An Investigation Into The Effect Of An Australian-Type Rodent Diet, With And Without Nutritional Supplementation On The Behavioural Deficits, Neuropathology And Telomere Length In An Amyloid Mouse Model Of Alzheimer's Disease.

Sarah Margaret Brooker Bachelor of Behavioural Neuroscience (Hons) Graduate Diploma in Rehabilitation Counselling

A thesis submitted in total fulfilment of the requirements of the degree of doctor of philosophy

Discipline of Human Physiology School of Medicine, Flinders University Adelaide, South Australia

August, 2013

Table of Contents

AN INVESTIGATION INTO THE EFFECT OF AN AUSTRALIAN-TYPE DIET, WITH AND WITHOUT NUTRITIONAL SUPPLEMENTATION ON THE BEHAVIOURAL DEFICITS, NEUROPATHOLOGY AND TELOMERE LENGTH IN AN AMYLOID MOUSE MODEL OF ALZHEIMER'S DISEASE.

THES	IS SUMMARY	viii
DECL	ARATION	х
ACKN	OWLEDGMENTS	xi
	ERENCE PRESENTATIONS	xii
00112	CHAPTER ONE: LITERATURE REVIEW	
1.1.	Background	1
1.2.	History of Alzheimer's disease	3
1.3.	Hypotheses about the cause of Alzheimer's disease	5
1.4.	The Amyloid peptide	7
1.5.	Memory and learning	11
1.6.	Anosmia	15
1.7.	Animal models of Alzheimer's disease	18
1.7.1.	Amyloid mutations	19
1.7.2.	Presenilin 1 and 2 mutations	20
1.7.3.	Tau mutations	20
1.7.4.	Double transgenic mice	21
1.7.5.	Triple transgenic mice	21
1.7.6.	Background strain selection	22
1.7.7.	Mouse model used in the current thesis	22
1.8.	Risk factors for Alzheimer's disease	24
1.9.	The role of diet as a modifiable risk factor	25
1.10.	Telomere length and Alzheimer's disease	33
1.11.	Hypotheses, Aims and Outline of thesis	36
	CHAPTER TWO: THE DESIGN OF THE OZ-AIN RODENT DIET AND	
CHAR	ACTERISATION OF ITS EFFECTS ON FOOD INTAKE, WEIGHT GAIN AND	
	OBESITY IN NORMAL AND AMY MICE.	

2.	Background	39
2.1.	Methods	42
2.1.1.	Animals	42
2.1.2.	Study design	45
2.1.3.	Data analysis	45
2.2.	Design of the Oz-AIN diet	46
2.2.1.	Determining 'recommended' nutrient intake for Australian women	48
2.2.2.	Determining 'actual' nutrient intake for Australian women	48
2.2.3.	Designing the macronutrient content of the Oz-AIN diet	54
2.2.4.	Designing the micronutrient content of the Oz-AIN diet	55
2.2.5.	Production of the vitamin and mineral mixes in the Oz-AIN diet	63
2.2.6.	Production of the Oz-AIN diet	63
2.3.	Characterisation of the effect of Oz-AIN diet and AIN93-M diet on food	
	consumption and energy intake for normal and Amy mice	64
2.3.1.	An evaluation of the amount of food eaten by normal and Amy mice throughout the	

