MONITORING AND MODELLING NATURAL AND ANTHROPOGENIC INPUTS OF NITROGEN INTO AN UNCONFINED AQUIFER IN THE SOUTH EAST OF SOUTH AUSTRALIA

Submitted by Phil Gorey, B.App.Sc. (Nat. Res. Man.) (Hon.)

As Requirement in Full for the Degree of Doctor of Philosophy in the School of Chemistry, Physics and Earth Science, Flinders University, 30 November 2008

TABLE OF CONTENTS

CHAPTER 1.	INTRODUCTION TO RESEARCH1
1.1.	Introduction1
1.2.	Purpose2
1.3.	Objectives2
1.4.	Regional Description2
1.5.	Significance of the Research4
1.6.	Previous Research9
1.7.	Understanding the Cause of Nitrate Contamination in the
	Study Area12
1.8.	Study Area Description14
CHAPTER 2.	GEOLOGY AND HYDROGEOLOGY OF THE STUDY
	AREA17
2.1.	Introduction17
2.2.	Methodology - Geology18
2.3.	Methodology - Hydrogeology
2.4.	Results - Geology20
2.5.	Results - Hydrogeology35
2.6.	Discussion41
2.7.	Conclusion42
CHAPTER 3.	TREND ANALYSIS OF HISTORICAL DATA44
3.1.	Introduction
3.2.	Methods45
3.3.	Results57
3.4.	Discussion76
3.5.	Conclusions
CHAPTER 4.	ESTIMATING THE VARIABILITY OF RECHARGE
	RATES AND ITS RELATIONSHIP TO GROUNDWATER
	NITRATE CONCENTRATIONS
4.1.	Introduction
4.2.	Methods90
4.3.	Results98
4.4.	Discussion111
4.5.	Conclusion

i

CHAPTER 5.	STATISTICAL AND PROFILING METHODS FOR	
	DETERMINING PATHWAYS	116
5.1.	Introduction	116
5.2.	Methods	116
5.3.	Results	117
5.4.	Discussion	129
5.5.	Conclusions	132
CHAPTER 6.	ISOTOPIC COMPOSITION OF NITRATE AS A	
	DETERMINATION OF SOURCES OF POLLUTION	134
6.1.	Introduction	134
6.2.	Methodology	146
6.3.	Results	148
6.4.	Discussion	159
6.5.	Conclusion	161
CHAPTER 7.	THE PREDICTABILITY OF DIFFUSE NITRATE	
	CONTAMINATION OF GROUNDWATER	163
7.1.	Introduction	163
7.2.	Methodology	167
7.3.	Model Inputs	167
7.4.	Results	178
7.5.	Discussion	192
7.6.	Conclusions	198
CHAPTER 8.	CONCLUSIONS AND RECOMMENDATIONS	200
8.1.	Conclusions	200
8.2.	Recommendations	206
REFERENCE	S	208

APPENDICES

APPENDIX 1: GEOLOGICAL BORE RECORDS USED IN	
ASSESSMENT	<u>2</u> 39
APPENDIX 2: NITRATE IN GROUNDWATER DATA	_298
APPENDIX 3: BORES FOR GROUNDWATER TREND ANALYSIS	<u>318</u>
APPENDIX 4: BORE DETAILS FOR TRITIUM MODEL INPUT	<u>319</u>
APPENDIX 5: TRITIUM PRECIPITATION AND TRITIUM INPUT	
FUNCTION DATA	320
APPENDIX 6: WATER QUALITY DATA FOR DEPTH PROFILES	327
APPENDIX 6: WATER QUALITY DATA FOR DEPTH PROFILES APPENDIX 7: NITRATE ISOTOPE CHARACTERISTICS FROM	327
APPENDIX 6: WATER QUALITY DATA FOR DEPTH PROFILES APPENDIX 7: NITRATE ISOTOPE CHARACTERISTICS FROM LITERATURE	327 346
APPENDIX 6: WATER QUALITY DATA FOR DEPTH PROFILES APPENDIX 7: NITRATE ISOTOPE CHARACTERISTICS FROM LITERATURE APPENDIX 8: LEACHN MODEL INPUT FILES FOR SCENARIOS	327 327 346 353

