
Enabling Gigabit IP for Embedded
Systems

Nicholas Tsakiris

B. Eng. (Computer Systems) (Honours)

Flinders University of South Australia

A Thesis Submitted for the Degree of Masters by Research

Flinders University

School of Computer Science, Engineering and Mathematics

Adelaide, South Australia

2009

(Submitted 17th February 2009)

ii

Dedicated to my parents for their support and love.

iii

Abstract

For any practical implementation of chip design, there needs to be a hardware plat-

form available for the purpose of prototyping and implementation of FPGA-based

programs, whether they are written in VHDL or Verilog. Communication between

the platform and a computer is a useful feature of many hardware solutions as it allows

for the capability of regular data transmission between the two devices. Furthermore,

the ability to communicate between the platform and a computer at high-speeds re-

quires a specially constructed interface, one that can be modi�ed by the designer at

their choosing.

There are a number of commercial packages which provide a hardware platform to

perform this task, however there are drawbacks to many of the available options. Some

may require special hardware to connect to a computer using proprietary connectors

or boards, which increases the cost and reduces the �exibility of any solution. Other

options may have limited access to the internal structure of the interface, limiting the

ability of the developer to modify the interface to suit their needs. There may be an

extra cost to provide the code to the interface, separate from the board, which can

also tax design budgets.

This dissertation provides a solution in the form of a Gigabit Ethernet connection

with a custom IP/network layer written in VHDL to facilitate the connection. With

an increasing number of IP-enabled devices available such as IPTV and set top boxes,

the ability to link hardware using Ethernet is very useful and so the development of

iv

a lean and capable network layer was considered a suitable focus for the project. The

overall goal has been to provide an interface which is cheap, open, robust and e�cient,

retaining the �exibility a developer might require to modify the code to their needs.

After covering some basic background information about the project, the dissertation

looks at the requirements of the board and interface, as well as the alternative interface

solutions which were looked at before deciding on Gigabit Ethernet. The protocols

used in Ethernet are then covered, with both an explanation of the structure of each

and their relevance to the implementation. The Finite State Machines which control

operation of the interface are covered in depth, with an explanation of their inter-

connectivity to each other and how they �t in the data-�ow between the computer

and the board. Error correction and reliability is discussed, as well as any remaining

components critical to the operation of the interface.

Pipelining, the method of design which provides the speed required for Gigabit Ether-

net, is covered along with the extra speed optimisation techniques used in the design

such as RAM swinging bu�ers. Testing and synthesis are covered which ensure the

design is as robust as possible, both in simulations and in real-world applications. The

�nal design was implemented on a Xilinx Spartan 3 FPGA (XC3S5000-5FG900C) and

capable of a maximum speed of 128.287 MHz, which is more than enough to satisfy

the requirements of Gigabit Ethernet under a variety of network conditions. The

interface code occupies 1,166 slices of logic on the FPGA (3% of the total amount

of logic available), making it su�ciently compact to run large projects on the same

chip. The core was tested on physical hardware and performed correctly at real line

Gigabit speeds. Con�guration of the computer along with the method of connecting

to the board and transferring data is mentioned, with explanation of the code run

on the computer to make this possible. Finally, the dissertation provides an example

application through the use of JPEG2000 image compression/decompression.

v

"I Nicholas Tsakiris, certify that this thesis does not incorporate

without acknowledgment any material previously submitted for a degree

or diploma in any university; and that to the best of my knowledge and

belief it does not contain any material previously published or written

by another person except where due reference is made in the text."