	study	64
2.3.2.	The effect of genotype on the amount of food eaten by normal and Amy mice that	
	were fed either the AIN93-M diet or the Oz-AIN diet	65
2.3.3.	The effect of diet-type on the amount of food eaten by normal and Amy mice that	
	were fed either the AIN93-M diet or the Oz-AIN diet	69
2.3.4.	An evaluation of the estimated overall energy intake of normal and Amy mice that	
	were fed either the AIN93-M diet or the Oz-AIN diet	72
2.3.5.	The effect of genotype on energy intake (kJ) every five weeks by normal and Amy	
	mice that were fed either the AIN93-M diet or the Oz-AIN diet	73
2.3.6.	The effect of diet-type on energy intake (kJ) every five weeks by normal and Amy	
	mice that were fed either the AIN93-M diet or the Oz-AIN diet	77
2.4.	Characterisation of the Oz-AIN diet in terms of body weight, fat deposition and	
	organ size in normal and Amy mice	81
2.4.1.	The effect of diet-type on body weight	81
2.4.2.	The effect of genotype on body weight	82
2.4.3.	The effect of diet and genotype on the weight of fat deposits	86
2.4.3.1.	TOTAL FAT deposits	86
2.4.3.1.1.	Diet-type effect on fat weight (g)	86
2.4.3.1.2.	Genotype effect on fat weight (g)	88
2.4.3.2.	Diet-type and genotype effects on UTERINE FAT deposit weight (g)	90
2.4.3.3.	Diet-type and genotype effects of SUBCUTANEOUS FAT deposit weight (g)	92
2.4.3.4.	Diet-type and genotype effects on RENAL FAT deposit weight (g)	94
2.4.3.5.	Summary of the effect of genotype and diet-type on fat weight collected from 18	
	month old normal and Amy mice	96
2.4.4.	The effect of diet and genotype on heart weight (g)	96
2.4.5.	The effect of diet and genotype on liver weight (g)	97
2.4.6.	The effect of diet and genotype on spleen weight (g)	97
2.4.7.	The effect of diet and genotype on kidney weight (g)	101
2.5.	Conclusion	103

CHAPTER 3: THE DESIGN OF THE OZ-AIN SUPP RODENT DIET AND CHARACTERISATION OF ITS EFFECTS ON FOOD CONSUMPTION, WEIGHT GAIN AND OBESITY IN NORMAL AND AMY MICE.

3.	Background	106
3.1.	Methods	109
3.1.1.	Animal	109
3.1.2.	Study design	111
3.1.3.	Data analysis	115
3.2.	Design of the Oz-AIN Supp diet	116
3.2.1.	Selection of nutrient supplements in the Oz-AIN Supp diet	116
3.2.2.	Production of the Oz-AIN Supp diet nutrient supplement mix	121
3.2.3.	Production of the Oz-AIN Supp vitamin and mineral mixes	122
3.2.4.	Production of the Oz-AIN Supp diet	122
3.3.	An investigation into the potentially beneficial effect of nutrient supplements	
	against genotype induced changes in Amy mice	126
3.3.1.	The potentially effect of nutrient supplements against genotype effects on estimated	
	food intake (g/day)	126
3.3.2.	The potential effect of nutrient supplements against genotype effects on estimated energy intake (kJ/day)	127
3.3.3.	The potential effect of nutrient supplements against genotype induced weight gain	
	(g) in Amy mice	130
3.3.4.	The potentially beneficial effect of nutrient supplements against genotype effects on	
	the weight (g) of fat deposits in Amy mice	133
3.3.4.1.	Weight (g) of TOTAL FAT deposits collected	133

3.3.4.2.	Weight (g) of UTERINE FAT deposits	135
3.3.4.3.	Weight (g) of SUBCUTANEOUS FAT deposits	137
3.3.4.4.		139
3.3.5.	The preventative effects of nutrient supplements against genotype induced increase of heart weight (g) in Amy mice	141
3.3.6.	The preventative effects of nutrient supplements against genotype induced increase	
	of liver weight (g) in Amy mice	143
3.3.7.	The potentially beneficial effects of nutrient supplements against genotype induced increase of kidney weight (g) in Amy mice	145
3.3.8.	The preventative effects of nutrient supplements against genotype induced increase	
	of spleen weight (g) in Amy mice	145
3.4.	An investigation into the potentially beneficial effect of nutrient supplements	
		148
3.4.1.	The effect of nutrient supplements against diet-type effects on estimated food	
	intake (g/day)	148
3.4.2.	The effect of nutrient supplements against diet-type effects on estimated energy	
	intake (kJ/day)	151
3.4.3.	The potentially beneficial effect of nutrient supplements against diet-type induced weight gain (g) in Amy mice	154
3.4.4.	The potentially beneficial effect of nutrient supplements against diet-type induced	
	increased fat deposit weight (g) in Amy mice	157
3.4.4.1.	Weight (g) of TOTAL FAT deposits	157
3.4.4.2.	Weight (g) of UTERINE FAT deposits	159
3.4.4.3.	Weight (g) of SUBCUTANEOUS FAT deposits	161
3.4.4.4.	Weight (g) of RENAL FAT deposits	163
3.4.4.5.	Summary of the potentially beneficial effects of nutrient supplements on diet-type induced fat deposition in Amy mice	163
3.4.5.	The preventative effects of nutrient supplements against diet-type induced increase of heart weight (g) in Amy mice	165
3.4.6.	The preventative effects of nutrient supplements against diet-type induced increase of liver weight (g) in Amy mice	167
3.4.7.	The preventative effects of nutrient supplements against diet-type induced increase of kidney weight (g) in Amy mice	169
3.4.8.	The preventative effects of nutrient supplements against diet-type induced increase of spleen weight (g) in Amy mice	171
3.5.	Conclusion	173
NEUR	CHAPTER 4: CHARACTERISATION OF THE β-AMYLOID OPATHOLOGY IN THE BRAINS OF 15 AND 18 MONTH OLD AMY MICE.	175

