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4. SUMMARY

“Variability is the law of life, and as no two faces are the same, so no two bodies are alike, and no two 
individuals react alike and behave alike under the abnormal conditions which we know as disease”    

(Osler 1905) 

This thesis evaluates the previously under recognized factors that may contribute to the variations in 

response and toxicity from systemic cancer drugs. It was hypothesised that selected characteristics (patient 

anthropometric data (body mass index - BMI), use of concomitant medications such as renin-angiotensin 

inhibitors (RASi) and proton pump inhibitors (PPI), occurrence of immune-related adverse events (irAEs), 

primary site of origin of cancer and plasma concentration of the cancer drugs) can predict outcomes across 

a spectrum of systemic cancer drugs. All research studies in this thesis were conducted using individual 

patient data case report forms of 10,158 patients with five types of cancers who participated in 15 different 

clinical trials which were accessed using various data sharing platforms. 

My research suggests that contrary to prior belief that obesity is a negative factor for drug therapy associated 

outcomes, patients with lung cancer (N = 1,548, from 4 trials) and high BMI had improved survival when 

treated with atezolizumab (pooled hazard ratios (HR) of 0.36 [95%CI, 0.21-0.62], P <0.001) for the group with 

obesity). While the proton pump inhibitors use was associated with worse survival (pooled HR 1.20, [95% CI 

1.03-1.40], P = 0.02) in fluoropyrimidine-based chemotherapy treated colorectal cancer patients (N = 5,594 

from 6 trials), the use of renin-angiotensin inhibitors were not (pooled HR 0.94, [95% CI 0.82-1.07], P = 0.38) 

in atezolizumab treated patients with lung, bladder, or kidney cancers (N = 2,539 from 7 trials). Both these 

findings on concomitant medications were surprising and unexpected as the pre-clinical data indicated the 

contrary with improved efficacy of fluoropyrimidine-based chemotherapy with proton pump inhibitors and 

renin-angiotensin inhibitors augmented immune response.  

Additionally, using data from 2 clinical trials involving 830 patients with advanced melanoma, a new threshold 

as target steady-state trough concentration (Css,min ≥ 50 mg/L) for optimal dosing of vemurafenib, a braf 

inhibitor, that was associated with improved survival (HR 0.67,[95% CI 0.52–0.88] P = 0.003). For the first-

time, I have described a detailed evaluation of the incidence (5% of atezolizumab treated patients), type, 

severity and time-profile of multi-organ irAEs using a large cohort of atezolizumab treated patients (N = 1,548 
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from 4 trials). Multi-organ adverse events were associated with improved survival (pooled HR = 0.47, [95%CI 

0.28 - 0.78], P <0.0001). My research also demonstrated that the occurrence of any irAE was associated with 

improved survival in both atezolizumab treated patients as well as those treated with taxanes or vinca 

alkaloid-based chemotherapies, indicating that they were prognostic rather than predictive of response to 

immunotherapy alone.  

Among the primary site of origin of urothelial cancers, prior research reported that those with upper tract 

origin have different molecular characteristics that predict a lower benefit from immunotherapies when 

compared to the more common urinary bladder cancers. However, using data from 3 clinical trials (N = 1,331 

patients), my research demonstrated that both upper and lower tract urothelial cancers have no significant 

differences in survival (HR was 0.99, [95%CI 0.82-1.21], P = 0.98) when treated with atezolizumab.  

Based on these results several conclusions were drawn: 1. baseline BMI should be considered as a 

stratification factor in future clinical trials if these findings are confirmed in future studies; 2. clinicians should 

consider minimising the concomitant use of proton pump inhibitors in patients initiating chemotherapy for 

advanced colorectal cancer; 3. the new threshold concentration provides further evidence to support 

optimized dosing to reach the trough concentration to reduce inter-individual variability in vemurafenib 

survival; 4. new information generated to support treating clinicians to anticipate, recognise and treat multi-

organ irAEs as well as trigger further research to better understand the pathophysiology of those toxicities; 

5. primary site of origin of urothelial cancers may not affect outcomes from single agent immunotherapy.

Future research that address these questions and challenges raised from my thesis should be conducted to 

improve our understanding of inter-individual variations in drug therapies thereby supporting dose 

optimisation and improving outcomes of patients.  
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1. CHAPTER ONE: INTRODUCTION  

1.1 Cancer 

Cancer remains a significant health problem due to its survival, physical and mental health, quality of life and 

financial impact on the patients with cancer, and a broader effect on their families, the health system, and 

society at large. The Global Cancer Observatory (GLOBOCAN) data in 2018 indicates that there were more 

than 18 million new cancer cases diagnosed and 9.5 million deaths were reported from cancer (Ferlay et al. 

2018). The impact of cancer and its treatment on quality of life is well recognized with significant 

deterioration identified in patients with advanced cancers especially towards the end of life. Similarly, the 

economic impact and financial burden of cancer and its treatment on the patients, family and society are 

increasingly reported. While the current global economic burden of cancer is unknown, it is expected to be 

substantially higher than the previously estimated US$ 1.6 trillion in 2010 reflected by the health care 

spending and loss of productivity caused by cancer related outcomes (Knaul et al. 2014). In 2017, the 

estimated spending on cancer care in the United States was 1.8% of gross domestic product (GDP) while it 

was 1.07% of GDP in the European Union (Yabroff et al. 2019). The worldwide cost for cancer care was 

projected to increase to $150 billion in 2020 (Prager et al. 2018). More recently, the projected increase in 

cancer related medical care costs to over $245 billion in the United States alone (Mariotto et al. 2020). A 

large proportion of the increase in health care costs is likely from an increase in the costs of new therapies. 

Despite these challenges, there is optimism that the major advances in our understanding of cancer biology, 

implementation of prevention and screening programs, early diagnosis, and improvement in cancer therapies 

over the last several decades have reduced overall mortality and improved outcomes for various types of 

cancers (Hashim et al. 2016; Siegel, Miller, and Jemal 2020). However, advanced cancers remain a difficult 

group of illnesses to treat. 

One of reasons that make cancers difficult to treat is the fact that cancer is not one disease and can affect 

multiple tissues. The word “cancer”, especially “malignancy”, encompasses a group of diseases that are 

characterised by unlimited replication potential, invasion to surrounding tissues and metastasis to distant 

organs. Every cancer is different in multiple levels. The multi-layered variability introduced by the organ of 
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origin of the cancer, aetiology, mutational profile, inter and intra-tumoural heterogeneity, tumoural 

evolution with or without therapy and patient characteristics make it extremely difficult to individualise 

treatment decisions. Despite these challenges, cancer therapies have been successfully employed to cure, 

control, or palliate symptoms at an individual and population level that has significantly improved survival 

for most cancers (Arnold et al. 2019).  

1.2 Cancer treatment 

The treatment of cancer has evolved over the last several centuries - from the use of blunt tools of radical 

surgeries to improved precision in targeting the individual mutations within cancer cells. Such progress was 

achieved with improvement in better understanding of cancer biology through laboratory-based 

technologies for studying cancer cells, imaging tools, improved surgical/ medical care and resources, 

improved understanding of risk factors and heritability of cancers, better supportive care opportunities 

through antibiotics, anaesthetics, intensive care support, drug therapies, vaccines and screening programs. 

Cancers are treated with various modalities such as surgery, radiotherapy, systemic therapies or other 

physical interventions like (but not limited to) cryotherapy, radiofrequency ablation and microwaves. These 

treatment interventions are provided either on their own as single intervention or part of multi-modality 

approaches such as surgery followed by systemic therapies and radiotherapy for breast cancer depending on 

multiple factors including stage, cancer type and biology, patient’s preference and available expertise. Among 

these treatment modalities, systemic therapies play a major role in the treatment of haematological and non-

haematological (otherwise grouped as solid organ cancers). 

1.3 Systemic cancer therapies 

Systemic cancer therapies have been used since the 1940s when oestrogen and nitrogen mustards were 

introduced for the treatment of solid and haematological cancers in humans (Huggins and Hodges 1941; 

Farber et al. 1948). These therapies can be grouped as part of 

• neoadjuvant treatment (before local treatment for the primary site – usually pre-surgical resection), 

adjuvant treatment (after surgical resection) or definitive treatment – when used as the main or only 

modality  
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• concurrent treatment (when given simultaneously with radiotherapy as part of combined modality 

approach) or sequential treatment (either before or after radiotherapy) 

• based on the intention of treatment with curative or palliative approach; people with incurable 

cancers often receive multiple lines of systemic therapies 

• single agent or as part of combination therapy 

On the other hand, as cancer tissue is a mixture of various cells – cancer cells, host cells, infiltrating immune 

cells, endothelium, cancer associated fibroblasts and extracellular matrix which can be differentially affected 

by systemic cancer therapies, they also can be classified based on their mechanism of actions as (Espinosa 

and Raposo 2010; Palumbo et al. 2013):  

• Traditional chemotherapy 

• Targeted agents with kinase inhibitors or monoclonal antibodies 

• Endocrine therapies 

• Immunotherapies and 

• Miscellaneous group  

These agents can be used as single drugs or as part of combination approach with multiple chemotherapy 

drugs or with targeted agents or immunotherapies or even with radiotherapy (Seiwert, Salama, and Vokes 

2007). With the rapid improvement in drug discovery, several systemic therapies have been approved in the 

last two decades for the treatment of cancer.  

1.3.1 Traditional chemotherapy 

Chemotherapy drugs are a group of systemic cancer drugs that target mechanisms and processes involved in 

cancer cell proliferation thereby inducing cell death (cytotoxic agents) or cell stasis (cytostatic agents). The 

established pathways affected for chemotherapy agents are DNA or RNA synthesis, DNA damage, and 

microtubule polymerisation or depolymerisation depending on mitosis phase specific or non-specific effects. 

Cancers are heterogeneous in their responsiveness to chemotherapy (Savage 2016; Savage et al. 2009) (Table 

1).  
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Table 1: Cancer types and chemosensitivity 

Chemosensitivity Examples of cancer types 

Highly responsive Acute leukaemias, aggressive lymphomas, small cell lung cancer, 
choriocarcinoma, high grade sarcomas 

Sensitive Breast, colon, non-small cell lung, ovarian, urothelial cancers 

Resistant Clear cell renal cancer, melanoma, well differentiated thyroid 
cancer, low grade sarcomas 

1.3.2 Targeted therapies 

Targeted therapies are those drugs which abrogate one or more well-defined molecular abnormality that 

support cancer cell growth. These molecular abnormalities are typically driver mutations in cancer cells 

whose downstream pathways support cell division, proliferation, invasion and angiogenesis. While 

traditional chemotherapy predominantly affects DNA, RNA or microtubules, targeted therapies typically 

affect proteins. Monoclonal antibodies (drugs that end with suffix mab) target the extracellular domain of 

protein kinases in addition to other receptors on cell membranes. On the other hand, small molecules (drugs 

that end with suffix ib) target the kinase domains of protein kinases. In current clinical practice, testing for 

the presence of these gene (RNA or protein) targets that are either amplified or mutated (point mutations, 

translocations) in cancer cells or circulating tumour DNA is often mandatory prior to the initiation of the 

appropriate targeted drug. Such gene targets are often prognostic in addition to being predictive of response 

or lack of response to these targeted drugs. Some examples of drug-target pairs are in Table 2. 

Table 2: Targeted drugs and their targets 

Target Drug 

Her-2 Lapatinib, trastuzumab, ado-trastuzumab 

Epidermal growth factor receptor Afatinib, gefitinib, erlotinib cetuximab, panitumumab 

Bcr-abl Bosutinib, dasatinib, imatinib, nilotinib, omacetaxine, ponatinib 

Anaplastic lymphoma kinase Alectinib, ceritinib, crizotinib 

Braf Dabrafenib, encorafenib, vemurafenib 

Bruton tyrosine kinase Ibrutinib 

c-kit Imatinib 

Antibody conjugates are unique group of drugs where a monoclonal antibody is conjugated with a payload 

using a cleavable linker (Shim 2020; Ponziani et al. 2020). The payload can be either a cytotoxic agent or 

radioactive moiety or a toxin. The monoclonal antibody binds to a specific target on the cancer cells and 

delivers the payload directly into the cells. The linker then cleaves and releases the payload which induces 
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cell death. Some examples of antibody drug conjugates include trastuzumab emtansine and brentuximab 

vedotin. 

1.3.3 Endocrine therapies 

Following the pioneering work of Beatson in the late 1800s and Huggins in the mid-1900s, endocrine control 

of cancer was recognized as an important modality for the treatment of breast and prostate cancers (Beatson 

1896; Huggins and Hodges 1941). Since then, drugs that target androgen or oestrogen pathway have been 

developed successfully for endocrine responsive breast, prostate and gynaecological cancers. The expression 

of the oestrogen or progesterone receptors in cancers cells is predictive of response to endocrine treatment 

for breast cancers, hence testing is mandatory prior to initiation. Some examples of classical endocrine drugs 

and their mechanisms of action are shown in Table 3. 

Table 3: Endocrine therapies 

Target Drug 

Aromatase (Cytochrome P450 19A1) Anastrazole, exemestane, letrozole 

Selective oestrogen receptor modulator Tamoxifen 

Androgen receptors Apalutamide, bicalutamide, cyproterone, darolutamide, 
enzalutamide, flutamide, nilutamide  

Cytochrome P450 17A1 Abiraterone 

Luteinizing hormone releasing hormone Degarelix, goserelin, leuprolin, triptorelin 

1.3.4 Immunotherapies 

While immunotherapies that modulate both the innate and acquired immune system have been used for 

several years, it is only in the last decade that their true value has been recognized through the widespread 

use of immune check point inhibitors (ICI) (Table 4). Among the current clinically approved immunotherapies, 

ICI drugs are the most dominant which target the negative immune check points such as programmed death 

receptors (PD1) or ligand (PDL1) or cytotoxic T-lymphocyte antigen 4 (CTLA4) on immune-reactive T cells so 

as to reactivate suppressed cells to identify and kill cancer cells. The other major group of novel therapeutics 

that are rapidly evolving are the chimeric antigen receptor T cells (CAR-T) therapy, which is already approved 

for acute leukaemias in certain jurisdictions around the world.  
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Table 4: Immunotherapies 

Immunotherapy group Drugs 

Cytokines Interferon, interleukins 

Vaccines BCG, sipuleucel-T 

CTLA-4 inhibitor Ipilimumab 

Immunomodulatory drugs Lenalidomide, pomalidomide, thalidomide 

PD-1/PD-L1 Atezolizumab, durvalumab, nivolumab, pembrolizumab 

CAR-T cells Tisagenlecleucel, axicabtagene 

 

1.3.5 Miscellaneous agents 

The last group of systemic cancer therapies includes a heterogeneous mix of agents. These agents cannot be 

grouped with the above therapies due to their varying mechanisms of actions. Some examples are shown in 

Table 5. 

Table 5: Miscellaneous 

Groups Drugs 

Somatostatin analogues Octreotide, lanreotide 

Radiopharmaceuticals Radium 223, lutetium, radioiodine 

Differentiation agents All-trans retinoic acid, bexarotene 

Bone directed therapies Bisphosphonates, denosumab 

 

1.3.6 Response and toxicities to systemic cancer therapies 

While a wide variety of systemic cancer therapies are currently available, as with any drug therapy, only a 

proportion of treated patients respond, and a proportion develop adverse events in the form of drug 

toxicities. Moreover, most of the chemotherapy drugs have a narrow therapeutic index. In contrast to non-

cancer drug therapies, cancer drugs are often administered at maximum tolerated doses which results in an 

increased incidence of adverse events. Such a higher degree of drug related toxicities is probably acceptable 

to derive benefit from cancer cell kill. As every patient and their individual cancers are biologically different, 

the response and toxicities to drugs exhibit substantial inter-individual variability. Hence, the “one-dose-fits-

all” approach, at least for chemotherapy drugs with narrow therapeutic index, is not appropriate. To reduce 

variability in response and toxicity, some degree of personalisation of chemotherapy treatment occurs with 

body surface area-based dosing. However, significant inter-individual variability is noted across several 

systemic cancer therapies.  
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1.4 Variability 

William Osler stated, 

“Of the difficulties inherent in the art not one is so serious as this which relates to the cure of disease by 
drugs. There is so much uncertainty and discord even among the best authorities….One of the chief reasons 
for this uncertainty is the increasing variability in the manifestations of any one disease. As no two faces, so 

no two cases are alike in all respects and unfortunately it is not only the disease itself, which is so varied, 
but, subjects themselves have peculiarities which modify its action” (Osler 1914) 

Inter-individual variability in cancer response and toxicity from anti-cancer drugs is well known. Variability in 

drug response is commonly defined as “an effect of varying intensity occurring in different individuals at a 

specified dose of a drug", or as "a requirement of a range of concentrations (doses) in order to produce an 

effect of specified intensity in all of the patients" (Rocca, Dragani, and Pagliaccia 2013).  

Drug response in cancer is typically assessed by tumour response as measured by changes in two-dimensional 

size of cancerous lesions on imaging, changes in serum tumour markers, changes in radioactivity uptake in 

the lesions, presence or absence of detectable minimal residual disease, survival improvement (either as 

disease free or progression free or overall survival) and patient reported health related quality of life changes. 

Systemic cancer therapies are given to patients with the hope of inducing a drug response thereby improving 

survival and quality of life. However, the end results of a drug therapy depend on multiple variables. These 

factors are part of the complex interplay of three principal components - cancer, patient (or host) 

characteristics and drug-specific factors that are ultimately responsible for the beneficial and harmful 

outcomes from treatment. It is generally believed that cancer characteristics contribute towards 

pharmacodynamic related variability while patient and drug characteristics towards pharmacokinetic related 

variability. However, for certain groups of drugs such as immunotherapy drugs, patient characteristics may 

also impact pharmacodynamic related variability that may contribute towards response and toxicities that 

may appear from treatment.  

1.4.1 Cancer characteristics that contribute to variability 

The cancer characteristics as defined by genetic (e.g. drug sensitive or resistant mutations) and phenotypic 

(e.g. grade of cancer cells, angiogenesis, immune cell infiltration) heterogeneity are the main sources of 

pharmacodynamic (exposure-response) related variability that determine drug response. Moreover, within-
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tumour heterogeneity (cell to cell differences in drug response within the same tumour) and between-

tumour heterogeneity (differences in tumour characteristics between patients that determine varying 

response in the magnitude of drug response) are considered to be major impediments that contribute 

towards the variability in drug response (Palmer and Sorger 2017). In addition to the heterogeneity created 

by the phenotypic histological types of cancers within the same primary site, the cancer genome atlas (TCGA) 

project has highlighted the presence of multiple molecular subtypes within the same histology (TCGA 2020; 

Grossman et al. 2016). The differing genotypic mutational characteristics explain some of the variability in 

drug response between patients with the same tumour phenotype.  

Matching the oncogenic driver mutations with drugs that target these mutation derived proteins has been 

the most effective in terms of controlling cancers (Roskoski 2020; Bedard et al. 2020). However, even among 

patients with matched target-targeted drug pairs, only a proportion respond to the treatment. Uniform 

response to a matched targeted therapy across a cohort of patients with similar subtype of cancer is unusual. 

For example, erlotinib treatment of patients with sensitive epidermal growth factor receptor (EGFR) mutated 

non-small cell lung cancer (NSCLC) induces a response of only in 60-70% (Park et al. 2016). It appears that 

primary resistance mechanisms such as Bcl-2 interacting mediator of cell death (BIM) gene mutations among 

other mechanisms may explain the lack of response in some patients (Ying et al. 2015). 

In addition to the single time point snapshot of each tumour’s genotypic and phenotypic characteristics, 

“within-tumour heterogeneity” contributes to varying response to the drug in the same patient through 

mutational evolution within the same clone of cancer cells and through the generation of multiple new 

clones. Such evolutionary changes are typified by secondary or acquired resistance to targeted therapies as 

in T790M EGFR mutations which are a major mechanism for resistance after first-line EGFR inhibitor therapies 

in NSCLC. Moreover, such secondary resistant mutations are seen across a variety of small molecule targeted 

therapies (Hamid and Petreaca 2020).  

To overcome acquired resistance and within-tumour heterogeneity, drugs such as osimertinib, a specific 

EGFR T790M inhibitor, have been developed to counteract acquired resistance while a combination of drugs 

with additivity or synergy are considered for primary resistance. It is also recognized that combination 
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therapies can improve drug response within a population of patients through independent actions of each 

drug without improving response in an individual patient through additivity or synergy (Palmer and Sorger 

2017). It appears that “between-tumour heterogeneity” provides the rationale for the dominant 

independent actions seen in a population of patients treated with combination therapies (Palmer, Chabner, 

and Sorger 2018).  

While a significant number of research activities continues to be conducted to understand the cancer related 

heterogeneity through genotypic characteristics, limited published literature exists on factors such as patient 

and drug characteristics that may contribute to variability in drug response.  

1.4.2 Patient (host) characteristics that contribute to variability 

Patient characteristics such as age, sex, body weight, behavioural factors, co-existing diseases, 

pharmacogenetics, pharmacogenomics and structural changes at the site of drug absorption or drug delivery 

may contribute towards pharmacokinetic variability thereby affecting the drug concentration available at the 

target site. These host factors are not as widely studied in contrast to the cancer characteristics.  

Among the measurable sources of variability attributed to the patient characteristics, age and body weight 

are important. Age as an indicator of variability in systemic cancer therapy response and toxicities is well 

established. Older patients (≥ 65 years of age), who often have reduced physiological reserve, polypharmacy 

and multiple comorbidities, have an increased risk of toxicities from traditional chemotherapy and targeted 

therapies when compared to people less than 65 years of age. Prior studies have reported that up to 50% of 

older adults have severe to fatal toxicities form traditional chemotherapy (Extermann et al. 2012). On the 

other hand, targeted therapies and immunotherapies have been associated with reduced survival benefit in 

the elderly with similar intensity of toxicities as in the younger age group (Bastiaannet et al. 2019; Feliu et al. 

2020). 

Similarly, the effect of body weight and body mass index (BMI) has been widely studied in the setting of 

traditional chemotherapy and targeted therapies. While the dose of chemotherapy for an individual patient 

is usually calculated using body surface area, increasingly fixed doses are being used for other systemic cancer 

therapies which may increase the risks of variability arising from overdosing or under-dosing. Obese patients 
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with cancer are often reported to have inferior outcomes and a lower incidence of toxicities due to under-

dosing while people who were underweight often have increased toxicities from chemotherapy and targeted 

therapies from overdosing (Griggs et al. 2012; Miyahara et al. 2013). On the contrary, the impact of obesity 

on outcomes and toxicities from immunotherapy is still unclear with preliminary studies showing possible 

improved outcomes in obese patients (McQuade et al. 2018).  

Other factors such as single nucleotide polymorphic variants of drug metabolising enzymes and transporters 

may contribute towards efficacy and toxicities of systemic cancer therapies. Genetic polymorphism of 

cytochrome P450 enzyme CYP2D6 variants and tamoxifen, uridine 5'-diphospho-glucuronosyltransferase 

enzyme 1A1 (UGT1A1) variants and irinotecan and kinase inhibitors such as erlotinib/nilotinib/pazopanib, 

and dihydropryimidine dehydrogenase and fluoropyrimidines are examples of the influence by genomic 

variability on the response and toxicities to chemotherapy, targeted therapies and endocrine therapies.  

As cancers occur in older populations, there is an increased risk of drug-drug interactions (DDIs) arising from 

PK or PD effects from the concomitant medications used to treat comorbidities. Concomitant medications 

used for non-cancer indications may enhance or reduce cancer response or increase toxicities from cancer 

therapies. Similarly, systemic cancer therapies can modify the response/toxicities to concomitant 

medications. Concomitant medications such as aspirin, metformin and statins have been shown to have 

direct anti-cancer activities. In contrast, corticosteroids used as part of systemic cancer therapies may induce 

hyperglycaemia and may counteract the effect of anti-diabetic medications. Anti-VEGF inhibitors can induce 

hypertension that may necessitate the introduction or increased doses of concomitant anti-hypertensives. 

More recently, the negative effects of concomitant medications such as antibiotics causing gut dysbiosis on 

response to immunotherapy have been reported (Pinato et al. 2019). However, the impact of other 

concomitant medications on traditional chemotherapy or immunotherapy related cancer 

outcomes/toxicities is still unclear and warrants further studies.  

1.4.3 Drug-specific factors that contribute to variability 

The physicochemical properties of drugs and the drug regimen are the two categories of drug-specific factors 

that may drug response and toxicities (Turner, Park, and Pirmohamed 2015). The solubility, permeability, 



 

11 
 

target site binding affinity of a drug and its regimen of administration (dose, route, frequency and timing) all 

contribute towards a variable concentration of the administered drug at the target site in different individuals 

receiving the same dose.  

One of the ways to reduce variability in drug response and toxicity that has attracted attention recently is 

the potential for the use of therapeutic drug monitoring, target concentration monitoring or plasma 

concentration guided dosing strategies for systemic cancer therapies (Gao et al. 2012; Hopkins, Menz, et al. 

2020; Paci et al. 2014; Widmer et al. 2014). Among the traditional chemotherapy drugs, measuring plasma 

concentrations of methotrexate is part of standard care for the treatment of haematological malignancies 

and osteosarcomas. There is increasing evidence that dose individualisation is feasible and improves 

survival/reduces toxicities for targeted therapies that usually employ fixed dosing strategies. While much 

attention has been focussed on choosing the right drug for the patient with a certain type of cancer 

mutational profile, choosing the right dose using therapeutic drug monitoring or plasma concentration guide 

dosing strategies is important. Among the targeted therapies, there is evidence for these approaches from 

prospective studies for oral small molecule kinase inhibitors such as imatinib, sunitinib and pazopanib and 

everolimus (Groenland et al. 2019). However, for newer kinase inhibitors such as vemurafenib, a braf 

inhibitor, target threshold concentrations are poorly defined. Similarly, threshold concentrations are not well 

established for other kinase inhibitors.  

It is likely that several of the above (cancer, patient or the drug) characteristics determine the total treatment 

effect and toxicities of a drug in an individual patient. While these characteristics are helpful, it is difficult to 

accurately predict the treatment effect of a drug at the individual patient level, as these are usually 

determined at the group level in clinical trials or observational studies within the paradigm of evidence 

generation. However, the results from these studies are described as “average” treatment effect or harms 

as toxicities which do not adequately address the variability in response/toxicities that arise due to variability 

at an individual patient level or subgroups of patients. The study of such variability across patients is called 

as “heterogeneity of treatment effect” (Kent, Steyerberg, and van Klaveren 2018; Dahabreh, Hayward, and 

Kent 2016).  
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1.5 Heterogeneity of treatment effects 

 

“Heterogeneity of treatment effect (HTE) is the non-random, explainable variability in the direction and 
magnitude of treatment effects for individuals within a population which may arise from an underlying 

causal mechanism or artifacts of measurements or methods (e.g., chance, bias, or confounding)”   
(Varadhan and Seeger 2013) 

Treatment effects here mean both beneficial and harmful clinical outcomes. HTE exists if the average 

treatment effects depend on the samples and subgroups within the population studied. Non-random 

variability (HTE) often arises from patient factors that often influence whether the individual responds 

favourably or develops toxicities (Figure 1 & Figure 2). Evaluation of HTE has the main objective of 

understanding the treatment effects at an individual patient level. However, it is well-recognized that both 

beneficial and harmful treatment effects are determined only at the group level as the individual level HTE is 

unobservable due to their binary nature (Dahabreh, Hayward, and Kent 2016; Kent, Steyerberg, and van 

Klaveren 2018). The same individual cannot have a response and no response at the same time, hence the 

unobservable nature of HTE within an individual. To predict the HTE for an individual patient, they must be 

assigned to groups of patients with similarly defined characteristics (called as subgroups). While each 

individual is unique, a group of individuals with whom the individual resembles is required to make 

predictions on treatment effects and risks (Kohane 2009).  

Data from participants involved in clinical trials are regularly used to evaluate group-level HTE to predict 

individualized treatment decisions. Subgrouping of baseline variables such as sex, age, and genetic 

biomarkers are regularly employed to derive personalised decisions for cancer treatment. However, each 

participant in a clinical trial may have several baseline characteristics; hence, each one can belong to more 

than one subgroup that were generated using these characteristics thereby making individual decisions 

highly complex. 

1.5.1 Methods to study HTE 

Among the HTE methods, subgroup analysis of clinical trial data and heterogeneity in meta-analysis of trials 

are well recognized and established. There are other methods such as predictive risk modelling, classification 
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and regression tree analysis, series of “n-of-1 trials”, quintile-based heterogeneity and non-parametric 

methods, that are increasingly being used (Willke et al. 2012). In this thesis, subgroup analysis of clinical trial 

data and meta-analysis of clinical trials were the HTE methodologies adopted.  

Figure 1: Random variation in treatment effect 

 

 

Figure 2: Non-random variation in treatment effect 
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1.5.2 Subgroup analysis of clinical trial data 

HTE is often investigated using subgroup analyses where the whole trial cohort is divided into smaller groups 

based on one or more arbitrarily selected baseline patient or cancer characteristics. HTE related to the 

baseline variable are suggested to exist if the treatment effects vary across the levels of a baseline variable 

(Wang et al. 2007). Baseline patient attributes that have a “strong a priori pathophysiological or empirical 

justification” should be selected as the predictor variable in subgroup analysis (Kent et al. 2010). The selection 

criteria for the subgroups are usually pre-defined at the commencement of the trial as a stratification factor. 

However, subgroups can also be selected post hoc (nor previously specified or more commonly called as 

exploratory) after the trial is completed. Outcomes from the interventions are then compared between the 

subgroups to ascertain HTE.  

While subgroup analyses are widely performed using clinical trial data, the credibility of most subgroup 

effects were considered to be low due to several reasons (Sun et al. 2012; Lagakos 2006). Among these, 

generation of smaller subgroups often leads to loss of statistical power for the analysis, creates imbalance 

between the subgroups due to lack of randomisation, and a high incidence of false positive and false negative 

findings (Brookes et al. 2001). The consequences of false discovery of a subgroup with differential benefit or 

harm from a treatment intervention may result in inappropriate treatment decisions.  

Guidelines exist for proper planning, analysis, interpretation and reporting of subgroup analyses. These 

guidelines recommend selecting limited number of subgroups generated using the same dataset, must be 

pre-specified, have a strong biological rationale, adjustment for multiplicity and incorporation of statistical 

test for interaction (Tanniou et al. 2016; Sun et al. 2010; Oxman and Guyatt 1992). In addition, well conducted 

subgroup analyses can provide valuable information (Wang et al. 2007).  

In this thesis, subgroups were chosen based on well-defined baseline patient or cancer characteristics that 

had strong biological plausibility and had supporting data from prior pre-clinical or clinical studies. Statistical 

power was maintained by pooling of data from two or more clinical trials and statistical tests for interaction 

was routinely performed.  
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1.5.3 Meta-analysis of trial data 

Meta-analysis is a method for statistically combining treatment effects from two or more clinical trials 

thereby increasing the statistical power of the combined analysis compared to individual trials (Deeks JJ, 

Higgins JPT et al. 2019; Willke et al. 2012). Other advantages of a meta-analysis are the potential to address 

conflicting prior reports and those not addressed by individual studies. HTE can also be identified by testing 

across trials using tests of heterogeneity. However, HTE can also arise from differences in trial methodologies, 

design, interventions and outcomes assessed. Publication bias is another issue that may contribute towards 

bias in the data available for the meta-analysis. Hence, pooling of trials with similar design, patient 

population, intervention and outcomes should be carefully considered while performing meta-analysis.  

As some of the research questions were not easily addressed using published literature, in this thesis, 

individual patient data from clinical trials was obtained in order to perform individual participant data (IPD) 

meta-analysis (Deeks JJ, Higgins JPT, and (editors). 2019; Tierney JF, Stewart LA, and M. 2019). Re-analysis of 

the original data from each trial participant was used to avoid publication bias and reduce missing 

information. 

1.6 Aims and hypothesis 

The overall aim of the research described in this thesis was to better understand and identify previously 

under-recognized sources that may contribute to the variability/HTE in the responses and toxicities to 

systemic cancer drugs. It was hypothesised that selected covariates (patient characteristics, treatment 

emergent toxicities, use of concomitant medications, primary site of cancer and plasma concentration) can 

predict outcomes (tumour response, survival and adverse effects) across a spectrum of systemic cancer 

drugs.  

Among the patient characteristics, BMI was chosen as a covariate of interest in chapter 2 based on 

preliminary evidence from a prior report that obese patients with advanced melanoma who were treated 

with immunotherapy, had an improved survival (McQuade, Daniel et al. 2018). Advanced lung cancers are 

frequently treated with immunotherapy drugs and it was unclear if such an association existed between BMI 
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and outcomes in this context. It was hypothesised that the baseline BMI of patients who start on 

immunotherapy may be associated with survival in patients with advanced lung cancer. 

While analysing data for the chapter 2, it became apparent that immunotherapy induced toxicities may be 

associated with survival outcomes. Moreover, from observations in my own clinical practice, a proportion of 

patients on immunotherapy develop multiple toxicities and there was limited literature on this issue. This 

gap in knowledge led to a descriptive analysis of the clinical profile of multiple immune adverse events and 

their association with immunotherapy outcomes which is described in chapter 3. Further analysis of the 

toxicity data from patients who were treated with chemotherapy as control arms in the clinical trials that 

were used in this chapter are described in chapter 4.  

There are recent reports indicating that concomitant medications such as antibiotics and corticosteroids may 

reduce the efficacy of immunotherapy in patients with advanced cancers (Della Corte and Morgillo 2019; 

Elkrief et al. 2019; Maxwell et al. 2018; Petrelli et al. 2020). However, there are limited data on the impact of 

other concomitant medications such as anti-hypertensives such as renin-angiotensin inhibitors (RASi) on the 

outcomes from immunotherapy. RASi in particular have been reported to synergise with immunotherapy to 

improve their activity and decrease toxicity. Hence, it was hypothesised that concomitant use of RASi may 

affect the outcomes in patients being treated with immunotherapy. This research is reported in chapter 5.  