LIST OF FIGURES

Figure 1.1:	The South East Region of South Australia	3
Figure 1.2:	The location of study area within South East region	3
Figure 1.3:	Previously defined plume of elevated nitrate concentration	
	in groundwater	.12
Figure 1.4:	Study Area Map	.15
Figure 2.1:	The location of the study area within the Otway Basin	.21
Figure 2.2:	A cross-sectional presentation of the Cretaceous-Tertiary	
	geology of study area	.24
Figure 2.3:	Top of the Gambier Limestone unit (mAHD)	.27
Figure 2.4:	The recorded extent of the unnamed clay unit based upon	
	reinterpretation of drillhole information	.29
Figure 2.5:	A cross-sectional presentation of the Quaternary geology of	
	study area	.30
Figure 2.6:	The dominant soils types within study area	.32
Figure 2.7:	The dominant soil textures within study area	.33
Figure 2.8:	An example of the depth of soil within the study area	
	(Coonawarra township)	.34
Figure 2.9:	An example of the depth of soil within the study area	
	(western part of study area)	.34
Figure 2.10:	The shallow depth to groundwater of the unconfined aquifer	
	as modelled from groundwater measurements from 44 wells	
	between 2000 and 2004	.36
Figure 2.11:	Water level elevation of the unconfined aquifer and inferred	
	groundwater flow directions	.37
Figure 2.12:	Depth and seasonal responses in the unconfined aquifer in	
	selected bores	.38
Figure 2.13:	The presented hydrostratigraphy of the study area	.40
Figure 3.1:	The ratio of historical SAGEODATA NO3-N values against	
	sourced hardcopy values	.50
Figure 3.2:	A presentation of the non-random temporal distribution of	
	nitrate results for the study area	.60
Figure 3.3:	The histogram of nitrate concentrations showing the	
	dominance of low concentration values	.60

iv

Figure 3.4:	Proportion of bores with a maximum nitrate concentration	
	above or below 10 mg/L against the number of times the	
	bores are sampled	.61

- Figure 3.7: The percentage of records having a nitrate concentration greater than or equal to 4.5 mg/L but less than 10 mg/L for a running five year averaging period (n≥25)......67

- Figure 3.11: The percentage of records having a nitrate concentration greater than 10 mg/L for a running five year (n≥25) and ten year averaging periods (n≥50) using first bore record only70
- Figure 3.12: The change in mean and median nitrate concentrations over time for those bores with repeated sampling (n≥5)......72

- Figure 3.15: Variation of the ratio of nitrate ions to chloride ions with nitrate concentration. Circled points are considered outliers....76

Figure 3.16:	The unprotected well head for bore 702302964 (left), and
	lockable well cap (but at surface level) for bore 702303000
	(right)79
Figure 3.17:	Poor well head protection for bore 702302800 (a tin cap
	and rock)80
Figure 4.1:	The bore locations of tritium sampling in study area with all
	known bore locations plotted (grey)91
Figure 4.2:	The location of tritium rainfall monitoring sites relative to the
	study area94
Figure 4.3:	The calculated Tritium Input Function of recharge water and
	the recorded tritium concentrations in precipitation
Figure 4.4:	Conceptual cross-section of the unconfined aquifer
	illustrating the assumed aquifer flow and sampling
	contributions for the model100
Figure 4.5:	The groundwater samples (October 1976) compared to
	predicted tritium concentrations for recharge estimates103
Figure 4.6:	The groundwater samples (March 1977) compared to
	predicted tritium concentrations for recharge estimates104
Figure 4.7:	Modelled tritium concentrations in composite groundwater
	samples corrected to each sample date105
Figure 4.8:	Estimated recharge rates predicted from the October 1976
	dataset compared to all other sample date datasets107
Figure 4.9:	Estimated recharge rates predicted from the March 1977
	dataset compared to other sample date107
Figure 4.10:	The frequency of recharge rate estimates for the study area
	assuming aquifer matrix porosity of 40%108
Figure 4.11:	The estimated recharge rates within study area (matrix
	porosity of 40%) based upon summer and winter modelling
	periods109
Figure 4.12:	The average estimated recharge rates between the centre
	of the study area (inferred area of high recharge) and the
	outer parts of the study area based upon summer and
	winter modelling (matrix porosity of 40%)110

