gradient enhanced damage model (3.2.3). As discrete crack ap-
proaches which are advantageous in representing the kinematics of cracks, cohesive
elements (3.3.1) and XFEM (3.3.2) are described in Section 3.3. The energy dissipa-
tion based arc-length control is described in Section 3.4. Some concluding remarks
are given in the last section (3.5).

3.1 Finite element method

The finite element method (FEM) is a powerful and prevalent numerical technique
for solving physical problems governed by partial differential equations (PDEs).
The central idea behind the FEM is spatial discretisation and local approximation
such that approximated solutions are obtained by solving a system of assembled
algebraic equations. The FEM has a wide range of applications in areas such
as fluid mechanics, solid mechanics, structural engineering, materials science,



26 Computational approaches for modelling cracks

aerodynamics, and heat transfers. Excellent textbooks devoted to the application
of the nonlinear FEM in the subject of solid mechanics have been written by Bonet
and Wood (Bonet and Wood, 1997), de Borst et al. (de Borst et al., 2012), and
Belytschko et al. (Belytschko et al., 2013), just to name a few, whereas a rigorous
description of the mathematical theory on the FEM can be found in (Brenner and
Scott, 2007) and (Oden and Reddy, 2012). In what follows, a short introduction
to this method for material nonlinear solids is provided in the case where small
displacements, infinitesimal strains and quasi-static loadings apply.

Strong and weak forms of the BVP

Assume a solid body occupies the domain Ω bounded by Γ in space with each
material particle identified by the coordinates x, as shown in Figure 3.1. The
boundary Γ is partitioned into nonintersecting Neumann and Dirichlet boundaries, Γt

and Γu, which are subjected to prescribed tractions t̄ and prescribed displacements
ū, respectively. The extent of deformation and especially stress distribution of this
solid body are of much importance in the field of engineering. In the following, the
analysis is confined to small deformations.
The BVP problem corresponding to the mechanical deformation process is to find        
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Figure 3.1 A two-dimensional solid body under external loading.

the unknown displacement field u such that the following field conditions are satisfied
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pointwise

∇ · σ + b = 0 in Ω (3.1a)

ε = ∇su in Ω (3.1b)

u = ū on Γu (3.1c)

σ · n = t̄ on Γt (3.1d)

σ = Σ(ε, α) in Ω (3.1e)

where σ and ε are the second order (symmetric) Cauchy stress and infinitesimal
strain tensors, respectively; b are the body forces; ∇ means the gradient operator
and ∇s is its symmetric counterpart. Eq. (3.1a) represents the force equilibrium
equation derived from the balance of linear momentum. Eq. (3.1b) is the compat-
ibility condition of motion. The constitutive relation Eq. (3.1e) completes the set
of governing equations with α denoting a set of material internal variables. The
remaining two equations Eq. (3.1c) and Eq. (3.1d) are the displacement and traction
boundary conditions, respectively.
By the use of the principle of virtual work, a weak form corresponding to the strong
form Eq. (3.1a) is obtained and the problem then turns into finding the displacement
field u ∈ U such that∫

Ω
σ : ε(δv) dΩ =

∫
Ω

b · δv dΩ +
∫

Γt

t̄ · δv dΓ ∀δv ∈ V (3.2)

In the above formula, the newly introduced symbols U and V are the respective func-
tion spaces of admissible displacements and admissible variations of displacements
(so-called virtual displacements) with the following definitions

U : =
{
u | u ∈ [H1(Ω)]dim; u|Γu = ū

}
(3.3a)

V : =
{
v | v ∈ [H1(Ω)]dim; v|Γu = 0

}
(3.3b)

where H1(Ω) is the space of square integrable functions whose first derivatives are
also square integrable. The function space V requires that the virtual displacements
ought to fulfil the homogeneous Dirichlet boundary conditions.
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3.1.1 Spatial discretisation by finite elements

In what follows, matrix-vector notation has been adopted and hence, symmetric
second order or symmetric fourth order tensors are correspondingly represented in
their Voight forms (i.e. vector or matrix).
A pure displacement-based formulation is considered to discretise the weak form
Eq. (3.2). To this end, the entire body is firstly partitioned into ne non-overlapping
elements Ωe, relatively regular in shape. Each element has nn nodes. The displace-
ments and the virtual displacements within an element can be interpolated with the
shape functions NI(x) at their associated nodes of the element

ue(x) = N(x)ae (3.4a)

δve(x) = N(x)δae (3.4b)

where N is the matrix that consists of shape functions; ae and δae are the vectors
(the length is nn × ndim) of nodal displacement degrees of freedom and their virtual
counterparts, respectively. Note that the subscript e refers to an element related
quantity that may be a vector, matrix, or tensor.
Each shape function possesses a locally compact support and should be at least
first order smooth so that they can be differentiated once to obtain the connection
between the strain and the displacement within the element

εe(u) = Be(x)ae (3.5a)

εe(δv) = Be(x)δae (3.5b)

where Voigt notation for representing the strain tensor has been used and Be denotes
the elemental strain-displacement matrix Be = [B1, B2, ... , Bnn] which gathers nn

submatrices, each associated with a node I

BI =


NI,x 0

0 NI,y

NI,y NI,x


Note that a comma followed by a variable x in a subscript represents the partial
derivative with respect to x, as in the rest of this thesis. The strains within a single
element are obvious to obtain using Be upon knowing the nodal displacements which
relies on solving a global system of algebraic equations. To set up such a global
system, the nodal displacements of each single element are assembled into a global
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nodal displacement vector via a location matrix Le only having a few ones besides
the remaining zeros

ae = Lea (3.6a)

δae = Leδa (3.6b)

With the aid of Eq. (3.4), (3.5) and (3.6), and due to the arbitrariness of the global vec-
tor of virtual displacements δa, the continuous weak form (3.2) finally is discretised
as

ne∑
e=1

LT
e

∫
Ωe

BT
e σedΩ =

ne∑
e=1

LT
e

∫
Ωe

NT
e bedΩ +

ne∑
e=1

LT
e

∫
Γe

NT
e t̄edΓ (3.7)

where all integrals extend over all the elements in the mesh. Of Eq. (3.7), the
left-hand side and right-hand side are the so-called internal force vector fint and
external force vector fext, respectively. They are given by

fint =
ne∑

e=1
LT

e

∫
Ωe

BT
e σedΩ (3.8a)

fext =
ne∑

e=1
LT

e (
∫

Ωe

NT
e bedΩ +

∫
Γe

NT
e t̄edΓ) (3.8b)

Hence, Eq. (3.7) is equivalent to

fint = fext or fext − fint = 0 (3.9)

If there are not any nonlinearities involved in Eq. (3.9), it can be solved in a single
step. On the other hand, when geometric or material nonlinearities are included
(the latter is of concern in this thesis), the solution of Eq. (3.9) necessitates iterative
solvers. Newton’s method (also called Newton-Raphson method) is a powerful
iteration based technique which is frequently adopted for addressing nonlinear FEM
formulations.

3.1.2 Newton’s method

For nonlinear mechanical problems with FEM, it is sensible to define a time concept
(pseudo-time) and apply the ultimate external load in a number of incremental load
steps. For a given load step, the aim is to solve for the displacement vector at the
end of the load step. This requires a number of iterations until the final equilibrium
is reached. To launch the iteration process, initial values for the displacement and
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other state variables are chosen as those from the last equilibrated load step. The
procedure for the displacement update at iteration i + 1 is summarised as

ri = fext − fint,i (3.10a)

∆ai = K−1
i ri (3.10b)

ai+1 = ai + ∆ai (3.10c)

where K is the tangent stiffness matrix, r is the force residual vector that controls
the accuracy of the solution and ∆a is the displacement increment vector. After
obtaining the updated displacement, we are able to update the temporary states of
the strain, stress and internal variables for each element. Then, the global internal
force vector is computed again by Eq. (3.8a) and a check of whether the residual
satisfies the specified convergence criteria is called. The above process is repeated
until convergence is attained.
The derivation of the tangent stiffness involves an indispensable process called
linearisation which consists in the differentiation of the negative residual with respect
to the displacement vector

K = − ∂r
∂a

= ∂fint

∂a
=

ne∑
e=1

LT
e (
∫

Ωe

BT
e DBe)Le (3.11)

where D is the so-called material tangent operator, a fourth order tensor, which
has the form D = ∂σ̇

∂ε̇
. The material tangent operator assigns a stress increment

to a strain increment and as its name indicates, is the slope of the tangent line
to the stress-strain curve at a strain state (1D case). It is sometimes analytically
derived from differentiation of the phenomenological constitutive equation Eq. (3.1e);
however, for sophisticated material behaviour, other techniques for numerically
approximating it may be preferable.

Remark 2 In the derivation of the tangent stiffness Eq. (3.11), only the internal force
vector is linearised and the linear dependency between the strain and displacement
is used since we only consider material nonlinearities through this thesis.

Remark 3 The material tangent stiffness, known as Jacobian matrix in mathematics,
plays a crucial role in Newton’s methods, since it considerably affects the rate of
convergence to the state of equilibrium. Errors in the tangent stiffness can cause
slow convergence or sometimes divergence. In a multiscale setting, the material
tangent can be obtained from a homogenisation process, which will be deeply
studied in later.
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Remark 4 Quadratic convergence in the Newton’s method means that the l2 norm
of the difference between the actual solution and the iterate decreases quadratically
in each iteration.

3.1.3 Numerical integration

It is evident that the finite element implementation demands the evaluation of inte-
grals. In most situations, the Gauss integration rule is employed to compute integrals
numerically. The numerical integral formula via the Gauss rule for Eq. (3.8a) reads
(Belytschko et al., 2013)

fint =
ne∑

e=1
LT

e

np∑
p=1

wp det(Jp)BT
p σp (3.12)

with np being the number of integration points in the element e, Jp the Jacobian
matrix at integration point p and wp the corresponding weight at integration point
p. In the above, the subscript e for element quantities related to the element e is
already omitted for simplicity. Likewise, the numerical integration formula for the
external force vector has a similar structure. The evaluation of global internal force
and external force present in Eq. (3.10a) is performed by a nested loop; within the
loop over elements, the other loop over all the integration points resides.

3.2 Continuous crack approaches

3.2.1 Isotropic damage models

There is no doubt that large-scale failure phenomena are closely associated with
microscopic degradation events at local material points, which may manifest as
microcracks or microvoids. Failure is typically a progressive process which consists
of initiation, growth and coalescence of these distributed microcracks or microvoids
inside materials. This internal evolution is difficult to monitor with experimental
techniques and describe in a rigorous mathematical manner. Despite these diffi-
culties, continuum damage mechanics has been widely accepted as a simple but
effective model to deal with such complicated mechanical behaviour (Lemaitre, 2012,
Kachanov, 2013).
A valid damage mechanics model is normally derived from the fundamental ther-
modynamics laws providing a framework to develop a variety of continuum damage
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models. Among these, the isotropic damage models are the simplest ones. For this
family of isotropic damages models, it is postulated that the average mechanical re-
sponse of microcracks or microvoids is independent of their orientation but sensitive
to density, which indicates the isotropy property is maintained. Therefore, a single
scalar variable is sufficient to describe the whole deterioration course of a material.
Here, we follow the family of isotropic damage models proposed in (Oliver et al.,
1990) and describe the basic ingredients. The constitutive expression for the isotropic
damage models reads

σ = (1 − ω)De : ε = (1 − ω)σ̄ (3.13)

with ω the scalar damage variable and De the fourth-order isotropic linear elastic
tensor having the following form

De = λ1 ⊗ 1 + 2µI (3.14)

where λ and µ are the Lamé constants; 1 and I are the second and fourth order unit
tensors, respectively. Eq. (3.13) introduces the effective elastic stress σ̄ (Lemaitre,
2012, Kachanov, 2013).
The damage variable ω in Eq. (3.13) only exists within the range [0,1] and depicts
the extent of material degradation with values 0 and 1 indicating the virgin and totally
failed material states respectively. The damage variable should be evaluated at
every instant of the deformation according to a specific evolution law, of which a
general form is (Oliver et al., 1990)

ω = 1 − q(r)
r

(3.15)

where r is a strain-like internal variable and q a work-conjugate stress-like internal
variable to r, termed the softening variable. The evolution law for the internal variable
r reads

ṙ = λ, r ∈ [r0, ∞) (3.16)

with r0 being the initial threshold at time t = 0. λ is a damage consistency parameter
to be used to define damage loading/unloading conditions later.
The evolution law (softening rule) in rate form for q is expressed in terms of the
softening parameter H as

q̇ = ∂q

∂r
ṙ = H(r)ṙ, q ∈ [0, r0] (3.17)
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where H is negative or zero in the softening case and at the initial time q0 = r0.
Different definitions of H lead to different softening forms. The linear and exponential
softening laws have the following respective expressions

linear softening: q = r0 + H0(r − r0) (3.18a)

exponential softening: q = r0 exp(A(r − r0

r0
)) (3.18b)

In order to compare different stress states (tensors), it is desirable to define a scalar
measure of stress, denoted by τσ. This measure is also termed equivalent stress.
Two candidate measures may be defined as (Oliver et al., 1990)

τσ =∥ σ ∥D−1
e

=
√

σ : D−1
e :σ (3.19)

and (Mazars and Pijaudier-Cabot, 1989)

τσ =∥ σ ∥D−1
e

=
√

σ+ : D−1
e :σ+ (3.20)

where in the above, ∥ • ∥D−1
e

denotes the scalar norm of (•) in the metric defined
by D−1

e and σ̄+ denotes the positive part of the effective stress tensor with the
expression

σ̄+ =
3∑

i=1
⟨σ̄i⟩pi ⊗ pi (3.21)

where σ̄i and pi are the i−th principal stress and the i−th principal direction and ⟨•⟩
represents the Macaulay brackets, for scalar x defined as ⟨x⟩ = max(x, 0).

Remark 5 The expression Eq. (3.19) (damage energy release rate-based equiva-
lent stress) assigns the same weighting to the tensile and compressive strengths,
which is unrealistic for failure behaviour of quasi-brittle materials like concrete, which
exhibits a much larger compressive strength than the tensile strength. However, the
expression Eq. (3.20) (Rankine-type equivalent stress) only takes material degra-
dation in tension into account, therefore it is more appropriate for those situations
where tension is dominant and no high compression stresses appear.

With a definition for the equivalent stress, the damage criterion may be envisaged as

f(σ, q) := τσ − q ≤ 0 (3.22)
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The quantity q, already introduced in Eq. (3.17), represents here the current damage
threshold. Eq. (3.22) identifies a damage bounding surface which is an ellipsoid
with the centre at the origin in the principal stress space. If the current stress state
lies inside the bounding surface, then at the moment there is no further damage.
Only when the scalar measure τσ exceeds the current damage threshold value, can
damage evolve.
Another key ingredient for formulating damage mechanics models is the specification
of damage loading-unloading conditions, just as for plasticity models, based on
classical Kuhn-Tucker conditions

λ ≥ 0; f ≤ 0; λf = 0 (3.23)

A consistency condition is also needed to close the set of constitutive equations and
determine the value of λ

λḟ = 0 . (3.24)

Time integration of the constitutive equations

The previous formulation for the isotropic damage model can be integrated in closed
form in terms of strains by introducing the corresponding norms in the strain space
(i.e. equivalent strains) for Eqs. (3.19) and (3.20)

τε =∥ σ̄ ∥D−1
e

=
√

σ̄ : D−1
e :σ̄ =

√
ε : De:ε (3.25)

τε =∥ σ̄+ ∥D−1
e

=
√

σ̄+ : D−1
e :σ̄+ =

√
ε+ : De:ε+ (3.26)

By comparing the two distinct norm definitions τσ and τε, it is interesting to observe
the equality below

τσ = (1 − ω)τε (3.27)

Then, another form of the damage criterion Eq. (3.22) is able to obtain

g(ε, r) := τε − r ≤ 0 (3.28)

where Eqs. (3.22), (3.27) and (3.15) have been considered. By the use of Eqs. (3.16)
and (3.28) in combination with conditions (3.23), the strain-like internal variable r is
integrated as

r = max
s∈[0,t]

(τ s
ε , r0) (3.29)
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Eqs. (3.28) and (3.29) are the classical forms expressed for the family of continuum
damage models formulated in the strain space (Oliver et al., 1990, Simo and Ju,
1987).

Remark 6 Besides the strain-based and stress-based continuum damage models in
the literature, another formulation type is the energy release rate based for coupled
damage plasticity constitutive modelling. Interested readers are referred to (Ju, 1989,
Wu et al., 2006) for more details.

Material tangent operator

The generic format for the material tangent operator is derived on the basis of Eqs.
(3.13), (3.15) and (3.17) as follows

Dtan = ∂σ̇

∂ε̇

=


(1 − ω)De = q

r
De if λ = 0

(1 − ω)De − ∂ω̇
∂ṙ

∂ṙ
∂ε̇

=


q
r
De − q−Hr

r3 σ̄ ⊗ σ̄ if λ > 0 & Eq.(3.25) used
q
r
De − q−Hr

r3 σ̄+ ⊗ σ̄ if λ > 0 & Eq.(3.26) used
(3.30)

Figure 3.2 displays the exponential softening law given by Eq. (3.18b). Figure
3.3 illustrates the elastic domain and damage surface based on the Rankine-type
equivalent strain with degradation only in tension considered.
The box 3.2.1 sums up the principal ingredients of a particular isotropic damage
constitutive model.
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Figure 3.2 Exponential softening law q−r
for the isotropic damage model.
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Figure 3.3 Damage criterion based on
the equivalent strain type, degradation
only in tension.

Box 3.2.1: Adopted isotropic damage model.

Damage variable ω = 1 − q(r)
r

(3.31)

Constitutive equation σ = (1 − ω(r))De:ε (3.32)

Damage criterion g(ε, r) = τε − r, τε =
√

σ̄+ : D−1
e :σ̄+ (3.33)

Evolution law ṙ = λ, r ∈ [r0, ∞), r |t=0= r0 = σf√
E

(3.34)

Softening law q̇ = H(r)ṙ, q ∈ [0, r0], q |t=0= q0 = r0 (3.35)

H(r) = −r2
0

gf

exp[− r0

gf

(r − r0)] (3.36)

Loading-unloading conditions λ ≥ 0; f ≤ 0; λf = 0 (3.37)

material properties:
E : Young’s modulus De: elastic constitutive tensor
σf : maximum tensile strength gf : specific fracture energy
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3.2.2 Local smeared crack approach (crack band approach)

In fracture mechanics, fracture energy (per unit surface area) is a characteristic
physical property of materials, which should be independent of the numerical method
used for the simulation of material failure. However, when using standard local con-
stitutive laws with strain softening in FE codes, deformation and energy dissipation
are concentrated in a row of elements; thus, the results and the dissipated energy
strongly rely on the mesh size. The local smeared crack approach (or crack band
approach) has been proposed and developed to overcome the size dependence
issue (Bažant and Oh, 1983, Rots et al., 1985, Oliver, 1989, Cervera and Chiumenti,
2006a, Jirásek and Bauer, 2012). The fundamental idea is to adjust the softening
branch of stress-strain curves according to the characteristic element size. The
notable advantage is that the formulation remains local and the algorithmic structure
of the finite element code requires only minor adjustments.
Let us consider a 1D bar under uniaxial tension and an axial coordinate x is attached
to the bar. The bar is discretised with elements. Damage is assumed to be contin-
uously distributed only within one element of length lw. By distributing the fracture
energy Gf over lw, we have

Gf =
∫ lw

x=0

∫ ∞

ε=0
σ dεdx , (3.38)

with σ and ε as the normal stress and normal strain. Assume that linear elements
were used whose strain is constant. Therefore, the following equality will hold

Gf = gf lw , (3.39)

where the quantity gf defines the energy dissipated per unit volume until total failure

gf =
∫ ∞

ε=0
σ dε . (3.40)

As can be seen, Eq. (3.39) sets up a direct connection between the fracture
toughness Gf and dissipated energy density gf . The former quantity is physically
objective and equal to the area under the traction-separation law employed in the
cohesive crack model. However, gf is not an objective parameter and needs to be
adjusted at each integration point according to the numerically estimated value of
lw. The modification to the value of gf is made by adjusting the softening branch of
stress-strain curves.
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The length scale lw introduced in the crack band approach is related to the element
size and thus has a numerical nature. When incorporating lw, the computed load-
displacement diagrams are no longer sensitive to the used mesh size. However,
the numerical results are still affected by the mesh bias. Indeed, cracks tend to
propagate along the lines of the discretisation, thus deviating from the physical crack
path.
A variety of formulas have been developed to estimate the numerical length scale
lw, which may depend on the interpolation order, the spatial integration scheme
and the angle between the crack and the mesh lines (Oliver, 1989, Jirásek and
Bauer, 2012). It should be remarked that when quadratic or higher-order finite
elements are employed for discretisation, the crack band width is not equivalent to
the characteristic element size.

3.2.2.1 Estimation of band width

There are several means to define the effective crack band width in a multi-dimensional
setting at each integration point of elements in the context of FEM. Take quadrilateral
elements for example. One rough but straightforward estimate is the square root

√
A

of the element area A. This method works well for elements with aspect ratios equal
or close to 1. However, in general it may show large deviations in the dissipated
energy for highly irregular shapes (e.g., elongated quadrilateral elements).

 

 

 

  

lw = √2h h 

lw 

(a) (b) 

Figure 3.4 Projection method for the estimation of crack band width: (a) crack band along
element diagonals, and (b) effective band size computed by projecting along the direction
perpendicular to the crack band.

The accurate value of the effective band width lw is affected not only by the mesh
size but also by the inclination of the crack band with respect to the mesh lines. This
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motivates the projection method in which lw is computed by projecting the element
onto the direction perpendicular to the assumed crack band direction (Cervenka,
1995, Bazant and Planas, 1997), as illustrated in Figure 3.4. The effective band
width lw can be either determined individually at each integration point or determined
once at the element centre and then applied at all integration points. The standard
projection method may lead to excessive dissipation in crack bands that are not
inclined with respect to the mesh lines. It was proposed in (Cervenka, 1995) to
multiply the band width from the projection method by a corrective orientation factor.
This factor is typically set equal to 1 for crack bands perpendicular to the mesh lines,
equal to 1.5 for crack bands inclined by 45°, and linearly interpolated for general
angles.
Oliver (1989) proposed a discretisation consistent method for estimating lw that takes
the orientation of the crack band into account. This method is based on an auxiliary
continuous and derivable scalar function ϕ such that it takes 0 on nodes at one side
of the crack band and 1 on nodes at the other side. The effective width of the crack
band can be estimated as the reciprocal value of the directional derivative of function
ϕ.

Remark 7 1. The crack band approach can be considered as the cohesive zone
model in a continuum setting.
2. To prevent a snap-back at the material-point level, parameter εf must not be
smaller than ε0, where ε0 and εf correspond to the strain at maximum strength and
that at zero strength. This implies that the element size cannot be too large.
3. The crack band approach still suffers from directional mesh bias for the general
case of meshes that are not well aligned.

3.2.3 Gradient enhanced damage model

Let us define a new form of damage loading and unloading function based on the
concept of equivalent strain measure εeq, which is an alternative to the stress-like
variable based damage criterion in Eq. (3.22)

f = εeq − κ , (3.41)

with κ as the internal history variable that records the largest strain level ever reached.
In the nonlocal damage theory, the damage is driven by the nonlocal equivalent
strain ε̄eq instead of the local one. In the elasticity-based integral-type nonlocal
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model, ε̄eq is defined as (Pijaudier-Cabot and Bažant, 1987)

ε̄eq(x) =
∫

Ω̃
α(||x − y||)εeq(y) dΩ , (3.42)

where the weight function α(||x − y||) determines the influence of the local strain at
source point y within the interacting volume Ω̃ on the nonlocal strain at the receiver
point x. The interacting volume is confined by the characteristic length lc of the
material. As pointed out by Jirasek et al. (2004), it is usually difficult to obtain such a
characteristic length and one can only roughly estimate it to be of the same order
of magnitude as the spacing of the dominant inhomogeneities (e.g. aggregates in
concrete). It should be highlighted that small magnitudes of the length parameter lc

indicate that the mesh must be fine enough in order to resolve the localisation band
with sufficient accuracy.
The implicit gradient enhanced damage model can be interpreted as an approxima-
tion to the integral-type nonlocal model characterised by Eq. (3.42) by assuming
a particular Green’s function (Peerlings et al., 2001). To derive the FE equations
for the gradient enhanced damage model, we follow the classical work by Peerlings
et al. (1996). The equilibrium equation given by Eq. (3.1a) is accompanied by a field
equation of Helmholtz-type expressed according to Peerlings et al. (1996) as

ε̄eq − c∇2ε̄eq = εeq , (3.43)

where c represents a positive parameter of the dimension length squared, determined
by lc.
To obtain an unique solution for ε̄eq of the partial differential equation (3.43), either
the nonlocal equivalent strain ε̄eq itself or its normal derivative must be explicitly
specified on the boundary of the problem domain. In the literature the homogeneous
natural boundary condition is mostly adopted

∇ε̄eq · n = 0 , (3.44)

with n the unit normal vector to the external boundary.

FE approximation:
The numerical implementation for the implicit gradient enhanced damage model has
the character of a coupled problem. Recall the weak form of the balance of linear
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momentum ∫
Ω

σ : δε dΩ =
∫

Γt

t̄ · δv dΓ . (3.45)

After employing the divergence theorem and inserting the natural boundary condition
(3.44), the weak form of the Eq. (3.43) can be derived as∫

Ω

(
δε̄eqε̄eq + c∇δε̄eq · ∇ε̄eq

)
dΩ =

∫
Ω

δε̄eqεeq dΩ . (3.46)

From the above equation, it becomes clear that in this formulation a C0-interpolation
for ε̄ suffices. The interpolation scheme for the displacement field is the same as
usual. The nonlocal equivalent strain field ε̄eq and its variation δε̄eq can be interpolated
as

ε̄eq = N̄ε̄ , δε̄eq = N̄δε̄ . (3.47)

where N̄ is the row vector of standard shape functions and the vector ε̄ collects the
degrees of freedom for the type of non-local equivalent strain at each node. Note
that the displacement field and the nonlocal equivalent strain can be interpolated in
different orders. In practice, identical interpolation functions are generally used.
Substituting Eq. (3.47) into Eq. (3.46) and requiring that the result holds for arbitrary
δε̄eq, yields the discrete format of the Helmoholtz equation

∫
Ω

(
N̄T N̄ + cB̄T B̄

)
ε̄ dΩ −

∫
Ω

N̄T εeq dΩ = 0 , (3.48)

where B̄ = ∇N̄. The discrete system to solve at iteration i in the Newton-Raphson
method reads Kaa Kaε

Kεa Kεε

i−1 da
dε̄

i

=
fa

ext

0

i−1

−

fa
int

f ε
int

i−1

, (3.49)

The submatrices in the consistent Jacobian matrix on the LHS of Eq (3.49) and the
internal nodal force vector f ε

int associated with the Helmholtz equation are derived in
detail in the following.

