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Abstract 

 
 
   A small chip for biomedical analysis connected to our home computer or 

smart mobile, which would be capable of diagnosing illnesses, a lack of vitamins, 

or the over-presence of substances from samples of blood, urine or saliva would 

be a great advance. Such a system could give advice to the user about the optimal 

medicines to take or provide information to a specialist for effective treatment. Of 

course this system will take some time to develop but this thesis aims to provide 

some key understandings to help make such systems a reality and bring some new 

biosensing elements to this exciting project by investigating the molecular sensing 

of proteins in well-defined nanometer-sized confined areas. The understanding of 

molecular dynamics in nano-confined volumes is fundamental for designing the 

appropriate lab-on-a-chip devices able to transport and sense biomolecules. 

However, the advantages and problems occurring at the nanoscale are still to be 

discovered and currently, there is a lack of accurate sensing devices for proteins in 

nanofluidics. One limitation for performing these studies and biosensing device 

developments is to have a low-cost and simple nanopore biosensing platform. To 

address these limitations this thesis focuses on exploration on nanoporous alumina 

(NPA) with perfectly ordered nanoporous or nanochannels prepared by unique 

self-ordering electrochemical process with the aim of developing new nanofluidic 

biosensing platform with new functionalities that are not accessible to 

microfluidics. Based on measurements performed in 20-70 nm nanochannels, 

where proteins were binding on the internal surface of the nanochannel and its 

interactions with antigens were investigated using electrochemical impedance 

spectroscopy measurements. The size of prepared nanofluidic channels is 

comparable to the length scale for electrostatic interactions in aqueous solutions 
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and the binding of proteins in the various dimensions and shape of nanochannels 

were modeled theoretically and verified experimentally with impedance 

spectroscopy. As a result of electrostatic interactions, surface charge can govern 

ionic concentrations in nanofluidic channels. On the other hand, it has been shown 

that protein charges directly influence the nanochannel conductance giving a 

better understanding of how the protein’s counter-ions modify the surface charges 

inside the nanochannels. A direct measurement inside the nanochannels has 

allowed the identification of different systems of interacting proteins, depending 

on the thickness of the electrical double layer. Due to the small channel size, 

surface binding of protein and a generated electrostatic conduction effect inside 

the nanochannel due to the charge of the proteins and ionic strength of the 

solution have important role in the impedance biosensing. An understanding of 

the properties and advantages of the nanoporous alumina nanochannels lead to the 

various other applications including the extraction of DNA and proteins, and 

measurement of the activities of bacterial nanowires. Finally, a novel microchip 

biosensing device with an NPA platform is designed and demonstrated for 

impedance biosensing to measure the changes inside the nanochannel due to the 

binding of proteins. The results showed that changes in the impedance can 

indicate target binding and sample surface morphology is responsible for changes 

in the sensing ability of the developed device.  

The work described in this thesis details significant research in the nascent 

field of nanofluidic biosensing. The work points out novel, important, 

experimentally-verified complements to define theoretical models as well as 

practical approach to go forward with the design of complex nanofluidic systems 

applied to biomedical and biological applications. 
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