4.	Background	175
4.1.	Methods	178
4.1.1.	Animals	178
4.1.2.	Tissue collection and storage	183
4.1.3.	De-paraffinisation and rehydration	184
4.1.3.1.	Protocol	184
4.1.4.	Antigen retrieval	184
4.1.4.1.	Protocol	184
4.1.5.	Immunohistochemistry	184
4.1.5.1.	Protocol	184
4.1.5.1.1.	Blocking non-specific binding sites	185
4.1.5.1.2.	Addition of primary antibody	185
4.1.5.1.3.	Addition of secondary antibody	186
4.1.5.1.4.	Stepavidin peroxidase staining (ABC kit)	186
4.1.5.1.5.	DAB staining	187

	Counterstaining slides with haematoxylin	187
	Coverslip slides	187
4.1.5.2.	Slide analysis using brightfield microscopy	188
4.1.6.		190
4.1.6.1.		190
	Blocking non-specific binding sites	
	1 5 5	190
	Addition of secondary antibody	
	DAPI staining	192
	Coverslip slides	
4.1.6.2.		193
4.2.	Results	
4.2.1.	Brain weights of 15 and 18 month old normal and Amy mice	195
4.2.2.	A description of $\beta\mbox{-amyloid}$ staining in Amy mouse brains using bright field	
	microscopy at low magnification	196
4.2.2.1.	A description of β -amyloid staining in the brains of 15 month old mice at low magnification	198
4.2.2.2.	A description of β -amyloid staining in the brains of 18 month old mice at low	170
4.2.2.2.	magnification	198
4.2.3.	The effect of diet on amyloid load in the brains on 15 and 18 month old Amy mice	199
4.2.4.	Characterising the existence and total number of β -amyloid deposits in the brains	
	of 15 and 18 month old Amy mice	204
4.2.4.1.	Beta-amyloid deposit counts in the brains of 15 month old Amy mice	204
4.2.4.2.	Beta-amyloid deposit counts in the brains of 18 month old Amy mice	208
4.2.5.	Integrated densities of the brains of 15 and 18 month old Amy mice	212
4.2.6.	Confocal analysis of β-amyloid deposits in Amy mouse brains	213
4.2.6.1.	Different deposit formations that were observed using confocal microscopy	213
4.2.6.2.	Beta-amyloid co-localisation with astrocytes, oligodendrocytes, microglia and	
	neurons	226
4.2.7.	The effect of diet on deposit type in the brains of Amy mice	227
4.2.7.1.	The effect of diet on deposit type in the brains of 15 month old Amy mice	229
4.2.7.2.	The effect of diet on deposit type in the brains of 18 month old Amy mice	235
4.3.	Discussion	241
4.3.1.	Bright field analysis	241
4.3.2.	Confocal analysis	247
4.4.	Conclusion	263
СН	APTER 5: THE EFFECTS OF GENOTYPE AND THE OZ-AIN DIET ON SPATIAL LEARNING AND SPATIAL MEMORY.	
5.	Background	266
5.1.	Methods	269
5.1.1.	Animals	269
5.1.2.	Study design	270
5.1.3.	Apparatus	273
5.1.4.	Protocol	275
5.1.5.	Data collection	276
5.1.6.	Data analysis	277
5.2.	Results	279
5.2.1.	Validation that all mice could respond to visual cues	279
5.2.2.	Spatial learning in the Morris Water Maze	281
5.2.2.1.	Performance of 12 month old mice throughout the acquisition phase in the Morris Water Maze	281
5.2.2.2.	Performance of 15 month old mice throughout the acquisition phase in the	-01
	Morris Water Maze	289

