
Enabling Gigabit IP for Embedded
Systems

Nicholas Tsakiris

B. Eng. (Computer Systems) (Honours)

Flinders University of South Australia

A Thesis Submitted for the Degree of Masters by Research

Flinders University

School of Computer Science, Engineering and Mathematics

Adelaide, South Australia

2009

(Submitted 17th February 2009)

ii

Dedicated to my parents for their support and love.

iii

Abstract

For any practical implementation of chip design, there needs to be a hardware plat-

form available for the purpose of prototyping and implementation of FPGA-based

programs, whether they are written in VHDL or Verilog. Communication between

the platform and a computer is a useful feature of many hardware solutions as it allows

for the capability of regular data transmission between the two devices. Furthermore,

the ability to communicate between the platform and a computer at high-speeds re-

quires a specially constructed interface, one that can be modi�ed by the designer at

their choosing.

There are a number of commercial packages which provide a hardware platform to

perform this task, however there are drawbacks to many of the available options. Some

may require special hardware to connect to a computer using proprietary connectors

or boards, which increases the cost and reduces the �exibility of any solution. Other

options may have limited access to the internal structure of the interface, limiting the

ability of the developer to modify the interface to suit their needs. There may be an

extra cost to provide the code to the interface, separate from the board, which can

also tax design budgets.

This dissertation provides a solution in the form of a Gigabit Ethernet connection

with a custom IP/network layer written in VHDL to facilitate the connection. With

an increasing number of IP-enabled devices available such as IPTV and set top boxes,

the ability to link hardware using Ethernet is very useful and so the development of

iv

a lean and capable network layer was considered a suitable focus for the project. The

overall goal has been to provide an interface which is cheap, open, robust and e�cient,

retaining the �exibility a developer might require to modify the code to their needs.

After covering some basic background information about the project, the dissertation

looks at the requirements of the board and interface, as well as the alternative interface

solutions which were looked at before deciding on Gigabit Ethernet. The protocols

used in Ethernet are then covered, with both an explanation of the structure of each

and their relevance to the implementation. The Finite State Machines which control

operation of the interface are covered in depth, with an explanation of their inter-

connectivity to each other and how they �t in the data-�ow between the computer

and the board. Error correction and reliability is discussed, as well as any remaining

components critical to the operation of the interface.

Pipelining, the method of design which provides the speed required for Gigabit Ether-

net, is covered along with the extra speed optimisation techniques used in the design

such as RAM swinging bu�ers. Testing and synthesis are covered which ensure the

design is as robust as possible, both in simulations and in real-world applications. The

�nal design was implemented on a Xilinx Spartan 3 FPGA (XC3S5000-5FG900C) and

capable of a maximum speed of 128.287 MHz, which is more than enough to satisfy

the requirements of Gigabit Ethernet under a variety of network conditions. The

interface code occupies 1,166 slices of logic on the FPGA (3% of the total amount

of logic available), making it su�ciently compact to run large projects on the same

chip. The core was tested on physical hardware and performed correctly at real line

Gigabit speeds. Con�guration of the computer along with the method of connecting

to the board and transferring data is mentioned, with explanation of the code run

on the computer to make this possible. Finally, the dissertation provides an example

application through the use of JPEG2000 image compression/decompression.

v

"I Nicholas Tsakiris, certify that this thesis does not incorporate

without acknowledgment any material previously submitted for a degree

or diploma in any university; and that to the best of my knowledge and

belief it does not contain any material previously published or written

by another person except where due reference is made in the text."

Candidate:

Nicholas Tsakiris

vi

Acknowledgements

I would like to thank my supervisor, Professor Greg Knowles, for his invaluable help

in getting me through my candidature. To my colleagues at the Flinders University of

South Australia, School of Informatics and Engineering, I would like to say a grateful

thank you. In particular, to Paul Gardner-Stephen for his help in understanding the

intricacies of networking protocols, as well as Geo� Cottrell, Craig Peacock and Terry

MacKenzie for their assistance. I would also like to thank the academics and sta�

of that school for their continual support over the past few years. Finally, I would

like to thank my friends and family who have helped me during the period of my

candidature.

vii

Contents

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 FPGAs . 3

1.2 VHDL . 4

1.3 Ethernet . 5

1.3.1 History . 5

1.3.2 Gigabit Ethernet . 6

2 Requirements 8

2.1 High Speed/Bandwidth . 8

2.2 Proposed Solutions . 9

2.2.1 USB . 10

2.2.2 PCI-Express . 10

2.2.3 HyperTransport . 11

2.2.4 In�niBand . 13

2.2.5 Ethernet . 15

viii

3 Protocols 16

3.1 Ethernet . 17

3.2 IP . 18

3.2.1 IPv4 vs IPv6 . 21

3.3 ICMP . 23

3.4 ARP . 25

3.4.1 Manual ARP Entries . 29

3.5 TCP . 31

3.6 UDP . 35

3.7 UDP Lite . 38

4 Implementation 40

4.1 Functionality . 40

4.2 Data Flow . 41

4.3 Finite State Machines . 43

4.3.1 RAM . 43

4.3.2 FIFOs . 44

4.3.3 fsm_read . 45

4.3.4 fsm_packgen . 50

4.3.5 fsm_send . 55

4.4 Reliability/Errors . 59

4.4.1 Tags . 59

4.4.2 Corrupted/Unsupported Packets 61

ix

4.4.3 Checksums and CRCs . 62

4.5 UDP Lite . 62

4.6 Physical Implementation . 64

5 Pipelining 68

5.1 RAM Swinging Bu�ers . 71

5.2 Timing Diagram . 73

5.3 Implementation . 74

6 Testing/Synthesis 79

6.1 Testing . 79

6.1.1 Single Packet Tests . 79

6.1.2 Multiple Packet Tests . 81

6.1.3 Malformed Packet Testing . 88

6.2 Synthesis . 88

7 Computer-Side Operation 91

7.1 Requirements . 91

7.1.1 MTU . 92

7.2 Con�guration . 96

7.3 Operation . 98

8 JPEG2000 Core 105

8.1 History of JPEG/JPEG2000 . 106

8.2 The Wavelet Transform . 108

x

8.2.1 Lifting Scheme . 114

8.2.2 Pipelining the Design . 118

8.2.3 Connectivity . 122

9 Conclusion 125

9.1 Future Improvements . 126

9.1.1 ARP Support . 126

9.1.2 IPv6 Support . 126

9.1.3 TCP support . 127

Bibliography 128

Bibliography 128

A Socket Code 134

xi

List of Figures

2.1 HyperTransport plug-in card concept 12

2.2 External In�niBand connector (latch type)1 14

4.1 Flow of data between the various FSMs 42

4.2 RAMs used by the interface along with their locations and data paths 44

4.3 FIFOs used by the interface along with their locations and data paths 45

4.4 fsm_read state �owchart . 48

4.5 fsm_packgen state �owchart . 52

4.6 fsm_send state �owchart (page 1) . 56

4.7 fsm_send state �owchart (page 2) . 57

4.8 Fragment of a packet with tag added to beginning of payload 60

4.9 Prototyping board used for testing . 65

5.1 The three FSMs the single ICMP packet will be processed with (in order) 69

5.2 The time-line of three ICMP packets processed in serial 69

5.3 The time-line of three ICMP packets processed in parallel (pipelined) . 70

5.4 Timing diagram of three UDP packets in mirrored mode 75

5.5 The locations of two packets in RAM 76

xii

5.6 Two RAM operations operating at the same time via swinging bu�er . 78

6.1 Partial wave table for the beginning of an ICMP packet 81

8.1 Space occupied by HDL programs on the FPGA 106

8.2 High and low pass wavelet �lters . 108

8.3 One-stage wavelet �lter bank . 109

8.4 Left - Original uncompressed image; Right - One octave wavelet trans-

formed image . 110

8.5 One octave wavelet transform - quadrant contents 111

8.6 Four octave wavelet transform - quadrant contents 113

8.7 Daubechies 9/7 Wavelet Transform Equations (Lossy Compression) . . 116

8.8 LeGall 5/3 Wavelet Transform Equations (Lossless Compression) . . . 116

8.9 Symmetric extension at the boundaries 117

8.10 Pipelined execution of the lifting system 119

8.11 Hardware lifting blocks in a pipelined architecture 121

8.12 Inter-connectivity between system components 123

xiii

List of Tables

2.1 Comparison of various communication options 15

3.1 Structure of a Gigabit Ethernet packet 17

3.2 Structure of the IPv4 header . 19

3.3 Structure of the IPv6 header . 22

3.4 Structure of an ICMP packet . 24

3.5 Structure of an ARP packet . 26

3.6 Structure of a TCP packet . 32

3.7 Structure of a UDP packet . 36

3.8 Structure of the UDP pseudo-header with remaining UDP packet . . . 37

3.9 Structure of a UDP Lite packet . 39

8.1 Timing chart for each lifting stage with a sequence of eight values . . . 120

1

Chapter 1

Introduction

FPGAs (Field-Programmable Gate Arrays) are a useful tool in the electronics in-

dustry for constructing prototype designs before mass fabrication onto dedicated

hardware and are often used themselves as part of the �nal design. They are re-

programmable, �exible and extendable, with the capability to run several programs

at once and at di�erent speeds. For many designs, interfacing with a computer may be

required for data I/O, programming and debugging. If the requirements of the design

call for high-speed data transfer with a computer, it is preferable to �nd some way to

accomplish this using an existing interface on the computer, to maximise portability

and reduce the dependency on specially-designed hardware.

A particularly common interface on many computers is the Ethernet port, normally

used for wired network connections to LANs and WANs. The commonality of this

interface makes it ideal for interfacing with an FPGA prototyping board, particularly

if both network adaptors involved are capable of Gigabit speeds. However, to actually

receive and transmit data using Gigabit Ethernet and have that data available for

other programs that reside on the FPGAs is not necessarily straightforward, particu-

larly if one wishes to customise aspects of the interface. There are IP cores available

for purchase from several vendors which can provide Gigabit Ethernet functionality

for FPGAs, but these generally reside as black-boxes and due to them being distribu-

2

ted as encrypted netlists, do not provide the designer with anything but the inputs

and outputs of the core, which makes them unsuitable for the designer who wishes

to modify the interface code directly. Sometimes it is possible to obtain the source

code for these black-boxes, but the extra cost of the code can add substantially to

the overall cost of the IP core. For example, Alcatel provides a fully-featured Gigabit

Ethernet core for Altera FPGAs,2 however costs start at $30,000 for an encrypted

netlist without code. The source code can be purchased, but for an additional cost.

The purpose of this dissertation is to cover the design of a custom IP/network layer,

one which has low cost, high reliability and an open structure for easy manipulation.

The primary focus was to �nd an e�cient engineering solution to a practical problem,

the problem being how to develop the layer to work with low-power devices. E�cient

engineering would solve this problem and provide the ability to use low cost hardware

to support Gigabit Ethernet line speeds. The design of the core makes it streamlined

for typical FPGAs and does not require higher-end hardware.3,4 The base platform

for its design was a Xilinx Spartan 3 FPGA, but the core can be implemented on other

FPGAs so long as the base clocking speed of 125 MHz can be obtained. It is not just

FPGAs which would bene�t from such a design; there are also an increasing number5

of IP-enabled devices (eg. IPTV, set-top boxes, fridges) which would bene�t from

a fast and lean network layer without the bloat of extra protocols and functionality

which would not be needed in these highly-specialised devices. For this to be achieved,

certain features which are available with commercial solutions are not present, but

the bene�ts of a simpler core are evident once the designer has to put the solution

to use. The dissertation also covers the physical implementation of the core on real-

world hardware as well as the tests performed to validate the core's accuracy and

reliability.

Achieving these requirements and solving the problem of an e�cient design required

some compromises. ARP support was not implemented due to lack of time. TCP

3

support was not implemented due to the fact that the protocol is never implemented

entirely in hardware but rather a software/hardware combination using an embedded

CPU, which was not available with the sole Spartan 3 FPGA. The Treck TCP/IP

core for Xilinx FPGAs is an example of a core which could perform as an o�oad

engine for processing TCP packets, when run on an embedded or soft processor on

an FPGA such as MicroBlaze or a PowerPC CPU.6 However, even with an embedded

CPU the size of the core would increase in size and complexity to a level that was

not desirable for achieving the lean and clean architecture, which were part of the

goals of the design. The lack of packet error detection/correction that is an inherent

part of TCP was still provided through the use of tags. The issue of achieving full

Gigabit speeds on the base hardware (the Spartan 3) was ultimate the main factor

in determining how to construct the core and still satisfy the requirements of the

problem.

This chapter introduces several important concepts and ideas which are needed to

fully understand the issues raised in this dissertation. Section 1.1 provides a brief

introduction into FPGAs, what they are and how they can be used. Section 1.2

explains what VHDL is and what its purpose is with regards to chip design. Finally,

Section 1.3 provides a short introduction to Ethernet extending to Gigabit Ethernet

and its purpose for this design.

1.1 FPGAs

A �eld-programmable gate array is a semiconductor device which contains logic com-

ponents (also known as logic blocks) which are programmable. By selectively pro-

gramming the device these logic blocks can function as basic logic gates such as AND,

OR, XOR, NOT, or can be extended into more complex combinational functions such

as encoders, decoders or simple mathematical functions. Modern FPGAs also contain

4

special logic designed to act as memory elements such as RAMs or FIFOs and depen-

ding on the type of FPGA the memory elements may be constructed from �ip-�ops

or dedicated memory blocks on the chip. The key function of an FPGA is to pro-

vide the ability to run logic programs with the advantage that the FPGA can be

re-programmed multiple times, whereas a regular integrated circuit with support for

logic gates would have a �xed design, permanently selected and unable to be altered.

Despite being slower than a dedicated chip with a permanent design, FPGAs have a

much greater level of �exibility and coupled with the ability to easily be reprogram-

med, are ideal for running prototype designs and also for performing multiple tasks

with the same hardware.

FPGAs have existed since the mid 1980's when Xilinx released the XC2064, the �rst

FPGA. Despite only supporting a size of 1,000 gates, compared to sizes 10,000 times

greater in 2004, this initial form of the FPGA proved very popular.7 The ability to

program the same chip over and over again provided cost-e�ective design development

and increased the development of chip design theory and application. FPGAs have

a wide range of applications, from digital signal processors (DSPs) to cryptography

and beyond.

1.2 VHDL

To program an FPGA, a design-entry language suitable for specifying how the logic

blocks interconnect together to perform their tasks is used. For this we use a Hardware

Description Language (HDL), which encompasses any computer language speci�cally

designed to formally describe electronic circuits. There are two main languages for this

purpose: VHDL and Verilog. VHDL (VHSIC Hardware Description Language, fully

expanded as Very-High-Speed Integrated Circuit Hardware Description Language)8

is the language used by the Gigabit Ethernet project in this dissertation. It is capable

5

of rendering the entire structure of the FPGA including logic, connections and ports

and also allows easy simulation capability due to the construction of a testbench.

Verilog9 is another widely-used HDL, but although Verilog is somewhat simpler and

easier to code, VHDL was chosen for this design for reasons of familiarity.

1.3 Ethernet

1.3.1 History

Ethernet is the most common technology used on Local Area Networks (LANs) today.

Developed in the 1970s by Xerox Corporation, the experimental version of Ethernet

ran at 3 Mbit/s, but the �rst widespread standard of Ethernet ran at a speed of

10 Mbps in 1985 and later at 100 Mbps (sometimes referred to as Fast Ethernet)

in 1995, at which point Ethernet had become the regular network system for most

computers. The �rst Ethernet networks, 10BASE5, used thick yellow cable with

vampire taps as a medium. Later versions of Ethernet (10BASE2) used thinner

coaxial cable with BNC connectors as the connection medium. Currently Ethernet

has many varieties that vary both in speed and physical medium used. The most

common forms used currently are 10BASE-T, 100BASE-TX and 1000BASE-T. All

three utilise twisted pair cables and 8P8C modular connectors, more commonly known

as RJ45 (Registered Jack 45) connectors.10 These forms run at 10 Mbit/s, 100 Mbit/s

and 1 Gbit/s speeds respectively.11

The RJ45 medium is made from copper cabling, which is suitable for 10BASE-T

and 100BASE-TX but can sometimes cause problems with the higher 1000BASE-T

form of Ethernet. Due to the signi�cant increase in speed and bandwidth require-

ments, 1000BASE-T is less tolerable of imperfections in the network cabling than

previous standards and electrical noise can potentially degrade a Gigabit connection

6

severely when used with poor-quality or inappropriately speci�ed copper cabling.

Most modern Ethernet cabling can support 1000BASE-T satisfactorily, but signal

degradation becomes more of a problem the longer the cable becomes. Fibre optic

variants of Ethernet are commonly seen connecting buildings or network cabinets in

di�erent parts of a building but are rarely seen connected to end systems for cost

reasons. Their advantages lie in performance, electrical isolation and distance, up to

tens of kilometres with some versions. Fibre cabling is therefore a lot more desirable

when dealing with super-fast Ethernet connections such as 1000BASE-SX in a large

environment, but is not required in most small networks due to the quality of regular

copper cabling.12

1.3.2 Gigabit Ethernet

Gigabit Ethernet is a form of the Ethernet standard which allows for high-speed

transfers up to one Gigabit per second. The standard was approved by the IEEE

in 1998 and later adopted by ISO. The initial standard for Gigabit Ethernet was

known as IEEE802.3z, however the most commonly implemented form of Gigabit

Ethernet (IEEE 802.3ab) was rati�ed a year later by the IEEE and uses unshielded

twisted pair cabling as opposed to �bre cabling in the initial standard. The reason

for the latter standard being more useful is because it allows existing copper cabling

infrastructure, used for 10/100 MBit Ethernet, to remain in place without having

to be replaced by �bre optic.13 The �bre version of Gigabit Ethernet is known as

1000BASE-SX and can transmit along a single �bre line at a distance of 500m or

more with modern cabling before requiring an endpoint. The unshielded twisted

pair variant, 1000BASE-T, generally has a maximum length of 100m. The medium

chosen however does not a�ect the operation of the network layer and is up to the

7

requirements of the environment as to which medium to choose. The same core can

be used for either.

Gigabit is the logical successor for 10/100 MBit connections found in virtually all NICs

(Network Interface Card) and has stood as a standard for some time and support has

become very common, with most motherboards with integrated Ethernet supporting

Gigabit, as well as new cards generally supporting it as well. The increase in speed

is not only due to the higher clocking speeds (125MHz as opposed to 25MHz in

100 MBit), but also double the transmission bits (8 bits instead of 4). This results

in a potential 10 times increase in available bandwidth, which makes it useful for

high-speed transfers to and from an FPGA. Furthermore, since Gigabit Ethernet is a

common standard, it is trivial to �nd hardware which can support this standard at a

reasonable cost without having to resort to other, more exotic forms of data transfer

between an FPGA and a PC.

8

Chapter 2

Requirements

This chapter of the dissertation covers the necessary requirements that precipitated

the need for Gigabit Ethernet project. Section 2.1 discusses the purpose of the Xilinx

prototyping board and the importance of the high-speed/high-bandwidth require-

ment. Section 2.2 covers several ideas that were considered before �nally settling on

the Gigabit Ethernet option.

2.1 High Speed/Bandwidth

The origins of this project were in the Embedded Systems Lab in the Engineering

department of Flinders University. A characteristic of the work performed by this

lab is the data-heavy nature of the designs used, which can range from DNA sorting

algorithms to JPEG2000 wavelet transforms to general compression/decompression

setups. Speed and bandwidth are essential for performing these tasks; a digital ca-

mera, for example, needs to have a fast hardware implementation when performing

image compression for storing images to avoid lag time between shots. High clocking

speeds allow the circuitry to perform their tasks faster, plus high bandwidth allows

a greater amount of data to be processed per clock cycle. Combining the two advan-

tages result in a huge improvement in the capabilities of hardware implementations

9

compared to their software equivalents, which is what makes hardware designs so

attractive for performing speci�c tasks.

2.2 Proposed Solutions

Since data transfer between the FPGA development board and a PC had to satisfy the

requirements of high-speed and high-bandwidth, there needed to be a useful way to

establish the connection, both at the hardware and software level. Modern computers

have a wide variety of di�erent connection standards and the choice to use a speci�c

connection option depends on several factors (some more important than others):

• Performance (the raw speed of the connection, plus maximum bandwidth the

connection is capable of)

• Functionality (is any error-correction inherit in the connection standard? is the

connection full-duplex? etc.)

• Flexibility (the ability to adjust the way the connection functions, whether

through hardware or software)

• Scalability (how capable is the connection method for expanding? can it support

newer revisions without changing hardware?)

• Lifespan (how long can we expect to have the connection standard available to

us as technology progresses? how quickly will it become obsolete?)

• Commonality (is the connection ubiquitous? can it be found on the majority

of computers, or does it require exotic systems?)

• Physical implementation of the connector on the FPGA board (getting the

relevant connector working on the FPGA development board must not be par-

10

ticularly di�cult, otherwise the design begins to go beyond the requirements of

cost and simplicity)

2.2.1 USB

One option proposed was USB (Universal Serial Bus). USB is extremely common

among most modern computers, with the Hi-Speed (2.0) standard supporting a maxi-

mum data rate of 480 Mbit/s.14 However, the two main issues with USB are that the

use of high-speed USB requires a maximum cable length of only �ve meters,15 which

meant the board would have to be linked to the PC fairly closely and though the data

rate was fast, there were still faster options available.

2.2.2 PCI-Express

In searching for the fastest connections available to and from a PC, the computer's

mainboard is the most logical place to look. Since hardware directly connected to

the mainboard will obtain primary access to the system's resources, this results in

the highest speed and bandwidth connections available on a PC. A novel idea brie-

�y examined was to incorporate the use of a PCI-Express computer expansion card,

a standard created by Intel in 2004.16 The proposal was to speci�cally use a PCI-

Express video card and utilise the dual-DVI (Digital Visual Interface) connectors on

the card for raw data transfers. This could be achieved by accessing the video frame

bu�er, bypassing video-related functions and directly accessing the card's memory to

transfer data quickly through the high-speed PCI-Express slot. Using current hard-

ware supporting version 3.0 of the standard, the maximum potential transfer rate for

a single PCI-Express slot can be as high as 8 GB/s17However, future developments

would be hindered somewhat as the DVI standard has stagnated at version 1.0. The

Digital Display Working Group which developed the DVI standard has since disban-

11

ded after the initial release of DVI and so there is no guaranteed upgrade path using

the connector, which is why several new standards such as DisplayPort are being

established to provide a future connection standard to replace DVI.18 It was therefore

decided that the nature of designing a communications system using a video card's

frame bu�er would not make it feasible for this design and instead to design this

project around a more established standard which could be upgraded in the future

with little extra work.