Derivation detail:
We start the linearisation procedure by casting stress in rate form

σ̇ =
(
1 − ω

)
Dε̇ − Dεω̇ , (3.50)
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Figure 3.5 L-shaped panel test (thickness 100 mm): (a) damage profile at the final load
level and (b) force-displacement curves for two different mesh sizes (coarse and fine). The
modified von Mises equivalent strain has been adopted.

where
ω̇ = ∂ω

∂κ

∂κ

∂ε̄eq

N̄ ˙̄ε . (3.51)

Substituting the above equation into Eq. (3.50) and replacing ε̇ by Bȧ results in

σ̇ =
(
1 − ω

)
DBȧ − ∂ω

∂κ

∂κ

∂ε̄eq

DεN̄ ˙̄ε . (3.52)

Having this rate form of the constitutive equation, the linearisation of Eq. (3.45) at
iteration i leads to

Ki−1
aa δai + Ki−1

aε δε̄i = (fa
ext)i−1 − (fa

int)i−1 , (3.53)

where the matrices Kaa and Kaε read

Kaa =
∫

Ω
(1 − ω)BT DB dΩ

Kaε = −
∫

Ω

∂ω

∂κ

∂κ

∂ε̄eq

BT DεN̄ dΩ .
(3.54)

In the same fashion, the linearisation of the Eq. (3.48) gives

Ki−1
εa δai + Ki−1

εε δε̄i =
∫

Ω
N̄T εi−1

eq dΩ − Ki−1
εε ε̄i−1 = −(f ε

int)i−1 , (3.55)
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where

Kεa = −
∫

Ω
N̄T

[
∂εeq

∂ε

]T

B dΩ

Kεε =
∫

Ω

(
N̄T N̄ + cB̄T B̄

)
dΩ .

(3.56)

As seen, the expressions for Kaε and Kεa exhibit a non-symmetry. This non-
symmetry is caused by the damage formalism and not by the gradient enhancement.
To demonstrate the working of the gradient enhance damage model, fracture test-
ing of a L-shaped panel was performed numerically. It involves a mixed tension-
compression curved cracking pattern (Unger et al., 2007). Figure 3.5a shows the
numerical damage profile and Figure 3.5b plots the force-displacement curves
for coarse and fine meshes. As can be seen from Figure 3.5b, the response is
insensitive to the mesh size, demonstrating the efficacy of nonlocal regularisation.

3.3 Discontinuous crack approaches

Cohesive crack problem         
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Figure 3.6 A two-dimensional fracture problem. The cohesive crack behaviour is charac-
terised by the cohesive zone model in the wake of the fictitious crack.
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Before introducing different numerical approaches to fracture, the mathematical BVP
should be first set up. Let us consider a cracked body denoted by Ω, as shown
in Figure 3.6. The crack and its virtual extension divide the whole domain into
two non-overlapping subdomains Ω+ and Ω−. The crack is assumed to include a
traction-free portion and a cohesive zone. The nonlinear material behaviour due to
various progressive damage mechanisms including microcracking, is idealised to be
restricted to the cohesive zone, while the remaining bulk is assumed linear elastic.
The governing equations comprise the balance of linear momentum, the essential
and natural boundary conditions, and the traction continuity across the crack surfaces

∇ · σ + b = 0 in Ω (3.57a)

σ · n = t̄ on Γt (3.57b)

u = ū on Γu (3.57c)

−σ · n+
d = σ · n−

d = tc on Γd (3.57d)

where tc is the cohesive traction vector across the crack Γd with the unit normal
vector nd (nd = n−

d = −n+
d ).

Using the principle of virtual work, the weak form corresponding to the strong form
of the cohesive crack problem Eq. (3.57) is derived as∫

Ω
σ : ε(δv) dΩ +

∫
Γd

tc · δJvK dΓd =
∫

Ω
b · δv dΩ +

∫
Γt

t̄ · δv dΓ ∀δv ∈ V (3.58)

where V is the functional space of admissible virtual displacements defined previ-
ously in Eq. (3.3b). The operator J·K represents the jump of a variable across the
crack surfaces. For example, JuK denotes the displacement jump of the crack. The
cohesive traction tc is an explicit function of the displacement jump JuK, determined
by a defined cohesive law.
There are two classes of cohesive law models namely (a) initially elastic cohesive
laws (intrinsic model) and (b) initially rigid cohesive laws (extrinsic model) (Needle-
man, 1987, Camacho and Ortiz, 1996, Kubair and Geubelle, 2003). Two typical
representatives of those traction-separation law models are illustrated in Figure
3.7. It should be mentioned that the initiation criterion is inherently considered in
the intrinsic model, whereas in the extrinsic model a separate initiation criterion is
essential for starting the fracture process.
The cohesive zone model can be represented by cohesive elements, XFEM or



3.3 Discontinuous crack approaches 45

 

⟦u⟧n 

tn 

ft 

GIc 

(a) Initially elastic traction-separation law
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(b) Initially rigid traction-separation law

Figure 3.7 Schematic of two types of traction-separation laws.

meshless methods. In the following, we will discuss the cohesive elements and
XFEM method.

3.3.1 Cohesive elements

Cohesive elements (or called interface elements) are extensively utilised to address
interface problems, such as composite delamination and interface debonding. At
the same time, cohesive elements are also used when capturing complex fracture
mechanisms such as crack branching and crack coalescence, where they are
explicitly inserted a priori along any potential cracking path in the continuum. In
this section, the four-node 1D linear cohesive elements with initially elastic cohesive
laws (see Figure 3.7a) are described. Cohesive elements are inserted before the
simulation starts and the cohesive law consists of an initial elastic branch with a
rather high artificial stiffness.

Kinematics of cohesive elements

The bulk is discretised by continuum elements and the crack is discretised by
cohesive elements which are one dimension less than the continuum elements, see
Figure 3.8. Each cohesive element has two characteristic faces, the upper and lower
faces, used to model the difference in the displacements at the attached sides of the
continuum elements.
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With the nodal displacements given for a four-node cohesive element, the global
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Figure 3.8 1D linear cohesive elements are embedded between continuum elements to
model the crack. Global coordinates and local coordinates are denoted by (x, y) and (t, n),
respectively. The nodes for the typical cohesive element are ordered 1, 2, 3, 4.

displacements of the upper face (marked by sign +) and lower face (marked by sign
−) of the cohesive element are interpolated as

u+ = N1u3 + N2u4

u− = N1u1 + N2u2 ,
(3.59)

where N1, N2 are the shape functions of the two-node line elements, and (u3, u4)
and (u1, u2) are the upper-face and the lower-face global nodal displacements,
respectively.
The global displacement jump (separation) for the typical crack segment represented
by the cohesive element under consideration is then expressed as

JuK = u+ − u− = Nint

u3 − u1

u4 − u2

 , (3.60)

with Nint being the shape function matrix of the cohesive element,

Nint =
N1 0 N2 0

0 N1 0 N2

 , (3.61)
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where the subscript “int” has been added to distinguish from that of the continuum
elements. Eq. (3.60) can be modified by introducing a separation-displacement
relation matrix Ls

Ls =


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

 , (3.62)

such that
JuK = NintLs[u1, u2, u3, u4]T . (3.63)

To diminish the effect of rigid rotations of cohesive elements, the global coordinate
system (x, y) should be transformed to a local coordinate system (t, n) aligned with
the midplane of the cohesive element, see Figure 3.9. The midplane AB connecting
midside points of the cohesive element, defines the local tangential direction t. The
normal (thickness) axis direction n is then obtained as the cross product of the
out-of-plane and tangent directions.
To change between the local and global displacements, a orthogonal rotational
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Figure 3.9 Definition of the local axes (t, n), midplane AB and rotation angle θ in a cohesive
element.

matrix Q is introduced

Q =
 cos θ sin θ

− sin θ cos θ

 , (3.64)
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where θ is the rotation angle with respect to the global axes and defined as (see
Figure 3.9)

θ = arccos(xB − xA

l
)

l =
√

(xB − xA)2 + (yB − yA)2 .
(3.65)

Accordingly, the local separation JuKl is obtained by the application of the transfor-
mation matrix onto the global separation JuK

JuKl = QJuK . (3.66)

Once the local separation is defined, the local cohesive traction field tl
c can be

derived through the traction-separation law that describes the crack behaviour. The
rate form of the cohesive crack constitutive equation can be symbolised as

ṫl
c = TJu̇Kl , (3.67)

where T is the cohesive (material) tangent matrix whose precise form relies on the
adopted traction-separation law. The global cohesive traction field tc is transformed
from the local cohesive traction field tl

c using the transformation matrix Q

ṫc = QT ṫl
c = QT TQJu̇K = QT TQNintLsLeU . (3.68)

where use of Eqs. (3.67,3.66,3.63,3.6a) was made in sequence in the above
derivation.

Cohesive elements formulation

With the (discretised) approximation for the displacement jumps at hand and recalling
Eq. (3.4) for the displacement approximation of the continuum elements, considering
their variational forms, Eq. (3.58) can be discretised as

fint + fcoh = fext (3.69)
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with

fint =
nbulk∑
e=1

LT
e

∫
Ωe

BT
e σe dΩ

fcoh =
nint∑
e=1

LT
e LT

s

∫
Γd

NT
inttc dΓd

fext =
nbulk∑
e=1

LT
e (
∫

Ωe

NT
e bedΩ +

∫
Γe

NT
e t̄e dΓ) ,

(3.70)

where the internal force vector fint and external force vector fext are computed
from contributions of nbulk continuum elements, whereas fint is assembled from nint

cohesive elements.
The linearisation of the (global) cohesive force vector in Eq. (3.70), as with the
procedure discussed in Section 3.1.2, results in the cohesive tangent stiffness matrix.
For a cohesive element, the cohesive tangent stiffness matrix is written as

Kint
e = LT

s

∫
Γd

NT
intQT TQNintLs dΓd , (3.71)

which is a 8×8 matrix for four-node linear cohesive elements and it is then assembled
to the appropriate locations by the element location matrix Le. The tangent stiffness
matrix of standard continuum elements is expressed the same as in Eq. (3.11) in
Section 3.1.2.
Nguyen (2014) presented an automatic preprocessing procedure for inserting co-
hesive elements into places where possible crack initiation and propagation are
permitted to occur. This increases the flexibility for using cohesive elements in the
whole domain for simulation. Figure 3.10 shows a numerical example with cohesive
elements only inserted along the mid-plane of a compact-tension specimen.

Remark 8 An alternative implementation of the cohesive zone concept allocates
discrete point-wise spring elements at FE node pairs on the intended crack surface
or interface (Xie and Waas, 2006, Xie et al., 2006). It makes use of a discrete
cohesive zone model that engages a force-separation relation. Tractions distributed
on the interface are explicitly lumped to point-wise spring elements instead of their
surface contribution being accounted for through performing numerical integration
as in the cohesive elements just described.

Mixed-mode cohesive laws

When describing progressive separation processes in materials, a variety of cohe-
sive (traction-separation) laws of can be considered. These cohesive laws generally
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Figure 3.10 Deformed configuration of a compact-tension specimen under mode-I fracture
with the crack modelled with cohesive elements. U2 represents the vertical displacement.

have distinct shapes for quasi-brittle and ductile materials, depending on the intrinsic
nature of materials. Since mixed-mode loading scenarios are frequently encoun-
tered in engineering practice, a mixed-mode cohesive law formulation is necessary.
In the literature, two main categories of cohesive law formulations exist, namely
potential-based formulations (Needleman, 1987, Tvergaard and Hutchinson, 1993,
Ortiz and Pandolfi, 1999, Park et al., 2009) and non-potential-based formulations
(Xie and Waas, 2006, Camanho et al., 2003, Geubelle and Baylor, 1998, Turon et al.,
2006).
In the first family of formulations, a potential function is first constructed, perhaps
using a one-dimensional generalised relationship between the equivalent traction
and separation as in (Ortiz and Pandolfi, 1999). Normal and tangential cohesive laws
are merely the derivatives of this potential function with respect to the corresponding
normal and tangential separations.
In the second family of formulations, normal and tangential cohesive laws under
mixed-mode conditions are not required to be related through a potential function.
Their interaction may be governed through extra criteria such as the well known
power law criterion for crack growth (Xie and Waas, 2006). In a distinct setting in
which each traction component is a function of both normal and tangential separa-
tions, a single effective law and a constant scaling factor have been used to treat
mixed-mode crack propagation in (Geubelle and Baylor, 1998). It is noteworthy that
some of the non-potential-based implementations encounter a critical issue that
non-zero tractions on the crack surface can be found in the final failure state (Nguyen
and Waas, 2016). To address this issue, an incremental mixed-mode evolution law
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was developed in (Joseph et al., 2018) where the energy remaining to be dissipated
is estimated at each load increment following an assumption that the ratio of energy
remaining to be dissipated for the individual modes is proportional to the ratio of
energy dissipated by the individual modes so far. Nguyen and Waas (2016) exam-
ined different cohesive formulations and proposed a novel mixed-mode cohesive
formulation where the mode-II cohesive law is scaled to the mode-I cohesive law,
and an effective separation is defined for the scaled law. In this way, physically
realistic and numerically stable results were obtained.
In the following, a mixed-mode cohesive formulation following the work by Turon et al.
(2006) is described in the two-dimensional setting, where an equivalent displacement
jump JuKeq is defined as

JuKeq =
√

⟨JuKn⟩2 + JuK2
s , (3.72)

with JuKn and JuKs being the normal and shear (tangential) components of displace-
ment jump in the local coordinate system, respectively. For a bilinear shape of the
softening law, two essential equivalent displacement jump parameters need to be
determined at which damage is considered to be initiated and completed. These
two equivalent displacement jump parameters are not unique and recognised to
depend on the relation between the normal and shear components at the interface.
This relation may be captured by the following mode-mixity parameter β (Turon et al.,
2006)

β = |JuKs|
⟨JuKn⟩ + |JuKs|

, (3.73)

For the detailed treatment of damage initiation criterion, damage evolution law and
tangent stiffness matrix, interested readers refer to (Turon et al., 2006).

Drawbacks of intrinsic cohesive elements

1. Artificial compliance

Cohesive elements with an intrinsic cohesive law are not very effective when used
for modelling bulk cracking. One major reason is that cohesive elements have to
be a priori present along all the shared edges of the continuum elements, leading
to artificial compliance at the same time. To keep the unnecessary opening to a
minimum in the elastic regime, sufficiently high artificial stiffness has to be consid-
ered. This may lead to an issue of spurious traction oscillations, as discussed in
the literature (Schellekens and De Borst, 1993b). A widely used strategy to mitigate
oscillations is by means of reduced Lobatto integration (Schellekens and De Borst,
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1993b, Simone, 2004). Svenning (2016) attributed traction oscillations to the vio-
lation of the inf–sup condition and suggested a weak penalty formulation for the
intrinsic cohesive elements. Based on a traction approximation that fulfils the inf–sup
condition, oscillation free response is expected without the need to modify cohesive
zone laws or introduce additional unknowns.

2. Small element sizes

To fully resolve the cohesive tractions with accuracy and seek the stable post-peak
response at each load increment, the size of cohesive elements has to be sufficiently
small compared to the characteristic length lcz of the cohesive zone model (Camacho
and Ortiz, 1996, Falk et al., 2001, Turon et al., 2007). Note that the length lcz is
defined as the distance from the crack tip to the point of maximum cohesive traction.
The number of elements N cz

e used in the cohesive zone can be defined as

N cz
e = lcz

le
, (3.74)

where le is the typical element size in the propagation direction of cracks. Note
that lcz can have varied definitions in the literature (Dugdale, 1960, Hillerborg et al.,
1976).
Small values of cohesive element size would typically result in considerable compu-
tational burden, since the size of the cohesive zone of materials is normally small
compared to the whole structure. Falk et al. (2001) used N cz

e between 2 and 5
elements in the cohesive zone in their simulations. Turon et al. (2007) proposed to
adjust the maximum interfacial strength in the computations with coarse meshes.
By reducing the maximum interfacial strength, the cohesive zone length lcz can be
enlarged such that the cohesive zone is able to comprise more elements. Zander
et al. (2017) proposed a multilevel hp-adaptivity approach for cohesive fracture
where the computational burden was significantly reduced while allowing for an
accurate resolution of the cohesive zone.

3. Convergence issues

Alfano and Crisfield (2003) proposed a local arc-length method combined with line-
search techniques to alleviate convergence issues when using cohesive elements
in their delamination analysis. A poor convergence rate or even divergence can be
manifested by local elastic snap-backs on the global load-displacement diagram
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under displacement loading control (Gao and Bower, 2004, Zander et al., 2017).
The standard Newton-Raphson method cannot capture such snap-backs as the
convergence radius is no longer existent. Another interpretation of the convergence
problem is the appearance of several zero or negative eigenvalues in stiffness
matrices of damaging elements, thereby resulting in the ill-conditioning of the global
discrete system (Liu and Zheng, 2010). To make the solution procedure more robust,
Chaboche et al. (2001) and Gao and Bower (2004) proposed viscous regularisation
techniques. Yu et al. (2016) applied such techniques to the numerical study of
hydrogen embrittlement under constant displacement condition.
From the energy point of view, the surplus energy released during creation of new
free surfaces can appear in other forms, such as kinetic energy or viscous energy.
The cohesive traction during separation is adjusted by the rate of separation and
the additional energy dissipation by viscosity is thereby dependent on the rate of
separation. For small enough step increments, a positive definite tangent stiffness for
the cohesive constitutive model can be expected, which should result in reasonable
numerical convergence.
Following the viscous regularisation technique by Gao and Bower (2004), a small
viscous term is added to the cohesive traction-separation relation. This technique
is quite straightforward in practical applications. Let us take a one-dimensional
cohesive law in terms of traction t and separation δ for example. The modified
traction tµ can be expressed as

tµ(δ) = t(δ) + η · tf δ̇

δf

, (3.75)

where η stands for the viscosity parameter; tf and δf are the maximum cohesive
strength and the separation corresponding to total failure. In this manner, the
dependence of cohesive traction on the rate of separation is explicitly considered.
Another alternative is to introduce a viscous constant through controlling the evolution
rate of damage variable (Abaqus, 2012), by which the increase in damage is slowed
down.
Caution should be exercised in choosing the appropriate viscosity parameter, since
too high damping may significantly affect the accuracy of solutions, while for low
values, convergence may not be attained (Zander et al., 2017). Obtaining an optimal
value for the viscosity parameter is a manual process that requires trial and error
until the change in response is insignificant.
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3.3.2 The eXtended finite element method

The XFEM is a widespread numerical technique for modelling discontinuous and
moving interfaces. It is based on the concept of a partition of unity and can be
viewed as a special case of the partition of unity method (PUM) (Babuška and
Melenk, 1997). In the literature, a quite similar method to the XFEM is known as the
Generalized Finite Element Method (GFEM) (Strouboulis et al., 2001).
For any arbitrary field function f(x), the following equality always holds

n∑
i=1

φi(x)f(x) = f(x) , if
n∑

i=1
φi(x) = 1 . (3.76)

In this case, functions φi(x) are said to form a partition of unity.
A typical example is the standard finite element method where the shape functions
form a partition of unity. The underlying idea of the PUM is that the standard
finite element approximation space is enriched by products of the partition-of-unity
functions and deliberately selected functions. These selected functions are the so-
called enrichments and are usually constructed on the basis of a priori knowledge of
the solution of the original physical problem. In this manner, the crucial characteristics
of the problem are captured by the enriched approximation, which would otherwise
be difficult or even impossible by the piecewise polynomial approximation in the
standard FEM.
One remarkable feature of the PUM is the local compact support of the enriched
functions, which is achieved by multiplying the enrichment functions with the standard
nodal shape functions that take place of φi(x) in Eq. (3.76); thus the resulting global
stiffness matrix remains sparse. The enrichment functions can be recovered exactly
within regions of interest due to the property of partition of unity of the standard
shape functions. To avoid linear dependency, the enriched functions should not
come from the span of the partition of unity functions.
Whenever particular characteristics are required, additional degrees of freedom are
added to the nodes within the enriched regions. Therefore, the mesh topology can
be preserved without the need to update for conforming to the interface geometry.
This property is quite powerful especially for evolving internal interfaces (e.g., cracks)
(Moës et al., 1999, Chessa et al., 2002, Sukumar et al., 2003). In the following, a
curved crack that has been approximated with piecewise straight crack segments
will be discussed.
The dominant features of the solution to a brittle fracture problem are that the crack
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Figure 3.11 A crack with kinks to approximate a smooth curved crack with a local polar
coordinate system at the crack tip. x∗ is the closest point to x on the crack.

is discontinuous in displacements (i.e., crack opening) and the stresses and strains
are singular at the crack tip. To capture the highly nonlinear displacement field and
the singularity at the crack tip, the branch functions obtained from the exact near-tip
asymptotic displacement field are taken as the enrichment functions (Dolbow et al.,
2001)

Bα(r, θ) ≡
{√

r sin θ

2 ,
√

r cos θ

2 ,
√

r sin θ

2 sin θ,
√

r cos θ

2 sin θ
}

, (3.77)

where (r, θ) are the local polar coordinates defined at the crack tip; see Figure
3.11. The local polar coordinates r and θ can be evaluated from the local Cartesian
coordinates x and y

r(x, y) =
√

x2 + y2 , θ(x, y) = sgn(y) arccos x√
x2 + y2 . (3.78)

From the above equation, the range of θ is [−π, π], where −π and π correspond
to points on the bottom surface and top surface of the crack segment on which
the crack tip is located. It is realised that the first function

√
r sin θ

2 in Eq. (3.77) is
discontinuous across the crack segment with the crack tip while the remaining three
functions are continuous.
The nodes whose support is entirely bisected by the crack, see Figure 3.12, are

enriched with the Heaviside (step) function H(x) shifted on the crack path. The crack
is for simplicity often explicitly described by a polyline that can be parametrised by
the crack length s, as in Figure 3.11. The Heaviside function reads

H(x) =

1 for(x − x∗) · ni > 0 ,

0 for(x − x∗) · ni < 0 ,
(3.79)
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Figure 3.12 A typical FE mesh with a crack. The circled nodes are enriched with the
Heaviside function, and the squared nodes are enriched with near-tip asymptotic fields.

where x∗ is the closest point on the i−th crack segment to the point x and ni

is the unit normal to the current crack segment through the point x∗ such that
si × ni = ez with ez is the unit vector normal to and pointing out of the page. si is
the tangential unit vector parallel to the i−th crack segment where x∗ locates. In the
case where no unique normal but a cone of normals is defined at x∗, H(x) = 1 if
the vector (x − x∗) belongs to the cone of normals at x∗ and otherwise 0. By using
the Heaviside function, the character of displacement discontinuity along the entire
crack is captured exactly where it needs to be identified.
In summary, the approximate displacement field for the body with a linear elastic
crack by exploiting the PUM is

u(x) =
∑
I∈S

NI(x)aI +
∑

J∈SH

NJ(x)H(x)bJ +
∑

K∈SB

NK(x)
4∑

α=1
Bα(x)bα

K , (3.80)

where nodes in set SH are such that their support is split by the crack and nodes
in SB belong to the elements that contain a crack tip. The nodes in these two
different sets are enriched with the Heaviside function H(x) in Eq. (3.79) and the
branch functions Bα(x) in Eq.(3.77), respectively. The number of enriched degrees
of freedom per node is equal to the number of terms in the enriched basis multiplied
by the spatial dimension.
Following the Bubnov-Galerkin procedure, the discrete equation Kd = f is obtained
corresponding to the weak form of the XFEM formulation. Special care is needed for
the integration of the weak form since the enrichment functions are discontinuous
or even singular within the elements. The standard approach for the numerical
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integration in the XFEM is to split the crack intersected elements into integration
subcells (normally triangles) (Khoei, 2014). In practice, this is performed according
to the geometrical data of the element nodes, intersection points of the crack path
with element edges, and the crack tip.

Cohesive crack with XFEM

To deal with cohesive cracks with the XFEM formulation, we follow the work presented
by Wells and Sluys (2001b). To allow displacement discontinuities within continuum
elements, the Heaviside function defined in Eq. (3.79) is used. The approximated
displacement field can be represented as

u = Na + HΓd
Nb , (3.81)

where N is the matrix of the standard finite element shape functions; the subscript
Γd has been added to H to indicate that the Heaviside function is centred along
the discontinuity Γd; the vector a contains the regular degrees of freedom and the
vector b contains the enriched degrees of freedom. The displacement jump at the
discontinuity can be interpolated as

JuK = Nb . (3.82)

By taking the symmetric gradient of Eq. (3.81), the strain field in enriched elements
can be expressed as

ε = Ba + HΓd
Bb + (δΓd

¯̄n)Nb , (3.83)

where δΓd
is the Dirac delta distribution as a result of the differentiation of the

discontinuous Heaviside function; the matrix ¯̄n (not explicitly given here) contains
the normal components to the discontinuity.
Inserting the strain expression from Eq. (3.83) into the weak form Eq. (3.2) without
considering the body forces leads to∫

Ω
∇sδv̂ : σ dΩ +

∫
Ω

HΓd
∇sδJvK : σ dΩ +

∫
Γd

tc · δJvK dΓd =
∫

Γt

t̄ · δv̂ dΓ , (3.84)

where δv̂ and δJvK are separate admissible displacement variations; tc are the
cohesive tractions acting on the discontinuity. The integration property of the Dirac
delta distribution and Cauchy’s stress theorem were used in the derivation of the
third term in Eq. (3.84). Note that the external force contributions, that is the RHS
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of Eq. (3.84), do not involve δJvK related terms in order to simplify in practice the
application of traction and displacement boundary conditions.
After deriving the variational formulation as Eq. (3.84), the next step is to derive the
discrete FE equations. The variations δv̂ and δJvK can be expressed in terms of
variations δa and δb of nodal degrees of freedom a and b in Eq. (3.81)

δv̂ = Nδa , δJvK = Nδb . (3.85)

Accordingly, the corresponding gradients of the variations δv̂ and δJvK are

∇sδv̂ = Bδa , ∇sδJvK = Bδb . (3.86)

Inserting these variations into the variational formulation Eq. (3.84) and taking
variations in turn δv̂ and δJvK while fixing the other result in∫

Ω
BT σ dΩ =

∫
Γt

NT t̄ dΓ , (3.87a)∫
Ω+

HΓd
BT σ dΩ +

∫
Γd

NT tc dΓd = 0 . (3.87b)

Note that the integration domain of the first integral in Eq. (3.87b) is Ω+ (Figure 3.6),
for which δJvK is non-zero. From Eq. (3.87), the equivalent internal nodal forces
relating to the regular degrees of freedom a and to the enriched degrees of freedom
b are written as

f int
a =

∫
Ω

BT σ dΩ , (3.88a)

f int
b =

∫
Ω+

HΓd
BT σ dΩ +

∫
Γd

NT tc dΓd . (3.88b)

As can be seen from Eq. (3.88), the internal force vector f int
a is of the usual form for

finite elements, and the internal force vector f int
b must be zero as indicated by Eq.