5.2.2.3.	Latency (s) and distance travelled (m) by 18 month old mice before reaching the	
	submerged platform throughout the acquisition phase	293
5.2.3.	Spatial memory in the Morris Water Maze	300
5.2.3.1.	Performance of 12 month old mice during the Test Trial in the Morris Water Maze	300
5.2.3.2.	Performance of 15 month old mice during the Test Trial in the Morris Water Maze	309
5.2.3.3.	Performance of 18 month old mice during the Test Trial in the Morris Water Maze	317
5.2.4.	Summary of results	325
5.3.	Discussion	327
5.4.	Conclusion	337

CHAPTER 6: THE EFFECT OF DIETARY SUPPLEMENTATION ON SPATIAL LEARNING AND SPATIAL MEMORY IN AMY MICE.

6.	Background	338
6.1.	Methods	341
6.1.1.	Animals	341
6.1.2.	Study design	342
6.1.3.	Apparatus	347
6.1.4.	Protocol	347
6.1.5.	Data collection	347
6.1.6.	Data analysis	347
6.2.	Results	349
6.2.1.	Validation that all mice could respond to visual cues	349
6.2.2.	Effect of age on spatial learning and spatial memory	351
6.2.2.1.	Spatial learning	351
6.2.2.2.	Spatial memory	356
6.2.3.	Spatial learning in the Morris Water Maze	362
6.2.3.1.	Performance of 6 month old mice throughout the acquisition phase in the	
	Morris Water Maze	362
6.2.3.2.	Performance of 12 month old mice throughout the acquisition phase in the	
	Morris Water Maze	367
6.2.3.3.	Performance of 15 month old mice throughout the acquisition phase in the	
	Morris Water Maze	377
6.2.4.	Spatial memory in the Morris Water Maze	386
6.2.4.1.	Performance of 12 month old mice during the Test Trial in the Morris Water Maze	386
6.2.4.2.	Performance of 15 month old normal and Amy mice during the test trial in the	
	Morris Water Maze	393
6.2.5.	Summary of results	400
6.3.	Discussion	402
6.4.	Conclusion	417

CHAPTER 7: THE EFFECTS OF GENOTYPE AND THE OZ-AIN DIET ON OLFACTORY ABILITY.

7.	Background	419
7.1.	Methods	421
7.1.1.	Animals	421
7.1.2.	Study design	422
7.1.3.	Apparatus	427
7.1.4.	Protocol	428
7.1.5.	Data collection and storage	428
7.1.6.	Data analysis	429
7.2.	Results	430
7.2.1.	Performance of 6 month old normal and Amy mice in the Buried Chocolate Test	430
7.2.2.	Performance of 12 month old normal and Amy mice in the Buried Chocolate Test	438
7.2.3.	Comparison of the changes in latency (s), distance travelled (m) and average speed	