2.2.3 HyperTransport

HyperTransport is an interesting concept in the development of high-bandwidth, low-

latency connectivity solutions. The purpose of the interface is to provide a direct link

to the computer's CPU with a focus on bandwidth/latency reduction.19 Key to the

connection is support from the CPU and motherboard chipset to allow this connec-

tion to work properly. The primary connection for the HyperTransport interface is

known as HyperTransport eXpansion (HTX) which utilises uses the same mechani-

cal connector as a typical PCI-Express slot. Further functionality can be obtained

through the use of plug-in cards which support direct access to a CPU and DMA

access to the system RAM.

The primary advantage of HyperTransport is that it provides a �exible data rate

ranging from 200 MHz to 2.6 GHz depending on the HT version used and how it

is con�gured.20 When run using the full-sized, full-speed 32-bit interconnect, the

maximum transfer rate is 41.6 GB/s per link. Obtaining mainboards which support

HyperTransport is not di�cult, although as of yet only AMD-based systems are ca-

pable of supporting the standard; Intel has a competing standard to HyperTransport

called Intel QuickPath Interconnect, although a practical implementation of Quick-

12

Figure 2.1: HyperTransport plug-in card concept

Path as it is known is not expected to be released until late 2008, too late for the

requirements of the project.21

An important distinction between other forms of communication with the computer

is that by using HyperTransport, the FPGA and relevant hardware must exist on the

plug-in card itself. This is unlike other options which use cabling and as such the

extra requirements on the design of the FPGA board mean it has to have a physical

pro�le that can �t inside the computer. There is also the issue of limited physical

access to the board when the computer case is on, which could cause problems when

attempting to view on-board displays or press switches.

There are other ways in which HyperTransport can be used. Instead of plugging a

card into an expansion slot, HT modules can be installed directly into a free CPU slot

of any compatible multiprocessor motherboard. DRC is a company which supplies

plug-in modules supporting this very option; the RPU100 supports a single HT bus

along with the Xilinx Vertex 4 LX 60 FPGA. It is inserted directly into a free 940

socket located on a standard AMD Opteron microprocessor motherboard.22 Mul-

tiprocessor motherboards are a requirement when using this direct-access method

since the motherboard still requires at least one CPU to run the computer and the

HT modules occupy an entire CPU slot without providing the ability for a CPU to

13

piggyback. This would produce the fastest possible bandwidth capabilities of Hy-

perTransport, but would also further limit physical access to the board and require

even more speci�c (and potentially quite expensive) computer hardware. Given other

alternatives available, HyperTransport did not satisfy the needs of the project.

2.2.4 In�niBand

In�niBand is a communications technology designed for high-performance architec-

tures, which has made it popular with supercomputers and data centres. It is cur-

rently the de facto standard for interconnections with these computing systems.23

In�niBand has not made much impact with regular desktop computers in part due to

cost, but also the signi�cantly larger bandwidth it provides compared to bandwidth

requirements a regular desktop system requires. There are some e�orts to adapt In-

�niBand as a standard or semi-standard interconnect between low-cost machines as

well, plus desktop implementations do already exist in a way which could be used by

the FPGA project.

The signalling rate for a single In�niBand connection is 2.5 GBs in each direction

and this can be extended further since In�niBand supports double (DDR) and quad

data (QDR) speeds, for 5 GBs or 10 GBs respectively, at the same data clock rate.

However, the standard implements 8B/10B encoding which means that for every 10

bits sent, only 8 bits carry data, so the amount of useful data and hence the practical

transmission rate is reduced per clock cycle. So, the practical data rates become 2, 4

and 8 GBs for single, double and quad data rates respectively. To increase available

bandwidth, links can be combined in banks of In�niBand connectors, most often

together in sets of 4 or 12, called 4X or 12X. A quad-rate 12X link therefore carries

120 Gbit/s raw, or 96 Gbit/s of useful data. Most systems today use either a 4X

2.5Gb/s (SDR) or 5Gb/s (DDR) connection.24

14

Figure 2.2: External In�niBand connector (latch type)1

In�niBand provides a massive amount of bandwidth, much more than could be expec-

ted from any other available solution, however the costs involved and the complexity

of implementation would not o�set this bene�t. Furthermore, for a simple desktop

connection it's unlikely that an FPGA would be able to process the massive amount

of data at the rates required. Unless several banks of FPGAs processed the data in

parallel, the advantages would never be seen. There is also no established standard

programming interface for In�niBand, as the standard only speci�es a set of func-

tions that must exist in any implementation, rather than the syntax of these functions

which is left to the vendors. The most common to date has been the syntax developed

by the OpenFabrics Alliance,25 which has been adopted by most of the In�niBand

vendors and is available for both Linux and Windows (although at the time of writing,

not OS X). Also, despite being less costly than some other ultra-high-speed interfaces,

In�niBand is still very expensive and so ultimately, the bandwidth advantages did

not su�ciently outweigh the costs, practical implementation problems and lack of

platform compatibility that would be useful for the system.

15

Table 2.1: Comparison of various communication options

Bandwidth Cable Limit

USB (2.0) 480 Mbit/s 5 metres
PCI-Express (DVI medium) 8 GB/s (Dual Link DVI) 4.5 metres (theoretical)

HyperTransport 41.6 GB/s N/A
In�niBand 96 GB/s (Quad rate, 12X) 8 metres

Ethernet (1000BASE-T) 10 GB/s 100 metres per segment

2.2.5 Ethernet

Ethernet became the most appropriate solution at this point, since Ethernet is a very

common networking platform and the speci�cations are easy to source. The RJ45

connectors are also very common, cheap and easy to implement, particularly when

using integrated magnetics to avoid adding extra passive components. Gigabit Ether-

net provides very high speeds with a maximum data rate of 1 GBit/s, plus it's a very

ordered method of packet generation that a state machine written in VHDL would

be able to parse without much fuss. A useful feature of Ethernet is that the RJ45

connectors are highly ubiquitous with an established standard which is unlikely to be

changed anytime soon. This is important in �future proo�ng� the core to allow for

newer forms of Ethernet to connect to the core, particularly since 10 GBit/s Ethernet

has started to increase in uptake among developers of networking hardware.26 The

core can also be reused when 10 G Ethernet becomes widely implemented as the in-

terface used in twisted-pair forms of Ethernet in identical between 1 Gb and 10 Gb.

The structure of Ethernet and the method for how it is used is documented in the

next chapter.

Table 2.1 shows the bandwidth capabilities and maximum cable limits of all the

covered communication options.

16

Chapter 3

Protocols

Communication via Ethernet requires the use of an appropriate protocol to facilitate

the transfer of data. The choice of protocol is very important, as certain protocols

are more suitable than others for speci�c tasks. Some protocols provide extra error

correction capabilities which allow for high reliability data transfer, but at the cost of

greater complexity in the packet construction/deconstruction. Most protocols have

a particular use for them; some are used for testing the capabilities of the data

link, some are just for general data transfer, some are used as utility protocols to

facilitate communication in others ways. There's quite a lot of �exibility in how

to implement communication between two devices and since implementation using

FPGAs requires careful use of look-up tables to minimise wasted space and ensure

speed requirements for Gigabit speeds, it is vital that only the necessary protocols

are implemented, so choosing the appropriate protocols to use is an important part

of any implementation. This chapter provides an overview of the common protocols

used in the Internet protocol suite and their relevance to the project.

17

Table 3.1: Structure of a Gigabit Ethernet packet

7 Bytes 1 Byte 6 Bytes 6 Bytes
Preamble Start Frame Delimiter Destination Address Source Address

2 Bytes 0-9000 Bytes 0-46 Bytes 4 Bytes
Length Data Pad Frame Check Sequence

3.1 Ethernet

All the protocols used by the system are encapsulated within an Ethernet packet

governed by its own protocol known as the Ethernet protocol. This protocol is im-

portant since it holds information that is used to verify whether the packet was

transmitted without corrupted or not, as well as where the packet is suppose to be

transmitted to in a network. Table 3.1 presents the structure of the Gigabit Ethernet

packet. The only di�erence between the structure of a typical Ethernet packet and

a Gigabit Ethernet packet is the size of the Data �eld - a non-gigabit packet has a

maximum size of 1500 bytes, however Gigabit Ethernet can allow for jumbo packets

with a maximum size of 9000 bytes. Jumbo packets are covered in Section 7.1.1.

The various �elds of the protocol are:

Preamble

A sequence of values used to allow the receiver's clock to be synchronised with the

sender. For the purpose of the system however, since the synchronisation is controlled

using the physical layer and a Digital Clock Manger on the FPGA, the preamble serves

the function of alerting the system to the existence of a new packet. All seven bytes

are of the form "10101010".

18

Start Frame Delimiter

Designates the beginning of the frame and is always �10101011�.

Destination Address

The MAC address of the destination device for the packet.

Source Address

The MAC address of the source device for the packet.

Length

The length of the data �eld.

Data

The information sent by the packet. For all packets processed by the core, the data

�eld contains the IP protocol, along with an ICMP, UDP or UDP Lite protocol, and

then the payload data.

Pad

The Ethernet frame requires a minimum size of 64 bytes. Hence, the data �eld must

be at least 46 bytes long to compensate. If the data �eld is not large enough, the Pad

�eld can be �lled with zeros to bring the size up to the minimum required length. No

padding is required for the IP core since the combination of protocols used makes the

overall packet large enough to satisfy the minimum length.

Frame Check Sequence

A CRC used to verify the integrity of the frame.

3.2 IP

The Internet Protocol (IP) (RFC 791)27 is the primary protocol used to send data

through a network interface. On its own, IP cannot perform much in the way of

19

Table 3.2: Structure of the IPv4 header

Bits 0 - 3 4 - 7 8 - 15 16 - 18 19 - 31
0 Version IHL TOS/DSCP/ECN Total Length
32 Identi�cation Flags Fragment O�set
64 Time to Live Protocol IP Header Checksum
96 Source Address
128 Destination Address
160+ Data

data transfer as it is more of a organisation protocol, controlling how devices in a

network accept the packets which are sent and received. To actually perform useful

communication, the protocol is used in conjunction with another network protocol

which a speci�c task in mind. In this respect, IP forms the backbone of much of the

communication used in Ethernet. The IP header is of importance in understanding

the nature of IP, as it is the part of the protocol that is added to the Ethernet

protocol of each packet before any of the other protocols are seen. Table 3.2 presents

the structure of the IPv4 header. (Note: there is an optional options �eld which

exists at location 160 and run for 32 bits. Options is rarely used by systems and so

is not included in the table.)

The Internet Protocol supports a feature called packet fragmentation which allows for

packets to be broken up and sent in smaller pieces if the MTU (see Section 7.1.1) is

too small to hold the entire packet. The core does not support packet fragmentation

and as such is not capable of reassembly of fragmented packets. This is not critical

because the MTU can be modi�ed to be as large as required by the software run

on the computer to interface with the core, so that all packets can be sent without

fragmentation. In particular, the core is designed to support jumbo packets with a

very large MTU (up to 9000 bytes), so fragmentation can be o�set by increasing the

MTU to the maximum allowed by the network adaptor and ensuring the packets are

20

jumbo sized, but still limited to a size below the MTU to prevent fragmentation.

Features related to packet fragmentation such as dealing with out-of-order packets

and dropped packets are handled by the tags system as described in 4.4.1.

The various �elds of the IPv4 header are:

Version

The version of the Internet Protocol. For the purposes of the core this will always be

set to 4 (see 3.2.1)

IHL (Internet Header Length)

The length of the IP packet header. For all intents and purposes this value is the same

between packets. There are occasions where it might be useful to drop particular �elds

from the header which would result in a shorter header length, but this raises extra

complexity for very little gain, so the value here remains constant between packets.

Type of Service or DSCP

Used by network hardware such as routers to determine how packets should be trans-

ported and queued. Set to 0 by default.

Total Length

The length of the header and the data. Encompasses the whole packet.

Identi�cation, Flags and Fragment O�set

These are used during the process of packet fragmentation. The Identi�cation is a 16-

bit number which can be used to identify the packet for reassembly, Flags is used to set

whether routers can fragment a packet or not and whether there are more fragments

for the particular datagram, and Fragment O�set is set by the router performing the

fragmentation to assist in recovery of a fragmented packet. Since the core does not

use packet fragmentation, these values are simply copied from incoming packets sent

by the computer in all return packets.

21

Time to live (TTL)

The number of routing hops the packet may endure. Each time the packet passes

through a router/switch, this value is reduced by one. If it ever reaches zero, the

packet is discarded. When the board is connected directly to the computer as is a

common situation, the TTL is considered almost irrelevant due to the direct link and

lack of routing.

Protocol

The protocol value is an identi�er which speci�es what kind of protocol is contained

within the packet. For ICMP, UDP and UDP Lite protocols, the value here would be

1, 11 or 88 respectively.

IP Header Checksum

Used for error checking.

Source Address

The IP address of the sender of the packet

Destination Address

The IP address of the destination of the packet

Data

Contains the network protocol and payload which is being encapsulated by IP.

3.2.1 IPv4 vs IPv6

There are two versions of the Internet Protocol in use: IPv4 (Internet Protocol version

4) and IPv6 (Internet Protocol version 6). Version 4 is supported by all networking

hardware and software, with version 6 slowly being taken up by various groups such

as ISPs as the demand for the newer protocol becomes apparent. However, for the

22

Table 3.3: Structure of the IPv6 header

Bits 0 - 3 4 - 7 8 - 11 12 - 15 16-23 24 - 31
0 Version Tra�c Class Flow Label
32 Payload Length Next Header Hop Limit

64 Source Address

192 Destination Address

320+ Data

purposes of this design, the only currently implementation version of the protocol is

IPv4 due to the commonality and also the simplicity of implementation. If required

however, the core can be enhanced by adding support for IPv6. The changes would

involve modifying the �rst FSM to check the version �eld of the incoming packet and

its value will determine whether to process the packet as a IPv4 or IPv6 packet, and

further FSMs can be modi�ed to process IPv6 packets and create new ones in the

same manner as other supported protocols. Table 3.3 presents the structure of the

IPv6 header.

The various �elds of the IPv6 header are:

Version

The version of the Internet Protocol. Value of 6 in IPv6.

Tra�c Class

Classi�es the packet's priority when there is network congestion.

Flow Label

Quality of Service management. Currently unused.

23

Payload Length

The size of the payload in bytes. If this is set to zero, the packet is identi�ed as

having a jumbo payload with the packet being known as a jumbogram.

Next Header

Speci�es the next encapsulated protocol. This �eld uses the same values as those

speci�ed speci�ed in the IPv4 protocol �eld.

Hop Limit

Replaces the time to live �eld used by IPv4.

Source Address

The IP address of the sender of the packet

Destination Address

The IP address of the destination of the packet

Data

Contains the network protocol and payload which is being encapsulated by IP.

3.3 ICMP

The Internet Control Message Protocol (ICMP) (RFC 792)28 is a protocol used to

determine the operating status of a network. Used predominately by the ping com-

puter program, ICMP packets are sent between machines and can be used to quantify

aspects of the quality of the network connection such as latency, robustness, stabi-

lity and whether a host is reachable. The segment structure of an ICMP packet is

presented in Table 3.4 and shows the header information only - actual payload data

follows after the header.

24

Table 3.4: Structure of an ICMP packet

Bits 0 - 3 4 - 7 8 - 15 16 - 18 19 - 31
0 Source Address
32 Destination Address
64 Type Code Checksum
96 ID Sequence

The various �elds of an ICMP packet's header are:

Source Address

The source IP address from whom the packet was sent.

Destination Address

The destination IP address of the packet.

Type

The ICMP type. Despite there being a fairly large number of available types, only two

are used by the ping command and so are supported by the system: 8 (Echo Request,

often referred to as just ping) and 0 (Echo Reply, also known as a pong). When a

ping packet is sent by the computer to the board, this is a request for the host to

respond so the ICMP packet has a type of 8. When the board replies (assuming the

connection is alive), it is replying to the ping which was sent to it, so the responding

packet has a type of 0.

Code

Further speci�cation of the ICMP type. Varies depending on the ICMP type.

Checksum

This �eld contains error checking data calculated from the ICMP header and data,

with value 0 for this �eld.

25

ID

This �eld contains an ID value which should be returned in case of a pong.

Sequence

This �eld contains a sequence value which should be returned in case of a pong.

Following the sequence, the ICMP payload data is present.

When testing the link between a computer and the FPGA board, a typical use of

ICMP is to ping the board to ensure the link is live. Valid replies from the board

indicates all aspects of the connection are satisfactory, which includes a correct ARP

entry, correct programming of the board and valid interface code on the FPGAs. A

more interesting test can involve a �ood ping, which is when the ping tool is instructed

to ping non-stop at the target host the moment it receives a reply, instead of waiting

for a pre-determined amount of time before sending another ping. By �ooding the

host, in this case the FPGA board, a test of stability/reliability can be achieved. A

�ood ping can be achieved in UNIX-like operating systems with the command (must

be run as a super-user): ping -f <IP_ADDRESS>

The protocol is not used for general-purpose data transfer with the exception of the

ping tool - its purpose by design is solely to provide information about a network. For

this reason it was vital that it be included in the design, particularly for debugging.

3.4 ARP

The Address Resolution Protocol (ARP) (RFC 826)29 is a utility protocol used to

translate IP addresses to Ethernet MAC addresses. When a program makes a request

to send data to a particular machine, it speci�es an IP address as the destination,

however the destination network adapter providing the appropriate link does not have

26

Table 3.5: Structure of an ARP packet

Bits 0 - 7 8 - 15 16 - 31
0 Hardware type (HTYPE) Protocol type (PTYPE)
32 Hardware length (HLEN) Protocol length (PLEN) Operator (OPER)
64 Sender hardware address (SHA)
* Sender protocol address (SPA)
* Target hardware address (THA)
* Target protocol address (TPA)

a native IP address, but rather a MAC address (Media Access Control). Typically,

when a request for a particular IP address is made, assuming there are no previous

records of the nature of the machines on the link the computer will send an ARP

packet requesting a MAC address resolution for the IP address. Any machine on the

link which matches the IP address will send a return ARP packet specifying what

their MAC address is, so the computer can correctly send the initial request for data

transfer to the right machine.

The packet structure of an ARP packet is presented in Table 3.5 (minus the IP header

which was covered in Section 3.2).

(Note that the lengths of the SHA, SPA, THA, & TPA �elds are determined by the

hardware & protocol length �elds, so they cannot be explicitly mentioned in the table

as they may vary.)

As an example, let's say a host with an IP address of 192.168.0.1 and MAC address

of 00:01:02:03:04:05 wants to send a packet to another host at 192.168.0.50, but does

not know the MAC address. To determine the MAC address, an ARP request is sent

to discover the address. If the host at 192.168.0.50 is running and available then it

would receive the ARP request and send the appropriate reply containing its MAC

address (which in this example will be 00:40:12:E8:44:A1). This example assumes

27

either a scratch or previously �ushed ARP table. The header �elds are covered as

follows, with the above example being used in the descriptions:

Hardware type (HTYPE)

Each data link layer protocol is assigned a number used in this �eld. The system uses

Ethernet, which has a value of 1.

Protocol type (PTYPE)

Each protocol is assigned a number used in this �eld. The system uses IPv4, which

has a value of 0x0800.

Hardware length (HLEN)

Length in bytes of a hardware address. Ethernet addresses are 6 bytes long.

Protocol length (PLEN)

Length in bytes of a logical address. IPv4 addresses are 4 bytes long.

Operation

Speci�es the operation the sender is performing: 1 for a request and 2 for a reply.

Hence, the �rst ARP packet would have a value of 1 and the responding packet would

have a value of 2.

Sender hardware address (SHA)

Hardware address of the sender

• For the ARP request - 0x000102030405 (this the MAC address

00:01:02:03:04:05, represented in HEX and encoded 6 bytes long, as per the

hardware length)

• For the ARP reply - 0x004012E844A1 (this the MAC address

00:40:12:E8:44:A1, represented in HEX and encoded 6 bytes long, as per the

28

hardware length. This is the MAC address from the unknown host, which is

what the system uses to determine the routing.)

Sender protocol address (SPA)

Protocol address of the sender

• For the ARP request - 0xC0A80001 (this is the IP address 192.168.0.1, repre-

sented in HEX and encoded 4 bytes long, as per the protocol length)

• For the ARP reply - 0xC0A80032 (this is the IP address 192.168.0.50, repre-

sented in HEX and encoded 4 bytes long, as per the protocol length)

Target hardware address (THA)

Hardware address of the intended receiver

• For the ARP request - 0x000000000000 (Since the purpose of the ARP request

is to �nd out this value, ARP request packets have this �eld set to zero)

• For the ARP reply - 0x000102030405 (this the MAC address

00:01:02:03:04:05, represented in HEX and encoded 6 bytes long, as per

the hardware length)

Target protocol address (TPA)

Protocol address of the intended receiver

• For the ARP request - 0xC0A80032 (this is the IP address 192.168.0.50, re-

presented in HEX and encoded 4 bytes long, as per the protocol length)

• For the ARP reply - 0xC0A80001 (this is the IP address 192.168.0.1, repre-

sented in HEX and encoded 4 bytes long, as per the protocol length)

29

ARP is not particularly di�cult to implement, but since FPGA logic needed to satisfy

the requirements of both running as fast as possible and retaining the smallest pro�le

so as to allow other programs to access the space on the FPGAs, the decision was made

to avoid implementing ARP on the FPGAs by utilising a bypass on the computer.

As the system's primary setting will be in a direct connection between the board and

a single computer, manually adding an ARP entry on the computer side is easy to

do and satis�es the requirements of the system without requiring extra logic. First

however, it is necessary to explain how the bypass works.

3.4.1 Manual ARP Entries

Operating systems keep track of the various MAC addresses and their corresponding

IP addresses through the use of an address translation table. These tables are used by

the operating system to work out where a packet should go, since packets only specify

the destination in the form of an IP address and not as a MAC address. When a new

IP address is used for the �rst time, the OS does not have any knowledge about the

relevant MAC address it refers to, so the OS sends an ARP request to all machines on

the IP's subnet and waits for a reply from the appropriate machine. Once it receives

the ARP reply, the translation table is updated to make note of the IP-to-MAC

relationship and so all future uses of that particular IP will been seen in the table

and automatically use the relevant MAC address without requiring a second use of

ARP. If an ARP request is made and no machine responds with a relevant ARP reply

within the timeout period, the requested IP is not written into the table as there are

no available hosts.30

This system does not currently support ARP, which means that when connected

directly to a computer, the computer will know a link has been established (because

the physical components on the board achieve this independently of the VHDL code),

30

but the computer will not be able to understand what's at the other end because ARP

requests will go unnoticed. This means that any attempts to ping the board or send

UDP transmissions will fail because every attempt will automatically be preceded by

an ARP request. The operating system will only stop sending ARP requests and allow

regular network tra�c once it has an entry for the board in the address translation

table and since the board does not achieve this on its own, we must perform the

addition of the entry ourselves.