Candidate:

Nicholas Tsakiris

vi

Acknowledgements

I would like to thank my supervisor, Professor Greg Knowles, for his invaluable help

in getting me through my candidature. To my colleagues at the Flinders University of

South Australia, School of Informatics and Engineering, I would like to say a grateful

thank you. In particular, to Paul Gardner-Stephen for his help in understanding the

intricacies of networking protocols, as well as Geo� Cottrell, Craig Peacock and Terry

MacKenzie for their assistance. I would also like to thank the academics and sta�

of that school for their continual support over the past few years. Finally, I would

like to thank my friends and family who have helped me during the period of my

candidature.

vii

Contents

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 FPGAs . 3

1.2 VHDL . 4

1.3 Ethernet . 5

1.3.1 History . 5

1.3.2 Gigabit Ethernet . 6

2 Requirements 8

2.1 High Speed/Bandwidth . 8

2.2 Proposed Solutions . 9

2.2.1 USB . 10

2.2.2 PCI-Express . 10

2.2.3 HyperTransport . 11

2.2.4 In�niBand . 13

2.2.5 Ethernet . 15

viii

3 Protocols 16

3.1 Ethernet . 17

3.2 IP . 18

3.2.1 IPv4 vs IPv6 . 21

3.3 ICMP . 23

3.4 ARP . 25

3.4.1 Manual ARP Entries . 29

3.5 TCP . 31

3.6 UDP . 35

3.7 UDP Lite . 38

4 Implementation 40

4.1 Functionality . 40

4.2 Data Flow . 41

4.3 Finite State Machines . 43

4.3.1 RAM . 43

4.3.2 FIFOs . 44

4.3.3 fsm_read . 45

4.3.4 fsm_packgen . 50

4.3.5 fsm_send . 55

4.4 Reliability/Errors . 59

4.4.1 Tags . 59

4.4.2 Corrupted/Unsupported Packets 61

ix

4.4.3 Checksums and CRCs . 62

4.5 UDP Lite . 62

4.6 Physical Implementation . 64

5 Pipelining 68

5.1 RAM Swinging Bu�ers . 71

5.2 Timing Diagram . 73

5.3 Implementation . 74

6 Testing/Synthesis 79

6.1 Testing . 79

6.1.1 Single Packet Tests . 79

6.1.2 Multiple Packet Tests . 81

6.1.3 Malformed Packet Testing . 88

6.2 Synthesis . 88

7 Computer-Side Operation 91

7.1 Requirements . 91

7.1.1 MTU . 92

7.2 Con�guration . 96

7.3 Operation . 98

8 JPEG2000 Core 105

8.1 History of JPEG/JPEG2000 . 106

8.2 The Wavelet Transform . 108

x

8.2.1 Lifting Scheme . 114

8.2.2 Pipelining the Design . 118

8.2.3 Connectivity . 122

9 Conclusion 125

9.1 Future Improvements . 126

9.1.1 ARP Support . 126

9.1.2 IPv6 Support . 126

9.1.3 TCP support . 127

Bibliography 128

Bibliography 128

A Socket Code 134

xi

List of Figures

2.1 HyperTransport plug-in card concept 12

2.2 External In�niBand connector (latch type)1 14

4.1 Flow of data between the various FSMs 42

4.2 RAMs used by the interface along with their locations and data paths 44

4.3 FIFOs used by the interface along with their locations and data paths 45

4.4 fsm_read state �owchart . 48

4.5 fsm_packgen state �owchart . 52

4.6 fsm_send state �owchart (page 1) . 56

4.7 fsm_send state �owchart (page 2) . 57

4.8 Fragment of a packet with tag added to beginning of payload 60

4.9 Prototyping board used for testing . 65

5.1 The three FSMs the single ICMP packet will be processed with (in order) 69

5.2 The time-line of three ICMP packets processed in serial 69

5.3 The time-line of three ICMP packets processed in parallel (pipelined) . 70

5.4 Timing diagram of three UDP packets in mirrored mode 75

5.5 The locations of two packets in RAM 76

xii

5.6 Two RAM operations operating at the same time via swinging bu�er . 78

6.1 Partial wave table for the beginning of an ICMP packet 81

8.1 Space occupied by HDL programs on the FPGA 106

8.2 High and low pass wavelet �lters . 108

8.3 One-stage wavelet �lter bank . 109

8.4 Left - Original uncompressed image; Right - One octave wavelet trans-

formed image . 110

8.5 One octave wavelet transform - quadrant contents 111

8.6 Four octave wavelet transform - quadrant contents 113

8.7 Daubechies 9/7 Wavelet Transform Equations (Lossy Compression) . . 116

8.8 LeGall 5/3 Wavelet Transform Equations (Lossless Compression) . . . 116

8.9 Symmetric extension at the boundaries 117

8.10 Pipelined execution of the lifting system 119

8.11 Hardware lifting blocks in a pipelined architecture 121

8.12 Inter-connectivity between system components 123