	(m/s) to determine age-related changes in olfactory abilities of mice at 6 and 12	445
	months of age	
7.3.	Discussion	456
7.4.	Conclusion	467
	ER 8: THE EFFECT OF NUTRIENT SUPPLEMENTS ON GENOTYPE AND IET-TYPE INDUCED OLFACTORY DYSFUNCTION IN AMY MICE.	
8.	Background	469
8.1.	Methods	472
8.1.1.	Animals	472
8.1.2.	Study Design	473
8.1.3.	Apparatus	478
8.1.4.	Protocol	478
8.1.5.	Data collection	478
8.1.6.	Data analysis	478
8.2.	Results	480
8.2.1.	Mice at 6 month old	480
8.2.1.1.	The ability of nutrient supplements to prevent GENOTYPE EFFECTS on olfactory	
	abilities of 6 month old mice in the Buried Chocolate Test	480
8.2.1.2.	The ability of nutrient supplements to prevent DIET-TYPE EFFECTS on olfactory	
	abilities of 6 month old mice in the Buried Chocolate Test	486
8.2.2.	Mice at 12 month old	492
8.2.2.1.	The ability of nutrient supplements to prevent GENOTYPE EFFECTS on olfactory	
	abilities of 12 month old mice in the Buried Chocolate Test	492
8.2.2.2.	The ability of nutrient supplements to prevent DIET-TYPE EFFECTS on olfactory	
	abilities of 12 month old mice in the Buried Chocolate Test	498
8.2.3.	Comparison of the performances of 6 and 15 month old mice in the Buried	
	Chocolate Test	505
8.2.3.1.	The effect of aging from 6 to 15 months on change in latency (s), distance (m) and	
	average speed (m/s) before uncovering a buried chocolate	505
8.2.3.2.	The effects of genotype on the changes in latency (s), distance travelled (m) and	
	average speed travelled (m/s) whilst searching for a chocolate at 6 and 15 months	512
8.2.3.3.	The effects of diet-type on the changes in latency (s), distance travelled (m) and	
	average speed travelled (m/s) whilst searching for a chocolate at 6 and 15 months	516
8.3.	Discussion	521
8.4.	Conclusion	530
	CHAPTER 9: CHARACTERISING THE EFFECT OF GENOTYPE,	
DIE	F-TYPE AND LIFE-STAGE ON TELOMERE SEQUENCE LENGTH AND	
	OXIDATIVE BASE DAMAGE IN THE BRAINS OF AMY MICE.	
9.	Background	532
9.1.	Methods	537
9.1.1.	Animals	537
9.1.2.	Tissue collection and storage	542
9.1.3.	DNA isolation from mouse brain tissue	542
9.1.3.1.	Protocol	542
9.1.4.	Measuring DNA in purified DNA samples	545
9.1.5.	RT-qPCR for analysis of absolute telomere length	546
9.1.5.1.	Primers	546
9.1.5.1.1.	Calculations and dilutions to make STOCK and WORKING solutions for each	
	primer used in the two PCR's to measure telomere length	547
9.1.5.1.2.	Calculations to make telomere standards	550
9.1.5.2.	PCR master mix	551
9.1.5.3.	Plate set up for RT-qPCR to assess the total amount of telomere sequence per 4 ng	

	of mouse DNA	552
9.1.5.4.	Master mix and plate set up for RT-qPCR to assess the amount of 36b4 per 4 ng	
	of mouse DNA	555
9.1.5.5.	RT-qPCR cycling conditions for measurement of absolute telomere length and the	
0.1.6	number of genome copies per sample	556
9.1.6.	Measurement of oxidative base damage by RT-qPCR	
9.1.6.1.	8 8 18	551
9.1.6.2.	Protocol for the RT-qPCR to measure oxidative base damage in DNA samples from mouse brain	558
9.1.6.3.		559
9.1.6.4.		561
9.1.7.		561
9.2.		564
9.2.1.		564
9.2.2.	The effects of genotype, diet-type and a genotype-diet-type interaction on telomere	
	length in the brains of 18 month old mice	565
9.2.3.	The effect of genotype and diet-type on telomere length in the brains of 15 month	
	old mice	568
9.2.4.	An Age-Genotype interaction on telomere length in the brains of 15 and 18 month	
	old mice	572
9.2.5.	An Age-Diet-type interaction on telomere length in the brains of 15 and 18 month	
		574
9.2.6.	Oxidative base damage in the brains of 15 and 18 month old normal and Amy mice	576
9.2.7.	The effects of genotype, diet-type and a genotype-diet-type interaction on oxidative	
	base damage in the brains of 18 month old mice	577
9.2.8.	The effect of genotype and diet-type on oxidative base damage in the brains of 15	
		579
9.2.9.	An Age-genotype interaction on oxidative base damage in the brains of 15 and 18 month old mice	585
9.2.10.	An Age-Diet-type interaction on oxidative base damage in the brains of 15 and 18	
	month old Amy mice	587
9.2.11.		589
9.3.	Discussion	591
9.1.	Conclusion	598
10.1	CHAPTER 10: DISCUSSION AND CONCLUSIONS	500
10.1. 10.2.		599
10.2.1.	1 15	605
10.2.2.	· · · · · · · · · · · · · · · · · · ·	609
10.3.	Behavioural deficits	615
10.3.1.	The potentially detrimental effects of the Oz-AIN diet on behavioural deficits in	615
10.2.2		615
10.3.2.	The potentially beneficial effect of nutrient supplements on behavioural deficits in	620
10.4.	normal and Amy mice	
10.4. 10.5.	Relationship between behaviour and pathology Telomere length	627 629
10.5.	5	633
10.0.		033
Appendix	x I: Confirming genotype of mice using PCR and gel electrophoresis	635
Appendix	x II: ANYmaze TM Video Traking System Setup for the Morris Water Maze	641
Appendix	x III: ANYmaze TM Video Traking System Setup for the Buried Chocolate Test	652
Referenc	es	660