Adding an entry to the ARP table is performed using the arp command available

on most operating systems.31 For example, in both Windows and Linux an ARP

entry can be manually set using the following command: arp -s <IP_ADDRESS>

<MAC_ADDRESS>

The IP_ADDRESS (which can also be a hostname) is the address we want the board

to be known as and the MAC address is the physical address of the board. Unlike most

other networked devices, the board does not have a hardwired MAC address to begin

with, so the MAC address speci�ed can be virtually anything, so long as it doesn't

match any other network devices already connected to the computer. The other

requirement is to pick an IP address that exists on the subnet of the network adapter's

IP address, the adaptor which connects to the board. For example, if the network

adaptor has an IP address of 192.168.0.1 and the subnet mask is 255.255.255.0, then

an IP address of 192.168.0.50 is valid for the board since it exists within the allocated

subnet. After executing the arp command with valid arguments, the board is then

accessible using the chosen IP and can be validated with using the standard ping

command. A full example of how to use the arp command along with the other

necessary steps involved to connect the board to a computer is covered in Section 7.2.

Setting the ARP for the FPGA board manually allows access to the board with a

speci�ed IP without having to implement ARP construction/deconstruction code in

31

the FPGA. This increases available space for other programs on the FPGA and also

makes the routing easier for the interface, ensuring an easier chance of matching full

gigabit speeds. The main disadvantage is that in more complicated networking situa-

tions, if the board is not directly connected to the end of the networking jack of a

computer but somewhere down a chain of networked devices, such as on a router/s-

witch, the board will not be understood by the devices it's directly connected to unless

that device itself has an ARP entry added for the board. This may or may not even

be possible, particularly if connected to a router/switch that doesn't support manual

addition of ARP entries. The implementation of ARP construction/deconstruction

on the FPGA can be considered a future improvement to the design, but can still be

worked around provided the networking requirements are simple.

3.5 TCP

The Transmission Control Protocol (TCP) (RFC 793)32 is a data transfer protocol,

considered one of the core protocols of the Internet protocol suite. It provides reliable

delivery of packets and acts as the major backbone of most Internet communications,

such as with �le transfer, email and web browsing. The segment structure of a TCP

packet is shown in Table 3.6 (contains header and data information - IP header is not

included in the diagram as it was covered in Section 3.2):

The �elds are summarised as follows:

Source port

Identi�es the sending port

Destination port

Identi�es the receiving port

32

Table 3.6: Structure of a TCP packet

Bits 0 - 3 4 - 7 8 - 15 16 - 31
0 Source port Destination port
32 Sequence number
64 Acknowledgment number
96 Data o�set Reserved Flags Windows
128 Checksum Urgent pointer
160 Options (optional)

160/192+ � Data �

Sequence number

The sequence number designates the position of the current packet's �rst data byte in

the data stream. If the SYN �ag is present, the sequence number is the position plus

one, to allow for the SYN �ag in the payload. For example, if the �rst data byte of

the current packet is the 100th byte in the data stream so far, the sequence number

will be 100 if the SYN �ag is absent, or 101 if the SYN �ag is present.

Acknowledgment number

If the ACK �ag is present, then the value of this �eld is the sequence number that

the sender of the acknowledgment expects next.

Data o�set

Speci�es the size of the TCP header in 32-bit words. The minimum size header is 5

words and the maximum is 15 words thus giving the minimum size of 20 bytes and

maximum of 60 bytes. This �eld gets its name from the fact that it is also the o�set

from the start of the TCP packet to the data.

Reserved

For future use and should be set to zero

Flags (aka Control bits)

Contains 8 bit �ags

33

• CWR � Congestion Window Reduced (CWR) �ag is set by the sending host to

indicate that it received a TCP segment with the ECE �ag set

• ECE (ECN-Echo) � indicate that the TCP peer is ECN capable during 3-way

handshake

• URG � indicates that the URGent pointer �eld is signi�cant

• ACK � indicates that the ACKnowledgment �eld is signi�cant

• PSH � Push function

• RST � Reset the connection

• SYN � Synchronise sequence numbers

• FIN � No more data from sender

Window

The number of data bytes which the sender of this segment is willing to accept,

beginning with the byte indicated in the acknowledgment �eld.

Checksum

The 16-bit checksum �eld is used for error-checking of the header and data

Urgent pointer

If the URG �ag is set, then this 16-bit �eld is an o�set from the sequence number

indicating the last urgent data byte

Options

The total length of the option �eld must be a multiple of a 32-bit word and the data

o�set �eld adjusted appropriately

Despite TCP being a signi�cant component of the Internet Protocol, it is not imple-

mented at all in this design. There are several reasons for this:

34

1. TCP is a complex protocol. This complexity translates into extra logic required

on the FPGA, which limits the potential speeds and room for extra programs

on the FPGA. Justi�cation for such implementation would only work if there

were no realistic alternatives.

2. UDP (covered below) is a simpler protocol which has similar properties to TCP

but without much of the reliability architecture. However, reliability can be

e�ectively added to UDP without much overhead, so this negates the issue of

using UDP in preference to TCP.

3. TCP requires extra overhead to cover the error-correction/reliability it provides.

As can be seen in the header diagram, a lot of the header �elds exist just for

this protection, which makes it less e�cient than the UDP standard which uses

far less header per packet. Since the intention of the design is to supply a high-

speed, high-bandwidth device, removal of overheads such as this are desirable.

4. The extra reliability of the packet transmission provided by TCP is just not

necessary for this design. For the purposes of this core there was no intention

to have it embedded within devices connected to the Internet; it is mostly

intended for local networks and/or direct connection to a computer. Ultimately

the extra e�ort to implement TCP would not be justi�ed compared to that of

UDP.

TCP was originally designed for unreliable low-speed networks. However, as network

speeds have increased the hardware requirements for the network adaptors to support

TCP have had to increase as well. If an embedded CPU on an FPGA intended to

process TCP packets, Gigabit networking may result in issues with the CPU keeping

up with the line speed. As a general rule of thumb, 1 MHz of CPU is required for

every 1 Mbits of TCP tra�c, so if the CPU was solely responsible for processing

35

TCP packets and their payloads, a Gigabit link would require at least a 1 GHz CPU

to keep up with the line speed.33 Embedded processors on FPGAs generally aren't

able to run at such speeds; for example, the popular MicroBlaze soft processor core

for Xilinx FPGAs has a maximum clock frequency of 115 MHZ on a Spartan 3,

and even on a Vertex 5 the maximum possible speed is only 235 MHz.34 This has

been the reason for development in TCP o�oad engines which transfer processing of

the TCP stack to the network controller logic instead of solely on a CPU. In many

commercial applications however, TCP is rarely coded entirely in hardware; for the

situations where a device requires the use of TCP, a common strategy is to provide

a combination solution, by way of an embedded CPU to run the state machines in

software using code and perform the checksum calculations in hardware using logic.35

This provides a more e�cient and balanced implementation than by using just logic.

An example of such an implementation is used by Treck Inc. and their embedded

Internet protocol stacks.6

3.6 UDP

The User Datagram Protocol (UDP) (RFC 768)36 provides the bulk of the data

transfer capability for the project. It is connectionless, which means no handshaking

is required between the two devices. This along with several other features means

the protocol is simple to implement in hardware, but does not guarantee reliability

or ordering in the way TCP does. The segment structure of a UDP packet is shown

in Table 3.7; note that it contains header and data information - IP header is not

included in the diagram as it was covered in Section 3.2.

36

Table 3.7: Structure of a UDP packet

Bits 0 - 15 16 - 31
0 Source port Destination port
32 Length Checksum
64 Data

The UDP header consists of four �elds:

Source port

This �eld identi�es the sending port. When a packet is sent by the computer this

port is generally assigned a random number. Any packets sent by the board back to

the computer utilise this port number for the packet's destination port.

Destination port

This �eld identi�es the destination port.

Length

A 16-bit �eld that speci�es the length in bytes of the entire datagram: header and

data. The minimum length is 8 bytes since that's the length of the header. The �eld

size sets a theoretical limit of 65, 527 bytes for the data carried by a single UDP

datagram. The practical limit for the data length which is imposed by the underlying

IPv4 protocol is 65, 507 bytes.

Checksum

The 16-bit checksum �eld is used for error-checking of the header and data. Implemen-

ting the UDP Checksum is optional, as the standard allows for the UDP checksum

�eld to be zeroed out to denote no checksum and hence for devices to ignore the

checksum entirely. However, it is still fully implemented in the design for two main

reasons:

37

Table 3.8: Structure of the UDP pseudo-header with remaining UDP packet

Bits 0 - 7 8 - 15 16 - 23 24 - 31
0 Source address
32 Destination address
64 Zeroes Protocol UDP length
96 Source Port Destination Port
128 Length Checksum
160 Data

1. Although the zeroed-checksum UDP packets will pass through to the computer

unhindered, any programs which utilise the Berkley socket interface for com-

munication will not accept the packets unless they have a �lled in (and valid)

UDP checksum. As this constitutes the majority of the system's communication

strategy, UDP checksums must be implemented fully to allow for sockets to be

used.

2. UDP has less inbuilt error-correction capabilities than TCP, so enabling UDP

checksums ensures the received packets are uncorrupted and provide at least

some form of protection from unintentionally accepting corrupted packets.

An important distinction between the checksums used in ICMP and UDP is that

unlike in ICMP, the checksum for UDP does not just cover the UDP header and data

but also requires a pseudo-header to be attached to the beginning of the UDP header.

This pseudo-header is never sent with the packet; it's created internally in the system

and used solely for determining the UDP checksum. Note that the pseudo-header is

di�erent depending on whether UDP is run over IPv4 or IPv6; since the core only uses

IPv4, only one form of pseudo-header will be covered in dissertation. The structure

of the pseudo-header is listed in Table 3.8; the pseudo-header component is attached

to the beginning of the UDP packet header and shown in running text.

38

One speci�c di�erence of UDP over TCP is that it has very little in the way of extra

error-correction, which means that any system using UDP needs to implement its own

error-correction method or none at all, depending on the nature of the application.

However, since this project has potential applications in video encoding/decoding

and many other areas where the occasional lost packet is irrelevant, the choice of

UDP is a bene�t since it has less overhead than TCP. In the event of a need for

extra reliability, there are simple ways to add error-correction such as adding a small

tag to the beginning of each data payload and verifying the order as each packet

is transmitted/received. Implementing UDP in hardware is very popular due to its

simplicity and it has had many other commercial successes which makes the decision

to use it here clear.37

3.7 UDP Lite

UDP Lite (RFC 3828)38 is a special variant of UDP. Both protocols share the majority

of header �elds, sizes and features, however UDP Lite has an advantage in �exibility

by allowing modi�cation to how the UDP checksum operates. The structure of the

UDL Lite packet is shown in Table 3.9.

Usually, UDP datagrams are always discarded when their UDP checksum does not

pass. This means that the corruption of just one byte leads to the whole packet being

dropped. If the packet is large, this can have a major impact on the e�ciency of the

system, particularly if the occasional corrupted packet is irrelevant (eg. such as in

multimedia protocols, video/audio, VoIP, etc). UDP Lite makes it possible to limit

the scope of the checksum so that it only needs to cover what the system wants it to

cover, rather than the entire packet. Limiting the scope of the checksum also helps

simply the logic necessary to determine the checksum.

39

Table 3.9: Structure of a UDP Lite packet

Bits 0 - 15 16 - 31
0 Source port Destination port
32 Checksum Coverage Checksum
64 Data

The only di�erence between UDP and UDP Lite as far as the headers are concerned is

that instead of a UDP length �eld, UDP Lite has in its place a �Checksum Coverage�

�eld, the coverage measured in bytes. The smallest value which can be speci�ed for

this �eld is 8 bytes, covering just the header and no data.

UDP Lite was originally supported only for the Linux platform, however since then

Windows XP/Vista and Mac OS X have incorporated support for the protocol. A

major advantage of using UDP Lite is that due to the �exibility of the checksum used

in the protocol, the implementation is simpler in hardware and hence more e�cient

than regular UDP. Further explanation of the protocol and its signi�cance to the

project is covered in Section 4.5

40

Chapter 4

Implementation

The primary aspect of this chapter is to cover the implementation of the IP/network

layer, with particular focus on the coding structure and hardware components which

form the design.

4.1 Functionality

The networking code provides the following capabilities:

• It can accept and understand ICMP, UDP and UDP Lite packets,

• It will cleanly reject all packets which do not match the protocols listed above,

• It can send back mirror versions of UDP packets for testing purposes,

• It can handle several packets being processed at once due to the pipelined nature

of the design,

• It is robust and very e�cient

41

4.2 Data Flow

Implementation of the IP/network layer is separated into three distinct Finite State

Machines (FSMs). FSMs are blocks of code which step through a speci�c series of

known states, each state performing one or more tasks. Hence, each collection of

states forms an FSM and an FSM is generally designed for a speci�c task. An FSM

can be thought of as a module, consisting of individual task handlers which internally

process the inputs and outputs given. By writing the code in such as way as to

separate the important parts of the design to individual FSMs, the system can be

made much easier to write, execute, debug and understand.

The core uses three FSMs. fsm_read takes a packet sent by the computer and received

by the board, processes it by placing the header of the packet into RAM and the

payload (application data) into a FIFO, and then depending on the packet and mode

the system is in (see below), may trigger the next FSM or simply wait for a new

packet to be sent. fsm_packgen is used to prepare packets for transmission, and

does so by being triggered from either fsm_read or toplevel. It primarily performs

copy operations between various RAMs and FIFOs as well as calculates checksum

and CRC values necessary for the packet to be accepted by the computer. fsm_send

takes the packet constructed from fsm_packgen and transmits it to the computer,

ordering �elds as necessary.

The �ow of data between the FSMs and the other layers of the design is represented

in Figure 4.1. Data begins at the PHY (Physical Layer) which is connected to the

toplevel component, the external interface of the IP layer and the component which

programs wanting to utilise the core connect to. Depending on the settings in the

42

PHY

fsm_packgen fsm_sendfsm_read

toplevel

Figure 4.1: Flow of data between the various FSMs

toplevel, as well as the protocol of the incoming packet, there are three potential paths

for the data to take. From the toplevel :

1. [Mirror] - The payload data sent to the PHY is identical to the packet received.

Data progresses from fsm_read... fsm_packgen... fsm_send... toplevel and

streams the output back to the PHY. This path is guaranteed with ICMP

packets since they are used by the ping tool and require a response, hence the

full path from reading the packet to generating a response. The path can also

occur with UDP packets if toplevel is set to mirror all incoming UDP packets

(mainly for debugging purposes).

2. [Typical] - The payload data is entered into the fsm_packgen component by

the external FPGA program and therefore the payload content is constructed

as necessary. Data progresses from fsm_packgen... fsm_send... toplevel and

streams the output back to the PHY. In this path the fsm_read component is

bypassed and in fact the PHY is not used to trigger the FSMs at all, but rather

the external FPGA program triggers the FSMs. This path is used when there

is a need to create a packet from scratch instead of responding to an incoming

43

packet and is only ever used with UDP or UDP Lite. This is the typical use of

the core for the majority of data transfers.

3. [Storage] - The latter two FSMs are totally bypassed and no return packet is

sent. Data is read using fsm_read and progresses no further. This path is used

for storing payload data for extraction by another FPGA program.

4.3 Finite State Machines

The design uses three FSMs when processing packets - one to read an incoming pa-

cket (fsm_read), one to build a packet for transmission (fsm_packgen) and one to

actually perform the packet transmission (fsm_send). These three FSMs are docu-

mented in Sections 4.3.3, 4.3.4 and 4.3.5. To completely understand how the layer is

implemented, components such as the RAMs and FIFOs will now be covered along

with an explanation of the state machines used in the design.

4.3.1 RAM

RAM (Random Access Memory) is a storage component used to hold data for a �nite

amount of time (ie. as long as power is applied). There are two blocks of FPGA-

based RAM used in the design, one of them embedded in fsm_read (which shall be

referred to as RAM1) and the other in fsm_packgen (RAM2). When an incoming

packet is received, the header is stored in RAM1 by fsm_read. When a packet is

being generated for transmission, the header is stored in RAM2 by fsm_packgen

and read from RAM2 during the operation of fsm_send. The location of the RAMs

and interconnections between them and the other FSMs is shown in Figure 4.2. The

RAMs have a linked data path as shown by the arrow between them, as RAM2 will

copy �elds from RAM1 for any returned packet regardless of protocol.

44

Figure 4.2: RAMs used by the interface along with their locations and data paths

RAM is random access in the sense that its elements can be accessed non-sequentially.

By enabling the read and/or write control signals on a RAM and setting the appro-

priate address location, any �eld can be accessed as required and in any location,

which provides great �exibility and is essential when recombining header �elds for

transmission in fsm_send. The header for the sent packet uses many of the �elds

from the previously received packet, and due to the copy operations that occur in

fsm_packgen, �elds such as source and destination IP addresses need to be swapped

during sending. RAMs make this easy because they allow for reading and writing

with addresses which are out of order.

4.3.2 FIFOs

A FIFO (First-In, First-Out) is a block of memory which provides a structured way

of adding and extracting data to and from it. Like RAM, FIFOs are used for data

storage, but unlike RAM they do not allow for easy access of data elements in di�erent

areas of the FIFO. As the name suggests, a FIFO's method of operation is that the

most recently written element is the �rst to be retrieved in a read call. FIFOs are

popular containers for data storage because of the simplicity in reading and writing

values that are in a sequence or stream. Given the usefulness of FIFOs there is

continuous research into the most e�cient ways to synthesise these components.39

45

Figure 4.3: FIFOs used by the interface along with their locations and data paths

Much like the RAMs, there are two FIFOs used in the design, one of them embedded

in fsm_read (which shall be referred to as FIFO1) and the other in fsm_packgen

(FIFO2). When an incoming packet is received, the payload data is stored in FIFO1

by fsm_read. When a packet is being generated for transmission, the payload data

is stored in FIFO2 by fsm_packgen and read from FIFO2 during the operation of

fsm_send. The location of the FIFOs and interconnections between them and the

other FSMs is represented in Figure 4.3. Note that the arrow between the FIFOs

represents the �ow of data when the system is running in mirror mode (bouncing

UDP packets) or returning ICMP packets; when creating UDP Lite packets from

scratch, there is no need for FIFO1 to access FIFO2.

The FIFOs are used in this design for storing the payload data of a packet. The

payload is a contiguous memory block, one which does not require access to various

parts of it while inside the MAC layer. Therefore the act of reading and writing with

a FIFO is made easy due to the contiguous nature of the data.

4.3.3 fsm_read

The purpose of fsm_read is to parse and process an incoming packet. The direction

of the data �ow, for the purpose of clarifying the context of an incoming packet, is

46

from the server to the core. As we are dealing with only a small selection of protocols

and virtually anything could be transmitted down the wire, the FSM needs to be able

to correctly interpret the packet, deal with it appropriately and also deal with any

packet which does not match the required protocol set.

When the interface begins execution, the fsm_read code will initialise and hold in a

waiting state. The FSM waits for the RX_DV signal to go high before proceeding

any further. This signal is controlled by the physical layer of the network and is raised

when a packet is received by the layer. At this point the FSM will begin checking for

the Ethernet preamble, shown below:

55 55 55 55 55 55 55 D5

Once a packet's preamble is veri�ed, the FSM can begin processing the packet

contents. The �rst stage is to analyse the header information of the packet. All

header data is saved to the RAM1 component; this data can then be quickly and

easily accessed by the various components of the code. All of the RAMs used in the

design are dual-port (simultaneous read and write) Xilinx Block RAMs. At a certain

point in the header the IP protocol will be speci�ed. If the protocol number matches

any of the implemented protocols the system can handle, the state continues pro-

cessing as normal. Otherwise, the packet is rejected by changing to a waiting state

which will only advance once RX_DV goes low. This bypasses the rest of the packet

since it's of a form which does not need to be dealt with.

The FSM does not check for a correct MAC or IP address because it is not necessary.

The core is designed to be implemented on a board which is directly connected to a

computer. There aren't any routers/switches/hubs which are required to determine

where the packets should be sent. For this reason the FSM simply receives packets

and passes them on without concerning itself as to whether the packets match the

47

MAC/IP addresses of the board running the core. This is also the case for the ports

used by the packets.

After reading the entirety of the packet header, the system begins to read the payload

(application) data, which is where the useful content of the packet is located. The

data is saved to the FIFO1 component. After the payload has been processed, a CRC

is calculated against the packet and matched to the FCS (Frame Check Sequence)

supplied by the packet; if these two are identical, the packet was sent uncorrupted

and so the content is considered sane. If the values are di�erent however, a control

signal is raised to represent a packet failure.

The states in fsm_read are commented below:

init

This state has the purpose of providing a clean reset to the FSM. It is executed

upon power-on of the system and also executed when a packet has completed being

processed by fsm_read. It sets important control signals to their default values so

that future packets are not corrupted by unknown signal states.

waitforpacket

A holding state which remains dormant until both the RXDV and dcmlock signals go

high. When RXDV goes high, the Ethernet layer has received a new packet containing

�valid� data which can be processed by the FSM. Note that valid in this case means a

packet able to be understood by the Ethernet layer; a corrupted packet which passed

the Ethernet layer unhindered would fail checksum calculations later on in the FSM.

The dcmlock signal is connected to the DCM (Digital Clock Manager) which controls

the clocking of all the components on the core. When this signal goes high, the system

is allowed to begin operating as a steady clock cycle has been obtained.

48

init

waitforpacket

SDFpreamble

SDFfinalcheck

striptoram

striptofifo

blankstate

RXDV = ‘1’ and dcmlock = ‘1’

packetdata = “01010101”

count3 = 3?

packetdata != “01010101”

NO

YES

packetdata = “11010101”

count4 < 6?

YES

NO

packetdata != “11010101”

ramposition = 25?

ramposition = 42?

NO
NO

IPProtocol = "00000001" or "00010001"?
YES

IPProtocol = "00000001" or "00010001"?
YES

NO

NO

YES

YES

IPProtocol = "00010001"?

count2 = unsigned(PAKlength)-28 ?

NO

count2 = unsigned(UDPtotallength)-8 ?
YES

NO

YES

NO

YES

count = 3

finalise

checkCRC_ETH

resetfsm

holduntilfinished

RXDV = ‘0’

Figure 4.4: fsm_read state �owchart

49

SDFpreamble

Preceding the actual packet content is the preamble and SDF (Start Frame Delimiter).