While the data on the impact of concomitant medications on immunotherapy was being analysed, there was 

emerging evidence that concomitant proton pump inhibitors (PPI) may affect immunotherapy outcomes 

(Chalabi, Cardona et al 2020). However, there was limited information on the effect of concomitant PPIs on 

traditional chemotherapy drugs used for the treatment of gastrointestinal cancers. Prior studies reported 

possibly antagonistic effect of PPIs when given with capecitabine, an oral fluoropyrimidine (Cheng et al. 2019; 

Chu et al. 2017; Viñal et al. 2020). These observations led to the hypothesis that PPI use may negatively affect 

the benefit from fluoropyrimidine-based chemotherapy in patients with colorectal cancers for whom this 

type of chemotherapy is widely prescribed. The results from this research are described in chapter 6.  

Furthermore, it was hypothesised that the trough plasma concentration of vemurafenib, a targeted therapy 

may be associated with survival outcomes in patients with melanoma, which provides the basis for the 
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research reported in chapter 7. Vemurafenib was chosen as the drug of interest due to the expertise available 

within the research team as well as limited information available on the dose individualisation for this drug.  

Lastly, all advanced urothelial cancers are treated either chemotherapy or immunotherapy regardless of their 

primary site of origin. However, recently published literature and clinical observations indicate that urothelial 

cancers arising from upper tract (renal pelvis or ureters) may have differential response to immunotherapy 

(Yates and Catto 2013, Robinson, Vlachostergios et al. 2019, Hassler, Bray et al. 2020). It was hypothesised 

that upper tract urothelial cancer may have inferior outcomes from immunotherapy which forms the basis 

for the research described in chapter 8. 

1.7 Approach for data analysis  

“The variability of human beings in their illnesses and in their reactions to them is a fundamental reason for 
the planned clinical trial and not against it”(Hill 1971). 

Clinical trials are one of the best ways to understand HTE using data from a population of patients being 

treated with similar illness and the same intervention. Evidence generated through human clinical trials help 

establish a new systemic cancer therapy as part of standard care in the treatment of patients with cancer in 

clinical practice. Moreover, regulatory approvals for new therapies require generation of evidence through 

clinical trials.  

For most common cancers, one or more phase III comparative randomized controlled trials are required to 

confirm that the new systemic therapy intervention is either superior in terms of efficacy and/or safety, 

quality of life, ease of administration or as an inexpensive alternative over the existing standards. The optimal 

assessment of clinical benefits and an estimation of treatment effect is usually provided by phase III 

randomized controlled trials that provide unbiased data on the outcomes by comparing to an existing 

standard. Randomization results in reduced selection bias, balanced groups for potential confounders, and 

the optimal conduct of statistical tests (Suresh 2011). Phase II trials often provide early signals of activity of 

systemic therapy drugs in a uniform cohort of cancer population after the maximum tolerated dose or 

recommended phase II doses are established in the first-in-human phase I trials. In this thesis, individual 
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patient data from phase II and III clinical trials released by sponsors conducting the trials were used as the 

source material.  

Most cancer clinical trials that evaluate systemic therapies are initiated, funded and sponsored by 

pharmaceutical companies. However, individual universities, governments and other organisations such as 

national/international cancer co-operative groups can also act as sponsors/funders for investigator-initiated 

trials. While sponsors and the contracted clinical research organisations act as the co-ordinating centres, 

individual patients are recruited from participating sites. Among various factors, the number of participants 

required in each trial determine the geographic location and number of participating sites in each clinical 

trial. Most phase III cancer trials are conducted in multiple sites, often in multiple countries, while the smaller 

phase II trials may be limited to a few sites within a single country. However, for rare cancers (with incidence 

less than 6 per 100,000 population), it is possible several sites will be required to enrol the required number 

of patients and collect data for meaningful interpretation.  

Data are generated in clinical trials at different time points of its life cycle. The life cycle of a clinical trial that 

generates data can be divided into five major stages as follows (Institute of Medicine 2015): 

1. Trial design and registration – clinical trial protocol and statistical analysis plan are useful information 

parts of which are commonly available in publicly available clinical trial registers such as 

www.clinicaltrials.gov, www.clinicaltrialsregister.eu and www.anzctr.org.au. 

2. Participant enrolment – raw data generated from each participant throughout the course of the 

clinical trial is collated and transformed into an analysable format. These data form the collection of 

individual patient data (IPD). 

3. Study completion – Usually, study completion occurs when “last participant's last visit” after which 

the investigating teams lock the dataset, clean and analyse the results using various statistical 

software tools. The initial analysis often involves endpoints that were prespecified in the trial 

protocol using parts of the data collected to generate results and reports. 

4. Publication – Dissemination of results from clinical trials support clinical practice changes based on 

the new evidence generated. Although the results are expected to be published within 12 months of 

http://www.clinicaltrials.gov/
http://www.clinicaltrialsregister.eu/
http://www.anzctr.org.au/
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their completion onto the clinical trial registers, compliance has been poor. One or more publications 

using information from the clinical trials in peer-reviewed journals can occur during any stages of the 

clinical trial life cycle.  

5. Regulatory application – for clinical trials that were intended for regulatory approval for marketing 

of the new drugs, a detailed clinical study report (CSR) with additional information that is not 

available in published manuscripts and individual patient data are generated.  

Data generated through clinical trials may vary across the trial teams that conduct these trials. Hence, to 

harmonize and standardize the clinical trial data being collected, the clinical data interchange standards 

consortium was formed in 1997 (Souza, Kush, and Evans 2007). Since then, the consortium has released 

standards for clinical trial data called as clinical data acquisition standards harmonization which specifies data 

fields, their labels and organization of the data onto a database (CDASHIGv2.1 2019). These standards are 

regularly used by clinical trials teams for the development of individual case report forms and electronic data 

capture systems. Once the data is populated onto a database, standard data tables are generated using 

multiple domains that describe various aspects of data such as demographics, laboratory values, imaging 

results, concomitant medications, adverse events and drug exposure which can be directly used for analysis 

(SDTMv1.7 2018). The analysis data model generated from the standard data tables provide support for 

dataset and metadata standards for clinical trial statistical analyses (ADaMv1.2 2019).  

Until recently, access to data generated from clinical trials was limited only to the sponsors, study 

investigators and regulatory agencies. Several organisations have supported the push for making the data 

available for external researchers who are not directly involved in any of the stages of a clinical trial (Taichman 

et al. 2017). Clinical trial data sharing of has now been recognized as an important resource for the scientific 

community and the public.  

1.7.1 Data sharing and access 

Access to individual patient data from clinical trials to external researchers has several benefits including 

independent validation of results, analyses that were not previously planned, and support of meta-analyses 

(Keerie et al. 2018).  Hence, data sharing from clinical trials after the primary analysis is completed is 
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considered as best practice by the World Health Organization (WHO), the International Committee of Medical 

Journal Editors (ICMJE) and other groups (Taichman et al. 2017). The other best practices for clinical trials are 

universal prospective registration and public disclosure of results. There are several platforms now available 

for clinical trial data sharing such as the  

1. Yale University Open Data Access (YODA) project (https://yoda.yale.edu/),  

2. Vivli (https://vivli.org/),  

3. ClinicalStudyDataRequest (https://www.clinicalstudydatarequest.com/) and  

4. Project data sphere (https://www.projectdatasphere.org/).  

For the current research, de-identified data were obtained from the publicly available data sharing platforms, 

ClinicalStudyDataRequest and project datasphere (Clinicalstudydatarequest 2019; Projectdatasphere 2020). 

A research proposal with request for data from selected trials available on the platform was submitted in 

2018 to the research committees of both platforms. The proposal included objectives, analysis and 

publication plans. Independent review panels and the sponsors reviewed the proposals. After approval from 

both groups, access to data was provided through a secure web portal for analysis. Data were released as 

data tables describing various clinical trial related parameters through a secure platform that required central 

approval prior to individual researcher access within the online environment.  

1.7.2 Selection of clinical trials 

Since its introduction in 2014, clinical trial data sharing is increasing; however, it is still not universal. Data 

from only 15% of completed pharmaceutical company sponsored clinical trials were shared within 2 years of 

the publication of the primary results (Hopkins, Rowland, and Sorich 2018). Roche, a pharmaceutical 

company with a large portfolio of cancer therapies, had submitted data from several clinical trials to the 

ClinicalStudyDataRequest.com (Clinicalstudydatarequest 2019). Data from clinical trials involving systemic 

cancer drugs from Roche made up the bulk of source material used in the current research (Table 6).  

Table 6: Clinical trials data used in the current research 

Trial (registration number) Title 

https://yoda.yale.edu/
https://vivli.org/
https://www.clinicalstudydatarequest.com/
https://www.projectdatasphere.org/
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BIRCH  
(NCT02031458)  
(Peters et al. 2017) 

A phase II, multicenter, single-arm study of atezolizumab in patients 
with PD-L1-positive locally advanced or metastatic non-small cell lung 
cancer 

FIR  
(NCT01846416)  
(Spigel et al. 2018) 

A phase II, multicenter, single-arm study of MPDL3280A in patients 
with PD-L1-positive locally advanced or metastatic non-small cell lung 
cancer 

OAK  
(NCT02008227)  
(Rittmeyer et al. 2017) 

A phase III, open-label, multicenter, randomized study to investigate 
the efficacy and safety of atezolizumab (anti-PD-L1 antibody) 
compared with docetaxel in patients with non-small cell lung cancer 
after failure with platinum containing chemotherapy 

POPLAR  
(NCT01903993)  
(Fehrenbacher et al. 2016) 

A phase II, open-label, multicenter, randomized study to investigate 
the efficacy and safety of mpdl3280a (anti−PD-L1 antibody) compared 
with docetaxel in patients with non−small cell lung cancer after 
platinum failure 

IMvigor210  
(NCT02951767, NCT02108652) 
(Balar, Galsky, et al. 2017) 

A phase II, multicenter, single-arm study of atezolizumab in patients 
with locally advanced or metastatic urothelial bladder cancer (cohort 
1) 
A phase II, multicenter, single-arm study of atezolizumab in patients 
with locally advanced or metastatic urothelial bladder cancer (cohort 
2) 

IMvigor211  
(NCT02302807)  
(Powles et al. 2018) 

A phase III, open-label, multicenter, randomized study to investigate 
the efficacy and safety of atezolizumab (anti-PD-L1 antibody) 
compared with chemotherapy in patients with locally advanced or 
metastatic urothelial bladder cancer after failure with platinum-
containing chemotherapy 

IMmotion150  
(NCT01984242)  
(McDermott et al. 2018) 

A phase II, randomized study of atezolizumab (anti-pd-l1 antibody) 
administered as monotherapy or in combination with bevacizumab 
versus sunitinib in patients with untreated advanced renal cell 
carcinoma 

AVF2107  
(NCT00109070)  
(Hurwitz et al. 2004) 

A phase III, multicenter, randomized, active-controlled clinical trial to 
evaluate the efficacy and safety of RhuMAB VEGF (bevacizumab) in 
combination with standard chemotherapy in subjects with metastatic 
colorectal cancer 

Carrato et al  
(NCT00457691)  
(Carrato et al. 2013) 

A multicenter, randomised, double-blind, phase 3 study of sunitinib in 
metastatic colorectal cancer patients receiving irinotecan, 5-
fluorouracil and leucovorin (FOLFIRI) as first line treatment 

HORIZON III  
(NCT00384176)  
(Schmoll et al. 2012) 

A randomised, double-blind, multicentre phase II/III study to compare 
the efficacy of cediranib (Recentin™, AZD2171) in combination with 5-
fluorouracil, leucovorin, and oxaliplatin (FOLFOX), to the efficacy of 
bevacizumab in combination with FOLFOX in patients with previously 
untreated metastatic colorectal cancer 

VELOUR  
(NCT00561470)  
(Van Cutsem et al. 2012) 

A multinational, randomized, double-blind study, comparing the 
efficacy of aflibercept once every 2 weeks versus placebo in patients 
with metastatic colorectal cancer (mcrc) treated with irinotecan / 5-FU 
combination (FOLFIRI) after failure of an oxaliplatin based regimen 

N016966  
(NCT00069095)  
(Saltz et al. 2008) 

A 2x2 factorial randomized phase III study of intermittent oral 
capecitabine in combination with intravenous oxaliplatin (q3w) 
("Xelox") with/without intravenous bevacizumab (q3w) versus bolus 
and continuous infusion fluorouracil/intravenous leucovorin with 
intravenous oxaliplatin (q2w) ("FOLFOX-4") with/without intravenous 
bevacizumab (q2w) as first-line treatment for patients with metastatic 
colorectal cancer 
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RAISE  
(NCT01183780)  
(Tabernero et al. 2015) 

A randomized, double-blind, multicenter phase 3 study of irinotecan, 
folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab or placebo 
in patients with metastatic colorectal carcinoma progressive during or 
following first-line combination therapy with bevacizumab, oxaliplatin, 
and a fluoropyrimidine 

BRIM-3  
(NCT01006980)  
(Chapman et al. 2011) 

BRIM 3: a randomized, open label, controlled, multicenter, phase III 
study in previously untreated patients with unresectable stage IIIc or 
stage IV melanoma with V600E BRAF mutation receiving vemurafenib 
(RO5185426) or dacarbazine 

coBRIM  
(NCT01689519)  
(Larkin et al. 2014) 

A phase III, double-blind, placebo-controlled study of vemurafenib 
versus vemurafenib plus GDC-0973 in previously untreated BRAFV600-
mutation positive patients with unresectable locally advanced or 
metastatic melanoma 

 

1.7.3 Ethics 

As de-identified data was used for all of the research reported in this thesis, Southern Adelaide Human 

Clinical Research Ethics Committee confirmed that the projects were of minimal risk to the participants. 

Hence, an exemption from ethics committee review was provided for the research activities performed.  

1.8 Data analysis 

A general statistical analysis plan was generated prior to each project. Descriptive and analytical statistics 

using data from trial participants were conducted using R-v3 (Team 2017). Pooling of data was performed 

where feasible for analyses and to generate results.  

1.8.1 Statistical concepts and methods used in the thesis 

A variety of descriptive and inferential statistical methods were used across the chapters in the current thesis. 

Descriptive statistics included tabulation of results for individual baseline characteristics including mean, 

median and interquartile range (IQR) for continuous variables, and percentages for binary or categorical 

variables. Standard deviation and standard errors of the mean were reported where required (Sedgwick 

2015b). The distribution of baseline characteristics was compared between various subgroups across the 

thesis chapters and P-values for statistical difference between groups were calculated using the chi-squared 

test or Fisher’s exact test for categorical data and the Kruskal-Wallis test or the Wilcoxon’s test for continuous 

data. While the chi-squared test requires a large sample size, the Fisher’s exact test can be applied for small 
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samples (Kim 2017). The Kruskal-Wallis test or the Wilcoxon’s rank sum test/ Wilcoxon’s signed rank test are 

non-parametric tests which are recommended when the continuous data are not normally distributed or are 

unknown (Nahm 2016). The Wilcoxon’s rank sum test was used for the comparison of two independent 

groups, and the Kruskal-Wallis test was applied to investigate the difference in median values of three or 

more independent groups of samples (Sedgwick 2014b). 95% confidence intervals (95%CI) were also reported 

where appropriate.  

“Statistical estimation is usually model-based” – Harrell F (Harrell 2001). 

All inferential statistical analyses use statistical modelling that may help provide causal explanation, 

prediction of future events, or simply provide description of the variables within a dataset. Among the various 

statistical models, regression analysis is commonly used to provide a mathematically quantifiable estimate 

of the relationship or association between a dependent (otherwise called as outcome) variable and (one or 

more) independent (variously called as explanatory, regressor, predictor or covariate) variable(s).  

Most of the analyses in the thesis required development of models that predict future health outcomes in 

patients with cancer using baseline characteristics as predictor variables. Guidance from previous authors 

indicate general areas that may perform well as predictor variables within a predictive model (Harrell 2001). 

Some examples of the predictor variables recommended include age, sex, type and severity of principal 

diagnosis, clinical status, comorbidities, and functional status (Iezzoni 2013). The development of such 

predictive models usually requires prospective data collection for improved accuracy. While prospective data 

collection provides the advantage of gathering data on appropriately defined variables, retrospective studies 

and clinical trial data have also been used to develop predictive models. Well conducted clinical trials in 

particular, have a pre-defined comprehensive data collection process that supports generation of predictive 

models.  Data collection for the current thesis had already occurred through the selected clinical trials. 

Further, data from these trials provided the required information for optimal choice of predictor variables.  

Several patient baseline characteristics were used in the thesis as the independent variables of interest to 

predict the dependent outcome variables of interest such as survival, response rates and adverse events. In 

selected chapters, plasma concentrations of the drug or therapy related adverse events that were 
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documented during treatment were also the independent predictor variables. Regression models were the 

primary methods that were used to develop predictive models. Several regression analyses methods were 

used in the thesis to investigate the association between predictor/explanatory variables and outcomes 

variables.  

1.8.2 Regression analysis 

The word “regression” was originally used in the context of regression towards the mean by Galton (Galton 

1885). However, in the context of statistics, regression analysis includes a set of methods for the purposes of 

establishing causal relationships and predictions between variables. As a general rule of thumb, the type of 

dependent/outcome variable determines the method of regression analysis applied for a dataset (Lewis 

2007). However, more than one regression method could be used for the same dataset to investigate the 

relationship between dependent and independent variables (Gelman 2020). 

Among the regression methods, linear regression is one of the most used methods by researchers and 

statisticians. Linear regression, described as a mathematical equation, provides a quantitative estimate of 

the linear association between two variables (Sedgwick 2013d). When only one explanatory variable is used 

in the model, it is referred as simple linear regression, whereas when more than one explanatory variable is 

included, it is called as multiple linear regression. However, both the dependent and explanatory variables 

are usually continuous in simple linear regression and multiple linear regression. If explanatory variables 

included are a mixture of categorical and continuous variables, then the method of analysis is called as 

multiple regression (Sedgwick 2013c). The dependent (outcome) variable must be continuous in nature for 

both simple and multiple linear regression methods. As in any statistical models, linear regression analysis 

requires several assumptions including validity, additivity, linearity, independence of errors, equal variance 

of errors and normality of errors (Gelman and Hill 2007).  

In contrast, if the dependent variable is binary in nature, then logistic regression is commonly employed. 

Also called, logit regression, logistic regression quantifies the association between a binary dependent 

variable and one (univariable logistic regression) or more explanatory variables (multivariable logistic 

regression) that are continuous, categorical or binary (Sedgwick 2013b). When the data are derived from 
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matched populations for the pre-defined confounding variables, then, a conditional logistic regression can 

be performed. The estimates from logistic regression analysis is reported as an odds ratio (OR) that reflects 

the probability of the dependent variable occurring for the given values of explanatory variables. Odds ratios 

can be unadjusted or crude when not adjusted for potential confounding explanatory variables or adjusted 

OR when the relevant confounding variables have been adjusted during the analysis. If the OR for the 

association remains statistically significant  after adjusting for the confounding explanatory variables, the 

explanatory variable is believed to be an independent factor associated with the dependent outcome 

variable.  

1.8.3 Cox proportional hazards regression 

In contrast, if the dependent variable is “survival data” or “time to event data”, the method usually adopted 

to quantify the association between a dependent variable and one or more explanatory variables is the Cox 

proportional hazards regression. Although the dependent variable here (survival time or time to event) is 

continuous, the censored nature of survival time makes Cox proportional hazards regression different from 

the simple linear regression and multiple linear regression (Sedgwick 2013a). Censoring is said to exist when 

incomplete survival time data is available for some of the participants (Leung, Elashoff, and Afifi 1997). For 

example, if the participant in a trial is still alive at the end of the trial, their survival time is unknown. Similarly, 

for someone who exited the study before its completion, their survival time is unknown. Survival analysis 

techniques allow for these incomplete data to be used during analysis (Kollman 2018).  

The explanatory variables can be binary, categorial or continuous in nature which occur at baseline, either 

trial entry or the start of the intervention or observation for the Cox proportional hazards regression analysis. 

The estimates from Cox proportional hazards regression are reported as Hazards Ratio (HR). Hazards of an 

event (e.g. death or recurrence) is the rate of the event as calculated by the probability of event within a time 

interval divided by the length of time interval (Sedgwick 2013a). HR is the ratio of event hazards in the 

population cohort of interest when compared with the reference cohort thereby providing a relative 

instantaneous risk of the event. HR are also generated when the dependent outcome (e.g. overall survival or 

progression free survival) is compared between the control and interventional arms within the context of a 
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clinical trial to provide efficacy information. Among several assumptions for Cox proportional hazards 

regression, the assumption that the hazards are proportional i.e. effect of each covariate is constant and HR 

does not change over time (i.e. proportional hazards assumption) is the most important. 

In addition, if the explanatory variable is only one variable, the Cox model is called as univariable model. 

When two or more variables are evaluated, then it is called as the multivariable Cox model. Univariable Cox 

models generate unadjusted HR. On the contrary, multivariable Cox models provide adjusted HRs after the 

adjustment of relevant confounding factors. HRs are also produced when subgroups within an explanatory 

variable (e.g. men and women within the category of sex) are compared with a reference group whose HR is 

usually 1.  

In cancer clinical trials, the explanatory variables often change, evolve or disappear over time on repeated 

measurements during the follow-up period. Such variables are called as time-varying covariates (Zhang et 

al. 2018). While evaluating the association between a baseline explanatory variable and outcome is useful, 

this fails to account for the changes in the explanatory variable which may introduce the issue of guarantee-

time bias or immortal time bias. Moreover, some of the explanatory variables may have differential effect on 

short-term and long-term survival (time-dependent effects) (Dekker et al. 2008). Hence, variations in Cox 

proportional hazards regression models are required to adjust for these biases. Conditional landmark 

analysis and time-dependent Cox regression are some analytic techniques that can be used to account for 

such time-varying covariates and time-dependent effects (Giobbie-Hurder, Gelber, and Regan 2013).  

1.8.4 Conditional landmark analysis 

Although originally introduced to address the problem of guarantee-time or immortal time bias during 

survival analysis, the conditional landmark Cox analysis method is widely used across the medical literature 

(Dafni 2011). Immortal time here means the period during which the study outcome cannot occur. Immortal 

bias is if the immortal time is either misclassified to a different treatment status or excluded from analysis 

(Lévesque et al. 2010). A landmark time is pre-selected based on the event occurring during follow-up that 

helps generate two or more groups (e.g. response vs non-responder, those who develop toxicity vs no 

toxicity). The main purpose of this method is to estimate the outcome probabilities conditional on the 
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number of people in each group generated. Events that occur after this landmark time and those who cease 

participation in the trial or die prior to this landmark time are excluded from analysis thereby diminishing 

statistical power due to reduction in sample size available for analysis. One of the criticisms of this approach 

is the choice of landmark time which may be selected arbitrarily. Conduct and reporting of sensitivity analyses 

at various landmark time points as well as before the landmark time are considered to be some of the 

solutions (Dafni 2011).  

1.8.5 Time-dependent Cox regression 

Time-dependent Cox regression, otherwise known as extended Cox model with time-varying covariates, uses 

all patient data with the explanatory variables that change during the study and the analysis starts from the 

time of enrolment or randomisation. This model also allows for change in membership of the group with time 

without losing statistical power by including all eligible patients (Giobbie-Hurder, Gelber, and Regan 2013). 

In this thesis, emergence of treatment related adverse events and their association with survival outcomes 

was investigated using conditional landmark Cox regression and time-dependent Cox regression models.  

1.8.6 Survival analysis methods 

Survival analysis, otherwise called time-to-event analysis, provides an estimate of the time to occurrence of 

the event of interest. As the major outcomes of interest in various projects in this thesis were overall survival 

(OS) and progression-free survival (PFS), survival analysis methods were regularly employed. Among the 

statistical methods for the analysis of survival data, the Kaplan-Meier method (KM method) was employed 

for estimating the survival times and for the graphical display of survival curves. The Cox proportional hazards 

regression model was used to evaluate the effects of covariates on the hazards of the occurrence of outcome 

event of interest. As previously described (Chapter 1, section 8.3), one unique feature of survival/time-to-

event data and survival analysis methods is the concept of “censoring” whereby the participants may not 

have experienced the event of interest (e.g. cancer progression or death) or lost to follow-up or withdrawal 

from trial participation prior to last follow-up (Sedgwick 2014a). Moreover, for those participants who were 

enrolled late in during the recruitment period, the duration of period of follow-up may not be adequate for 
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the event to occur. Such “censored” participants still provide useful information on the effect of the 

intervention. The KM plot provides information on median survival times as well as other landmark times. To 

compare the survival times between the treatment groups, the log rank test was employed to test for 

statistical significance. On the other hand, HR derived from the Cox proportional hazards regression model 

was used to describe the magnitude of the survival differences between treatment groups.  

1.8.7 Statistical interaction tests 

Subgroup analysis in randomized controlled trials to assess HTE often require evaluation of statistical 

interaction tests. Stratification based on baseline variables and generation of an interaction model are the 

two ways by which statistical interaction can be appraised (Brankovic et al. 2019). Interaction can be 

quantitative or qualitative. A quantitative interaction means one treatment is always better than the other 

regardless of the subgroups (Wang et al. 2007). A qualitative (or crossover) interaction is said to exist when 

one treatment is better than the other in one subgroup and worse than the other in another subgroup of 

patients (Gail and Simon 1985). This effect modification is identified in a statistical model as an interaction 

term between the treatment group and the subgroup variable (Wang et al. 2007).  

Interaction modelling was routinely employed for assessing statistical interaction in this thesis. Interaction 

models were derived from regression analysis by the introduction of an interacting variable in the regression 

model when the treatment effects were evaluated. As both the logistic and Cox regression models have 

multiplicative scale of interaction testing, the final interaction model was “treatment + baseline 

factor + (treatment × baseline factor)” (Brankovic et al. 2019). In contrast, the linear regression models use 

an additive scale for interaction tests. Like other statistical tests, 95%CI for the magnitude and P-values for 

statistical significance were generated for the interaction term. 

1.8.8 Meta-analyses 

As previously described (Chapter 1, section 5.3), meta-analyses generally involve the synthesis of study level 

aggregate data to produce an estimate of treatment effects. The trials are usually identified after a systematic 

review process and study level aggregate data forms the basis of the analysis. In contrast, IPD meta-analyses 
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involves use of data from each participant across multiple studies. However, clusters of patients derived from 

each trial are usually retained while a meta-analysis is performed. Such an analysis may utilise a one-step or 

two-step approach (Riley, Lambert, and Abo-Zaid 2010).  

Trials included in the current thesis were identified from data sharing platforms (chapter 1.7.2) and a 

systematic review method for study identification was not performed. One-step IPD was used for pooling of 

results except for the research work described in chapters 5 and 6, where a two-step IPD meta-analysis 

approach was used. In the first step, data from individual patients were analysed separately for each trial 

using Cox proportional hazards regression to produce trial level HR for the survival outcomes. This first step 

produced trial level aggregate data for the HR for OS and PFS. In the second step, the trial level aggregate 

data were synthesised to produce a pooled HR using a random effects model or fixed effects model (Riley, 

Lambert, and Abo-Zaid 2010). These models assume fixed or random treatment effects across studies. Forest 

plots were used for the display of results from the pooled meta-analysis.  

As various trials that were conducted in different timespans and populations were combined in these 

analyses, HTE is expected (Higgins, Thompson, and Deeks 2002). Hence, statistical test of heterogeneity is 

usually performed to evaluate the extent of variation between individual trial HR estimates. Cochran’s Q test 

and Higgin’s I2 test statistic were employed to test heterogeneity in the current thesis (Sedgwick 2015a). An 

I2 value more than 50% indicates a high degree of heterogeneity in HR and effect size of the studies included 

in the meta-analysis. Random effects methods were used when heterogeneity in effect was anticipated 

between studies.  

1.8.9 Clinical prediction models 

Regression analysis methods lead to the development of clinical prediction models. For one of the projects 

in this thesis (Chapter 7), a clinical prediction model was developed using logistic regression and Cox 

proportional hazards regression to identify the best threshold plasma concentration of the drug that predicts 

response and survival outcomes. As there were several models generated with varying cut-offs for the 

threshold concentration, discriminative performance of each model was quantified using concordance 

statistic (C-statistic). Discriminative performance of a model means its ability to differentiate those patients 
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who had an outcome from those who did not have the outcome (Steyerberg and Vergouwe 2014). The higher 

the c-statistic, better the discriminative ability of the model. Model fitting was performed using Akaike 

information criterion (AIC) to facilitate the choice of the ‘best’ model (Akaike 1973). AIC is a commonly used 

measure of relative goodness of fit of a statistical model (Brewer, Butler, and Cooksley 2016). A lower AIC 

score is indicative of superior model. The most optimal plasma threshold concentration was defined using 

these techniques.  

1.9 Thesis chapters 

The thesis comprises the following chapters: 

1. Patient characteristics – the association between baseline body mass index (BMI) and cancer

outcomes in patients with lung cancer undergoing treatment with atezolizumab, an immune

checkpoint inhibitor (chapter 2).

2. Patient characteristics - a description of the incidence of immune-related adverse events (irAEs),

multi-organ irAEs, their predictors and their impact on cancer outcomes from atezolizumab or

chemotherapy (chapters 3 and 4).

3. Use of concomitant medications - the association between the use of anti-hypertensives and cancer

outcomes in patients with lung cancer undergoing treatment with atezolizumab (chapter 5).

4. Use of concomitant medications - the association between the use of proton pump inhibitors (PPI)

and cancer outcomes in patients with colorectal cancer undergoing treatment with chemotherapy

(chapter 6).

5. Plasma concentration - validate a plasma vemurafenib steady state trough concentration (Css,min)

threshold that predicts survival outcomes of patients with BrafV600 mutated melanoma (chapter 7).

6. Cancer characteristics – the relationship between the primary site of cancer and its effect on

treatment outcomes from immunotherapy and chemotherapy (chapter 8).
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2. CHAPTER TWO: BASELINE BMI AND OUTCOMES FROM IMMUNE
CHECKPOINT INHIBITORS

This chapter has been derived and adapted with permission from the following publication: 

Kichenadasse G, Miners JO, Mangoni AA, Rowland A, Hopkins AM, Sorich MJ. Association between Body 

Mass Index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung 

cancer.  JAMA Oncol. 2020; 6(4):512-518.  

The accepted manuscript has been reproduced in Appendix 1. 

As discussed in the previous chapter, variability in drug response and toxicities could arise from several 

factors. Among the baseline patient characteristics, age, sex, age, organ impairment and body weight are 

routinely explored when a drug is being developed. However, BMI is often poorly studied as a contributing 

factor towards variability in response to therapy especially for immunotherapy. In this chapter, the influence 

of BMI as a predictive variable with one of the systemic cancer therapies used in patients with lung cancer 

was evaluated. 

2.1 Introduction 

Lung cancer is one of the most common cancers around the world. As per GLOBOCAN 2018, the estimated 

age-standardized incidence in terms of incidence was 22.5 per 100,000 population and mortality of 18.5 per 

100,000 worldwide (Ferlay et al. 2018). More than 80% of the patients with lung cancers have non-small cell 

lung cancer (NSCLC) and the rest present as small cell lung cancers as the main histological subtypes. Among 

the NSCLC, adenocarcinoma and squamous cell carcinoma are the main histological variants. However, with 

an improved understanding of the tumour biology, multiple different molecular subtypes of even within the 

adenocarcinoma type of NSCLC have also been recognized (Skoulidis and Heymach 2019).   

Such molecular classification of NSCLC has led to the rapid evolution of its treatment options over the last 

two decades including chemotherapy, molecularly targeted drugs, ICI and combination approaches. ICI that 

target programmed death -1 (PD1) or its ligand 1 or (PDL1) monoclonal antibodies such as atezolizumab, 

durvalumab, nivolumab, and pembrolizumab are increasingly used for the treatment of both early and 
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advanced NSCLC. While durable responses were noted in advanced cancers, only a limited proportion of 

patients benefit from ICIs. Moreover, attempts to increase response using combination strategies 

incorporating multiple ICIs have a high incidence of irAEs resulting in early discontinuation. Predictive 

biomarkers for ICI therapy response are urgently required to identify patients who benefit or have adverse 

events from ICI. 

Available predictive biomarkers for response, such as tumour mutation burden, PDL1 expression, and 

microsatellite instability, are generally focussed on cancer and its associated tumour infiltrating lymphocytes. 

As the patients who receive ICI therapies are highly heterogeneous and tumour-based biomarkers are 

resource intensive and not validated, several simple clinical and demographic characteristics are also being 

evaluated to predict response. One such characteristic is obesity.  

The relationship between obesity (and its surrogate non-invasive measure – those with high BMI) and cancer 

is complex, with increased incidence, rapid disease progression, recurrence after treatment and mortality for 

some cancers but protection from other cancers (“obesity paradox”) (Lennon et al. 2016). Previous literature 

showed that high BMI was associated with lower incidence of lung cancers and lower cancer specific mortality 

(Gupta et al. 2016; Hidayat et al. 2016; Morel et al. 2018; Yang et al. 2013). Moreover, high BMI is an 

independent positive prognostic factor for survival among those treated with surgery in early stage NSCLC, 

paclitaxel/carboplatin chemotherapy for advanced disease and radiotherapy for bone metastases (Yap et al. 

2018; Sepesi et al. 2017; Masel et al. 2017; Dahlberg et al. 2013). However, it is unclear whether high BMI 

might also affect the association between ICI treatment and cancer outcomes. 