xiii

List of Tables

2.1 Comparison of various communication options 15

3.1 Structure of a Gigabit Ethernet packet 17

3.2 Structure of the IPv4 header . 19

3.3 Structure of the IPv6 header . 22

3.4 Structure of an ICMP packet . 24

3.5 Structure of an ARP packet . 26

3.6 Structure of a TCP packet . 32

3.7 Structure of a UDP packet . 36

3.8 Structure of the UDP pseudo-header with remaining UDP packet . . . 37

3.9 Structure of a UDP Lite packet . 39

8.1 Timing chart for each lifting stage with a sequence of eight values . . . 120

1

Chapter 1

Introduction

FPGAs (Field-Programmable Gate Arrays) are a useful tool in the electronics in-

dustry for constructing prototype designs before mass fabrication onto dedicated

hardware and are often used themselves as part of the �nal design. They are re-

programmable, �exible and extendable, with the capability to run several programs

at once and at di�erent speeds. For many designs, interfacing with a computer may be

required for data I/O, programming and debugging. If the requirements of the design

call for high-speed data transfer with a computer, it is preferable to �nd some way to

accomplish this using an existing interface on the computer, to maximise portability

and reduce the dependency on specially-designed hardware.

A particularly common interface on many computers is the Ethernet port, normally

used for wired network connections to LANs and WANs. The commonality of this

interface makes it ideal for interfacing with an FPGA prototyping board, particularly

if both network adaptors involved are capable of Gigabit speeds. However, to actually

receive and transmit data using Gigabit Ethernet and have that data available for

other programs that reside on the FPGAs is not necessarily straightforward, particu-

larly if one wishes to customise aspects of the interface. There are IP cores available

for purchase from several vendors which can provide Gigabit Ethernet functionality

for FPGAs, but these generally reside as black-boxes and due to them being distribu-

2

ted as encrypted netlists, do not provide the designer with anything but the inputs

and outputs of the core, which makes them unsuitable for the designer who wishes

to modify the interface code directly. Sometimes it is possible to obtain the source

code for these black-boxes, but the extra cost of the code can add substantially to

the overall cost of the IP core. For example, Alcatel provides a fully-featured Gigabit

Ethernet core for Altera FPGAs,2 however costs start at $30,000 for an encrypted

netlist without code. The source code can be purchased, but for an additional cost.

The purpose of this dissertation is to cover the design of a custom IP/network layer,

one which has low cost, high reliability and an open structure for easy manipulation.

The primary focus was to �nd an e�cient engineering solution to a practical problem,

the problem being how to develop the layer to work with low-power devices. E�cient

engineering would solve this problem and provide the ability to use low cost hardware

to support Gigabit Ethernet line speeds. The design of the core makes it streamlined

for typical FPGAs and does not require higher-end hardware.3,4 The base platform

for its design was a Xilinx Spartan 3 FPGA, but the core can be implemented on other

FPGAs so long as the base clocking speed of 125 MHz can be obtained. It is not just

FPGAs which would bene�t from such a design; there are also an increasing number5

of IP-enabled devices (eg. IPTV, set-top boxes, fridges) which would bene�t from

a fast and lean network layer without the bloat of extra protocols and functionality

which would not be needed in these highly-specialised devices. For this to be achieved,

certain features which are available with commercial solutions are not present, but

the bene�ts of a simpler core are evident once the designer has to put the solution

to use. The dissertation also covers the physical implementation of the core on real-

world hardware as well as the tests performed to validate the core's accuracy and

reliability.