This is represented by the 55 55 55 55 55 55 55 D5 sequence which exists in every

packet, the 55s acting as the preamble and the D5 as the SDF. This state checks

for THREE of the 55 bytes in a row. If something else interrupts this sequence or

cannot be �nished for whatever reason, the packet is considered damaged and control

is moved to the holduntil�nished state.

SDF�nalcheck

Assuming the previous state ran with success, the system keeps counting through the

necessary number of bytes in the packet until it reaches the point where the SDF

(D5) should exist. If it does, the system proceeds as normal, otherwise the packet is

considered damaged and control is moved to the holduntil�nished state.

striptoram

Satis�ed the packet is readable enough to pass initial testing, the system uses this

state to store the packet's header information (both IP plus the protocol's header)

into RAM1. Several �elds are also copied from the packet into registers for use later,

such as the speci�c packet protocol, the length of the data, any checksums present

depending on the protocol and any protocol-speci�c �elds which are important. Ano-

ther check is performed in this state as well - if the scanned protocol number does

not match one implemented by the system (eg. the packet might be TCP which

the network code has no handler), the packet is ignored and control is moved to the

holduntil�nished state.

stripto�fo

Once RAM1 has stored the packet header data, control now moves to the stripto�fo

state which has the task of storing the payload data into FIFO1.

50

blankstate

Modi�es the Ethernet checksum stream by zeroing out the existing checksum data.

This is required when calculating the received Ethernet checksum - the checksum

already embedded in the packet must be cleared during calculation.

�nalise

A single clock cycle holding state.

checkCRC_ETH

Performs a check of the Ethernet checksum by comparing signals crc_output_ETH

and crc_output_ETH_FCS. If they are identical, this means the calculated Ethernet

checksum is identical to the embedded Ethernet checksum and so the packet was re-

ceived without any corruption. If the checksums are di�erent, the packet is corrupted

somehow and cannot be trusted to hold correct data. In this case the FSM resets

without triggering fsm_packgen.

resetfsm

This state calls a special register which orders the FSM to execute a reset. Control

restarts at init.

holduntil�nished

If the packet failed any of the preamble, SDF or valid protocol tests, control is moved

here. This state simply waits until the packet has run through the system, but does

not capture any of its data. Once the packet has cleared and RXDV goes low, the

system is reset.

4.3.4 fsm_packgen

This FSM is responsible for generating packets to be sent back to the computer.

Depending on the nature of the packets to be sent, it will have to copy the contents

51

of RAM1 and FIFO1 from fsm_read to its internal component bu�ers, RAM2 and

FIFO2.

When the interface begins execution, the fsm_packgen code will initialise and hold

in a waiting state. The FSM waits for an activation signal from either fsm_read

or toplevel (the interface to the external FPGA code) - if it comes from the former,

execution requires a mirrored packet to be sent; if it comes from the latter, the FIFO

in packgen will already be �lled with the required payload so no extra copying needs

to be performed. There are two paths of execution the system can take for that

matter:

1. ICMP and UDP (mirror mode) - copy ram1 to ram2 and fifo1 to fifo2

2. UDP (regular mode) and UDP Lite - copy ram1 to ram2 but leave fifo2

untouched since it will have the necessary payload installed from an external

source, such as a program on the FPGA.

Once these tasks are completed the FSM progresses to completing the calculation of

the CRCs for each packet and injecting them in the relevant �elds of the packet. There

are two cases where this does not happen - UDP regular or UDP Lite, for reasons

which are outlined in Section 4.5. The overall task for the FSM is then completed

and while fairly simple it's an important part of the conjoined FSMs used to transmit

data back to a computer. The FSM is then reset and waits for another trigger to

begin operation.

The states in fsm_packgen are commented below:

init

This state has the purpose of providing a clean reset to the FSM. It is executed upon

power-on of the system and also executed when a packet has completed being created

52

init

waitforactivation

performUDPtestprep

performICMPprep

performICMPprep_3

finalUDPaddition

finalUDPaddition_2

performsend

performUDPchecksumwrite_1

performUDPchecksumwrite_2

performUDPregularprep

resetfsm

activate_from_reader = ‘1’ and give_me_fifo = ‘0’?

NO

NO formofbouncedpacket = ‘1’?
YES

activate_from_toplevel = ‘1’?

performIPchecksumwrite_1

performIPchecksumwrite_2

pre_finalUDPaddition

YES NO

ramposition = 43

ramposition = 40

ramposition = 42

count2 = 3

packettype = ‘1’? count = unsigned(PAKlength)-29 ?

YES

YES YES

NO

activationsource = ‘0’?

NO

count = unsigned(UDPtotallength)-9 ?
YES

NO

UDPtotallength(0) = ‘1’?

NO

YES

YES

NO

Figure 4.5: fsm_packgen state �owchart

53

by fsm_packgen. It sets important control signals to their default values so that

future packets are not corrupted by unknown signal states.

waitforactivation

This state holds execution until it receives one of two sets of triggers: acti-

vate_from_reader is high and give_me_�fo is low, or active_from_toplevel is high.

The �rst trigger set is activated from fsm_read once an ICMP or UDP (when in mir-

ror mode) packet is received and the second trigger is activated manually by another

design which is connected to the top level of the IP/network code - presumably, the

design which actually needs to use the Gigabit Ethernet interface. give_me_�fo is

a special control signal that is used to override access of the FIFOs which hold the

payload data. If held high this ensures the system cannot accidentally overwrite pay-

load data by an incoming packet, such as a ping for example, as it will stop the FSM

from continuing. Depending on which trigger set is activated, the FSM will move to

the necessary state required to perform the task.

performUDPregularprep

This state is used to create a UDP/UDP Lite packet from scratch. The assumption

is that RAM1 already contains header information from a previous UDP packet sent

by the computer, which is necessary to supply the �elds with the necessary template

information for the outgoing packet. It is also assumed that FIFO2 has been preloaded

with the required payload data. With these assumptions in place, the state copies the

header from RAM1 to RAM2 and replaces key header �elds with the correct values

pertaining to the new packet. The IP checksum is also calculated during this process.

performIPchecksumwrite_1 - performIPchecksumwrite_2

The IP header requires a correct IP checksum, which was calculated in the previous

state. These two states write the checksum into the relevant areas of RAM2.

54

performUDPtestprep

This state is used to create a UDP packet which is a mirror copy of the just received

packet from fsm_read. The tasks performed in this state are far simpler than those in

performUDPregularprep, since the majority of the state simply involves copying

from RAM1 to RAM2 with no actual substitution of �elds or their values.

performICMPprep

This state is used to create an ICMP response packet. It also is fairly simple and

involves copying from RAM1 to RAM2.

performICMPprep_3

Despite the name, this state is reached by all of the preparatory states once they have

completed their RAM copy procedures. This state performs the FIFO1 to FIFO2 copy

procedures for the ICMP and UDP bounced packets.

pre_�nalUDPaddition

A waiting state used to synchronise control signals with the rest of the data.

�nalUDPaddition - �nalUDPaddition2

Sends any remaining values to the UDP checksum calculator

performUDPchecksumwrite_1 - performUDPchecksumwrite_2

Writes the correct UDP checksum value to the relevant area in RAM2.

performsend

Triggers fsm_send with the appropriate control signals so that it knows what kind of

packet to transmit. fsm_packgen has done its job by this point and is ready to reset.

resetfsm

This state calls a special register which orders the FSM to execute a reset. Control

restarts at init.

55

4.3.5 fsm_send

This FSM is responsible for the actual transmission of packets from the core to the

computer which were prepared by fsm_packgen. Both of these FSMs work together

- fsm_send is always executed after fsm_packgen and fsm_send cannot be triggered

from any other source other than fsm_packgen. Once enabled, fsm_send holds TXEN

high for the duration of the FSM execution, which tells the PHY that data is being

sent to it. The preamble is also sent at this moment, then the relevant �elds of

the packet's header stored in RAM2. The speci�c �elds are sometimes di�erent

between the various protocols in use, but the header lengths are identical to all packets

which makes the FSM simpler to implement. After the header has been sent, the

FSM connects to FIFO2 and sends the required payload data up to the necessary

length. Once the payload has been sent, the Ethernet checksum is sent to �nalise the

packet and TXEN is pulled low. The FSM is reset and waits for another trigger by

fsm_packgen.

The structure of the FSM can be described as an ordering system. Although contai-

ning the largest number of states in any of the three FSMs, most of the states perform

the same task but with di�erent data. Each send state transmits a particular com-

ponent of the packet, whether it is a header �eld or the payload. Some content is

taken from RAM2 and FIFO2, with the rest sent from values set in registers.

The states in fsm_send are commented below:

init

This state has the purpose of providing a clean reset to the FSM. It is executed upon

power-on of the system and also executed when a packet has completed being sent

by fsm_send. It sets important control signals to their default values so that future

packets are not corrupted by unknown signal states.

56

init

start

send_preambleSFD

send_destaddr

send_sourceaddr

send_ethertype_pause1

send_ethertype_pause2

send_ethertype

send_ipheader

send_ipprotocol_pause1

send_ipprotocol_pause2

send_ipprotocol

send_ipchecksum1

send_ipchecksum2

enable = ‘1’

preamcount = 5

count = 5

count2 = 5

count3 = 7

Figure 4.6: fsm_send state �owchart (page 1)

57

send_ipdest

send_ protocolspecific1_p1

send_ protocolspecific1_p2

send_ protocolspecific1

send_protocolspecific2

send_ protocolspecific3

send_ protocolspecific4

send_payload

send_ethchecksum

resetfsm

send_ipsource

count4 = 1

count5 = 3

count6 = 1

count7 = 1

count8 = 1

count9 = 1

count10 = unsigned(PAKlength)!29

count11 = 3

Figure 4.7: fsm_send state �owchart (page 2)

58

waitforactivation

This state waits for an enable trigger from fsm_packgen.

send_preambleSFD

The Ethernet preamble is transmitted during this state. Due to the pipelining delays

in the design, the SFD actually gets sent in the next state.

send_destaddr - send_sourceaddr - send_ethertype_pause1 -

send_ethertype_pause2 - send_ethertype - send_ipheader -

send_ipprotocol_pause1 - send_ipprotocol_pause2 - send_ipprotocol

- send_ipchecksum1 - send_ipchecksum2 - send_ipsource -

send_ipdest - send_protocolspeci�c1_p1 - send_protocolspeci�c1_p2 -

send_protocolspeci�c1 - send_protocolspeci�c2 - send_protocolspeci�c3

- send_protocolspeci�c4

All these states perform similar tasks and are run in sequence. They send the required

header �elds in the correct order as necessary, some of the values taken from the RAM

and others with �xed values depending on the form of packet being sent. There are

some occasional pause states to allow for propagation delays that exist in the RAM

and pipelining architecture. The four protocolspeci�c states process the 32-bits of

protocol-speci�c header data that are present in the packet and their tasks di�er

between protocols.

send_payload

Transmits the payload (application data) of the packet.

sendethchecksum

Transmits the Ethernet checksum, which is calculated on the �y. This checksum is

essential for the receiver to verify the integrity of the packet.

59

resetfsm

Executed after the Ethernet checksum has been sent. Control restarts at init.

4.4 Reliability/Errors

Reliability, in the context of computer network protocols, is a measure of how capable

a protocol is in ensuring data is delivered correctly to the intended recipient(s).40

The system utilises UDP and UDP Lite for most of its communication, but these are

considered to be unreliable protocols because they do not guarantee that a packet

will be correctly sent and received. They do allow for checksumming of the header

and payload, but do not support any additional features for ensuring a packet goes

where it's supposed to. This is unlike TCP which uses �ags and additional packets

to con�rm receipt of packets. For this reason, there existed a need to create e�ective

reliability support for the system, such that if packets were missed or sent/received

out of order, the system can recover and deal with the situation in a graceful manner.

There is also the scenario that the system might su�er an unexpected failure, such as

an incomplete/corrupted packet sent by the computer for whatever reason, or that

the board might intercept a packet with an unknown or unsupported protocol. This

Section of the dissertation covers the ways in which the system provides reliability

and error correction. Section 4.4.1 covers the tagging method which keeps track of

packets passing through the system, while Section 4.4.2 explains the quality-control

methods for individual packets.

4.4.1 Tags

Tags are a simple but e�ective way of providing the ability to detect missing packets

from a data stream, as well as determine if packets were sent out of order in the

60

Figure 4.8: Fragment of a packet with tag added to beginning of payload

steam. A tag is a small piece of data inserted into the beginning (or end) of the

payload of each packet - the tag consists of a number which increments in subsequent

packets. In a particular steam, the �rst packet sent or received would have a tag of

zero, the second packet a value of one and so on. These tags would not be controlled

by the operating system but rather the program which sends/receives the packets

and so it's up to the program to determine how to deal with missing packets or out

of order packets. With regards to the board, the FSMs are not responsible for tags,

only the programs which use the packet data. Tags are e�ectively transparent and

considered part of the regular payload data, which provides the �exibility to use tags

or not without requiring extra logic to process them.

Figure 4.8 shows an example of part of a packet which has been con�gured by the

system to use tags. The tag shown here is located at the beginning of the payload

immediately after the UDP checksum �eld, but it is also possible to embed the tag

at the end - the tag can be anywhere so long as the location remains consistent

between packets and the VHDL/computer program(s) utilising the tags are correctly

programmed to process them. Although the tag takes the appearance of a regular

header �eld, it's not part of the standard UDP structure and so can only be added as

part of the payload. The tags can be of any length, but to ensure maximum packet

e�ciency they should be as small as possible since they take up a portion of the

61

payload and reduce the usable payload, the area which can actually contain useful

data. It is also up to the VHDL/computer program(s) to determine what to do if

a packet is received with a missing or out of order tag. Depending on the nature of

the program, it can either be discarded, relocated later once the full data stream is

completed, or re-requested.

One example of where the tag system is implemented is in ATA over Ethernet, a

network protocol developed by the Brantley Coile Company, designed for accessing

ATA storage devices over Ethernet networks. AoE does not rely on network layers

above Ethernet, such as IP, UDP, TCP, etc, but it does implement the tag system

on packets and provides a look-up table on both sides of the system to determine

where all the packets are located and can e�ect a resolution if a particular packet is

missing or corrupted. This means the tag system for reliability and error correction

has already proved itself in a commercial setting, making it a good choice for use with

this system.41

4.4.2 Corrupted/Unsupported Packets

Several key requirements of the interface are for it to be robust and stable. This

means the interface must be able to withstand any level of network activity without

becoming caught in a state that it cannot easily recover from. Such a scenario would

cause the interface to lock up and become unresponsive, forcing a reset of the entire

board and potentially losing data stored on the board. To avoid this, the interface

was built with several protection mechanisms designed to gracefully deal with packets

and data that do not conform to expected behaviours.

As was explained in Section 4.3.3, fsm_read has the capability to determine if an

incoming packet is corrupted, malformed or using an unsupported protocol such as

TCP. In these cases, control of fsm_read is sent to a waiting state and execution

62

of the FSM remains here until the current packet has �nished being sent by the

computer. Note that both fsm_packgen and fsm_send are totally una�ected by bad

packets being received by the board and will continue to operate on packets even as

fsm_read is forced to stall. Without the holding state, fsm_read may become stuck

in a writing state which may not be completed due to a failure to correctly parse the

packet, which is undesired for the system.

4.4.3 Checksums and CRCs

Checksum values and CRCs (Cyclic Redundancy Checks) are used heavily within

the interface.42 All packets passing through the system will contain at least two

checksums and a major checksum known as the FCS (Frame Check Sequence). These

checksums have the purpose of verifying the integrity of the packet, ensuring the

data contained in the packet was transmitted without loss or damage to the packet.

Once all the data has been processed, a CRC is calculated against the packet (known

by the code as crc_output_ETH) and matched to the FCS supplied by the packet

(crc_output_ETH_FCS); if these two are identical, the packet was sent uncorrupted

and so the content is valid. If the values are di�erent however, a control signal is raised

to represent a packet failure.

4.5 UDP Lite

UDP Lite was mentioned earlier in this dissertation, but the speci�cs of the protocol

and how it is implemented in the system were not covered until now. UDP Lite is

special because it allows for a simpler hardware implementation that avoids several

paths of logic which UDP would normally have to enter. This is due to the relationship

63

between the checksum calculations required by the protocols and what happens to a

FIFO when it is read.

Every packet that's sent needs to have correct checksums in their checksum �elds. If

the checksums are incorrect or missing, the recipient will generally consider the packet

to be corrupted and discard it. Some protocols may use checksum �elds which don't

exist in others, but regardless of the protocol in use there are always at least three

checksums that need to be calculated - two of those are always the Ethernet checksum

and the IP checksum. The Ethernet checksum represents the contents of the entire

packet (excluding the preamble), while the IP checksum covers only the IP pseudo-

header of a packet, but not the payload. For UDP packets there is a third checksum

�eld, the UDP checksum, which covers the UDP header plus the payload. For ICMP

packets the third checksum �eld is the ICMP checksum, with similar speci�cations.

Correct operation of the board requires all checksums for transmitted packets to be

correct, otherwise the packet won't be accepted by the computer and data will be

lost.

For ICMP and UDP (mirrored) checksums, the IP and ICMP/UDP checksums for

the transmitted packet are easy to calculate since they are identical to those from

the received packets (the order of the headers are often switched around but the

data contents are identical, since they're just copies of the same payloads). Ethernet

checksums are calculated during the sending of a packet, working the same regardless

of protocol or how packgen was triggered (either externally or internally) and so do

not pose any problems. However, when sending a UDP packet on its own without

being triggered from fsm_read, all necessary checksums have to be calculated because

the payload data won't match the previously-copied checksums.

To calculate the UDP checksum the UDP payload data needs to be read, however

whenever a FIFO is accessed the last element read is permanently removed from

64

the FIFO. Unlike RAM, it's not possible to simply parse the payload for checksum

information without removing the entire payload itself. To address this issue, there

are two possible approaches. One solution would be to replace the FIFO with RAM

which would allow reading without data destruction, but this would require adding

address control signals and possibly slow down the design with the increased logic.

Another solution, the one which was decided upon, is to use a new protocol called

UDP Lite.

UDP Lite is very similar to regular UDP but with one di�erence - the UDP checksum's

�coverage� (the amount of the UDP header the checksum has to correctly match) can

be varied. This means it's possible to set a coverage such that the UDP checksum

only covers the header component and NOT the payload, which simpli�es things

enormously since the FIFO can remain untouched and only the RAM needs to be

scanned. As this protocol has gained support in most modern operating systems,

there are no signi�cant disadvantages in using it compared to standard UDP.

4.6 Physical Implementation

The core is designed to run on a Xilinx Spartan 3 FPGA, and is considered the base

level FPGA for the core. It is not recommended to attempt to install the core on

anything less capable than the Spartan 3. We used the following development board

to test our IP core:

• Two Xilinx Spartan 3 FPGAs

• Two National Semiconductor DP83865 10/100/1000 Gigabit Ethernet Physical

Layer transceivers

• Two PulseJack Gigjack T12 RJ45 network jacks

65

Figure 4.9: Prototyping board used for testing

• Two Cypress CY7C1371D SRAM memory modules, providing a combined total

of 18 Mbits of storage space for programs on the FPGAs to use

• A QuickUSB daughter board connector, providing a means of utilising the Qui-

ckUSB Plug-In module for easy USB access

• Various extra connectors such as JTAG, FPGA parallel connector, JavaCard

connector and board power

Figure 4.9 shows the board with major components highlighted:

66

For each network jack, the interface between the physical layer (the DP83865 trans-

ceivers) and the Media Access Control device (the FPGA running the IP core) is

established using the standard Gigabit Media Independent Interface (GMII).43 GMII

is a very commonly implemented standard for establishing Gigabit Ethernet connec-

tivity, and speci�es the following attributes:

• Network speeds operate up to 1000 Mbit/s

• The data interface consists of an eight bit channel clocked at 125 MHz

• The interface is backwards compatible with the Media Independent Interface

(MII) speci�cation, which as a result can support speeds of 10/100 MBit/s as

a fall-back

In the case of the IP core, backwards compatibility with MII was not implemented

because the core is designed for Gigabit connections only. Supporting MII would be

trivial if it were only a speed di�erence (the system can operate at 10/100 MBit/s

speeds without modi�cation), however MII uses a data channel of four bits instead of

eight, and so it was decided not to accommodate the older standard because there was

no desire to use slower connections. The core is speci�cally intended for high-speed,

high-bandwidth applications, something that MII-based connections would not be at

all appropriate for.

The core was physically tested on the board by uploading the core to each Spartan

3 and verifying the system linked correctly and processed test packets. The process

of converting the source code into a form which can be uploaded to the FPGAs is

called synthesis and is covered in Section 6.2. By performing the synthesis, statistics

were obtained about the technical speci�cations of the core, in particular how well it

ran and how much logic it occupied on a Spartan 3. The exact speci�cations of the

FPGA model used in the design is a Xilinx Spartan 3 XC3S5000, package FG900 (ie.

67

900-pin), speed grade of -5 and the software packages used to synthesise the design

and achieve the following results were Xilinx ISE 10.1 and Synplify 8.8.0.4:

Logic Utilization:

Number of Slice Flip Flops: 970 out of 66,560 1%

Number of 4 input LUTs: 1,920 out of 66,560 2%

Logic Distribution:

Number of occupied Slices: 1,166 out of 33,280 3%

Number of Slices containing only related logic:

1,166 out of 1,166 100%

Number of Slices containing unrelated logic:

0 out of 1,166 0%

Total Number of 4 input LUTs: 2,020 out of 66,560 3%

Number used as logic: 1,664

Number used as a route-thru: 100

Number used for Dual Port RAMs: 256

(Two LUTs used per Dual Port RAM)

Number of bonded IOBs: 40 out of 633 6%

Number of RAMB16s: 16 out of 104 15%

Number of BUFGMUXs: 1 out of 8 12%

Constraints cover 44747 paths, 0 nets and 8533 connections

Design statistics:

Minimum period: 7.795ns (Maximum frequency: 128.287MHz)

68

Chapter 5

Pipelining

Pipelining, as de�ned in computer architecture, is a design technique in which code

and/or data used by a system can be restructured in such as way as to reduce the

amount of time necessary to process it. In the current context, pipelining involves

running the various Finite State Machines in parallel, stacked one on top of another,

instead of a conventional serial execution. E�ective use of pipelining can be extremely

bene�cial to applications such as cryptography, data processing44 or computer archi-

tecture, where a variation in encryption/decryption technique can cause a signi�cant

change in the time needed to perform the operation.44

The decision to use a pipelined architecture in the core was performed out of necessity.