In a recent retrospective study, McQuade et al (McQuade et al. 2018) reported that in patients with advanced 

melanoma treated with ICI and targeted therapies, obesity (BMI ≥ 30 kg/m2) was associated with improved 

progression-free survival (PFS) and overall survival (OS) while, no such association was noted in patients 

treated with chemotherapy. Cortellini et al (Cortellini, Bersanelli, et al. 2019) reported that for patients with 

advanced cancers treated with ICI, PFS and OS were significantly longer for overweight/obese patients (BMI 

≥ 25 kg/m2) compared to non-overweight patients (BMI < 25 kg/m2). Similarly, Richtig et al (Richtig et al. 

2018) reported a higher response rate with ICI and longer survival in obese melanoma patients but not in 
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patients with normal body weight. While the pathophysiology behind the positive association between 

obesity with survival from ICI is unclear, leptin mediated T-cell dysfunction may be a contributing factor 

(Wang, Aguilar, et al. 2019).  

In the current study, the relationship between high BMI and survival in advanced NSCLC patients treated with 

ICI was evaluated. The main objectives were to: (1) investigate the effect of BMI on the survival outcomes of 

patients initiating atezolizumab, or docetaxel; and (2) determine the effect of BMI on the incidence of 

treatment related adverse events (TRAEs) and irAEs in the same cohort. 

2.2 Methods 

2.2.1 Patients 

A pooled post-hoc analysis of individual-participant data from the clinical trials OAK (Rittmeyer et al. 2017) 

(NCT02008227, 7 July 2016 data cut-off), POPLAR (Fehrenbacher et al. 2016) (NCT01903993, 8 May 2015 

data cut-off), BIRCH (Peters et al. 2017) (NCT02031458, 28 May 2015 data cut-off), and FIR (Spigel et al. 2018) 

(NCT01846416, 7 Jan 2015 data cut-off) was conducted. Results for the primary analyses of data from all four 

trials were previously published (Fehrenbacher et al. 2016; Rittmeyer et al. 2017; Peters et al. 2017; Spigel et 

al. 2018). Secondary analysis of trial data was deemed to be negligible risk and exempt from the local Ethics 

Committee review. Data were accessed according to Roche’s policy and process for clinical study data sharing 

plans (Clinicalstudydatarequest 2019).  

OAK and POPLAR were randomized trials of atezolizumab 1,200 mg intravenous (IV) every 3 weeks versus 

docetaxel 75 mg/m² IV every 3 weeks for patients with advanced NSCLC that had failed platinum-containing 

therapy (Fehrenbacher et al. 2016; Rittmeyer et al. 2017). BIRCH and FIR were single-arm Phase II trials in 

PDL1 positive patients either first line or beyond therapy with atezolizumab (Peters et al. 2017; Spigel et al. 

2018). Pooled analyses of OAK, POPLAR, BIRCH and FIR were used to demonstrate consistency of identified 

associations within an expanded cohort of patients treated with atezolizumab. PDL1 positive tumours were 

defined by PDL1 expression on 5% or more of tumour cells or tumour-infiltrating cells based on the VENTANA 

SP142 PDL1 immunohistochemistry assay (Ventana Medical Systems, Inc., Tucson, AZ, USA). 
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2.2.2 Predictor and outcome definitions 

The primary outcome assessed was OS. The secondary outcomes were PFS and TRAEs and irAEs (any grade 

and grade 3 or 4 TRAEs/irAEs (using NCI CTCAEv4.0). PFS was investigator–assessed for POPLAR and OAK and 

defined by Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) (Fehrenbacher et al. 2016; 

Rittmeyer et al. 2017). An independent review facility–assessed PFS via RECIST v1.1 for BIRCH (Peters et al. 

2017) whereas, in FIR, the PFS was investigator-assessed as per modified RECIST (Spigel et al. 2018). Adverse 

events reported as related to the treatment interventions were considered as TRAEs and those reported as 

immune mediated were called as irAEs.  

Baseline BMI was calculated using height and weight as recorded at study enrolment or first day of treatment 

(WHO 2019). BMI was categorised by WHO criteria: underweight (<18.5 kg/m2), normal weight (18.5-24.9 

kg/m2), overweight (25-29.9 kg/m2), and obese (≥ 30 kg/m2). Those with missing height and/or weight 

information for the calculation of BMI and those with underweight category of BMI were excluded from the 

analysis. As in the prior study of McQuade et al (McQuade et al. 2018), underweight patients were excluded 

from analyses because of low prevalence (<5%) and the focus was on comparing overweight and obese BMI 

categories to the normal weight BMI category. 

Clinically relevant confounding factors evaluated included patient’s age, sex, race (White/Asian/other), ECOG 

performance status, smoker status (current/previous/never), tumour histological type (squamous/non-

squamous), number of tumour sites (<3 or ≥ 3), number of prior treatments in the advanced setting, PDL1 

expression (positive/negative), serum lactate dehydrogenase (LDH; < or ≥ upper limit of normal [ULN]), blood 

C-reactive protein (CRP) level, and blood neutrophil to lymphocyte ratio (NLR; <3 or ≥ 3).  

2.2.3 Statistical analysis 

Associations between BMI and OS and PFS were modelled using Cox proportional hazards regression and 

reported as HR with 95%CI. Associations between BMI and TRAEs were modelled using logistic regression 

and reported as OR with 95%CI. All regression analyses were stratified by study. Survival curves for each 

category of BMI were estimated using the KM method. 
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Adjustment for potential confounding variables was undertaken by multivariable regression adjustment. 

Whether the association between BMI group and survival differed between males and females and between 

PDL1 positive and negative tumours was assessed using an interaction term in the Cox proportional 

regression model. Differences between BMI groups for the incidence of adverse events (both TRAEs and 

irAEs) were also evaluated using Cox proportional hazards. Evaluation of treatment benefit (atezolizumab vs 

docetaxel) by BMI subgroups was undertaken based on the intention to treat (ITT) populations of the two 

randomized trials – OAK and POPLAR. A treatment-by-BMI statistical interaction was evaluated in a Cox 

proportional regression model stratified by study. All analyses were conducted in R (version 3.4.3) using the 

survival package (Team 2017). Statistical tests were two-sided and a P value less than 0.05 was considered 

statistically significant.  

2.3 Results 

2.3.1 Association of BMI with survival outcomes and TRAEs for atezolizumab treated patients 

Of the 1548 participants treated with atezolizumab across the four clinical trials, 114 (BMI unavailable in 40 

participants and 74 underweight (BMI < 18.5 kg/m2) were excluded from further analysis, leaving 1434 

participants. Of these, 705 (49%) were normal weight, 490 (34%) were overweight and 239 (7%) were obese 

(Table 5). Compared to non-obese patients, a larger proportion of obese patients were white, male, previous 

smokers, and had NLR < 3 and lower CRP concentrations (Table 7). 

Table 7: Baseline characteristics of atezolizumab treated patients 
 

Total 
No. 1,434 

BMI                
18.5 - 24.9 

No. 705 

BMI               
25.0 - 29.9 

No. 490 

BMI             
≥30.0 

No. 239 

P-value 

Study 0.90 

  BIRCH 611 (43%) 301 (43%) 214 (44%) 96 (40%) 
 

  FIR 122 (9%) 61 (9%) 44 (9%) 17 (7%) 
 

  OAK 563 (39%) 274 (39%) 188 (38%) 101 (42%) 
 

  POPLAR 138 (10%) 69 (10%) 44 (9%) 25 (10%) 
 

Age (years) 64 (57 - 70) 64 (56 - 70) 64 (58 - 71) 63 (57 - 70) 0.093 

Sex < 0.001* 
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  Male 890 (62%) 388 (55%) 344 (70%) 158 (66%) 
 

  Female 544 (38%) 317 (45%) 146 (30%) 81 (34%) 
 

Race < 0.001* 

  White 1,132 (79%) 519 (74%) 407 (83%) 206 (86%) 
 

  Asian 210 (15%) 146 (21%) 51 (10%) 13 (5%) 
 

  Other 60 (4%) 30 (4%) 18 (4%) 12 (5%) 
 

  Missing 32 (2%) 10 (1%) 14 (3%) 8 (3%) 
 

ECOG PS 0.067 

  0 507 (35%) 228 (32%) 188 (38%) 91 (38%) 
 

  1 919 (64%) 474 (67%) 297 (61%) 148 (62%) 
 

  2 6 (<1%) 2 (<1%) 4 (1%) 0 (0%) 
 

  Missing 2 (<1%) 1 (<1%) 1 (<1%) 0 (0%) 
 

Histology 0.16 

  Non-squamous 1,033 (72%) 515 (73%) 358 (73%) 160 (67%) 
 

  Squamous 401 (28%) 190 (27%) 132 (27%) 79 (33%) 
 

Tumour sites 0.13 

  <3 724 (50%) 349 (50%) 241 (49%) 134 (56%) 
 

  ≥3 676 (47%) 338 (48%) 240 (49%) 98 (41%) 
 

  Missing 34 (2%) 18 (3%) 9 (2%) 7 (3%) 
 

Liver tumour site 273 (19%) 148 (21%) 82 (17%) 43 (18%) 0.17 

Bone tumour site 406 (28%) 220 (31%) 126 (26%) 60 (25%) 0.058 

Brain tumour site 65 (5%) 40 (6%) 20 (4%) 5 (2%) 0.055 

Prior treatments1 0.53 

  0 157 (11%) 79 (11%) 54 (11%) 24 (10%) 
 

  1 847 (59%) 402 (57%) 294 (60%) 151 (63%) 
 

  2 430 (30%) 224 (32%) 142 (29%) 64 (27%) 
 

Smoking history 0.022* 

  Never 250 (17%) 136 (19%) 73 (15%) 41 (17%) 
 

  Previous 1,012 (71%) 470 (67%) 365 (74%) 177 (74%) 
 

  Current 172 (12%) 99 (14%) 52 (11%) 21 (9%) 
 

PD-L1 expression 0.91 

  Negative 491 (34%) 240 (34%) 166 (34%) 85 (36%) 
 

  Positive 938 (65%) 462 (66%) 322 (66%) 154 (64%) 
 

  Missing 5 (<1%) 3 (<1%) 2 (<1%) 0 (0%) 
 



 

37 
 

Lactate dehydrogenase 0.78 

  ≤ ULN 843 (59%) 412 (58%) 284 (58%) 147 (62%) 
 

  > ULN 547 (38%) 268 (38%) 191 (39%) 88 (37%) 
 

  Missing 44 (3%) 25 (4%) 15 (3%) 4 (2%) 
 

Neutrophil to lymphocyte ratio 0.004* 

  <3 491 (34%) 214 (30%) 177 (36%) 100 (42%) 
 

  ≥3 863 (60%) 450 (64%) 283 (58%) 130 (54%) 
 

  Missing 80 (6%) 41 (6%) 30 (6%) 9 (4%) 
 

C Reactive Protein (mg/L) < 0.001* 

  Median (IQR) 14 (4 - 42) 15 (4 - 48) 13 (5 - 45) 11 (4 - 32) 
 

  Missing 43 (3%) 26 (4%) 9 (2%) 8 (3%) 
 

Data are median (IQR) or number of patients (%). P values per Fisher test for categorical data and Wilcoxon test for continuous 
data. 1Number of prior treatments in the locally advanced or metastatic setting 
 

OS differed significantly between normal, overweight and obese patients treated with atezolizumab (P = 

0.0002), with improved OS for obese (HR 0.65) and overweight (HR 0.81) patients compared to patients with 

normal BMI (Table 8, Figure 3). 

Table 8: BMI and OS/PFS for atezolizumab and docetaxel treated patients 

 Atezolizumab treated patients 

BMI group (kg/m2) HR for OS (95% CI) 

All patients PDL1 positive PDL1 negative 

18.5 - 24.9 1.0 1.0 1.0 

25.0 - 29.9 0.80 (0.68-0.95) 0.73 (0.58-0.91) 0.91 (0.71-1.16) 

≥ 30.0 0.65 (0.51-0.81) 0.48 (0.34-0.66) 0.90 (0.66-1.22) 

P value 0.0002 < 0.0001 0.68 

BMI group (kg/m2) HR for PFS (95% CI) 

All patients PDL1 positive PDL1 negative 

18.5 - 24.9 1.0 1.0 1.0 

25.0 - 29.9 0.89 (0.78-1.01) 0.86 (0.72-1.01) 0.93 (0.75-1.14) 

≥ 30.0 0.86 (0.73-1.01) 0.78 (0.62-0.96) 1.01 (0.78-1.31) 

P value 0.092 0.036 0.73 

 Docetaxel treated patients 

BMI group (kg/m2) HR for OS (95% CI) 

All patients PDL1 positive PDL1 negative 

18.5 - 24.9 1.0 1.0 1.0 
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25.0 - 29.9 0.96 (0.78-1.18) 1.18 (0.83-1.69) 0.89 (0.72-1.11) 

≥ 30.0 0.92 (0.70-1.21) 0.90 (0.55-1.45) 1.03 (0.77-1.37) 

P value 0.82 0.48 0.51 

This association remained significant after adjustment for potentially confounding variables (P=0.003, Table 

9). The association between BMI groups and OS was consistent for males and females (P interaction = 0.764), 

but was significantly different between PDL1 positive and PDL1 negative tumours (P interaction 0.021). 

Specifically, the survival advantage associated with overweight and obese BMI groups was larger for PDL1 

positive tumours than PDL1 negative tumours (Table 8, Figure 3). 

Further, OS for patients with the highest PDL1 expression (≥50% of tumour cells or ≥10% of tumour-

infiltrating immune cells; n=436) had HRs of 0.36 (95% CI 0.21 to 0.62) and 0.69 (95% CI 0.48 to 0.98) for 

obese and overweight groups, respectively. On the other hand, there was a trend towards improved PFS for 

the obese and overweight groups that did not reach statistical significance when analysed as separate groups 

(P=0.09, Table 8). The overweight and obese groups had similar PFS outcomes and in an exploratory analysis 

the combined overweight/obese BMI group demonstrated improved PFS compared to the normal BMI group 

(HR 0.88, 95% CI 0.78-0.99, P=0.03). The association between BMI and PFS was most apparent for the PDL1 

positive tumours (PDL1 expression on ≥5% of tumour cells or tumour-infiltrating immune cells), and there 

was little indication of association for PDL1 negative tumours (Table 8). Patients with the highest category of 

PDL1 expression (on ≥50% of tumour cells or ≥10% of tumour-infiltrating immune cells; n=436) had PFS HRs 

of 0.68 (95% CI 0.49 to 0.94) and 0.72 (95% CI 0.56 to 0.92) for obese and overweight patient groups, 

respectively. 

All-cause mortality and adverse events were then analysed for the trial population across the three BMI 

groups. As patients with high BMI have increased risks of deaths from cardiovascular diseases and other 

illnesses, non-cancer related deaths in the trial population was evaluated. Non-cancer related deaths were 

similar across the trials and BMI categories (Table 11 & Table 12). 
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Figure 3: OS as per BMI categories for atezolizumab and docetaxel treated patients 

   

Fig 3A: All atezolizumab treated patients         Fig 3B: PD-L1 positive atezolizumab treated patients 

 



 

40 
 

  

      Fig 3C: PD-L1 negative atezolizumab treated patients     Fig 3D: Docetaxel  
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Table 9: Cox proportional hazards analysis for OS/PFS for atezolizumab treated patients  

Variables Overall Survival - HR (95% CI) 

All trials  BIRCH FIR OAK POPLAR 

BMI (Kg/m2) 

25.0-29.9 

≥ 30 

 

0.80 (0.67-0.96) 

0.69 (0.54-0.87) 

 

0.78 (0.56-1.09) 

0.58 (0.35-0.95) 

 

0.30 (0.09-0.96) 

0.13 (0.01-1.23) 

 

0.90 (0.69-1.16) 

0.83 (0.60-1.14) 

 

0.32 (0.16-0.67) 

0.37 (0.18-0.75) 

Age (years) 1.0 (0.99-1.01) 1.01 (0.99-1.03) 0.97 (0.97-1.08) 1.00 (0.99-1.01) 1.00 (0.97-1.03) 

Female sex 1.02 (0.85-1.23) 1.17 (0.85-1.60) 0.68 (0.19-2.47) 1.02 (0.78-1.33) 0.77 (0.42-1.42) 

Race 

Asian 

Other 

 

0.81 (0.63-1.04) 

1.18 (0.82-1.69) 

 

1.61 (1.00-2.58) 

1.48 (0.73-3.00) 

 

2.78 (0.74-10.5) 

0.24 (0.02-2.66) 

 

0.69 (0.50-0.95) 

1.07 (0.65-1.78) 

 

0.40 (0.16-1.01) 

1.07 (0.41-2.27) 

EOCG PS 1.42 (1.18-1.70) 1.50 (1.07-2.10) 2.08 (0.76-5.69) 1.38 (1.08-1.76) 1.30 (0.71-2.40) 

Squamous histology 1.15 (0.96-1.38) 1.05 (0.76-1.45) 1.34 (0.40-4.47) 1.26 (0.97-1.63) 0.90 (0.51-1.60) 

Count of tumour sites 1.52 (1.29-1.79) 1.24 (0.91-1.69) 1.14 (0.44-2.95) 1.73 (1.17-2.18) 1.03 (0.56-1.90) 

Number of prior treatments 1.10 (0.95-1.27) 1.09 (0.89-1.34) 0.76 (0.21-2.79) 1.06 (0.82-1.36) 0.74 (0.43-1.28) 

Smoking history 

Previous 

Current 

 

0.77 (0.61-0.98) 

0.79 (0.58-1.10) 

 

0.72 (0.47-1.09) 

0.80 (0.42-1.51) 

 

0.69 (0.23-2.01) 

0.52 (0.11-2.79) 

 

0.77 (0.55-1.09) 

0.73 (0.46-1.16) 

 

0.97 (0.42-2.24) 

0.82 (0.29-2. 82) 
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PD-L1 high 0.59 (0.47-0.74) N/A NA 0.56 (0.43-0.73) 0.61 (0.34-1.09) 

High LDH at baseline 1.39 (1.18-1.64) 1.57 (1.15-2.13) 1.42 (0.47-4.26) 1.36 (1.08-1.70) 1.79 (1.02-3.14) 

Log CRP 1.42 (1.33-1.52) 1.59 (1.40-1.80) 1.43 (1.00-2.05) 1.34 (1.23-1.47) 1.62 (1.30-2.03) 

Neutrophil Lymphocyte Ratio > 3 1.52 (1.25-1.85) 1.79 (1.19-2.70) 3.02(0.56-16.3) 1.42 (1.10-1.84) 1.48 (0.81-2.70) 

Progression free survival - HR (95% CI) 

BMI (Kg/m2) 

  25.0-29.9 

  ≥ 30 

0.88(0.77-1.02) 

0.87 (0.72-1.04) 

0.84 (0.67-1.05) 

0.77 (0.57-1.03) 

0.50 (0.19-1.31) 

0.52 (0.13-2.07) 

1.00 (0.81-1.24) 

1.09 (0.83-1429) 

0.68 (0.41-1.12) 

0.52 (0.29-0.94) 

Age (years) 0.99 (0.99-1.00) 0.99 (0.98-1.01) 1.00 (0.97-1.04) 0.99 (0.98-1.00) 1.00 (0.97-1.02) 

Female sex 0.99 (0.86-1.14) 1.01 (0.82-1.26) 0.93 (0.36-2.36) 0.94 (0.75-1.17) 1.20 (0.75-1.92) 

Race 

 Asian 

   Other 

1.12 (0.93-1.35) 

1.15 (0.85-1.57) 

1.34 (0.97-1.84) 

1.72 (0.95-3.15) 

2.89 (0.88-9.44) 

1.55 (0.27-8.83) 

1.02 (0.78-1.31) 

0.94 (0.61-1.46) 

0.80 (0.43-1.49) 

0.84 (0.40-1.77) 

EOCG PS 1.12 (0.98-1.28) 1.08 (0.87-1.33) 1.04 (0.48-2.25) 1.02 (0.84-1.24) 1.54 (0.97-2.43) 

Squamous histology 1.09 (0.95-1.26) 1.10 (0.88-1.38) 0.89 (0.34-2.29) 1.09 (0.87-1.37) 1.02 (0.65-1.60) 

Count of tumour sites 1.20 (1.06-1.37) 0.98 (0.79-1.21) 1.07 (0.49-2.34) 1.41 (1.16-1.71) 1.39 (0.82-2.23) 

Number of prior treatments 0.97 (0.87-1.08) 1.00 (0.88-1.15) 0.76 (0.24-2.37) 0.87 (0.70-1.08) 0.84 (0.54-1.32) 

Smoking history 
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Table 10: Sex-specific association between BMI and OS for patients treated with atezolizumab 

Events/Patients Median, months 
(95% CI) 

Univariable HR
(95% CI) 1

Women 

  BMI 18.5-24.9 155/317 13.3 (10.1-16.3) 1 (reference) 

  BMI 25.0-29.9 59/146 15.0 (14.1-NR) 0.74 (0.55-0.99) 

  BMI ≥ 30 27/81 NR 0.57 (0.38-0.86) 

Men 

  BMI 18.5-24.9 206/388 10.0 (8.2-13.5) 1 (reference) 

  BMI 25.0-29.9 165/344 13.2 (12.1-16.0) 0.80 (0.65-0.98) 

  BMI ≥ 30 73/158 14.9 (11.8-20.7) 0.65 (0.50-0.85) 

1stratified for study 

   Previous 

   Current 

0.69 (0.58-0.83) 

0.59 (0.46-0.76) 

0.65 (0.49-0.87) 

0.61 (0.40-0.93) 

1.21 (0.46-3.15) 

1.11 (0.28-4.44) 

0.64 (0.49-0.85) 

0.52 (0.35-0.77) 

0.77 (0.44-1.38) 

0.50 (0.23-1.09) 

PD-L1 high 0.70 (0.58-0.85) NA NA 0.68 (0.55-0.84) 0.70 (0.46-1.08) 

High LDH at baseline 1.33 (1.16-1.51) 1.46 (1.18-1.80) 2.21 (0.92-5.30) 1.28 (1.06-1.55) 1.05 (0.68-1.63) 

Log CRP 1.15 (1.09-1.21) 1.20 (1.11-1.30) 1.44 (1.06-1.95) 1.11 (1.03-1.20) 1.13 (0.95-1.35) 

Neutrophil Lymphocyte Ratio > 3 1.19 (1.03-1.37) 1.16 (0.92-1.46) 0.65 (0.19-2.24) 1.23 (1.00-1.51) 1.42 (0.90-2.24) 
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Table 11: Cause of death by trials 

Cause N (%) 

All trials  

(n = 742) 

BIRCH  

(n = 223) 

FIR  

(n = 60) 

OAK  

(n = 383) 

POPLAR  

(n = 76) 

Cancer related 673 (91%) 200 (90%) 50 (83%) 357 (93%) 66 (87%) 

Non-cancer 
related 

69 (9%) 23 (10%) 10 (17%) 26 (7%) 10 (13%) 

 

Table 12: Cause of deaths by BMI groups 

Cause of deaths BMI groups (Kg/m2) N (%) P = 0.44 

Total 

(n = 742) 

18-5-24.9 

(n = 361) 

25.0-29.9  

(n = 224) 

≥30 

(n = 100) 

Missing 

(n = 57) 

Cancer related 673 (91%) 326 (90%) 201 (90%) 94 (94%) 52 (91%) 

Non-cancer 
related 

69 (9%) 35 (9.7%) 23 (10%) 6 (6%) 5 (8.8%) 

 

Toxicities from atezolizumab can be immune related or non-immune related adverse events. The incidence 

of all TRAEs was not significantly different between the BMI categories (all grades - 65%, 64% and 65%; P = 

0.92 and grade 3 to 5 - 12%, 14% and 12%; P = 0.66, respectively for normal, overweight and obese 

categories). Similarly, no significant differences were seen in the frequency of irAEs across BMI categories 

except for skin related irAEs (Table 13 and Figure 4). 

Table 13: Pooled adverse events related to atezolizumab across all trials 

Adverse events BMI groups (Kg/m2) N (%)   P value 

Total 

(n = 1411) 

18-5-24.9 

(n = 693) 

25.0-29.9  

(n = 480) 

≥30 

(n = 238) 

TRAEs 911 (64%) 450 (65%) 307 (64%) 154 (65%) 0.92 

TRAEs  

(grade 3 or more) 

178 (13%) 83 (12%) 67 (14%) 28 (12%) 0.66 

irAEs (all grades) 390 (27%) 177 (26%) 138 (29%) 75 (32%) 0.73 
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2.3.2 Association of BMI with survival outcomes for docetaxel treated patients 

Of the 713 participants treated with docetaxel in the OAK and POPLAR trials, 676 individuals (BMI unavailable 

in 9 and 28 were underweight) were included for further analysis. Characteristics of this cohort by BMI 

category are summarised in Table 14. For patients treated with docetaxel, there was no significant 

association between BMI and OS (P = 0.82) or PFS ( P = 0.36; Table 8 and Figure 3). Additionally, the association 

between BMI and OS did not differ significantly between PDL1 positive and PDL1 negative tumours (P 

interaction = 0.41, Table 8).  

2.3.3 Association of BMI with atezolizumab treatment efficacy 

Prior analyses evaluated BMI as a prognostic marker of survival - the association between BMI and survival 

for patients treated with a specific treatment. Here, I report the evaluation of treatment effect modification 

in randomised clinical trials. In contrast to evaluating whether BMI is a prognostic marker of survival, we 

evaluate whether BMI is a ‘predictive marker’ of treatment benefit - the degree to which atezolizumab 

improves survival over docetaxel. 

Exploratory analysis of atezolizumab treatment benefit (vs docetaxel) for BMI subgroups was restricted to 

the intention-to-treat (ITT) populations of the OAK and POPLAR randomized clinical trials (i.e. excluding the 

single arm studies BIRCH and FIR). The pooled ITT populations of OAK and POPLAR included 1,512 patients. 

However, as BMI was unavailable for 24 patients and 69 were underweight, these 93 were excluded, leaving 

1,419 participants (707 randomly allocated to atezolizumab treatment and 712 randomly allocated to 

docetaxel treatment) in the ITT analysis population. Baseline characteristics were well balanced between the 

two treatment arms in the ITT analysis population (Table 15).  The atezolizumab and docetaxel arms had 

median OS of 13.2 months and 9.8 months respectively, with a treatment efficacy HR of 0.79 (95% CI 0.69-

0.90, P = 0.0004).  

The estimated OS benefit of atezolizumab treatment (compared to docetaxel treatment) differed numerically 

between BMI groups (Figure 5 & 6), with HR values of 0.86, 0.79 and 0.68 for normal weight, overweight and 

obese patients, respectively. Atezolizumab survival benefit differences between BMI subgroups was most 
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pronounced for participants with PDL1 positive tumours, with treatment efficacy HR of 0.83, 0.59 and 0.46 

for normal weight, overweight and obese patients, respectively (Figure 5). However, the test for statistical 

interaction between BMI subgroups and atezolizumab OS benefit over docetaxel did not reach statistical 

significance for the ITT analysis population (P interaction = 0.10) or the subset of PDL1 positive tumours (P 

interaction = 0.096). Notably, the HR values numerically favoured atezolizumab in all BMI subgroups (Figure 

5). 

2.4 Discussion

The present analyses, which pools data from multiple prospectively conducted clinical trials of atezolizumab, 

is the largest study to evaluate the relationship between obesity and ICI therapy outcomes. It was 

demonstrated that high BMI was associated with improved overall survival in patients with advanced NSCLC. 

Here, it was identified for the first time that there is a nearly linear relationship between BMI and OS from 

atezolizumab therapy when normal, overweight, and obese categories were compared. The association 

between BMI and OS remained significant after adjustment for trial specific stratification factors and a wide 

number of clinically relevant confounders. The strength of the association was further increased by the 

presence of PDL1 in the tumour/immune cells. While the current analysis is a post-hoc analysis of data from 

clinical trials, the results are consistent with prior studies that demonstrated high BMI being associated with 

improved survival outcomes from ICI across cancer types such as melanoma (Cortellini, Bersanelli, et al. 2019; 

McQuade et al. 2018; Wang, Aguilar, et al. 2019). 

The current study adds to the emerging evidence that high BMI is associated with cancer survival from 

immunotherapy. However, the biological basis of the association is only just beginning to be understood. It 

is possible that obesity may induce a low-grade systemic meta-inflammation and impaired immune response. 

Moreover, obesity induces T-cell dysfunction and increases the exhausted PD-1 positive T-cell phenotype in 

fat and tumour microenvironment through leptin production, which may be the link between obesity and 

immune response (Wang, Aguilar, et al. 2019; Murphy et al. 2018). The identified association between high 

BMI and OS with atezolizumab was particularly strong in the PDL1 positive population, lending further  
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Figure 4: Forest plots for adverse events from atezolizumab 
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Table 14: Baseline characteristics of docetaxel treated patients 
 

Total 
No. 676 

BMI            18.5 
- 24.9 

No. 353 

BMI            25.0 
- 29.9 

No. 221 

BMI                  ≥ 
30.0 

No. 102 

P-value 

Study 0.055 

  OAK 548 (81%) 294 (83%) 180 (81%) 74 (73%) 
 

  POPLAR 128 (19%) 59 (17%) 41 (19%) 28 (27%) 
 

Age (years) 63 (57 - 69) 62 (56 - 70) 65 (58 - 69) 62 (56 - 68) 0.064 

Sex 0.53 

  Male 419 (62%) 212 (60%) 143 (65%) 64 (63%) 
 

  Female 257 (38%) 141 (40%) 78 (35%) 38 (37%) 
 

Race < 0.001* 

  White 497 (74%) 234 (66%) 169 (76%) 94 (92%) 
 

  Asian 124 (18%) 87 (25%) 33 (15%) 4 (4%) 
 

  Other 35 (5%) 21 (6%) 11 (5%) 3 (3%) 
 

  Missing 20 (3%) 11 (3%) 8 (4%) 1 (1%) 
 

ECOG PS 0.72 

  0 250 (37%) 126 (36%) 84 (38%) 40 (39%) 
 

  1 425 (63%) 227 (64%) 137 (62%) 61 (60%) 
 

  Missing 1 (<1%) 0 (0%) 0 (0%) 1 (1%) 
 

Histology 0.17 

  Non-squamous 484 (72%) 263 (75%) 154 (70%) 67 (66%) 
 

  Squamous 192 (28%) 90 (25%) 67 (30%) 35 (34%) 
 

Tumour sites 0.015* 

  <3 266 (39%) 123 (35%) 92 (42%) 51 (50%) 
 

  ≥3 410 (61%) 230 (65%) 129 (58%) 51 (50%) 
 

Liver tumour site 145 (21%) 80 (23%) 48 (22%) 17 (17%) 0.45 

Bone tumour site 207 (31%) 112 (32%) 71 (32%) 24 (24%) 0.24 

Brain tumour site 66 (10%) 42 (12%) 17 (8%) 7 (7%) 0.16 

Prior treatments1 0.38 

  1 499 (74%) 258 (73%) 160 (72%) 81 (79%) 
 

  2 177 (26%) 95 (27%) 61 (28%) 21 (21%) 
 

Smoking history 0.12 

  Never 110 (16%) 68 (19%) 30 (14%) 12 (12%) 
 

  Previous 457 (68%) 225 (64%) 161 (73%) 71 (70%) 
 

  Current 109 (16%) 60 (17%) 30 (14%) 19 (19%) 
 

PD-L1 expression 0.76 

  Negative 457 (68%) 242 (69%) 150 (68%) 65 (64%) 
 

  Positive 216 (32%) 110 (31%) 71 (32%) 35 (34%) 
 

  Missing 3 (<1%) 1 (<1%) 0 (0%) 2 (2%) 
 

Lactate dehydrogenase 0.76 

  ≤ ULN 371 (55%) 193 (55%) 120 (54%) 58 (57%) 
 

  > ULN 287 (42%) 152 (43%) 96 (43%) 39 (38%) 
 

  Missing 18 (3%) 8 (2%) 5 (2%) 5 (5%) 
 

Neutrophil to lymphocyte ratio 0.97 

  <3 247 (37%) 128 (36%) 82 (37%) 37 (36%) 
 

  ≥3 418 (62%) 219 (62%) 139 (63%) 60 (59%) 
 

  Missing 11 (2%) 6 (2%) 0 (0%) 5 (5%) 
 

C Reactive Protein (mg/L) 0.55 

  Median (IQR) 13 (4 - 38) 14 (4 - 39) 11 (4 - 36) 13 (5 - 31) 
 

  Missing 7 (1%) 3 (1%) 2 (1%) 2 (2%) 
 

Data are median (IQR) or number of patients (%). P values per Fisher test for categorical data and Wilcoxon test for continuous 
data. 1Number of prior treatments in the locally advanced or metastatic setting. 
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Table 15: Baseline characteristics from OAK and POPLAR trials 
 

Total 
No. 1,419 

Docetaxel 
No. 712 

Atezolizumab 
No. 707 

Study 

  OAK 1,144 (81%) 577 (81%) 567 (80%) 

  POPLAR 275 (19%) 135 (19%) 140 (20%) 

Age (years) 63 (56 - 69) 63 (57 - 69) 63 (56 - 69) 

Sex 

  Male 886 (62%) 438 (62%) 448 (63%) 

  Female 533 (38%) 274 (38%) 259 (37%) 

Race 

  White 1,036 (73%) 522 (73%) 514 (73%) 

  Asian 263 (19%) 130 (18%) 133 (19%) 

  Other 73 (5%) 38 (5%) 35 (5%) 

  Missing 47 (3%) 22 (3%) 25 (4%) 

ECOG PS 

  0 524 (37%) 267 (38%) 257 (36%) 

  1 893 (63%) 444 (62%) 449 (64%) 

  Missing 2 (<1%) 1 (<1%) 1 (<1%) 

Histology 

  Non-squamous 1,027 (72%) 514 (72%) 513 (73%) 

  Squamous 392 (28%) 198 (28%) 194 (27%) 

Tumour sites 

  <3 594 (42%) 282 (40%) 312 (44%) 

  ≥3 825 (58%) 430 (60%) 395 (56%) 

Liver tumour site 299 (21%) 151 (21%) 148 (21%) 

Bone tumour site 430 (30%) 218 (31%) 212 (30%) 

Brain tumour site 126 (9%) 72 (10%) 54 (8%) 

Prior treatments1 

  1 1,041 (73%) 529 (74%) 512 (72%) 

  2 378 (27%) 183 (26%) 195 (28%) 

Smoking history 

  Never 251 (18%) 122 (17%) 129 (18%) 

  Previous 959 (68%) 476 (67%) 483 (68%) 

  Current 209 (165) 114 (16%) 95 (13%) 

BMI (Kg/m2) 

  18.5-24.9 720 (51%) 377 (53%) 343 (49%) 

  25.0-29.9 467 (33%) 229 (32%)     238 (34%) 

  ≥ 30 232 (16%)    106 (15%)     126 (18%) 

PD-L1 expression 

  Negative 978 (69%) 483 (68%) 495 (70%) 

  Positive 432 (30%) 225 (32%)     207 (29%) 

  Missing 9 (1%) 4(1%) 5 (1%) 

Lactate dehydrogenase 

  ≤ ULN 777(55%) 372 (55%) 405 (57%) 

  > ULN 560 (39%) 287 (40%) 273 (39%) 

  Missing 82 (6%) 53 (7%) 29 (4%) 

Neutrophil to lymphocyte ratio 

  <3 515 (37%) 247 (35%) 268 (38%) 

  ≥3 837 (59%) 419 (59%) 418 (59%) 

  Missing 67 (5%) 46 (6%) 21 (3%) 

C Reactive Protein (mg/L) 

  Median (IQR) 14 (4 - 41) 13 (4 - 38) 15 (5 - 43) 

  Missing 58 (4%) 42 (6%) 16 (2%) 

Data are median (IQR) or number of patients (%). 1Number of prior treatments in the locally advanced or metastatic setting. 
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Figure 5: Atezolizumab vs Docetaxel OS differences by ITT, PDL1 status 

Atezolizumab survival benefit differences between BMI subgroups was most pronounced for 

support to the presence of a T-cell dysfunction state in obese patients. Atezolizumab, by virtue of its 

mechanism of action of PD1/PDL1 axis inhibition on T-cells, might to induce a favourable response in obese 

patients with an established T-cell exhausted state.  