(3.87b), which imposes traction continuity in a weak sense.
The global stiffness matrix can be obtained as by linearising Eq. (3.88)

Kxfem =
Kaa Kab

Kba Kbb

 , (3.89)
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where the constituting components are

Kaa =
∫

Ω
BT DB dΩ ,

Kab = Kba =
∫

Ω+
HΓd

BT DB dΩ ,

Kbb =
∫

Ω+
HΓd

BT DB dΩ +
∫

Γd

NT QT TQN dΓd ,

(3.90)

where the generic rate form of the bulk constitutive model σ̇ = D : ε̇ and the
generic rate form of the cohesive constitutive model posed in Eq. (3.67), have been
taken into account. The integration of the discontinuity term in Eq. (3.87b) over the
discontinuity is straightforward. In the case of a two-dimensional implementation,
the discontinuity, represented by a set of connected straight line segments, can be
integrated using a one-dimensional integration scheme. The implementation of the
cohesive XFEM in an existing FE code needs extra modifications in order to find
the elements affected by the cracks and to modify the element stiffness matrices of
these enriched elements.
In the numerical implementation, when Dirichlet boundary conditions are applied at
the enriched nodes, the shifted basis enrichment scheme is suggested such that the
enrichment term vanishes at the nodes and thus the blending elements problem is
avoided (Zi and Belytschko, 2003).
One should notice that in Eq. (3.81) there is no enrichment term for the crack tip
equivalent to the last term in Eq (3.80). In this case, the crack tip has to be located
on the element edge in order to ensure that the crack tip keeps closed, leading to a
fully cracked element.
The initiation or propagation of the discontinuity is governed by a fracture criterion.
One commonly adopted criterion is the criterion of maximum principal tensile stress
(Wells and Sluys, 2001b). If the maximum principal tensile stress at any integration
point in the element ahead of the crack exceeds the tensile strength of materials,
a new discontinuity is introduced or the existing discontinuity is extended with a
predefined length. After reaching equilibrium at each time step, we need to check
whether or not the fracture criterion is violated at any integration point. If so, we
extend the current discontinuity and then recompute the time step for the equilibrium
of the system; otherwise we commit the solution and enter the next time step. The
reason for the recomputation of the time step is that the just converged nonlinear
solution no longer corresponds to an equilibrium state for the modified topology of
extending cracks under the same load level.
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Due to jumps in the approximated stresses, it may happen that existing crack tips
do not extend, but rather new cracks initiate one or two elements away from these
tips. In fact, it is often the case that only one main crack will propagate and recently
initiated cracks will close. However, the opening and closure of several cracks at
the same time can adversely affect the convergence. To this end, new cracks are
only permitted to initiate outside a neighbourhood of the existing crack tip. This
neighbourhood can be defined as a circle centred at the crack tip of radius equal
to three to five times element characteristic length. This often provides reasonable
results in practice, since new cracks at very small distances cause little extra energy
dissipation.

3.4 Path following strategy

In nonlinear finite element analyses, load control cannot handle the limit points in a
load-displacement diagram. This is because the global tangent stiffness matrix at
these points becomes singular and more importantly the prescribed load magnitude
is likely to overshoot or undershoot the limit points (De Borst et al., 2012). This
issue can be addressed with displacement control. However, this type of loading
control fails when facing the snap-back phenomenon, which is characterised by
the change in the sign of the displacement increment. A typical situation when
snap-back can occur is strain localisation in a structure which is long enough in the
loading direction.

To handle snap-through or snap-back instabilities, arc-length methods can be
employed as a robust solution procedure. These methods can be dated back to the
work by Riks (1979) and have been adapted by several researchers (De Borst, 1987,
May and Duan, 1997, Alfano and Crisfield, 2003, Gutiérrez, 2004, May et al., 2016).
The basic idea underlying arc-length methods is to introduce a load factor λ as an
additional unknown governed by a constrained equation ϕ(a, λ) = 0, which is also
known as control function. Hence, the enlarged system of equations to be solved
reads fint(a) − λq

ϕ(a, λ)

 =
0

0

 , (3.91)

where q is the unit load vector.
As a result of the second law of thermodynamics, the rate of dissipation must be
non-negative. Therefore, the rate of energy dissipation is appropriate to be taken
as the basis of a constraint equation. Following the work by Gutiérrez (2004) and
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Figure 3.13 Energy dissipation based arc-length control of equilibrium path with a snap
back. The energy dissipation increment ∆E is prescribed for time step from tn to tn+1.

Verhoosel et al. (2009), the constraint equation can be defined as

ϕ(a, λ) = 1
2
(
λ0∆aT q − ∆λaT

0 q
)

− ∆E , (3.92)

where ∆E is the prescribed amount of energy dissipation during the current time
step and the subscript 0 signifies values from the last converged time step. Figure
3.13 illustrates a representative load increment based on the incremental dissipation
energy in the equilibrium path for a single degree of freedom.
Assuming that the solution at the i-th iteration and at the n + 1-th increment is known
for ai

n+1 and λi
n+1, the linearisation of Eq. (3.91) using a Taylor series expansion

about ai
n+1 and λi

n+1 results in

KT

(
ai

n+1, λi
n+1

) a − ai
n+1

λ − λi
n+1

 =
 r
−ϕ(a, λ)

i

n+1

, (3.93)

with the tangential stiffness matrix defined as

KT (a, λ) =
K q
vT w

 , (3.94)
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where
r = λq − fint(a) , K = ∂fint

∂a
, v = ∂ϕ

∂a
, w = ∂ϕ

∂λ
. (3.95)

In the end, the solution of Eq. (3.91) for (ai+1
n+1 , λi+1

n+1) at the i + 1-th iteration at the
n + 1-th increment can be obtained by solving

a
λ

i+1

n+1

=
a
λ

i

n+1

+ K−1
T

∣∣∣∣i
n+1

·

 r
−φ(a, λ)

i

n+1

. (3.96)

The above iterative procedure is repeated until some norm of the residual r and ϕ

individually satisfy the predefined convergence criteria.
In order to save computational time for the solution, the inverse of the tangential stiff-
ness matrix KT can be evaluated utilising the Sherman-Morrison formula (Verhoosel
et al., 2009). By defining the following vectors

aI = K−1r , aII = K−1q , (3.97)

the final form for the solution at the i + 1-th iteration can be reached

a
λ

i+1

n+1

=
a
λ

i

n+1

+


aI

0

− vT aI + ϕ

vT aII + w

aII

1


i

n+1

, (3.98)

where the expression in the braces is the correction term to the unknowns at iteration
i + 1.
One remarkable feature of the energy dissipation control is that it does not require
information on the local failure patterns of the structure, since incremental energy
dissipation can be expressed in terms of global quantities. One should notice that
the energy dissipation control may fail when the amount of incremental dissipated
energy is quite limited. Potential situations include hardening or reloading in the
equilibrium path after passing the peak load, leading to the singularity of the enlarged
system of algebraic equations.
For highly nonlinear and complicated fracture processes such as composite laminate
failure, the analysis usually cannot be completed without a robust time (load) stepping
strategy to follow the entire equilibrium path. The adaptive increment strategy
proposed in (Van der Meer, 2012) offers a good option for enhancing the robustness
of the solution procedure. This strategy involves the adaptive selection of step size
and switching of increment type if necessary. Interested readers refer to (Van der
Meer, 2012) for more details.
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3.5 Summary

In this chapter, the main focus is on the FE formulation and algorithmic aspects
of several existing numerical approaches for strain localisation or fracture in the
literature. Also, their merits and drawbacks have been discussed.
Isotropic continuum damage models and cohesive traction-separation laws were
presented as constitutive models for describing failure or fracture of materials. In
order to trace snap-backs in structural response, the energy dissipation based arc-
length solution technique has been detailed.
The following remarks concerning this chapter are highlighted:

• As a continuum approach, the local smeared crack approach is partially reg-
ularised and the simulated solution typically suffers from spurious mesh bias
dependence. However, the implicit gradient enhanced damage model re-
covers the ellipticity of governing equations and then results in a well-posed
quasi-static mechanical problem.

• When representing discontinuities in displacements, the XFEM is preferred
in most situations over cohesive elements, because, compared to cohesive
elements, XFEM allows a crack to transverse continuum elements; a small
number of new degrees of freedom are added when a crack needs to be
extended, indicating that the scale of resultant enlarged global systems is not
increased too much and high artificial stiffnesses can be avoided. However, it
is worth noting that XFEM cannot easily handle complex crack topologies, like
branching and intersections, especially in three dimensions.

• The nonlinear response induced by damage or fracture may need a robust
path following strategy in order to trace the equilibrium path.





Chapter 4

Multiscale Failure Modelling based
on Macro-discontinuity Enhanced
FE2

Macroscale mesh sensitivity and RVE size dependence are the two major issues
that make the conventional homogenisation technique incapable of modelling the
softening behaviour of materials. In this chapter, a new continuous-discontinuous
multiscale modelling approach to failure is presented. Inspired by the classical crack
band model of Bazant and Oh (1983), this approach is built upon a new computa-
tional homogenisation (CH) scheme that is referred to as the macro-discontinuity
enhanced FE2 from now on.
The outline of this chapter follows. Section 4.1 and 4.2 introduce the fundamentals of
the conventional first-order CH scheme. Emphasis is placed on the weakly periodic
boundary conditions, which will be adopted in the microscopic failure modelling.
Section 4.3 reproduces the failure zone averaging scheme proposed in the litera-
ture illustrated with numerical examples. The macro-discontinuity enhanced FE2

approach is introduced in Section 4.4, followed by the algorithmic details for the
presented multiscale failure modelling approach in Section 4.5. Several numerical ex-
amples are provided in Section 4.6 to demonstrate the effectiveness of the proposed
multiscale failure approach. Conclusions are summarised in the last section.
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4.1 Preliminaries

For the mechanical characterisation of heterogeneous material behaviour at large
scales, the use of effective quantities (e.g. density, strain and stress) is fundamen-
tal. These effective quantities incorporate the statistical features and interactions
between constituents of microstructures. In the literature, computational homogeni-
sation (CH) has been proposed for the identification of effective quantities for different
applications.
In this section, the standard first-order CH for continuous bulk materials is introduced
in detail. Averaging theorems are first presented and followed by the Hill-Mandel
condition. Then, emphasis is placed on several types of boundary conditions often
used in multiscale modelling with some numerical implementation aspects provided.
To assess the performance of these different boundary conditions, a linear elastic
RVE problem is studied.
The semi-concurrent multiscale methods implemented within the FE setting are usu-
ally formulated based on the technique of CH known as FE2 in the literature (Miehe
et al., 1999, Feyel and Chaboche, 2000). The CH scheme is built upon the concept
of an RVE. This family of methods provides an effective and flexible tool for analysing
a wide range of heterogeneous materials possessing complex microstructures with
moderately or highly nonlinear behaviour such as plasticity, damage and softening.
A schematic illustration for the standard first-order CH applied to materials under
infinitesimal strains is provided in Figure 4.1.
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Figure 4.1 Schematic of the first-order CH.
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4.1.1 Principle of separation of scales

In the literature, there exist multiple definitions for an RVE. Hill (1963) defined the
RVE as a sample of a heterogeneous material that: "is entirely typical of the whole
mixture on average”, and "contains a sufficient number of inclusions for the apparent
properties to be independent of the surface values of traction and displacement, so
long as these values are macroscopically uniform”. A more practical definition that
can be used is "the RVE is defined as the minimum volume of a laboratory scale
specimen, such that the results obtained from this specimen can still be regarded as
representative for a continuum" (Van Mier, 2017).
According to Hashin (1983), to be statistically representative, size of the RVE should
be larger than the characteristic length of the microstructure; for accuracy, size of
the RVE should be smaller than the characteristic length of the macroscopic body.
To define an RVE, the principle of separation of scales should be satisfied in essence.
According to (Geers et al., 2010), the principle of separation of scales is stated as
follows: “The microscopic length scale lm is assumed to be much smaller than the
characteristic length lM over which the macroscopic loading varies in space”. In
expression,

lm ≪ lM , (4.1)

which indicates that the characteristic length of the RVE has to be sufficiently small
compared to the macroscopic length scale.

4.1.2 Averaging theorems

For an arbitrary field ρm at the microscale, the corresponding effective quantity ρM is
its unweighted volume (area in 2D) average

ρM(XM) ≡ ⟨ρm(Xm)⟩ = 1
|Ωm|

∫
Ωm

ρm(Xm)dΩm , (4.2)

where | • | and ⟨•⟩ represent the measure of the microscale domain and averaging
operator respectively; X denotes the position vector in the reference configuration.
The subscripts M and m are employed to refer to macroscale and microscale
quantities.
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Averaging strain theorem

The macroscale strain tensor εM at a macroscopic material point can be defined as
the average of the microscale strain field εm over the RVE associated with that point.
To compute the macroscale strain tensor, the following averaging strain theorem (the
right most term) will be most helpful

εM = ⟨εm⟩ = 1
|Ωm|

∫
Ωm

εm(Xm)dΩm = 1
|Ωm|

∫
Γm

um ⊗s nmdΓm , (4.3)

where um is the microscale displacement vector and nm the microscale outward
normal to the RVE boundary. In the third equality, the infinitesimal strain definition
and divergence theorem have been applied to transform the volume integral to the
boundary integral. Thus, the effective macroscale strain can be enforced over the
RVE in terms of the boundary displacements.

Remark 9 The third equality in Eq. (4.3) holds true only when there are no internal
discontinuities anywhere in the RVE model (the microstructure is perfectly bonded).

Averaging stress theorem

Likewise, the macroscale stress tensor σM at a macroscopic material point is defined
as the average of the microscale stress field σm over the RVE associated with that
point. The averaging stress theorem (the right most term) is stated as

σM = ⟨σm⟩ = 1
|Ωm|

∫
Ωm

σm(Xm)dΩm = 1
|Ωm|

∫
Γm

tm ⊗ xmdΓm , (4.4)

where tm = σm · nm is the microscale traction vector on the RVE boundary. In the
derivation of the last equality, the observation ∇· (σm ⊗ xm) = ∇· σm ⊗ xm + σm, the
equilibrium equation, and the divergence theorem have been used sequentially. The
above transformation of the volume integral to the boundary integral enables us to
prescribe the effective stress over the RVE just in terms of the boundary tractions.
This can be used in practice to derive the microscopic finite element analysis or to
extract the effective stress from the microscale.

Remark 10 The above used integral transformation remains true when there are no
body forces.
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4.1.3 Hill-Mandel condition

So far, strain and stress averaging have been presented. They provide the con-
nection between macroscale strain and stress, and their microscale counterparts.
However, the energetic equivalence between the two scales has not yet been de-
scribed.
The Hill-Mandel condition (Hill, 1963), also termed as the macrohomogeneity condi-
tion, states that the local stress power at a macroscopic material point should be
equal to the average of the stress power at the microscale

σM : ε̇M = ⟨σm : ε̇m⟩ . (4.5)

The boundary conditions enforced on the RVE boundary are used to pass the
macroscale information (εM or σM) and generate strain and stress fields in the RVE.
Nonetheless, for arbitrary pairs of computed microscale stress and strain fields, the
above equivalence is generally not satisfied. To demonstrate this, split the microscale
stress and strain fields as

σm = ⟨σm⟩ + σ̃m , (4.6a)

εm = ⟨εm⟩ + ε̃m , (4.6b)

where σ̃m and ε̃m are the fluctuation components, complementary to the averages.
Applying the above decompositions to the Hill-Mandel condition Eq. (4.5) results in

σM : ε̇M = ⟨σm : ε̇m⟩ + ⟨σ̃m : ˙̃εm⟩ . (4.7)

The term ⟨σ̃m · ˙̃εm⟩ in the above equation does not vanish in general. This necessi-
tates appropriate types of boundary conditions to conserve energy across scales so
that the stress and strain averaging (homogenisation) make sense.
Further algebraic manipulations on this term lead to

⟨σ̃m : ˙̃εm⟩ = 1
|Ωm|

∫
Γm

t̃m · ˙̃umdΓm , (4.8)

in which the displacement fluctuation vector ũm and boundary traction fluctuation
vector t̃m = σ̃m · nm at the microscale have been introduced.
Using the first-order homogenisation scheme for which macroscale deformation is
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homogeneous on the RVE, we have the following relation

uM = εM · (Xm − Xm,r), ∀ Xm ∈ Ωm , (4.9)

with Xm,r as a reference point.

Remark 11 As proved in (de Souza Neto and Feijóo, 2006), the Hill-Mandel condi-
tion is equivalent to requiring that body forces and surface traction in the RVE be
purely reactive, which means they are reactions to the chosen kinematic constraints,
and cannot be prescribed independently.

4.2 Boundary conditions on RVE

There are two obvious ways to fulfil the requirement that the average in Eq. (4.8)
vanish, either set the displacement or traction fluctuation field on the boundary to
zero. The first yields the so-called linear displacement boundary conditions and the
latter the so-called uniform traction boundary conditions in the literature. Because
the analysis of RVE models under consideration is displacement driven, in the sequel
we only focus on the kinematical types of boundary conditions (BCs).

4.2.1 Linear displacement BCs

As the name indicates, the displacement of the RVE boundary is linear and given by

um = εM · Xm ∀ Xm ∈ Γm . (4.10)

It is easy to verify that the linear displacement boundary conditions satisfy the
average strain assumption, therefore we omit the proof details here. Due to ũm = 0
on the boundary, it is concluded from Eq. (4.8) that the Hill-Mandel condition holds
true. Note that in this case, since the RVE problem is deformation driven, the average
stress assumption needs to be derived from the Hill-Mandel condition. The numerical
implementation of this type of BCs is quite straightforward such that it is not provided
here.
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4.2.2 Minimal kinematic BCs

Considering Eq. (4.8), another way to satisfy the Hill-Mandel condition is to prescribe
the boundary tractions by means of

tm = σM · nm , (4.11)

which defines uniform tractions on the boundary of RVE. Since the use of the
condition (4.11) is not consistent with the deformation-driven FE analysis, as an
equivalent to the condition (4.11), the minimal kinematic BCs state

εM = 1
|Ωm|

∫
Γm

um ⊗s nm dΓm , (4.12)

which shares the same form with the RHS of Eq. (4.3). The condition (4.12) can be
treated with a Lagrange multiplier method where the stress components σM act as
the Lagrangian multipliers, as mentioned in (Miehe et al., 2002).

4.2.3 Periodic BCs

When the RVE has a periodicity in microstructure, periodic BCs are a natural choice.
Periodic BCs postulate the displacement fluctuation field across the RVE boundary
is periodic along the periodic directions of the microstructure.
Consider a two dimensional square periodic RVE with bottom-left corner (0, 0) and
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Figure 4.2 Schematic representation of a periodic RVE with mapped boundaries; Corner
vertices are labelled 1,2,3,4.

top-right corner (Lm, Lm) as shown in Figure 4.2, where the boundary Γm has been
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decomposed into two parts Γ−
m and Γ+

m such that Γm = Γ−
m

⋃Γ+
m and Γ−

m

⋂Γ+
m = ∅. In

the periodic BCs, except the corner vertex 3, each point X+
m on the boundary Γ+

m is
mapped to its unique corresponding point X−

m on the boundary Γ−
m according to the

mapping φper

X−
m = φper(X+

m) ,

φper : (Lm, Yp) → (0, Yp) or (Xp, Lm) → (Xp, 0) ,
(4.13)

where Xp and Yp refer to X-axis and Y-axis coordinate values of arbitrary point p.
Note the corner vertex 3 has two pairing points (corners), vertex 2 and vertex 4. With
these preliminaries, the periodic BCs are defined as

JuKΓm = u+
m − u−

m = εM · (X+
m − X−

m) , t+
m = −t−

m , (4.14)

where use of the notation ()+ = ()|X+ with X+ ∈ Γ+
m and ()− = ()|X− with X− ∈ Γ−

m

has been made of. The second sub-equation in the above equation (4.14) implies
the anti-periodicity character of boundary tractions.
For the sake of completeness, let us check the equality between the (given) macroscale
strain and the averaged microscale strain,

⟨εm⟩ = 1
|Ωm|

(
∫

Γ+
m

u+
m ⊗s n+

mdΓm +
∫

Γ−
m

u−
m ⊗s n−

mdΓm)

= 1
|Ωm|

∫
Γ+

m

(u+
m − u−

m) ⊗s n+
mdΓm

= 1
|Ωm|

εM ·
∫

Γ+
m

(X+
m − X−

m) ⊗s n+
mdΓm

= εM ,

(4.15)

wherein the fact that n+
m = −n−

m has been used twice. It is not difficult to observe the
satisfaction of the Hill-Mandel condition from the fact that the expression Eq. (4.8)
vanishes, due to the point-wise periodicity of the boundary displacement fluctuations
and point-wise anti-periodicity of boundary traction fluctuations.

4.2.3.1 Hybrid BCs

The hybrid BCs proposed in (Hirschberger et al., 2008, 2009) and adopted in (Ver-
hoosel et al., 2010, Nguyen et al., 2011a), are a combination of linear displacement
BCs and periodic BCs, as shown in Figure 4.3. Along the tangential direction
of a material interface or crack, periodic fluctuations are assumed. Macroscopic
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Figure 4.3 Schematic representation of hybrid BCs for tensile failure mode, in which periodic
constraints are applied on the top and bottom edges and linear displacement constraints on
the left and right edges.

deformations, such as macroscale interface opening JuKM, are enforced by linear
displacement BCs acting on the RVE edges that are not across the interface or
crack.

4.2.4 Weakly periodic BCs
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Figure 4.4 Illustration of weakly periodic BCs with periodicity along the horizontal direction.
Piecewise constant boundary traction discretisation has been adopted.

The weakly periodic BCs in Figure 4.4 can be regarded in an integral sense as a
weak implementation of the strong periodic BCs that are applied pointwise. In the
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weak setting, the weakly periodic BCs can be expressed as (Larsson et al., 2011)∫
Γ+

m,i

δtm · JũKΓm dΓm = 0 , (4.16)

where δtm can be regarded a test function and interpreted as the weighted boundary
traction vector which is unknown at the moment; i = 1, 2. The condition (4.16) is
equivalent to the following form∫

Γ+
m,i

δtm · JuKΓm dΓm =
∫

Γ+
m,i

δtm · εM · (X+
m − X−

m) dΓm . (4.17)

The detail of showing that the weakly periodic BCs respect the Hill-Mandel condition
(4.5) is given as follows

⟨σm : δεm⟩ = 1
|Ωm|

(∫
Ωm

σm : δ∇uM dΩm +
∫

Ωm

σm : δ∇ũm dΩm

)
= 1

|Ωm|

∫
Ωm

σm : δ∇uM dΩm + 1
|Ωm|

∫
Γm

tm · δũm dΓm

= σM : δεM + 1
|Ωm|

∫
Γ+

m

tm · δJũKΓm dΓm

= σM : δεM ,

(4.18)

where the equilibrium equation of RVE and the divergence theorem, the anti-
periodicity of boundary tractions tm and Eq. (4.16) have been used in sequence. The
condition (4.17) can be implemented in the context of FE by means of introducing
Lagrange multipliers into the system.
The weak form of the BVP of the RVE model after enforcing boundary conditions
through Eq. (4.16) or (4.17) (Larsson et al., 2011) leads to∫

Ωm

σm : δ∇um dΩm −
∫

Γ+
m

tm · δJuKΓm dΓm = 0 . (4.19)

The homogenised stress σM is straightforward, which is just

σM = 1
|Ωm|

∫
Γ+

m

tm ⊗ JxKm dΓm , (4.20)

where Eq. 4.4 was recalled. Note that the boundary traction field tm has been known
after solving the augmented system that arises from the combination of Eq. (4.19)
and (4.17).
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Construction of the Traction Mesh

To numerically implement the weakly periodic BCs, an independent discretisation for
the weighted boundary traction unknown tm is necessary. The traction mesh with a
piecewise constant interpolation for tractions is constructed following the procedure
in (Larsson et al., 2011). Note that there is no strict requirement on the regularity
of tractions. To fulfil the inf-sup (LBB) condition when making use of the piecewise
constant traction approximation, there must be at least one displacement node inside
each traction element, refer to (Svenning et al., 2016) for more details.
To create the traction mesh for interpolating boundary tractions, firstly all the bound-
ary displacement nodes are projected onto the boundary Γ +

m . This forms an initial
pool of candidate traction nodes for further selection. The intersection points of
discrete cracks with the boundary are also incorporated into this node pool. A selec-
tion criterion needs to be defined. Such a criterion can be preserving the minimum
number of displacement nodes lying between two neighbouring traction nodes or
eliminating candidate traction nodes that are too close to each other. Note that the
traction nodes at end points of Γ +

m have to be kept. Traction elements are created by
just connecting neighbouring traction nodes that remain after selection, as shown in
Figure 4.4.
The weakly periodic BCs have been further extended to tackle boundary crossed
discrete cracks (Svenning et al., 2016) and also strong strain localisation problems
of testing (Svenning et al., 2017a), of numerical samples (RVEs). A work similar to
the weakly periodic BCs was presented in (Goldmann et al., 2018) for applying to
strain localisation problems.
To handle strain localisation phenomena occurring on the RVE, the weakly periodic
BCs are required to be modified to align with the localisation direction provided that
the localisation direction is known as proposed by Svenning et al. (2017a). To this
end, the mapping function in (4.13) needs to be redefined such that the points on
the boundary Γ +

m are mapped onto Γ −
m along lines that are parallel to the localisation

direction. Interested readers refer to the article (Svenning et al., 2017a).

4.2.4.1 FE discretisation

The RVE boundary traction field tm can be approximated as

tm = Ntta , (4.21)



76 Multiscale Failure Modelling based on Macro-discontinuity Enhanced FE2

where the matrix Nt comprises shapes functions for the traction approximation and
the vector ta collects all the nodal tractions of the traction mesh.
Let us consider there is nt traction nodes in the traction mesh. Regarding the
computer implementation, Voigt representation for the homogenised stress {σM}
is employed here. According to Eq. (4.20), the discrete form for the variation of
homogenised stress δ{σM} can be represented as

δ{σM} = 1
|Ωm|

∫
Γ+

m

PNt dΓm︸ ︷︷ ︸
Mp

δta , (4.22)

with the coefficient matrix P = [P1 ... Pi ... Pnt]. A typical matrix Pi has the following
form

Pi =


JxKΓm 0

0 JyKΓm

1
2JyKΓm

1
2JxKΓm

 .

The homogenised tangent stiffness DM is obtained through a static condensation
procedure once the global FE tangent stiffness matrix is assembled from the RVE
model. Let us represent the augmented discrete system that arises from the FE
discretisation of Eq. (4.19) and (4.17). The converged discrete system can be
partitioned into blocks associated with displacement dofs and boundary traction dofs Kuu −Kut

−Ktu 0

δu
δta

 =
 0
−δf t

ext

 , (4.23)

where Ktu =
∫

Γ+
m

NT
t N±

u dΓm and Kuu is just the standard tangent stiffness term. In
Eq. (4.23), δf t

ext is written as

δf t
ext = 1

|Ωm|

∫
Γ+

m

NT
t PT dΓm︸ ︷︷ ︸

MT
p

δ{εM} . (4.24)

From (4.23), we can condense out the displacement field δu to derive δta as

δta = (KtuK−1
uu Kut)−1δf t

ext . (4.25)
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Inserting the above equation into Eq. (4.22) and considering the expression (4.24),
we have

δ{σM} =
(
Mp(KtuK−1

uu Kut)−1MT
p

)
︸ ︷︷ ︸

DM

δ{εM} , (4.26)

where DM is the sought-for homogenised tangent stiffness.

4.2.5 Comparison of BCs

Y

XZ

Figure 4.5 BC comparison test: mesh for the used unit cell.

This subsection aims to compare the performance of different BCs for a linear elastic
problem of a square unit cell. The unit cell of length 1 comprises a stiff elastic particle
with elastic modulus 1x105 embedded in one corner of the matrix with elastic modulus
1x104. The same Poisson’s ratio 0.2 is taken for both constituents. The mesh for the
unit cell is given by Figure 4.5 with global element size 0.1. The increasing sizes of
RVE are obtained by a periodic repetition of the unit cell. Plane stress condition is
assumed and a macroscale strain vector {εM} = [1x10−4, 0, 0] is prescribed. The
computed homogenised normal stress σxx is used to measure the performance
of different BCs discussed previously. Four different RVE sizes measured by the
number of unit cells in both periodic directions are considered, namely 1 × 1, 2 × 2,
4 × 4, 8 × 8 unit cells by unit cells. When producing the traction mesh for the weakly
periodic BCs, each traction line element contains one displacement node that can
be projected on its interior.
The deformed shapes for different RVE sizes are displayed in Figure 4.7.

The curve of homogenised stress σxx versus RVE size is shown in Figure 4.6 for
different BCs.The trend of convergence of the effective response is shown in Figure
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Figure 4.6 BC comparison test: effective stress-RVE size curves. LBC: linear BC, MKBC:
minimal kinematic BC, PBC: periodic BC and WPBC: weakly periodic BC. 
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Figure 4.7 BC comparison test: deformed configurations (magnified by 5000) obtained with
different boundary conditions for the RVE made of 2 × 2 unit cells.