There was no other way to obtain full Gigabit speeds and full speed packet delivery on

a Xilinx Spartan 3 FPGA, which is a fairly low-powered FPGA at the time of writing

and also the base FPGA for the design of the core, without resorting to pipelining.

Pipelining was used not only for processing of the packets but also with regards to all

memory access in a move to further increase the speed of the core. Also of importance

is that the pipelined architecture allows for packets to be processed one after the other

without requiring any waiting period. Since the �nite state machines act in parallel,

this allows fsm_read to process packets as they appear and does not have to wait for

a further FSM to complete.

69

Figure 5.1: The three FSMs the single ICMP packet will be processed with (in order)

Figure 5.2: The time-line of three ICMP packets processed in serial

To better describe the operation and e�ectiveness of a pipelined architecture, observe

Figure 5.1 which shows the �ow of the system for a single ICMP packet received by the

board. The overall block represents the passage of time for each received packet (from

the left �owing to the right) and each segment of the block represents the passage

of time for that particular FSM. Every packet has to be parsed by fsm_read, a

return formulated by fsm_packgen and �nally transmitted fsm_send. Let us assume

that the time taken for each FSM is roughly similar, since the received and returned

packets have identical lengths and data. Let us also assume that instead of waiting a

predetermined amount of time before sending ping packets, the pings are con�gured

to send a new ping as soon as it is considered safe to do so. What is considered �safe�

depends on the execution method - the aim is to send packets as quickly as possible

without there being any loss or congestion in the system and this rate will be shown

to vary between serial and parallel (pipelined) execution.

Figure 5.2 shows the time-line of three sequential ICMP packets under serial execu-

tion. Once the �rst packet is received and returned to the computer, the next one

is sent immediately and once that is returned to the computer the �nal packet can

70

Figure 5.3: The time-line of three ICMP packets processed in parallel (pipelined)

be sent. Serial execution is simple to understand and apply, but the rate of packet

transmission is very slow. Only one FSM is in operation at any given time, but this

need not be the case, as they are capable of working independently on another packet

separate from the �rst.

Figure 5.3 shows the same three sequential ICMP packets now running under a parallel

(pipelined) execution. In this scenario, the computer is sending ping packets one after

the other as fast as it can without waiting for a responding pong from the board. This

is achievable with a pipelined architecture because once the �rst packet is read by the

board, execution moves to fsm_packgen AND fsm_read - packgen works on creating

a return for the �rst packet while fsm_read busies itself with reading the second

packet. What is of note is that when the �rst packet has reached the fsm_send part

for transmission, the second packet is working with fsm_packgen and the system will

have begun sending the third packet for reading by fsm_read. At this point all three

FSMs are working separate from each other on separate packets. Over time the return

packets will be sent in sequence until the third and �nal packet is sent.

With serial execution, assuming roughly the same length of time per FSM, it takes 9

units of time to process three ping packets. With pipelined execution, it takes only 5

71

units of time. So, by ensuring the design is pipelined instead of serial, we are able to

cut the total time (ping and pong) of three ICMP packets by nearly half. With this

implementation, pipelining does not increase the speed at which the FSMs operate,

but rather organises the data such that several FSMs can operate on di�erent data

chunks at the same time. For this reason the pipelining architecture in this design is

referred to as Data Pipelining, rather than Instructional Pipelining.

5.1 RAM Swinging Bu�ers

An issue can arise when dealing with pipelined data - data corruption by subsequent

packets. If the computer sends a packet to the board and while the board is in

one of the latter FSMs the computer sends another packet (as is allowed under a

pipelined architecture), there is the potential for packet data from the �rst packet to

be overwritten by that of the second packet.

For example, let's say the computer sends an ICMP packet along with a UDP packet.

For the �rst packet, the board will read the header & payload data, store them into

RAM1 and FIFO1 respectively, then move onto fsm_packgen to perform a RAM1-

RAM2 and FIFO1-FIFO2 copy. During the copy, the UDP packet is received by

the board and so fsm_read performs its duty and reads the incoming UDP packet.

Now, the information in this packet is totally di�erent to the prior ICMP packet -

the headers are di�erent and the payload data is most certainly di�erent. Hence, we

run into several problems:

1. If fsm_packgen is performing a RAM1 to RAM2 copy and at the same time

a new packet header is being read into RAM1, the header data of the new

packet might be copied into RAM2 along with that of the original packet. This

would result in the transmitted packet having a combination of ICMP and UDP

72

header �elds, which would be seen as garbage by the receiving computer and

discarded.

2. If fsm_packgen is performing a FIFO1 to FIFO2 copy while a new packet is

being read, if the header data of the new packet speci�es a payload length that's

di�erent to the previous packet (as a result of the RAM copying scenario in point

1), issues might result with the payload. For example, the payload might not

be copied entirely or too much data may try to be copied regardless of whether

there's anything in FIFO1 or not. This would result in the transmitted packet

having not only an incorrect amount of payload data as well as a corrupted

header.

3. If fsm_packgen encompasses both RAM and FIFO copy stages, the resultant

packet will be corrupted and worse, the system is now considered unstable. The

RAM will have corrupted data which can't be relied upon for future packets

created from scratch and the FIFO will almost certainly be useless since the

state of the data stored in it will not be known. At this point all future packets

are likely to be transmitted corrupted and so the only solution is to reset the

board.

To combat the issue of data corruption by packets overloading each other, there are

three possible solutions:

1. Take extra control over the way the computer sends out packets, so that there

is su�cient time between subsequent packets to allow for smooth operation

without packet crowding. This solution is undesirable however - it would be the

slowest, since no pipelining would be allowed. It would also involve extra work

in con�guring the computer to allow for this brief pause between packets, which

may not be easy to accomplish without modifying the kernel of the operating

system.

73

2. Block fsm_read from accepting new packets if it is not safe to do so. For

example, fsm_read would not begin reading new packets if fsm_packgen was

running, because the potential for packgen to corrupt the transmitted packet

would exist if the data contained in fsm_read was being modi�ed at the same

time as the copying. This solution again is undesirable, since it would mean the

board would sometimes miss packets being sent by the computer.

3. Double the size of the RAMs so that each RAM can store the header data

of two packets instead of just one and switch the addressing between them as

necessary. It isn't possible to do the same with FIFOs since they do not have an

accessible addressing mechanism, but this is not an issue if the headers remain

correct, since the payload data can be added to the end of the FIFO even during

a copy process without damage, as each header de�nes the appropriate payload

data length. This is the option which has been implemented, as it allows for

the pipelined architecture without packet corruption.

5.2 Timing Diagram

The diagram in Figure 5.4 shows the path of three sequential packets, all of them in

UDP mirrored mode so that they are sent back immediately. Once one packet has

been sent, the next one is �red o� straight away. Each row in the diagram represents

the time-line of a packet, the �rst row being the �rst packet and so on. Each row is

split into three Sections - the �rst represents the activity for fsm_read, the second

for fsm_packgen and the third for fsm_send. The purpose of the diagram is

to show the operation of the RAMs and FIFOs and the RAM swinging bu�ers and

what components are running during the relevant stages of each packet. The diagram

shows why the system is not vulnerable to packet corruption:

74

• There never occurs a situation where the same storage area in a RAM is used

more than once at any given time. There are times where the same RAM is

both read and written at the same time, but due to the swinging bu�er, this

occurs on opposite halves of the RAM, which are isolated and so do not corrupt

each other. There is a requirement that the RAMs used are dual-port RAMs,

otherwise the read/write operations could not work simultaneously. We will

see later that switching the RAM bu�er only requires changing the MSB (Most

Signi�cant Bit) of the RAM address.

• Although there are many cases where the FIFOs are being read and written at

the same time, this is not a problem. The nature of the FIFO (First In, First

Out) means that whatever data is being written, will only be read once the

data in �front� of it has been read. In other words, simply reading at the same

time as writing won't damage the integrity of the data, since the IO operations

occur at opposite sides of the FIFO's internal storage.

5.3 Implementation

The RAM component for holding the header data is called headram and its black-box
is de�ned in VHDL as follows:

component headram

port (

A: IN std_logic_VECTOR(6 downto 0);

CLK: IN std_logic;

D: IN std_logic_VECTOR(7 downto 0);

WE: IN std_logic;

DPRA: IN std_logic_VECTOR(6 downto 0);

QDPO: OUT std_logic_VECTOR(7 downto 0);

QSPO: OUT std_logic_VECTOR(7 downto 0));

end component;

75

Figure 5.4: Timing diagram of three UDP packets in mirrored mode

76

Figure 5.5: The locations of two packets in RAM

The address (A port) is 7 bits wide, which means a total of 27= 128 address locations,

with each address holding a byte of data (as D port is 8 bits wide). As the RAM

only holds the packet header and as no header used by the system will ever be greater

than 42 bytes long, 128 memory addresses may seem excessively large. Indeed, an

address size of 6 bits resulting in a total of 26= 64 address locations would still have

been large enough for the packet header and given the importance of culling excessive

resources to ensure maximum speed and routing e�ciency, using the address size of

128 for all RAMs may not appear optimal. However, the reason for selecting 7 bits

instead of 6 is to encompass the swinging bu�er which provides the protection the

system needs from overlapping packets and for full pipelined capability.

Figure 5.5 shows how the packets are arrange in RAM. Each RAM is divided into half

- each half holds the header of a packet. Address locations 0...63 are used to access

the �rst half and 64...127 for the latter half. The swinging bu�er is used to store the

header contents of two packets at the same time - packet A and packet B. When the

board is initialised after a reset or power-on, the RAM is empty. The computer sends

a packet (which is designated here as packet A), the board receives the packet and

�lls the RAM from address 0 onwards until the end of the header, as normal. When

the packet has �nished being read, a pulse is trigger from the statement

77

SWITCH <= '1';

When SWITCH is enabled high, a toggle �ip-�op is triggered which inverts the value

of the switchbufpos signal. After being enabled SWITCH is turned o� during the

subsequent state, completing the one-cycle pulse which occurs at the end of every

packet read. switchbufpos is used in the following statements:

writeaddress_usedonRAM(6) <= switchbufpos;

writeddress_usedonRAM(5 downto 0) <= writeaddress_requested;

readaddress_usedonRAM(6) <= not switchbufpos;

readaddress_usedonRAM(5 downto 0) <= readaddress_requested;

writeaddress_usedonRAM and readaddress_usedonRAM are the address signals used

to connect to the RAM - the former speci�es the location for writing data and the

latter for reading data. Any addresses requested by the system are speci�ed with

the writeaddress_requested and readaddress_requested signals. The �usedonRAM�

and �requested� versions of the addresses are identical except for the MSB (Most

Signi�cant Bit) speci�ed with the former batch of signals. The MSB is determined

by the switchbufpos signal and hence will cause the RAM to address entirely separate

areas of the memory depending on its value. When the MSB is zero, the RAM will

only be accessing the �rst half of its available space (address range 0000000 [0] to

0111111 [63]), but when the MSB is one, the RAM uses the second half (address

range 1000000 [64] to 1111111 [127]). By providing the ability to switch between the

two halves, two whole packets can be held in the one RAM and thus the packets are

isolated from one another when subsequent packets are being processed.

The design of the swinging bu�er is such that simultaneous read and write memory

operations must address opposite memory banks. An example is shown in Figure

78

Figure 5.6: Two RAM operations operating at the same time via swinging bu�er

5.6. In this example the system both reading and writing data on a particular RAM.

With switchbufpos having a value of zero, this means the RAM is writing a byte to

address position 5, which since the MSB is zero represents the absolute (real) address

5. At the same time the RAM is reading a byte at address 24, which since the MSB

is the NOT of switchbufpos, has an o�set of 64 positions. Hence, although the read

address is speci�ed as 24, the absolute address is actually 88. With this design it

is impossible for a packet to be overwritten by a subsequent packet. Although the

bu�er only allows for two packets in the RAM, there's no need for more packets

since by the time the third packet arrives, the initial packet would have been either

fully processed or moved entirely to a new RAM via packgen. As a result, the space

originally occupied by the �rst packet would become available for the third, the space

for the second packet would become available for the fourth and so on.

79

Chapter 6

Testing/Synthesis

Performing testing on a system as large and intricate as this design required a great

deal of planning. When the design was in its early stages, it contained fewer com-

ponents with less functionality and as such had simpler testing requirements. As

the system grew and became more complete however, simple tests were no-longer

su�cient. For example, initial tests were run on just one test packet sent through

a simulator, observing the �ow of data as the packet travelled through the system.

This was su�cient at testing various protocols in a structured way, but a key aspect

of the system is its robustness, its ability to withstand any and all possible situations

or boundary conditions it may face. For this, the testing had to become more rigorous

and extend towards automation of testing rather than simple hand-crafted packets.

A further explanation of the process is covered later in this chapter.

6.1 Testing

6.1.1 Single Packet Tests

The �rst protocol to be implemented in the interface was ICMP (ping). This protocol

is very useful for testing the majority of the system's functionality, because a successful

80

test requires both a received packet and a transmitted packet to properly use the

protocol. This therefore makes use of all FSMs in the design and hence provides

a more thorough test than just with receiving a packet from the computer. When

advancing to single packet testing of UDP and UDP Lite, these protocols do not have

any requirement to send back response packets as part of their design. For testing

and debugging purposes, the interface code can be con�gured to automatically create

return packets when a packet matching one of these protocols is received. This form of

single packet testing for non-ICMP packets uses all the FSMs and provides a good test

of the system's ability to handle single packets belonging to the supported protocol

set.

Single packet testing of this sort was accomplished by constructing a testbench in

VHDL and simulating it in Modelsim which would supply the contents of a packet

stored in a text �le. The testbench loads a �le called �numbers-icmp.txt� which

contains a sequence of binary values strung together to create a single chain of values.

This forms the data for a pre-built packet stored in the text �le, which is passed o�

to the main interface and by using a testbench, as far as the interface is concerned

this is data being sent by a computer. Necessary signals to facilitate this are also

simulated by the testbench, such as RXDV.

The testbenches used in single packet testing do not address the output of the system.

Veri�cation of packets send back to the �computer� as part of how ICMP operates

are made from visual inspection of the wave table the simulator generates. Figure 6.1

shows an example of such a wave table for a single ICMP packet test.

81

Figure 6.1: Partial wave table for the beginning of an ICMP packet

6.1.2 Multiple Packet Tests

Once a single packet has been veri�ed to run successfully through the interface code,

it's time to start performing in-depth testing with a large number of packets sent one

after the other. This form of testing achieves several goals:

• Mass numbers of packets provide a realistic scenario for use of the interface.

In a real-world application, it is highly unlikely for the system to be passing

solitary packets with signi�cant time between them, but rather a large block of

data containing packets strung close to one another.

• Boundary conditions can be tested. There are many di�erent combinations of

data in the �elds of a packet and it is counter productive to hand test each

situation to determine if a �aw exists in the code. By running di�ering packets

through the simulator, each with a di�erent block of data and several di�erent

(but valid) changes to the headers of each, it is possible to determine if the

system's code is functioning properly.

• The ability of the system to sustain continuous operation under heavy load can

be measured. Robust operation is only satis�ed if the system operates perfectly

under continuous, unrelenting packet transmission with all forms of packets.

• The tag method of error detection covered in Section 4.4.1 can be tested.

82

The primary method for performing the automated testing was by creating a test-

bench to perform automated packet construction. There are two sets of data used

in the formation of these packets - the header and the payload data. The following

shows the steps the testbench takes when performing automated testing:

1. A �template� packet, either ICMP or UDP depending on the form of packets

to be tested, is loaded from the contents of a text �le, which consists of base

header information for the packet. The majority of this header template is used

for each packet generated by the testbench, however several of the �elds are

modi�ed per packet later on in the testbench to re�ect changes from packet to

packet (eg. checksums, sequence identi�ers, etc).

2. A �payload� packet is loaded from the contents of a text �le, which consists of

the payload data to be used in the testing. The packet protocol to be employed

has no bearing on the form of the payload data, so virtually anything can be

used so long as it can be loaded by the testbench code. Each generated packet

contains a chunk of this payload data, so testing the integrity of a large amount

of data processed by the interface code is very easy to do using the multiple

packet testing method.

3. The testbench starts creating and sending a packet on the �y, with Ethernet

checksum, IP/UDP/ICMP CRCs generated when necessary. It's important to

ensure all of these values are correct, otherwise they will be rejected by the

error detection mechanisms in later FSMs. Tags are also embedded as part

of the testing. Once a packet is sent in its entirety, the testbench waits for a

responding packet sent back by fsm_send (it is assumed that UDP has been

put into mirror mode if UDP is the protocol being testing).

4. Veri�cation of the incoming packet is performed in three ways:

83

• Tag values from incoming packets are stripped out and written to a �le called

�tags.txt� on the computer running the simulation. The testbench does not

check whether the tags are in order or have missing packets; this task is left to

the user, as tags aren't a required part of the interface and their implementation

is optional.

• For each packet sent and received by the testbench, two Ethernet checksums

are calculated. When a packet is being passed to fsm_read, the testbench uses

this packet information to calculate a prediction of the Ethernet checksum for

the mirrored packet, which is stored inside the testbench as crctocheck. When

fsm_send produces the actual mirrored packet, it sends a copy of its Ethernet

checksum back to the testbench via toplevel and is stored inside the testbench as

top_crceth2. As crctocheck is the predicted checksum, it is assumed to always be

correct for the particular packet being sent by fsm_read. When the incoming

packet from fsm_send is received, the two checksum values are compared; if

they are identical, this means all the header values and payload data in the

received packet are as they should be, which means all FSMs are operating as

expected. If they are di�erent however, something has gone wrong in one or

more of the FSMs and the simulation is automatically stopped via a VHDL

assertion call in the testbench. The following code fragment shows the process

which controls the assertion:

process (TXEN)

begin

if falling_edge(TXEN) then

-- Transmit Enable (TXEN) has gone low; fsm_send has finished

-- top_crceth2 contains valid data

-- Check if Ethernet checksums are identical

assert top_crceth2 = crctocheck

report "SIMULATION FAILURE: Ethernet checksums different"

severity Failure;

end if;

end process;

84

• Payload data from the incoming packets is stripped out and written to a �le

called �output.txt�. If the system has worked properly, the output.txt �le and

the �le used to send the payload data should be exactly the same in both size

and content. A simple application of the di� command can verify this.

The testbench for multiple packet testing requires its own state machine to control

its operation, which is as follows:

process (State, udpcount, TXEN, crc_output_ip, ipcount,

subject3, crc_output_eth16)

begin

NextState <= init;

Case State is

when init =>

-- Initialisation state

crcclock <= '0';

crc_enable_ETH16 <= '0';

finish_ETH16 <= '0';

crc_enable_IP <= '0';

finish_IP <= '0';

resetcrc <= '1';

-- 0 = UDP, 1 = ICMP

packetformat <= '0';

NextState <= finalint;

when finalint =>

if packetformat = '0' then

datatosend <= filedata0;

else

datatosend <= filedata1;

end if;

resetcrc <= '1';

NextState <= doCRCcount;

when doCRCcount =>

resetcrc <= '0';

crc_enable_ETH16 <= '1';

crc_enable_IP <= '1';

if ipcount >= 10 and ipcount <= 11 then

crcdataIP <= "00000000";

elsif ipcount = 20 then

crcdataIP <= "00000000";

elsif ipcount = 21 then

finish_IP <= '1';

elsif ipcount = 22 then

datatosend((8*(31)+1) to (8*(31)+8))

<= crc_output_ip(15 downto 8);

85

elsif ipcount = 23 then

datatosend((8*(32)+1) to (8*(32)+8))

<= crc_output_ip(7 downto 0);

else

if ipcount < 200 then

if packetformat = '0' then

crcdataIP <= filedata0((8*(ipcount+21)+1)

to (8*(ipcount+21)+8));

else

crcdataIP <= filedata1((8*(ipcount+21)+1)

to (8*(ipcount+21)+8));

end if;

end if;

end if;

if udpcount = 0 then

crcdata16 <= "00000000";

elsif udpcount = 1 then

crcdata16 <= "00010001";

elsif udpcount = 17 then

control3 <= '1';

if packetformat = '0' then

crcdata16 <= filedata0((8*(udpcount+31)+1)

to (8*(udpcount+31)+8));

else

crcdata16 <= filedata1((8*(udpcount+31)+1)

to (8*(udpcount+31)+8));

end if;

elsif udpcount >= 18 and udpcount <= fullsize+17 then

crcdata16 <= subject3;

if udpcount = fullsize+17 then

control3 <= '0';

else

control3 <= '1';

end if;

elsif udpcount = fullsize+18 then

if packetformat = '0' then

crcdata16 <= filedata0((8*(45)+1) to (8*(45)+8));

else

crcdata16 <= filedata1((8*(45)+1) to (8*(45)+8));

end if;

elsif udpcount = fullsize+19 then

if packetformat = '0' then

crcdata16 <= filedata0((8*(46)+1) to (8*(46)+8));

else

crcdata16 <= filedata1((8*(46)+1) to (8*(46)+8));

end if;

86

elsif udpcount = fullsize+20 then

crcdata16 <= "00000000";

elsif udpcount = fullsize+21 then

finish_ETH16 <= '1';

elsif udpcount = fullsize+22 then

datatosend((8*(47)+1) to (8*(47)+8))

<= crc_output_eth16(15 downto 8);

elsif udpcount = fullsize+23 then

datatosend((8*(48)+1) to (8*(48)+8))

<= crc_output_eth16(7 downto 0);

else

if packetformat = '0' then

crcdata16 <= filedata0((8*(udpcount+31)+1)

to (8*(udpcount+31)+8));

else

crcdata16 <= filedata1((8*(udpcount+31)+1)

to (8*(udpcount+31)+8));

end if;

end if;

if udpcount = fullsize+23 then

NextState <= hold;

else

NextState <= doCRCcount;

end if;

when hold =>

begincycle <= '1';

NextState <= holdbeforereset;

when holdbeforereset =>

begincycle <= '1';

initial <= '0';

crc_enable_ETH16 <= '0';

crc_enable_IP <= '0';

finish_ETH16 <= '0';

finish_IP <= '0';

if falling_edge(TXEN) then

NextState <= init;

else

NextState <= holdbeforereset;

end if;

end case;

end process;

The purpose of this portion of the testbench is to prepare the data stream for trans-

mission to the IP core as well as send appropriate control signals to the checksum and

CRC calculators. The initial stages of the FSM begin by setting the datatosend signal

87

to the template packet which is to be transmitted later by the testbench. Two dif-

ferent template packets are available, one for UDP packets and one for ICMP packets.