Figure 5.1:	Nitrate concentrations of groundwater in the study area
	collected between 1974 and 1983118
Figure 5.2:	Nitrate concentrations of groundwater in the study area
	collected between 1994 and 2003119
Figure 5.3:	Mean nitrate concentrations (with standard error bars) for
	the calculated higher and lower recharge areas120
Figure 5.4:	Mean nitrate concentrations of different well types for period
	1974-1983
Figure 5.5:	Mean nitrate concentrations of different landuses for period
	1974-1983
Figure 5.6:	Bores where geochemistry profiles are available125
Figure 5.7:	Nitrate profiles and nitrate concentrations at the water table
	and at least at one depth for selected bores126
Figure 5.8:	Geochemistry profiles of bore 702303765 showing possible
	unnamed clay unit aquitard at 17-20m128
Figure 6.1:	A simplified nitrogen cycle for the study area, adapted from
	Payne (1981), Sprent (1987) and Kendall (1998)137
Figure 6.2:	The $\delta 15N$ of nitrate from different sources from literature
	summarised in Appendix 7145
Figure 6.3:	The $\delta 180$ of nitrate from different sources from literature
	summarised in Appendix 7145
Figure 6.4:	Schematic representation of nitrate sources based upon the
	δ 15N and δ 18O signatures146
Figure 6.5:	The $\delta 15N$ and $\delta 18O$ data for groundwater samples from
	within the study area plotted against literature values and
	showing the denitrifying trend line150
Figure 6.6:	The categorisation of wells sampled for nitrate isotopes152
Figure 6.7:	The nitrogen and oxygen isotope comparisons of
	groundwater within the study area153
Figure 6.8:	Categorised nitrate isotope comparisons in groundwater
	within the study area (see text for dotted line)154

Figure 6.9:	Nitrate concentrations and δ 15N of nitrate categorised
	within the study area (means and standard errors of septic
	waste impacted wells and soil microbial nitrification sources
	included). Significance of the dotted line is discussed in the
	text
Figure 7.1:	A simplified conceptual framework of the LEACHN model
	illustrating the main fluxes and pools for water and nitrogen166
Figure 7.2:	Number of frost risk days 1966-2005170
Figure 7.3:	The average annual drainage and nitrate leached below the
	root zone from the modelled scenarios (with standard
	errors)179
Figure 7.4:	A quantified nitrogen budget for irrigated vineyards using
	LEACHN182
Figure 7.5:	A quantified nitrogen budget for non-irrigated vineyards
	using LEACHN184
Figure 7.6:	A quantified nitrogen budget for native vegetation using
	LEACHN185
Figure 7.7:	A quantified nitrogen budget for pasture grazing using
	LEACHN186
Figure 7.8:	A quantified nitrogen budget for legume cropping using
	LEACHN188
Figure 7.9:	Modelled groundwater nitrate profiles; Grazing (top-left),
	Irrigated vineyards (top-right), cropping (lower-left), non-
	irrigated vineyards (lower-right)191
Figure 7.10:	Examples of variations in vineyard management; (1) a
	cover crop and frost fans195
Figure 7.11:	Examples of variations in vineyard management; (2) a
	mown/herbicide-sprayed cover crop195
Figure 7.12:	Examples of variations in vineyard management; (3) no
	inter-row crop196
Figure 7.13:	Examples of variations in vineyard management; (4) stock
	grazing part-cover crops196

LIST OF TABLES

Table 3.1:	The collated groundwater nitrate records and sources for
	the study area58
Table 3.2:	The mean groundwater nitrate concentrations for each
	multi-year period64
Table 4.1:	Recorded tritium concentrations in groundwater with
	analytical precision in brackets92
Table 5.1:	Multiple regression analysis of nitrate concentrations 1974-
	1983 and environmental variables121
Table 5.2:	Number of wells classified for multiple regression analysis
	of nitrate concentrations 1974-1983 and environmental
	variables122
Table 6.1:	Isotopic analysis of wells within the study area149
Table 7.1:	Soil physical and chemical properties used for determining
	water retention curves for the vineyard scenario169
Table 7.2:	Soil physical and chemical properties used for determining
	water retention curves for the native vegetation scenario172
Table 7.3:	Soil physical and chemical properties used for determining
	water retention curves for the grazing scenario174
Table 7.4:	Soil physical and chemical properties used for determining
	water retention curves for the legume cropping scenario176
Table 7.5:	The mean annual drainage and nitrogen leaching from the
	root zone for each of the five land use scenarios as
	calculated by the LEACHN model180
Table 7.6:	The net organic nitrogen mineralisation (N kg/ha/yr)
	predicted for each scenario189

ABSTRACT

The aim of this study was to apply a variety of investigative methods to identify the causes of elevated concentrations of nitrate reported in an unconfined aquifer around the township of Coonawarra in the South East region of South Australia. For nearly 30 years elevated nitrate concentrations have been of concern to Government Departments, however the source of these elevated nitrate concentrations remained unknown.

Examination of an extensive historical water quality dataset for the study area identified that while nitrate concentrations were elevated during the late 1970s – early 1980s, they have declined since this time. The study demonstrates a variety of inherent biases that can exist within nitrate groundwater datasets, and presents methods that can be used for determining temporal trends in concentration that minimise the impacts of these characteristics.

The quantification and spatial variability of diffuse recharge was investigated using groundwater tritium concentrations measured in the aquifer during the late 1970s. The modelling produced estimated recharge rates that were generally below those now adopted for the study area, and the methodology may not be appropriate in areas where high irrigation rates are occurring. The assessment of the variability of recharge illustrates that the high recharge areas corresponded to the previously identified areas of higher nitrate concentrations in groundwater.