The relationship between obesity and cancer prognosis is complicated. While obesity increases the risks of 

development of certain types of cancers such as breast cancers, it protects against worse outcomes in 

patients with advanced cancers such as lung cancers that are associated with wasting (Azvolinsky 2014). 

Obesity’s association with improved survival in patients with lung cancer may not be specific to ICI therapy. 

Previous observations indicate that high BMI is associated with better outcomes with surgery, radiotherapy 

and some types of chemotherapy in patients with early and advanced NSCLC (Yap et al. 2018; Sepesi et al. 

2017; Masel et al. 2017; Dahlberg et al. 2013). In contrast, high BMI was not associated with survival benefit 

from chemotherapy with docetaxel. It appears that obesity may have a varying influence across the spectrum 

of treatment interventions for lung cancer. 



 

51 
 

Figure 6: OS as per BMI categories for pooled OAK and POPLAR trials 
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The ITT comparison of atezolizumab versus docetaxel for BMI subgroups is novel. The observed signal of 

atezolizumab OS benefit between BMI subgroups in PDL1 positive tumours, should be re-evaluated in future 

studies with larger datasets of ICI treated patients. Moreover, it is unclear in this analysis if BMI could be 

considered as a treatment effect modifier due to lack of adequate power. Future research on the effect of 

BMI sub-groups across all ICI therapy trials may provide adequate power to evaluate this question. 

It is well recognized that men and women have different body composition and adiposity with varying 

prevalence of obesity. However, the interaction between sex and ICI therapy outcomes is inconsistent.  A 

recent report identified that sex may be a predictor of response to ipilimumab, a CTLA4 antibody, but not 

with PD1/PDL1 inhibitors, with males having better OS when compared to females due to sexual dimorphism 

in immune response (Conforti et al. 2018). An updated meta-analysis reported that both men and women 

had similar OS benefit with ICI therapies (Wallis et al. 2019). However, female patients with NSCLC have 

better overall outcomes than males, even after adjusting for smoking, cancer histology and oncogene 

mutations (Sagerup et al. 2011; Kawaguchi et al. 2010). Contrary to a previous report where obese men had 

a better outcome with immunotherapy in melanoma (McQuade et al. 2018), this research indicated that sex 

had no significant effect on the improved survival seen with obese males and females.  

The relationship between BMI and treatment related and irAEs from ICI has been variably reported. In our 

dataset, we did not find that obese patients had an increased incidence of any grade of TRAEs when 

compared to normal BMI, similar to the results of McQuade et al (McQuade et al. 2018). However, a 

retrospective series by Cortellini et al (Cortellini, Bersanelli, et al. 2019) that included various cancer types 

and those with poor performance status, reported a higher incidence of any grade of irAEs in 

overweight/obese patients. Given the expected improved accuracy of data collected through prospective 

clinical trials in our analysis, it is unlikely that obesity is associated with increased TRAEs. Among the irAEs, 

except for skin irAEs, none of the other specific irAEs were consistently associated with high BMI possibly due 

to small sample size. Future research using a large using datasets from all ICI trials could robustly evaluate 

the relationship between obesity and the incidence of irAEs.  
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In the present post-hoc exploratory analysis, pooling of prospectively collected clinical trial data provided 

one of the largest cohorts of patients (>2,200 in total) who received uniform treatment with atezolizumab. 

The data were of high-quality and allowed analysis with adjustments for key clinical confounders. Further, 

the data contained only a small amount of missing information improving the accuracy of our analyses. The 

ITT analysis that compared atezolizumab and docetaxel arms for BMI sub-groups is quite unique in our study.  

There are several limitations in our study. The results from this analysis should be considered as exploratory, 

not pre-planned, and need to be confirmed in subsequent clinical trials. Moreover, BMI alone as a measure 

of obesity is problematic due to its inability to differentiate fat and lean muscle mass, and to diagnose 

sarcopenia and its poor reflection of body fat distribution. It is likely a combination of clinical and biochemical 

markers may be required to characterise obesity more accurately.  

Another known prognostic factor that influences survival in patients with NSCLC is pre-treatment weight loss, 

a measure of cachexia (Buccheri and Ferrigno 1994; Morel et al. 2018; Yang et al. 2011). Weight loss (either 

pre-treatment or during treatment) may variably influence treatment response. In the current analysis, one-

time recorded height and weight at screening or day 1 of trial treatment for the calculation of BMI. As pre-

treatment weight loss was variably recorded in the dataset provided, the effect of this important prognostic 

factor could not be assessed. It would be relevant to analyse data from other trials that have prospectively 

collected information on pre-treatment weight loss. Despite these limitations, the strength of the association 

between BMI and OS from atezolizumab especially in PDL1 positive patients cannot be ignored.  

2.5 Conclusion 
 

Baseline high BMI is independently associated with improved survival with atezolizumab in patients with 

advanced NSCLC and baseline BMI should therefore be considered as a stratification factor in future ICI 

therapy trials. As evidenced in this chapter, BMI, an under-studied baseline characteristic of patients 

undergoing ICI therapy, seems to strongly influence outcomes from atezolizumab. While this is an interesting 

and novel finding, future studies are warranted to confirm these in other cancer types as well as other non-

atezolizumab ICI therapies.  
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The research work described in chapter 2 was published in a major peer-reviewed journal, initially as an early 

online version in December 2019 and as final publication in April 2020 (Kichenadasse et al. 2019b). As of 14th 

of August 2020, this paper had an altmetric attention score of 444 with nine citations, and 49 news outlets 

reporting on the obesity and outcome association (Altmetric 2020). Sanchez et al raised several questions on 

their commentary paper related to this publication and my responses to their comments addressing the 

complex relationship between body size and survival outcomes was subsequently published (Kichenadasse, 

Hopkins, and Sorich 2020; Sanchez and Furberg 2020) (Appendix 2). Since then, data from other studies 

including a meta-analysis have confirmed the association between BMI and ICI outcomes indicating that the 

results from my research were not statistical artefacts, but, likely a true association  (An et al. 2020; Rogado 

et al. 2020; Martini et al. 2020).  
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3. CHAPTER THREE: VARIABILITY OF ADVERSE EVENTS FROM IMMUNE 
CHECKPOINT INHIBITORS 

This chapter has been derived and adapted with permission from the following publication: 

Kichenadasse G, Miners JO, Mangoni AA, Rowland A, Hopkins AM, Sorich MJ. Multi-organ immune-related 

adverse events during treatment with atezolizumab. J Natl Compr Can Netw. 2020 Mar. [Accepted for 

publication]. The accepted manuscript has been reproduced in Appendix 3.  

In the previous chapter, the relationship between baseline BMI and survival outcomes in patients with NSCLC 

being treated with ICI or chemotherapy were evaluated using data from clinical trials. During the analysis of 

data for the previous chapter as well as personal observations from treating patients with ICI in my own 

clinical practice, it became apparent some patients develop more than one organ type irAE. However, there 

was limited literature on this issue of multi-organ irAEs in the public domain. In chapter 3, I sought to 

characterise the pattern of multi-organ irAEs and identify those patients who develop multi-organ iRAEs from 

ICI using the same dataset that was analysed in chapter 2.  

3.1 Introduction  

As previously presented, ICI commonly target CTLA-4, PD1 and PDL1 that promote inhibitory signals on 

immune effector T cells against cancer cells (Wei, Duffy, and Allison 2018). While ICI have improved outcomes 

in several cancers, their use is also associated with significant adverse events (AEs) including death (Wang et 

al. 2018).  

In contrast to other anti-cancer therapies, ICI cause heterogeneous toxicities through non-specific immune 

activation affecting tissues and organs. While guidelines exist for diagnosis and treatment of toxicities from 

ICI therapy, there is no international consensus on the terminology used for the definition, diagnostic criteria, 

grading, causal attribution, as well as little evidence supporting their management (Brahmer, Lacchetti, and 

Thompson 2018; Haanen et al. 2017; Puzanov et al. 2017). The European Society of Medical Oncology 

guidelines divide AEs from ICI therapy into infusion reactions and irAEs (Haanen et al. 2017). Others have 
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used AEs of special interest (AEoSI) or immune mediated adverse events interchangeably with irAEs (Wang, 

Chen, et al. 2017). Their pathophysiology is poorly understood with several proposed mechanisms leading to 

organ damage (Hirschhorn et al. 2018; Postow, Sidlow, and Hellmann 2018).   

In addition, the reported incidence and time-course of irAEs from clinical trials varied between the type of 

checkpoint being targeted. A recent network meta-analysis identified that atezolizumab, an anti PD-L1 

inhibitor, had the best safety profile (Xu et al. 2018). Other analyses reported an incidence of up to 30% with 

PD-1/PD-L1 inhibitors (Nishijima et al. 2017), 72% with ipilimumab (Bertrand et al. 2015), and 88% with 

combined therapies (Gu et al. 2019).  

While more than one autoimmune disease can occur in the same patient (poly-autoimmunity) (Matusiewicz, 

Strozynska-Byrska, and Olesinska 2019), it is unclear whether multiple organ irAEs occurred in the same 

patient, and when they occur, simultaneously or serially. Moreover, the reported irAEs in clinical trials are 

often limited to single organs preventing accurate information regarding the incidence and time course of 

multiple irAEs (Maughan et al. 2017). Such an occurrence of multiple irAEs in the same patient may influence 

their treatment decisions both for the AEs and the cancer. There are additional complexities such as use of 

polypharmacy and involvement of various specialties for their management. Hence, it is important to have a 

thorough understanding of multi-organ irAEs from ICIs. Using pooled data from four prospective clinical trials 

in NSCLC patients treated with atezolizumab monotherapy, I analysed the incidence, severity, time-course, 

treatment, outcomes and risk factors of various organ-specific irAEs and their relationships with response 

rates/survival outcomes.  

3.2 Methods 

3.2.1 Study Population  

Individual patient data from the clinical trials OAK (NCT02008227) (Rittmeyer et al. 2017), POPLAR 

(NCT01903993) (Fehrenbacher et al. 2016), BIRCH (NCT02031458) (Peters et al. 2017), and FIR 

(NCT01846416) (Spigel et al. 2018) were analysed via establish protocols for clinical data sharing 
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(Clinicalstudydatarequest 2019). This secondary analysis of trial data was exempted from review by the local 

Ethics Committee. Only atezolizumab treated cohorts were included in the analysis. 

3.2.2 Definition of adverse events 

AEs which the investigator attributed causality to atezolizumab and occurred while on atezolizumab or within 

30 days after the last dose, were adjudicated treatment related AEs (TRAEs). irAEs were defined as per pre-

specified study protocols (i.e. AEoSI as conditions suggestive of an autoimmune disorder from atezolizumab). 

These events were organ-specific and included endocrine, eye, gastrointestinal (GI), hepatobiliary and 

pancreatic (HBP), neurological, pulmonary, rheumatological, skin and other miscellaneous organ specific 

immune events. Definition terms for each organ specific irAEs as in Table 16. Single organ irAE cohort was 

defined as those with one organ system affected by irAE, while multi-organ irAE cohort was defined as those 

with more than one organ systems involved. Concurrent multi-organ irAE was defined as onset of irAEs within 

7 days of each other, and sequential multi-organ irAEs by greater than 7 days between each. An irAE 

“episode” was recorded at the time of reporting and when the grade increases, decreases or resolves. An 

irAE which has not resolved or changed grade was counted as a single episode. AEs were graded using NCI 

CTCAEv4.0. Grades 3-5 were considered as severe irAEs. 

Table 16: Definition of organ-specific irAEs 

Organ specific irAE Reported terms 

Skin Rash, maculo-papular rash, macular rash, papular rash, erythematous 

rash, dermatitis, psoriasis, eczema, lichen planus, generalised rash, 

pruritic rash, vitiligo, dermatomyositis, or pemphigoid 

Endocrine Hypothyroidism, hyperthyroidism, adrenal insufficiency, thyroiditis, 

hypophysitis, adrenal insufficiency, type 1 diabetes mellitus, and 

increased or decreased thyroid stimulating hormone 

Gastrointestinal Colitis or duodenitis 
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Neurological Peripheral neuropathy, polyneuropathy, or Guillain-Barre Syndrome 

Pulmonary Pneumonitis, interstitial pneumonitis or organizing pneumonia 

Hepatobiliary and 

pancreatic  

Cholangitis, hepatitis or pancreatitis 

Ocular Episcleritis, uveitis, optic neuritis or endocrine ophthalmopathy 

Rheumatological Rheumatoid arthritis, polyarthritis, rheumatic disorder, or autoimmune 

arthritis 

Laboratory Elevated serum liver enzymes or bilirubin, lipase or amylase 

Miscellaneous Those which did not fit under the above organs such as cardiovascular 

system, kidneys and pericardium 

3.2.3 Objectives 

The primary objectives were the incidence, grades and time-course of irAEs from atezolizumab. Secondary 

objectives were incidence and grades of TRAEs, PFS, and OS. PFS was assessed using RECIST version 1.1 or 

modified RECIST. Exploratory analyses investigated risk factors for irAEs as well as the relationship between 

irAEs and survival outcomes.  

Baseline age, sex, race, tumour characteristics, serum LDH and CRP, lung immune prognostic index (LIPI), 

neutrophil to lymphocyte ratio (NLR) and various sub-populations of white cells were evaluated for 

associations with incidence of irAEs. 

3.2.4 Statistical analysis 

Two-sided statistical tests were conducted in R (version 3.4.3) (Team 2017). A P value < 0.05 was considered 

statistically significant. Fisher test for categorical data and the Wilcoxon test for continuous data were utilised 

for association between baseline characteristics and irAEs. Timing of onset of irAE and was visually displayed 

using a Swimmer plot. Logistic regression analysis was performed to investigate association between irAE 

and best overall response. Simple Cox proportional hazards regression and time-dependent Cox proportional 

hazards regression as described in chapter 1.8 were used to model the association between the irAE cohorts 
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and survival outcomes (OS and PFS) and reported as HR with 95%CI. Survival curves were estimated using 

KM analysis.  

3.3 Results 

3.3.1 Overall incidence and severity of AEs 

The analysis included 1,548 patients who received at least one dose of atezolizumab. One or more TRAEs 

occurred in 1,000 (65%) patients, with grade 3-5 TRAEs in 13% across the trials. 730 irAE episodes were 

reported across 424 (27%) patients who had one or more irAEs. The median time of onset was 49 days (Inter 

quartile range 21-130 days).  

3.3.2 Baseline characteristics of patients who developed irAEs  

Table 17 &Table 18 present the characteristics of patients with irAEs. Twelve percent of irAEs occurred within 

the first 42 days of atezolizumab.  Those with irAEs were more likely to be Asian, with good performance 

status, lower CRP, differential changes in sub-populations of white cells, good LIPI score and lower NLR score. 

Details of organ-specific irAEs are described in Table 19. Figure 7 shows selected single organ specific irAEs 

and their time of onset. Skin irAEs were the most common single organ irAE, followed by laboratory 

abnormalities, and other organs. Of note, there was no reported myocarditis or severe cutaneous reactions 

such as bullous pemphigoid. Anaemia (36 episodes), thrombocytopenia (7 episodes), neutropenia (5 

episodes) and lymphopenia (3 episodes) were not considered to be irAEs by the investigators.  

Table 17: Baseline characteristics 
 

Total 
No. 1,548 

No irAE 
No. 1,124 

Single organ 
irAE 

No. 340 

Multi-organ 
irAE 

No. 84 

P-value 

Study 0.61 

  BIRCH 659 (43%) 487 (43%) 138 (41%) 34 (40%) 
 

  FIR    138 (9%)    108 (10%) 24 (7%) 6 (7%) 
 

  OAK 609 (39%) 428 (38%) 145 (43%) 36 (43%) 
 

  POPLAR 142 (9%) 101 (10%) 33 (10%) 8 (10%) 
 

Age (years) 64 (57 - 70) 63 (56 - 70) 66 (58 - 72) 62 (57 - 68) 0.14 

Sex 0.75 

  Male 936 (60%) 673 (60%) 211 (62%) 52 (62%) 
 

  Female 612 (40%) 451 (40%) 129 (38%) 32 (38%) 
 

Race  0.008* 

  White 1,216 (79%) 901 (80%) 245 (72%) 70 (83%) 
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  Asian 231 (15%) 149 (13%) 70 (21%) 12 (4%) 
 

  Other 66 (4%) 48 (4%) 17 (5%) 1 (1%) 
 

  Missing 35 (2%) 26 (2%) 8 (2%) 1 (1%) 
 

ECOG PS 0.031* 

  0 535 (35%) 366 (33%) 131 (39%) 38 (45%) 
 

  1 1,002 (65%) 749 (67%) 208 (61%) 45 (54%) 
 

  2 8 (1%) 6 (1%) 1 (<1%) 1 (1%) 
 

  Missing 3 (<1%) 3 (<1%) 0 (0%) 0 (0%) 
 

Histology 0.20 

  Non-squamous 1,155 (72%) 797 (71%) 258 (76%) 60 (71%) 
 

  Squamous 403 (28%) 327 (29%) 82 (24%) 24 (29%) 
 

Prior treatments1 0.067 

  0 170 (11%) 133 (12%) 31 (9%) 6 (7%) 
 

  1 929 (60%) 661 (59%) 206 (72%) 62 (74%) 
 

  2 449 (29%) 330 (29%)  34 (10%) 16 (19%) 
 

Smoking history 0.055 

  Never 270 (17%) 201 (18%)  61 (18%)  8 (10%) 
 

  Previous 1,081 (70%) 777 (69%) 245 (72%) 59 (70%) 
 

  Current 197 (13%) 146 (13%)  34 (10%)     17 (20%) 
 

  Missing 1 (0.1%) 1 (0.1%) 0 (0%) 0 (0%)  

Data are median (IQR) or number of patients (%). P values per Fisher test for categorical data and Wilcoxon test for continuous 
data. 1Number of prior treatments in the locally advanced or metastatic setting 

 

Table 18: Baseline laboratory characteristics 
 

Total 
No. 1,548 

No irAE 
No. 1,124 

Single organ irAE 
No. 340 

Multi-organ irAE 
No. 84 

P-value 

PD-L1 expression 0.69 

  Negative 528 (34%) 383 (34%) 119 (35%) 26 (31%) 
 

  Positive 1,015 (65%) 737 (65%) 220 (64%) 58 (69%) 
 

  Missing     5 (<1%) 4 (<1%) 1 (<1%) 0 (0%) 
 

Lactate dehydrogenase 0.23 

  ≤ ULN 913 (59%) 649 (58%) 211 (62%) 53 (63%) 
 

  > ULN 584 (38%) 439 (39%) 116 (34%) 29 (35%) 
 

  Missing 51 (3%) 36 (3%) 13 (4%) 2 (2%) 
 

Neutrophil count (109/L) 0.002* 

  Median (IQR) 5 (3.7 – 6.7) 5.1 (3.8 – 7.0) 4.7 (3.7 – 6.0) 4.9 (3.5 – 6.3) 
 

  Missing      28 (1.8%) 23 (2%) 5 (1.5%) 0 (0%) 
 

Lymphocyte count (109/L) 0.28 

  Median (IQR) 1.3 (0.9 – 1.8) 1.3 (0.9 – 1.8) 1.3 (1.0 – 1.8) 1.5 (1.1 – 2.0) 
 

  Missing      90 (5.8%) 67 (6%) 18 (5.3%) 5 (6%) 
 

Basophil count (109/L) 0.14 

  Median (IQR) 0.02 (0 – 0.05) 0.02 (0 – 0.05) 0.03 (0 – 0.06) 0.03 (0 – 0.06) 
 

  Missing      124 (8%) 93 (8.2%) 26 (7.6%) 5 (5.9%) 
 

Eosinophil count (109/L) 0.12 

  Median (IQR) 0.14          
 (0.09 – 0.24) 

0.14           
(0.09 – 0.23) 

0.15           
(0.10 – 0.29) 

0.15          
 (0.10 – 0.30) 

 

  Missing      108 (6.9%) 79 (7%) 24 (7%) 5 (5.9%) 
 

Monocyte count (109/L) 0.28 

  Median (IQR) 0.61          
 (0.48 – 0.84) 

0.63           
(0.48 – 0.85) 

0.60          
 (0.48 – 0.80) 

0.60          
 (0.48 – 0.80) 

 

  Missing      96 (6.2%) 72 (6.4%) 19 (5.6%) 5 (5.9%)` 
 

CD3 count (109/L) 0.30 

  Median (IQR) 834            
 (561 – 1193) 

812             
(540 – 1182) 

868             
(600 – 1210) 

952            
 (630 – 1297) 

 

  Missing      75 (5%) 56 (5%) 15 (4%) 4 (5%) 
 



 

61 
 

CD4 count (109/L) 0.13 

  Median (IQR) 486             
(321 – 732) 

470             
(306 – 717) 

510            
(343 – 763) 

559             
(370 – 791) 

 

  Missing      75 (5%) 56 (5%) 15 (4%) 4 (5%) 
 

CD8 count (109/L) 0.78 

  Median (IQR) 293           
(177 – 455) 

291             
(175 – 450) 

292             
(184 – 446) 

313            
 (218 – 468) 

 

  Missing      75 (5%) 56 (5%) 15 (4%) 4 (5%) 
 

Neutrophil to lymphocyte ratio 0.007* 

  Median (IQR) 2.2 (1.6 – 3.2) 2.3 (1.7 – 3.3) 2.1 (1.6 – 2.8) 2.0 (1.4 – 2.8) 
 

  Missing 29 (1.9%) 23 (2%) 6 (1.8%) 0 (0%) 
 

C Reactive Protein (mg/L) < 0.001* 

  Median (IQR) 14 (4 - 42) 15 (4 - 48) 13 (5 - 45) 11 (4 - 32) 
 

  Missing      43 (3%) 26 (4%) 9 (2%) 8 (3%) 
 

Lung Immune prognostic index (LIPI) 0.010* 

  0 678 (44%) 464 (41%)    172 (51%) 42 (50%)  

  1 631 (41%) 472 (42%) 125 (37%) 34 (40%)  

  2 180 (12%) 145 (13%) 29 (9%) 6 (7%)  

  Missing 59 (4%) 43 (4%) 14 (4%) 2 (2%)  

 

Table 19: Details of organ-specific irAEs 

Organ specific 
irAE 

Number of 
unique 
episodes of 
irAEs 

Type of irAE (%) Grades 

1/2 ≥3 

Skin 306 Skin rash (89%), Eczema (4.6%), Psoriasis 
(2.3%), lichen planus (1%); 
dermatomyositis, vitiligo and bullous 
pemphigoid (< 1% each) 

86% 14% 

Laboratory 197 Liver enzyme abnormalities were the 
majority followed by increased bilirubin, 
lipase, or amylase. 

80% 20% 

Endocrine  85 Thyroid gland related (hyper or 
hypothyroidism – 92.5%), adrenal gland 
related (4.7%), type 1 diabetes mellitus 
(2.4%) and hypophysitis (1.2%) 

95.3% 4.7% 

Neurological 56 Peripheral neuropathy (84%), 
polyneuropathy (9%) and Guillain-Barre 
syndrome (7%) 

66% 7% 

Pulmonary 45 Pneumonitis (95%) and organizing 
pneumonia (5%) 

57.8% 42.2%* 

Gastrointestinal 15 Colitis (93.3%) and duodenitis (6.7%) 66.7% 33.3% 

Ocular 9 Uveitis (33.3%), optic neuritis (33.3%), 
endocrine ophthalmopathy (22.2%) and 
episcleritis (11.1%) 

88.8% 11.2% 

Rheumatological 8 Rheumatoid arthritis (37.5%) and 
polymyalgia rheumatica (37.5%), 
polyarthritis (12.5%) and rheumatic 
disorder (12.5%) 

100% 0% 

Miscellaneous 5 Pericarditis (40%), cytokine release 
syndrome (20%), Henoch-Schonlein 
purpuric nephritis (20%) and vasculitis 
(20%) 

60% 40% 
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Hepatobiliary and 
pancreatic  

4 Pancreatitis (75%) and cholangitis (25%) 100% 0% 

*Includes 1 death 

3.3.3 Treatment of irAEs and their outcomes 

Overall, 7.5% of the 730 episodes of irAEs resulted in hospitalization which was required in almost half of 

grade 3 or 4 events and in 5.7% of grade 1 or 2 events. A total of 109 (15%) irAE episodes were treated with 

systemic corticosteroids with 20% being grade 1 or 2 (31 out of 109 episodes) and the rest being grade 3 or 

more. Atezolizumab was interrupted in 14% (102/730) of episodes and permanently discontinued in 2.5% 

(18/730 episodes). At the time of last follow-up, most irAE episodes (60% - 438/730 episodes) were resolved 

while 28% (204/730 episodes) had ongoing irAEs. Nine episodes resulted in sequelae despite resolution of 

the irAE. Only one death from irAEs (pneumonitis) was reported.  

3.3.4 Second-line treatment irAEs 

Second-line immunosuppressants for the treatment of irAEs, after systemic corticosteroid failure, were 

required in five patients. One received infliximab for colitis and had complete resolution; one required oral 

mycophenolate mofetil for hepatitis, one received anakinra for arthritis, and two had topical cyclosporine A 

for ocular irAEs. Atezolizumab was discontinued permanently in the patient with hepatitis. All other patients 

requiring second-line immunosuppressants received further atezolizumab. Of the 424 patients with irAEs, 

340 had one organ specific irAEs (Table 17 and Table 18). The rest (84 patients, 5.4% (84/1548) of all 

atezolizumab treated patients and 19.8% (84/424) of all patients with irAEs) had multi-organ irAEs. Among 

those who had multi-organ irAEs, 70 out of 84 patients (83.3%) had two-organs, thirteen out of 84 patients 

(15.5%) had three organs, and one patient had four organ systems affected by irAEs.  

3.3.5 Multi-organ irAEs 

Of the 424 patients with irAEs, 340 had one organ specific irAEs (Table 17 and Table 18). The rest (84 patients, 

5.4% (84/1548) of all atezolizumab treated patients and 19.8% (84/424) of all patients with irAEs) had multi-

organ irAEs. Among those who had multi-organ irAEs, 70 out of 84 patients (83.3%) had two-organs, thirteen 

out of 84 patients (15.5%) had three organs, and one patient had four organ systems affected by irAEs (Figure 

8). Twelve had concurrent onset irAEs while the rest (72 patients) had sequential onset. 
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Figure 7: Time of onset of all irAEs 

 

Those who had multi-organ irAEs were more likely to be white race, ECOG PS 0, lower baseline CRP and levels 

neutrophil-lymphocyte ratio than those who developed single-organ irAEs. The combination of organs 

affected by irAEs were “skin irAE plus”, “lab irAE plus without skin”, or “other combinations without skin or 

lab irAE”. Sixty patients were in the skin irAE plus cluster; 9 in the lab irAE plus without skin cluster, and the 

remaining 15 had other combinations.  

3.3.6 Multi-organ irAEs and cancer outcomes 

The development of multi-organ irAEs was associated with improved response rates, PFS and OS. The best 

overall response (combined complete and partial response) was significantly higher among those who 

developed multi-organ irAE than those with single organ or without irAEs (42%, 23%, 12% respectively) with 

OR of 2.18 (95% CI 1.5-2.9) for single-organ irAE (vs no irAE) and 5.32 (95% CI 3.3-8.5) for multi-organ irAEs 

(vs no irAE) (P = <0.0001). The median PFS using simple Cox model was significantly improved with multi-

organ irAEs (7.2 months, 95% CI 5.4-12.4) vs single organ irAE (4.2 months, 95% CI 3.9-5.5) and no irAE cohort 

(2.7 months, 95% CI 2.5-2.8) (P = <0.001) (Figure 9). Similarly, the median OS with simple Cox model was 

significantly improved with multi-organ irAEs (not reached (NR) (95% CI 23.5-NR)) vs single organ irAE (20.1 
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months (95% CI 16.0-23.3)) and no irAE cohort (10.3 months (95% CI 9.5-11.4)) (P = <0.001) (Figure 10). HR 

calculated using a time-dependent Cox regression model for OS was 0.47 (95% 0.28 - 0.78) for multi-organ 

irAE (vs no irAE) and 0.69 (95% CI 0.57 – 0.85) for single organ irAE (vs no irAE) (P < 0.0001). However, the 

occurrence of multi-organ irAE was not associated with an improved PFS in the time-dependent Cox model 

(HR 0.92; 95% CI 0.62 – 1.35 for multi-organ iRAEs and HR 0.95; 95% CI 0.81 – 1.11 for single organ irAE, P = 

0.74). 

Figure 8: Swimmer's plot - time of onset of multi-organ irAEs and deaths in 84 patients 

 

  



 

65 
 

Figure 9: Association between irAEs and progression free survival 

 

Figure 10: Association between irAEs and overall survival 
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3.4 Discussion 

This chapter reported a comprehensively assessed multi-organ irAEs associated with an ICI using a large 

dataset from clinical trials. One-fifth of patients treated with atezolizumab developed at least one irAE 

whereas 5.4% had multi-organ irAEs. Mortality from irAEs and irAEs leading to permanent discontinuation of 

atezolizumab were uncommon, with most patients recovering without sequelae. Any irAE, including multi-

organ irAEs, were significantly associated with better tumour response and survival outcomes.  

While the occurrence of poly-autoimmunity is well known in rheumatological literature, there is little 

information on the occurrence of multi-system irAEs until recently, likely due to under recognition and lack 

of routine reporting. Shankar et al recently reported an incidence of 5% for multi-system irAEs among 319 

lung cancer patients treated with anti PD1/PDL1 therapies, which is similar to our findings (Shankar et 2019). 

However, in contrast to this study, pneumonitis was the dominant irAE, with pneumonitis/dermatitis as the 

most common multi-organ irAE. In the current study, skin plus or laboratory plus clusters were the most 

dominant. Furthermore, this research included lung cancer patients treated with a single drug (atezolizumab) 

through clinical trials in contrast to Shankar et al where different ICI were given to patients in real world 

setting. 

The differences in the incidence of organ specific irAEs between studies may be related to the lack of uniform 

definitions of organ specific irAEs across trials. Maughan et al have previously identified important 

differences in the definition of irAEs between atezolizumab, nivolumab and pembrolizumab trials and 

recommended standardized definitions (Maughan et al. 2017). For the current analysis, irAEs were defined 

according to trial protocols as autoimmune conditions based on known mechanisms of ICI drugs.  

The type of single organ irAE was dominated by cutaneous irAEs, followed by laboratory abnormalities and 

endocrine irAEs in our study. This contrasts with previous analysis of anti PD1/ PDL1 drugs where any grade 

of endocrine irAE was the most common organ system affected, followed by pneumonitis (Wang, Zhou, et 

al. 2019). Of interest, neurological irAEs, especially neuropathy, emerged as an important irAE in our analysis. 

The reason for the relatively high incidence of neuropathy as an irAE from atezolizumab is unknown. It is also 

unclear whether the incidence of neurological irAEs is similar with other ICI drugs or whether they were 
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under-recognized or under-reported in previous trials. Future studies should consider prospective evaluation 

of neuropathy during treatment. 