4.6. It is found that the linear BCs give the stiffest response whereas the minimal
kinematic BCs result in the softest response when the RVE size is small. This is
because the linear BCs and the minimal kinematic BCs correspond to the most
and the least kinematic constraints over the boundary, respectively, thus leading to
unreasonable constraining effects, as can be observed from Figure 4.7. However,
these undesirable effects on the effective response are diminishing as the RVE size
is increasing, see Figure 4.6. The periodic BCs and its weak version, the weakly
periodic BCs, take into account the influence of the neighbouring microstructure by
means of respecting the periodic fluctuations in the deformation of boundary (Figure
4.7). Thus, the computed effective responses show no apparent sensitivity to the
variation of RVE size, see Figure 4.6.
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4.3 Failure zone averaging

Let us specify the microscale problem domain in 2D as a rectangle (typically square)
Ωm with dimensions wm × hm, see Figure 4.8. As loading increases, microscale
damage in form of voids or cracks will coalesce and form a weak band while its
length is comparable to the domain’s length scale. At this stage, this solid block
loses its material stability; however, it may still be able to carry some load.
The failure zone averaging scheme devised in (Nguyen et al., 2010), as its name
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Figure 4.8 Square RVE with a vertical localisation band across the boundary.

indicates, is to average the mechanical fields (e.g., stress and strain) over the active
damage domain after strain localisation instead of over the entire RVE domain. This
scheme can be used to extract from the RVE analysis a stress-strain response that
is independent of the selected RVE size.
Let us denote the active damaged domain as Ωd, see Figure 4.8. According to
the continuum damage model, this domain is identified as the collective region that
comprises integration patches, mastered by Gauss points that are still experiencing
damage loading. The homogenised stresses and strains are defined as the volume
averages of the microscopic stresses and strains, respectively, over Ωd (Nguyen
et al., 2010)

⟨σ⟩dam = 1
|Ωd|

∫
Ωd

σm dΩd

⟨ε⟩dam = 1
|Ωd|

∫
Ωd

εm dΩd .
(4.27)
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This averaging scheme filters out the linear contribution which makes the stress-
strain curves not unique (Gitman et al., 2007). It merely extracts only the inelastic
response from the RVE, thus leading to an RVE-size insensitive response. Note that
this ad hoc averaging scheme should be used only after the development of a strain
localisation band on the RVE.

4.3.1 Traction-separation law

For simulating a macroscopic cohesive crack, an essential ingredient is the identifi-
cation of the traction-separation law. This goal can be achieved by transforming the
homogenised stress-strain response just mentioned from the microscale (Nguyen
et al., 2011a).
When employing continuum damage models, the displacements due to damage can
be defined as the projection of the average damage strain tensor onto the crack
plane (Nguyen et al., 2011a)

udam = ⟨ε⟩dam · (wbnmb) , (4.28)

where wb stands for the average width of the localisation band (estimated as |Ωd|/hm

when considering a vertical microscale localisation band, see Figure 4.8 for clarity),
and the unit vector nmb denotes the normal direction to the microscopic localisation
band. To obtain an initially rigid traction-opening relation for the macroscale crack, a
shift is applied, resulting in

JuKM = udam − ůdam , (4.29)

where ůdam corresponds to the damage opening/displacement at the maximum
traction point.

4.3.2 Numerical examples

Firstly, we replicate the numerical example of samples with voids presented in the
paper (Nguyen et al., 2010), but instead use the weakly periodic BCs to prescribe
the macroscale deformation over the RVE boundary. Although it is not quite novel,
for the sake of completeness, it is demonstrated here the validity of the failure zone
averaging scheme when overcoming the non-existence issue of RVE under the
condition of material softening. The adopted weakly periodic BCs can minimise
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the effect of boundary conditions on the development of strain localisation and
thus ensure a more realistic overall response. Secondly, the failure zone averaging
scheme is applied to complex microstructures, taking concrete as an example.

Voided samples in Section 4.3.2

The geometries of three RVEs are shown in Figure 4.9. The dimensions of RVE1

(unit cell) are 10 × 10 and the central hole diameter is 5, while RVE2 and RVE3 are
just periodic repetitions of RVE1 in the horizontal direction. All the length units are
in mm. An isotropic damage model with exponential softening is used to simulate
the material degradation process, with κ0 being the damage initiation strain and κf

a parameter controlling the ductility. The equivalent strain εeq is defined in terms
of the positive principal strain components (Mazars and Pijaudier-Cabot, 1989).
The gradient enhanced damage model proposed in (Peerlings et al., 1996) is used
to regularise the strain localisation induced by softening, thus leading to a mesh-
independent response. The parameter c in the gradient enhanced damage model
has the dimension of length squared. The material constants are listed in Table 4.1.

 

 

                                      

 

                                       

RVE1 RVE2 

RVE3 

Figure 4.9 Three meshed RVE configurations of different sizes with holes. They are identified
with RVE1, RVE2 and RVE3.

The results in terms of effective stress σxx versus effective strain εxx for the classical
first-order homogenisation scheme are plotted in Figure 4.10. It is evident that the
mechanical responses coincide with each other before strong strain localisation
occurs; however, the response after the peak load is becoming more brittle as the
RVE size increases. It is worth noting that strength size effect does not exist for the
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Table 4.1 Material constants for the voided microstructure.

Em [MPa] νm κ0 κf c [mm2]

5x104 0.2 5x10−5 2 x10−3 0.2
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Figure 4.10 Homogenised stress-strain responses of three voided samples under uniaxial
tensile loading, using the standard first-order computational homogenisation scheme.

classical homogenisation scheme, as evidenced by the coincident peak points in the
homogenised stress–strain diagrams.
The homogenised traction-separation diagrams for three RVE sizes, obtained with
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Figure 4.11 Homogenised cohesive responses of three voided samples under tensile loading,
where the failure zone averaging scheme is employed. Note that the curves are already
shifted to the left by an amount of the damage displacement at the onset of strain localisation.
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Figure 4.12 Damage patterns at the end of analyses of two voided samples under tensile
loading: (a) RVE1 and (b) RVE2.

the failure zone averaging scheme are presented in Figure 4.11. It is obvious that
these curves agree with each other. Therefore, when adopting the failure zone
averaging scheme, the size-independent RVE definition does exist in the sense
of an objective effective cohesive crack response. The damage patterns in terms
of damage level at the end of simulations for RVE1 and RVE2 are displayed in the
Figure 4.12 for illustration. The formed localisation bands with a finite thickness are
the same in the morphology and damage distribution.

Effect of parameter c
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Figure 4.13 Extracted cohesive laws with shifting for three different values of parameter c
using a regular RVE of size 10 × 10 mm2 with a central circular hole.

To show the influence of parameter c, using an RVE of size 10×10 mm2 with a central
circular hole, cohesive laws extracted for the different values c = 0.1, 0.2 and 0.3 mm2

are displayed in Figure 4.13. A more ductile response is observed with an increasing
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  c = 0.1 c = 0.3 c = 0.2 

Figure 4.14 Strain localisation bands for different values of parameter c.

value of c from the curves. This is caused by the larger width of the strain or damage
localisation band, as displayed in Figure 4.14. The larger damage localisation region
implies more dissipated energy.

Mesoscopic concrete in Section 4.3.2

At a finer scale than the macroscale, plain concrete appears to be heterogeneous. It
is typically described as a three-phase composite material consisting of the cement
matrix, aggregates and interfacial transition zones (ITZ) surrounding the aggregates
(Van Mier, 2012), see Figure 4.15. According to Gitman et al. (2007), aggregates can
be assumed circular with diameters ranging from 2.5 mm to 5 mm with a uniformly
random distribution and the interface width is set to 0.25 mm, namely 10% of the
smallest diameter of the aggregates. Four sample sizes 10 × 10 mm2, 15 × 15 mm2,
20 × 20 mm2 and 30 × 30 mm2 are studied. The aggregate density ρ = 40% is chosen
to simplify the process of random packing of the aggregates. The randomness of
the aggregate distribution is considered by simulating three random realisations for
each sample size.

Making reference to (Gitman et al., 2007, Nguyen et al., 2010), the material
constants for each phase are summarised in Table 4.2. When generating samples
for simulation, periodicity of the material is kept by preventing “wall effects”, as
suggested by Gitman et al. (2007). The elements size in the interfaces and matrix
should be small enough to to adequately capture the modes of high strain localisation.
However, the aggregates in concrete are not allowed to experience damage by
assigning a rather high value to κ0, and coarse elements can be used for meshing
aggregate regions.

For these four sizes of concrete samples under tensile loading, the homogenised
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Figure 4.15 Idealisation of material composition of plain concrete at the mesoscale.

Table 4.2 Material constants of the heterogeneous three-phase concrete material.

Constituent Em [MPa] νm κ0 κf c [mm2]

Aggregate 3x104 0.2 0.5 1 0.2

Matrix 2.5x104 0.2 5x10−6 7.5x10−4 0.2

ITZ 2x104 0.2 3x10−6 7.5x10−4 0.2
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Figure 4.16 Softening concrete RVEs in tension: standard averaging (a) vs. failure zone
averaging (b).

responses in terms of the stress and strain relation using the standard averaging
scheme are displayed in Figure 4.16a. Obviously, the objectivity of the measured
response with respect to the RVE size is not retained after entering the post-peak
softening regime. This obstructs the definition of an RVE for softening materials, see
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(Gitman et al., 2007). The responses in terms of the extracted traction and crack
opening (displacement jump) with the failure zone averaging scheme of Nguyen
et al. (2010) are shown in Figure 4.16b. As can be seen, these diagrams show good
agreement (almost overlapping each other), which demonstrates the capability of
the failure zone averaging for overcoming the RVE size dependence issue induced
by material softening. Note that these cohesive response diagrams in Figure 4.16b
have shifted to the left, by an amount of the damage displacement at the peak,
along the crack opening axis to eliminate the pre-peak portion. This is quite useful
when incorporating this extracted cohesive law in the XFEM or EFEM framework for
describing the crack behaviour of progressive separation.
The localisation patterns in terms of damage level for one realisation of each size
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Figure 4.17 Damage patterns of concrete RVEs (ρ = 40%) of five sizes: 10 × 10, 15 × 15,
20 × 20, 30 × 30 from left to right (unit of length is mm).

are illustrated in Figure 4.17. A vertical straight localisation band, developed due to
tension, is observed with similar width in each case.
The slight difference in the effective cohesive traction-jump diagrams in Figure
4.16b, can be explained by two possible reasons. The first is the RVE realisation
pool size (three) is very small so that the statistical character (randomness) cannot
be guaranteed. Figure 4.18 gives the extracted cohesive responses from three
realisations for the sample sizes 10 × 10 and 15 × 15, where minor differences are
found on the curves. When employing more realisations and then repeating the
simulation and averaging procedure, it is reasonable to anticipate a smoother and
more coincident response. The second reason is that the localisation band width is
an approximate value, which might affect the crack opening estimation. Figure 4.19
shows the damage patterns at the end of simulation for three different realisations of
size 15 mm, where the band width seems slightly different.
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Figure 4.18 Cohesive responses (unshifted) of three realisations of concrete RVEs (ρ =
40%): size 10 × 10 (left) and size 15 × 15 (right).

 

 

 

 

 

 

 

Figure 4.19 Damage patterns of three different realisations of concrete RVEs of size 15 mm
(ρ = 40%).

4.4 Macro-discontinuity enhanced FE2

This section aims to present a new multiscale failure model based on the first-order
CH. The coupling relations between the macro- and microscale are firstly introduced,
which is followed by the proof of energetic equivalence between the two scales,
employing the variational principle. The implementation details will be given in the
next section.

4.4.1 Macro-micro coupling

For a cohesive fracture problem, the macroscale domain can be categorised into
two sets of material points, those with stable and unstable mechanical responses. In
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Γd 

Figure 4.20 Macroscale domain with a macroscale crack Γd corresponding to a strain
localisation band Ωd. Also given is the an rotated RVE that coincides with the crack normal
direction nM. The RVE with microstructural details is used to simulate material responses,
including strain localisation.

view of the localisation, stable and unstable responses correspond to different stages
of the deformation process. We use Ωr and Ωd to denote the separate macroscale
regions made of stable XMr and unstable material points XMd, as shown in Figure
4.20. Indeed, ΓMd is a crack surface when considering strong discontinuities in
displacement. ΓMd can be regarded as a consequence of strain localisation.
The definition of an RVE exists for the stable material points XMr that are experiencing
uniform deformations at the macroscale. The microscale displacement field for such
an RVE can be described as an addition of two displacement fields

um = uM + ũm , (4.30)

where uM is, according to the first-order deformation assumption, expressed as
(reusing Eq. (4.9))

uM = εM · (Xm − Xmr), ∀ Xm ∈ Ωm , (4.31)

and the unknown field ũm is strongly dependent on the microstructural details. Note
that εM is merely the macroscale strain at each stable point XMr.
For the unstable material points XMd, the definition of an RVE is questioned in terms
of an effective response that is not sensitive to the RVE size. This requires modifi-
cations to the standard first-order CH. To this end, one possibility is to incorporate
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the kinematics corresponding to the macroscale crack into the RVE domain. Note
that for points on the crack surface, the displacement field is discontinuous and
the resulting infinite strain does not make sense when considering εM. Considering
the equivalence between a strong discontinuity and a smeared weak discontinuity,
we may smear the strong discontinuity jump over a certain dimension along the
normal direction to the localisation band that emerges within the RVE. This is very
similar to the concept of the crack band model of Bažant and Oh (1983). Hence,
the kinematics to distribute over the RVE may be represented as (Kolymbas, 2009,
Nguyen et al., 2012a)

εM = εM0 + 1
ld

(JuKM ⊗s nM) . (4.32)

where εM0 represents the effective bulk strain of the material in the vicinity of the
macroscale crack, JuMK and nM denote the discontinuity jump across the crack surface
and the normal direction to the crack surface, and ld is the so-called smearing width.
It is obvious that the homogeneous strain term εM0 can be neglected when its
magnitude is negligible compared with the term 1

ld
JuMK ⊗s nM. Eq. (4.32) states that

the average strain is equivalent to the sum of the strain contributions due to the bulk
and the macroscale crack.
For the case where the square RVE (wm = hm) is aligned with the global coordinate
system, for an inclined localisation band, the parameter ld can be estimated as

ld = |Ωm|
leff

= |Ωm|
wm · |nM(1)| or wm · |nM(2)| , (4.33)

where leff denotes the effective band length along the tangent direction orthogonal
to nM.
The homogeneous bulk strain εM0 near the macroscale crack can be approximated
in the numerical implementation as

εM0 = lim
δ→0

1
2 (ε(XMd + δ · nM) + ε(XMd − δ · nM)) , (4.34)

which is the averaged strain between bulk strains at two points that are approaching
the crack surface.

Remark 12 The current treatment for coupling discontinuities between two scales
shares some similarities with the idea presented by Svenning et al. (2017b). The
authors there also considered a smeared macro-to-micro discontinuity transition
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but in the framework of variationally consistent homogenisation. In their work, the
macroscale crack is implicitly governed by the microscale response.

With the enriched kinematics εM at hand, the microscale displacement field for an
RVE coupled with an unstable material point can be thereby described as

um = uM + ũm = εM · (Xm − Xmr) + ũm . (4.35)

Eq. (4.35) has the same form as Eq. (4.30) except the definition for εM is different.
In addition, the displacement fluctuations here ũm are affected not only by the
microstructure, but also by the emerged strain localisation band in the RVE.

4.4.2 Energetic equivalence
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Figure 4.21 Equivalent macroscopic crack: mechanical quantities of interest at (a) microscale
and (b) macroscale.

After determining the connection between the microscale kinematics and the macroscale
displacement jump, the next step is to work out the effective cohesive traction. To
this end, let us consider the energetic equivalence between two problem setups, as
shown in Figure 4.21.
Taking Eq. (4.35) into the expression for internal virtual work of the whole RVE and
considering the definition of uM by Eq. (4.32) and ld = wm in this case, it follows that

Wm =
∫

Ωm

σm : δεm dΩm

=
∫

Ωm

σm : δεM0 dΩm + 1
wm

∫
Ωm

σm · nM · δJuKM dΩm +
∫

Ωm

σm : ∇sδũm dΩm .

(4.36)
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The virtual work WM performed by the macroscopic body with an equivalent crack to
the strain localisation band in the RVE can be expressed as

WM = wmhmσM : δεM0 + hmtM · δJuKM . (4.37)

The RHS in Eq. (4.37) consists of two types of virtual work contributions, the change
in internal energy corresponding to the bulk material and the work performed by the
equivalent cohesive crack.
Equating Wm to WM and making use of the variational principle, we can derive the
expression for the effective cohesive traction

tM = 1
wmhm

∫
Ωm

σm · nM dΩm

= ⟨σm⟩ · nM = σM · nM ,

(4.38)

and the expression for the variational form of the microscale equilibrium problem∫
Ωm

σm : ∇sδũm dΩm = 0 . (4.39)

Note that an approximation between the virtual bulk work in Wm and that in WM

has been made after assuming statistical homogeneity in the material on the both
sides of the crack. As can been seen from the Eq. (4.38), the expression for the
effective traction is just the the projection of the macroscopic Cauchy stress on the
macroscopic crack plane, the same as was postulated in (Hirschberger et al., 2009,
Verhoosel et al., 2010).
Eq. (4.39) represents the weak form of the microscale equilibrium problem that
needs to be solved for unknown displacement fluctuation field ũm.
The extended CH for characterising the cohesive crack behaviour can be illustrated
in the Figure 4.22.
Any of those boundary conditions discussed in Section 4.2 might be chosen. How-
ever, the enforced boundary conditions should respect the localisation band to
ensure a realistic localisation mode and to give an accurate effective mechanical
response. Therefore, after the localisation is detected, the localisation aligned weakly
periodic BCs presented by Svenning et al. (2017a) are adopted.
The cohesive tangent stiffness matrix TM can be obtained by performing the lineari-
sation of the cohesive traction given by Eq. (4.38) over the macroscale displacement
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Figure 4.22 Extended computational homogenisation for the multiscale constitutive model
of cohesive cracks.

jump JuKM. The derivation process is given as follows

TM = δtM

δJuKM

= δσM

δεM

δεM

δJuKM

· nM

= 1
ld

nM · DM · nM ,

(4.40)

where Eqs. (4.32) and (4.38) have been used and the minor symmetry of the
homogenised stiffness DM = δσM

δεM
has been assumed. Note that DM may have

different explicit forms for different boundary conditions prescribed on the RVE.
When the weakly periodic BCs are employed, DM has the expression form as shown
in Eq. (4.26).

4.5 Computational implementation

Discrete cracks at the macroscale are represented with the XFEM. To numerically
simulate a discrete crack, two necessary ingredients need to be specified: when
the crack is allowed to emerge (initiation criterion) and the direction along which the
crack is about to extend with a predefined length (propagation criterion).
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4.5.1 Initiation and propagation criterion of macroscale cracks

The discrete crack is a consequence of strain localisation. The strain localisation
relates to the loss of ellipticity of stress governing equations. In the multiscale setting,
the localisation detection at the macroscopic scale can be based on singularity of
the acoustic tensor associated with the homogenised bulk tangent stiffness (Massart
et al., 2007, Belytschko et al., 2008, Coenen et al., 2012a, Toro et al., 2014) and
on negative eigenvalues of the homogenised bulk tangent stiffness (Svenning et al.,
2019). Another option is to identify strain localisation based on the stress field at the
macroscale (Verhoosel et al., 2010, Nguyen et al., 2011a).
The singularity condition of the acoustic tensor from the bifurcation analysis in FE2

reads
det(Q) = 0 , Q = n · DM · n , (4.41)

where Q is the so-called acoustic tensor ( localisation tensor ), n denotes the normal
direction to the localisation band or the strain discontinuity surface, and DM is the
homogenised tangent stiffness tensor of the bulk material.
Another alternative to the condition (4.41) is to identify whether the minimum eigen-
value of the homogenised bulk tangent stiffness DM is non-positive

λmin
DM

≤ 0 . (4.42)

It should be noticed that an additional algorithm is required to compute the localisa-
tion direction when the limit point criterion defined by (4.42) is violated. A choice for
this purpose was mentioned in the work by Svenning et al. (2019). The minimisation
procedure is summarised as follows:

1. Compute the eigenstrain ε̃ corresponding to λmin
DM

;

2. Minimise the problem defined as ||ε̃ − γ ⊗s n|| ;

3. The vector n that satisfies the minimisation is the sought strain localisation
direction, namely the direction of the newly inserted crack segment.

Another choice for determining crack propagation direction is the maximum principal
stress criterion which assumes that the crack will propagate in a direction perpen-
dicular to the maximum principal stress. To improve the accuracy of prediction, the
nonlocal stress tensor σ̂ at the crack tip is computed (Wells and Sluys, 2001b). This
is performed by weighted averaging of stresses located within the half circle patch
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ΩT ahead of the crack tip ( see Figure 4.23 )

σ̂(xtip) =
∑NGP

i=1 α(||xi − xtip||)σ(xi)∆Vi∑NGP
i=1 α(||xi − xtip||)∆Vi

α(r) = 1
(2π)3/2l3 exp(− r2

2l2 ) ,

(4.43)

where a Gaussian-type weight function is selected for α; xtip and xi represent the
global coordinates of the crack tip and the Gauss point i located in ΩT respectively;
NGP is the total number of Gauss points in ΩT ; ∆Vi denotes the geometrical volume
corresponding to the Gauss point i. The parameter l determines how quickly the
weight function decays away from the crack tip and is usually taken as three times
the characteristic length of elements.
In the current work, the limit point criterion given by (4.42) is used as the crack
initiation criterion and the normal direction to the start segment is determined by the
minimisation procedure mentioned previously. The start segment can be specified
to pass through either the cracked Gauss point or element centre. Here, we mean
by the cracked Gauss point the macroscale Gauss point where strain localisation
has been detected on the RVE coupled with that Gauss point. For the treatment of
crack propagation, we choose the combination of the limit point criterion and the
maximum principal stress criterion with the nonlocal stress at the crack tip. The
former addresses when the crack propagates and the latter how the crack propagates.
The use of the maximum principal stress criterion is because large elements at the
macroscale are normally favoured in practice to reduce computational burden; the
accuracy of predicting propagation direction is critical in obtaining an accurate
global response. The existing cracks propagate in an element-by-element manner,
indicating that the crack tip must be always located on an element edge. The
propagation length can be one element wide or several elements wide. This needs
to be manually specified as an input.
At every converged state of the macroscale problem, homogenised bulk tangent
stiffness needs to be checked for condition (4.42) at each GP of each macroscale
element. Once the condition (4.42) is violated, a new crack segment is about to be
introduced. However, as mentioned in Chapter 3, multiple Gauss points may violate
the condition (4.42) at the same time. This makes the solution procedure unstable.
Also, allowing new crack initiation near the existing crack results in a crack path that
is not continuous, as is the case in the embedded discontinuity approach ( EFEM
). Therefore, to ensure a continuous crack path, the propagation criterion is first
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checked for all the existing crack tips. Afterwards, a loop over all the bulk Gauss
points in unfractured elements is performed to check for the violation of the limit
point criterion. An exclusion zone has been defined to prevent potential cracks from
initiating in places that are too close to current crack tips. If any new cracks have
been initiated or any cracks have propagated, the time step needs to be recomputed
in order to reach the equilibrium state again.

4.5.2 State variable mapping
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Figure 4.23 Macroscopic fracture problem modelled with XFEM: integration scheme, de-
scription of material constitutive models and propagation direction based on the maximum
principal stress criterion on the nonlocal stress at the crack tip.

After a new crack segment is introduced into the macroscale domain, new cohe-
sive Gauss points are required for the integration of cohesive forces. These are
distributed along the crack path as shown in the Figure 4.23. In the multiscale
modelling, the cohesive Gauss points are typically coupled with RVEs under strain
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localisation. Therefore, the initial states for these Gauss points are required to be
set once created.
In the work by Souza and Allen (2011), the initial state of the cohesive ( localised
) RVEs was built by standard cloning from the original Gauss point, only one for
the constant triangular element. Nguyen et al. (2012c) proposed a new cloning
operation, called load control cloning, where the new cohesive RVE states were
defined by loading an RVE from an undeformed state to the maximum strength of
the RVE. This allows the use of different RVE configurations (e.g. size and mor-
phology) for describing the behaviour of cohesive cracks. To integrate the cohesive
traction contribution accurately, at least two cohesive Gauss points for an enriched
element are necessary, see Figure 4.23, since the displacement jump along the
cohesive segment is approximated by a linear interpolation function provided by the
XFEM. Simultaneously, this signifies that at least two cohesive RVEs are required for
each enriched element. In this work, the initial state of cohesive RVEs associated
with cohesive Gauss points in the fractured element comes from the localised RVE
associated with the cracked Gauss point located in the same element, as illustrated
in the Figure 4.24.
In the current implementation, three Gauss points, as shown in Figure 4.23, are
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Figure 4.24 Multiscale failure modelling: at the beginning, four bulk RVEs are coupled to the
four bulk GPs in a quadrilateral element. When strain localisation emerges in one of the bulk
RVEs, a macroscale crack segment is inserted (in this case, it goes through the element
centre). The two cohesive GPs are coupled to cohesive RVEs with their initial state copied
from the localised RVE. The bulk GPs of the fractured element behave elastically with the
elastic stiffness matrix Dun from unloading the localised RVE.

chosen for each subdivided triangle to calculate the Jacobian matrix and the internal
forces for the fractured elements. Hence, it is necessary to remap the internal and
state variables ( e.g. damage, strain and stress ) from the existing to the new Gauss
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points (Jirásek, 2004, Bobiński and Tejchman, 2016). To enhance the accuracy of
state variable mapping, the classical super-convergent patch recovery proposed by
Zienkiewicz and Zhu (1987) might be considered. However, in the FE2 setting, RVEs
coupled with old Gauss points in a fractured element may exhibit perhaps different
microstructures and damage or crack profiles, as noted in (Svenning et al., 2019);
thus it is not practicable to interpolate between RVEs.
In the current work, the bulk Gauss points of a fractured macroscale element are
assumed to behave linear elastically and to no longer be coupled to any RVEs. The
elastic constants of these bulk Gauss points are obtained by means of unloading
the cohesive RVE that is associated with the cracked Gauss point in the fractured
element under consideration, see Figure 4.24. Another choice is to unload the RVE
that is closest to the bulk Gauss point of interest. This helps save the computational
cost and more importantly facilitates the bifurcation of material behaviour commonly
observed in experiments on quasi-brittle materials. However, according to our nu-
merical experience, the adoption of an unloading stiffness may lead to compliant
responses (global unloading) when inserting a cohesive segment by XFEM. This is
because the unloading moment may be not accurate, thus leading to an underesti-
mation of unloading elastic moduli. This is worth further investigation.
The procedure for introducing a new crack or propagating cracks is summarised in
Box 4.1.
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Box 4.1. Treatment for inserting a new crack segment.
After obtaining a converged time step, check whether there is any existing crack
about to propagate according to propagation criterion:

1. If yes, propagate it with predefined length and recompute the current time
step with the last converged solution as initial guess;

2. Else, check whether there is any new crack about to initiate:

(a) If yes, initiate it with predefined length and recompute the current time
step with the last converged solution as initial guess;

(b) Else, commit the state for macroscale model and the states for all RVE
models.

The treatment of a newly fractured macroscale element e is given as follows:

1. Unload the RVE that has experienced strain localisation; Compute the (ho-
mogenised) secant elastic matrix Dun by static condensation.