Both templates are stored as text �les along with the testbench and are loaded by

the testbench upon execution. These template �les contain a fairly generic example

of a packet with the protocol the particular template is referring to, minus a payload

which is sourced from a separate �le. Depending on the value of the packetformat si-

gnal (0 for UDP, 1 for ICMP), the datatosend signal is assigned the relevant template

packet data. The testbench then proceeds to run through the entire packet, including

the payload which is assigned to the CRC calculator as signal subject3, analysing

the contents and assigning the required IP/ICMP/UDP checksums and CRCs where

appropriate in the packet. After the packet has been prepared to look like a correct,

genuine packet of the designed protocol, the FSM triggers another FSM in the test-

bench which actually starts sending the packet to the IP core. The FSM resets itself

once the transmission has completed (via monitoring the TXEN signal) and begins

sending another packet with a new chunk of payload data. The same template is used,

just modi�ed as appropriate to support each new chunk of payload data. The same

�le of payload data is always used, however since only a small amount is actually sent

per packet (eg. 6,000 bytes depending on the settings in the testbench), the testbench

is designed to advance through the full payload data, taking small segments from it

to use as individual packet payloads when creating each new packet.

A key distinction between single and multiple packet testing is that verifying the

integrity of packets in single packet testing is performed solely by using the wave

window in Modelsim and a packet's integrity cannot be determined any other way.

Multiple/automated packet testing solves this problem by only requiring use of the

wave window in situations where the simulation has stopped due to an Ethernet

checksum mismatch, or other debugging requirements for speci�c areas of interest.

The checksum/CRC elements are the key to this, which is why the above code exists

88

- it determines what the checksum and CRC values of the returned packet (from

fsm_send) are supposed to look like before the packet is actually returned. A com-

parison can be done at the end of the packet to ascertain if the FSMs are working

correctly. So long as the interface is working �ne, the entire Modelsim GUI can be

bypassed entirely and most operations can be setup using scripts to verify things like

tags and payload data which the testbench does not perform itself.

6.1.3 Malformed Packet Testing

The system is designed to handle packets that are malformed or otherwise damaged

and cannot be validated. In these cases, single and multiple packet tests were per-

formed by adjusting the test packets in various ways, such as changing a byte in the

payload so that the checksums in the headers would be incorrect, increasing the size

of certain �elds such as the payload size, etc. In these cases, the results were such

that for all cases of malformed packets, the Ethernet CRC will always fail to match,

and the system is designed to simply let the packet pass through without allowing it

to trigger further FSMs. Often the IP checksum would fail �rst and so the system

would wait until the packet passed through before waiting for another packet. Since

the checks for malformed packets are mostly based on checksum and CRC values,

this simpli�ed the various areas that needed to be tested and so the tests involving

actual malformed packets were of less importance than testing known good packets.

6.2 Synthesis

Synthesis is the process by which any HDL code (VHDL or Verilog) can be turned

into a form suitable for uploading to and running on an FPGA. It is analogous to the

act of compiling source code to run software on a computer. Many times during the

89

development of the interface, the code would be synthesised to test the current build of

the design in a real-world scenario, as the operation of a design during simulation will

not necessarily be identical to its operation on actual FPGAs connected to additional

hardware.

The following statistics show the physical resources the core uses on a Spartan 3 after

synthesis. No additional programs were installed onto the FPGA, so these statistics

are entirely from what the IP stack utilises on its own. The exact speci�cations of the

FPGA model used in the design is a Xilinx Spartan 3 XC3S5000, package FG900 (ie.

900-pin), speed grade of -5 and the software packages used to synthesise the design

and achieve the following results were Xilinx ISE 10.1 and Synplify 8.8.0.4:

Logic Utilization:

Number of Slice Flip Flops: 970 out of 66,560 1%

Number of 4 input LUTs: 1,920 out of 66,560 2%

Logic Distribution:

Number of occupied Slices: 1,166 out of 33,280 3%

Number of Slices containing only related logic:

1,166 out of 1,166 100%

Number of Slices containing unrelated logic:

0 out of 1,166 0%

Total Number of 4 input LUTs: 2,020 out of 66,560 3%

Number used as logic: 1,664

Number used as a route-thru: 100

Number used for Dual Port RAMs: 256

(Two LUTs used per Dual Port RAM)

Number of bonded IOBs: 40 out of 633 6%

Number of RAMB16s: 16 out of 104 15%

Number of BUFGMUXs: 1 out of 8 12%

Constraints cover 44747 paths, 0 nets and 8533 connections

Design statistics:

Minimum period: 7.795ns (Maximum frequency: 128.287MHz)

After successful synthesis, the core was downloaded onto a physical FPGA and veri�ed

to operate correctly under �ood pings and regular ICMP/UDP activity. As covered

in the Section on ICMP, the �ood-ping test can be used to bombard a target machine

90

with multiple ICMP (ping) packets to see how the network holds up under stress.

Flood pings are very useful when testing the physical capability of the interface code,

as it can show stresses from physical conditions in a way which cannot be easily

simulated. Although it is easy to send a continuous stream of ICMP packets in a

simulator, the results cannot be construed as "real world" because there are few

variables to deal with. Even if the simulated code is found to support demanding

situations such as �ood pings appropriately, the code running on the FPGA might

break down due to several factors:

• Attributes are added to the code so that various pins on the FPGA are matched

with the relevant signals in the code. If any of these attributes are incorrect,

the interface will malfunction.

• Computers can provide widely-di�erent forms of packets with a wide range of

�exibility. It is useful to test these in case certain conditions have not been

addressed in simulations (eg. out-of-bound conditions, unusual payload/header

information, etc)

• Any unforeseen circumstances

In the next Section, this dissertation will cover the means by which these tests were

achieved, though the con�guration of the computer to interface with the board as

well as some C code used to send UDP data to the board.

91

Chapter 7

Computer-Side Operation

In this Section we assume the Gigabit Ethernet core has been loaded onto an FPGA

demonstration board. Working with the core requires a reliable connection between

the board and a computer. Although the board is technically capable of being connec-

ted to a switch or router, the lack of support for ARP means it will not be automati-

cally detected by the rest of the network. We will not address the editing of a router's

con�guration to include manual ARP tables, but rather the simpler simpler situation

of a direct connection between the core and a computer's network adaptor, which is

ultimately the most likely use for the core.

7.1 Requirements

The computer needs to contain a network adaptor which supports Gigabit Ethernet,

although this is a standard for virtually all current adaptors. The host operating

system also needs to support UDP Lite, which is supported in Linux, Windows and OS

X with the latest service packs/kernel. There is also a speci�cation which, although

not necessary for the board to work properly, is certainly desired in order to make

maximum use of the board and its capabilities. Before it can be covered though, a

brief explanation of MTUs is required.

92

7.1.1 MTU

The Maximum Transmission Unit (MTU) speci�es, in bytes, the size of the largest

packet that a network interface can support.45 MTUs are important because they

ensure that large chunks of data being transmitted can be cut down into more mana-

geable units. They also ensure that if there is a lot of activity on a network, packets

from di�erent sources can still travel quickly to their destination without waiting for a

particularly large packet to �nish. MTUs are also extremely important for the success

of any protocol which performs integrity checking such as TCP or UDP with custom

error checking (eg. tags).

MTUs are generally speci�ed alongside the speci�cations of a communications inter-

face, in particular network adaptors. For �xed situations such as Ethernet, the MTU

has a standard size normally set to a default by the interface, but can be modi�ed

to suit the requirements of the connection. The higher the MTU, the fewer packets

needed to be sent for a given amount of data, which increases bandwidth e�ciency

and hence reduces the time required to shift a speci�c amount of data. However,

large packets have the potential to congest the interface and reduce the �ow of other

packets in the system, which makes larger MTUs only suitable for connections with

high bandwidth requirements.

When an MTU is speci�ed, it is generally considered to be a Framed MTU. A framed

MTU means the size only takes into account the payload data and not the header

and checksum that are attached by the data link layer. For example, Windows will

by default set an internal network to use an MTU of 1500 bytes. This is framed,

because only the payload is 1500 bytes. The actual size of the transmitted packet

(or the maximum frame length) when the header and checksum attached, is 1518

bytes. Coincidentally this default MTU is also the largest MTU possible for a regular

Ethernet LAN, however larger MTUs are available if the LAN is Gigabit capable

93

and supports jumbo frames (also known as jumbo packets). One of the advantages

of Gigabit Ethernet is that it allows for much larger MTUs and hence payloads, per

packet. The de�nition of a jumbo frame is any Ethernet frame with more than 1500

bytes of payload and can be increased to carry up to 9000 bytes by changing the

network interface's MTU to 9000 bytes via the relevant method on the computer's

operating system the card is installed under.46 Jumbo frames are only possible with

Gigabit Ethernet, but not all Gigabit Ethernet network interface cards support jumbo

frames. The choice of network adaptor should be based on whether it supports jumbo

frame and not just gigabit speed, as the bene�ts of having both are signi�cant.

To show how MTUs a�ect the performance of a system, let's take the situation of a

simple �le copy operation between two computers over a network. Let's also assume

the �le is fairly large, around one gigabyte, to convincingly demonstrate show the

signi�cance of MTUs. Now, while the �le is in the middle of copying, let's assume the

user attempts to browse the Internet using a shared Internet connection originating

from the other computer (ie. the same network adaptor is being used for both the

copying and Internet operations). The following scenarios show the result of the

operations depending on the MTU:

MTU size = 1500 (default for most systems)

• File is transmitted using a huge number of relatively small packets

• Signi�cant header & checksum information added to the total amount of data

sent

• Web browsing is una�ected because the MTU is small enough to ensure any

packets related to Internet requests are not held up by the major �le copy

operation. There is no noticeable lag.

94

MTU size = 9000 (highest possible size for jumbo packets)

• File is transmitted using a low number of relatively large packets

• Header and checksum information is signi�cantly lower in total quantity when

compared to the previous scenario

• Since there are less header/checksum bytes as part of the overall transmission,

the �le copy will be completed faster than the previous scenario

• Web browsing is slow to download pages and slow to respond to links. Pages

generally consist of a large number of small �les with a signi�cant number of

small packets. The high MTU means the system is optimised for large conti-

nuous chunks of data, in this case, the copied �le, but all the packets required

for Internet communications are held up waiting for the current packet to clear

and even then only a small number of packets can be processed before the next,

very large packet for �le copying resumes. The net a�ect can be so negative as

to stall or timeout attempts to view sites.

A more quantitative example is shown as follows: assume a computer user wants to

download a 1 megabyte �le over the Internet. The e�ect that each of the above MTUs

has on the download is as follows:

MTU size = 1500

• Packet's payload size = 1500 Bytes

• Size of �le to be downloaded = 1 MB = 1,048,576 Bytes

• Therefore, a minimum of 700 packets required to send data (1048576 / 1500 =

699.0507)

• Header component sent with each packet = 18 Bytes

95

• Therefore, 12600 additional bytes for all the headers are transmitted along with

the payload (700 * 18)

MTU size = 9000

• Packet's payload size = 9000 Bytes

• Size of �le to be downloaded = 1 MB = 1,048,576 Bytes

• Therefore, a minimum of 117 packets required to send data (1048576 / 9000 =

116.5084)

• Header component sent with each packet = 18 Bytes

• Therefore, 2106 additional bytes for all the headers are transmitted along with

the payload (117 * 18)

Moving from an MTU of 1500 to 9000 results in an 83% reduction in the amount of

header data sent along with the downloaded �le. This percentage remains the same

regardless of how much data is transmitted, however the e�ect of less header becomes

signi�cant when shifted huge amounts of data. This is why it is important to use an

MTU that is bene�cial for the context of the data being processed.

The purpose of using and selecting an appropriate MTU in networking is to allow

for multiple activities on the network without any signi�cant congestion. However,

given the exclusive access the interface expects when connecting the FPGA board

and the computer, there is no need to worry about running various sizes of packets

at once when communicating with the board, since only one activity would be in

progress at any given time. So, by enabling jumbo packets and setting a high MTU,

the interface is much more capable of dealing with the potentially large quantities of

data it may need to process, as opposed to the default MTU assigned to it by the

operating system.

96

One thing to make aware

7.2 Con�guration

There are several steps involved before the board can be used by the computer. These

include the mechanics of setting up a manual ARP entry which were covered in ARP

protocol section but are elaborated further here. Step-by-step instructions are as

follows:

1. If the network card supports jumbo frames, set the MTU to as high a value

as is allowed. The method for doing so varies between operating systems. An

MTU of at least 6000 is desirable.

2. Con�gure the host network card with a static IP address and subnet mask.

Ensure the IP address is unique and doesn't con�ict with any other devices

on the computer. An example would be: IP - 192.168.0.1, Subnet Mask -

255.255.255.0

3. To ensure the UDP stack can handle the larger bandwidth requirements of the

system, it is necessary to edit the operating system's bu�er sizes to accommo-

date many UDP packets queued in the system. In Linux, the bu�er sizes are

speci�ed in the �les /proc/sys/net/core/rmem_default and /proc/sys/net/co-

re/rmem_max. Sometimes editing these �les directly is not possible due to the

�les being locked, so an e�ective solution to change the sizes is as follows: create

a �le called �size� which contains the value of the bu�ers desired, and then run

the following commands in a terminal:

cat size >> /proc/sys/net/core/rmem_default

cat size >> /proc/sys/net/core/rmem_max

97

4. Connect the FPGA board to the computer via a suitable cable. Apply power

to the board and observe the LED activity on both the computer's and board's

network adaptors - if they �icker initially, this is a sign of a good physical

connection. If possible, query the computer for the state of the connection

before continuing - it should report a Gigabit link-up.

5. The ARP table needs to be con�gured before any communication is possible.

Running the following command in a terminal will work:

arp -s 192.168.0.10 00:00:00:00:00:01

This command sets an ARP entry to link the device at IP 192.168.0.10 to the

MAC address 00:00:00:00:00:01. The IP was chosen because it exists on the

same subnet as the adaptor and the MAC address was chosen to be unique and

not match the MAC address of any other network adaptors. Now, when data

is sent to 192.168.0.10, the computer will automatically send the packets to the

board without future ARP requests because it knows which network adaptor to

use.

6. Attempt to ping the board:

ping 192.168.0.10

If the pings work correctly, then so does the board.

These steps constitute a thorough con�guration of the computer in preparation for

the board. For future use of the board on the same computer, most of these steps can

be skipped or optimised. For example, steps 1/2 are normally stored in the operating

system's con�guration �les so they don't need to be set later, step 4 can be entered

into the system boot scripts so the ARP table is con�gured every time the computer

starts, while the ping is not necessary for the most part, as its purpose is for testing

rather than general use.

98

7.3 Operation

Sending data from the computer to the board can be accomplished by using a custom

program to establish a socket connection between the two devices. Any program which

supports UDP is capable of interfacing with the board, however for the purposes of

the system it is a lot more prudent to use software which has been designed to work

well with the board and so reacts in a way which is expected. There is also the added

bene�t of providing tags and other error-correction features into the code, rather than

relying on o�-the-shelf tools which may not understand how the core will operate.

To test the UDP and UDP Lite support of the core, a C program was written to

send data to the demonstration board and wait for the board to send the same data

back (ie. mirror mode). Running a di� on the input and output �les would show

how successful the board was in processing and returning the data and whether there

were any issues with the connection. This Section covers important areas of operation

though the use of code fragments and output, while the entire code of the program

is listed in Appendix A.

• There are four important #de�ne statements used at the beginning of the code:

#define SOCKBUFFSIZE 16777216

#define BUFFERSIZE 6144

#define PROTOPORT 4950

#define MILLSECS 5000

SOCKBUFFSIZE

The requested size of the receive/send socket bu�ers (bytes). Socket bu�ers used in

the system need to be signi�cantly large to avoid issues with lost packets. Unlike

TCP which can queue packets when under congestion, UDP does not support such

capabilities and if packets �ll up system bu�ers without being cleared, the system is

99

likely to simply drop them without reporting this. The importance of having a large

socket bu�er is shown when using the code to transmit several hundred gigabytes

of data to the board. If the SOCKBUFFSIZE is too small, large packet loss will

be reported and the socket is likely to stall and fail to respond until reaching the

timeout. The size chosen above has been shown to support a 3 GB test data �le with

tagging enabled without failure. The SOCKBUFFSIZE value should be set as high

as reasonably possible; there are no disadvantages to having a high bu�er size as long

as there is su�cient memory on the computer.

BUFFERSIZE

The size of the payload for each packet (bytes). Each packet will have exactly this

amount of payload data; if the �nal packet does not contain enough data to �ll

the entire payload, zeros are padded to bring the payload to the required length.

The BUFFERSIZE is dependent on the MTU of the network adaptor the board is

connected to; the above example of 6144 bytes assumes jumbo frames are available

and for testing purposes the MTU was set to 6200 bytes, as both the payload AND

the header data need to �t in the MTU. The BUFFERSIZE value should be set as

high as reasonably possible, provided the network adaptor can support it.

PROTOPORT

The destination port number. Packets require two port numbers for transmission - a

source port and a destination port. The source port is determined by the operating

system while the destination port is supplied by the program. The chosen port number

does not matter when dealing with the board, as the board doesn't di�erentiate and

instead accepts all packets sent to it.

MILLSECS

The receive socket timeout (ms). When the program is listening for incoming packets,

it remains in a waiting loop. It will normally exit the loop and cleanly stop the

100

program once all expected packets are received, however if there is a problem and

packets have been lost or otherwise are never received, it may never exit the loop

as it waits for packets that will never appear. To provide for a clean exit which

saves unwritten disk bu�ers and returns allocated memory, the program needs to be

capable of terminating the loop if it appears likely no more packets will be received.

The MILLSECS value provides the amount of time the program waits for a packet

before giving up.

• The line

pstrzWhichProtocol = "udp";

speci�es which protocol the sockets will use. There are two self-explanatory options

- �udp� and �udplite�.

• The program, if run without any parameters, will display the following message:

Usage: client_send <destination> <inputfile> <outputfile>

<destination>

The host the program will connect to. For the purposes of the system, the destination

will be the IP/name of the board.

<input�le>

The �le to be sent to the board. The content of the �le can be anything, in any form

(binary, ASCII, etc).

<output�le>

101

The �le which the program will write the returned data to. Assuming all components

in the system are working correctly and all con�guration stages have been performed,

the output �le should be a facsimile of the input �le. An easy way to determine the

integrity of the output is to run a di� on the two �les; a zero output means the �les

are identical and so the board is working perfectly.

• The line

if (fork()==0) {

begins running a block of code which performs the sending of packets to the board

as a threaded process. What this means is that the moment the sender code is

instantiated, the main execution of the program moves onto the code after the fork,

which happens to be the receiver, so the sender and receiver work simultaneously as

required.

• The following code performs the actual sending of packets, located in the forked

processes, with tags embedded:

while (lDummy > 0) {

sprintf(tag,"%.3c",iSentp);

strncpy(tagbuffer, tag, 3);

tagbuffer += 3;

memcpy(tagbuffer, lpDummy, sizeof(buf)-3);

tagbuffer -= 3;

if (lDummy < sizeof(buf)) {

padding = sizeof(buf) - lDummy;

tagbuffer += lDummy+3;

memcpy(tagbuffer, zerobuf, padding);

tagbuffer -= lDummy+3;

}

iSentp++;

lSent += (long)send(sd, tagbuffer, sizeof(buf), 0);

lpDummy += (long)sizeof(buf)-3;

lDummy -= (long)sizeof(buf)-3;

}

102

The sender keeps transmitting packets so long as lDummy (the remaining number of

bytes to be sent) is greater than zero. The sprintf and strncpy instructions at the

beginning of the code �rst convert the value of iSentp, which holds the number of

packets sent, into a character type and store it into the tag variable, which is then

copied into the tagbu�er memory bu�er. iSentp is used as the basis for the tag value

since it starts at zero and increments by one for every iteration of the while loop

(ie. every packet sent). It is converted into a character type from an integer, as the

character type provides a greater range of possible values to be held in the three bytes

allocated for the tag. Assuming the use of jumbo packets with a payload size of 6144

bytes (as de�ned in the �rst bullet point) and assuming each byte used for the tags

stores a range of values from 0-255, this would result in the maximum value of the tag

to be 16,777,215. With the same jumbo-sized packets and payload size, this provides

a maximum data size of 103,079,208,960 bytes (more than 100 GB). It's worth noting

that the tags are only incremented for each individual �le and start from zero once a

new �le is sent.

After the tag is copied into the tagbu�er, the code makes a copy of the actual payload

to the tagbu�er, but performing a shift on the bu�er so that the �rst three bytes are

left for the previously-copied tag and the remainder is comprised of the payload. The

payload for each packet is comprised of the input �le data split into chunks, each

chunk BUFFERSIZE bytes large. The �if (lDummy < sizeof(buf))� statement means

the following: if the remaining number of bytes to be sent is less than the size the

payload is required to be, pad the unused payload space with zeroes. This is to ensure

each packet has an identical size, for reasons of simplicity. If the padding is necessary,

a block of zero values is copied from the end of the remaining packet data to the end

of the payload from a pre-zeroed bu�er.

103

Once the payload is prepared for sending, the actual send code is executed. First,

the iSentp++ statement increments the respective variable, for use in keeping track

of the number of packets sent. Next the line

lSent += (long)send(sd, tagbuffer, sizeof(buf), 0);

performs a socket send to the board of the contents of the tagbu�er, which contains the

prepared payload. The next two statements perform some important modi�cations

to variables which track the progress of the data being sent. If at the end of the �nal

statement the value of lDummy is zero or a negative number, this means there is no

more data to be sent and so the sending process is completed.

• The following code performs the receiving of packets from the board:

while (1) {

n = (long)recv(sd, llbuffer, sizeof(buf), 0);

if (n < 0) break;

strncpy(tagrecv, llbuffer, 3);

llbuffer += 3;

memcpy(buffertowrite, llbuffer, sizeof(buf)-3);

llbuffer -= 3;

sprintf(runningtags, "%.3c", runningtag);

if (strncmp(tagrecv,runningtags,3)) {

fprintf(stderr, "\nERROR: Packet received with tag #%s, expected #%s, %d\n",

tagrecv, runningtags, runningtag);

free (llbuffer);

free (lpDummy);

free (tagbuffer);

fclose(pFileOut);

closesocket(sd);

exit(1);

}

runningtag++;

lEchoed += n;

fwrite(buffertowrite,1,n-3,pFileOut);

}

As the receiver is running at the same time as the forked sender process, it is di�cult

to know exactly when to stop waiting to receive packets. For this reason, the receiver

104

code is surrounded by an in�nite while loop and will only stop waiting for packets

once the receive statement reports a timeout. The line

n = (long)recv(sd, llbuffer, sizeof(buf), 0);

waits for a speci�c amount of time for a packet to be sent from the board. The amount

of time it allows for this is speci�ed by MILLSECS. If this amount of time expires

without a packet being received, then n is set to a value of -1 and the if statement

immediately after causes the receiver code to break out of the while loop. So, as

long as packets are continually being sent by the board within the time speci�ed by

MILLSECS, the while loop ensures the receiver will pick them all up, but the moment

this timeout is reached, the receiver will quit.