Among the baseline characteristics that are associated with the development of irAEs, Asian race and good 

LIPI score were statistically significant. Prior studies have similarly reported associations with Asian race (Peng 

and Wu 2018). However, the association with good LIPI score has not been previously reported.  

Prior studies suggest a relationship between the occurrence of irAE and tumour response and survival from 

ICI therapies for various cancers (Cortellini, Buti, et al. 2019; Petrelli et al. 2019). It is possible that the 

presence of a generalized immunogenic state during ICI therapies may contribute towards better cancer 

control along with damage to normal organs which manifests as irAEs. This research identified a similar 

association between the occurrence of irAEs and best overall response, PFS and OS. Moreover, the 

occurrence of multi-organ irAEs was strongly associated with improved OS, but not for PFS with time-

dependent Cox models indicating possible immortal time bias confounding results in simple Cox model.  

In addition, the definition of abnormal blood results and their attribution to organ specific damage needs 

further consideration. Whether laboratory abnormalities alone constitute irAEs requires international 

consensus. None of the available guidelines provide definitions for organ specific irAEs. The current 

understanding of the pathophysiology, incidence, and management of irAEs can only be improved by using 

uniform definitions for the development of evidence-based guidance.  

While the diagnosis and characterization of irAEs remain inconsistent and challenging (Hsiehchen et al. 2019), 

the expert consensus-based Trial Reporting of Immuno-Oncology (TRIO) recommendations are likely to 

improve the reporting of ICI in clinical trials. However, the TRIO guidance does not recognize or mandate 

reporting on multi-organ irAEs. As described in this research, a significant proportion of patients treated with 

ICI develops multi-organ toxicities and may have associations with treatment response and outcomes. Hence, 

their recognition and reporting should become part of published manuscripts and routine care of patients 

undergoing ICI therapies. 
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Poly-autoimmunity phenotypes often occur due to common genetic factors, immune pathogenic 

mechanisms and an established set of risk factors such female predominance, family history, smoking history 

and native American it is unclear if multi-organ irAEs have any risk factors (Anaya 2017). In the current study, 

white race and good ECOG PS were associated with multi-organ irAEs. In contrast to the poly-autoimmunity 

phenotype, sex and smoking were not associated with multi-organ irAEs. Further studies should evaluate any 

underlying genetic risk factors that may predispose multi-organ irAEs in certain individuals who receive ICI 

therapies using data through international collaboration (Khan et al. 2019).  

Prior reports on poly-autoimmunity also identified that the treatment of multiple conditions adds complexity 

to their care (Anaya 2017; Bliddal, Nielsen, and Feldt-Rasmussen 2017; Matusiewicz, Strozynska-Byrska, and 

Olesinska 2019). Similarly, treatment of a patient with multi-organ irAEs poses other challenges such as need 

for endocrine replacement therapies use of immunosuppressants at the same time, possible need for second 

line immunosuppressants and secondary complications such as high blood glucose levels and infections from 

corticosteroids. In the current study, due to limited number of patients, it is unclear if patients with multi-

organ irAEs have an increased need for second line immunosuppressants. 

This research highlights a previously under-recognized issue of multi-organ irAEs arising from ICI therapies. 

The current study is the largest analysis of uniformly treated patients with NSCLC who developed multi-organ 

irAEs from an anti-PD-L1 inhibitor. Data was collected prospectively through multi-centre international 

clinical trials thereby improving the accuracy of the information. Moreover, the association between the 

occurrence of irAEs and survival outcomes were evaluated using time-dependent Cox models to avoid bias 

from different treatment duration (Eggermont et al. 2020). 

There are several limitations in the current study. First, the analysis is a post hoc exploratory analysis and as 

such should be considered hypothesis generating and need to be confirmed in other studies. Second, the 

data was from lung cancer trials with atezolizumab. It is not clear if a similar pattern of multi-organ irAEs 

occurs with other cancer types or ICI drugs. Third, the data had investigator reported AEs and there was no 

external validation/confirmation of AEs. Lastly, the irAEs analysed were organ specific without the inclusion 

of constitutional symptoms such as fatigue and fever, which could be related to cytokines released by 
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activated immune cells. These toxicities are not traditionally regarded as irAEs although they may have 

immune aetiology. Despite these study limitations, this research demonstrated that multi-organ irAEs need 

appropriate recognition and evaluation.  

3.5 Conclusion 

Multi-organ irAEs were reported in 5.4% of patients treated with atezolizumab in lung cancer trials. Health 

professionals involved in the care of patients undergoing ICI therapies should recognize that irAEs can 

manifest as multiple organ system damage. Future trial reporting should consider incorporation of data on 

multi-organ toxicities in addition to single organ specific toxicities. As demonstrated in this chapter, toxicities 

from drug therapies (atezolizumab, here as an example) may be associated with survival outcomes. However, 

the severity, type and number of AEs a patient experience, is heterogeneous within a cohort of patients 

treated with the same intervention which highlights another level of variability during systemic cancer 

therapies.  
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4. CHAPTER FOUR: IMMUNE RELATED ADVERSE EVENTS AND SURVIVAL 
OUTCOMES 

One of the interesting findings from chapter 3 was that the irAEs, especially, multi-organ irAEs were 

significantly associated with improved survival outcomes from atezolizumab in patients with NSCLC. 

However, it was unclear if such an association was unique to ICI type drugs and non-ICI type drugs were also 

associated with survival benefit. Hence, in this chapter 4, I planned to assess the relationship between irAE 

type toxicities from ICI or chemotherapy and survival outcomes using a data from randomized controlled 

trials that compared ICI and chemotherapy in two different cancer types.  

4.1 Introduction 

It is well recognized that all systemic cancer therapies are associated with some degree of short-term and 

long-term treatment-related adverse effects. These can be mild, severe enough to affect activities of daily 

living and quality of life, or, in extreme circumstances, lead to fatal outcome. Whether such toxicities are 

unavoidable to achieve beneficial clinical outcomes is a matter of ongoing debate.  

It is also recognized that toxicities that arise from the direct pharmacodynamic effects of systemic cancer 

therapies may be associated with improved outcomes. For example, myelosuppression from chemotherapy 

drugs, endocrine symptoms from anti-hormonal drugs, skin rash from anti epidermal growth factor receptor 

inhibitors, hypertension from anti-angiogenic drugs, and more recently, irAEs from ICI have all been reported 

to be associated with improved outcomes across various cancer types  (Abola, Prasad, and Jena 2014; 

Cortellini, Buti, et al. 2019; Di Maio et al. 2005; Khoja et al. 2014; Liu et al. 2013; Yoo et al. 2018).  

ICI therapies are part of standard care in various cancers. Two-thirds or more of patients receiving ICI develop 

one or more AEs with 14% developing at least 1 severe AE (Wang, Zhou, et al. 2019). irAEs are specific 

toxicities arising through activation of the immune system with consequent organ damage. The 

pathophysiology of irAEs is poorly understood, although possible mechanisms include non-specific 

inflammatory cytokine release, T-cell activity against shared antigens of tumour and normal cells, 

complement mediated cytotoxicity, increased pre-existing autoantibodies, and the release of neutrophil 
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extracellular traps leading to organ damage (Berner et al. 2019; Hirschhorn et al. 2018; Postow, Sidlow, and 

Hellmann 2018). Several authors have previously reported that the occurrence of irAEs is associated with 

improved cancer outcomes (RR, PFS, OS) in advanced cancers and recurrence free survival in early stage 

cancers) (Baldini et al. 2020; Naqash et al. 2020; Xing et al. 2019; Zhou et al. 2020). However, most studies 

were retrospective and only a minority analysed data from clinical trials (Maher et al. 2019). Furthermore, 

they often used statistical modelling and analyses that do not account for the immortal time bias (Dall'Olio, 

Di Nunno, and Massari 2020; Anderson, Cain, and Gelber 2008).  

Landmark analyses with events occurring prior to a fixed time-point, often performed to account for immortal 

time bias, result in decreased power. While the association points towards a predictive biomarker role of 

irAEs for ICI outcomes, it is unclear whether they might also have a prognostic role (FDA-NIH 2016; Simms, 

Barraclough, and Govindan 2013).  

In addition, irAE like toxicities were also reported in control arms that included chemotherapy or placebo 

(Eggermont et al. 2020; Zhou et al. 2020). Most studies have reported associations between irAEs and 

outcomes using data from interventional ICI treated arms but not control arms. Thus, it is currently unknown 

whether a similar association between irAEs and outcomes also exists in the control arms treated with 

chemotherapy. Although the AEs from chemotherapy are not traditionally considered to be immune 

mediated, there is considerable overlap in the terminology used for the reported diagnosis of organs affected 

by toxicities. Trials use uniform criteria for defining irAEs across ICI and non-ICI arms.  

In order to address these issues, this research evaluated the association between the incidence, severity and 

type of irAEs and cancer outcomes (RR, PFS and OS) using individual patient data from three randomized 

clinical trials comparing atezolizumab, with a microtubule inhibiting chemotherapy with either a taxane or 

vinflunine. The overall objective was to assess whether irAEs have a predictive or prognostic association with 

outcomes.  

4.2 Methods 

4.2.1 Patients 
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Deidentified IPD were released through data sharing processes and policies by Roche for the following three 

published trials: IMvigor 211, OAK and POPLAR (Fehrenbacher et al. 2016; Rittmeyer et al. 2017; Powles et 

al. 2018). All trials were randomized controlled trials comparing atezolizumab with chemotherapy in a 

second-line setting.  

IMvigor211 was a phase III open-label trial that randomized atezolizumab with a control arm of 

chemotherapy (docetaxel, paclitaxel or vinflunine) in patients with locally advanced or metastatic urothelial 

cancers (UC) after progression with first-line platinum chemotherapy (Powles et al. 2018). OAK was a phase 

III open-label randomized trial comparing atezolizumab with docetaxel in patients with previously treated 

non-small cell lung cancer (NSCLC) (Rittmeyer et al. 2017). POPLAR was a phase II randomized trial that 

compared atezolizumab with docetaxel in previously treated patients with NSCLC (Fehrenbacher et al. 2016). 

The Southern Adelaide Clinical Human Research Ethics Committee provided exemption for review for this 

secondary analysis of deidentified trial data.  

4.2.2 Assessments 

The primary outcome for the current analysis was OS. Other outcomes assessed were PFS and RR. TRAEs 

were reported by the investigators in the participating sites as toxicities related to the intervention 

(atezolizumab or chemotherapy) and graded using the NCI CTCAEv 4.0. irAEs were uniformly defined and pre-

specified in the study protocols as “adverse events of special interest that were related to an autoimmune 

condition from atezolizumab” and were graded similarly. The same definition was applied in the 

chemotherapy control arms as per the trial protocols. 

 irAEs were grouped based on the reported diagnosis in the case report forms as organ-specific or abnormal 

laboratory investigation with presumed immune aetiology. A definition of abnormal laboratory investigation 

with presumed immune aetiology was also used when organ specificity could not be attributed. To retain the 

comparison between the atezolizumab and the chemotherapy treated cohorts, the same set of toxicities 

(irAEs) were evaluated as the variable of interest.  

4.2.3 Statistical analysis 
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Time-dependent Cox proportional hazards analyses were performed to assess the association between the 

occurrence of irAEs and survival outcomes. Specifically, either incident irAE or the grade of irAE (0 vs 1-2, vs 

3-4) were included as a time-dependent covariate. Associations were reported as HR and 95%CI. Evaluation 

of whether the association between irAE and survival outcomes differed between treatments (atezolizumab 

vs chemotherapy) was evaluated using an interaction term between treatment and the time-dependent irAE 

covariate. The association between the irAE time-dependent covariate and survival outcomes was graphically 

displayed using the method of Simon and Makuch (Simon and Makuch 1984). Cox proportional hazard 

landmark analyses at 42 days (equivalent to 2 cycles of atezolizumab or chemotherapy) were conducted as a 

sensitivity analysis of the association between early irAEs and survival outcomes. All analyses were stratified 

for the individual study and cancer type and conducted using R 3.5.3 (Team 2017). A P-value < 0.05 was 

considered statistically significant.  

4.3 Results 

Data from a total of 2,366 patients from three clinical trials was available for analysis. The median age was 

65 years (IQR of 57-71); 68% were men, the majority (72%) were white  and had an ECOG PS of 1 (60%). 1,464 

had NSCLC and the rest had urothelial cancer. Half the patients were from the OAK trial with the other 50% 

from the IMVigor211 (38%) and POPLAR (12%) trials. 1,210 patients in the atezolizumab treated cohort and 

1,156 patients in the chemotherapy treated cohort received at least one dose of the planned treatment. 

Among the chemotherapy treated patients, 66% received docetaxel, 21% vinflunine and 13% paclitaxel. The 

baseline characteristics of the atezolizumab and chemotherapy treated cohorts were balanced Table 20. 

Table 20: Baseline characteristics across all trials 

Variable Total 
N = 2,366 

Atezolizumab                  
N = 1,210 

Chemotherapy 
N = 1,156 

P-value 

Study 0.98 

  IMvigor211 902(38%) 459 (38%) 443 (38%) 
 

  OAK 1,187(53%) 609 (50%) 578  (50%) 
 

  POPLAR 277(12%) 142 (12%) 135 (12%)  

Actual treatment <0.001 

  Atezolizumab 1,210 (51%) 1,210 (100%) 0  (0%) 
 

  Docetaxel 766 (32%) 0 (0%) 766 (66%)  

  Paclitaxel 148  (6%) 0 (0%) 148 (13%) 
 

  Vinflunine   242 (10%)  0 (0%)   242 (21%) 
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Cancer type 0.87 

  Lung 1,464 (62%) 713 (62%) 751 (62%) 
 

  Urothelial 902 (38%)    443 (38%) 459 (38%) 
 

Age (years) 65 (57 - 71) 64 (57 - 71) 65 (58 - 71) 0.53 

Sex 0.86 

  Male 1,599 (68%) 820 (68%) 779 (67%) 
 

  Female 767 (32%) 390 (32%) 377 (33%) 
 

Race 0.59 

  White 1,710 (72%) 873 (72%) 837(72%) 
 

  Asian 395 (17%) 210 (17%) 185 (16%) 
 

  Other 78 (3%) 37 (3%) 41 (4%) 
 

  Missing 183 (8%) 90 (7%) 93 (8%) 
 

ECOG PS 0.97 

  0 937 (40%) 480 (40%) 457 (40%) 
 

  1 1,426 (60%) 728 (60%) 698 (60%) 
 

  Missing 3 (<1%) 2 (<1%) 1 (<1%) 
 

Histology 0.92 

  Non-squamous 1,053 (45%) 542 (45%) 511 (44%) 
 

  Squamous 411 (17%) 209 (17%) 202 (17%) 
 

  TCC  824 (35%) 417 (34%) 407 (35%) 
 

  TCC with mixed 77 (3%) 42 (3%) 35 (3%) 
 

PD-L1 expression 0.31 

  Negative 873 (37%) 448 (37%) 425 (37%) 
 

  Positive 1,484 (73%) 756 (63%) 728 (63%) 
 

  Missing 9 (<1%) 6 (<1%) 3 (<1%) 
 

BMI 0.84 

  Median 25 (22 - 28) 25(22 - 29) 25 (22 - 28) 
 

  Missing 49 (2%) 29 (2%) 20 (2%) 
 

Liver metastases 565 (24%) 294 (24%) 271 (23%) 0.63 

Lung metastases 1,722 (73%) 864 (71%) 858 (74%) 0.13 

Bone metastases 663 (28%) 337 (28%)          326 (28%) 0.85 

Brain metastases 132 (6%) 59 (5%) 73 (6%) 0.13 

Best overall response <0.001* 

  PD 949 (40%) 570 (47%) 379 (33%) 
 

  SD 10  (33%) 350  (29%)  438 (38%) 
 

  PR 2  (7%) 146  (12%) 167 (14%) 
 

  Non-CR/PD 2  (<1%) 2  (<1%) 0 (0%) 
 

  CR 50  (2%) 27  (2%) 23 (2%) 
 

  Missing 2  (7%) 115 (10%) 149 (13%)  

Disease control 1,153 (49%) 525 (43%) 628 (54%) <0.001* 

Data are median (IQR) or number of patients (%). P values per Fisher test for categorical data and Wilcoxon test for continuous 
data. EOCG PS – Eastern Co-operative Oncology Group performance status; TCC – transitional cell carcinoma; BMI = Body mass 
index; PD – progressive disease; SD – stable disease; PR - partial response; CR – complete response 
 

4.3.1 Characteristics of irAEs 

Among the atezolizumab treated patients, 804 (66%) had TRAEs and 351 (29%) had the selected  irAEs. Of 

these, irAEs with an incidence of 5% or more included skin (18%), laboratory (8%) and endocrine (5%) irAEs. 

All other organ-specific irAEs were relatively uncommon (Table 21). In contrast, skin and neurological irAEs 

(12% each) were the most common among those who received chemotherapy. The median time for the 
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onset of irAEs from atezolizumab (92 days, IQR - 50-182) was significantly longer than that for the 

chemotherapy cohort (71 days, (IQR 46-134), P <0.001).  

Table 21: irAEs across all trials 

Variable Total 

No. 2,366 

Atezolizumab          No. 

1,210 

Chemotherapy 

No. 1,156 

P-value 

No. of irAEs 616 (26%) 351 (29%) 265 (23%) <0.001 

Skin irAE <0.001 

  Any grade 456 (15%) 286 (18%) 170 (12%) 
 

  Mild 440 (14%) 272 (17%) 168  (12%) 
 

  Severe 16 (1%) 14 (1%) 2 (<1%)  

Endocrine irAE <0.001 

  Any grade 74 (3%) 69 (5%) 5 (1%) 
 

  Mild 68 (3%) 64 (5%)   4 (<1%)  

  Severe 6 (<1%) 5 (<1%)  1 (<1%) 
 

Neurological irAE <0.001 

  Any grade 180 (8%) 39 (3%) 140 (12%) 
 

  Mild 158 (7%) 35 (3%) 122 (10%) 
 

  Severe 22 (1%) 4 (<1%) 18 (2%)  

Laboratory irAE <0.001 

  Any grade 136 (6%) 95 (8%) 41 (4%) 
 

  Mild 94 (4%) 62 (5%) 32 (3%) 
 

  Severe   42 (2%) 33 (3%) 9 (1%)  

Lung irAE <0.001 

  Any grade 28 (2%) 21 (2%) 7  (1%) 
 

  Mild 16 (1%) 13 (1%) 3 (<1%) 
 

  Severe   12 (<1%)   8 (<1%) 4* (<1%)  

GI irAE 0.26 

  Any grade 15 (1%) 11 (1%) 4 (<1%) 
 

  Mild 8 (<1%) 6 (<1%) 2 (<1%) 
 

  Severe   7 (<1%) 5 (<1%) 2 (<1%)  

HPB irAE 0.014 

  Any grade 13 (1%) 12 (1%)   1 (<1%) 
 

  Mild   4 (<1%)   3 (<1%)   1 (<1%) 
 

  Severe   9 (<1%)   9 (<1%)   0 (0%)  

Ocular irAE 0.50 

  Any grade 3 (<1%) 3 (<1%) 0 (0%) 
 

  Mild 2 (<1%) 2 (<1%) 0 (0%) 
 

  Severe 1 (<1%) 1 (<1%) 0 (0%)  

Rheumatological irAE 0.06 

  Any grade 8 (1%) 8 (1%) 0 (0%) 
 

  Mild   6 (<1%)   6 (<1%) 0 (0%) 
 

  Severe   2 (<1%)   2 (<1%) 0 (0%)  

Miscellaneous irAE <0.001 

  Any grade 10 (1%) 9 (1%) 1 (<1%) 
 

  Mild   5 (<1%) 4 (<1%) 1 (<1%) 
 

  Severe   5 (<1%) 5 (<1%) 0 (0%)  

Time to 1st irAE (days) 78 (49 - 147) 92 (50 - 182) 71 (46 - 134) <0.001 

Data are median (IQR) or number of patients (%). P values per Fisher test for categorical data and Wilcoxon test for continuous 
data. mild irAE – grade 1 or 2; severe irAE – grade ≥3; GI – gastrointestinal; HPB – hepatic-pancreatic-biliary 
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4.3.2 Association of irAEs with survival 

Using time-dependent Cox proportional analysis, the occurrence of any grade of irAEs in the atezolizumab 

treated cohort was significantly associated with improved OS (HR 0.70 [95%CI 0.59-0.84], P < 0.0001), but 

there was some evidence of improved PFS but it did not reach statistical significance (HR 0.87 [95%CI 0.74-

1.02], P = 0.08) (Table 22, Figure 11). Similar associations with OS (HR 0.67 [95%CI 0.56-0.79], P < 0.0001) and 

PFS (HR 0.84 [95%CI 0.72-0.97], P = 0.02) were observed in the chemotherapy treated cohort (Table 22, Figure 

12). The P-value for the interaction between treatment (atezolizumab vs chemotherapy) and irAE (yes vs no) 

was not statistically significant, indicating that the occurrence of irAEs was associated with favourable OS 

regardless of treatment with atezolizumab or chemotherapy.  

Table 22: Time dependent analysis for OS and PFS 

 

irAE  

 

Atezolizumab  Chemotherapy 

HR (95% CI) P-value HR (95% CI) P-value 

Overall Survival 

Any irAE 

No 

Yes 

 

1.00 

0.70 (0.59-0.84) 

<0.0001  

1.00 

0.67 (0.56-0.79) 

<0.0001 

irAE grade 

0 

1-2 

≥ 3 

 

1.00 

0.63 (0.52-0.77) 

1.11 (0.81-1.53) 

<0.0001  

1.00 

0.65 (0.54-0.78) 

0.83 (0.53-1.28) 

<0.0001 

Progression Free survival  

Any irAE 

No 

Yes 

 

1.00 

0.87 (0.74-1.02) 

0.08  

1.00 

0.84 (0.72-0.97) 

0.02 

irAE grade  0.026  0.06 
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Figure 11: OS vs irAEs in Atezolizumab treated patients (Time-dependent analysis) 

 

Figure 12: OS vs irAEs in chemotherapy treated patients (Time-dependent analysis) 

 

A similar analysis was performed to investigate the association between irAE grades and survival. In both the 

atezolizumab and chemotherapy cohorts, when compared to patients without any irAEs, those with grade 1 

or 2 irAEs had improved OS (HR 0.63 [95%CI 0.52-0.77], P < 0.0001; and HR 0.65 [95%CI 0.54-0.78], P < 0.0001, 

respectively). However, the presence of grade 3 or more irAEs was not associated with OS benefit in either 

cohort (HR 1.11 [95%CI 0.81-1.53] and (HR 0.83 [95%CI 0.53-1.28], respectively) ( 

0 

1-2 

≥ 3 

1.00 

0.82 (0.69-0.97) 

1.19 (0.86-1.64) 

1.00 

0.83 (0.71-0.9) 

0.88 (0.59-1.30) 

 



 

78 
 

Table 22). Similar associations were observed between the grades of irAEs and PFS in the atezolizumab, but 

not in the chemotherapy, cohort. A sensitivity day 42 landmark analysis showed a statistically significant 

association between the occurrence of any irAE and grade 1 or 2 irAEs in the first 42 days of therapy and 

subsequent OS, but not PFS, both in the atezolizumab and in the chemotherapy treated cohorts (Table 23, 

Figure 13 &Figure 14).  

Table 23: Landmark analysis for OS and PFS – Day 42 (week 6) 

 

 

irAE  

 

Atezolizumab  Chemotherapy 

Median  

(months) 

HR (95% CI) P-value Median HR (95% CI) P-value 

Overall Survival 

Any irAE 

No 

Yes 

 

11.1 

16.3 

 

 

0.74 (0.59-0.92) 

0.006  

10.5 

13 

 

 

0.76 (0.60-0.95) 

0.015 

irAE grade 

0 

1-2 

≥ 3 

 

15 

21.3 

8 

 

1.00 

0.76 (0.56-1.05) 

1.70 (0.97-2.97) 

0.045  

10.5 

13.3 

9.8 

 

1.00 

0.72 (0.57-0.91) 

1.30 (0.67-2.53) 

0.013 

 

Progression Free survival  

Any irAE 

No 

Yes 

 

4.2 

4.2 

 

 

0.99 (0.79-1.24) 

0.97  

4.3 

5.6 

 

 

0.98 (0.81-1.19) 

0.85 

irAE grade 

0 

1-2 

≥ 3 

 

4.2 

4.4 

2.6 

 

1.00 

0.92 (0.92-1.18) 

1.47 (0.91-2.39) 

0.26  

4.3 

5.6 

4.1 

 

1.00 

0.80 (0.57-1.19) 

1.05 (0.57-1.91) 

0.96 
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Figure 13: OS vs irAE in Atezolizumab treated patients (landmark analysis at day 42) 

 

Figure 14: OS vs irAE in chemotherapy treated patients (landmark analysis at day 42) 
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Table 24: Time dependent analysis for OS for selected organs (sub-groups) 

A 

sub-group analysis was conducted to evaluate the association between the most common organs affected 

by irAEs and survival outcomes (Table 24). The effect size of estimates for OS for skin irAEs were similar 

between the atezolizumab cohort (HR 0.52 [95%CI 0.40-0.66]) and the chemotherapy cohort (HR 0.55 [95%CI 

0.43-0.71]). For neurological irAEs, the effect size estimate was slightly larger for atezolizumab (HR 0.66 

[95%CI 0.41-1.96]) compared to chemotherapy (HR 0.73 [95%CI 0.59-0.91]).  

4.4 Discussion 

The results from this large cohort of patients with lung or urothelial cancers treated with either atezolizumab 

or mitotic spindle damaging chemotherapy indicate that treatment related irAEs were significantly associated 

with improved OS regardless of the type of treatment. The proposition that irAEs specifically predict 

outcomes in ICI-treated patients may warrant revision as a similar association with favourable OS was 

observed when irAE type toxicities occurred in patients treated with chemotherapy.  

In addition, the results from this analysis indicates that irAEs as defined here (using the standard and all-

encompassing definition) were a non-specific marker of favourable treatment outcomes regardless of 

treatment (atezolizumab or chemotherapy). This raises the hypothesis that the occurrence of irAEs should 

irAE Atezolizumab Chemotherapy 

HR (95% CI) P-value HR (95% CI) P-value

Overall Survival 

Skin 0.52 (0.40-0.66) <0.0001 0.55 (0.43-0.71) <0.0001 

Neurological 0.66 (0.41-1.96) 0.08 0.73 (0.59-0.91) 0.005 

Lab 0.92 (0.68-1.24) 0.58 0.98 (0.65-1.48) 0.94 
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be regarded as a prognostic, rather than predictive factor. The definition of a prognostic factor is any variable 

that provides information about a likely cancer outcome in the absence of any treatment or independent of 

the treatment received. By contrast, a predictive factor is a variable that is associated with a differential 

treatment effect between those with and without the variable (Ballman 2015; Group 2016; Simms, 

Barraclough, and Govindan 2013). As irAEs cannot occur in the absence of treatment, their prognostic nature 

in an untreated population cannot be evaluated. While the presence or absence of a variable at baseline 

prior to the initiation of treatment is often the prerequisite for studies assessing predictive factors, evolving 

treatment related variables such as toxicities (e.g. irAEs) are also often considered to be predictors of cancer 

outcomes. Notably, our analysis showed that using the same set of toxicities as the variable of interest, irAEs 

are associated with survival outcomes independent of the treatment administered. Therefore, irAEs might 

represent a general indicator of treatment benefit across multiple types of systemic therapies, rather than 

limited to ICI therapies. Eggermont et al also reported that irAEs occurred in the placebo arm of a trial albeit 

at a much lower frequency than in the ICI arm (Eggermont et al. 2020). In addition, a previous meta-analysis 

showed that AEs that were presumed to be immune mediated were reported in both ICI and chemotherapy 

treated patients (Magee et al. 2020). However, the rates of irAEs such as colitis, pneumonitis and 

hypothyroidism were higher in the ICI treated cohorts than the chemotherapy treated patients. Future 

studies should investigate the potential survival benefit of irAEs in control arm patients receiving 

chemotherapy and other types of systemic therapies to confirm our hypothesis that irAEs can be potentially 

prognostic factors across various treatment interventions. 

It is a general belief that immune activation induced by ICI towards tumour antigens is also directed towards 

normal organs with shared antigens, resulting in irAEs. Both T-cell and B-cell mediated immune reactions 

have been postulated to be involved in irAEs in addition to other mechanisms (Postow, Sidlow, and Hellmann 

2018). However, the organ damage manifesting as irAEs as surrogate for future improvement in OS, but not 

PFS in atezolizumab treated patients is intriguing. The mechanisms behind this association are unclear, 

however irAEs may simply reflect the off-target response to immune activation from ICI therapies.  
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While the association between irAEs and ICI outcomes has been described previously, the present study 

provides new evidence that irAE-like toxicities have similar association with OS in chemotherapy treated 

patients. Although the chemotherapy related toxicities are not typically defined as irAEs, it is increasingly 

being reported that chemotherapy induced toxicities can also have immunological mechanisms as their 

dominant aetiology. For example, the chemotherapy induced peripheral neuropathy observed with taxanes 

is often associated with neuroimmune responses with increased inflammatory cytokines, toll-like receptor 4 

signalling and a reduction in anti-inflammatory cytokines in the spinal cord (Makker et al. 2017) (Li et al. 

2014). Similarly, skin toxicities occur with varying incidence (6-81%) with docetaxel causing significantly 

worse toxicities than paclitaxel (Sibaud et al. 2016; Poi et al. 2013). Some of the skin toxicities of taxanes such 

as subacute cutaneous lupus erythematosus, have immunological aetiology including positive autoantibodies 

(e.g. anti-SSA/Ro antibodies through their respective antigen Ro52), and nucleosome release causing local 

autoimmune reaction directly related to microtubule damage (Sibaud et al. 2016). In addition, scleroderma 

like reactions have also been described with taxanes (Okada et al. 2015). However, the severe grade 3 or 

more reactions are secondary to a direct toxic effect through a non-immunoallergic mechanism (Poi et al. 

2013).  Another proposed mechanism involves the alteration of the gut microbiome by taxanes with 

consequent development of neurocognitive changes, a well-established toxicity from chemotherapy (Loman 

et al. 2019). Further studies are warranted to better understand the immunological basis of toxicities from 

all cancer therapies.   

Recently, using data from IMvigor211 trial dataset, Khan et al reported a genome-wide association study 

showing that OS was associated with high vitiligo, high psoriasis and low atopic dermatitis polygenic risk 

scores in the atezolizumab cohort, but not in the chemotherapy cohort (Khan et al. 2020). These results 

indicate that it is possible that different immune pathophysiological mechanisms drive the skin irAEs from ICI 

and chemotherapy. Hence, the use of same definitions for irAEs in the chemotherapy arms requires 

reconsideration in future studies.  

A previous meta-analysis found that only 5 out of 21 studies that reported the association between the 

occurrence of irAEs and outcomes used landmark analyses and time dependent analyses, and accounting for 
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immortal time bias was uncommon (Zhou et al. 2020). In the current study, time dependent and landmark 

analyses were conducted, both of which showed a favourable OS benefit. This indicates the consistency of 

the association between the occurrence of irAEs and OS.  

The association between the grade of irAEs and survival outcomes has been reported previously by other 

authors (Zhou et al. 2020). We identified that those patients who had grade 1 or 2 irAEs, but not those 

without any irAE or those with severe (grade 3 or more) irAEs, had a favourable OS. It therefore appears that 

the severity of the irAE is not linearly associated with OS benefit. A similar association was also observed in 

the chemotherapy treated cohort. Severe toxicities are often secondary to direct toxic damage or non-

immunogenic mechanisms of cell death (Poi et al. 2013). It can be inferred that both an absent and a too 

large activation of the immune response, or tissue damage, may foreshadow either lack of benefit or early 

cessation of therapies. Further studies on the quality and quantity of the immune response to ICI and their 

association with cancer outcomes and toxicities are justified. 

Finally, there was a degree of specificity in terms of the organ affected by irAEs and survival benefits. Skin 

irAEs were the only group that was significantly associated with improved OS in the atezolizumab treated 

cohort whereas skin and neurological irAEs were both associated with significant OS benefit in the 

chemotherapy treated cohort. Other groups have similarly reported organ specificity with skin irAEs being 

the most common (Das and Johnson 2019; Eggermont et al. 2020; Zhou et al. 2020). In contrast to other 

reported findings, endocrine irAEs were not associated with improved OS. The reasons for this discrepancy 

are unclear and require further research.  

The current study has several strengths and limitations. Strengths included: a large cohort of ICI and 

chemotherapy treated cohorts with pooled individual patient data from rigorously conducted randomized 

clinical trials; and the analyses included a time-dependent analysis accounting for immortal time bias as well 

as predefined sub-group analyses for the association between grade of irAEs/organ type and survival. The 

main limitations are that: a) the analyses were not pre-planned and should be considered hypothesis 

generating; b) the treatment included monotherapy interventions in relatively fit patients through clinical 

trials with stringent inclusion and exclusion criteria; and c) the applicability of the results among those treated 
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with combination therapies is uncertain. Further studies should explore these issues. Similarly, the trials 

included patients with lung and urothelial cancers treated with microtubule damaging chemotherapy drugs. 

It is unclear whether similar associations occur in other cancer types and with other chemotherapy agents. 

Despite these limitations, the results from the current study show significant irAE-associated OS benefits 

both with ICI therapies and chemotherapy.  

4.5 Conclusion 

irAEs, especially those of low-grade severity, were associated with improved overall survival both in 

atezolizumab and chemotherapy treated patient cohorts with lung or urothelial cancers. The similarity of the 

observed associations, independent of the treatment administered, raises the possibility that irAEs type 

events are prognostic, rather than predictive, factors.  