2. Divide element e into sub-triangles and assign new GPs for them. These bulk
GPs have elastic behaviour characterised by elastic moduli Dun.

3. Determine the line segment between intersection points of the crack with the
element edges and assign two cohesive GPs on it. Two cohesive RVEs with
their initial state copied from the localised RVE are dispatched to the two
cohesive GPs.

4.5.3 Recursive sub-stepping

In the FE2 setting, the stress update at the macroscale involves the solution of
an incremental equilibrium BVP that is probably highly nonlinear. Therefore, the
macroscale incremental time ( load ) step size once nonlinearities of some degree
appear, should be chosen sufficiently small to ensure that all RVE models subse-
quently converge within a specified maximum number of Newton iterations. However,
such small macroscale step increments will largely increase the computational time
in cases when a significant number of RVEs are involved in the overall analysis. This
motivates the use of a sub-stepping strategy during the computation of RVEs in order
to support large macroscale time step sizes. A guide on sub-stepping has been
provided in (Somer et al., 2009, Reis and Pires, 2013) in the context of multiscale
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modelling.
Let us consider an RVE, driven by a macroscopic displacement gradient εM, for which
an equilibrium state has been found at time tn. An iterative process is started for time
step [tn, tn+1] to seek a converged solution un+1 at time tn+1. Denote ∆εM = εn+1

M −εn
M.

Assuming such a typical time step fails to converge within a reasonable number of
iterations, the procedure of the sub-stepping strategy in infinitesimal strain regime
can be summarised as follows:

0. Initialise εfail
M = εn+1

M , ∆εfail
M = εfail

M − εn
M and εpre

M = εn
M ;

1. Split the step ∆εfail
M into two equally sized sub-steps such that an intermediate

configuration can be defined corresponding to εint
M = εpre

M + ∆εfail
M /2 ;

2. Use upre as an initial guess for the Newton-Raphson scheme to find uint, that
is, the solution of the RVE equilibrium problem at the intermediate configuration
corresponding to εint

M ;

3. Once the solution step εint
M is converged, use the intermediate solution uint as

an initial guess to find the solution of the RVE equilibrium problem at εfail
M ;

4. If the above step 2 or 3 fails to converge, reset the values for εpre
M , εfail

M , and
∆εfail

M entering a new sub-stepping block, and then the sub-stepping steps 1-3
are applied recursively, until the sought configuration at εn+1

M is achieved.
  

I 

II III    

IV    V    

VI    VII    

tn tn+1 

∆𝜺𝜺M  
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Figure 4.25 Recursive sub-stepping for a typical failed step [tn, tn+1] in solving the RVE
equilibrium problem. Reproduced with permission from (Somer et al., 2009), © 2009,
Elsevier.
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As can be seen from the above recursive sub-stepping procedure, the sub-increments
are defined by the constant bisection of the macroscope displacement gradient in-
crement. A schematic illustration for the sub-stepping procedure is presented in
Figure 4.25.

4.5.4 finite element procedure

The Box 4.2 summarises the finite element procedure for the two-scale failure
model.
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Box 4.2. Flowchart for solving the macro-discontinuity enhanced multiscale
failure model.
Initialisation
Loop over time steps:

1. at the current time step, do
1. Loop over macroscale elements

(A) For a nonfractured element in the coupled region, do

(i) At each bulk GP, prescribe macroscale strain εM by means of weakly
periodic BCs for associated bulk RVE, then solve microscale BVP

(ii) Calculate effective stress σM using Eq. (4.22) and effective tangent
stiffness DM by Eq. (4.26)

(iii) Assemble the element Jacobian matrix and internal force vector

(B) For a fractured element, do

(i) For bulk GPs, use σM = Dun : εM

(ii) Loop over cohesive cracks belonging to this element
(iii) At each cohesive GP, do
(iv) (a) Compute displacement jump JuKM and εM0

(b) Calculate εM according to Eq. (4.32) with known ld and nM; pre-
scribe εM over the cohesive RVE by means of localisation aligned
weakly periodic BCs
(c) Solve BVP defined by Eq. (4.39) for the cohesive RVE; If so-
lution procedure diverges, perform the sub-stepping technique in
Subsection 4.5.3 until the solution gets converged or the maximum
sub-stepping number is reached
(d) Compute cohesive traction tM using Eq. (4.38) and cohesive
tangent TM using Eq. (4.40)

(v) Assemble the element Jacobian matrix and internal force vector

2. Solve the macroscale linear system of algebraic equations
3. Check for convergence. If met, perform actions in Box 4.1; Else, reduce
current time step and then goto procedure 1

2. Proceed to next time step
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4.6 Numerical studies

In this section, several numerical tests are performed to verify the ability of the
continuous-discontinuous multiscale failure model. In 4.6.1, adhesive layer failure
is simulated by means of the multiscale failure model in comparison to the Direct
Numerical Simulation (DNS) results. In 4.6.2, a series of mode-I cohesive crack
examples are illustrated, including the case of inclined cracks. In 4.6.3, multiscale
crack propagation in a concrete beam under three-point bending is analysed with
the multiscale failure model, compared with the DNS solution.

4.6.1 Adhesive layer failure
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Figure 4.26 Adhesive layer failure (Example 4.6.1): DNS model - (a) geometry and boundary
conditions; Multiscale failure model - (b) macroscale geometry meshed with 2 quadrilateral
elements and 1 interface element, and (c) RVE geometry. All units are in mm.

Adhesive bonding is recognised as a promising substitute to the traditional fastening
methods in a wide range of industrial applications. The adhesive layer can be
treated as an adhesive crack with pre-peak response. The macroscopic deformation
mode of the adhesive layer JuKM is transferred to the RVE model through boundary
conditions. No lateral effect is considered here for the adhesive layer.
In this example, we numerically examine tensile failure of an adhesive layer which
has circular holes. The geometry of the structure with thickness 1 mm is shown in
Figure 4.26. Plane stress condition is assumed.

The mesh for the DNS analysis is shown in Figure 4.27(a) for illustration. For
the multiscale simulation, at the macroscale, the adhesive layer is modelled by a
zero-thickness interface element with initially elastic response obtained from the
computation of RVE models. The Gaussian integration scheme is adopted for the
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(a)  DNS  mesh (b)  RVE mesh  

Figure 4.27 Adhesive layer failure (Example 4.6.1: (a) mesh for the DNS model and (b)
mesh for the RVE representing the adhesive layer.

interface element. The effective elastic constants for the adherends are Young’s
modulus 5x104 MPa and Poisson’s ratio 0.2. At the microscale, the square RVE has
the same height as the adhesive layer thickness, that is, 10 mm. The mesh for the
RVE is shown in 4.27(b) and material properties in Table 4.1 are used.
As output, the response from the multiscale simulation in terms of the force versus
displacement is plotted in Figure 4.28, with the DNS solution as the reference
solution. The agreement in response confirms that the multiscale failure modelling
approach is effective in capturing the pre- and post-peak behaviour for an adhesive
structure.
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Figure 4.28 Comparison between results from the DNS and multiscale failure simulation in
the Example 4.6.1.
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4.6.2 Uniaxial tension test

In this numerical study, we simulated cohesive cracks under the simplest loading
scenario, namely uniaxial tensile loading. All the numerical tests are performed with
the macro-discontinuity enhanced FE2 scheme. We first explore the initiation and
evolution of a macroscopic crack that is aligned with the global coordinate system.
Then, inclined macroscopic cracks are studied.

4.6.2.1 Horizontal cracks
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Figure 4.29 Uniaxial tension test on a plate with holes: DNS model - (a) geometry and
boundary conditions; Multiscale failure model - (b) macroscale geometry meshed with 3
quadrilateral elements and boundary conditions and (c) RVE geometry. All units are in mm.

The geometry and boundary conditions of the structure under investigation are
shown in Figure 4.29(a). For the multiscale simulation, three bilinear XFEM elements
are used at the macroscale with dimensions shown in Figure 4.29(b). However, only
the middle one is coupled to RVEs and the remaining are equipped with effective
material constants of Young’s modulus 5x104 MPa and Poisson’s ratio 0.2. The crack
is assumed to initiate across the middle element centre. The geometry of used RVEs
is displayed in Figure 4.29(c). The same RVE with assigned material properties from
Table 4.1 is employed for all coupled Gauss points.

As can be seen from Figure 4.30, the DNS and FE2 present crack initiation at
the same displacement as indicated by the highest point. Furthermore, the load-
displacement responses obtained by these methods agree with each other, which
verifies the effectiveness of the current multiscale failure model. At the end of
analysis corresponding to uy = 0.01, the damage pattern given by the DNS and the
multiscale results for the macroscale displacement field uy and damage pattern of
two cohesive RVEs are displayed in Figure 4.31.
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Figure 4.30 Uniaxial tension test (Example 4.6.2.1): load-displacement curves obtained by
DNS and multiscale failure model. with various microstructures.
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Figure 4.31 Uniaxial tension test (Example 4.6.2.1): damage profile obtained by DNS (left)
and (right) y−direction displacement contour at the macroscale and damage profiles of
cohesive RVEs, obtained by multiscale failure model. with various microstructures.

Handling Snap-backs

Snap-back phenomena are common in structural mechanics. An example of han-
dling snap-backs in the case of multiscale failure modelling is illustrated here. Similar
demonstrations of handling dissipative equilibrium paths or snap-backs in the multi-
scale setting can be found in (Kaczmarczyk et al., 2010b, Nguyen et al., 2012b).
To introduce snap-backs in the simulation, the numerical example just presented is
reused except that the height of the structure is increased to 500 mm and the hori-
zontal displacements on the left and right faces of the structure are fixed. The energy



106 Multiscale Failure Modelling based on Macro-discontinuity Enhanced FE2

dissipation based arc-length control explained in Chapter 3 is employed to follow the
unstable equilibrium path that cannot otherwise be handled by direct solution control
strategies. When the dissipated energy of the macro model reaches a specified
threshold, the solution control strategy is switched from the direct displacement to
the arc-length control. This switch energy is taken as 5x10−4 Nmm in this example.
For comparison purposes, two values 0.01 Nmm and 0.015 Nmm for the maximum
dissipated energy increment ∆Emax are chosen.
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Figure 4.32 Handling snap-back test: two different values for maximum dissipated energy
increment ∆Emax are chosen for comparison. Marked points except the origin on the curves
denote the time steps at which the energy dissipation based arc-length control is used.

It is evident from Figure 4.32 that a snap-back event occurs just after the creation of
the macroscale crack. During the simulation, it was observed that in order to attain a
converged solution for the RVE model, the sub-stepping scheme was called multiple
times in the late stages of analysis for ∆E = 0.015 Nmm. However, no sub-stepping
was required for ∆Emax = 0.01 Nmm. This is because the macroscale displacement
jump, determined by the dissipated energy increment, is too large especially at the
final stages of loading, so that the RVE model cannot find a converged solution
within several iterations. To make sure the macro model and all RVE models can
attain convergence within a reasonable number of iterations, small values for ∆Emax

are suggested.
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4.6.2.2 Inclined cracks
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Figure 4.33 Multiscale inclined crack problem: geometry of the macroscopic structure and
boundary and loading conditions; RVE with an inclined microscopic crack modelled with
cohesive elements. The angle β characterises the crack direction and loading direction.

To show the capability of the current multiscale failure model in handling inclined
cracks, a simple numerical example under tension is given. The geometry of the
macroscopic structure and its boundary and loading conditions are displayed in
Figure 4.33, where β defines the angle between the right edge and the horizontal
direction. The thickness for the structure is 1 mm and plane stress condition is
assumed.
The Young’s modulus and Poisson’s ration are 1x105 MPa and 0.2 for the bulk material.
The failure mechanism at the microscale is represented by an inclined crack that
traverses through the centre of the RVE. Such an inclined crack is modelled with
intrinsic cohesive elements with fracture energy 0.05 Nmm and tensile strength 10
MPa. The initial elastic stiffness for cohesive elements is assigned as 1x108 MPa/mm.
Owing to tension, only pure normal fracture mode is taken into account for these
cohesive elements. Localisation aligned periodic BCs are adopted to diminish the
boundary effects on the microcrack opening. For comparison purposes, four different
values for β are taken, that is, 30°, 45°, 60° and 90°. Two square RVEs of side length
1 mm and 2 mm are used.

As can be seen from Figure 4.34, good agreement in the displacement versus
applied force curves is achieved for different loading directions, which demonstrates
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Figure 4.34 Multiscale inclined crack problem: simulation results of force versus displace-
ment at the right edge for different loading directions determined by β.

the ability of the current FE2 in handling inclined crack problems. Note that the use
of localisation aligned periodic BCs was critical for adequately capturing the opening
mode of the cohesive microcracks (Svenning et al., 2017a, Coenen et al., 2012b,
Goldmann et al., 2018). The deformed configurations of the overall structure and
RVE at total loss of load bearing capacity of the structure for different crack normal
directions are displayed in Figure 4.35.

4.6.3 Three-point bending test

In order to assess the performance of the presented multiscale failure model for
crack propagation, a simply supported three-point bending specimen of concrete is
simulated.
The geometry and boundary conditions for the DNS model are displayed in Figure

4.36. Plane stress condition is assumed. To minimise computation time, only the
central region of finite width is resolved with explicit mesostructural features. The
volume fraction of aggregates is assigned 30%. To mitigate stress concentrations at
the loading position, the applied load is distributed on a rigid loading platen glued
on the top surface. In the DNS model, the whole domain is discretised with 49250
constant strain triangles. The damage model is regularised with the implicit gradient
formulation. Material properties listed in Table 4.2 are used for characterising the
behaviour of constituents at the mescoscale. The effective Young’s modulus for the (
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Figure 4.35 Multiscale inclined crack problem: deformed configurations of the macroscopic
structure (magnified by a factor of 500) and the 1 × 1 RVE (magnified by a factor of 50) for
different crack angles with the horizontal direction, 30°, 45°, 60° and 90°, at total loss of the
strength.
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Figure 4.36 Three-point bending test in Example 4.6.3. DNS model: geometry, boundary
and loading conditions. The central region is resolved with explicit mesostructural details
with aggregate volume fraction as 30%.

isotropic ) concrete material is 2.57x104 MPa, obtained by a standard homogenisation
process before starting the simulation. For the multiscale simulations, the macro
domain is discretised with 498 bilinear quadrilateral elements and a typical RVE of
size 8 mm × 8 mm is meshed with 1892 constant strain triangles, shown in Figure
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Figure 4.37 Three-point bending test in Example 4.6.3: macroscale mesh and 8 mm × 8 mm
RVE mesh.

4.37. Note that only the lower 16 elements across the midspan are coupled to RVEs,
such that the total number of employed RVEs is 64 at the beginning of analysis.
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Figure 4.38 Three-point bending test in Example 4.6.3: comparison of load versus midspan
deflection curves for the DNS approach and the multiscale failure approach.

Figure 4.38 compares the load-deflection curves obtained from the DNS ( a reference
) and multiscale failure simulations. As evidenced from the figure, before the peak
load, the responses are in good agreement. After the peak load, the curves for
multiscale model with RVE size 8 mm × 8 mm and DNS seem to coincide with each
other. Also, the curve for multiscale model with RVE size 12 mm × 12 mm has a
softer response compared to the DNS. However, we have reasons to believe that
this realisation of the DNS model gives a stiffer response than the real response
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since the central line of the strain localisation band is deviating from the midspan
and diffuse damage is occurring in regions near the strain localisation band, as
evidenced in Figure 4.39 below. This requires more numerical comparisons with
enlarged RVEs and different realisations of the DNS model. Compared to the DNS
results, the curves from the multiscale failure simulations are not quite smooth since
the macroscopic time increments are large and the macroscale mesh is coarse.
As output from the simulations, we also choose to monitor the resulting strain
localisation or crack pattern. For comparison and illustration purposes, Figure 4.39
and Figure 4.40 respectively show the strain localisation profiles and propagating
macroscale crack geometries at four different deflection distances.

 

DNS results 

𝑢𝑢𝑦𝑦 = 2𝑒𝑒−3 𝑢𝑢𝑦𝑦 = 3𝑒𝑒−3 𝑢𝑢𝑦𝑦 = 6𝑒𝑒−3 𝑢𝑢𝑦𝑦 = 4.5𝑒𝑒−3 

Figure 4.39 Three-point bending test in Example 4.6.3: localisation patterns of the DNS
model at four different deflection magnitudes.
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Figure 4.40 Three-point bending test in Example 4.6.3: propagating macroscale crack at
four different deflection magnitudes.
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4.7 Concluding remarks

A continuous-discontinuous multiscale failure modelling approach based on the
macro-discontinuity enhanced CH scheme has been presented in this chapter. The
enhanced CH scheme employs the notion of the crack band model and extends
the capability of the conventional CH to the softening regime of materials. When
employing this approach, there is no need for explicit assumptions about the consti-
tutive behaviour of bulk materials and cohesive cracks at the macroscale. Therefore,
details on microstructure and its evolution can be incorporated. Several numerical
examples have been performed to illustrate the performance of the continuous-
discontinuous multiscale failure model.
Only one dominant strain localisation band on the RVE has been studied. We should
pay attention to the fact that the (unloading) elastic stiffness has been assumed for
describing the bulk behaviour after inserting a cohesive segment in one element in
order to save computational costs. However, this may result in inaccurate responses
when continuous damage loading can occur in directions other than the localisation
direction.
Although attractive, the presented multiscale failure model does not preserve the me-
chanical consistency in discontinuity kinematics and energy dissipation across two
scales in a softening material in a strict manner. Consideration of such consistency
may be of great importance for a number of reasons. Firstly, on physical grounds a
macroscale cohesive crack undergoing progressive degradation is strongly subject
to strain and damage localisation evolution within the material microstructure. Sec-
ondly, it is desirable for accuracy and reliability when developing and using multiscale
failure simulation packages. To this end, we will introduce a new multiscale failure
framework in next chapter.



Chapter 5

Multiscale Failure Modelling based
on Failure-Oriented Multiscale
Variational Formulation

5.1 Introduction

In some particular engineering situations, such as hydraulic fracture, it is critical
in preserving the consistency of physical phenomena across scales in terms of
kinematics, kinetics and energy. In this chapter, we are interested in an existing
multiscale theoretical framework, which has been called Failure-Oriented Multiscale
Variational Formulation (FOMVF) in the literature. Unlike the preceding work in
Chapter 4 that does not strictly enforce the kinematical consistency and ensure the
same energy dissipation between the macroscopic crack and microscopic strain
localisation band, this framework is capable of precisely defining scale transitions in a
variationally consistent manner for multiscale failure problems. Relevant work on the
theoretical basis of FOMVF includes (Sánchez et al., 2013, Toro et al., 2014, 2016a,
Blanco et al., 2016). Like other CH based methods, the FOMVF based multiscale
methods build upon the Representative Volume Element (RVE) concept. One of the
main features of this formulation is its full variational consistency. Specifically, as
the theoretical foundation, the FOMVF employs the notion of kinematic admissibility
and the principle of virtual power that can be regarded as a generalisation of the
conventional Hill-Mandel condition.
To address the multiscale failure problem, the FOMVF comprises two submodels, a
Classical Multiscale Model (ClaMM) for stable macroscopic material response and



114
Multiscale Failure Modelling based on Failure-Oriented Multiscale Variational

Formulation

a generalised new Cohesive Multiscale Model (CohMM) for macroscopic cohesive
crack response. The former is employed for the stable regime, whereas the latter for
the unstable regime of macroscopic material response.
The novelty in the work presented in this chapter is two-fold. Firstly, the XFEM is
adopted to simulate the cohesive crack at the macroscale, instead of the EFEM
approach (finite elements with embedded strong discontinuities) used in (Toro et al.,
2014, 2016a). This choice is aimed at guaranteeing the continuity of crack path
across element boundaries. Secondly, the computer implementation aspects are de-
tailed and several numerical examples are demonstrated to assess the performance
of the current FOMVF based multiscale failure approach.

Multiscale failure problem
The multiscale failure problem specification as shown in Figure 5.1 is the similar

 

stable point  𝒙𝒙R    

 

 

 

𝛺𝛺M 𝛺𝛺m 

𝛺𝛺m 

𝒏𝒏M 

𝜺𝜺M ,𝝈𝝈M 

⟦𝒖𝒖⟧M , 𝒕𝒕M 𝛤𝛤m 

  𝛤𝛤m 

𝑆𝑆 

  �̅�𝒕M 

  𝛤𝛤M 

  𝒙𝒙 
  𝒚𝒚 

  𝒖𝒖�M 

bulk RVE 

cohesive RVE 

𝛺𝛺𝑚𝑚𝐿𝐿   

macroscale  microscale  

  𝑡𝑡 < 𝑡𝑡𝑁𝑁  

  𝑡𝑡 ≥ 𝑡𝑡𝑁𝑁  

   𝑡𝑡𝑁𝑁 : bifurcation time 

  unstable point  𝒙𝒙S    

 

𝛺𝛺𝑚𝑚𝐿𝐿 ∶  
  strain localised region 

𝒗𝒗m 

𝒗𝒗m 

𝒗𝒗mL   

𝒏𝒏ΓM  

Figure 5.1 Schematic illustration of the multiscale failure model built upon the failure-oriented
multiscale variational formulation. Two material states that are stable and unstable are
distinguished, signified by the bifurcation time tN .

to that in the preceding Chapter 4, except the scale transition scheme is different.
At the macroscale, the material at the stable or regular point xR in the domain ΩM is
represented by the bulk RVE model, for which the ClaMM formulation is adopted to
extract a stress-strain constitutive law. When bifurcation occurs at time tN due to
material instability at a material point signified by xs, it is implied that either a new
crack initiates or the existing crack denoted by S propagates. Therefore, a discrete
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crack segment modelled with the XFEM method is introduced into the geometrical
configuration. We call the RVE after bifurcation as a cohesive RVE, for which the
CohMM formulation has to be adopted to extract a traction-separation constitutive
law.
The microscale problem is formulated in terms of an RVE containing the microstruc-
tural details. The reference material configuration of the RVE is denoted by Ωm with
a piecewise smooth boundary Γm, see Figure 5.1. A specific reference system is in-
troduced at the microscale with points identified by y. Macroscopic fields depend on
x, whereas those at the microscale depend on y. The subscripts (·)M and (·)m refer
to variables defined at the macroscale and microscale, respectively. In the sequel,
we will describe the Classical Multiscale variational Model (ClaMM) formulation and
then the Cohesive Multiscale variational Model (CohMM) formulation.
Before starting to present the multiscale formulations, let us recall the enriched kine-
matics for a macroscopic body with a crack, which has been explained in Chapter 3.
The displacement field for a cracked body uM can be decomposed into

uM(x) = uR(x) + HsJu(x)KM , (5.1)

where uR and JuKM represent the regular and enriched components respectively, and
Hs is the Heaviside function centred at the crack S. By taking the gradient of Eq.
(5.1), the corresponding strain field can be expressed as

εM = ∇s
xuR + Hs∇s

xJuKM︸ ︷︷ ︸
εR , bounded

+ δs(JuKM ⊗s nM)︸ ︷︷ ︸
unbounded

, (5.2)

where εR is the regular strain, nM denotes the crack normal vector and δs is the
Dirac-delta distribution centred at the crack S. It can be easily seen from Eq. (5.2)
that the first two RHS terms are bounded, whereas the third RHS term is unbounded
due to the occurrence of displacement jump.
Next, let us recall from the literature (Rice, 1976, Runesson et al., 1991) that the

bifurcation condition to admit a non-uniform deformation mode can be stated as

det(Q) = 0 , Q = n · D · n , (5.3)

where Q is the so-called acoustic tensor ( localisation tensor ), n denotes the normal
direction (see Figure 5.2) to the localisation band, and D is the material tangent
stiffness tensor. When D exhibits major symmetries, the solution of Eq. (5.3) has
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𝜸𝜸 

Figure 5.2 A mixed-mode strain localisation band signified by the normal n. The direction
pointed by γ coincides with the initial opening velocity direction.

two conjugate eigenvectors n and γ (Oliver et al., 2010), where γ coincides with the
initial opening velocity direction.

5.2 Classical Multiscale variational Model (ClaMM) for-
mulation

This formulation is used for characterising the stable response at a stable or regular
material point xR within the sub-domain ΩM\S.

5.2.1 Kinematic admissibility

Let εM as usual denote the macroscale strain at the point xR. In this case, εM = εR,
see Eq. (5.2). We can decompose the total microscale strain field εm as the sum of
two contributions

εm = Iy(εM) + ε̃m , (5.4)

where the first RHS term is the so-called Insertion Operator (Blanco et al., 2016)
that is used to distribute the macroscale deformation or macroscale strain into the
RVE and the second RHS term is the microscale strain fluctuation field, defined as
ε̃m = ∇s

yũm with ũm the microscale displacement fluctuation field that accounts for
the contribution of heterogeneities.
The insertion operator Iy(·) distributes its argument into the RVE domain. It maps a
constant symmetric second-order tensor, defined at the macroscale, into a symmetric
second-order tensor field at the microscale. In addition, Iy(·) is a linear operator,
thus it can be expressed as

Iy(·) ≡ I(y)(·) , (5.5)
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with I(y) being a fourth-order microscale tensor field. With the linear property of Iy(·),
as shown in Eq. (5.5), the total microscale strain form Eq. (5.4) can be alternatively
replaced by the incremental form

dεm = I(y)dεM + ∇s
ydũm . (5.6)

The microscale strain increments dεm are said to be “Kinematically Admissible” in
Ωm (Sánchez et al., 2013), if the following property is satisfied∫

Ωm

dεm dΩm =
∫

Ωm

I(y)dεM dΩm . (5.7)

In the ClaMM that is first-order, the insertion operator is defined as the fourth-order
identity operator, which means that the macroscale strain increment dεM is uniformly
inserted into the RVE domain Ωm. As a consequence, Eq. (5.6) becomes

dεm = dεM + ∇s
ydũm , (5.8)

and Eq. (5.7) yields

dεM = 1
|Ωm|

∫
Ωm

dεm dΩm , (5.9)

with |Ωm| being the area or volume of Ωm.

5.2.2 Hill-Mandel variational principle

The Hill-Mandel variational principle requires the virtual internal power at the macroscale
to be equal to the volume average of the virtual internal power performed at the
microscale

σM : δεM = 1
|Ωm|

∫
Ωm

σm : δεm dΩm . (5.10)

where the variations δεM and δεm come from the appropriate kinematically admissible
variational spaces. Considering the above equality holds throughout the entire
loading history and writing σM and σm in their incremental forms, Eq. (5.10) can be
expressed in an equivalent way as

dσM : δεM = 1
|Ωm|

∫
Ωm

dσm : δεm dΩm . (5.11)
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Inserting Eq. (5.6) into Eq. (5.11) and conducting some mathematical manipulations,
the Hill-Mandel variational principle becomes[

dσM − 1
|Ωm|

∫
Ωm

(I(y))Tdσm dΩm

]
: δεM − 1

|Ωm|

∫
Ωm

dσm : ∇s
yδũm dΩm = 0 ,

∀δεM and δũm ∈ Vm ,

(5.12)

where (I(y))T denotes the transpose of the insertion tensor, defined as the fourth-
order identity tensor in this ClaMM formulation.

5.2.3 Homogenised mechanical response

Taking arbitrary variations of δεM but zero variation of δum in Eq. (5.12), the first
consequence of Hill-Mandel principle is derived as

dσM = 1
|Ωm|

∫
Ωm

dσm dΩm , (5.13)

where the property of the fourth-order identity tensor dot product any second-order
tensor returning the original second-order tensor has been used. The expression
(5.13) furnishes the macroscopic stress at a generic material point and behaves like
macroscopic constitutive functional.