This correlation was further investigated statistically, and used a dual isotopic technique that applied the natural variability of nitrogen and oxygen isotopes (of nitrate) to source determination. The statistical approach was only able to explain 39% of the variability observed in groundwater nitrate concentrations using field observations. This approach indicated that there was a significant spatial relationship between bores located in close proximity to septic tanks and elevated nitrate concentrations in groundwater. The applications of the dual nitrate isotopic method further demonstrated that nitrate in the

groundwater is from multiple sources, with septic tanks being a probable source of nitrate. This isotopic method is shown to be effective in source determination, with the results comparing well to literature and field observations.

Modelling of diffuse inputs from the main landuse types supports the conclusion that the elevated nitrate levels are most likely due to localised sources.

It is concluded that while high nitrate concentrations have existed within the Coonawarra area, the data interpretation methods previously used to report the 'plume' of nitrate contamination have over-estimated the extent of nitrate in groundwater. The elevated nitrate concentrations in the groundwater are primarily the result of anthropogenic sources (e.g. septic tanks) and natural sources (e.g. the mineralisation of soil organic nitrogen).

CANDIDATE DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief does not contain any material previously published or written by another person except where due reference is made in the text.

Full Name: Phillip Galvin Gorey

.....

ACKNOWLEDGEMENTS

The research described in this thesis was only possible with the support of a number of organisations and individuals that I would like to acknowledge.

Firstly, my initial primary supervisor Dr Nick Turozcy, who provided the catalyst for the research and invaluable advice on sampling and research techniques. Special thanks to Associate Professor John Sherwood who subsequently took over the role as my primary supervisor, and provided ongoing support and comment that improved the chapters of the thesis; but most of all provided enthusiasm for the research. My thanks to Professor Frank Stagnitti who provided modelling and statistically (and planning) advice that greatly assisted the completion of the work. Ultimately my thanks to Dr John Hutson who provided both advice and support in undertaking the modelling components of this research.

This study was undertaken with the support of the Environment Protection Authority (South Australia), and I particularly thank Max Harvey for recognising the importance of undertaking the research. Also my thanks to Jonathan Irvine for rectifying all of the aerial photographs that were incorporated into the land use component of this project, and to Helen King for the advice on hydrogeological processes, and her access to a wealth of hydrogeology resource material. My thanks also to Robyn at Grooming the Printer for formatting the geological cross-section diagrams and the hydrostratigraphy diagram.

I am indebted to Cathy Healy, Jacque Lawson, George MacKenzie, Jeff Lawson, Fred Stadter and the staff of the Naracoorte and Mount Gambier office's of the Department for Water, Land and Biodiversity Conservation for all their support in collating historical records and references and providing advice that was critical to understanding the background work that had been undertaken.

My thanks to Peter Airey (Australian Nuclear Science and Technology

Organisation) for the collation of the groundwater tritium results and providing subsequent comment on Chapter 4. Also to Peter Cook for providing valuable advice on recharge assessment techniques.

I would specifically like to acknowledge all the winery operators, residents and landholders of the Coonawarra area that assisted in this project by allowing my unfettered access to well locations and showed genuine interest in understanding the issues of groundwater contamination. I am grateful also for the assistance given by Lee Hazelgrove for providing practical advice regarding the project, and who was invaluable in providing key contacts with the winery industry.

Finally, my thanks to my wife Ange Gorey for her support and encouragement during the research and write up of the thesis.

THE REPORTED NITROGEN CONCENTRATIONS

A variety of methods have been used to report the concentration of nitrogen compounds in previous investigative studies and research, and it is recognised that a range of previous studies within the region have reported nitrate concentrations as nitrate; i.e. mg/L (as NO₃). Recently, the preference has been to report the concentration of nitrate and nitrite as the mass of only the nitrogen atoms; i.e. mg/L (as N).

In order to assist in interpretation of this thesis, all nitrogen species are reported as concentrations of nitrogen unless otherwise noted. The nomenclature adopted for reporting these concentrations within this thesis is mg/L (as N).

THE REPORTED BOREHOLE REFERENCES

Up until the early 1980s, boreholes were referenced in a variety of ways (i.e. various numbering systems, names). The convention used in this study is the full unique well bore identifier allocated by the Department for Water, Land and Biodiversity Conservation. This convention has the first four numbers as the 1:100,000 map number (the study area is within the 7023 map sheet), and the remaining five numbers being the incremental counter of bores within the 1:100,000 map sheet. Observation bore numbers and names are included as a secondary name (when known).