The results from this research were unexpected as the analyses indicated that irAE type toxicities were 

associated with survival benefit even in chemotherapy treated cohort. Further studies that evaluate this 

association in other treatment settings should be conducted to confirm these findings. Moreover, pre-clinical 

and clinical studies should also explore immunological basis for chemotherapy related toxicities.  
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5. CHAPTER FIVE: CONCOMITANT ANTI-HYPERTENSIVES AND OUTCOMES 
FROM IMMUNE CHECKPOINT INHIBITORS 

In this chapter, the effect of concomitant medications as another factor that may contribute to variability in 

systemic cancer therapy response and toxicities was evaluated. The use of concomitant non-cancer 

medications among patients with advanced cancer is common (prevalence of polypharmacy - 20-81% of 

patients) (McNeil et al. 2016; LeBlanc et al. 2015). Previously reported studies indicate that there is an 

increasing risk for cancer drug vs non-cancer drug interactions with potential drug interactions (seen up to 

75% of patients) and clinically significant interactions (up to 6% of patients) (Goh, Lai, and Chew 2018; Ko et 

al. 2012; Popa et al. 2014). These interactions are usually due to either PK or PD effects. On the contrary, the 

currently available ICI therapies are monoclonal antibodies that act through immune activation. Their drug 

interactions are expected to be predominantly due to PD mediated. Among the concomitant medications, 

previous research has already highlighted that antibiotics and corticosteroids may influence response to 

other ICI therapies (Maxwell, Luksik et al. 2018, Petrelli, Grizzi et al. 2019, Pinato, Howlett et al. 2019, Chalabi, 

Cardona et al. 2020). However, there was little published information on the effect of concomitant use of 

anti-hypertensives in patients undergoing therapy with ICI. 

The association between the concomitant use of anti-hypertensives with atezolizumab was investigated 

using data from seven clinical trials with a patient population that was not uniform, with three different 

cancer types, however, all treated with atezolizumab.  

5.1 Introduction 

Hypertension is common among patients with cancer (Małyszko et al. 2018). Current evidence suggests that 

antihypertensives, cancer and its treatment have a complex and conflicting relationship. The association 

between certain classes of antihypertensives and malignancies varies from increased risks, decreased risks 

or nil effects on the occurrence of cancers as well as beneficial effects, adverse effects, or nil effects on 

survival of some cancers (Battistoni et al. 2020; Tadic et al. 2019). With the significant improvement in 

survival from immune checkpoint inhibitors (ICI) and their widespread usage for cancer treatment, the 
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interaction between chronic conditions, concomitant medications and ICI therapy related outcomes are 

increasingly reported (Chalabi, Cardona, Nagarkar, Dhawahir Scala, Gandara, Rittmeyer, Albert, Powles, Kok, 

Herrera, et al. 2020; Herrscher and Robert 2020; Hopkins, Kichenadasse, et al. 2020; Kichenadasse et al. 

2019a; Moujaess et al. 2019; Schmid et al. 2020). Recently, in a large cohort of patients with various types of 

cancers treated with ICI, it was reported that obesity and hypercholesterolemia were associated with lower 

all-cause mortality while hypertension, smoking and the use of beta blockers were associated with higher 

overall mortality especially in patients with lung cancer (Oren et al. 2020).  

Among the antihypertensives, renin - angiotensin system inhibitors (RASi) are commonly used and have a 

more complex interaction with cancer and its treatment interventions than other drugs (Bangalore et al. 

2011; Cui et al. 2019; Messerli et al. 2018; Sanidas et al. 2020). The three main classes of RASi include the 

angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARBs) and direct renin 

inhibitors (DRIs). ACEI are generally first choice for cardiovascular risk management, ARBs are often 

prescribed if ACEI are contraindicated or not tolerated whereas aliskiren, the only approved DRI, is not 

commonly used due to the relatively high risk of adverse events (Whelton et al. 2018). 

While the predominant physiological functions of RAS signalling are the modulation of fluid, electrolyte and 

blood pressure homeostasis, its role on carcinogenesis, proliferation and cancer progression through a 

multitude of mechanisms is receiving increased attention (Pinter and Jain 2017; Wegman-Ostrosky et al. 

2015). Pre-clinical studies indicate that the components of the RAS pathway are differentially expressed in 

cancer types and that RAS signalling favours cancer cell proliferation, enhances pro-survival pathways, and 

induces neoangiogenesis, cell migration, invasion and metastasis (Wegman-Ostrosky et al. 2015).  

Given the pleiotropic effects of RAS signalling in cancer, previous research has focused on repurposing RASi 

as anti-cancer drugs. Several in vitro and in vivo pre-clinical studies, retrospective clinical studies and small 

clinical trials have reported that RASi use can potentially reduce the incidence of certain types of cancers, 

potentiate the benefit of chemotherapy, anti-angiogenic agents and anti-epidermal growth factor receptor 

inhibitors, and prolong survival in particularly aggressive cancers such as pancreatic cancer (George, Thomas, 

and Hannan 2010; Hamy et al. 2020; Pinter and Jain 2017; Zhao et al. 2019). In a meta-analysis of cohort 
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studies, RASi were associated with improved survival in selected cancer types such as lung, renal, bladder, 

gastric and pancreatic cancers. However, this association was present with ARBs, but not with ACEI (Sun et 

al. 2017). 

In addition, RAS signalling favours a pro-inflammatory state within the tumor microenvironment, thereby 

inducing an immunosuppressive milieu (Nakamura et al. 2018; Pinter and Jain 2017; Vallejo-Ardila et al. 2018; 

Xie et al. 2018). This might contribute towards resistance to agents such as ICI, a class of drugs that relies on 

intra-tumoral immune response. Therefore, the concomitant use of RASi might theoretically augment the 

therapeutic efficacy of ICI. In support of this hypothesis, Nakamura et al have recently reported that ARBs 

may abrogate resistance to ICI in mice (Nakamura et al. 2018). Others have also proposed that RASi may 

suppress chronic inflammation, thereby reducing or preventing ICI induced toxicities (Pinter, Kwanten, and 

Jain 2018). However, in a retrospective study of patients with non-small cell lung cancer (NSCLC), Medjebar 

et al reported that concomitant ACEI and ICI therapy resulted in inferior survival outcomes (Medjebar et al. 

2019). In contrast, there was no association between the use of ACEI or ARBs and overall survival in another 

study (Oren et al. 2020). In view of these conflicting reports, it is important to better understand the effect 

of the concomitant use of RASi on the outcomes from ICI treated patients.  

Given the contradictory results, further studies are required to better understand the biological and clinical 

significance of the interaction between RASi and ICI. Based on the available evidence, it was hypothesized 

that the concomitant use of RASi in cancer patients undergoing ICI therapy may improve survival benefit and 

reduce ICI related adverse events. Therefore, this research evaluated the association between concomitant 

use of RASi or other antihypertensive drug classes and the efficacy and safety of atezolizumab treatment, a 

PDL1 inhibitor, using pooled data from patients with NSCLC, urothelial or renal cancers across seven clinical 

trials.  

5.2 Methods 

5.2.1 Study definitions 
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The primary objectives were to evaluate the association between the concomitant use of RASi and: (i) survival 

(both overall survival (OS) and progression free survival (PFS)), and (ii) immune related adverse events (irAEs) 

during atezolizumab treatment for solid tumors. Exploratory analysis of the association between the 

concomitant use of other classes of antihypertensive agents with survival/ toxicity outcomes were 

conducted. Associations within the cohort of patients treated with chemotherapy were also explored. 

Relevant individual patient data were extracted from seven published trials – BIRCH (NCT02031458)(Peters 

et al. 2017), FIR (NCT01846416) (Spigel et al. 2018), OAK (NCT02008227) (Rittmeyer et al. 2017), 

POPLAR(NCT01903993) (Fehrenbacher et al. 2016); IMvigor 210 (cohort 1 NCT02951767 and cohort 2 

NCT02108652) (Balar, Galsky, et al. 2017), and IMvigor 211 (NCT02302807) (Powles et al. 2018) and 

IMmotion 150 (NCT01984242) (McDermott et al. 2018). Only data from the monotherapy arms with 

atezolizumab or chemotherapy across the trials were included in the analysis. Specifically, the atezolizumab 

with bevacizumab and sunitinib arms from IMmotion 150 were not included. Deidentified data were 

collected and analysed through the data sharing program and policies ('ClinicalStudyDataRequest.com') after 

exemption by Southern Adelaide Clinical Health Research Ethics Committee.  

Antihypertensives were categorized in the following classes: RASi (ACEI, ARBs or DRIs), beta blockers (BB), 

calcium channel blockers (CCB), and diuretics (thiazides and loop diuretics). Use of antihypertensives was 

considered concomitant if the patient was on any of these agents at enrolment to the respective clinical trials 

prior to the study drug administration. irAEs were defined as any investigator identified atezolizumab related 

organ specific immune related events in each trial. OS was the primary outcome, while PFS and any grade of 

irAEs were the secondary outcomes. PFS was reported using the RECIST version 1.1 or modified RECIST, while 

irAEs were graded according to the NCI-CTCAE v4.0. Baseline clinical characteristics, cardiovascular (CV) 

comorbidities and cause of death were also evaluated. 

5.2.2 Statistical analysis 

Pooled HR with 95%CI were reported for the association between the concomitant use of antihypertensives 

(any antihypertensive or specific use of RASi, BB, CCBs and diuretics) and survival (PFS and OS) as modelled 

using Cox proportional hazards regression. A two-stage meta-analysis of IPD was employed for the main 
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objective evaluating the association between RASi and PFS/OS (Burke, Ensor, and Riley 2017). HRs were 

generated from the IPD from each trial separately in the first stage, then the results were combined by a 

random-effects meta-analysis model in the second stage.  

The association between concomitant use of antihypertensives and irAEs were assessed using logistic 

regression and reported as OR. Regression analyses were stratified by study and cancer type. Potential 

confounding variables (age, sex, race, body mass index, PD-L1 expression, and the number of sites of tumour 

metastases) were adjusted by multivariable regression analysis. A P value less than 0.05 was considered 

statistically significant. Analyses were conducted using R (version 3.4.3). 

5.3 Results 

Data from a total of 3,695 patients pooled from seven clinical trials were available for analysis. There were 

2,539 atezolizumab treated patients and 1,156 chemotherapy treated patients across three cancer types 

available for further analysis (NSCLC: 1,548 atezolizumab treated and 713 docetaxel treated patients; 

urothelial cancers: 888 atezolizumab treated and 443 chemotherapy treated patients; renal cell cancer: 103 

atezolizumab treated patients). Baseline clinical characteristics of the atezolizumab and chemotherapy 

treated cohorts is described in Table 25 and Table 26 respectively. Overall, 59% patients had one or more 

cardiac or vascular disorders at baseline. Hypertension was the most common (46% of all patients) 

cardiovascular risk factor at trial entry. Diabetes mellitus was noted in 528 (14%) patients.  

A total of 1,601 (43%) trial participants were on one or more anti-hypertensives for various indications such 

as hypertension, cardiac failure or arrhythmias. RASi were used by 878 (24%) of all trial participants (12% 

each on ACEI or ARB with just 7 patients on both types of drugs). Aliskiren was used by only 3 atezolizumab 

treated patients. Therefore, aliskiren treated patients were not separately analysed as sub-groups of anti-

hypertensive class. BB were the second most used concomitant anti-hypertensive class (19% of patients), 

whereas CCB were used in 12% and diuretics were used in 9 %. Overall, 43% of the patients were on at least 

one anti-hypertensive at trial entry. 

Table 25: Atezolizumab treated population across all trials 
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On atezolizumab Total 
No. 2,539 

No RASi 
No. 1,935 

RASi 
No. 604 

P-value

Study 0.67 

  OAK 609 (24%) 464 (24%) 145 (24%) 

  POPLAR    142 (6%)   111 (6%)   31 (5%) 

  BIRCH 659 (26%)   511 (26%) 148 (25%) 

  FIR    138 (5%)   104 (5%) 34 (6%) 

  IMvigor211 459 (18%) 349 (18%) 110 (18%) 

  IMvigor210 429 (17%) 325 (17%) 104 (17%) 

  IMmotion150    103 (4%) 71 (4%) 32 (5%) 

Cancer type 0.18 

  NSCLC 1,548 (61%) 1,190 (61%) 358 (62%) 

  RCC 103  (3%) 71  (4%) 32 (5%) 

  Urothelial cancers   888 (35%)  674 (35%) 214 (35%) 

Age (years) 65 (58 - 72) 63 (56 - 70) 68 (63 - 74) < 0.001* 

Sex 0.002* 

  Male 1,701 (67%) 1,265 (65%) 436 (72%) 

  Female 838   (33%) 670 (35%) 168 (28%) 

Race 0.11 

  White 2,024 (80%) 1,532 (79%) 492 (81%) 

  Asian 304 (12%) 252 (13%) 52 (9%) 

  Other 97 (4%) 72 (4%) 25 (4%) 

  Missing 114 (4%) 79 (4%) 35 (6%) 

ECOG PS 0.38 

  0 948 (37%) 720 (37%) 228 (38%) 

  1 1,554 (61%) 1,190 (61%) 364 (60%) 

  2  33 (1%) 22 (1%) 11 (2%) 

  Missing 4 (<1%) 3 (<1%) 1 (<1%) 

Tumour sites 0.26 

  Median 2 (1 - 3) 2 (1 - 3) 2 (1 - 3) 

  Missing 34 (1%) 23 (1%) 11 (2%) 

PD-L1 expression 0.24 

  Negative 626 (25%) 477 (25%) 149 (25%) 

  Positive 1,903 (75%) 1,451 (75%) 452 (75%) 

  Missing 10 (<1%) 7 (<1%) 3 (<1%) 

BMI < 0.001* 

  Median 25 (23 - 29) 25 (22 - 28) 27 (24 - 31) 

  Missing 90 (4%) 71 (4%) 19 (3%) 

Diabetes 366 (14%) 197 (10%) 169 (28%) < 0.001* 

Hypertension 1,173 (46%) 599 (31%) 574 (95%) < 0.001* 

Cardiovascular disease 1,486 (59%) 889 (46%)      597 (99%) < 0.001* 

ACEI 299 (12%) 0 (0%) 135 (12%) < 0.001 

ARBs 311 (12%) 0 (0%) 140 (12%) < 0.001 

Beta blockers 488 (19%) 290 (15%) 198 (33%) < 0.001 

CCBs 364 (14%) 200 (10%) 164 (27%) < 0.001 

Diuretics     226 (9%)  115 (6%)  111 (18%) < 0.001 

Any anti-hypertensives 1,094 (43%) 490 (25%) 604 (100%) < 0.001 

Table 26: Chemotherapy treated population across all trials 

On chemotherapy Total 
No. 1,156 

No RASi 
No. 882 

Yes RASi 
No. 274 

P-value

Study 0.66 

  OAK 578 (50%) 447 (51%) 131 (48%) 

  POPLAR    135 (12%)  103 (12%)   32 (12%) 

  IMvigor211 443 (38%) 332 (38%) 111 (41%) 

Cancer type 0.39 
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  NSCLC 713 (62%) 550 (62%) 163 (59%) 
 

  Urothelial cancers 443 (38%) 332 (38%) 443 (38%) 
 

Age (years) 65 (58 - 71) 64 (57 - 70) 67 (61 - 72) < 0.001* 

Sex 0.004* 

  Male 779 (67%) 575 (65%) 204 (74%) 
 

  Female 377 (33%) 307 (35%) 70 (26%) 
 

Race 0.02* 

  White 837 (72%) 619 (70%) 218 (80%) 
 

  Asian 185 (16%) 157(18%) 28 (10%) 
 

  Other         41 (4%) 33 (4%) 8 (3%) 
 

  Missing 93 (8%) 73 (8%) 20 (7%) 
 

ECOG PS 0.44 

  0 457 (37%) 326 (37%) 114 (42%) 
 

  1 698 (60%) 538 (61%) 160 (58%) 
 

  Missing 1 (<1%) 1 (<1%) 0 (0%) 
 

Tumour sites 2 (2 - 3) 2 (2 - 3) 2 (1 - 3) 0.21 

PD-L1 expression 0.35 

  Negative 425 (37%) 326 (37%) 99 (36%) 
 

  Positive 728 (63%) 555 (63%) 174 (63%) 
 

  Missing 3 (<1%) 1 (<1%) 2 (1%) 
 

BMI < 0.001* 

  Median 25 (22 - 28) 25 (22 - 27) 27 (24 - 30) 
 

  Missing 20 (2%) 13 (1%) 7 (3%) 
 

Diabetes 162 (14%) 92 (10%) 70 (26%) < 0.001* 

Hypertension 510 (44%) 255 (29%) 255 (93%) < 0.001* 

Cardiovascular disease 879 (59%) 411 (47%)        268 (98%) < 0.001* 

ACEI  134 (12%) 0 (0%) 134 (12%) < 0.001 

ARBs  140 (12%) 0 (0%) 140 (12%) < 0.001 

Beta blockers 222 (19%) 131 (15%) 91 (33%) < 0.001 

CCBs 178 (15%) 98 (11%) 80 (29%) < 0.001 

Diuretics       91  (8%)           56 (6%) 35 (13%) < 0.001 

Any anti-hypertensives 507 (44%) 233 (26%) 274 (100%) < 0.001 

 

5.3.1 Concomitant RASi use and survival outcomes of atezolizumab treated cohort 

A total of 604 (24%) atezolizumab treated patients were on a RASi at the start of the trial, 12% on ACEI and 

12% on ARB. When compared to non RASi users, concomitant RASi users were more likely to be older, male, 

with high body mass index (BMI), higher prevalence of hypertension, diabetes and cardio-vascular diseases, 

and greater use of other anti-hypertensives (Table 25).  

When the RASi users were compared to non-users, there was a borderline significant OS benefit was noted 

(pooled HR was 0.88, 95% CI 0.78-1.00, P = 0.05), and no significant PFS benefit was seen (pooled HR was 

0.93, 95% CI 0.84-1.03, P = 0.15). When the two-stage meta-analysis of IPD was employed, there was no OS 

benefit (pooled HR 0.90, 95% CI 0.78-1.04, P = 0.15), or PFS benefit (pooled HR 0.95, 95% CI 0.85-1.05, P = 

0.28) between RASi users non-users among the pooled atezolizumab treated cohort (Figure 15 & Figure 16). 
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On adjustment for confounding variables, there was no significant association with either OS (HR 0.94, 95% 

CI 0.82-1.07, P =0.38) or PFS (HR 1.003, 95% CI 0.90-1.12, P =0.95). On exploratory analysis, no associations 

between ACEI, BB, CCB or diuretic use and OS or PFS from atezolizumab were observed (Table 27). Concomitant ARB 

was the only class that was significantly associated with inferior PFS (pooled HR 1.16, 95% CI 1.01-1.33, P = 0.038), 

although there was no association with OS (pooled HR 0.98, 95% CI 0.82-1.16, P = 0.79) (Table 27). 

Figure 15: RASi use and overall survival outcomes among atezolizumab treated patients 

 

Figure 16: RASi use and PFS outcomes among atezolizumab treated patients 
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Table 27: Survival outcomes and sub-classes of anti-hypertensives 

Concomitant drug class Adjusted Pooled HR 95% CI P- value

Overall survival for Atezolizumab treated cohorts 

ACEI 0.94 0.79-1.12 0.49 

ARBs 0.98 0.82-1.16 0.79 

BB 1.05 0.91-1.21 0.47 

CCB 1.03 0.88-1.21 0.68 

Diuretics 1.15 0.95-1.4 0.15 

Any antihypertensive 1.01 0.89-1.13 0.92 

Progression free survival for Atezolizumab treated cohorts 

ACEI 0.88 0.76-1.02 0.09 

ARBs 1.16 1.01-1.33 0.038* 

BB 1.01 0.90-1.13 0.47 

CCB 1.04 0.88-1.21 0.68 

Diuretics 1.15 0.92-1.19 0.51 

Any antihypertensive 1.06 0.96-1.17 0.24 

Overall survival for chemotherapy treated cohorts 

ACEI 0.99 0.79-1.12 0.49 

ARBs 0.90 0.72-1.12 0.79 

BB 0.91 0.76-1.09 0.31 

CCB 1.07 0.89-1.30 0.46 

Diuretics 1.53 1.20-1.95 <0.001* 

Any antihypertensive 0.98 0.84-1.13 0.75 

Progression free survival for chemotherapy treated cohorts 

ACEI 1.06 0.88-1.29 0.53 

ARBs 1.01 0.89-1.23 0.94 

BB 1.05 0.89-1.23 0.58 

CCB 0.93 0.78-1.11 0.40 

Diuretics 1.22 0.97-1.53 0.09 

Any antihypertensive 1.01 0.89-1.16 0.84 

5.3.2 Concomitant anti-hypertensive use and irAEs of atezolizumab treated cohort 

Overall, 736 (25%) of atezolizumab treated patients had one or more irAEs during the study period. There 

was no significant difference in the incidence of irAEs with the concomitant use of a RASi (OR 0.94; 95% CI 

0.76-1.15, P = 0.55), ARBs (OR 0.79; 95% CI 0.59-1.03, P = 0.09), or ACEI (OR 1.12; 95% CI 0.86-1.46, P = 0.39). 

5.3.3 Concomitant anti-hypertensive use and survival outcomes of chemotherapy treated cohort 

Among the cohort of chemotherapy treated patients, 274 (24%) were on RASi at baseline. Concomitant RASi 

users were more likely to be older, male, white race, with high BMI and hypertension, diabetes, 

cardiovascular disease, and greater use of other anti-hypertensives (Table 26). The concomitant use of RASi, 

ACEI, ARBs or any anti-hypertensive drug class was not significantly associated with PFS or OS, except for 
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diuretics, which were associated with significantly worse survival (pooled HR 1.53; 95% CI 1.20-1.95, P = 

<0.0001) (Table 27). 

5.4 Discussion 

In this pooled analysis of data from rigorously conducted clinical trials in patients with three different cancers, 

the concomitant use of antihypertensives, especially RASi, was not significantly associated with either 

improved or decreased survival or irAEs during treatment with the ICI, atezolizumab. Similarly, concomitant 

use of antihypertensives was not associated with any survival benefit during treatment with chemotherapy.  

Previous epidemiological studies have reported that antihypertensives including RASi may differentially 

affect cancer incidence across multiple cancer types (Battistoni et al. 2020; Małyszko et al. 2018). However, 

there are limited data on the interaction between RASi and various systemic anti-cancer treatments, 

especially ICI (Aydiner, Ciftci, and Sen 2015; Li, Sun, and Hu 2017; Medjebar et al. 2019; Oren et al. 2020). 

The findings from the current study contrast with the available pre-clinical data and clinical observations from 

smaller studies, suggesting that RASi may improve survival and decrease irAEs from ICI (Medjebar et al. 2019; 

Pinter and Jain 2017; Pinter, Kwanten, and Jain 2018; Wegman-Ostrosky et al. 2015; Xie et al. 2018). 

Furthermore, exploratory analysis showed that concomitant use of ARBs was associated with an inferior PFS, 

but not with OS, during treatment with atezolizumab.  

The results from the current study are similar to the large retrospective cohort study by Oren et al who 

reported no significant association between RASi and lung cancer outcomes (Oren et al. 2020). In contrast, 

Medjebar et al reported that concomitant ACEI use was associated with worse survival through an induction 

of intra-tumoral immunosuppressive state (Medjebar et al. 2019). However, limited information was 

provided regarding patient and cancer characteristics and the study was relatively small (27 patients received 

concomitant treatment with ACEI out of 283 pembrolizumab treated patients). The issues of different study 

design, sample size, and analysis between my research and that of Medjebar et al notwithstanding, it is 

possible that ARBs, similar to ACEI, induce intra-tumoral immunosuppression that may counteract 
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atezolizumab activity. Further experimental and clinical studies involving various types of cancer and other 

ICI are required to clarify the association between RASi and immunotherapies.  

It is possible that the beneficial anti-cancer effects of RASi may be dependent on the primary site of the 

cancer, as previously reported (Roth et al. 2019). The current study analysed data from clinical trials involving 

lung, urothelial and renal cancers. All analyses were performed after stratification for the cancer types and 

study. There was no differential impact of concomitant RASi noted based on the primary site of cancer.  

RASi are often used for the management of cardiac complications of several anti-cancer drugs such as anti-

human epidermal growth factor receptor 2 (her-2), anti-angiogenesis and ICI. More recently, some authors 

have proposed that RASi could be combined with ICI to reduce or prevent a wide range of irAEs due to their 

immune modulatory effects, including suppression of circulating proinflammatory cytokines (Pinter and Jain 

2017; Pinter, Kwanten, and Jain 2018). In our analysis, there was no significant difference in the incidence of 

irAEs between RASi users and non-users. However, it is unclear whether there was any effect on severity or 

specific organs affected by irAEs. Pending the results of further studies that address this issue, RASi remain 

an important option for the management of cardiac complications from ICI and other anti-cancer drugs.  

Several reasons may explain the lack of observed effects of the combined treatment of RASi and ICI on cancer 

outcomes. There are limited data on the optimal in vivo concentration and the proportionate doses of RASi 

required to produce anti-cancer activity. Pre-clinical studies indicate that high concentrations of RASi were 

required to induce cancer cell apoptosis while such concentrations may not be achieved without significant 

toxicities in human clinical trials (Funao et al. 2008; Nakai et al. 2013; Stangier, Su, and Roth 2000). Moreover, 

the mild to moderate reduction noted in the concentrations of pro-inflammatory cytokines with RASi may 

not be adequate to prevent irAEs (Manabe et al. 2005). It is also possible that the effect size of RASi on 

patients being treated with ICI is relatively small, requiring a much larger RASi treated cohort to identify an 

interaction.  

On the other hand, the association between the concomitant use of a diuretic and OS was an unexpected 

finding in chemotherapy, but not atezolizumab, treated patients. However, this observation requires 
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confirmation in larger studies given the relatively small sample size of our subgroup (8% of chemotherapy 

treated patients).  

The current study has several strengths. It included the largest number of patients uniformly treated with 

atezolizumab using high quality data from clinical trials. The number of concomitant RASi users was relatively 

large which allowed optimal exploration of the interaction between RASi and ICI therapies. The analysis 

included stratification for the cancer types and adjustment for clinically relevant confounding variables, 

thereby improving its validity.  

Limitations of the current study include lack of data on duration and dose changes of RASi, patients starting 

RASi after the commencement of trial, and adherence to concomitant medications. Moreover, the current 

study was a post hoc analysis and should therefore be considered as hypothesis generating for future 

prospective studies on the effect of the intervention of RASi on cancer outcomes. Similarly, the data included 

those patients treated with atezolizumab monotherapy. It is unclear if the lack of association between RASi 

and ICI will remain consistent when evaluated in combination strategies. Ongoing trials such as NCT03563248 

- combining losartan, an ARB, with chemotherapy and nivolumab, an ICI, for the treatment of pancreatic

cancer will generate useful knowledge in this context (NCT03563248 - Losartan and nivolumab in 

combination with chemotherapy and stereotactic body radiotherapy in localized pancreatic cancer).  

5.5 Conclusion 

There was no significant association between the concomitant use of RASi and atezolizumab in terms of 

survival or safety in patients with advanced malignancies using data from seven clinical trials. From this 

research, it appears that concomitant use of anti-hypertensives, especially from the RASi group, are unlikely 

to influence the activity or safety of atezolizumab indicating that the variability of response to atezolizumab 

is not explained by the concomitant use of RASi. This contrasts with other recent publications that 

concomitant drugs such as antibiotics, corticosteroids and proton pump inhibitors may negatively affect ICI 

therapy outcomes. Further larger studies should explore the relationship between concomitant RASi and ICI 

therapies using different agents and cancer types.  
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6. CHAPTER SIX: CONCOMITANT PROTON PUMP INHIBITORS AND
OUTCOMES FROM CYTOTOXICS

As proton pump inhibitors (PPIs) were reported to be associated with negative survival outcomes with 

atezolizumab, I wanted to explore if PPIs similarly contribute towards any worse survival in patients 

undergoing cytotoxic chemotherapy. In this chapter, I report the results from an analysis involving more than 

5,000 patients with a different cancer from previous chapters (colorectal cancers here), all being treated with 

fluoropyrimidine-based chemotherapy.  

6.1 Introduction 

PPIs are one of the most commonly used drugs by patients with cancer, especially gastrointestinal 

malignancies (Smelick et al. 2013). In observational studies in non-cancer populations, the long-term use of 

PPIs was associated with several adverse outcomes including increased all-cause mortality, cardiovascular 

and renal diseases, dementia, infections, fractures, hypomagnesaemia and cancers (Schoenfeld and Grady 

2016; Xie et al. 2019). In contrast, in preclinical in vitro studies PPIs were initially reported to improve the 

efficacy of some anti-cancer agents through direct anti-cancer effects and altered acidity within the tumour 

microenvironment (Bellone et al. 2013; Ikemura, Hiramatsu, and Okuda 2017; Lugini et al. 2016; Pilon-

Thomas et al. 2016). More recently, the potential for PPIs to adversely affect cancer outcomes when given 

concomitantly with oral anti-cancer drugs such as kinase inhibitors was described (Sharma et al. 2019; van 

Leeuwen et al. 2017; van Leeuwen et al. 2014; Hussaarts et al. 2019). An increased intragastric pH from PPI 

use, with consequent reduced absorption of kinase inhibitors, was considered the mechanism responsible 

for this interaction (van Leeuwen et al. 2017). Changes in gastrointestinal microbiome is another mechanism 

through which PPIs may affect the cancer outcomes and metabolism of drugs (Wedemeyer and Blume 2014). 

Observational studies and retrospective analyses of trial data have also shown, albeit not consistently, that 

PPIs may decrease the efficacy of capecitabine, an oral fluoropyrimidine. As a result, patients with colorectal 

cancer (CRC), breast cancer and other malignancies treated with capecitabine might have an increased risk 

of cancer recurrence and/or shorter survival (Altundag 2017b, 2017a; Chu et al. 2017; Chu and Sawyer 2018; 

Graham et al. 2016; Rhinehart et al. 2018; Sun et al. 2016; Wong et al. 2019). However, pharmacokinetic (PK) 
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and in vitro studies have failed to identify the mechanisms of the interaction between PPIs and capecitabine 

(Cheng et al. 2019). Furthermore, it is unclear whether the potentially negative effects of PPIs might also 

involve intravenously administered cytotoxic agents. 

In this project, it was sought to address these issues in this research by assessing the association between 

concomitant PPI use and survival outcomes in patients with advanced CRC treated with a fluoropyrimidine-

based chemotherapy regimen using data from six completed CRC clinical trials. Furthermore, whether this 

association differed between oral and systemically administered fluoropyrimidines, and between other 

agents combined with the fluoropyrimidines were also evaluated.  

6.2 Methods 

6.2.1 Study population 

A retrospective post hoc analysis was performed using anonymized individual patient data from six clinical 

trials in patients with advanced CRC obtained through the data sharing platforms, Project Data Sphere® 

(Projectdatasphere 2020) and Clinical Study Data Request (Clinicalstudydatarequest 2019): AVF2107 trial 

(clinicaltrials.gov number NCT00109070) (Hurwitz et al. 2004), Carrato et al (NCT00457691) (Carrato et al. 

2013), HORIZON III trial (NCT00384176) (Schmoll et al. 2012), VELOUR trial (NCT00561470) (Van Cutsem et 

al. 2012), N016966 trial (NCT00069095) (Saltz et al. 2008), and RAISE trial (NCT01183780) (Tabernero et al. 

2015). Sponsors of the Carrato et al, HORIZON III and VELOUR trials released data from their respective 

control arms only while sponsors for the other four trials provided data for both control and intervention 

arms. Southern Adelaide Clinical Health Research Ethics Committee exempted review for this analysis.  

6.2.2 Study definitions 

A fluoropyrimidine-based regimen was defined as combination anti-cancer therapy including at least one of 

the fluoropyrimidines, 5-fluorouracil (5-FU) or capecitabine. Fluoropyrimidine-based chemotherapy, given 

either as first-line or second-line therapy, included either irinotecan or oxaliplatin as part of multi-agent 

combination therapy with fluoropyrimidines and leucovorin. Concomitant vascular endothelial growth factor 

receptor inhibitor (VEGFi) therapies administered were bevacizumab or ramucirumab, depending on the trial. 
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Concomitant PPIs used were esomeprazole, lansoprazole, omeprazole, pantoprazole, or rabeprazole. PPI use 

was defined as treatment with any PPI at the time of initiation of the respective trial intervention, for a 

minimum of 7 days.  

6.3.3 Data collection and outcomes 

Data extracted were age at trial enrolment, sex and race, tumour response, time to progression, and survival 

time. The outcome measures were PFS and OS among PPI users and non-users. PFS and tumour response 

were assessed using RECIST or RECIST version 1.1. Best overall response was defined as combined complete 

and partial responses. Sub-group analysis for the association between PPI use and OS included the type of 

chemotherapy (oxaliplatin vs irinotecan), oral vs intravenous fluoropyrimidine administration, addition of 

VEGFi and line of therapy.  

6.3.4 Statistical analysis 

Analysis was conducted using cohorts with fluoropyrimidine treated patients. HR with 95%CI for the 

association between PPI use and survival outcomes were estimated individually for each trial arm using Cox 

proportional hazards regression. HRs were adjusted for age, sex, race, ECOG performance status, and serum 

carcinoembryonic antigen (CEA) and LDH levels. Complete case analysis was undertaken due to minimal 

missing data for these covariates. Estimates were then pooled across all trials and arms using random-effects 

meta-analysis methods. A fixed-effect meta-analysis model was applied as a sensitivity analysis. Trial and 

summary HRs were visually displayed using forest plots and statistical heterogeneity described using the I2 

statistic. Analysis was performed using R (version 3.4.3) (Team 2017). A P-value of <0.05 was considered 

statistically significant.  