Remark 13 The insertion operator Iy(·) plays a fundamental role in the procedure
of stress homogenisation as argued in (Sánchez et al., 2013). Any change in the
Iy(·) might furnish a different homogenised stress in oder to hold the Hill-Mandel
condition.

5.2.4 Microscale equilibrium problem

Alternatively, taking arbitrary variations of δum but zero variation of δεM in Eq. (5.12),
the second consequence of Hill-Mandel principle is derived as∫

Ωm

dσm : ∇s
yδũm dΩm = 0 , ∀δũm ∈ Vm , (5.14)

which characterises the microscale equilibrium problem in a variational form. This
equation provides a self-equilibrated microscale stress field as a mechanical reaction
to prescribed kinematical boundary conditions.
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5.2.5 Constitutive models at the microscale

To solve the quasi-static microscale equilibrium problem Eq. (5.14), material constitu-
tive laws that characterise the mechanical behaviours of microstructural constituents
are required to be provided a priori. Theoretically, any inviscid phenomenological
material models can be employed, depending on the physical nature of underly-
ing materials. For a pseudo-time interval [tn, tn+1], the history-dependent inelastic
constitutive functional of the strain history can be symbolically represented in an
incremental setting as

σn+1
m (y) = Fy

(
εn+1

m ; qn
m

)
, (5.15)

where t is a pseudo-time needed to track the deformation history and qm is a set of
internal variables of state that are introduced to account for the dissipative processes
occurring in the internal microstructure. The subscript y is used to clarify that Fy

determines the constitutive response at point y. Note that the constitutive model
may vary from point to point of the RVE.

5.2.6 Homogenised constitutive tangent tensor

The homogenised constitutive tangent tensor, denoted as DM, defines the linearised
relation between the macroscopic stress and macroscopic strain. It can be obtained
by means of a linearisation process of the (incremental) homogenised constitutive
response given in Eq. (5.13). To derive such a constitutive tangent tensor, we follow
the details presented in the reference (de Souza Neto and Feijóo, 2006).
Consider the total derivative of the homogenised stress with respect to the macro-
scopic strain

DM = DσM

DεM

∣∣∣∣∣
εM

= DdσM

DdεM

∣∣∣∣∣
εM

, (5.16)

where the symbol D
DεM

(·) represents the total derivative with respect to εM. Consid-
ering the explicit dependence of σM on σm through Eq. (5.13), the dependence of
microscale stresses σm on the microscale strain through Eq. (5.15) and the definition
of the microscale strain εm via Eq. (5.8), the expression (5.37) can be rewritten as

DM = DdσM

DdεM

∣∣∣∣∣
εM

= 1
|Ωm|

∫
Ωm

Dm dΩm + 1
|Ωm|

∫
Ωm

Dm : ∂dε̃m

∂dεM

dΩm

= TaylorDM + D̃M ,

(5.17)
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where Dm = ∂dσm

∂dεm
|εM

denotes constitutive tangent tensor at the microscale. It is
realised that the expression (5.17) consists of two contributions to the homogenised
constitutive tangent tensor. The first one is called the Taylor contribution TaylorDM and
the second one the fluctuation contribution D̃M. TaylorDM is just the volume average of
the microscale constitutive tangent tensor, but the determination of the fluctuation
counterpart D̃M that involves the tangential relation between the histories of ε̃m and
εM needs extra elaboration.
To ease the derivation of the yet unknown term ∂dε̃m

∂dεM
in Eq. (5.17), let us first introduce

a new notation E for representing below the functional relation between the histories
of ε̃m and εM

ε̃n+1
m = ∇s

yũn+1
m = E (εn+1

M ) . (5.18)

We then proceed to explore the directional derivative of the functional E . Consider
the microscale displacement fluctuation function perturbed in the direction of ∆ũn+1

m

ũn+1
ε ≡ ũn+1

m + ε∆ũn+1
m , ∀∆ũn+1

m ∈ Vm , (5.19)

where ε is a scalar infinitesimal perturbation factor.
Substituting Eq. (5.19) into the expression (5.18) and meanwhile perturbing the
RHS of the expression (5.18) gives

∇s
yũn+1

m + ε(∇s
y∆ũn+1

m ) = E (εn+1
M ) + εDE (εn+1

M )[∆εn+1
M ] + O(ε) , (5.20)

where DE (εn+1
M )[∆εn+1

M ] represents the directional derivative of the functional E in
the direction of ∆εn+1

M evaluated at εn+1
M . The first two terms on the RHS of Eq. (5.20)

define the linearisation of functional E (εM) about εn+1
M . As it can be seen, DE maps

the increments of macroscopic strain linearly into the increments of microscale strain
fluctuation.
The linearisation of the microscale equilibrium problem defined by Eq. (5.14) at an
admissible pair {εn+1

M , ũn+1
m } as ε = 0 contributes to a new problem, that is, for a

given function ∆εn+1
M , find the field ∆ũn+1

m ∈ Vm such that∫
Ωm

Dm : ∇s
y∆ũn+1

m : ∇s
yδũm = −

∫
Ωm

Dm : ∆εn+1
M : ∇s

yδũm , ∀δũm ∈ Vm , (5.21)

where Eq. (5.8) has been used. The above equation defines the linear mapping
operator DE .



5.3 Cohesive Multiscale variational Model (CohMM) formulation 121

5.3 Cohesive Multiscale variational Model (CohMM)
formulation

When a material point loses its stability in the sense that strain bifurcation occurs
at the macroscale, the ClaMM scheme detailed in the last section is no longer
reasonable. This necessitates the development of an extended multiscale variational
formulation. This new formulation which aims to deal with the unstable material points
has been called the Cohesive Multiscale variational Model (CohMM) in a series of
papers (Sánchez et al., 2013, Toro et al., 2014, 2016a). Like most other multiscale
approaches to fracture (e.g. the work in (Rudraraju et al., 2012b)), a cohesive
crack segment or surface is required to be inserted through unstable points xs at
the macroscale to circumvent the numerical difficulties related to mesh sensitivity
confronted when modelling failure with the conventional FEM. The constitutive
behaviour of the cohesive crack is obtained from an extended homogenisation
procedure involving the computation of microscopic models with softening.

5.3.1 Kinematics of the RVE

Let us focus on the kinematics of the RVE linked to an unstable macroscopic point
xs. The macroscopic strain increment (we keep using the incremental forms for
mechanical state variables to facilitate the mathematical development of the CohMM)
at xs is characterised by three macroscopic variables, that is, the increment of the
regular strain counterpart dεR, the displacement jump increment vector dJuKM of
the macroscopic crack at xs and the normal vector nM to the crack surface at xs.
They are collected in a triad as {dεR, dJuKM, nM}. In the same manner as the strain
decomposition given by Eq. (5.4) in the ClaMM, the microscale strain increment field
of the RVE after strain localisation can be decomposed as

dεm = I∗
y (dεR, dJuKM) + dε̃m , (5.22)

where I∗
y (dεR, dJuKM) defines a new insertion strategy to distribute the generalised

macroscopic strain components from xs into each RVE point y and dε̃m denotes
the microscale strain fluctuation accounting for the contribution of heterogeneities
including microscale localisation bands.
In (Sánchez et al., 2013, Toro et al., 2014), this new insertion strategy has two
aspects. The first assumes that the component dεR is distributed uniformly over
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the entire RVE domain including those strain localising elements. The second one
postulates that the macroscale discontinuity mode, characterised by {dJuKM, nM}, is
uniformly inserted into a subdomain ΩL

m, instead of being uniformly distributed into
the entire RVE as employed in the work of Chapter 4. The subdomain ΩL

m denotes
the region where microscale strains intensively localise, and is to be determined
and then fixed once the macroscopic strain localisation is detected. Therefore, the
expression Eq. (5.22) can be rewritten as

dεm = dεR + IL
y (dJuKM) + ∇s

ydũm , (5.23)

where the Failure Insertion Operator IL
y (·) reads

IL
y (dJuKM) = ϕL

m(y)dJuKM ⊗s vL
m

lM

; ϕL
m(y) =


|Ωm|
|ΩL

m| = lM
lm

∀y ∈ ΩL
m

0 otherwise
(5.24)

where ϕL
m(y) is a collocation function and lm denotes the thickness of a typical

localisation band simulated at the microscale, which may have a different value
along the band. lM plays the role of macroscopic localisation bandwidth, but actually
behaves like a fictitious quantity that is introduced to simplify the mathematical de-
velopment. However, lm plays a crucial role so that a physically objective formulation
is guaranteed. When smeared crack approaches are adopted for modelling cracks
at the microscale, lm is the characteristic element length that is used to regularise
the softening process, whereas when zero-thickness interface elements are used,
lm vanishes.
The microscale kinematics is said “kinematically admissible”, if the following two
constraints hold (Sánchez et al., 2013)∫

Ωm

dεR + IL
y (dJuKM) dΩm =

∫
Ωm

dεm dΩm ; (5.25)

∫
ΩL

m

dεR + IL
y (dJuKM) dΩL

m =
∫

ΩL
m

dεm dΩL
m . (5.26)

After considering (5.24), the above two equations can be transformed to become

dεR + 1
|Ωm|

∫
Ωm

dJuKM ⊗s vL
m

lM

dΩm = 1
|Ωm|

∫
Ωm

dεm dΩm , (5.27)

dεR + 1
|ΩL

m|

∫
ΩL

m

dJuKM ⊗s vL
m

lm
dΩL

m = 1
|ΩL

m|

∫
ΩL

m

dεm dΩL
m . (5.28)
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The assumptions of kinematic admissibility of the microscale displacement incre-
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Figure 5.3 Prescription of boundary conditions on the bulk RVE and cohesive RVE models.

ment field imply that the integrals of the microscale strain fluctuation increments over
Ωm and ΩL

m are zero. These kinematical constraints, derived from (5.27) and (5.28),
are expressed respectively in integral forms∫

Γm

dũm ⊗s vm dΓm = 0 , (5.29)

and ∫
Γ L

m

dũm ⊗s vL
m dΓ L

m = 0 , (5.30)

where Γm is the external boundary of the RVE and vm denotes its outward unit
normal vector; Γ L

m constitutes the boundary of ΩL
m and vL

m is its outward unit normal
vector, see Figure 5.3. Conditions (5.29) and (5.30) are to be prescribed on the
specific domains of the RVE under strain localisation in order to ensure that the
macro-to-micro kinematical transition is properly accomplished. To help distinguish
these two boundary conditions, from now on, we call the boundary condition (5.29)
the standard boundary condition (SBC) because it is the same type of boundary
condition arisen in the ClaMM, and the boundary condition (5.30) the non-standard
boundary condition (NSBC), following the names coined in (Sánchez et al., 2013).
The combination of Eqs. (5.29) and (5.30) defines the vector space of kinematically
admissible microscale displacement fluctuation increments in the RVE Ωm: UL

m. The
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microscale field dũ is kinematically admissible if (Sánchez et al., 2013)

UL
m ≡

{
dũ | dũ ∈ H1(Ωm),

∫
Γm

dũm ⊗s vm dΓm = 0 and
∫

Γ L
m

dũm ⊗s vL
m dΓ L

m = 0
}

.

(5.31)
Following the Bubnov–Galerkin method, the vector space VL

m of virtual kinematically
admissible microscale displacement fluctuation actions is taken as

VL
m ≡

{
δũ | δũ ∈ H1(Ωm),

∫
Γm

δũm ⊗s vm dΓm = 0 and
∫

Γ L
m

δũm ⊗s vL
m dΓ L

m = 0
}

.

(5.32)
It obviously follows that VL

m ⊂ Vm, where Vm has been defined in the ClaMM.
The virtual kinematically admissible microscale strain δεm can be chosen according
to (Sánchez et al., 2013) as

δεm = ϕL
m(y)δJuKM ⊗s vL

m

lM

+ ∇s
yδũm , ∀δJuKM and ∀δũm ∈ VL

m , (5.33)

where δJuKM is a virtual kinematically admissible macroscopic displacement jump
vector. Comparing Eq. (5.33) with Eq. (5.23), it is noticed that the virtual action for
dεR is not included since t > tN .

5.3.2 Energetic consistency across scales

We are now in a position to introduce the Hill-Mandel variational principle to guaran-
tee the energetic consistency between virtual work preformed by the macroscopic
crack and that by the microscale failure mechanisms (e.g., smeared cracks or in-
terface elements) after the strain localisation is detected at the macroscale. The
Hill-Mandel variational principle for the post-critical dissipation process (t > tN ) can
be specialised to

tM · δJuKM = lM

|Ωm|

∫
Ωm

σm : δεm dΩm , (5.34)

where the LHS term represents the macroscopic internal virtual work per unit area
of the macroscopic crack and the RHS term characterises the microscopic internal
virtual work performed by a unit average characteristic surface, representative of
the microscale strain localisation subdomain in Ωm. This characteristic surface is
orthogonal to the vector vL

m and the length of it is given by |Ωm|
lM

.
Taking into account that the variational statement Eq. (5.34) is satisfied at previous
loading steps, the definition of virtual microscale strain given by (5.33), the total form
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of the Hill-Mandel variational principle (5.34) can be transformed to the incremental
form[

dtM − 1
|ΩL

m|

∫
ΩL

m

dσm · vL
m dΩL

m

]
· δJuKM − lM

|Ωm|

∫
Ωm

dσm : ∇s
yδũm dΩm = 0 ,

∀δJuKM and ∀δũm ∈ VL
m , t > tN ,

(5.35)

where lM has been cancelled out in the second term of the square brackets.
By standard variational arguments on Eq. (5.35), two consequences can be obtained,
which will be presented in the next two following sub-sections.

5.3.3 Homogenised mechanical response: macroscopic cohe-
sive traction

Taking arbitrary variations of δJuKM, but zero variation of δũm in the variational
expression (5.35), the macroscopic cohesive traction increment is derived

dtM = 1
|ΩL

m|

∫
ΩL

m

dσm · vL
m dΩL

m , t > tN . (5.36)

It is worth remarking that Eq. (5.36) does not arise from an a priori definition, but
a consequence of the adopted admissible kinematics defined through IL

y (·) and
the Hill-Mandel variational principle. As it can be seen, the traction homogenisa-
tion procedure in an incremental form is only performed for the microscale stress
increment distribution times vL

m in the strain localisation subdomain in the RVE. This
guarantees an objective mechanical response of macroscopic cohesive tractions
with respect to the RVE size, provided JuKM.
The homogenised cohesive tangent for the macroscale cohesive crack can be
obtained in different ways. One straightforward way is by means of adding an in-
finitesimal perturbation in the direction of macroscale displacement jump increments.
This implies that two auxiliary RVE models are demanded to solve for a cohesive
Gauss point at each iteration. Another way is to linearise the homogenised cohesive
traction tM with respect to the macroscale displacement jump JuKM in analogy to the
method for the derivation of homogenised bulk tangent stiffness in 5.2.6. Considering
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Eqs. (5.36) and (5.23), the following can be derived

TM = DtM

DJuKM

∣∣∣
JuKM

= 1
|ΩL

m|lm

∫
ΩL

m

vL
m · Dm · vL

m dΩL
m + 1

|ΩL
m|lm

∫
ΩL

m

vL
m · Dm ·

(
I .

.

.
∂ε̃m

∂JuKM

)
dΩL

m ,

(5.37)

where ∂ε̃m

∂JuKM
can be computed by considering the implicit functional dependence

dũm (dεR , dJuKM). It can be found by solving two microscale equilibrium problems.

5.3.4 Microscale equilibrium problem

Taking arbitrary variations of δũm, but zero variation of δJuKM in the variational ex-
pression (5.35), the following microscale equilibrium problem is derived in variational
form: given the history of the generalised macroscopic strain characterised by
{εn

R , JuKn
M} and kinematically admissible increments {dεR, dJuKM}, find the microscale

displacement fluctuation increment field dũm ∈ VL
m such that∫

Ωm

dσm : ∇s
yδũm dΩm = 0 , ∀δũm ∈ VL

m , t > tN . (5.38)

The solution of the above variational equilibrium problem determines the microscale
strain field, and then the microscale stress field via material models. This stress
field can be regarded as the reaction to the imposed generalised macroscopic
strain increment characterised by {dεR, dJuKM}. Moreover, notice that the variational
equilibrium problem is subjected to two kinematical boundary conditions (5.29) and
(5.30), which are consistent with the two strain homogenisation procedures given in
(5.27) and (5.28).
Time continuity when using discrete cohesive zone modelling techniques is an
important requirement as discussed in (Papoulia et al., 2003). In a multiscale setting,
this issue has been mentioned in (Verhoosel et al., 2010, Nguyen et al., 2011a),
where the authors have chosen σI ⩾ ασult, α ≈ 1.0 as the macroscopic crack
initiation criteria to make sure that the solution procedure for the microscale models
will not diverge. The symbol σI denotes the calculated maximum principal stress and
σult is the ultimate tensile strength of the microscale model. The artificial parameter
α defines the moment of introducing fractured points and coupled cohesive RVEs.
In the present work, the transition from the ClaMM scheme to the CohMM scheme
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at the macroscale bifurcation instant tN requires time continuity of the macroscopic
tractions in the crack S, expressed as follows

tClaMM
M = tCohMM

M , for t = tN (5.39)

where tClaMM
M is the traction vector evaluated through the ClaMM formulation

tClaMM
M = 1

|Ωm|

∫
Ωm

σm dΩm · nM , (5.40)

and tCohMM
M is the traction vector evaluated through the CohMM formulation

tCohMM
M = 1

|ΩL
m|

∫
ΩL

m

σm · vL
m dΩL

m . (5.41)

This time-continuity requirement calls for an elaborate treatment of the detection of
the strain localisation subdomain ΩL

m as mentioned in (Sánchez et al., 2013, Toro
et al., 2014), which will be discussed in the following section.

5.3.5 Detection of the localisation subdomain ΩL
m

Once macroscopic bifurcation is detected, the localisation subdomain ΩL
m and its

boundary Γ L
m need to be identified in order to prescribe the NSBC and perform

the traction homogenisation for the newly inserted macroscopic cohesive crack. A
sensitivity analysis is performed for this purpose as in (Sánchez et al., 2013, Toro
et al., 2014). This detection procedure starts with the prescription of an infinitesimal
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uniform macroscopic strain increment ∆γM ⊗s nM to the entire RVE domain, where γ

is the initial direction of the macroscopic crack. Then, the strain field dεm is computed
based on the solution from the variational equilibrium problem (5.14). The criterion
for selection of such a domain is based on the projection of dεm(y) at a point y of
interest in the direction of ∆γM ⊗s nM

y ∈ ΩL
m, iff dεm(y) : (∆γM ⊗s nM) > 0 when t = tN , (5.42)

where dεm(y) is the microscale strain fluctuation increment defined in Eq. (5.4).
Note that this detection method is totally different from the damage loading criterion
mentioned in (Nguyen et al., 2010). It is a based on a pure kinematical criterion
and does not consider any specific constitutive response of points in ΩL

m. This
has the benefit of flexible identification of the strain localisation subdomain ΩL

m for
a range of distinctive material configurations of the RVE, as illustrated in Figure
5.4. In this figure, three types of material points are distinguished to describe the
composition of the strain localisation band as discussed in (Sánchez et al., 2013).
The softening material points are signified by superindex “s”, weak elastic material
points by superindex “e” and void interior points by superindex “v”. Note that in the
numerical implementation, voids must be considered as an extremely soft elastic
material, with Young’s modulus approaching zero. The strain localisation domain
ΩL

m, indicated by the shaded dark gray area in Figure 5.4, is just a union of those
points that fulfil the criterion (5.42), wherever the point is located. Mathematically,
ΩL

m can be expressed as ΩL
m = ΩLs

m ∪ ΩLe
m ∪ ΩLv

m .

5.4 Computational implementation

The computational treatment of the multiscale failure model based on the FOMVF
resembles that in Chapter 4, except that the implementation details for the macro-to-
micro transition and the homogenisation scheme in the CohMM model are different.
At the start of analysis, Gauss points (GP) in the elements located within the mul-
tiscale coupling region are coupled to bulk RVEs, which may exhibit a different
geometry or material composition. The ClaMM formulation is adopted for the bulk
RVE models. After solving the bulk RVE models with εM prescribed through a se-
lected type of boundary conditions, the Eq. (5.13) or other equivalent forms are
adopted to compute the homogenised stress tensor.
At the end of each converged time step, the bifurcation condition (5.3) needs to
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be checked at any coupled stable bulk GP. To this end, at a bulk GP of interest,
the homogenised tangent stiffness tensor is first computed using the method in
5.2.6, then a sweep algorithm is performed over a range of angles [0, ∆θ, π), with
∆θ as an angle increment. The two angles that verify the bifurcation condition (5.3)
determine the unit vectors nM and γM, and simultaneously signify the bifurcation
occurrence. Once the bifurcation is detected at a bulk GP, a new crack initiates with
the normal direction nM through the GP if there is no existing crack nearby; otherwise
the nearby crack extends from the current tip a predefined length in the direction nM.
The insertion of a new crack segment is achieved by employing the XFEM in order
to allow the crack to travel through the element interiors. The transition from the bulk
RVE model to the cohesive RVE model requires the detection of the localisation sub-
domain ΩL

m, provided nM and γM, by the method discussed in 5.3.5. This facilitates
the enforcement of the NSBC on the boundary of the strain localisation subdomain
ΩL

m in the CohMM. A SBC is applied on the external boundary of the cohesive RVE.
The crack behaviour is simulated with a homogenised traction tM versus separation
JuKM law computed from the RVE model. After solving the BVP of a cohesive RVE,
the cohesive traction homogenisation formula displayed in Eq. (5.36) is used to
compute the homogenised cohesive traction vector. The formula in (5.37) is used to
compute the homogenised cohesive tangent stiffness.
In the XFEM, a number of bulk GPs in the fractured element are necessary to accu-
rately integrate bulk relevant elemental integrals present in the weak form. In order to
save computational cost, such bulk GPs are not coupled to any RVEs; instead, they
are assumed to behave linear elastic with the effective material constants computed
after unloading the localised cohesive RVE in the same element upon bifurcation.

5.5 Numerical verification

In this section, emphasis is given to the numerical assessment of the present multi-
scale failure model. Firstly, a series of fine-scale numerical tests for examining the
validity and accuracy of the CohMM is performed. These tests include homogeneous
strain localisation band situations in 5.5.1 and inhomogeneous strain localisation
band situations in 5.5.2, and a loading-unloading-reloading scheme in 5.5.3. The pri-
mary aim is to demonstrate the objectivity of the homogenised constitutive response
especially in the post-critical regime with respect to the RVE size. Secondly, a fully
coupled two-scale failure simulation for a uniaxial tensile specimen is presented in
5.5.4.
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Preliminary

Except for the fully coupled two-scale failure analyses, the incremental generalised
macroscopic strains {dεR, IL

y (dJuKM)} inserted into the RVE are parameterised as
follows

dεR = df1(t)(Λ ⊗s η) , Λ = [cos(Λ); sin(Λ)] ,

η = [cos(η); sin(η)] ,
(5.43)

IL
y (dJuKM) = ϕL

m(y)dJuKM ⊗s nM

lM

dJuKM = df2(t)β , β = [cos(β); sin(β)] ,

(5.44)

where Λ, η, β are arbitrary angles to be defined in advance in each testing example.
The coefficients df1(t) and df2(t) define the magnitudes of the macroscopic regular
strain increment and macroscopic jump increment, respectively. The vector nM is
the unit vector normal to the macroscopic cohesive crack, which can be determined
by taking one of eigenvectors of the acoustic tensor at the bifurcation time or taken
as nM = [−sin(θ); cos(θ)] with the angle θ between the middle line of the predefined
localisation band on the RVE and the horizontal direction. ϕL

m(y) is the collocation
function specified in Eq. (5.24).
A scalar isotropic elastic damage model is employed in all the simulations for mod-
elling the failure mechanism in the RVE model. The material constants of interest
are a Young’s modulus Em, Poisson’s ratio νm, uniaxial tensile strength σmf , and
fracture energy Gm. Either linear or exponential softening evolution law is used.
Conventional implicit schemes are used for integration of such damage models. The
softening modulus is regularised based on the concept of smeared crack approach
according to the fracture energy and the element characteristic length to overcome
the issue of inherent mesh dependence.

5.5.1 RVEs with homogeneous strain localisation bands

The first case study is focused on RVEs which have pre-induced homogeneous
strain localisation bands embedded in them. A single macroscopic material point
is taken into account. The geometries of RVEs of different sizes are displayed in
Figure 5.5. Three RVE configurations are considered, identified as RV E1, RV E2

and RV E3.
A set of material properties for each constituent is displayed in Table 5.1. The iden-

tifiers M1 and M2 are introduced to represent the bulk material and the damageable
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Figure 5.5 Three RVE configurations with different sizes and different numbers of homo-
geneous damageable localisation bands. Each localisation band of thickness lm forms an
angle α with the horizontal line.

material in the localisation band, respectively. The bulk material M1 is modelled with
a linear elastic law whereas the material M2 is modelled with the isotropic elastic
damage model with a linear or exponential strain softening branch. Each localisation
band is homogeneous which means there is no any obstacle or void inside the
localisation band. The bandwidth lm is chosen in advance. However, it should be

Table 5.1 Material parameters of two phases of the heterogeneous material used in Section
5.5.1.

Material Em[MPa] νm σmf [MPa] Gm [MPa·mm]

M1 2x104 0.2 – –

M2 2x103 0.2 25 0.4

noted that this parameter should be calculated according to the evaluation of the
strain localisation subdomain ΩL

m in a fully coupled two-scale analysis. In numerical
tests of this section, lm is set to 0.05w and w = h = 1 mm. The plane stress condition
is assumed.
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A vertical localisation band

We first consider a vertical localisation band corresponding to α = 90°. Two loading
conditions are studied: laterally constrained uniaxial tension in Case 1 and pure
shear in Case 2.

Case 1: laterally constrained uniaxial tension
The first loading condition is laterally constrained uniaxial tension, defined by
Λ = η = 0°. Figure 5.6 plots the homogenised responses in terms of the stress-strain
relationship (σXX vs. εRXX) that are obtained with the ClaMM approach. It is obvious
that from this figure, during the pre-peak regime, the macroscopic homogenised re-
sponses are identical for the three RVE sizes under consideration. However, with the
ClaMM approach, a considerable difference in the post-peak mechanical response
is observed after the highest point is passed, as shown by descending branches.
Also, as can be seen in Figure 5.6, with the RVE size increased, the homogenised
response becomes more brittle, leading to a lower predicted fracture energy.
Figure 5.7 plots the homogenised cohesive responses (TMx vs. JuKMx) obtained with

 0

 5

 10

 15

 20

 25

 30

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

Ho
m

og
en

is
ed

 s
tr

es
s 
σ

xx
 [

M
pa

]

Inserted strain εRxx

RVE1

RVE2

RVE3

Figure 5.6 Homogenised stress-strain curves for three different RVE sizes: the ClaMM is
adopted during the whole simulation.

the CohMM approach after the macroscopic bifurcation is detected, that is, when
t > tN . Note that to make the solution procedure more stable, one of bands in the
RV E2 and RV E3 needs to be slightly weakened in the thickness or tensile strength,
compared to others. From the Figure 5.7, it is evident that the homogenised traction-
separation curves fully coincide with each other. The estimated fracture energy can
be obtained by integrating the area of the traction-separation curve. The calculated
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Figure 5.7 Homogenised cohesive response (Tx vs. JuKMx) resulted from the CohMM scheme
adopted after the strain localisation is detected on the RVE: a linear softening law is taken.

fracture energy value is 0.4 MPa·mm, which matches well with the fracture energy
0.4 MPa·mm of the damageable material M2 chosen in the band. The above two
observations verifies the effectiveness of employing the CohMM scheme after strain
localisation to overcome the shortcomings of the first-order ClaMM.
The deformed RVEs corresponding to the fluctuation field at the end of analyses are
given in Figure 5.8.