Achieving these requirements and solving the problem of an e�cient design required

some compromises. ARP support was not implemented due to lack of time. TCP

3

support was not implemented due to the fact that the protocol is never implemented

entirely in hardware but rather a software/hardware combination using an embedded

CPU, which was not available with the sole Spartan 3 FPGA. The Treck TCP/IP

core for Xilinx FPGAs is an example of a core which could perform as an o�oad

engine for processing TCP packets, when run on an embedded or soft processor on

an FPGA such as MicroBlaze or a PowerPC CPU.6 However, even with an embedded

CPU the size of the core would increase in size and complexity to a level that was

not desirable for achieving the lean and clean architecture, which were part of the

goals of the design. The lack of packet error detection/correction that is an inherent

part of TCP was still provided through the use of tags. The issue of achieving full

Gigabit speeds on the base hardware (the Spartan 3) was ultimate the main factor

in determining how to construct the core and still satisfy the requirements of the

problem.

This chapter introduces several important concepts and ideas which are needed to

fully understand the issues raised in this dissertation. Section 1.1 provides a brief

introduction into FPGAs, what they are and how they can be used. Section 1.2

explains what VHDL is and what its purpose is with regards to chip design. Finally,

Section 1.3 provides a short introduction to Ethernet extending to Gigabit Ethernet

and its purpose for this design.

1.1 FPGAs

A �eld-programmable gate array is a semiconductor device which contains logic com-

ponents (also known as logic blocks) which are programmable. By selectively pro-

gramming the device these logic blocks can function as basic logic gates such as AND,

OR, XOR, NOT, or can be extended into more complex combinational functions such

as encoders, decoders or simple mathematical functions. Modern FPGAs also contain

4

special logic designed to act as memory elements such as RAMs or FIFOs and depen-

ding on the type of FPGA the memory elements may be constructed from �ip-�ops

or dedicated memory blocks on the chip. The key function of an FPGA is to pro-

vide the ability to run logic programs with the advantage that the FPGA can be

re-programmed multiple times, whereas a regular integrated circuit with support for

logic gates would have a �xed design, permanently selected and unable to be altered.

Despite being slower than a dedicated chip with a permanent design, FPGAs have a

much greater level of �exibility and coupled with the ability to easily be reprogram-

med, are ideal for running prototype designs and also for performing multiple tasks

with the same hardware.

FPGAs have existed since the mid 1980's when Xilinx released the XC2064, the �rst

FPGA. Despite only supporting a size of 1,000 gates, compared to sizes 10,000 times

greater in 2004, this initial form of the FPGA proved very popular.7 The ability to

program the same chip over and over again provided cost-e�ective design development

and increased the development of chip design theory and application. FPGAs have

a wide range of applications, from digital signal processors (DSPs) to cryptography

and beyond.

1.2 VHDL

To program an FPGA, a design-entry language suitable for specifying how the logic

blocks interconnect together to perform their tasks is used. For this we use a Hardware

Description Language (HDL), which encompasses any computer language speci�cally

designed to formally describe electronic circuits. There are two main languages for this

purpose: VHDL and Verilog. VHDL (VHSIC Hardware Description Language, fully

expanded as Very-High-Speed Integrated Circuit Hardware Description Language)8

is the language used by the Gigabit Ethernet project in this dissertation. It is capable

5

of rendering the entire structure of the FPGA including logic, connections and ports

and also allows easy simulation capability due to the construction of a testbench.

Verilog9 is another widely-used HDL, but although Verilog is somewhat simpler and

easier to code, VHDL was chosen for this design for reasons of familiarity.