6.3 Results 

Data from 11 arms across six trials were available for analysis (Table 28). The N016966 trial had four arms, 

two trials had two arms and the rest had one arm. 5-FU with leucovorin and irinotecan (FOLFIRI or IFL) was 

the chemotherapy in all trials except N016966 and HORIZON III where a fluoropyrimidine was combined with 

oxaliplatin. Among the VEGFi therapies, bevacizumab was combined with chemotherapy (BEV+IFL, 
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BEV+FOLFOX or BEV+CAPOX) in the AVF2107g, HORIZON III and N016966 trials, while ramucirumab was 

combined with chemotherapy (RAM+FOLFIRI) in the RAISE trial. Data on sunitinib or aflibercept treated arms 

were not available for analysis. Most of the included trials were first-line interventions while VELOUR and 

RAISE were second-line therapies. From a total of 5,633 patients initially identified as intention to treat, data 

from 5,594 were available for further analysis as per-protocol treated population. Their baseline 

characteristics are shown in Table 30. The majority (58.8%) were men; the median age was 60 years.  

6.3.1 PPI use 

A total of 902 patients were on a PPI at the start of the trial chemotherapy intervention. The proportion of 

PPI users ranged between 11.3% and 25.8% across the trial cohorts (Table 29). PPI users had a similar 

median age and were more likely to be White or Caucasian when compared to non-PPI users. Omeprazole 

was the most frequently used PPI (39%).  

6.3.2 Pooled analysis for association of PPI use and survival outcomes 

Pooled analysis of the crude association between PPI use and survival outcomes indicated that PPI use was 

associated with statistically significant worse OS (random-effects pooled HR 1.23, 95% CI 1.07 to 1.43, Figure 

17) and PFS (HR 1.22, 95% CI 1.07 to 1.38, Figure 18).

The association between PPI use and survival outcomes was then adjusted for age, sex, race, ECOG PS, and 

baseline CEA and LDH levels, where available, in 5,262 participants with complete data for the adjustment 

variables. Figure 19 shows the pooled estimates of adjusted HR for OS between PPI users and non-users 

during fluoropyrimidine-based chemotherapy. There was a statistically significant association between PPI 

use and worse OS outcomes with fluoropyrimidine-based chemotherapy (random-effects adjusted HR 1.20, 

95% CI 1.03-1.40, P = 0.02) with substantial heterogeneity in effect size between studies (I2 = 69%). A 

sensitivity analysis using a fixed effect model estimated a similar effect size (pooled HR 1.20, 95% CI 1.10-

1.30). On pooled analysis, a significant effect of PPI use on PFS with fluoropyrimidine-based chemotherapy 

(overall pooled HR 1.20, 95% CI 1.05-1.37, P = 0.009 and I2 = 65%) was observed (Figure 20). 
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Table 28: PPI and fluoropyrimidines – included trials 

Trial Population Treatment intervention Cohort size (N) PPI use  
N (%) 

Comments 

First line trials 

AVF2107g Advanced CRC, 
treatment naïve 

IFL+ Placebo 
IFL + Bevacizumab 

411 
402 

69 (16.7%) 
89 (22.1%) 

All arms included 

N016966 Advanced CRC, 
treatment naïve 

FOLFOX-4 ± Placebo 
CAPOX ± Placebo 
FOLFOX-4 + Bevacizumab 
CAPOX + Bevacizumab 

668 
667 
350 
350 

123 (18.4%) 
99 (14.8%) 
47 (13.4%) 
53 (15.1%) 

All arms included 

Carrato et al Advanced CRC, 
treatment naïve 

FOLFIRI 386 43 (11.1%) Control arm only 

HORIZON III Advanced CRC, 
treatment naïve 

FOLFOX-4 + Bevacizumab 713 88 (12.3%) Control arm only 

 

Second line trials 

VELOUR Prior oxaliplatin 
chemotherapy 

FOLFIRI 614 113 (18.4%) Control arm only 

RAISE Prior oxaliplatin 
chemotherapy 

FOLFIRI + Placebo 
FOLFIRI + Ramucirumab 

536 
536 

136 (25.3%) 
122 (22.7%) 

All arms included 

 

Table 29: PPI use 

PPI Name AVF2107g N016966 Carrato et al VELOUR RAISE HORIZON III 
 
 
 

PPI Use (N = 159) PPI Use (N = 327) PPI Use (N = 43) PPI Use (N = 113) PPI Use (N = 258) PPI Use (N = 88) 

N % N % N % N % N % N % 

Esomeprazole 29 18.2 34 10.3 6 13.9 13 11.5 18 6.9 10 11.4 

Lansoprazole 60 37.7 48 14.6 3 6.9 17 15.0 47 18.2 15 17.0 

Omeprazole 46 28.9 115 35.1 22 51.1 59 52.2 119 46.1 36 40.9 

Pantoprazole 31 19.4 38 11.6 12 2.9 21 18.5 56 21.7 22 24.9 

Rabeprazole 10 6.2 8 2.4 0 0 3 2.6 18 6.9 5 5.7 
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Table 30: Demographics and outcomes 
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Figure 17: Pooled OS using unadjusted HRs 

Figure 18: Pooled PFS using unadjusted HRs 

Figure 19: Pooled adjusted analysis of the association between PPI use and OS 
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Figure 20: Pooled adjusted analysis of the association between concomitant PPI use and PFS 

6.3.3 Sub-group analyses 

Sub-group analyses were performed to assess whether the adjusted association between concomitant PPI 

use and survival outcomes differed across key subgroups. Generally, estimates of association between PPI 

use and survival outcomes were relatively consistent across treatment subgroups for both OS and PFS. There 

was little evidence to support heterogeneity of effect size on the basis of the chemotherapy agent (irinotecan 

vs oxaliplatin) combined with the fluoropyrimidine (Figure 21), the addition of a VEGFi to chemotherapy 

(Figure 22), or the line of therapy (Figure 23). 

However, the comparison of subgroups treated with capecitabine vs intravenous 5-FU indicated a trend 

towards statistically significant heterogeneity of PPI effect size (P[heterogeneity] = 0.08, Figure 24). This 

exploratory analysis highlights that for patients treated with capecitabine the concomitant use of PPI may 

not be associated with inferior OS and PFS and that further study is warranted with respect to effects of PPI 

use in these subgroups.  

6.3.4 PPI use and response rates 

Complete response to the treatment intervention was uncommon (<5%). Wide variations across trials were 

observed in partial response, stable disease and progressive disease with ranges of 7 to 49%, 29 to 64% and 

7 to 25%, respectively (Table 30). While the ORs for objective response rates with concomitant PPI use were 
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low in most cohorts, there was no statistically significant difference in response rates between PPI users and 

non-PPI users except in the HORIZON III trial (OR 0.51, 95%CI 0.32-0.82) (Table 31). No significant effect of 

concomitant use of PPI on adjusted overall response rates was observed (OR 0.83, 95% CI 0.66-1.05, P = 0.05 

and I2 = 45%) (Figure 25). 

Figure 21: Subgroup analysis for OS using adjusted HRs - concomitant chemotherapy 

 

Figure 22: Subgroup analysis for OS using adjusted HRs - concomitant VEGFi use 
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Figure 23: Subgroup analysis for OS using adjusted HRs - by line of use 

 

 

 

Figure 24: Subgroup analysis for OS using adjusted HRs - by capecitabine vs 5FU 
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Table 31: PPI use and outcomes 

Trial name Unadjusted OS  Unadjusted PFS Unadjusted Objective RR 

HR 95% CI HR 95% CI OR 95% CI 

AVG2107g 
IFL 
IFL + Bevacizumab 

 
1.09 
0.81 

 
0.82-1.46 
0.60-1.09 

 
0.86 
0.96 

 
0.63– 1.16 
0.73 -1.27 

 
1.26 
1.59 

 
0.74-2.15 
0.98-2.55 

N016966 
CAPOX 
FOLFOX 
CAPOX + Bevacizumab 
FOLFOX + Bevacizumab 

 
0.95 
1.18 
1.02 
1.37 

 
0.75-1.22 
0.96-1.46 
0.73-1.43 
0.98-1.91 

 
0.94 
1.17 
1.15 
1.58 

 
0.75-1.17 
0.96 -1.43 
0.85-1.55 
1.15-2.17 

 
0.80 
0.79 
1.01 
0.73 

 
0.52-1.23 
0.54 -1.18 
0.56-1.81 
0.39-1.35 

Carrato et al  - FOLFIRI 1.82  1.18-2.82 1.96 1.38 - 2.78 0.52 0.25-1.06 

VELOUR - FOLFIRI 1.32 1.05-1.67 1.22 0.97 - 1.54 0.66 0.30-1.45 

RAISE 
FOLFIRI 
FOLFIRI + Ramucirumab 

 
1.79 
1.24 

 
1.43-2.23 
0.97-1.59 

 
1.41 
1.22 

 
1.15-1.72 
0.98-1.51 

 
0.66 
0.56 

 
0.35-1.25 
0.28-1.11 

HORIZON III - FOLFOX + 
Bevacizumab 

1.49  1.07-2.09 1.44 1.10 – 1.88 0.51 0.32-0.82 

 

Figure 25: Pooled response rates and concomitant PPI use 

 

 

6.4 Discussion 

The results from this pooled analysis of six clinical trials in patients with advanced CRC indicate that 

concomitant PPI use is associated with significantly worse survival outcomes with fluoropyrimidine-based 

combination chemotherapy.  
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There remains a substantial controversy on the potential negative effect of the concomitant use of PPIs on 

cancer outcomes in patients undergoing fluoropyrimidine (especially, capecitabine) based chemotherapy 

(Altundag 2017b, 2017a; Chu et al. 2017; Chu and Sawyer 2018; Graham et al. 2016; Rhinehart et al. 2018; 

Sun et al. 2016; Wong et al. 2019).  A retrospective series of 671 CRC patients (474 on concomitant PPI) 

reported improved survival in the FOLFOX-treated cohort but not in the CAPOX-treated cohort (Wang, Liu, 

et al. 2017). On the other hand, Chu et al reported worse outcomes when PPIs were used concomitantly with 

CAPOX using data from a prospective trial in patients with gastroesophageal cancers (Chu et al. 2017). Worse 

outcomes when PPIs were given with capecitabine were additionally reported by other authors (Rhinehart 

et al. 2018; Sun et al. 2016). In contrast, sub-group analyses in the current study did not find a significant 

negative association with survival (crude or adjusted) of concomitant PPI use across 980 patients treated 

with CAPOX (with and without bevacizumab). However, there was a negative association with survival in the 

remaining patients treated with a range of 5FU based therapies.  

The current study did not include a cohort with monotherapy interventions with fluoropyrimidines which 

prevents drawing any conclusions on the effect of PPIs on monotherapy. Moreover, the conflicting results 

between studies regarding an interaction between PPI use and add-on chemotherapy drugs indicate that the 

interaction is complex and may be context specific. Prospective studies with complete data on PPI use, 

including duration of PPI use and treatment adherence will help to better understand the association 

between PPI use of treatment outcomes. Similarly, the association between concomitant PPI use on the 

efficacy of other CRC drugs such as anti-epidermal growth factor receptor inhibitors and trifluridine/tipiracil 

warrants further evaluation.  

Previous studies have identified that PPIs may have direct anti-cancer effects and also improve 

chemosensitivity of cancer cells by increasing extracellular pH (Ikemura, Hiramatsu, and Okuda 2017; Lugini 

et al. 2016; Wang, Liu, et al. 2017). However, the concentration required to induce CRC cell death may not 

be reached in vivo (Duncan et al. 2000). On the contrary, as we have observed in this study, concomitant PPI 

may be associated with negative effects on survival across the spectrum of combination chemotherapy with 

5FU. Although the lack of association observed with oral capecitabine (CAPOX or CAPOX plus bevacizumab) 
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is intriguing, this association was based on data from a single study only (N016966) and the test for 

heterogeneity did not quite reach statistical significance.  

The mechanistic basis for the negative effect of concomitant PPI use is unclear. We speculate that PPIs may 

inhibit uptake transporters in tumour cells as one possible mechanism. It is well established that the 

chemotherapy drugs evaluated in this study are substrates for various uptake transporters, some of which 

are expressed in CRC cells. PPIs, especially omeprazole, have been reported to inhibit several transporters at 

therapeutic concentrations. For example, PPIs inhibit oxaliplatin uptake transporters such as organic cation 

transporters (OCT 1 and 3) (Nies et al. 2011), while irinotecan and its active form, SN-38, inhibit transporters 

such as organic anion-transporting polypeptides (OATP1A/1B) (Han et al. 2015). On the other hand, PPIs may 

increase the expression of human equilibrative nucleoside transporter 1 (hENT1), potentially associated with 

poor response to fluoropyrimidines (Redzic, Hasan, and Al-Sarraf 2009; Phua et al. 2013). It is also unclear if 

there is a differential effect of PPIs on the intracellular uptake of oral vs intravenous fluoropyrimidines. In 

addition, the pH dependent uptake of chemotherapy drugs is well recognized (Kobayashi et al. 1999). It is 

possible that PPIs reduce intra-tumoral concentration of cytotoxic drugs through the inhibition of uptake 

transporters as well as altered pH in the tumour microenvironment. This hypothesis requires further testing 

in pre-clinical studies. 

While chronic PPI use is associated with increased all-cause mortality in the general population (Xie et al. 

2019), this study shows that both PFS and OS are negatively affected by concomitant PPI use with 

chemotherapy in CRC patients. The negative association between PFS and PPI use during FOLFIRI 

chemotherapy especially in the second-line setting, but not with IFL, indicates a possible interaction between 

irinotecan scheduling and anti-tumour response. A previous drug-drug interaction trial with short-term 

omeprazole and single agent irinotecan did not show any significant changes in PK parameters and toxicities 

of irinotecan (van der Bol et al. 2011). Hence, it is likely that other mechanisms such as alteration in gut 

microbiome, changes in tumour microenvironment and immune milieu by the PPIs, and their subsequent 

effects on irinotecan PK and pharmacodynamics, may play a role (Bellone et al. 2013; Imhann et al. 2016; 

Pilon-Thomas et al. 2016). PPI related microbiome changes can alter cancer outcomes either through 
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immunosuppression, through increased drug metabolism, altered autophagy or immunosuppression thereby 

increasing resistance to 5FU and oxaliplatin (Biswas et al. 2012; Macke et al. 2020; Wong and Yu 2019). 

Further in vitro and in vivo studies will be required to confirm these findings.  

This study assessed the effect of PPI use in patients undergoing fluoropyrimidine-based chemotherapy in 

CRC. It is unclear whether the negative effects of PPI use occur in other cancers and/or with other drugs such 

as immunotherapies and other targeted agents such as anti-epidermal growth factor receptors. Moreover, 

the use of PPI may reflect the presence of other coexisting confounders such as symptomatic advanced 

cancer with liver metastases that may increase the need for PPI. Future studies should consider addressing 

these gaps by exploring PPI use in early stage CRC, non-CRC cancer types and other treatment settings.  

The current study has significant strengths including a relatively large cohort size, comprehensive prospective 

clinical trial data from individual patients, analysis using individual participant data and strong generalisability 

resulting from pooling across multiple studies and treatments. However, there are also several limitations 

including lack of analysis of the effect of comorbidities on overall survival, the impact of chemotherapy dose 

modifications, lack of information on the duration of PPI use prior to the start of the trial, dose/adherence 

with PPI during the trial, initiation of PPI after chemotherapy was started, the influence of other acid 

suppressing drugs, access to data from other trials with anti-epidermal growth factor receptor inhibitors, and 

technical issues with data merging from various sharing platforms. None of the included trials had no 

chemotherapy or without fluoropyrimidine arms for evaluation, thus precluding direct comparison as well 

exploring prognostic relationship of concomitant PPI usage. Further studies including an analysis of PPI use 

and survival outcomes in patients with mCRC that are not receiving fluoropyrimidine based chemotherapy 

are warranted. Such relationships could also be explored in other cancer types.  

While we adjusted for six clinically significant covariates for the calculation of pooled estimates, other 

contemporary prognostic factors such as right vs left sided primary location of the primary, molecular 

biomarkers such as RAS mutations and microsatellite instability were not uniformly available for inclusion. 

Moreover, we did not evaluate the association between PPI use and adverse events during fluoropyrimidine-

based chemotherapy or the actual cause of death to assess competing risk-based outcomes. While future 
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studies should consider these issues accessing data from real world use of PPI during chemotherapy 

treatment may also provide further insights into this association.  

6.5 Conclusion 

In the current study with data from six clinical trials including more than 5,000 advanced CRC patients treated 

with fluoropyrimidine-based combination chemotherapy, the concomitant use of PPI was associated with 

worse OS and PFS. This association was significant after adjusting for age, sex, race, ECOG PS, baseline CEA 

levels and baseline LDH levels. The association effect size of PPI use and survival was similar across treatment 

subgroups, except for capecitabine-based therapies which requires further evaluation. Pending the 

identification of the mechanisms involved in this interaction and further confirmation in future studies, 

clinicians should cautiously consider the concomitant use of PPIs in advanced CRC patients treated with 

fluoropyrimidine-based combination chemotherapy.  

The results reported in this chapter indicates that PPI can negatively influence the outcomes of patients 

undergoing chemotherapy for advanced CRC. In summary, research including the results from this chapter 

has demonstrated that PPIs are negative indicator of benefit from most systemic cancer therapies including 

traditional chemotherapy, ICI and targeted therapies which likely suggests the prognostic role of concomitant 

use of PPIs during cancer treatment.  
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7. CHAPTER SEVEN: PLASMA CONCENTRATION OF VEMURAFENIB AND 
SURVIVAL OUTCOMES  

This chapter has been derived and adapted with permission from the following publication: 

Kichenadasse G, Hughes JH, Miners JO, Mangoni AA, Rowland A, Hopkins AM, Sorich MJ. Relationship 

between vemurafenib plasma concentrations and survival outcomes in patients with advanced melanoma. 

Cancer Chemother Pharmacol. 2020 Mar; 85(3):615-620. 

The accepted manuscript has been reproduced in Appendix 4.  

In the preceding chapters, some examples of patient characteristics (baseline BMI, treatment emergent 

factors such as irAEs), and external factors such as use of concomitant medications (use of RASi and PPIs) 

that may contribute to variability in outcomes to systemic cancer therapies were evaluated. The relationship 

between the plasma concentration of a systemic cancer therapy and survival is the focus of the current 

chapter. Prior chapters had ICI or traditional chemotherapy as the drugs being investigated. In this chapter, 

the drug of interest is vemurafenib, a molecularly targeted therapy. 

7.1 Introduction 

Several kinase inhibitors are available for the management of both haematological and solid cancers. While 

a fixed dosage regimen is routinely used, these drugs are characterized by highly variable PK and hence 

exposure. However, relationships between exposure, response and toxicity are increasingly described 

indicating the potential for plasma concentration guided dosing strategies (Verheijen et al. 2017). 

Vemurafenib, a serine-threonine kinase inhibitor, is approved as monotherapy for the treatment of both 

BRAFV600 mutated advanced melanoma and BRAFV600 mutated Erdheim-Chester disease by the US Food 

and Drug Administration. It is also approved in combination with cobimetinib, a mitogen activated protein 

kinase (MEK) inhibitor, for the treatment of BRAFV600 mutated advanced melanoma. The current 

recommended starting dose of vemurafenib is 960 mg twice a day given orally, with dose modifications 

allowed for significant adverse events.  
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The clinical PK of vemurafenib is well established, with oral absorption showing high inter-patient variability 

(coefficient of variation 101%) (Zhang, Heinzmann, and Grippo 2017). Doses of 960 mg twice daily are 

associated with a median time to maximum drug concentration of 4-5 hours and mean (± SD) maximum 

plasma steady state concentrations (Cmax) of 62 ± 23 mg/L. The elimination half-life of vemurafenib varies 

over time, changing from 25 hours after a single dose to 57 hours over multiple doses, with steady state being 

achieved by 15-22 days.(FDA 2017) Once at steady state, vemurafenib exhibits linear PK with the area under 

the concentration curve (AUC) over 8 hours being 392 ± 126 mg*h/L and the apparent oral clearance 31 L/day 

(coefficient of variation 32%) (Zhang, Heinzmann, and Grippo 2017). While the bioavailability of vemurafenib 

is unknown, food has been shown to have a significant effect on vemurafenib plasma concentrations with a 

5-fold increase in AUC and a 2.5-fold increase in Cmax.  

Due to the high inter-patient and intra-patient variability reported for plasma vemurafenib concentrations, 

previous studies have evaluated exposure-response and exposure-toxicity relationships using a single plasma 

concentration threshold. Kramkimel et al. analysed 159 samples from 39 patients and reported that plasma 

vemurafenib concentrations below 40.4 mg/L at day 15 were associated with significantly shorter PFS and a 

lower incidence of grade ≥2 rash (Kramkimel et al. 2016). Goldwirt et al. (148 samples from 48 patients) 

identified a threshold of 42 mg/L during the first year of therapy that differentiated responders and non-

responders (Goldwirt et al. 2016). Similar proportions of responders and non-responders were reported by 

another group using a threshold of 42 mg/L (data from 23 patients). Neither study identified an exposure-

toxicity relationship (Funck-Brentano et al. 2015; Funck-Brentano et al. 2016). Moreover, Funck-Brentano et 

al suggested that a higher threshold may be required if lack of early response is noted (Funck-Brentano et al. 

2016). The current study aimed to validate the proposed plasma vemurafenib steady state trough 

concentration (Css, min) threshold as a predictor of PFS and OS in patients with advanced melanoma.  

7.2 Methods 

Individual patient data from the previously published BRIM-3 (NCT01006980) and coBRIM (NCT01689519) 

clinical trials were accessed through Roche’s data sharing policy. BRIM-3 was a monotherapy trial that 

compared vemurafenib and dacarbazine while coBRIM was a combination therapy trial of 



 

114 
 

vemurafenib/cobimetinib vs vemurafenib monotherapy for the treatment of advanced BRAFV600 mutated 

melanoma.  

The primary outcome assessed for the current study was PFS while the secondary outcomes were OS and 

BOR. Patients who fulfilled all the following criteria were included in the primary analysis; had at least one 

Css,min of vemurafenib available by day 23 of cycle 1 (D23); had no dose changes for at least 14 days prior to 

the sample collection; and had not progressed or died before D23. Vemurafenib concentrations were 

considered at steady state after 14 days at a consistent dose. A day 23 landmark was utilised (as opposed to 

day 15) to account for different sampling times between clinical trials. Sensitivity analysis was also performed 

with the addition of those patients who had no dose changes for a minimum of 7 days prior to sample 

collection.  

Associations between plasma vemurafenib Css,min and PFS/OS were modelled using Cox proportional hazards 

regression and reported as HR with 95% CI. Statistical tests were two-sided and a P value less than 0.05 was 

considered statistically significant. Clinically relevant confounders, including, age, gender, ECOG PS, stage of 

melanoma, BRAF V600 mutation type, LDH concentration and sites of metastases were accounted for in 

adjusted analyses. BOR included patients who achieved a complete or partial response using RECIST 1.1.  

Potential non-linear associations were evaluated using restricted cubic splines with 3-5 knots and subsequent 

visual checks; an optimal Css,min threshold was determined via assessment of discriminative performance 

(concordance statistic – C-statistic), model fit (Akaike information criterion (AIC)) and consistency of the PFS/ 

OS association. Various Css,min thresholds were evaluated for association with survival outcomes through 

statistical significance and C-statistics.  

Survival curves were estimated using the KM method. All analyses were conducted in R (version 3.4.3) using 

the survival package (Team 2017). Ethics approval was waived by the Southern Adelaide Clinical Health 

Research Ethics Committee.  
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7.3 Results 

A total of 830 patients (583 on vemurafenib monotherapy and 247 on the vemurafenib/cobimetinib 

combination) from the two clinical trials were available for selection. After exclusion of 428 patients (62 for 

lack of plasma concentration data, 352 for dose adjustments 15 days prior to the cut-off, and 14 for disease 

progression, death or loss of follow-up prior to day 23), 402 were available for further analysis. A summary 

of patient characteristics is described in the Table 32. The median follow-up was 25.3 months, median PFS 

was 7.2 months and the median OS was 14.7 months. The median plasma vemurafenib Css,min was 54.4 mg/L 

(interquartile range 42.5-69.7 mg/L).  

The previously proposed plasma vemurafenib Css,min threshold of 42 mg/L failed to demonstrate a significant 

association with PFS (HR 0.81, 95% CI 0.71-1.06; P = 0.12) or OS (HR 0.75, 95% CI 0.57-1.01, P = 0.054) at the 

D23 landmark. A significant linear relationship between plasma vemurafenib Css,min and OS (HR 0.992, 95% CI 

0.987-0.998, P = 0.01) was observed, while there was no significant association with PFS (HR 0.997, 95% CI 

0.991-1.002, P = 0.22). Figure 26 describes the continuous association between plasma vemurafenib Css,min and 

PFS / OS; HR is represented by a restricted cubic spline with three knots. To facilitate clinical utility cut-points 

were explored, with a Css,min threshold of 50 mg/L identified as a consistent predictor for PFS and OS, with 

optimised performance based upon the c-statistic and AIC. 

Table 32: Patient characteristics 

 Total 
N = 402 

BRIM3 
N = 137 

coBRIM 
N = 265 

P-value 

Study treatment 
Vemurafenib 
Vemurafenib + Cobimetinib 

 
280 (70%) 
122 (30%) 

 
137 (100%) 
0 (0%) 

 
143 (55%) 
122 (46%) 

 

Age (years) 55 (45-64) 56 (47-65) 55 (45-63) 0.34 

Sex 
Female 
Male 

 
150 (37%) 
252 (63%) 

 
46 (34%) 
91 (66%) 

 
104 (39%) 
161 (61%) 

0.28 

Race 
White 
Others 
Missing 

 
384 (96%) 
3 (0.7%) 
15 (3.3%) 

 
136 (99%) 
1 (1%) 
0 (0%) 

 
248 (93.5%) 
2 (0.7%) 
15 (5.8%) 

1.00 

ECOG PS 
0 
1 
Missing 

 
271 (67.7%) 
130 (32%) 
1 (0.3%) 

 
87 (64%) 
50 (36%) 
0 (0%) 

 
184 (69%) 
80 (30%) 
1 (%) 

0.22 
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Stage 
Unresectable IIIc 
M1a 
M1b 
M1c 

26 (6%) 
54 (13%) 
66 (16%) 
256 (64%) 

9 (7%) 
12 (9%) 
23 (17%) 
93 (68%) 

17 (6%) 
42 (16%) 
43 (16%) 
163 (62%) 

0.25 

BRAF V600 mutation 
V600E 
V600K 
Missing 

309 (77%) 
39 (10%) 
54 (13%) 

121 (88%) 
13 (9%) 
3 (2%) 

188 (71%) 
26 (10%) 
51 (19%) 

0.60 

LDH at baseline 
Elevated 
Normal 
Missing 

173 (43%) 
223 (55%) 
6 (1%) 

58 (42%) 
79 (58%) 
0 (0%) 

115 (43%) 
144 (54%) 
6 (2%) 

0.75 

Liver metastases at baseline 
Yes 
No 
Missing 

133 (33%) 
268 (67%) 
1 (0.3%) 

45 (33%) 
91 (66%) 
1 (1%) 

88 (33%) 
177 (67%) 
0 (0%) 

1.0 

Lung metastases at baseline 
Yes 
No 
Missing 

224 (56%) 
177 (44%) 
1 (0.3%) 

84 (61%) 
52 (38%) 
1 (1%) 

140 (53%) 
125 (47%) 
0 (0%) 

0.09 

Vemurafenib (C min, ss) day 23 
(mg/L) 

54 (43-70) 57 (48-73) 52 (40-69) 0.008* 

Data are median (interquartile range) or number of patients (%) 

Moreover, the association between D23 plasma vemurafenib Css,min ≥ 50 mg/L and PFS (P = 0.05) or OS (P = 

0.008) remained statistically significant after adjusting for PS, LDH levels, sex, stage, and sites of metastatic 

disease (Table 33 and Table 34). A similar multivariate analysis was performed with the plasma vemurafenib 

Css,min threshold of 42 mg/L. While there was a trend towards statistical significance for OS (HR 0.71, 95% CI 

0.5-0.99, P = 0.046), the c-statistic was 0.666 and AIC was 1865 in contrast to the 50 mg/L threshold which 

had a higher c-statistic (Table 35). Sensitivity analysis performed by including an additional 68 patients with 

no dose adjustment 7 days prior to D23 (total cohort of 470) showed similar relationships between the 

plasma vemurafenib Css,min threshold of 50 mg/L and survival outcomes. The D23 threshold of 50 mg/L was 

strongly associated with both PFS (HR 0.76, 95% CI 0.60-0.96; P = 0.023) and OS (HR 0.67, 95% CI 0.52-0.88; 

P = 0.003) (Figure 27).  

In addition, there was no significant association between plasma vemurafenib Css,min, either at 42 mg/L or 50 

mg/L, and BOR (Odds ratio 1.17, 95% CI 0.71-1.94; P = 0.53 and 1.38, 95% CI 0.880-2.15; P = 0.16, respectively) 

)Figure 28). Next, the effect of cobimetinib to vemurafenib and outcomes as part of sub-group analysis was 
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evaluated. The addition of cobimetinib did not influence the concentration-response relationship (Figure 27). 

However, the median day 23 vemurafenib C min, ss was lower in the combination cohort when compared to 

vemurafenib alone (52 vs 57 mg/L, P = 0.008; Table 32). The threshold of 50 mg/L was associated with OS 

(HR 0.7, 95%CI 0.52-0.95, P = 0.02), but not PFS or BOR (Table 36).  

Figure 26: Hazard ratio curves 

 

7.4 Discussion 

This analysis of prospectively collected data from 402 patients with advanced melanoma demonstrated that 

a plasma vemurafenib Css,min threshold of ≥ 50 mg/L was associated with improved survival outcomes.  
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Figure 27: Vemurafenib concentration vs PFS/OS  
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Table 33: Multivariate analysis for OS with plasma vemurafenib Css,min ≥ 50 mg/L 

 HR 95% CI P-value 

Vemurafenib Css, min of 50 mg/L 0.67 0.50 – 0.91 0.008* 

Age (years) 1.0 0.99 - 1.01 0.45 

Female sex 0.98 0.73 – 1.32 0.89 

ECOG PS 1.73 1.29 – 2.31 0.0002* 

Stage 

M1a 

M1b 

M1c 

 

1.12 

1.98 

1.76 

 

0.48 – 2.65 

0.89 – 4.36 

0.84 – 3.67 

0.13 

BRAF V600K mutation  0.81 0.51 -1.28 0.36 

Normal LDH at baseline 0.59 0.44 – 0.79 0.0004* 

Liver metastases at baseline 1.08 0.74 – 1.37 0.96 

Lung metastases at baseline 1.18 0.88 – 1.58 0.25 

C-statistic = 0.668, AIC = 1862.1 

Table 34: Multivariate analysis for PFS with plasma vemurafenib Css,min ≥ 50 mg/L 

 HR 95% CI P-value 

Vemurafenib Css, min of 50 mg/L 0.76 0.58 - 1.0 0.05 

Age (years) 1.0 0.99 - 1.01 0.72 

Female sex 0.86 0.65 – 1.11 0.25 

ECOG PS 1.74 1.33 – 2.26 < 0.0001* 

Stage 

M1a 

M1b 

M1c 

 

1.08 

1.39 

1.33 

 

0.56 – 2.08 

0.74 – 2.62 

0.76 – 2.34 

0.59 

BRAF V600K mutation  0.88 0.59 -1.32 0.55 

Normal LDH at baseline 0.63 0.49 – 0.82 0.0006* 
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Liver metastases at baseline 1.08 0.81 – 1.43 0.58 

Lung metastases at baseline 1.10 0.85 – 1.44 0.44 

C-statistic = 0.62, AIC = 2237.3

Table 35: Multivariate analysis for OS with plasma vemurafenib Css,min ≥ 42 mg/L 

HR 95% CI P-value

Vemurafenib Css, min of 42 mg/L 0.71 0.50 – 0.99 0.046*

Age (years) 1.0 0.99 - 1.01 0.54 

Female sex 0.96 0.71 – 1.28 0.77 

ECOG PS 1.76 1.32 – 2.35 <0.001* 

Stage 

M1a 

M1b 

M1c 

1.21 

2.02 

1.83 

0.51 – 2.85 

0.92 – 4.46 

0.88 – 3.81 

0.14 

BRAF V600K mutation 0.78 0.49 – 1.24 0.29 

Normal LDH at baseline 0.57 0.43 – 0.76 <0.001* 

Liver metastases at baseline 1.06 0.78 – 1.44 0.73 

Lung metastases at baseline 1.16 0.87 – 1.56 0.31 

C-statistic = 0.666, AIC = 1865

Clinically relevant confounding factors were systematically evaluated and adjusted in our analyses, thereby 

improving the validity of the association identified between plasma vemurafenib Css,min and outcomes. 