 

 

 

RVE1 RVE2 

RVE3 

Figure 5.8 The deformed RVEs with a vertical softening band: the red colour identifies the
location of the damaging zone modelled with the smeared crack approach. Amplification
factor is set to 200.
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Case 2: pure shear

We next examine a pure shear deformation mode. Before macroscopic bifurcation,
the generalised macroscale strain, inserted into the RVE, is characterised by Λ = 90°
and η = 0°. After macroscopic bifurcation, the loading history is fixed for the material
M1, but a continuous loading with df2(t) > 0 is enforced to the domain occupied by the
material M2. Figure 5.9 shows the homogenised cohesive response (TMy vs. JuKMy)
obtained with the CohMM approach. The analysis reveals that a physically objective
solution is computed for three RVE sizes undergoing pure shear. Due to the selected
equivalent strain definition, the calculated fracture energy from the area under each
curve, is 0.8 MPa·mm, two times the fracture energy of the material M2.
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Figure 5.9 Homogenised cohesive response (TMy vs. JuKMy) resulted from the CohMM
scheme adopted after the strain localisation is detected on the RVE: a linear softening
law is taken.

An inclined localisation band

An inclined localisation band with α = 60° is chosen here. Before macroscopic
bifurcation, the generalised macroscale strain inserted into the RVE is characterised
by Λ = 150° and η = 150°. After bifurcation, we turn to using the CohMM scheme:
dεR is fixed, and we set df2(t) = 5x10−4 and β = 150°. The normal direction nM will
be derived from the localisation analysis based on the acoustic tensor criterion. This
set-up gives a Mode-I fracture which has separations normal to the crack plane. The
expected fracture energy should be 0.4 MPa·mm, namely, the fracture energy of the
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material M2.
For the material M2 with linear softening, Figure 5.10 displays the homogenised
traction vector versus the inserted crack opening in the global coordinate system.
The mechanical responses match each other well, demonstrating that the CohMM
can overcome the issue of the RVE size dependency. The (effective) fracture energy
is the addition of the areas under curves TMx − JuKMx and TMy − JuKMy, which equals
to 0.4 MPa·mm. This value agrees with the fracture energy for the material M2. In
addition, the predicted localisation angle θ is 150°.
Figure 5.11 displays the homogenised traction vector versus the inserted crack
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Figure 5.10 Homogenised cohesive response using the CohMM after the strain localisation:
(a) TMx vs. JuKMx and (b) −TMy vs. − JuKMy. A linear softening damage law is adopted. (Note
that a negative sign is added before the y−components to ease the display. )

opening in the global coordinate system for the material M2 with strain softening of
exponential form.

5.5.2 RVEs with inhomogeneous strain localisation bands

In reality, the strain localisation band is likely to contain voids or hard inclusions,
instead of being a homogeneous material as in the Section 5.5.1. These voids or
inclusions never exhibit any softening behaviour and do not contribute to energy
dissipation. Therefore, in these situations, it is inappropriate to identify the region
ΩL

m by checking the points which still undergo damage loading when macroscale
bifurcation is detected. To verify identification procedure based on the kinematical
criterion detailed in 5.3.5, two numerical tests are designated, whose RVEs are
shown in Figure 5.12. The material parameters are tabulated in Table 5.2.
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Figure 5.11 Homogenised cohesive response using the CohMM after the strain localisation:
(a) TMx vs. JuKMx and (b) −TMy vs. − JuKMy. An exponential softening damage law is adopted.
(Note that a negative sign is added before the y−components to ease the display. )
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Figure 5.12 Three RVE configurations of different sizes and their material composition: each
RVE domain is meshed into quadrilateral elements with lengths 1/11w and 1/11h; material
model of M1 is linear elastic, material model of M2 is isotropic elastic damage and material
M3 represents void or hard inclusion.

Case a: localisation band with hard elastic inclusions

In this case, the green region in Figure 5.12 is composed of linear elastic material
M3. The expected localisation domain, as illustrated in Figure 5.12, ΩL

m, consists of
the red region of M2 and a portion of the green region of M3. The results in terms
of homogenised cohesive response are given in Figure 5.13. It is observed that
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Table 5.2 Material parameters of three phases of the heterogeneous material used in Section
5.5.2.

Material Em [MPa] νm σmf [MPa] Gm[MPa·mm]

M1 2x104 0.2 – −−

M2 2x103 0.2 25 0.4

M3 (Case a) 1x102 0.2 – –

M3 (Case b) 1x10−3 0.2 – –

the response is RVE size independent when using the CohMM after macroscale
bifurcation. Due to the composition of the microstructure and material properties of
constituents, there is a transition point T from energy dissipation states to elastic
states hereafter, see Figure 5.13. The homogenised cohesive law is made of two
adjoining branches, a linear softening (descending) and a linear elastic (ascending)
one. Also, there is a strain hardening portion (not drawn in Figure 5.13) in the pre-
peak regime, characterised by low levels of damage of material M2. The macroscopic
bifurcation is attained until enough damage is accumulated; then the CohMM scheme
is used in the post-peak regime to guarantee a size independent cohesive response.

Case b: localisation band with voids

In this case, the green region in Figure 5.12 is void (M3) modelled with vanishing
Young’s modulus. The expected localisation domain, as illustrated in Figure 5.12, ΩL

m,
consists of the red region of M2 and a portion of the green region of M3.The results in
terms of homogenised cohesive response are given in Figure 5.14, with results from
homogeneous localisation bands shown for reference. It is evident that the response
is RVE size independent when using the CohMM after macroscale bifurcation. More
importantly, when compared with the reference solution, the response is rather brittle
in terms of the peak traction and fracture energy, which is the area under the curve.
This is because the strain localisation domain ΩL

m, identified with the kinematical
criterion, includes void sub-domains, leading to a softer response.
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Figure 5.13 Homogenised cohesive responses (Tx vs. JuKMx) of RVEs with inhomogeneous
localisation bands in Case a, resulted from the CohMM scheme. The red shaded circle
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5.5.3 RVEs subjected to loading/unloading

In this study, the behaviour of RVEs experiencing a process of “loading, unloading
and reloading” is studied. A proportional unloading and reloading process is specified
beforehand.
To demonstrate the unloading process is size dependent, the RVE configuration
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Figure 5.15 An unloading and reloading process is inserted to the equilibrium path. Ho-
mogenised cohesive response using the CohMM after the strain localisation: (a) TMx vs. JuKMx

and (b) −TMy vs. − JuKMy.

in Section 5.5.1 is considered. Three RVEs with increasing size are used, labeled
as RV E1, RV E2 and RV E3. RVEs comprise inclined bands with the material
M2, equipped with exponential strain softening induced by damage. Plane stress
condition is assumed.
At a certain moment within the post-peak regime, the RVEs are unloaded by letting
df2 < 0. Also, the previously accumulated macroscale regular strain component εR is
removed to simulate a sudden regular unloading mechanism at the macroscale. The
homogenised cohesive responses, in terms of cohesive traction and crack opening
components in the global Cartesian coordinate frame, obtained with the CohMM
are illustrated in Figure 5.15. Unloading branches are featured with reduced elastic
moduli, caused from the damage occurring in the localisation band. Note that RVEs
do not perfectly unload to the origin (0, 0) in those curves, due to the existence of
remaining deformations of quite small magnitude.
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Figure 5.16 Geometry of the uniaxial tensile test in 5.5.4 with full resolution (unit of length:
mm).

5.5.4 A fully coupled two-scale failure simulation

This numerical experiment is designed to show the performance of the current multi-
scale failure approach consisting of two submodels (ClaMM and CohMM) through
the fully coupled macro-micro failure simulation of a simple tensile test. The speci-
men with the dimensions of height of 4 mm, length of 8 mm and thickness of 1mm,
illustrated in Figure 5.16 shows a regular arrangement of voids with a diameter of 0.5
mm and a spacing between the neighbouring centres of 1 mm in the microstructure.
The left end of the specimen is fixed in the horizontal direction while its right end is
stretched with a monotonically increasing horizontal displacement. The material is
modelled with the isotropic damage model regularised with the local smeared crack
approach. The Young’s modulus, Poisson’s ratio, tensile strength and the facture
energy are 2x104 MPa, 0.2, 2 MPa and 5x10−3 N/mm, respectively.
For the DNS, the whole domain is meshed with constant strain triangles. For the mul-
tiscale simulation, the macroscale domain is meshed with one bilinear quadrilateral
element that allows the enrichment for representing the crack. Square RVE models
are used and two sizes of 1 mm and 2 mm, corresponding to one void and four
voids respectively, are considered to show the RVE size independence. Constant
strain triangles are used to mesh each RVE geometry. Note that the voids regions
in each RVE are also meshed with elements in order to facilitate the detection of
the inhomogeneous strain localisation subdomain ΩL

m as mentioned in 5.3.5. It
is conceivable that a macroscale crack will emerge at a certain loading level and
afterwards evolve towards a wide-open crack with a progressive degrading behaviour
dictated by the evolution of strain localisation in the RVE model.
The load-displacement diagrams for the uniaxial tensile test are displayed in Figure
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Figure 5.17 Load-displacement diagrams of the uniaxial tensile test in 5.5.4 with the DNS
and multiscale failure simulation.

5.17. As can be seen in this figure, the results from the multiscale simulation are
unchanged with varying RVE sizes and match well with the DNS solution. This high-
lights that the current multiscale failure approach is capable to adequately describe
material failure processes across two length scales within an RVE-based multiscale
setting.

5.6 Summary

In this chapter, a multiscale failure modelling approach based on the Failure-Oriented
Multiscale Variational Formulation(FOMVF) proposed in the literature has been pre-
sented. Several numerical examples were provided to show its effectiveness in
overcoming the issues present in the standard CH based multiscale approach when
addressing material softening.
This current multiscale approach is derived from the kinematic admissibility require-
ment and the principle of multiscale virtual power. The kinematic compatibility
requirement between the two scales is met by defining a proper kinematic insertion
operator especially for the case of strain localisation. As a result, two types of BCs
that need to be enforced upon strain localisation are derived. In the CohMM, the
macroscale cohesive traction and the microscale equilibrium are two direct conse-
quences of applying the principle of multiscale virtual power. Although more involved
in terms of the numerical implementation, this multiscale approach is superior to that
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presented in the preceding chapter in that it strictly enforces kinematic consistency
between the macroscopic crack and the microscopic strain localisation band.



Chapter 6

Application of Multiscale Modelling
to Cortical Bone Fracture

Bone fractures can have significant health, economic and social outcomes. Studies of
the interactions between the underlying structure of cortical bone and its mechanical
response, particularly failure behaviour, enable us to develop technical strategies
for the prevention of fracture risks, especially those related to skeletal fragility
caused by aging and disease, and to choose optimal treatment schemes for healing
bone fractures. From the perspective of material design, unravelling the fracture
toughening mechanisms in cortical bone and the role played by structural hierarchy
helps us tailor novel bio-inspired materials with advantageous high stiffness and
toughness properties.
As a preliminary study, this chapter aims to apply the multiscale failure modelling
technique to numerically investigate fracture mechanisms in cortical bone tissue.
This chapter is outlined as follows. The first section 6.1 provides a brief review of
the hierarchical nature of bone structure (6.1.1), toughening mechanisms (6.1.2),
and fracture toughness assessment methods both experimentally and numerically
(6.1.3). In Section 6.2, the multiscale failure study of cortical bone is presented,
including the extraction of effective cohesive laws as well as the investigation of the
effects of cement lines fracture properties on the effective cohesive laws (6.2.1), and
a fully coupled multiscale failure analysis of the three-point bending test of cortical
bone (6.2.2) by means of the multiscale failure model introduced in Chapter 4.
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Figure 6.1 Hierarchical structural organisation of bone. Reprinted from (Rho et al., 1998)
with permission granted from Elsevier.

6.1 Bone hierarchy and fracture toughness

Before investigating bone fracture or failure by means of experimental testing or
numerical simulations, it is first necessary to have some basic knowledge of bone
structure and material composition. Then, toughening mechanisms and fracture
toughness assessment methods for cortical bone are presented in sequence. These
aspects will furnish a foundation for further numerical studies of fracture problems in
cortical bone tissue.

6.1.1 Architecture of cortical bone tissue

Bones in the skeletal system support the entire human body, carry the daily static
or dynamic mechanical loads, protect internal organs and transmit muscle forces
between different parts. Bones also serve as reservoirs of minerals like calcium and
sodium, and contribute to extracellular mineral ion homeostasis. Furthermore, they
produce blood and some fat cells in the marrow.
Bone modelling and remodelling are two bone-related dynamic physiological pro-
cesses (US Department of Health and Human Services, 2004). Bone modelling
occurs during childhood and adolescence and contributes to bone growth and re-
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forming. Bone remodelling involves the removal and replacement of old or damaged
bone. During bone remodelling, osteoclast cells (responsible for bone resorption)
and osteoblast cells (responsible for bone production) work sequentially in the same
bone remodelling unit.
Bone shows a hierarchical organisation in its structure (Rho et al., 1998, Launey
et al., 2010), which results in different mechanical properties at various length scales
of observation. The bone characteristic length scales can be roughly categorised
into three levels, the structural level with order of magnitude 1 cm, microscopic
level ranging from submicrons to hundreds of microns and nanoscopic level around
nanometres.

The structural level

At this scale, the bone structure is distinguishable between the outer cortical (com-
pact) bone tissue that is hard and dense, and the interior cancellous (trabecular)
bone that is porous and sponge-like. The cancellous bone is more permeable and
is remodelled more often than the cortical bone. In cortical bone, the mechanical
properties are influenced greatly by several factors, including the porosity (Haver-
sian canals and lacunae), the mineralisation degree and the osteon fraction in the
interstitial matrix.

The microscopic level

At this scale, cortical bone consists of densely packed secondary osteons that
are embedded in an highly mineralised interstitial matrix. Near the surface of the
cortical bone, circumferential lamellae are arranged parallel to the surface. The
osteons are assembled in concentric lamellar sheets. Haversian (central) canals,
located inside the osteons, allow blood vessels and nerves to travel through them
and build connection with bone cells through canaliculi that are microscopic canals
between the lacunae of ossified bone. The interstitial matrix consists of remnants
of old osteons that were partially resorbed during bone remodelling. Between the
secondary osteon and interstitial bone are the cement lines which are a key feature
in the Haversian system. Secondary osteons have a circular-to-ellipsoidal shape
with a 100−300 µm diameter in the cross section and are 1−2 mm long. The cement
line is approximately 1 − 5 µm thick.
There are two types of Haversian-system, primary and secondary osteons. Primary
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Figure 6.2 Schematic microstructure of cortical bone (cross-sectional view). The osteons
with Haversian canals are distributed within the interstitial matrix, separated by cement lines
(not shown). The outer are the circumferential lamellae.

osteons are firstly formed around an existing blood vessel on the surface of bone.
Over time, the primary osteons may be replaced by secondary osteons by remod-
elling process. The primary osteons do not contain as many lamellae as secondary
osteons. Also, the vascular channels within primary osteons tend to be smaller than
secondary osteons.

The nanoscopic level

The principal mineral in cortical bone tissue is carbonated hydroxyapatite and its
amount is usually thought to determine the stiffness of the material. Approximately
30% of the total mass of bone is composed of organics, of which 90% is collagen
fibres and the remaining 10% a mixture of non-collageneous proteins (Wang et al.,
2001, Rho et al., 1998). We should note that bone modifies its material composition
and structure to accommodate loads by adaptive modelling and remodelling.

6.1.2 Multiple toughening mechanisms

Fractures in bone can be identified as either stress or fragility fractures. Stress
fractures primarily happen in those individuals who are often exposed to intense
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rates and magnitudes of loading, e.g. athletes or military recruits (Daffner and
Pavlov, 1992). On the other hand, fragility fractures can happen even with minor
trauma and are attributed to deficient repairs to accumulated microdamage or
microcracks(Schaffler et al., 1995) and loss of bone mass (Seeman and Delmas,
2006) in the elderly.
Mineralised biomaterials, like bone and dentin, show some natural advantages in
exceptional fracture toughness through various toughening mechanisms. There is a
strong desire to enhance the performance of synthetic materials by understanding
such toughening mechanisms. Cortical bone derives its resistance to fracture
primarily from extrinsic mechanisms during crack growth, whereas crack initiation
resistance to fracture, which is related to intrinsic damage mechanisms, is relatively
low (Vashishth, 2004, Koester et al., 2008). Fracture in cortical bone can be regarded
as a mutual competition between intrinsic damage mechanisms, which act ahead of
the crack tip to promote cracking, and extrinsic toughening mechanisms, which act
primarily in the crack wake to shield the crack from the applied driving force in order
to inhibit further cracking (Ritchie et al., 2005, Koester et al., 2008).
Cortical bone exhibits multiple extrinsic mechanisms to resist crack growth (Launey
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Figure 6.3 Schematic illustration of extrinsic toughening mechanisms possible in cortical
bone. a. Crack bridging by collagen fibres, b. crack deflection by osteons, c. constrained
microcracking, and d. uncracked-ligament bridging.

et al., 2010). These include constrained microcracking, crack path deflection and
twist, uncracked ligament bridging, osteon pullout, and interface delamination. Figure
6.3 gives a schematic representation of several dominant toughening mechanisms.
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Extrinsic mechanisms are created primarily by the interaction of growing cracks
with the osteonal structures. Vashishth et al. (2000) reported that microcracking
was the primary reason for the occurrence of rising branch in R-curves. Nalla et al.
(2004, 2005) attributed toughening for crack propagation in the longitudinal direction
mostly to uncracked ligament bridging in the crack wake. Compared with crack
propagation in the longitudinal direction, crack propagation in the transverse direction
is more clinically relevant (Behiri and Bonfield, 1989). SEM observation by An et al.
(2011) showed that the uncracked ligament bridging was the main toughening
mechanism in the longitudinal fracture, while crack deflection and bifurcation were
found when cracks propagated in the transverse direction, leading to an ultimate
fracture toughness corresponding to stable propagation that was twice the crack
initiation toughness.
Aging-related loss of bone quality, corresponding to degradation in fracture strength
and toughness, has been suggested as a great contributor to bone fragility. Aging
will adversely affect the bone fracture toughness by altering material and structural
properties of cortical bone. This is reflected in an increase in the fraction of highly
mineralised bone (Simmons Jr et al., 1991) and the modification of collagen by
denaturation (Wang et al., 2001) or non-enzymatic glycation. Besides, the elderly
tends to have increasing size and porosity of Haversian canals, and a higher osteon
density (Zimmermann et al., 2011). Zioupos and Currey (1998) reported that the
propensity of older human bone to form linear microcracks over diffuse damage
was the major reason in aging-related bone fragility. Chan et al. (2009) showed that
young bone was more effective in deflecting cracks into cement lines, but most of
cracks in older bone tended to cross osteons. Budyn et al. (2008) investigated the
effect of aging on structural and mechanical properties of human cortical bone by
employing 3D FEM unit cells.

6.1.3 Fracture toughness evaluation

Traditionally, fracture resistance of cortical bone is evaluated by its bone mineral den-
sity (BMD) (Seeman and Delmas, 2006). However, the fracture risk can differ among
individuals with the same BMD, indicating that other factors besides BMD need to
be considered in clinically evaluating bone fracture risk. Nowadays, an increasing
number of studies reveal that microstructural morphology and material composition
are decisive factors influencing bone failure or fracture. Similar to other quasi-brittle
materials, such as concrete, ceramics, rocks and ice, excessive microdamage ac-
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cumulation is a strong signal that the bone structure will be compromised and may
even break. In cortical bone, the remodelling process constantly repairs fatigue
microdamage to keep the amount of microdamage at a low level. If remodelling is
abnormal or deficient due to genetic disorders, aging or disease, there will be an
increased risk that the bone suffers from fragility fracture.
Two common damage morphologies, linear microcracks and diffuse damage, can be
found in the microstructure of cortical bone. Linear microcracks can be viewed as
sharp micron dimension cracks mainly distributed within the bone matrix, whereas
the diffuse damage is described as a patch of multiple submicron cracks. Linear
microcracks more likely form under compressive loading in the interstitial bone tissue
and stop at osteonal boundaries (Boyce et al., 1998). In contrast, diffuse damage
forms under tensile loading (Boyce et al., 1998) as submicroscopic cracks in the
interstitial bone.
As a mineralised tissue, cortical bone exhibits superior fracture-resistant behaviour,
though it is composed of inferior building blocks (mainly collagen molecules and
mineral crystals) at the nanoscale. In nature, some other biological materials such
as dentin, nacre and diatoms also reveal remarkable defect tolerance (Sen and
Buehler, 2011).

6.1.3.1 Quantitative fracture toughness measurement

There are several experimental approaches to assess the toughness of cortical
bone tissue. This is usually conducted macroscopically by fracture testing and then
analysing the data. The fracture specimens (Figure 6.4c) can be prepared by a se-
ries of manual machining operations, including cutting, drilling, milling and polishing
after transversely sectioning long bones (Figure 6.4a) and removing soft tissues.
They are then labelled according to their cortex positions in order to differentiate
fracture toughness along different directions, as illustrated in Figure 6.4(b). In some
situations, high resolution cameras are attached to a microscope in order to track
the crack propagation length and the crack mouth opening displacement.
The oldest and once widely used approach for quantifying bone fracture toughness is
the work-of-fracture method (Currey, 1979, Zioupos and Currey, 1998). The fracture
toughness value is simply obtained by dividing the area under the load-displacement
curve, representing the fracture work, by twice the nominal cracked ligament area.
However, this calculation is often specimen-size dependent (size effect). Differences
in the energy consumed during the tensile or flexural testing of materials were
pointed out by Zioupos (1998).
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Figure 6.4 Schematic illustration of: a. a long human femur; b. cortex positions in anatomical
terms (letters A, P, M and L stand for anterior, posterior, medial and lateral respectively); c.
fracture specimens fabricated for testing radial, longitudinal, transverse fracture toughness.
Arrows point towards the anticipated crack propagation direction.

Other approaches are based on linear or nonlinear fracture mechanics theories.
The fracture toughness can be measured by critical stress intensity factors (Kc),
critical fracture energy (Gc), and the J integral (Anderson, 2017). Note that these are
fracture mode dependent, but here we ignore the subindex for brevity. The former
two concepts are often adopted in the context of fracture of brittle materials and used
to give a single-parameter characterisation. They are meaningful only for fracture
events where there is no or a rather small fracture process zone (e.g. yield zone for
metals); in this situation Gc is equivalent to the J integral. However, Kc and Gc are
not suitable to quantify the magnitude of fracture resistance and they are incapable
of representing the multiple fracture toughening mechanisms concentrated in the
fracture process zone in cortical bone. This deficiency may be overcome by the
introduction of cohesive zone models or the use of crack growth resistance-curves
(K based or J based R-curves) to take into account the extra energy dissipation
contribution to the ultimate fracture toughness of materials. The R-curve reflects the
increasing driving force required to advance further a unit crack growth. For cortical
bone fracture, a rising portion can be observed in the R-curve. This rising trend
reflects extrinsic toughening mechanisms that primarily appear in the wake of the
dominant crack and play a remarkable role in toughening cortical bone.
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The authors Wright and Hayes (1977), Behiri and Bonfield (1989), Norman et al.
(1991) used a single-parameter fracture toughness measure determined from the
experimental testing of compact specimens to assess cortical bone fracture tough-
ness. Later on, other researchers noticed that cortical bone principally derives its
toughness during the crack growth phase, and the evaluation of fracture toughness
in terms of K based R-curves with crack growth length as the independent variable
becomes more appropriate (Vashishth, 2004, Nalla et al., 2005). Some researchers,
such as Peterlik et al. (2006), Yan et al. (2007), Koester et al. (2008), Fletcher et al.
(2014), applied elastoplastic fracture mechanics (J integral) that considers the contri-
bution from plasticity to the fracture toughness, to evaluate the fracture toughness of
cortical bone. Cohesive zone models are classical nonlinear fracture models widely
chosen for incorporating large-scale fracture processes in quasi-brittle materials.
For example, owing to extensive fibre bridging experimentally observed in triaxially
braided carbon fibre composites, simulations incorporating a discrete cohesive zone
model to characterise the fracture process zone has been undertaken, resulting in
well replicated structural responses (Xie et al., 2006). Yang et al. (2006a,b), Cox
and Yang (2007) used such a fracture model to account for toughening and damage
behaviour both ahead and behind the crack tip. They demonstrated that utilising
cohesive zone models could explain the disagreement in fracture toughness data in
the literature measured via LEFM and also provided a consistent nonlinear fracture
model that could be well matched with different experimental toughness values for a
variety of small crack sizes in bone toughness tests. In other words, the cohesive
model is able to capture the specimen size effect on nominal strength and fracture
energy in fracture tests in cases where fracture process zone can not be ignored
compared to the crack length.
Interestingly, Willett et al. (2017) measured the size of characteristic fracture process
zone at maximum load as approximately 550 µm for the transverse fracture of bovine
cortical bone. Also, using laser scanning confocal microscopy, they observed flames
that might be similar to tunnelling observed in other materials during fracture. This
fracture process zone size may provide valuable information for the calibration of the
numerical fracture models, especially when using cohesive zone models.
In summary, in order to explore bone failure mechanisms experimentally, in the
literature there have already existed several alternative fracture toughness notions
(parameters), multiple experimental fracture test setup standards and also abundant
experimental data at different anatomical cortices for a wide range of bone tissues
(e.g. human femura, human tebia, bovine femura, deer antler). At the same time, a
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variety of types of equipment (e.g. fluoresence microscope, scanning electron micro-
scope, digital image correlation, backscattered, micro-CT) and image processing
software (e.g. ImageJ) have been employed to monitor and analyse the distribution
and number of internal microdamage or microcracks.