Summary

Alzheimer's disease (AD) is an incurable, terminal, neurodegenerative disease that occurs primarily in people over 65. Life-style interventions including diet are potential candidates for prevention and management of AD. This thesis aims to investigate the role of diet in an AD-type mouse model (APPswe/PSENdE9) that over expresses amyloid, called Amy mice. It is hypothesised herein that:

- 1. An Australian-type rodent diet accelerates the behavioural deficits and β amyloid neuropathology that are observed in Amy mice.
- 2. Nutrient supplements can reduce the severity of genotype or diet-type induced behavioural deficits and β -amyloid neuropathology in Amy mice.

First, an Australian-type (Oz-AIN) diet was designed to reflect the current nutrient intake of Australians. Second, nutrient supplements that have the potential to slow progression of behavioural or neurological deficits in AD were added to the Oz-AIN diet to create the Oz-AIN Supp diet. The effects of both of these diets are compared with an optimal rodent diet, the AIN93-M diet. The rationale for these diets and their effect on weight gain, food consumption, and organ size are described. Amy mice that were fed the Oz-AIN diet were susceptible to diet-induced weight gain and obesity, which was not observed in Amy mice that were fed the Oz-AIN Supp diet, indicating that nutrient supplements prevent weight gain in Amy mice.

Spatial learning and spatial memory were assessed in the Morris Water Maze. The Oz-AIN diet impaired spatial learning in 15 month old Amy mice. This was prevented with nutrient supplementation, as Amy mice that were fed the Oz-AN Supp diet performed similarly to control mice. At 18 months, the Amy mice fed the Oz-AIN diet demonstrated intact spatial memory. This suggested that the Oz-AIN diet protects spatial memory in aging mice. Olfactory ability (sense of smell) was assessed in the Buried Chocolate Test. Olfactory ability of Amy mice that were fed the Oz-AIN diet was impaired relative to control groups at 12 months of age.

Diet did not affect amyloid load or the number of amyloid deposits. However, the Oz-AIN and Oz-AIN Supp diets were both associated with larger deposits, compared to the AIN93-M diet, suggesting that total fat content and not micro-nutrient intake, facilitates aggregation of amyloid into larger deposits.

Confocal microscopy revealed that three different β -amyloid pathologies occur in brains of Amy mice: (1) intracellular amyloid that was associated with necrotic cells; (2) extracellular diffuse deposits of amyloid; and (3) diffuse deposits that were associated with blood vessels. Whilst the Oz-AIN diet did not have an effect on pathology type, the Oz-AIN Supp diet was associated with increased diffuse deposits associated with blood vessels. It was not determined whether this was invasion or clearance of β -amyloid from the brain, and it is suggested that it is a combination of both.

Genotype and diet-type effects were observed on telomere length (aTL) and oxidative DNA damage in the brains of aging Amy mice. 18 month old Amy mice that were fed the Oz-AIN diet had significantly longer telomeres and significantly more oxidative DNA damage throughout their brains than Amy mice that were fed the an optimal rodent diet.

In conclusion, whilst nutrient supplementation prevented diet-type- and genotype induced spatial learning deficits, high total fat content conserved spatial memory in aged Amy mice. Furthermore, whilst a sub-optimal diet did not have an effect on β -amyloid pathology, nutrient supplements may alter β -amyloid clearance from the brain.

Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree of diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Sarah M. Brooker, February, 2014.