105

Chapter 8

JPEG2000 Core

The connectivity of the board serves the purpose of providing a communications link

between the computer and an application running on the board. An an example

of a real-world application of the system, let us assume the board is to be used as

part of an encoding/decoding scheme for the implementation of the JPEG2000 image

compression format. Figure 8.1 shows a conceptual diagram of how the interface and

core program could reside on the FPGA. As the space required by a core program

can vary, the diagram is not a guaranteed representation of the physical pro�le of

the software running on the FPGAs. Instead, it is used to show the comparative

sizes between how much space is required by the MAC layer (INTERFACE) and

the core program (JPEG2000 WAVELET TRANSFORM). Reducing the pro�le of

the interface increases the maximum size available for the core program, reinforcing

the need to have a quick and e�cient implementation of the IP layer with adding

unnecessary bloat.

To explain how the board can be used in this example, it is �rst necessary to cover

what JPEG2000 is, how it works and how the board can be used to service the image

format.

106

INTERFACE

JPEG2000 WAVELET TRANSFORM

SPARTAN 3

Figure 8.1: Space occupied by HDL programs on the FPGA

8.1 History of JPEG/JPEG2000

Ever since digital images have existed, there has been a need to develop ways to

compress digital images into a limited amount of storage space. Quality compression

techniques are highly desirable, since they allow for greater numbers of images per

storage unit, as well as making better use of available bandwidth if images are sent

over a network. In 1992, the Joint Photographic Experts Group introduced an image

compression standard called JPEG,47 which to date is the most commonly used and

known compression format, particularly with digital cameras and the Internet. Ho-

wever, although the format can provide reasonable image quality at average levels of

compression, the image quality becomes increasingly inferior as the level of compres-

sion increases. At low bit rates this would render the JPEG format virtually useless

as a compression technique. The JPEG committee saw room for improvement and se-

veral years ago a new image compression standard named JPEG2000 was released.48

While JPEG2000 improves upon JPEG in a number of areas, the most relevant to

this project is the fact that is o�ers signi�cantly better compression than its prede-

cessor. The compression technology used in JPEG2000 is such that even at low bit

107

rates the image quality is still reasonably acceptable, compared to what the original

JPEG format could produce.

The JPEG2000 standard, although not as widespread as regular JPEG, has seen use

in areas not originally reserved for the format. For example, there has been interest

in using JPEG2000 to store �lms for the movie industry. Digital Cinema as it is

known, is an example of a idea to encode individual frames of a �lm using JPEG2000

along with encryption technology to avoid problems with leaks of the electronically-

encoded �lm.49 The Digital Cinema Initiatives (DCI) has worked to publish a list of

speci�cations for digital cinema, agreed upon by the major studios. The speci�cation

uses JPEG2000 for picture encoding and use of the CIE XYZ color space at 12 bits

per component encoded with a 2.6 gamma applied at projection.50 As of October

2007, there are over 5000 DLP-based Digital Cinema Systems installed.51

JPEG2000's main advantage over JPEG is the use of the Discrete Wavelet Transform

(DWT) in the compression algorithm. JPEG uses the Discrete Cosine Transform

(DCT), which does not allow for compression ratios as high as the DWT without

signi�cant degradation in image quality. The use of the DWT in JPEG2000 enables

the compression algorithm to achieve much better compression than JPEG without

any noticeable degradation in image quality than JPEG. The primary disadvantage of

JPEG2000 is due to the heavy calculations required to decompress an image, making

is noticeably slower than regular JPEG. Since JPEG2000 is an such intensive format to

process, software implementations are entirely inappropriate as they would be unable

to decode super high resolution images at 1/24 second speeds. There are continuing

developments into improving the e�ciency of the JPEG2000 wavelet transform code,52

however since these techniques require either a full or partial hardware solution, the

board would be perfect for such an application.

108

Figure 8.2: High and low pass wavelet �lters

8.2 The Wavelet Transform

Core to the operation of JPEG2000 is the wavelet transform. The wavelet transform is

a �ltering operation in which a sequence of values are high and low pass �ltered. The

high and low pass �lters are derived from the wavelet along with a scaling function

for the particular wavelet transform being performed. Di�erent �lters are used for

di�erent wavelets and since there are an in�nite number of wavelets there are an

in�nite number of wavelet transforms. Not all of them are useful however, but there

are two useful wavelets which have been speci�ed in the JPEG2000 image compression

standard: one for lossy compression and one for lossless compression. In general the

�lters have a frequency response similar to that shown in Figure 8.2.

For one-dimensional signals the transform is performed from the beginning of the

signal to the end. However for two-dimensional signals the transform must be per-

formed on both the rows and the columns, with the rows transformed �rst and then

the columns. Digital images are a prime example of such a signal, which is why the

JPEG2000 employs the wavelets on image data by separating the pixel information

into two sets: a sequence of values to denote the rows (horizontal components) and

109

Figure 8.3: One-stage wavelet �lter bank

a sequence of values to denote the columns (vertical components) of the image data.

After �ltering, all the low pass values are placed at the beginning of their row/column

and all the high pass values at the end, a process called deinterleaving.

Figure 8.3 shows a one-stage �lter bank which presents a simple approach to wavelet

signal decomposition and reconstruction. The bank takes a signal X and performs

a forward wavelet transform on it by sending it though a high pass �lter G and a

low pass �lter H. The output of �lter G is a sequence of high pass values and the

output of �lter H is a sequence of low pass values. Each set of values is then run

through a downsampler which reduces the size of each set of values by two. The

downsampling by two is often referred to as decimation by two. The processed sets

of values are listed as A and B, and if we choose to combine the two outputs into a

single signal we can say the bank has produced a single octave or �rst pass transform.

To show the inverse transform however, the outputs are not combined but instead fed

into the next set of �lters. The outputs are �rst sent into a separate upsampler for

both (interpolation by two), which brings the size of each set of values back to the

lengths of the original signal, then the inverse wavelet transform is processed on each

set of values by another set of high pass and low pass �lters, denoted as E and F

respectively. Once processed, each set is recombined with the �nal signal represented

110

Figure 8.4: Left - Original uncompressed image; Right - One octave wavelet transformed image

as Y. If signal Y is identical to X, then the wavelet transforms used in the �lter bank

are said to provide perfect reconstruction.

As an example of how wavelets operate in JPEG2000, we shall use the traditional

Lena image to represent an uncompressed image and send it through a one octave

wavelet transform. The process of passing the image through a one octave wavelet

transform is shown in Figure 8.4, along with the original untransformed image as a

comparison.

The process of de-interleaving has placed all of the �ltered low pass values at the

start of their respective row/column resulting in a low pass-low pass (HH) sub-band

in the upper left quadrant of the image. The de-interleaving process also produced

an entirely high pass (GG) sub-band in the lower right quadrant and two sub-bands

(GH and HG) which contain a combination of the high pass and low pass components.

The information in the GH sub-band contains the vertical edges of the image, the

111

Figure 8.5: One octave wavelet transform - quadrant contents

information in the HG sub-band contains the horizontal edges and the GG sub-band

is a combination of the two. The speci�cs of each quadrant are shown in Figure 8.5.

If the transformed output is itself passed through the wavelet transform, it is possible

to obtain further compression of the image. Instead of having just a one octave

transform as before, we can obtain multiple octaves of the wavelet transform in an

almost identical process to performing a one octave wavelet transform. This process is

known as dyadic decomposition. To perform a second octave of the wavelet transform,

112

the HH sub-band from the �rst octave is used as the input. The size of the HH sub-

band is half the size of the original image, so whatever method is used to perform the

wavelet transform must take into account the shortening input lengths as the number

of octaves increases. Figure 8.6 shows the Lena image after it has been processed to

four octaves. After the wavelet transform has been performed with the desired number

of octaves, the �nal HH sub-band contains all the information required to reconstruct

the original image. By performing the equivalent number of octaves of the inverse

wavelet transform on this HH sub-band, the original image can be reconstructed.

For every octave of the forward transform the image size is halved, so by performing

the inverse transform to reconstruction the original image, each octave of the inverse

transform results in the image being doubled. Once all octaves of the inverse wavelet

transform are processed, the image returns to the same size as the original.

As mentioned before, JPEG2000 employs two wavelet �lters to accomplish two forms

of compression - lossy and lossless. The JPEG2000 standard has chosen two speci�c

wavelets to support the compression - the lossy compression is achieved using the

Daubechies 9/7 wavelet, while the lossless compression is achieved using the LeGall

5/3 wavelet. The lifting equations for both of these wavelets are listed in Figures 8.7

and 8.8 respectively (the lifting scheme is covered in the next section). Lossy com-

pression is akin to how regular JPEG works; the compression is achieved mostly by

removing data from the digital image, speci�cally the data that's considered less im-

portant to the quality of the image. As the compression level is increased, the quality

of a JPEG/JPEG2000 image degrades as the encoder has to work more aggressively,

although the degradation is less pronounced in a JPEG2000 �le due to improved lossy

compression algorithms. Lossless compression however is a method of compression

which retains all the data of a digital image without throwing away detail, while still

managing to achieve a reasonable level of �le size reduction. JPEG does not have a

113

Figure 8.6: Four octave wavelet transform - quadrant contents

114

true lossless compression technique, although by reducing the compression to mini-

mal levels the e�ect can be similar, however JPEG2000 has full lossless compression

capabilities.

Out of the two wavelets the Daubechies 9/7 lossy compression is the most desirable

for practical situations since the compression it yields far outweighs that of the LeGall

5/3 lossless, plus unlike JPEG, the lossy compression is a lot less degrading on the

quality of the �nal image. However, Daubechies 9/7 is a lot more complicated than

LeGall 5/3 mathematically. It processes a high and low pass transform on the entire

sequence and the multiplication involved results in a slower speed of encoding and

decoding. It is for this reason the system provides a good base to construct a hard-

ware implementation of the Daubechies 9/7 wavelet transform, using the computer

to supply either raw image data or an existing JPEG2000 �le and the board to enco-

de/decode the content respectively and transfer the resultant back to the computer,

all communication performed using the Gigabit Ethernet link.53

8.2.1 Lifting Scheme

There are two methods for performing wavelet transform calculations. The �rst is

convolution, which was the original method for performing the transform. Convo-

lution requires a signi�cant number of calculations and memory for the storage of

intermediate values,54 which does not lend itself well to high speed and/or low powe-

red applications and hardware and this is especially the case with embedded devices

where these are often critical requirements. Eventually a new, more e�cient method

for implementing the wavelet transform was produced, called the lifting scheme or

just lifting. For a sequence of values, the wavelet transform via lifting involves mo-

difying each value based on its neighbouring values. The lifting equations used in

JPEG2000 are listed in Figures 8.7 and 8.8.

115

There are several advantages lifting has over convolution. Lifting is very desirable

to use when performing transforms in hardware, because the lifting steps can be im-

plemented very easily and e�ciently due to how FPGAs operate. Lifting operations

consist of steps which can be naturally implemented in hardware, requiring signi�-

cantly less gates to implement than any convolution solution could achieve. Another

advantage of lifting is that it can be performed in-place, meaning no additional me-

mory is required to store intermediate values during the lifting operation; the modi�ed

values are simply written back over the old values. Old values can then be recovered

using the inverse lifting procedure.55 Less gates will in general result in a higher

maximum clock speed, as well as reducing the pro�le of the program on the FPGA

to allow for more code elsewhere. Less memory also reduces the program's pro�le on

the FPGA if the memory was created on-chip, otherwise external memory is saved

for other uses. Overall a faster, lower powered solution can be achieved using lifting

when compared to convolution, so we will use it to provide an example of the way in

which application code can be implemented along with the IP core on an FPGA.

Figures 8.7 and 8.8 show the forward and inverse equations for the two wavelets used

by JPEG2000 along with the scaling factors for the Daubechies 9/7 equations. The

ext subscript notation indicates symmetric extension must occur at the boundaries

of the signal, an explanation of which is in the next paragraph. The brackets that

appear without a notch on their tops in Figure 8.8 mean �integer part of�. For this

reason the LeGall transform can only be performed on integers values, as the brackets

mean �always round down to the nearest integer�. The integer to integer characteristic

of the LeGall transform enable the perfect reconstruction of images using the inverse

116

Figure 8.7: Daubechies 9/7 Wavelet Transform Equations (Lossy Compression)

Figure 8.8: LeGall 5/3 Wavelet Transform Equations (Lossless Compression)

117

Figure 8.9: Symmetric extension at the boundaries

transform process. This is why the LeGall transform is known as a lossless transform.

Daubechies on the other hand does not contain any integer part brackets in the

equations and indeed the scaling factors speci�ed to nine decimal places indicates

this is instead a �oating point transform, which as a result turns it into a lossy

transform. By using �oating point, computation of values can be increased to a very

high degree of accuracy, but at a cost of not being able to completely reproduce all the

original values to their original level of precision during the inversion process. This

results in a small amount of information being lost due to rounding errors, although

in practise the visual impact of such lost information in JPEG2000 is negligible.

The lifting equations involve modifying values of a sequence based on the neighbouring

values. That is, for a value in an even (lowpass) position, it is modi�ed based on

the values in the neighbouring odd (highpass) positions and vice versa. The only

problem with this arrangement is what to do for the values at the start and the end

of a sequence, which only have one neighbouring value. The solution is to use the

one neighbouring value as both neighbouring values at the beginning and end of a

sequence. This is known as symmetric extension at the boundaries, an example of

which can be seen in Figure 8.9 and shows how the extra neighbour is obtained for

the values at each end of a signal.

Symmetric extension is easy to implement in a hardware design, because control

signals are set to tell the lifting blocks when symmetric extension needs to be per-

118

formed, with those signals read in each lifting block and the equations modi�ed as

necessary. Lifting was very important to the development of the wavelet transform,

because it provided the ability to implement wavelet transforms in the real world at

realistic speeds and so lifting was incorporated into the JPEG2000 standard. Lifting

has simpli�ed the implementation of the wavelet transform and made a hardware

implementation far more desirable.

8.2.2 Pipelining the Design

In a sequential (ie. non-pipelined) architecture, the lifting would occur in a single

logical block, passing transformed values internally until the results appear at the

end of its operation. Although the system works, it is ine�cient because the lif-

ting equations provide a distinct advantage when implemented in hardware - several

equations can be run at the same time, working on separate sets of data. However,

this advantage can only be exploited by designing the lifting to work in a pipelined

architecture, since a sequential design with the single logical block results in only one

lifting stage running at any given time. When pipelined, the lifting can be split into

several logical blocks instead, each running as required.

As a practical example of the bene�ts of pipelining, let us observe the lifting equations

working in a pipelined system. The waveform in Figure 8.10 shows a system where

there exists an array of eight values to be wavelet transformed via lifting. These

values are shown individually in the waveform as x0 to x7. The lifting calculations

are split into four lifting blocks (stages) instead of using a single large logical block.

Every time the clock signal hits a rising edge (ie. goes from low to high), three of

the values are taken and processed by a particular lifting stage, with the output for

119

Figure 8.10: Pipelined execution of the lifting system

the stage appearing during the next rising edge of the clock. For example, during

the �rst rising edge transition (where state has the value �cycle2�), x2, x1 and x0

are taken by a lifting stage called Odd Step 1. The activity of this step is shown in

Table 8.1 and the equation for Odd Step 1 is shown in Figure 8.7 as Foward: Step

1. During this stage the output value of 28 is calculated and written to the existing

value of x1, but due to the output signal passing through a �ip-�op this value is not

updated until the next rising edge of the clock, which is seen during cycle2.

It can be observed that once the �rst lifting stage its output, the two subsequent

stages (Odd Step 1 again and now Even Step 1, also shown in Figure 8.7 as Foward:

Step 2) calculate their respective values (-55 and -220) at the same time in the next

clock cycle instead of just one stage operating in the cycle, as was the case with the

serial execution. Further on it can be seen that three stages produce values in a

single clock cycle (484, 802 and -795). After these blocks provide their own return

values from separate calculations, the cycle continues to the point where every lifting

stage is running at the same time as all others. Once the majority of calculations are

120

Table 8.1: Timing chart for each lifting stage with a sequence of eight values

Clk Cycle Odd Step 1 Even Step 1 Odd Step 2 Even Step 2
0 x2, x1, x0 -> x1
1 x4, x3, x2 -> x3 x1, x0 -> x0
2 x6, x5, x4 -> x5 x3, x2, x1 -> x2
3 x8, x7, x6 -> x7 x5, x4, x3 -> x4 x2, x1, x0 -> x1
4 x7, x6, x5 -> x6 x4, x3, x2 -> x3 x1, x0 -> x0
5 x6, x5, x4 -> x5 x3, x2, x1 -> x2
6 x8, x7, x6 -> x7 x5, x4, x3 -> x4
7 x7, x6, x5 -> x6

performed, the number of simultaneous stages drops o� until the system completes

its calculations. Due to the number of stages operating in parallel at any given time,

signi�cantly fewer clock cycles are required to produce all the necessary results using

pipelining than it would if using serial execution. Figure 8.11 shows the hardware

block diagram for the lifting stages using pipelining, along with extra components

such as the RAM which stores the various output values from the latter stages as well

as the Finite State Machine which organises the entire lifting process.

Table 8.1 shows how wavelet transform code processes a sequence of eight values, the

situation present in the system. Note that for Odd Step 1 and Odd Step 2, x8 is

assigned the value of x6 for the purpose of symmetric extension and for the initial

iteration of Even Step 1 and Even Step 2, the third value not shown is assigned the

value of x0, also due to symmetric extension.

Take note that the waveform in Figure 8.10 contains calculations which return inte-

gers, despite the fact that the Daubechies 9/7 wavelet is a �oating-point transform.

In the hardware design of JPEG2000, the decision was made to use �xed-point ap-

proximations to the �oating point numbers instead of using �oating point directly, as

121

Figure 8.11: Hardware lifting blocks in a pipelined architecture

122

calculations on the �xed-point approximations would perform signi�cantly faster and

require less logic on the FPGA. To accomplish this, the scaling factors were multiplied

by 256 to obtain a value which could easily be stored as an integer. For example,

Odd Step 1 requires the use of the alpha coe�cient which is -1.586134342. This value

can't be stored and utilised in hardware, so the coe�cient was instead hardwired in

the code as -406, a value obtained from the calculation -1.586134342 * 256. After the

lifting block produces its result, a rounding down calculation is performed to divide

the result by 256 and throw away the values after the �oating point so that the re-

sult can be stored as a �oating-point value. The rounding down calculations utilise

signals with a high number of bits to ensure a satisfactory level of accuracy for the

�nal result. Scaling is then performed to �nalise the calculations as required by the

JPEG2000 standard.

8.2.3 Connectivity

Figure 8.12 shows how the various components of the system interact in this applica-

tion.

A basic explanation of the operation of the entire system for a practical case is shown
below:

• The computer, using UDP Lite packets, sends data in the form of uncompressed

raw image data or a JPEG2000 image, for encoding or decoding respectively.

• The network interface takes the packets and layers the data into FIFO1. Once

all the data has been sent the FIFO can be accessed by the JPEG2000 wavelet

transform application on the board.

123

FIFO2

JPEG2000 WAVELET TRANSFORM

INTERFACE

FIFO1

Figure 8.12: Inter-connectivity between system components

• The JPEG2000 wavelet transform performs the encoding or decoding as appro-

priate. When the program is ready to send the output to the computer, the

application and the network interface work in tandem. The JPEG2000 appli-

cation places individual chunks of data into FIFO2 and activates fsm_packgen

to begin preparation for transmission of that particular packet. Once it's trans-

mitted, the application supplies another chunk and activates fsm_packgen for

the next packet and so on until all the data has been sent to the computer.

• The computer receives the packets sent by the board, assembles them and per-

forms any remaining tasks, whether they be to save the output to a �le and/or

send another block of data for processing.

This example assumes the RAW/JPEG2000 images are sent in their entirety before

being processed by the wavelet transforming code. Although provided for simplicity

in explanation, this not need be the case. Due to the pipelined architecture of the

system, several packets can be processed at once, so as long as the core program (in

this case the JPEG2000 wavelet transform) is designed appropriately, the JPEG2000

124

code can read several packets to form an incomplete image and process them there

and then. The processed data can then be sent back to the computer while the

computer is still sending packets from the original image data. The �exibility of such

a task is dependent on the core program being used - some programs might be able

to process partial data streams while others might need a data block in its entirety

before it can be processed. Either way, the capability is there.

125

Chapter 9

Conclusion

The purpose of this project was to develop an IP core which could provide high-speed,

high-bandwidth computer to FPGA and back communication. This was achieved

through the implementation of three Finite State Machines to handle the reception

of packets from a computer, processing of new packets, and transmission of these

new packets back to the computer. The core was designed to work on a low-power

Xilinx Spartan 3 FPGA, which makes it very useful for low-cost designs which require

some form of fast connectivity with a computer. A key design choice for the core's

architecture has been to pipeline all the data in FIFOs, RAMs and �ip-�ops to achieve

full Gigabit line speeds. The resulting implementation is therefore fast, e�cient,

robust and stable. As the requirements were strict on speed and e�ciency, only

protocols and functionality that are strictly necessary to ful�l these requirements

were implemented. Several compromises had to be made, such as a lack of TCP and

IPv6 support, but these compromises have resulted in the core only occupying a small

number of slices on the Spartan 3 FPGA - 1,166 slices out of 33,280, a total utilisation

of 3%. This is important since the greater amount of available logic on an FPGA,

the larger the programs which perform the practical tasks can be. The core has a

maximum operating frequency of 128.287 MHz, which satis�es the nominal Gigabit

126

line speed of 125 MHz and allows for a small amount of �exibility, should there be

variations in this speed.

9.1 Future Improvements

9.1.1 ARP Support

One potential improvement would be to incorporate support for ARP, so that ma-

nually adding an ARP entry for the system would not be necessary. This would the-

refore provide a much simpler and foolproof method of using the board, as it could be

treated like any other networked device. Implementation of ARP would also improve

the support of the board when connected to a larger network, as routers/switches

wouldn't have to manually con�gure ARP entries to identify the board.

9.1.2 IPv6 Support

The IP core currently only supports Internet Protocol Version 4. This is suitable for

most situations in which the core may �nd itself used, however it would be bene�cial

to support IPv6 for reasons of future proo�ng. One of the most noted advantages of

IPv6 over IPv4 is the larger address space, which means there can be a signi�cantly

larger number of devices attached to an IPv6 network than its predecessor. The core

is currently more suited to the context of a direct connection between an FPGA and

a computer, which makes this advantage not quite so attractive. However, if the core

is eventually used on a device which connects to the Internet it will be very important

to support IPv6, so that it can process packets sent to it as the uptake of IPv6 on

the Internet continues to grow. All modern operating systems now support IPv6 so

there are no limitations on the computer side of the implementation.