6.1.3.2 FEM simulations for bone fracture toughness

Though experiments on bone are indispensable and constitute a crucial part of
researching bone failure, they are not always the best option to conduct parametric
studies and predict fracture events in bone. Parametric studies are beneficial when
studying the factors that are crucial and responsible for aging-related or disease-
related reduction in bone fracture toughness. These factors may involve porosity
ratio, osteon size, compositional heterogeneity, collagen denaturation, damage sever-
ity, cement line properties etc.. Parametric studies are also effective in eliminating
the confounding factors that exist in experimental studies in order to identify the
direct influence of an individual factor.
What is also important is the development of robust numerical tools to furnish
accurate predictions of fracture risks for groups like the elderly and patients with
osteoporosis. This is not an easy objective to achieve due to the hierarchical or-
ganisation of bone, the continuous remodelling process, the anisotropic mechanical
properties and the substantial variety in bone material composition.
In the existing literature, several numerical experiments have been conducted to
reveal the role of osteons and cement lines in the fracture toughness in bone.
Najafi et al. (2007) studied the crack propagation path in cortical bone with a two-
dimensional micromechanical fibre reinforced composite materials model, under
tension and compression, in the framework of FEM. Their results showed bone
microstructural heterogeneity greatly influenced fracture parameters and osteons
acted as barriers to microcrack growth and high osteonal density could depress
crack growth, which seemed to agree with previous experimental measurements by
O’Brien et al. (2005). These last authors stated that for a large majority of cracks,
osteons acted as barriers to growth, but for a few long cracks (larger than 300 µm)
that broke through the cement line and split through a Haverisan canal, osteons
might act as a weakness site promoting crack propagation, likely leading to eventual
failure of specimens.
As classical fracture models frequently adopted in computational fracture mechanics,
cohesive crack models have been introduced in the study of bone fracture using
cohesive or interface elements as described in Chapter 3 (Ural and Vashishth,
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2006, Ural, 2011, Mischinski and Ural, 2013, Ural and Mischinski, 2013). Interface
elements have special advantages in dealing with crack initiation, multiple crack
propagation and crack branching or intersecting. More importantly, they are easier
to implement into an existing FE code, compared to other numerical techniques
like XFEM. The justification for the use of cohesive crack models is the existence
of a fracture process zone. Ural and her co-workers employed cohesive interface
elements in an attempt to find the influence of microscopic factors on bone fracture-
resistance performance. Ural and Mischinski (2013) showed that in their simulations
the microscopic fracture toughening was most effective when the cement line had a
lower strength than the surrounding bone, reducing the tendency to fracture at the
macroscale.
The XFEM described in Chapter 3 has also been used to study the crack initiation
and propagation in the cortical bone due to its merit in the incorporation of cracks
anywhere and allowing propagation without conforming to mesh topologies. Budyn
and her collaborators performed a series of studies on fracture strength assessment
of cortical bone with XFEM. In their models, cortical bone was considered as a
four-phase composite with osteons, interstitial matrix, Haversian canals and cement
lines. The osteons were idealised as non-touching circles or ellipses. Budyn and
Hoc (2007), Budyn et al. (2008) modelled multiple crack growth with XFEM in human
cortical bone under tension in order to investigate the influence of changes in mi-
crostructure morphology and mechanical parameters. Using the XFEM, Budyn and
Hoc (2010), Jonvaux et al. (2012) investigated the influence of different parameters
such as morphology, porosity, aging and osteoporosity on stress and strain fields,
failure and fracture of bone. Abdel-Wahab et al. (2012), Li et al. (2014) studied the
effect of microstructure and material properties of bone on crack growth employing
XFEM implemented within the commercial software ABAQUS.
Most previous XFEM based simulation work studying the crack propagation in corti-
cal bone has been based on the maximum tangential stress (MTS) crack propagation
criterion, commonly used and suitable for homogeneous materials. As argued in
(Marco et al., 2018), the predicted crack path was determined based on MTS thresh-
olds without detecting the presence of heterogeneities such as the cement lines.
Therefore, osteons were crossed most probably due to the use of a propagation
criterion that is not suitable for heterogeneous materials. Thus, inspired by interface
damage prediction in composites, Marco et al. (2018) proposed a new crack orienta-
tion criterion considering the material heterogeneity, which was able to reproduce
realistic fracture paths in cortical bone microstructure, as evidenced by Figure 6.5.
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The majority of the strength and fracture modelling methods only consider one

 

Figure 6.5 Satisfactory prediction (right) of crack path around osteons without penetration
using a new crack orientation criterion, in good agreement with experimental evidence (left)
by Budyn et al. (Budyn and Hoc, 2010). Reprinted from (Marco et al., 2018) with permission
from Elsevier.

size scale, rather than multiple size scales. There have been few studies based on
multiscale modelling methods. In this regard, to explore the hierarchical nature of the
cortical and trabecular bone in rats, Oftadeh et al. (2015) used a variety of analytical
techniques to characterise the structural and compositional properties of cortical
and trabecular bone, as well as to determine the best mathematical model for the
prediction of the mechanical properties of the bone tissue. Hamed and Jasiuk (2013)
employed a cohesive zone model for the prediction of the effective elastic moduli
and strength of lamellar bone at three different scales. Moreover, a multiscale model
incorporating the cohesive FEM approach was also utilised to simulate bone fracture
both at the microscale and macroscale (Ural and Mischinski, 2013).

6.2 Multiscale failure study of cortical bone

The present study focuses on the radial fracture of cortical bone. Quasi-brittle loading
and plane strain conditions were assumed. Plasticity was not considered and thus



6.2 Multiscale failure study of cortical bone 155

no permanent deformation occurred. The morphological data and mechanical
properties for each microscopic constituent were collected from the literature.
A significant number of micromechanics simulation studies have been carried out in
the past (Heinrich et al., 2012, Pineda et al., 2013, D’Mello and Waas, 2019, Bhuiyan
et al., 2020) to name a few, mostly with an emphasis on the failure development in
fibre reinforced composites. A series of questions have been looked at, for example,
the influence of random packing on the residual stress build-up during the curing
process and on the transverse tensile response; the influence of unit cell size on
the details of crack path, overall strength and overall stiffness; and the influence of
morphological variability on the transverse elastic and fracture properties. We believe
that the modelling techniques, numerical issues and simulation results presented in
these works can provide useful insights into failure and fracture simulations of the
cortical bone tissue.

Geometrical description

In the following studies, each RVE was idealised to feature osteons, cement lines,
Haversian canals and interstitial bone matrix, as in (Budyn and Hoc, 2007, Budyn
et al., 2008). The cement lines act as the interfaces between the osteons and the
interstitial matrix. Due to the abundance in available experimental measurements
in the literature, the geometric parameters for bovine cortical bone are referenced.
According to (Budyn and Hoc, 2007), the distributions of the diameters of the osteons
and the Haversian canals each follow a Gaussian distribution. The volumetric fraction
of osteons is approximately 60 %. The average diameters for the Haversian canals
and osteons are 35 µm and 140 µm, respectively. However, based on experimental
measurements in (Abdel-Wahab et al., 2012), the average diameters of osteons and
Haversian canals are 99.89 µm and 23.1 µm, different from those data of Budyn and
Hoc (2007). The thickness of the cement line is measured as 5µm (Budyn and Hoc,
2007, Abdel-Wahab et al., 2012).

In the current numerical study, the diameter of each osteon was randomly selected in
the range [100 µm 250 µm]. The osteons were not allowed to intersect. The diameter
of each canal was fixed to 50 µm. The thickness of the cement line was taken as
5µm. The volume fraction of osteons with canals was specified as 45%. A typical
square sample of size 0.8 mm is illustrated in Figure 6.6.
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Figure 6.6 A typical mesoscopic sample for cortical bone tissue.

Mechanical properties

The Young’s modulus for the osteons was 1.2x104 MPa taken from (Rho et al., 1999).
The interstitial matrix was assumed to have a stiffness 1.44x104 MPa, which is 20%
higher than the osteons according to (Li et al., 2014) since that the interstitial matrix
is composed of remnants of highly mineralised old osteons. There is no consensus
in the literature on whether the stiffness of the cement line should be higher or lower
than that of osteons. However, this material constant is not of interest in the current
study since interface elements were used to model the failure process. Poisson’s
ratio was assumed as 0.3 for all the constituents based on (Gustafsson et al., 2019).
The fracture properties of osteons were not collected due to the assumption that
osteons were not allowed to experience fracture. The critical strength 57.6 MPa of
the interstitial matrix was derived by the product of its stiffness and the damage
initiation strain 4x10−3 by reference to (Budyn and Hoc, 2007). The critical strength
(normal or shear) of the cement line was taken as 30 MPa, lower than that of the
interstitial matrix. The critical fracture energy was assumed equal for fracture energy
and Mode II fracture. The critical fracture energy of the interstitial matrix was taken
as 0.2 N/mm (Gustafsson et al., 2019). The critical fracture energy for the cement
line was specified as 0.163 N/mm (Giner et al., 2017).
The above material constants are summarised in Table 6.1.
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Table 6.1 Material constants of the mesoscopic constituents in cortical bone.

phase Em [MPa] νm σmf [MPa] Gm [N/mm]

osteon 1.2x104 0.3 – –

matrix 1.44x104 0.3 57.6 0.2
cement line – – 30 0.163

6.2.1 Extracted macroscopic cohesive laws

The numerical simulations of micro samples for cortical bone were carried out
with intrinsic interface elements approach described in Chapter 3. Zero-thickness
interface elements embedded between continuum elements were used to simulate
the fracture process in the microstructure. They were only used in the regions of the
cement lines and interstitial matrix. An interface damage model with linear softening
as in (Turon et al., 2006, Cid Alfaro et al., 2010) was adopted to model the mixed-
mode fracture behaviour by means of defining a mode-mixity parameter. To quantify
the fracture properties of cortical bone at the macroscale of millimetres, the method
presented in (Verhoosel et al., 2010) was employed to extract the homogenised
or effective cohesive laws that characterise the traction-separation behaviour for a
cohesive crack. The fundamental idea of this method is to separate the nonlinear
response from the linear elastic response for an RVE model under strain localisation.
It should be noted that this method and the failure zone averaging scheme mentioned
in Chapter 4 share a similar idea. We employed the limit point criterion to mark the
instant of strain localisation or material instability in the microscale model.
For simplicity we have only focused on the mode I fracture behaviour for cortical
bone. For a single mode cohesive law, the most important fracture parameters are
cohesive strength and fracture toughness (critical fracture energy). The effective
cohesive strength and the effective fracture toughness defined at the macroscale
were computed from the extracted effective cohesive law. In the following, these two
quantities are denoted as σeff and Geff respectively.

RVE size determination

As mentioned in Chapter 4, the RVE size should be large enough in order to be
statistically representative of the mechanical behaviour of microstructure. This size
may need to be larger particularly in cases where cracking and strain localisation
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occur. To better capture the interaction between the microcracks and the Haversian
microstructure, the minimal numerical sample size ls was restricted to 0.3 mm, which
indicated at least 3 osteons were included. Four different sizes, ls = 0.3, 0.6, 0.8 and
1.2 mm, were considered and for each size, five different realisations were simulated.
The material constants in Table 6.1 were used. The average continuum element size
was 0.01 mm considering the currently available computational power. It is important
to realise that when using the cohesive element approach the mesh density will have
a significant impact on the predicted crack path and effective fracture properties
(Cid Alfaro et al., 2010, Ballard and Whitcomb, 2017). However, this is not the main
concern of the current study.
A laterally constrained uniaxial tensile loading was applied to the micro samples.
During simulations, it was likely found that the convergence failed using the full
Newton-Raphson iterations around the peak strength point. To circumvent this
convergence difficulty, once lack of convergence was identified, the use of tangent
stiffness was converted to the use of secant stiffness. After attaining convergence
(with a large number of iterations), tangent stiffness was reinstated.
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Figure 6.7 Effective traction-separation laws for different sample sizes of cortical bone,
obtained by averaging over five realisations.

The mean extracted cohesive laws after averaging are shown in Figure 6.7 for
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different sample sizes. As evidenced from the figure, the sample size 0.3 mm
appears to largely deviate from the remaining three mean curves that are almost
identical.
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Figure 6.8 Computed effective fracture properties (Mode I) for cortical bone tissue. The
error bars represent the standard deviations.

To further look at the differences, the effective cohesive strength σeff and the
effective fracture toughness Geff obtained by numerically integrating the area under
the cohesive law are shown in Figure 6.8 for each tested sample size. It is concluded
from comparing these values that the size 0.3 mm might be slightly small and it is not
suitable to be considered as an RVE size employed for extracting effective cohesive
laws or adopted in multiscale failure analysis.
For purposes of illustration, the final crack paths for different tested sample sizes at
the end of analyses are displayed in Figure 6.9. An almost vertical crack path can
be observed for each sample size. This is because an uniaxial tensile loading was
applied. It is observed that the interface debonding constitutes a large portion of the
final crack path. In Figure 6.9, the local bridging zones located on crack paths are
highlighted which explains the long tails of some cohesive law curves (see Figure
6.7).

Effect of fracture properties of cement line

Cement lines acting as an interface play an important role in failure or fracture in cor-
tical bone. To assess the effect of the fracture properties of cement line, a parametric
study was conducted. The size for the numerical micro samples was specified as 0.6
mm which contained about 10 osteons. This size was considered representative of
cortical bone microstructure based on the work in the last subsection. The values
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Figure 6.9 Final crack paths for bone samples of different sizes. Red circles highlight local
bridging zones located on crack paths.

σcl0 and Gcl0 of fracture strength and fracture toughness (critical fracture energy) for
cement line in Table 6.1 were chosen as the control case.
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Figure 6.10 Parametric study of fracture strength σcl of cement line: effective traction-
separation laws.

Firstly, the effect of the fracture strength of cement line was investigated by solely
varying the value for σcl but fixing the remaining material constants including Gcl.
Values selected for σcl in this study were 0.67 σcl0, 1.33 σcl0 and 1.67 σcl0. For each
value, five different realisations of microstructure were simulated. The mean curves
representing the extracted macroscopic cohesive response are plotted in Figure 6.10
for different values of the fracture strength σcl of cement line. From the figure, with an
increase in fracture strength of cement line, the sample exhibits a reduced fracture
displacement at near zero strength. It is interesting to notice that from the outputs
of damage distribution, increased values for σcl result in more matrix cracking in a
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Figure 6.11 Parametric study of fracture strength σcl of cement line: computed effective
fracture properties (Mode I), σeff and Geff .

diffuse manner prior to localised deformation. This corresponds to more energy
dissipation in the hardening regime.
The trends in the computed effective fracture properties (mean values) are shown in
Figure 6.11. From Figure 6.11, an approximately linear relationship is found between
the effective fracture strength and the fracture strength ratio for cement line. A
possible explanation for this could be that the relative length ratio of the debonding
section to the total crack path does not change significantly. In addition, the effective
fracture toughness value does not vary much (8.5%) since the critical energy of
cement line Gcl was kept constant for all cases.
Secondly, the effect of critical fracture energy of cement line was investigated by
solely varying the value for Gcl but fixing the remaining material constants including
σcl. Values selected for Gcl in this study were 0.75 Gcl0 and 1.25 Gcl0. For each
value, five different realisations of microstructure were simulated. The mean curves
representing the extracted macroscopic cohesive response are plotted in Figure
6.12 for different values of the critical fracture energy Gcl of cement line. The trends
in the computed effective fracture properties (mean values) are shown in Figure 6.13.
From the figure, with an increase in the critical fracture energy of cement line, the
sample shows an increased fracture displacement at near zero strength.
From Figure 6.13, an approximately linear relationship is found between the effective
fracture toughness and the critical fracture energy ratio for cement line. This could
be explained by account of roughly constant debonding proportion in the total crack
path. In addition, the effective fracture strength value does not vary much (1.0%)
since the fracture strength of cement line Gcl was kept constant for all cases.
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Figure 6.12 Parametric study of critical fracture energy Gcl of cement line: effective traction-
separation laws.
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Figure 6.13 Parametric study of critical fracture energy Gcl of cement line: computed
effective fracture properties (Mode I), σeff and Geff .

Discussion

The fracture process in an RVE model can be summarised as follows. Debonding
occurs first at multiple cement lines at a certain level of loading, due to the lower
fracture strength of cement line compared to that of interstitial matrix. As loading
increases, diffuse matrix cracks (Figure 6.3c) are found primarily emanating from
or initiating close to the cement lines that are undergoing further debonding. At a
certain stage, the neighbouring matrix cracks coalesce, which finally leads to an
effective single crack path that is slightly tortuous across the whole RVE (Figure
6.9). The effective single crack path is composed of debonding interfaces and matrix
cracks. It is highlighted that the word “single” here does not mean the effective crack
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path can be ideally defined as a continuous curve. However, crack bridging (Figure
6.3d) may be present as shown in Figure 6.9. Roughly speaking, the formation of
the effective single crack path corresponds to reaching the ultimate RVE (tensile)
strength and the occurrence of instability or strain localisation at a macroscale mate-
rial point. This also identifies the instant when the numerical scheme in (Verhoosel
et al., 2010) is employed to extract an effective cohesive law. After strain localisation,
the effective crack experiences continuous damage, while the bulk material on both
sides of the effective single crack undergoes elastic unloading.
Cortical bone has a heterogeneous microstructure at the scale of osteons. This het-
erogeneity is the primary reason for having multiple extrinsic toughening mechanisms
in cortical bone. The extrinsic toughening mechanisms of interface debonding, dif-
fuse matrix cracking and ligament bridging have been observed in most experiments
on radial fracture in the literature (O’Brien et al., 2007, Launey et al., 2010, Budyn
and Hoc, 2010, Li et al., 2014). These mechanisms have been well reproduced on a
transverse section of osteons in our numerical simulations. Also the tortuous crack
path observed in the simulations is evidence for the toughening mechanism of slight
crack deflections. However, severe crack deflections are not observed because of
the configuration of the problem and since uniaxial loading is applied.
Two major limitations of the current study are (i) the effects of plasticity on the fracture
process are not incorporated, and (ii) cracking in osteons is not taken into account.
These are worth further investigation.

6.2.2 Multiscale failure analysis of bone fracture
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Figure 6.14 Three-point bending test of cortical bone: geometry, boundary and loading
conditions.
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To study the interaction between the external loading and microstructural evolution,
multiscale failure modelling is necessary. The three-point bending test is widely used
to experimentally investigate fracture properties and mechanisms of cortical bone
(Ritchie et al., 2008). In this subsection, the three-point bending test of cortical bone
was numerically simulated using the multiscale failure model described in Chapter 4.
The specimen geometry and loading conditions for the three-point bending test are
shown in Figure 6.14. A traction-free finite-width notch was introduced instead of a
crack in the middle of the bottom side. Plane stress condition was assumed due to
the geometry and loading setup. The simulation was performed with displacement
control. To reduce the computational effort, the set of bilinear quadrilateral elements
in the mid-span was selected as multiscale elements with RVEs associated with
them. To further reduce the computational effort, an RVE size of 0.3 mm was
chosen, though it was not considered as an adequate RVE size in the case of
strain softening according to the previous RVE size analysis. The behaviour of the
remaining macroscale elements was assumed isotropic linear elastic with effective
Young’s modulus 10.15 GPa and effective Poisson’s ratio 0.264. As a comparison, two
values for the ultimate strength of the cement line in the cortical bone microstructure,
a reduced value 0.67 σcl0 and a reference value σcl0, were used in order to study the
interaction between the global mechanical response and the evolving microstructure.

 0

 5

 10

 15

 20

 25

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

Lo
a
d
 P

y
 [

N
]

Deflection uy [mm]

σcl = 0.67σcl0
σcl = 1.00σcl0

Figure 6.15 Three-point bending test of cortical bone: load versus deflection curves for two
different cement line strengths (reduced and reference) using a multiscale failure approach.

As expected, in the specimen a crack arises from the notch tip and propagates
vertically along the mid-span (see Figure 6.16). The resulting load-deflection curves



6.2 Multiscale failure study of cortical bone 165

are plotted in Figure 6.15. Since the macroscale mesh is too coarse to model crack
growth accurately (crack growth is not continuous), a small number of sawtooth-like
spikes are found in the post-peak response of these curves. A smoother curve could
be expected by employing either a smaller macroscale element size or a crack-tip
element formulation (the crack tip can stay inside elements) (Zi and Belytschko,
2003, Rabczuk et al., 2008). It is interesting to observe a sharp drop in the load
at the peak in the load-deflection curves, which is different from the case of the
more ductile transition in the three-point bending simulation for concrete performed
in Chapter 4. This observation seems consistent with some experimental evidence
such as in (Giner et al., 2017). From the modelling point of view, the sharp peak
behaviour is caused by the brittleness of the effective cohesive law.

                        

cohesive RVE

bulk RVE

Figure 6.16 Three-point bending multiscale simulation of cortical bone: macroscale defor-
mation (x10), and typical bulk and cohesive RVE deformed configurations (magnified for
visualisation purposes) at the final load step.

In Figure 6.15, the two curves are identical until roughly when the first bottom
macroscale element is cracked. As expected, the case with 0.67 σcl0 gives a lower
peak than the other case due to a reduced cement line strength. Note that the
simulations were terminated when severe convergence issues occurred, which
explains why the post-peak branches are short.
This current multiscale failure study for cortical bone demonstrates that the significant
influences of mechanical properties of microscopic constituents in cortical bone on
the overall response can be captured by means of multicale failure modelling. This
kind of multicale failure modelling offers great potential in clinical practice to help
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understand complicated bone failure and fracture mechanisms, and plan patient-
specific treatment schemes.

6.3 Summary

In this chapter, a method in the literature has been employed to extract effective
cohesive laws for cortical bone. The effective cohesive laws that are of mode I
represent the crack separation behaviour in the normal direction at the macroscale.
This method also helps quantify the effective fracture strength and the effective
fracture toughness (mode I) for cortical bone, which is defined as the area under the
curve of the effective cohesive law. To ensure that the effective cohesive laws are
sufficiently accurate, the proper size for a valid RVE has been investigated. It was
found that the minimum RVE size should be greater than 0.3 mm, though we did not
know the exact value at the moment, due to only a limited number of tested RVE
sizes. The effect of cement line on the effective fracture strength and toughness has
been explored by means of a parametric study.
A three-point bending test has been simulated using the multiscale failure model
established in Chapter 4. The interaction between microstructural evolution and ex-
ternal loads can be captured. This demonstrates that the multiscale failure modelling
technique is advantageous in describing failure mechanisms at multiple length scales.
The combination of multiscale simulation results with experimental observations and
measurements can take us one step further in understanding the complex fracture
mechanisms of bones. Therefore, this can help develop guidelines for the effective
and trustworthy treatment and prevention of bone fracture in clinical practice.
Note that the developed multiscale failure model in Chapter 5 has not been applied
to the fracture analyses for a structure made of cortical bone tissue in a fully-coupled
two-way manner, since the current formulation and code implementation are limited
to only the use of the local smeared crack approach at the microscale for the provi-
sion of microscopic damage onset and its evolution. However, the cohesive crack
model approach implemented by interface elements was employed for representing
failure mechanisms at the microscale. The extension to accounting for cohesive
cracks at both the macroscale and microscale seems straightforward (Toro et al.,
2016a,b); however it will require substantial additional coding effort and remains the
subject of ongoing research.



Chapter 7

Conclusions and Perspective

7.1 Main Contributions

Modelling strain localisation is of great engineering interest particularly for large
structures made of quasi-brittle materials. Strain localisation that results in a prop-
agating macroscale crack is a physical phenomenon that involves the formation
of extensive damage localisation starting from diffused damage inception. In this
project, we aimed to develop new multiscale failure approaches that can be employed
to simulate strain localisation and describe the failure processes at two different
length scales, and then apply the multiscale failure modelling technique to investigate
the fracture/failure mechanisms in cortical bone tissue. We first gave a compre-
hensive review of single or multi- scale computational approaches to fracture in the
literature. Implementation details were given. Then, we developed two different
multiscale failure frameworks that have distinct theoretical foundations. Both models
are built upon the concept of cohesive cracks, and extended first-order computational
homogenisation (CH) schemes in order to address RVE size dependence in the
presence of strain localisation. Finally, we applied one of these proposed multiscale
failure approaches to investigate the bone failure process. Three main contributions
have been made:

1. A novel continuous-discontinuous multiscale failure modelling approach that
is based on macro-discontinuity enhanced FE2 was proposed. One major
advantage of this model is its simplicity as it does not require the knowledge
of the evolution details of strain localisation bands at the microscale. In this
model:
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(a) Bulk RVE models using the conventional CH are coupled to Gauss points
located within the predefined critical regions of macroscopic structures at
the beginning of analysis.

(b) Once a macroscale material point loses stability, a new crack segment is
inserted for which cohesive RVE models using the extended CH and with
copied initial states are coupled to crack integration points.

(c) The weakly periodic BCs that are aligned with the localisation direction
are employed to minimise spurious boundary effects.

(d) In the extended CH, the homogenised or macroscale strain applied to
the boundary of the cohesive RVE model is enriched with a macroscale
discontinuity related term regularised with the effective length of the
microscale localisation band. This alleviates the RVE size dependence of
the homogenised cohesive response.

(e) The discrete crack at the macroscale is represented with the XFEM. The
static condensation procedure is employed to derive the bulk and cohesive
algorithmic tangent stiffnesses.

2. The previous approach does not strictly enforce the kinematic consistency
between the macroscopic crack and microscopic strain localisation band. To
this end, another multiscale failure modelling approach was developed on
the basis of the Failure-Oriented Multiscale Variational Formulation (FOMVF)
proposed in the literature. The FOMVF is built upon kinematic admissibility
and the principle of multiscale virtual power. In this model:

(a) The kinematic compatibility between two scales needs to be attained by
defining a proper kinematical insertion operator especially for the case
of strain localisation. As a result, two types of BCs to be enforced upon
strain localisation are derived.

(b) In the extended CH, the macroscale cohesive traction expression and mi-
croscale equilibrium are two direct consequences of applying the principle
of multiscale virtual power.

(c) The discrete crack at the macroscale is represented with the XFEM. The
bulk and cohesive algorithmic tangent stiffnesses are derived by means
of linearisation.

(d) The bifurcation condition is checked at the end of each load step so as to
switch to the extended CH if necessary.
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3. Multiscale failure modelling was then applied to explore the failure mechanisms
of cortical bone tissue. The minimal RVE size in terms of ensuring a sufficiently
accurate effective cohesive law was determined, which should be greater than
0.3 mm equal to about three times the average osteon diameter. The effects
of fracture properties of cement line on the effective fracture strength and
toughness were investigated. An approximately linear relationship was found
when varying one fracture parameter while fixing the other for the cement
line. The extrinsic toughening mechanisms observed in the RVE models were
discussed. A three-point bending test was simulated with the first multiscale
failure modelling approach just mentioned.

7.2 Plans for future work

As regards the future work, several potential research topics are listed below.

1. The proposed multiscale failure modelling approaches can be extended to
the three-dimensional (3D) case. This calls for the 3D implementation of the
XFEM with a robust tracking method for cracks. Also, the 3D version of weakly
periodic boundary conditions needs to be implemented for the multiscale failure
approach in Chapter 4. The multiscale failure approach presented in Chapter
5 can be extended to the situation where interface elements are employed for
modelling failure mechanisms at the microscale. The interface elements can be
inserted adaptively in order to significantly improve computational performance.

2. In general, multiscale failure approaches incur extreme computational costs,
limiting their practical applicability. The application of reduced order modelling
to microscale models could be very helpful. In addition, the parallel implemen-
tation of CH based multiscale approaches is straightforward, because each
microscale BVP can be solved locally by a separate processor. An efficient
load-balancing strategy for distributing the load to multiple processors may be
a great concern.

3. The current work is confined to quasi-static loading scenarios. In practical
engineering, impact-induced damage and fracture are prevalent such as in
composite laminates. Therefore, the extension of the present multiscale failure
approaches to impact loading conditions in order to simulate the dynamic
fracture of heterogeneous materials is intriguing.
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4. The multiscale failure approaches can be extended to incorporate multiphysics
effects, such as coupled thermo-mechanical analyses for concrete and compos-
ites. This provides a promising avenue for studying complex material behaviour
under loading and environmental conditions in a more accurate way.

5. Although the proposed multiscale failure approaches have been verified against
direct numerical simulations, they have not been validated against experiments.
When gradient enhanced damage models are employed at the microscale, the
characteristic length parameter of materials needs to be calibrated, perhaps by
an inverse analysis.

6. In the current microscopic failure modelling of cortical bone, the osteons were
not allowed to fracture. This limitation can be simply resolved by inserting
interface elements in the osteon regions. The mechanical and fracture prop-
erties were collected from the literature. These data can be obtained from
performing experimental measurements to increase reliability. More numerical
realisations for an RVE size can be simulated to reduce the errors in extracted
effective cohesive laws. To better unveil the bone fracture and toughening
mechanisms, a comprehensive comparison between numerical results and
experimental observations is demanding. For example, fracture toughness
and cohesive strength can be experimentally determined by coupon level
tests. Both parameters can be used as material properties for prediction of
crack growth in three-point bending simulations in a single scale setting. The
obtained load-deflection responses will be compared against those from the
multiscale failure simulations with microstructure details captured by imaging
techniques.

7. Multiscale failure simulations can be integrated with statistical uncertainty
quantification in order to capture inherent uncertainties in microstructure.
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