Acknowledgements

Over the past five years, I have worked with many wonderful people who have offered me their knowledge, guidance and encouragement. First, I would like to thank my principal supervisor Prof. Michael Fenech. I would also like to acknowledge my two co-supervisors Dr. Glen Patten and Assoc. Prof. John Power. Thank you both for coming on board this project when you did, and providing the assistance and encouragement I needed. Specifically, thank you to John for taking me in when I turned up on your door step looking for a supervisor. Your dedication your encouragement, and your willingness to 'share the guilt' over a muffin has really helped me through the last year. A special thank-you to Dr. Cassandra McIver, my wonderful pseudo supervisor, mentor and friend. In the darkest and loneliest days of this PhD, you stepped in and offered a hand. You had no idea who I was, but you had knowledge and experience to guide me, and you did so willingly, without request. Thank you to all the staff at CSIRO who helped me with the animal work: Sharon Burnard, Michael Adams, Darien Sander, Candita Dang and 'Julie Who Is Wonderful'. I was never officially a member of your team, but you were all happy to teach me how to handle mice, animal husbandry, paper work (animal ethics), food preparation, and surgery. I appreciate your patience and tolerance through that time. Thank you Wayne Leifert for your ability to solve almost every problem that Administration could throw at us, and for encouraging me to look down different avenues throughout this project. Thank you to Sabbir, Maxime and Erika. Thank you to CSIRO property services for constructing and helping to maintain the Morris Water Maze, and thank you to members of the genomics lab for teaching me laboratory techniques needed for telomere work. I would like to thank Dr. Erin Symonds for teaching me to genotype mice, and Dr. Nathan O'Callaghan and Carly Moores for their guidance, support, knowledge and patience while I got my head around RT-qPCR. Further acknowledgement to Carly for always being there with information if I needed it.

I would like to thank my family for their support, and my wonderful fiancé Alan Rochford, for being patient with my 4:30 AM starts every day for the last 4 years, and for all the millions of other ways you have shown support. I love you and thank you for that.

Thank you my darling twin sister and hero, Abi Brooker. You are my 'phone a friend' and inspiration. Without you to cry to, none of this project could have been achieved.

Conference presentations

- Brooker, S. (2013, June). *The effect of an Australian-type diet on cognitive decline, pathology and telomere length in a mouse model of Alzheimer's Disease.* Paper presented at meeting of Flinders Centre for Neuroscience, Flinders University, SA.
- Brooker, S., McIver, C., Patten, G., Power J., & Fenech, M. (2013). *The effect of an Australian-type diet with and without nutritional supplements on cognitive decline and pathology in an AD mouse model.* Poster presented at the 33rd meeting of Australian Neuroscience Society (ANS) Melbourne, Vic.
- Brooker, S. (2012). You are what you eat: The effect of an Australian-type diet, with and without nutritional supplements on weight gain, cognitive decline and brain pathology. Paper presented at the annual meeting of Australian Society for Medical Research (ASMR), Adelaide, SA.
- Brooker, S. (2012). An Australian Type diet and cognitive decline: Is there a benefit to nutrient supplements? Paper presented at the meeting of 'Lifestyle Approaches for the Prevention of Alzheimer's disease", McCusker Alzheimer's Foundation, Perth, WA
- Brooker, S., McIver, C., Patten, G., & Fenech, M. (2012). *An Australian Type diet and cognitive decline: Is there a benefit to nutrient supplements?* Poster presented at the annual meeting of Lifestyle Approaches for the Prevention of Alzheimer's Disease, McCusker Alzheimer's Foundation, Perth, WA
- Brooker, S., McIver, C., Patten, G., & Fenech, M. (2012). Dietary intervention studies in Alzheimer's disease-prone mice. Poster presented at the annual meeting, CSIRO, Melbourne, Vic
- Brooker, S. (2011). *The effect of an Australian-type diet on rodent models of behavior*. Paper presented at the annual meeting of Australian and New Zealand Obesity Society Annual Scientific (ANZOS), Adelaide, SA
- Brooker, S. (2010). *DNA damage and dietary intervention in the Alzheimer's disease-prone mouse*. Paper presented at the annual post-graduate student presentations, CSIRO, Adelaide, SA
- Brooker, S. (2009). *Food for thought: Nutrition and cognitive decline*. Paper presented at the post-graduate student Wednesday Wrap, University of Adelaide, Adelaide, SA
- Brooker, S. (2009). *Olfactory Dysfunction in an animal model of Alzheimer's Disease*. Paper presented at post-graduate student presentation, NeuroJam, Flinders University