127

9.1.3 TCP support

Adding TCP to the system would have limited use with this core, since TCP is most

useful for systems which require reliable data transfer over an unreliable medium.

Since the core would generally be connected to a local network or directly to a com-

puter, the extra reliability provided by TCP would not normally justify the added

complexity and expense of implementing a full TCP stack. To the author's know-

ledge, there are currently no full custom TCP/IP 1000Base-T cores available. There

are commercially available TCP/IP cores which require an embedded processor such

as a MicroBlaze or PowerPC, and only o�oad certain functions to dedicated hard-

ware.35 This is the case of the Treck TCP/IP core.6,33 However, at the time of writing

this thesis there is no evidence of the Treck core having been implemented fully and

at Gigabit line speeds on a Spartan 3. As it is, the core without any current TCP sup-

port is very fast and low-cost and it would be preferable to keep these speci�cations

than to expand in a direction which is not required.

128

Bibliography

[1] Arizona Macintosh Users Group, �AMUG RocketRAID 2224 PCI-X SATA

Controller Plus EditBox EB4-ML Review,� 2007. http://www.amug.org/

amug-web/html/amug/reviews/articles/highpoint/2224/.

[2] Anthony Cataldo, EE Times, �Alcatel preps Gigabit Ethernet core for Altera

FPGAs,� 2001. http://www.us.design-reuse.com/news/987/

alcatel-preps-gigabit-ethernet-core-altera-fpgas.html.

[3] Nicholas Tsakiris, Greg Knowles, �A Gigabit IP core for Embedded Systems,�

International Journal of Computers and Communications,

www.universitypress.org.uk (in press), 2008.

[4] Nicholas Tsakiris, Greg Knowles, �Enabling Gigabit IP for Intelligent Systems,�

in 10th International Conference on Mathematical Methods and Computational

Techniques in Electrical Engineering (MMACTEE'08), pp 162-166, 2008.

[5] Loring Wirbel, EE Times, �MMI predicts 215 million IP-enabled consumer

devices in the home by 2012,� 2008. http:

//eetimes.com/news/latest/showArticle.jhtml?articleID=208800177.

[6] Treck, Inc., �Embedded TCP/IP, Embedded IPv6, and related Internet

protocols,� http://www.treck.com/xilinx.html.

[7] Jerry Kaczynski, �The Challenges of Modern FPGA Design Veri�cation,�

FPGA and Structured ASIC Journal, 2004.

129

[8] Doulos Ltd., �What is VHDL?,�

http://www.doulos.com/knowhow/vhdl_designers_guide/what_is_vhdl.

[9] Doulos Ltd., �What is Verilog?,� http:

//www.doulos.com/knowhow/verilog_designers_guide/what_is_verilog.

[10] Pinouts.ru, �8 pin RJ45 (8P8C) male connector diagram and applications,�

http://pinouts.ru/connector/8_pin_RJ45_8P8C_male_connector.shtml.

[11] Cisco Systems, �History of Ethernet,� 2006. http:

//www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ethernet.htm.

[12] Cisco, �1000BASE-T - Delivering Gigabit Intelligence on Copper

Infrastructure,� http://www.cisco.com/warp/public/cc/techno/lnty/

etty/ggetty/tech/1000b%5Fsd.htm.

[13] IEEE, �Completion Of 1000BASE-T High-Speed Standard Enables Deployment

of 1000 Mb/s Ethernet over both Installed Copper and Fiber Cabling

Infrastructure,� http://standards.ieee.org/announcements/802.3ab.html.

[14] www.usb.org, �An Introduction to Hi-Speed USB.�

http://www.usb.org/developers/whitepapers/usb_20t.pdf.

[15] www.usb.org, �USB Cable Limits.� http://www.usb.org/about/faq/ans5.

[16] Ajay V. Bhatt, �Creating a third generation i/o interconnect,� tech. rep., Intel.

http://www.intel.com/technology/pciexpress/devnet/docs/

WhatisPCIExpress.pdf.

[17] ExtremeTech.com, �PCI Express 3.0 Bandwidth: 8.0 Gigatransfers/s,�

http://www.extremetech.com/article2/0,1697,2169018,00.asp.

[18] Bruce Montag, �DisplayPort: Next-Generation Digital Display Interface,� 2006.

http://www.dell.com/downloads/global/vectors/displayport.pdf.

130

[19] HyperTransport Consortium, �HyperTransport Technology Overview,� 2005.

http://www.hypertransport.org/tech/index.cfm.

[20] HyperTransport Consortium, �HyperTransport Technology FAQs,� 2005.

http://www.hypertransport.org/tech/tech_faqs.cfm.

[21] George Ou, ZDNet.com, �Details of Intel CSI QuickPath released,� 2007.

http://blogs.zdnet.com/Ou/?p=712.

[22] DRC Computer Corporation, �DRC RPU100-L60 datasheet,� 2007.

http://drccomputer.com/pdfs/DRC_RPU100_datasheet.pdf.

[23] Voltaire, �Voltaire Dominates In�niBand Deployments in Top500

Supercomputer List,� http://www.infinibandta.org/newsroom/articles/

Voltaire_Top500_FINAL_06_23_05.pdf.

[24] Odysseas Pentakalos, �An Introduction to the In�niBand Architecture,� 2002.

http://www.oreillynet.com/pub/a/network/2002/02/04/windows.html.

[25] OpenFabrics Alliance. http://www.openfabrics.org.

[26] Rick Merritt, EE Times, �New switch, transceiver and card push 10GE ahead,�

2008. http:

//eetimes.com/news/latest/showArticle.jhtml?articleID=207400753.

[27] DARPA Internet Program, �RFC 791 - Internet Protocol,� 1981.

http://tools.ietf.org/html/rfc791.

[28] DARPA Internet Program, �RFC 792 - Internet Control Message Protocol,�

1981. http://tools.ietf.org/html/rfc792.

[29] DARPA Internet Program, �RFC 826 - Address Resolution Protocol,� 1982.

http://tools.ietf.org/html/rfc826.

131

[30] linux-ip.net, �Address Resolution Protocol (ARP),�

http://linux-ip.net/html/ether-arp.html.

[31] Linux.about.com, �Linux / Unix Command: arp,�

http://linux.about.com/library/cmd/blcmdl8_arp.htm.

[32] DARPA Internet Program, �RFC 793 - Transmission Control Protocol (Version

4),� 1981. http://tools.ietf.org/html/rfc793.

[33] Treck, Inc., �Getting the most TCP/IP from your Embedded Processor,� p. 14.

http://www.treck.com/xilinx.pdf.

[34] Xilinx, Inc., �MicroBlaze Processor Performance,� 2008. http://www.xilinx.

com/products/design_resources/proc_central/microblaze_per.htm.

[35] Zhan Bokai, Yu Chengye, �TCP/IP O�oad Engine (TOE) for an SOC

System,� in Institute of Computer & Communication Engineering, National

Cheng Kung University, 2005. http://www.altera.com/literature/dc/3.

3-2005_Taiwan_3rd_ChengKungU-web.pdf.

[36] DARPA Internet Program, �RFC 768 - User Datagram Protocol,� 1980.

http://tools.ietf.org/html/rfc768.

[37] V. Vishwanath, P. Balaji, W. Feng, J. Leigh, D. K. Panda, �A Case for UDP

O�oad Engines in LambdaGrids,� in Ohio State University, 2006.

[38] Network Working Group, �RFC 3828 - UDP Lite,� 2004.

http://tools.ietf.org/html/rfc3828.

[39] Cli�ord E. Cummings, Peter Alfke, �Simulation and Synthesis Techniques for

Asynchronous FIFO Design with Asynchronous Pointer Comparisons,� in

SNUG-2002 San Jose, CA, 2002.

132

[40] Wilkov, R., Analysis and Design of Reliable Computer Networks. IBM Thomas

J. Watson Research Center, Yorktown Heights, 1972.

[41] S. Hopkins, B. Coile, �AoE (ATA over Ethernet),� 2006.

http://www.coraid.com/documents/AoEr10.txt.

[42] Ross N. Williams, �A PAINLESS GUIDE TO CRC ERROR DETECTION

ALGORITHMS,� 1993-1996.

http://www.repairfaq.org/filipg/LINK/F_crc_v3.html.

[43] IEEE, �IEEE Standard 802.3, 2000 Edition,� 2000.

http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=19017.

[44] G. P. Saggese, A. Mazzeo, N. Mazzocca, A. G. M. Strollo, An FPGA-Based

Performance Analysis of the Unrolling, Tiling, and Pipelining of the AES

Algorithm. Springer Berlin / Heidelberg, 2003.

[45] J. Mogul, Steve Deering, �Path MTU Discovery,� 1990.

http://www.ietf.org/rfc/rfc1191.txt.

[46] Phil Dykstra, �Gigabit Ethernet Jumbo Frames,� 1999.

http://sd.wareonearth.com/~phil/jumbo.html.

[47] CCITT, �ISO/IEC IS 10918-1 | ITU-T Recommendation T.81 (JPEG

Standard),� 1992.

[48] The JPEG2000 source, �JPEG2000 info.� http://www.jpeg2000info.com.

[49] Ali Bilgin, Michael W. Marcellin, �JPEG2000 for Digital Cinema,� 2005.

http://www.filmweb.no/nordicproject/template/pdf/teknisk%

20jpeg2000.pdf.

[50] dcimovies.com, �DCI Cinema Speci�cation v1.1,�

http://www.dcimovies.com/DCI_DCinema_System_Spec_v1_1.pdf.

133

[51] DCinematoday.com, �DLP Cinema Technology Surpasses 5,000 Screen

Milestone,� 2007. http://www.dcinematoday.com/dc/pr.aspx?newsID=912.

[52] Nicholas Tsakiris, Greg Knowles, �Hardware Architectures for the JPEG2000

Wavelet Transform,� ICIS, 2005.

[53] Deepika Sripathi, �E�cient Implementations of Discrete Wavelet Transforms

Using FPGAs,� Master's thesis, Florida State University, 2003.

http://etd.lib.fsu.edu/theses/available/etd-11242003-185039.

[54] The Data Analysis BriefBook, �Convolution,� 1998.

http://rkb.home.cern.ch/rkb/AN16pp/node38.html.

[55] C. Valens, �The Fast Lifting Wavelet Transform,� http:

//pagesperso-orange.fr/polyvalens/clemens/lifting/lifting.html.

134

Appendix A

Socket Code

/* client_send.c -- Functional UDP packet sender

/* (c) 2007, Nicholas Tsakiris, Flinders University */

#define closesocket close

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <errno.h>

#include <netdb.h>

#include <unistd.h>

#include <sys/select.h>

#include <time.h>

#include <assert.h>

#define SOCKBUFFSIZE 16777216 /* requested size of the recv/snd socket buffers */

#define BUFFERSIZE 6144 /* size of the payload packet */

#define PROTOPORT 4950 /* default protocol port number */

#define MILLSECS 100 /* recv() timeout in milliseconds */

extern int errno;

char localhost[] = "localhost"; /* default host name */

main(argc, argv)

int argc;

char *argv[];

{

struct timeval tv; /* struct for specifying the recv() timeout */

struct hostent *ptrh, *ptrh2; /* pointers to a host table entry, one */

/* for detination, one for local */

struct protoent *ptrp; /* pointer to a protocol table entry */

struct sockaddr_in sad; /* structure to hold an IP address to connect to */

struct sockaddr_in cad, from; /* structure to hold an IP address to bind local */

int sd; /* socket descriptor */

int port; /* protocol port number */

int iloop; /* incrementor for the zero buffer loop */

char *host, *localAddr; /* pointer to host name and localendpointname */

int n; /* number of characters read */

int runningtag; /* incrementor for the tag counter */

char runningtags[3],tag[5];

char tagrecv[5];

int padding; /* number of extra characters to pad packet */

char buf[BUFFERSIZE + 3]; /* buffer for data from the server */

char zerobuf[BUFFERSIZE + 3]; /* zero buffer for padding */

FILE * pFileIn; /* file pointers for reading and writing files */

FILE * pFileOut;

135

long lSize, lEchoed, lSent, lDummy; /* number of data bits echoed and sent */

int iEchoedp, iSentp; /* number of packets echoed and sent */

char * lpDummy; /* buffer for holding our input file */

char * buffertowrite; /* buffer for holding our output file */

char * tagbuffer; /* buffer for holding our sent buffer */

char * llbuffer; /* buffer for holding our received buffer */

char * pstrzInputFname; /* input file filename */

char * pstrzOutputFname; /* output file filename */

char * pstrzWhichProtocol; /* indicate whether we're using tcp or udp */

uint32_t timeoutval;

socklen_t optlen;

socklen_t buflen;

size_t bufsize;

char * newbufvalue = SOCKBUFFSIZE;

tv.tv_sec = MILLSECS/1000;

tv.tv_usec = (MILLSECS%1000) * 1000;

clock_t start, stop;

double tt = 0.0;

pstrzWhichProtocol = "udp";

localAddr = localhost;

memset((char *) & sad, 0, sizeof(sad)); /* clear sockaddr structure */

memset((char *) & cad, 0, sizeof(sad)); /* clear sockaddr structure */

sad.sin_family = AF_INET; /* set family to Internet */

cad.sin_family = AF_INET; /* set family to Internet */

/* Initializes the zero buffer for use when padding short packets */

for (iloop = 0; iloop < sizeof(buf); iloop++)

zerobuf[iloop] = '0';

/* Display usage message if no arguments are present */

if (argc == 1) {

fprintf(stderr,

"\nUsage: client_send <destination> <inputfile> <outputfile>\n\n");

exit(1);

}

/* Set port to default port number */

port = PROTOPORT;

if (port > 0)

sad.sin_port = htons((u_short)port);

else {

fprintf(stderr, "\nERROR: Bad port number %d\n", port);

exit(1);

}

printf("\nPort number: %d\n", port);

/* Check host argument and assign host name */

if (argc > 1 && strcmp(argv[1], "-"))

host = argv[1];

else {

fprintf(stderr, "ERROR: Specify a destination host\n");

exit(1);

}

printf("Destination: %s\n", host);

/* Check host argument and open input file */

if (argc > 2 && strcmp(argv[2], "-")) {

pFileIn = fopen (argv[2], "rb");

if (pFileIn == NULL) {

fprintf(stderr, "ERROR: Couldn't open file %s\n", argv[2]);

exit(1);

}

}

else {

fprintf(stderr, "ERROR: Specify an input file\n");

exit(1);

}

printf("Input file: %s\n", argv[2]);

/* Check host argument and create output file */

if (argc > 3 && strcmp(argv[3], "-")) {

pFileOut = fopen (argv[3], "w");

if (pFileOut == NULL) {

136

fprintf(stderr, "ERROR: Couldn't create file %s\n", argv[3]);

fclose(pFileIn);

exit(1);

}

}

else {

fprintf(stderr, "ERROR: Specify an output file\n");

fclose(pFileIn);

exit(1);

}

printf("Output file: %s\n\n", argv[3]);

/* Get the size of the file */

fseek (pFileIn, 0, SEEK_END);

lSize = ftell (pFileIn);

rewind (pFileIn);

printf("%s filesize = %d bytes\n", argv[2], lSize);

/* Allocate memory to write the output buffer */

llbuffer = (char*) malloc (10000); /* 10000 byte buffer */

if (llbuffer == NULL) {

fprintf(stderr, "CRITICAL ERROR: Out buffer Memory allocation failed\n");

exit (2);

}

/* Allocate memory for the sender buffer (input filesize + extra for padding) */

lpDummy = (char*) malloc (lSize + sizeof(buf));

if (lpDummy == NULL) {

fprintf(stderr, "CRITICAL ERROR: Send Buffer Memory allocation failed\n");

exit (2);

}

/* Allocate memory for the individual packets */

tagbuffer = (char*) malloc (sizeof(buf));

if (tagbuffer == NULL) {

fprintf(stderr, "CRITICAL ERROR: Packet buffer Memory allocation failed\n");

exit (2);

}

/* Allocate memory for the individual packets */

buffertowrite = (char*) malloc (sizeof(buf)-3);

if (buffertowrite == NULL) {

fprintf(stderr, "CRITICAL ERROR: buffertowrite Memory allocation failed\n");

exit (2);

}

/* Read the contents into the buffer */

fread(lpDummy, 1, lSize, pFileIn);

fclose(pFileIn);

/* Convert host name to equivalent IP address and copy to sad */

ptrh = gethostbyname(host);

if (((char *)ptrh) == NULL) {

fprintf(stderr, "ERROR: Invalid host: %s\n", host);

exit(1); } memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

/* Convert localendpoint name/address to equivalent IP address and copy to cad */

ptrh2 = gethostbyname(localAddr);

if (((char *)ptrh2) == NULL) {

fprintf(stderr, "ERROR: Invalid host: %s\n", localAddr);

exit(1);

}

memcpy(&cad.sin_addr.s_addr, ptrh2->h_addr, ptrh2->h_length);

/* Map UDP transport protocol name to protocol number */

ptrp = getprotobyname(pstrzWhichProtocol);

/* Create a socket which uses datagram (assuming a UDP server) */

sd = socket(PF_INET, SOCK_DGRAM, ptrp->p_proto);

if (sd < 0) {

fprintf(stderr, "ERROR: Creation of socket failed\n");

}

/* Connect the socket to the specified server. For UDP, this means the socket */

/* would "remember" where we are sending data to each time we want to transmit */

if (connect(sd, (struct sockaddr *) & sad, sizeof(sad)) < 0) {

fprintf(stderr, "ERROR: Socket->Server connection failed\n");

137

exit(1);

}

else

printf("Socket->Server connection established\n");

optlen = sizeof(timeoutval);

buflen = sizeof(bufsize);

if (getsockopt(sd, SOL_SOCKET, SO_RCVBUF, &bufsize, &buflen)) {

printf("getsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

printf("\nCurrent socket receive buffer size: %d bytes\n", bufsize);

printf("Requested new receive buffer size: %d bytes\n", newbufvalue);

if (setsockopt(sd, SOL_SOCKET, SO_RCVBUF, &newbufvalue, sizeof(newbufvalue))) {

printf("setsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

if (getsockopt(sd, SOL_SOCKET, SO_RCVBUF, &bufsize, &buflen)) {

printf("getsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

printf("New socket receive buffer size: %d bytes\n", bufsize);

if (getsockopt(sd, SOL_SOCKET, SO_SNDBUF, &bufsize, &buflen)) {

printf("getsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

printf("\nCurrent socket send buffer size: %d bytes\n", bufsize);

printf("Requesed new send buffer size: %d bytes\n", newbufvalue);

if (setsockopt(sd, SOL_SOCKET, SO_SNDBUF, &newbufvalue, sizeof(newbufvalue))) {

printf("setsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

buflen = sizeof(bufsize);

if (getsockopt(sd, SOL_SOCKET, SO_SNDBUF, &bufsize, &buflen)) {

printf("getsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

printf("New socket send buffer size: %d bytes\n", bufsize);

printf("\nInternal buffer size: %d bytes (%d payload size + 3 for tags)\n",

sizeof(buf), BUFFERSIZE);

if (setsockopt(sd, SOL_SOCKET, SO_RCVTIMEO, (struct timeval *)&tv,

sizeof(struct timeval))) {

printf("setsockopt: %s\n", strerror(errno)); close(sd); exit(1);

}

printf("Receive timeout: %d milliseconds\n", MILLSECS);

lSent = 0l;

iSentp = 0;

if (fork()==0) {

lDummy = lSize;

printf("\nSENDING...\n");

assert((start = clock()) != -1);

while (lDummy > 0) {

/* At the end of every packet, add a tag value one higher than the */

/* previous packet. iSentp holds the number of packets, so it will */

/* work fine as the tag counter */

/* this converts iSentp (tag counter) to a string stored in tag */

sprintf(tag,"%.3c",iSentp);

/* this injects the tag at the end of the buffer */

strncpy(tagbuffer, tag, 3);

tagbuffer += 3;

memcpy(tagbuffer, lpDummy, sizeof(buf)-3);

tagbuffer -= 3;

/* If lDummy is less that the size of buf, we will need to pad it with */

/* extra characters to match this size */

if (lDummy < sizeof(buf)) {

padding = sizeof(buf) - lDummy;

/* this positions the buffer at the end of the packet data */

tagbuffer += lDummy+3;

memcpy(tagbuffer, zerobuf, padding);

/* this positions the buffer back to where we started */

138

tagbuffer -= lDummy+3;

}

iSentp++;

lSent += (long)send(sd, tagbuffer, sizeof(buf), 0);

lpDummy += (long)sizeof(buf)-3;

lDummy -= (long)sizeof(buf)-3;

}

stop = clock();

tt = (double)(stop-start)/CLOCKS_PER_SEC;

printf("\nSEND COMPLETE\n");

printf("\nNumber of bytes sent: %d (%d payload, %d padding, %d tags)\n",

lSent, lSent - (padding-3) - (iSentp * 3), padding-3, iSentp * 3);

printf("Number of packets sent: %d\n", iSentp);

printf("\nProjected output size: %d bytes\n\n", lSent - (iSentp * 3));

printf("Run time: %f seconds\n\n", tt*10);

closesocket(sd);

exit(0);

}

lEchoed = 0;

runningtag = 0;

printf("\nRECEIVING...\n");

while (1) {

n = (long)recv(sd, llbuffer, sizeof(buf), 0);

if (n < 0) break;

/* Recover tag, verify it's in order */

strncpy(tagrecv, llbuffer, 3);

/* this positions the buffer at the beginning of the actual payload */

llbuffer += 3;

memcpy(buffertowrite, llbuffer, sizeof(buf)-3);

/* this positions the buffer back to where we started */

llbuffer -= 3;

sprintf(runningtags, "%.3c", runningtag);

if (strncmp(tagrecv,runningtags,3)) {

fprintf(stderr, "\nERROR: Packet received with tag #%s, expected #%s, %d \n",

tagrecv, runningtags, runningtag);

free (llbuffer);

free (lpDummy);

free (tagbuffer);

fclose(pFileOut);

closesocket(sd);

exit(1);

}

runningtag++;

lEchoed += n;

fwrite(buffertowrite,1,n-3,pFileOut);

}

printf("TIMEOUT - shutting down\n\n");

printf("RECEIVE COMPLETE\n\n");

/* Close the socket */

closesocket(sd);

free (llbuffer);

free (lpDummy);

free (tagbuffer);

fclose(pFileOut);

exit(0);

}