Previous studies reported a lower concentration threshold, 40.4 mg/L or more than 42 mg/L (Funck-Brentano 

et al. 2015; Funck-Brentano et al. 2016; Kramkimel et al. 2016). However, these studies included fewer 

patients and did not address confounding variables potentially affecting survival outcomes, and the 

association was not explored for both PFS and OS (Funck-Brentano et al. 2015; Funck-Brentano et al. 2016; 

Goldwirt et al. 2016; Kramkimel et al. 2016). By contrast the present study used a large high-quality database 
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Figure 28: Plasma vemurafenib Css, min and response 

 

Table 36: Plasma vemurafenib Css, min and outcomes based on trials 

Vemurafenib  
Css, min (mg/L) 
 

HR (95% CI) 

Total 
N = 402 

BRIM3 
N = 137 

coBRIM 
N =  265 

OS 
<50  
≥ 50  

 
1 
0.67 (0.52-0.88) 
P = 0.003 

 
1 
0.61 (0.35-1.05) 
P = 0.07 

 
1 
0.7 (0.52-0.95) 
P = 0.02 

PFS 
<50  
≥ 50  

 
1 
0.76 (0.6-0.96) 
P = 0.023 

 
1 
0.73(0.45-1.17) 
P = 0.19 

 
1 
0.77 (0.58-1.01) 
P = 0.06 

Best Overall Response 
<50  
≥ 50  

 
1 
1.38 (0.88-2.15) 
P = 0.16 

 
1 
1.17 (0.51-2.73) 
P = 0. 7 

 
1 
1.46 (0.87-2.46) 
P = 0.15 

 

and the vemurafenib Css,min threshold (≥ 50 mg/L) was demonstrated as significantly associated with both OS 

and PFS. The association between vemurafenib Css,min threshold (≥ 50 mg/L) and OS was seen for the 

combined population of two trials and for the combination therapy sub-group, while a non-significant trend 

was seen in the monotherapy group.  

While it is common to use receiver operating curve (ROC) to define thresholds of concentrations, in our study 

we have used the c-statistic, which is equivalent to ROC. Both ROC and the c- statistic are used for 
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discrimination of a model generated to predict outcomes. While ROC is used for visualisation, the c-statistic 

quantifies the discriminative ability of a model. The higher the c-statistic, the better the model prediction for 

the outcome of interest  (Steyerberg and Vergouwe 2014). This research found that a vemurafenib Css,min 

threshold  of ≥ 50 mg/L had the highest c-statistic among various cut-offs modelled to predict outcomes.  

A population PK analysis for vemurafenib in a cohort of advanced melanoma patients was performed by 

Roche as part of the submission for regulatory review.  The dataset comprised 5,515 plasma samples from 

459 patients, including participants from the BRIM3 trial (Therapeutic Goods Administration 2012; Zhang, 

Heinzmann, and Grippo 2017). In contrast to our study where the plasma vemurafenib Css,min was the PK 

parameter of interest, the relationship between mean AUC0-8 hours on day 15 and response was explored. 

While an increase in tumour response with increasing exposure was noted, there was no clear exposure-

response (PFS or OS) relationship at a dose of 960 mg bd. Similarly, another population PK model using 147 

plasma samples from 26 patients with non-melanoma diseases with BRAFV600 mutations reported 

overlapping mean plasma vemurafenib concentrations across  BOR categories (FDA 2017). It appears that no 

significant relationship between vemurafenib exposure and tumour response has been consistently 

described across all studies.  

In this research, there was no association between the plasma vemurafenib Css,min threshold of ≥ 50 mg/L and 

BOR. It is unclear why there was an association with survival outcomes in the absence of association with 

tumour response. The reason(s) behind the day 23 plasma vemurafenib concentration being associated with 

OS is not understood. It is unclear how achieving optimal vemurafenib therapeutic concentrations may 

influence subsequent post trial treatment and thereby OS. However, the improvement in PFS likely 

contributed by improved depth of response may influence survival outcomes (Lewis et al. 2019).  

It was previously established that vemurafenib exposure was not altered by the addition of cobimetinib 

(Ribas et al. 2014). In the current study, a significantly lower median day 23 plasma concentration of 

vemurafenib when combined with cobimetinib than when given as monotherapy was noted. The 

mechanism(s) responsible for this potential drug-drug interaction is unclear. 
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There are several limitations in our study. The current study is an exploratory, post-hoc analysis. Hence, the 

new proposed threshold requires validation in prospective clinical trials with an adequate number of patients 

and plasma samples. A large proportion of patients were excluded from the current analysis due to dose 

adjustments within the 15 days prior to the D23 cut-off. Further, the current study evaluated plasma 

concentrations within the first month of starting vemurafenib. Although it is unclear if the threshold remains 

valid beyond this time, the association between D23 plasma vemurafenib Css,min values and OS suggests that 

the relationship may persist beyond the first month. Moreover, the exposure-toxicity relationship was not 

evaluated to determine if there is an upper limit for survival benefit with acceptable toxicities. 

Another limitation is the use of a single threshold trough plasma concentration (Css,min) rather than area under 

the plasma concentration – time curve (AUC) approach. While the latter is increasingly considered as a better 

pharmacokinetic parameter for relationship with response/toxicity, the lack of access to the data to calculate 

vemurafenib AUC precluded its assessment in the current study. In addition, the measurement of a trough 

concentration may reduce the barriers for clinical translation of dose individualisation for kinase inhibitors 

(Lucas and Martin 2017).  

7.5 Conclusion 

A vemurafenib steady-state trough plasma concentration (Css,min) threshold of 50 mg/L is strongly associated 

survival outcomes for patients with advanced melanoma. This new threshold needs to be validated 

prospectively in future studies prior to implementation in routine clinical care.  

In this chapter, my research demonstrated that an improved cut-off for the steady-state trough plasma 

concentration, a well-known PK parameter, as a predictor of variability in response as measured by survival 

for an oral targeted therapy. However, the use of target concentration guided dosing of systemic cancer 

therapies has not been implemented in routine clinical care due to various challenges (Bardin et al. 2014). 

For small molecule targeted therapies such as kinase inhibitors, the evidence such as results from this 

chapter, is rapidly evolving and thus support clinical implementation (Rowland et al. 2017).  
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8. CHAPTER EIGHT: PRIMARY SITE OF CANCER AND OUTCOMES WITH 
ATEZOLIZUMAB OR CHEMOTHERAPY 

One of the well-known factors that is associated with heterogeneity in treatment response is the primary site 

of the origin of cancer. Moreover, within the same primary site, multiple histological subtypes and molecular 

subtypes within the same histology exist which may contribute towards differential treatment outcomes 

form the same therapy. Another layer of complexity is that the same histology may arise from different 

primary sites. For example, urothelial carcinomas can arise anywhere along the urothelium of the urinary 

tract. Despite arising from different primary sites, all urothelial cancers are treated with the same systemic 

therapies. In this chapter, the effect of the primary site of origin of the urothelial cancers on cancer outcomes 

with atezolizumab or chemotherapy was assessed.  

8.1 Introduction 

Urothelial cancers are less common group of cancers arising from bladder, renal pelvis, ureters, or urethra. 

Bladder primary site was the most common with an estimated age standardized incidence rate of 5.7 per 

100,000 population and mortality of 1.9 per 100,000 population in 2018 (Ferlay et al. 2018). Among the 

urothelial cancers, those arising in the upper tract (renal pelvis and ureters, collectively referred to as upper 

tract urothelial cancers - UTUC) are rare (5-10% of all urothelial cancers) when compared to the lower tract 

(urinary bladder and urethral sites, collectively called as lower tract urothelial cancers - LTUC) (Roupret et al. 

2018). Despite being grouped together with the more common bladder cancers, UTUC have several distinct 

features such as higher frequency of high-grade disease, more advanced at diagnosis, higher risk of 

recurrence and lower survival than LTUC (Taylor et al. 2019). Moreover, comprehensive genomic profiling 

indicates that a high proportion of UTUC have fibroblast growth factor receptor (FGFR3) mutations, higher 

frequency of microsatellite instability (MSI-H)/mismatch repair deficient (dMMR) tumours, a predominantly 

luminal-papillary type, a T-cell depleted tumour microenvironment and a lower mutational burden when 

compared to bladder cancers (Hassler et al. 2020; Meeks et al. 2020; Robinson et al. 2019; Yates and Catto 

2013).  
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Despite these differences, patients with UTUC and LTUC are treated similarly either with platinum-based 

chemotherapy or ICIs (Flaig et al. 2020; Font et al. 2019; Ghatalia and Plimack 2020; Roupret et al. 2018). 

Over the last few years, at least five ICIs have been approved for the treatment of advanced urothelial 

carcinomas either as first-line in platinum ineligible patients or in those who progress after prior platinum-

based chemotherapy (Ghatalia and Plimack 2020; Balar, Castellano, et al. 2017; Bellmunt et al. 2017; Powles 

et al. 2017; Sharma et al. 2017; Patel et al. 2018). ICIs include the PD-1 inhibitors, nivolumab and 

pembrolizumab and the PD-L1 inhibitors, atezolizumab, avelumab and durvalumab. Subgroup analyses from 

some of these trials indicate that patients with UTUC being treated with ICI may have inferior outcomes when 

compared to LTUC (Balar, Galsky, et al. 2017; Powles et al. 2018) . More recently, the results from the SAUL 

trial using real world population data for patients with UTUC treated with atezolizumab showed similar 

survival and response rates between the UTUC and LTUC (Sternberg et al. 2020). In view of the conflicting 

results, the efficacy and safety outcomes of patients with UTUC who were treated with atezolizumab using 

pooled individual patient data from two clinical trials were evaluated.  

8.2 Methods 

The primary objectives were to compare the survival (OS and PFS), response rates, and safety (specifically, 

irAEs) between UTUC and LTUC patients who were treated with atezolizumab. Similar analyses were also 

conducted using data from patients treated with chemotherapy in the control arms to identify heterogeneity 

in treatment effect that may be attributed to the upper tract primary sites. Deidentified individual patient 

data from IMvigor 210 (cohort 1 NCT02951767 and cohort 2 NCT02108652) and IMvigor 211(NCT02302807) 

clinical trials were used for this post hoc analysis (Balar, Galsky, et al. 2017; Powles et al. 2018). IMvigor 210 

was a single arm phase II trial where atezolizumab was administered to patients with locally advanced or 

metastatic urothelial cancer while IMvigor 211 was a two-arm randomized phase III trial that compared 

atezolizumab with chemotherapy (either taxanes or vinflunine) in patients with locally advanced or 

metastatic urothelial cancer as second-line treatment trial after progression on a platinum containing 

chemotherapy. Data analysis was performed through Roche’s data sharing policies. Ethics review was 

exempted by Southern Adelaide Clinical Health Research Ethics Committee. 
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8.2.1 Study definitions 

In the dataset provided for analysis, those with primary sites documented as renal pelvicalyceal system or 

ureters were categorized as UTUC while those with urinary bladder or urethral primaries were grouped under 

LTUC. The primary outcome measure was OS. Secondary outcomes included PFS and any grade of irAEs. PFS 

was evaluated using RECIST version 1.1. Overall response rate was defined as combined complete response 

and partial response while disease control rate was defined as combined complete, partial responses and 

stable disease. irAEs were defined as presumed organ specific toxicity that may have auto-immune aetiology. 

irAEs were graded according to the NCI-CTCAE v4.0 (NCI CTCAE v4.0 2009).  

8.2.2 Statistical analysis 

Pooled data from the two clinical trials were used for analysis. Baseline characteristics were summarised 

using median, IQR or SD where applicable. Statistical differences between the UTUC and LTUC cohorts were 

reported using P-values derived from the chi-square test for categorical variables and the Kruskal-Wallis test 

for continuous data. A P-value less than 0.05 was considered statistically significant. Pooled HR with 95%CI 

were reported for survival (PFS and OS) differences between the cohorts using Cox proportional hazards 

regression. Logistic regression analysis was performed to compare the response rates between the two 

cohorts and reported as OR. All regression analyses were stratified by study. Potential confounding variables 

(performance status, PDL1 expression, and liver metastases) were adjusted by multivariable regression 

analysis. Survival plots were generated using the KM method. Analyses were conducted using R (version 

3.5.3) (Team 2017). 

8.3 Results 

Data from a total of 1,331 patients with urothelial cancers from the two trials were available. Twenty-six 

patients did not have their primary site reported and were excluded from further analysis leaving a reminder 

of 1,305 patients. The UTUC cohort included 325 patients, 176 (54%) cancers arising from the renal pelvis 

and 149 (46%) from the ureters.  The LTUC cohort included the reminder. Of whom, 950 (94%) had bladder 

primary, 30 (3%) had urethral primary and the remaining were lower genitourinary urothelial cancers. 51% 
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underwent radical cystectomy or nephroureterectomy and 92% received a prior platinum-based 

chemotherapy before trial enrolment. Overall, there were 868 atezolizumab treated patients and 437 

chemotherapy treated patients across the 2 cohorts. 

8.3.1 Atezolizumab treated patients 

Among the patients treated with atezolizumab, 220 had UTUC while 648 had LTUC. Baseline characteristics 

of both the cohorts treated with atezolizumab are described in Table 37. The UTUC cohort had a higher 

proportion of patients who were Asians and those with lung metastases compared to the LTUC cohort. The 

remaining baseline characteristics were similar between the two cohorts. 

Table 37: Atezolizumab treated patients with urothelial cancers 

On atezolizumab Total 
No. 868 

Lower tract 
No. 648 

Upper tract 
No. 220 

P-value

Study 0.20 

  IMvigor210 417 (48%) 320 (49%) 97 (44%) 

  IMvigor211 451 (52%) 328 (51%) 123 (56%) 

Cancer type 0.43 

  Transitional cell 787 (91%) 591 (91%) 196 (89%) 

  Mixed histology 81 (9%) 57 (9%)  24  (11%) 

Age (years) 67 (60 - 74) 67 (60 - 74) 67 (59 - 73) 0.65 

Sex 0.19 

  Male 673 (78%) 510 (79%) 163 (74%) 

  Female 195 (22%) 138 (21%)    57 (26%) 

Race <0.001* 

  White 702 (81%) 543 (84%) 159 (72%) 

  Asian 70 (8%) 33 (5%) 37 (17%) 

  Other 24 (3%) 18 (3%) 6 (3%) 

  Missing 72 (8%) 54 (8%) 18 (8%) 

ECOG PS 0.56 

  0 370 (43%) 279 (43%) 91 (41%) 

  1 474 (55%) 353 (54%) 121 (55%) 

  2  24 (3%) 16 (1%) 8 (4%) 

Tumor sites 

  Liver 247 (28%) 177 (27%) 70 (32%) 0.23 

  Lung 347 (40%)   244 (38%)  103 (47%) 0.02* 

PD-L1 expression 0.22 

  Negative 267 (31%) 191 (29%) 76 (35%) 

  Positive 601 (69%) 457 (71%) 144 (65%) 

Prior platinum therapy 

  Yes 769 (89%) 580 (90%) 189 (86%) 

  No 99 (11%) 68 (10%)   31 (14%) 

Prior radical surgery 0.05 

  Yes 472 (54%) 379 (58%) 93 (42%) 

  No 139 (16%) 122 (19%)   17 (8%) 

  Missing 257 (30%) 147 (23%)  110 (50%) 

Best overall response 0.08 

  PD 440 (51%) 309 (48%) 131 (60%) 
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  SD 165 (19%) 132 (20%)   33 (15%) 

  PR   99 (11%) 78 (12%)  21 (10%) 

  CR 39 (4%) 30 (5%) 9 (4%) 

  Missing 125 (14%) 99 (15%) 26 (12%) 

Immune related adverse events (maximum grade) 0.42 

  0 625 (72%) 461 (71%) 164 (75%) 

  1 117 (13%) 92 (14%)   25 (11%) 

  2  73 (8%)  57 (9%)   16 (7%) 

  3 43 (5%)  31 (5%)   12 (5%) 

  4 10 (1%) 7 (1%) 3 (1%) 

There was no significant difference in OS between the two cohorts. The median OS for the UTUC and LTUC 

cohorts was 8.4 months and 8.8 months, respectively (Figure 29). The unadjusted HR for OS was 1.09 (95%CI: 

0.90-1.31, P = 0.37) whereas the adjusted HR was 0.99 (95%CI: 0.82-1.21, P = 0.98). On the other hand, while 

the median PFS was similar (2.1 months each) between the 2 cohorts, the unadjusted HR for PFS was 

significantly worse for the UTUC cohort at 1.21 (95%CI: 1.03 -1.43, P = 0.02) (Figure 29). However, after 

adjusting for confounding factors, there was no significant difference despite a numerically worse PFS for the 

UTUC when compared to the LTUC cohorts (adjusted HR 1.16, 95%CI: 0.97-1.37, P = 0.09).  

When the survival outcome analysis was limited to the PDL1 positive subset, the OS for the UTUC cohort was 

not significantly different to the LTUC cohort (adjusted HR 0.99, 95%CI: 0.82-1.21, P = 0.98). Similarly, the 

PFS, despite being numerically worse, was not statistically significantly different for the UTUC cohort after 

adjusting for confounding factors (adjusted HR 1.18, 95%CI: 0.97-1.37, P = 0.09).  

While the overall best response rates (ORR - combined complete response (CR) and partial response (PR)) 

were similar (14% vs 16%), the UTUC cohort had significantly lower disease control rates (DCR - combined 

CR, PR and stable disease (SD)) when compared with the LTUC cohort (29% vs 37%, respectively, OR 0.67, 

95% CI 0.48-0.94, P = 0.02). In addition, the incidence of any grade irAEs was similar; 25% in the UTUC group 

and 29% in the LTUC group (OR 0.85, 95% CI 0.60-1.21, P = 0.37).  

8.3.2 Chemotherapy treated patients 

Among the 437 patients treated with chemotherapy, 105 had UTUC while 332 had LTUC. The majority 

received vinflunine (55%) followed by paclitaxel (33%) and docetaxel (12%). Baseline characteristics of both 

the cohorts treated with chemotherapy are described in Table 38. The UTUC cohort had a higher proportion 
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of patients who were Asians, lower renal function with glomerular filtration rate <60 ml/min, and distant 

metastasis at diagnosis when compared to LTUC.   

Figure 29: OS and PFS in Atezolizumab treated patients 
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Table 38: Chemotherapy treated patients – Imvigor211 trial 

On chemotherapy Total 
No. 437 

Lower tract 
No. 332 

Upper tract 
No. 105 

P-value

Cancer type 0.32 

  Transitional cell 402 (92%) 309 (93%) 93 (89%) 

  Mixed histology 35 (8%) 23 (7%)  12 (11%) 

Chemotherapy type 0.068 

  Docetaxel 53 (12%) 46 (14%) 7 (7%) 

  Paclitaxel    145 (33%) 113 (34%) 32 (30%) 

  Vinflunine    239 (55%) 173 (52%) 66 (63%) 

Age (years) 67 (61 - 73) 67 (61 - 73) 68 (61 - 74) 0.55 

Sex 0.08 

  Male 341 (78%) 266 (80%)    75 (71%) 

  Female 96  (22%) 66 (20%)    30 (29%) 

Race 0.04* 

  White 315 (72%) 244 (73%) 71 (68%) 

  Asian 53 (12%) 33 (10%) 20 (19%) 

  Other 3 (1%) 3 (1%) 0 (3%) 

  Missing 66 (15%) 52 (16%) 14 (13%) 

ECOG PS 0.09 

  0 194 (44%) 140 (42%) 54 (51%) 

  1 243 (56%) 192 (58%) 51 (49%) 

Tumor sites 

  Liver 118 (27%) 95 (29%) 23 (22%) 0.22 

  Lung 202 (46%)   147 (44%)  55 (52%) 0.18 

PDL1 expression 0.24 

  Negative 130 (30%) 105 (32%) 25 (24%) 

  Positive 307 (70%) 227 (68%) 80 (76%) 

Prior platinum therapy 

  Yes 437 (100%) 332 (100%) 105 (100%) 

Prior radical surgery for primary 

  Yes 193 (44%) 179 (54%) 14 (13%) 

  No 0 (0%) 0 (0%)  0 (0%) 

  Missing 244 (56%) 153 (46%) 91 (87%) 

Best overall response 0.61 

  PD 148 (34%) 109 (33%) 39 (37%) 

  SD 125 (29%) 92 (28%)   33 (31%) 

  PR   75 (17%) 60 (18%)  15 (14%) 

  CR 22 (5%)  18 (5%) 4 (4%) 

  Missing 67 (15%) 53 (16%) 14 (13%) 

Immune related adverse events (maximum grade) 0.32 

  0 345 (79%) 259 (78%) 86 (82%) 

  1 47 (11%) 36 (11%)   11 (10%) 

  2      32 (7%)  24 (7%)   8 (8%) 

  3 12 (3%)  12 (4%)   0 (0%) 

  4 1 (<1%) 1 (<1%)   0 (0%) 

There was no significant difference in OS between the two cohorts, with a median OS of 8.3 months in the 

UTUC cohort and 7.8 months in the LTUC cohort. The unadjusted HR for OS was 1.00 (95%CI: 0.78-1.28, P = 

0.97) whereas the adjusted HR was 1.06 (95%CI: 0.82-1.37, P = 0.62). The median PFS was 3.9 months and 4 

months for the UTUC and LTUC cohorts, respectively. The unadjusted HR for PFS for the UTUC cohort was 
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1.14 (95%CI: 0.90 -1.43, P = 0.28) and the adjusted HR was 1.18 (95%CI: 0.93-1.49, P = 0.17). The DCR were 

similar between UTUC and LTUC cohorts treated with chemotherapy, 50% vs 51%, respectively (OR 0.94, 95% 

CI 0.60-1.45, P = 0.77).  

8.4 Discussion 

This chapter reported the survival and safety outcomes for patients with UTUC treated either with 

atezolizumab or chemotherapy compared to LTUC using individual patient data from two clinical trials . This 

is one of the largest series of patients with UTUC uniformly treated with ICI as second-line therapy after 

platinum-based chemotherapy. From this analysis, it appears that patients with UTUC treated with 

atezolizumab have lower disease control rates, but similar survival and safety when compared to LTUC.  

Data from previous trials indicated that UTUC patients may have lower ORR than LTUC patients when treated 

with ICI therapies. In the CheckMate 275 trial, nivolumab treated UTUC had a response rate of 11% in contrast 

to 22% for the LTUC group (Sharma et al. 2017). Similarly, in the JAVELIN trials, response rates of 11% vs 18% 

were reported for the UTUC and the LTUC cohorts respectively (Patel et al. 2018). In the first-line KEYNOTE-

052 trial, 22% of the UTUC cohort had a response compared to 28% in the LTUC cohort (Balar, Castellano, et 

al. 2017). In contrast, patients in the SAUL study who received atezolizumab, had similar ORR of 12% and 14% 

respectively (Sternberg et al. 2020).  

In the current study, atezolizumab treated UTUC patients had a similar ORR to LTUC patients, but significantly 

lower DCR. In addition, the adjuvant IMVigor010 trial reported worse disease-free survival for atezolizumab 

treated patients with UTUC when compared to observation (Hussain et al. 2020). It is possible that 

heterogeneity in patient populations across trials, differences in cancer characteristics and line of therapy 

may have influenced response rates. However, such low ORR indicates that monotherapy with ICI therapies 

might not benefit most patients, especially those who may need rapid response due to high disease burden 

related symptoms. Further analysis using data from the recently reported trials such as IMVigor130 and 

JAVELIN Bladder100 should be conducted to evaluate whether such low ORR persists in patients with UTUC 
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when treated with ICI in combination with chemotherapy or in maintenance setting after first-line 

chemotherapy (Galsky et al. 2020; Powles et al. 2020).  

The short duration of PFS in those who achieve disease control with atezolizumab indicates that novel 

strategies such as combination with targeted agents such as FGFR inhibitors may be warranted. Although the 

MSI-high group of UTUC have a higher likelihood of response to ICI therapies, the sporadic non MSI-high 

group of UTUC are more common than the MSI-high cancers. As noted previously, most sporadic non MSI-

high UTUC have the luminal-papillary gene expression profile that correlates with T-cell depleted immune 

microenvironment and higher incidence of FGFR3 mutations, all of which are likely explanations for such low 

ORR and short PFS with atezolizumab monotherapy (Robinson et al. 2019). Future clinical trials should also 

consider utilising combination strategies that may transform the immune “cold” microenvironment into 

immunogenic profile to facilitate reactive T-cell response.  

Due to the relatively low incidence of UTUC, randomized clinical trials are rare. Given the established 

molecular, clinical, treatment and outcome differences in patients with UTUC, international collaboration will 

be required to prospectively conduct large multicentric clinical trials. The recently reported perioperative 

chemotherapy versus surveillance in upper tract urothelial cancer trial (POUT) was the first large phase III 

trial specifically conducted in the UTUC group of patients (Birtle et al. 2020). Data generated from this analysis 

provides a basis for the design of future clinical trials that address various treatment options for patients with 

advanced UTUC.  

I acknowledge several strengths and limitations in the current study. This is one of the two largest cohorts of 

UTUC patients uniformly treated with ICI therapy (Sternberg et al. 2020). Individual patient data from 

prospectively conducted clinical trials were used as source material for the analysis. The data from 

chemotherapy treated control cohort was also reported to compare the heterogeneity in treatment effects 

from atezolizumab. The main limitations are this study was a secondary exploratory analysis with limited 

power to explore the subgroups of renal pelvis vs ureters as primary sites. Moreover, up to 20% of UTUC can 

have synchronous LTUC cancers which were not accounted for (Font et al. 2019; Roupret et al. 2018; Taylor 

et al. 2019). In addition, data on gene expression profiles and MSI status were not available for analysis.  
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8.5 Conclusion 

In this large series of patients treated with atezolizumab, those with UTUC had worse disease control rates, 

but similar OS/PFS, overall response rates, and safety when compared to patients with LTUC. Future studies 

should consider combination approaches to improve outcomes of patients with this rare group of 

malignancies.  

However, the disease control rates were significantly lower for the upper tract urothelial cancers when 

compared to lower tract cancers indicating some degree of heterogeneity in treatment effect which warrants 

confirmation in future studies. The results from this research also illustrates that despite having negative 

biological characteristics that may be associated with inferior outcomes UTUC had similar survival as the 

LTUC with atezolizumab. It is likely that the primary site of origin of the urothelial cancer may not contribute 

towards the variability in survival outcomes to ICI therapy among patients with urothelial cancers. However, 

studies with larger sample size would be required to confirm this lack of association. Future studies should 

also explore other factors that may contribute towards variability in response to ICI therapies for this group 

of patients.  
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9. CONCLUSION 

9.1 Thesis summary 

This thesis explored various factors such as baseline patient characteristics, the primary site of cancer, 

commonly used concomitant medications and threshold plasma concentration, that can determine the 

variability in efficacy and toxicities of anticancer drugs such as atezolizumab, chemotherapy and 

vemurafenib. In addition, variability in the manifestation of immune related adverse events, a special group 

of adverse events from immune check point inhibitors and their association with drug efficacy was also 

studied. All the research work for this thesis were conducted using large datasets from well conducted clinical 

trials which were accessed using various data sharing platforms. The data for analyses were extracted from 

individual patient data case report forms of 10,158 patients with five types of cancers who participated in 15 

different clinical trials and their results were reported in the preceding chapters.  

One of the major findings described in chapter 2 was that the previously under recognized baseline 

characteristics such as BMI, influence outcomes of patients undergoing atezolizumab monotherapy for 

patients with lung cancers. Contrary to prior belief that obesity is usually considered as a negative factor for 

drug therapy associated outcomes, the findings from this research indicated that those patients with high 

BMI had improved survival when treated with atezolizumab. While these findings were intriguing, the exact 

mechanisms behind the association was unclear. However, the consistency and strength of the effect size as 

reported in subsequent studies indicate that baseline BMI should be considered as a stratification factor in 

future clinical trials for advanced lung cancer being treated with single agent ICI drugs.  

While it is well-known that type and severity of toxicities from systemic cancer therapies vary between 

individuals who receive the same drug for the same indication, there is little understanding of the incidence 

of multi-organ immune related adverse events from immunotherapy drugs like atezolizumab. Chapter 3 

addresses the gap in this knowledge. For the first-time, this research described a detailed evaluation of the 

incidence, type, severity and time-profile of multi-organ immune related adverse events using a large cohort 

of atezolizumab treated patients. Moreover, it was also demonstrated that multi-organ adverse events were 

associated with improved survival from atezolizumab. Chapter 4 specifically evaluated if the immune related 
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adverse events were associated with survival in both chemotherapy and immunotherapy treated patients. It 

was found that the occurrence of irAEs were associated with survival in both atezolizumab as well as the 

taxanes or vinca alkaloid-based chemotherapies, indicating that they are prognostic rather than predictive of 

response to immunotherapy alone. The findings from these studies provide additional information to treating 

clinicians to anticipate, recognise and treat such adverse events as well as trigger further research to better 

understand the pathophysiology of those toxicities. In addition, their prognostic association even in 

chemotherapy treated patients requires further evaluation in future studies.  

Chapters 5 and 6 explored the effect of baseline use of concomitant medications such as anti-hypertensives 

and PPI on the efficacy of atezolizumab and fluoropyrimidine-based chemotherapy, respectively. While the 

PPI were strongly associated with worse survival in fluoropyrimidine-based chemotherapy treated bowel 

cancer patients, the concomitant use of renin-angiotensin inhibitors was not in atezolizumab treated patients 

with lung, bladder, or kidney cancers. Both findings were surprising and unexpected as the pre-clinical data 

indicated the contrary. In vitro and in vivo animal studies reported that PPI improved the efficacy of 

fluoropyrimidine-based chemotherapy and renin-angiotensin inhibitors augmented immune response. 

Further studies are required to confirm these findings. However, the strength of the inferior outcomes with 

PPI raises red flag that the clinicians should consider minimising the concomitant use of these drugs in 

patients initiating chemotherapy for advanced bowel cancer. It is important to understand the medical 

indications for which PPI are being prescribed and consider alternatives if possible. In addition, future studies 

should also explore the effect of PPI in patients being treated with chemotherapy for early stage colorectal 

cancers.  

In chapter 7, my research showed that a new threshold as target trough concentration for optimal dosing of 

vemurafenib, a BRAF inhibitor, commonly used for the treatment of melanoma and other diseases with braf 

mutations that was associated with improved survival. This chapter provided further evidence to support 

optimized dosing to reach the trough concentration to reduce inter-individual variability in vemurafenib 

survival. While this threshold needs confirmation in future studies, the upper threshold to reduce toxicities 

requires further evaluation. The application of results from this research would depend on future prospective 
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clinical trials that evaluate the efficacy, safety, and cost-economic analyses of plasma concentration guided 

dosing interventions.  

In chapter 8, the effect of the primary site of origin of cancer was not significantly associated with survival 

outcomes among patients with urothelial cancers when treated with atezolizumab. However, the disease 

control rates were significantly lower for the upper tract urothelial cancers when compared to lower tract 

cancers indicating some degree of heterogeneity in treatment effect which warrants confirmation in future 

studies.  

9.2 Future directions 

It is important to highlight that the findings from the research work performed in this thesis involved data 

from previously completed clinical trials. All the analyses should be considered as unplanned and hypothesis 

generating. Hence, further studies will be required to confirm or refute the findings of this research. 

Moreover, as the data included patients who were participants of clinical trials, who usually have better 

health and performance status than patients in the general community, the generalisability of the research 

findings are limited. Future validation studies addressing these questions using data from real-world clinical 

practice should be conducted. The members of the current research have recently obtained access to a large 

electronic health record platform (CancerLinQ) that has real-world data involving more than 2,00,000 

patients with lung cancer which may help clarify some of the questions raised in this research.  

In addition, the hypotheses generated from this body of research work may provide basis for further pre-

clinical work to better understand the mechanistic reasons. The interaction between PPI and 

fluoropyrimidine-based chemotherapy is not clearly understood. Similarly, the interaction between anti-

hypertensives and immunotherapies as well as the causal factors and pathophysiology behind the 5% of 

treated patients having multi-organ immune related adverse events need to be clearly understood. The effect 

of the concomitant non-cancer drug therapies with all systemic cancer therapies including chemotherapy or 

immunotherapy should also be studied comprehensively in future studies. 
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The association of baseline high BMI with atezolizumab outcomes should be explored in future studies in 

patients with other types of cancer, in early stages of cancer, those receiving other types of immunotherapies 

and in patients who receive combination therapies. Future studies should also evaluate the effect of changes 

in BMI after the treatment is initiated on immunotherapy outcomes.  

There were several challenges during the conduct of my research projects. One major challenge was 

accessing data from trials beyond those used in this thesis from all the sponsors. Despite international 

agreement and commitment for responsible data sharing of deidentified IPD for those trials that involve 

approved medications, a recent study found that only a small number of trials were eligible for data sharing 

for independent researchers after two years of publication of primary results (Hopkins, Rowland, and Sorich 

2018). Some of the pharmaceutical sponsors were unwilling to release any data for their approved drugs, or 

release only limited data without information on concomitant medications, molecular information or 

extended survival. In addition, the data released by sponsors were in different software repositories that 

precluded merging of datasets. Some sponsors and data sharing platforms provided raw data without 

supporting documentation on data dictionaries or clinical study reports. Moreover, a long time (several 

months to 2 years) was taken by the sponsors and data sharing groups for the review of submitted projects 

and contractual agreement prior to data release. Once the data was released, data cleaning and data 

management for analysis was labour intensive. Addressing these challenging issues through a streamlined 

and standardised process for the request, review and data release may facilitate independent researchers to 

conduct interesting research using large data in future. 

9.3 Conclusion 

Understanding the factors that contribute towards the variability in response and toxicities to systemic 

cancer therapies will help dose optimisation for individual patients thereby improve patient outcomes. In 

this thesis, a variety of factors were explored to better understand the variability in response to systemic 

cancer therapies using clinical trial data from a large population of patients with a variety of cancers.  The 

research work from this thesis identified that previously under-recognized patient factors such as baseline 

body mass index and use of concomitant medications such as proton pump inhibitors and anti-hypertensives 
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can influence outcomes with different types of systemic cancer therapies. Variability in the incidence of multi-

organ toxicities and its effect on outcomes were reported for the first-time. A new threshold trough plasma 

concentration for a kinase inhibitor that showed improved association with survival was also identified. 

Future work that address the questions and challenges raised from this research should be continued to 

improve the understanding of inter-individual variations in drug therapies.  
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