1.3 Ethernet

1.3.1 History

Ethernet is the most common technology used on Local Area Networks (LANs) today.

Developed in the 1970s by Xerox Corporation, the experimental version of Ethernet

ran at 3 Mbit/s, but the �rst widespread standard of Ethernet ran at a speed of

10 Mbps in 1985 and later at 100 Mbps (sometimes referred to as Fast Ethernet)

in 1995, at which point Ethernet had become the regular network system for most

computers. The �rst Ethernet networks, 10BASE5, used thick yellow cable with

vampire taps as a medium. Later versions of Ethernet (10BASE2) used thinner

coaxial cable with BNC connectors as the connection medium. Currently Ethernet

has many varieties that vary both in speed and physical medium used. The most

common forms used currently are 10BASE-T, 100BASE-TX and 1000BASE-T. All

three utilise twisted pair cables and 8P8C modular connectors, more commonly known

as RJ45 (Registered Jack 45) connectors.10 These forms run at 10 Mbit/s, 100 Mbit/s

and 1 Gbit/s speeds respectively.11

The RJ45 medium is made from copper cabling, which is suitable for 10BASE-T

and 100BASE-TX but can sometimes cause problems with the higher 1000BASE-T

form of Ethernet. Due to the signi�cant increase in speed and bandwidth require-

ments, 1000BASE-T is less tolerable of imperfections in the network cabling than

previous standards and electrical noise can potentially degrade a Gigabit connection

6

severely when used with poor-quality or inappropriately speci�ed copper cabling.

Most modern Ethernet cabling can support 1000BASE-T satisfactorily, but signal

degradation becomes more of a problem the longer the cable becomes. Fibre optic

variants of Ethernet are commonly seen connecting buildings or network cabinets in

di�erent parts of a building but are rarely seen connected to end systems for cost

reasons. Their advantages lie in performance, electrical isolation and distance, up to

tens of kilometres with some versions. Fibre cabling is therefore a lot more desirable

when dealing with super-fast Ethernet connections such as 1000BASE-SX in a large

environment, but is not required in most small networks due to the quality of regular

copper cabling.12

1.3.2 Gigabit Ethernet

Gigabit Ethernet is a form of the Ethernet standard which allows for high-speed

transfers up to one Gigabit per second. The standard was approved by the IEEE

in 1998 and later adopted by ISO. The initial standard for Gigabit Ethernet was

known as IEEE802.3z, however the most commonly implemented form of Gigabit

Ethernet (IEEE 802.3ab) was rati�ed a year later by the IEEE and uses unshielded

twisted pair cabling as opposed to �bre cabling in the initial standard. The reason

for the latter standard being more useful is because it allows existing copper cabling

infrastructure, used for 10/100 MBit Ethernet, to remain in place without having

to be replaced by �bre optic.13 The �bre version of Gigabit Ethernet is known as

1000BASE-SX and can transmit along a single �bre line at a distance of 500m or

more with modern cabling before requiring an endpoint. The unshielded twisted

pair variant, 1000BASE-T, generally has a maximum length of 100m. The medium

chosen however does not a�ect the operation of the network layer and is up to the

7

requirements of the environment as to which medium to choose. The same core can

be used for either.

Gigabit is the logical successor for 10/100 MBit connections found in virtually all NICs

(Network Interface Card) and has stood as a standard for some time and support has

become very common, with most motherboards with integrated Ethernet supporting

Gigabit, as well as new cards generally supporting it as well. The increase in speed

is not only due to the higher clocking speeds (125MHz as opposed to 25MHz in

100 MBit), but also double the transmission bits (8 bits instead of 4). This results

in a potential 10 times increase in available bandwidth, which makes it useful for

high-speed transfers to and from an FPGA. Furthermore, since Gigabit Ethernet is a

common standard, it is trivial to �nd hardware which can support this standard at a

reasonable cost without having to resort to other, more exotic forms of data transfer

between an FPGA and a PC.

