
Trilinear Projection

by

Scott Vallance

B.Sc. (Hons) (Flinders University of South Australia) 1999

A thesis presented to the

Flinders University of South Australia
in total fulfillment of the requirements for the degree of

Doctor of Philosophy

Adelaide, South Australia, 2005
c© (Scott Vallance, 2005)

2

Certification

I certify that this thesis does not incorporate without acknowledgement any mate-

rial previously submitted for a degree or diploma in any university; and that to the best of

my knowledge and belief it does not contain any material previously published or written

by another person except where due reference is made in the text.

As requested under Clause 14 of Appendix D of the Flinders University Research

Higher Degree Student Information Manual I hereby agree to waive the conditions referred

to in Clause 13(b) and (c), and thus

• Flinders University may lend this thesis to other institutions or individuals for the

purpose of scholarly research;

• Flinders University may reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Signed Dated

Scott Vallance

1

Abstract

In computer graphics a projection describes the mapping of scene geometry to

the screen. While linear projections such as perspective and orthographic projection are

common, increasing applications are being found for nonlinear projections, which do not

necessarily map straight lines in the scene to straight lines on the screen. Nonlinear projec-

tions occur in reflections and refractions on curved surfaces, in art, and in visualisation.

This thesis presents a new nonlinear projection technique called a trilinear projec-

tion that is based on the trilinear interpolation of surface normals used in Phong shading.

Trilinear projections can be combined to represent more complicated nonlinear projections.

Nonlinear projections have previously been implemented with ray tracing, where

rays are generated by the nonlinear projections and traced into the scene. However for

performance reasons, most current graphics software uses scanline rendering, where a scene

point is imaged on a screen as a function of the projection parameters. The techniques

developed in this thesis are of this nature.

This thesis presents several algorithms used in trilinear projection:

1. An algorithm to analytically determine which screen locations image a given scene

point.

2. An algorithm that correctly connects projected vertices. Each scene point may be

imaged multiple times, which means a projected scene triangle may form from one

to four different shapes of from two to nine vertices. Once connected, the projected

shapes may be rendered with standard scanline algorithms.

3. An algorithm to more accurately render the curved edges between projected vertices.

4. A scene-space edge-clipping algorithm that handles continuity issues for projected

shapes across composite projections.

2

The trilinear projection technique is demonstrated in two different application ar-

eas: visualisation, and reflections and refractions. Specifically, various nonlinear projections

that are congruent with pre-existing visualisation techniques are implemented with trilinear

projections and a method for approximating the reflections and refractions on curved sur-

faces with trilinear projections is presented. Finally, the performance characteristics of the

trilinear projection is explored over various parameter ranges and compared with a naive

ray tracing approach.

iii

Contents

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Nonlinear Projection . 1

1.1.1 Artistic Nonlinear Projection . 2
1.1.2 Strip Cameras . 2
1.1.3 Multi-Perspective Images as a Basis for Resynthesis 4
1.1.4 Visualisation with Nonlinear Projection 4

1.2 Ray tracing and Scanline Rendering . 6
1.3 Thesis Scope . 6
1.4 Thesis Overview . 7

2 Nonlinear Projection Surfaces 9
2.1 Projection Surfaces . 9
2.2 Mesh Surfaces and Surface Continuity . 10
2.3 Representing a Curved Surface with a Trilinear Interpolated Triangle 11

2.3.1 Interpolation . 11
2.3.2 Phong Shading . 12

2.4 Ray Tracing with a Trilinear Projection . 13
2.5 Summary . 13

3 Projecting a Point with a Trilinear Projection 15
3.1 Projecting a Point with a Trilinear Projection 16
3.2 Treating the Trilinear Projection as a Parametric

Triangle . 16
3.3 Determining the Coplanarity of the Parametric Triangle and the Scene Point 17
3.4 Barycentric Coordinate Conversion . 18
3.5 Multiple Solutions . 20
3.6 Precalculating Partial Coefficient Values . 20
3.7 Parametric Triangle Sides and Containment 21
3.8 Algorithm for Projecting a Scene Point . 24
3.9 Summary . 25

iv

4 Projecting a Triangle with a Trilinear Projection 26
4.1 Drawing a Scene Triangle . 26
4.2 Determining Shapes . 27
4.3 Drawing Shapes . 28

4.3.1 An Algorithm to Connect Vertex Lists 31
4.4 Example Shape Images . 32
4.5 Tessellation . 37

4.5.1 Scene Triangle Tessellation . 37
4.5.2 Parametric Triangle Slices . 38

4.6 Viewing Plane Intersection . 40
4.7 Summary . 42

5 Multiple Surface Triangles 44
5.1 Screen Space Clipping . 44
5.2 Scene Space Clipping . 45

5.2.1 Algorithm for Determining Intersection t Values 46
5.2.2 Integrating Intersection Points into Drawing Primitives 47

5.3 Summary . 50

6 Nonlinear Projection for Visualisation 51
6.1 Detail and Context . 51
6.2 Multiple Perspective Views . 53
6.3 Mappings . 56
6.4 Summary . 58

7 Reflections and Refractions 60
7.1 Integrating Reflection and Refraction Projections into a Scene 60
7.2 Reflections . 60

7.2.1 First-Hit Reflections on a Polygon Mesh 61
7.2.2 Approximated First-Hit Reflections 62
7.2.3 Multi-Hit Reflections on a Polygon Mesh 63

7.3 Refraction . 63
7.3.1 First-hit Refraction on a Polygon Mesh 64
7.3.2 Approximating Refraction . 64
7.3.3 Multi-Hit Refraction on a Polygon Mesh 64

7.4 Example Projections . 65
7.5 Summary . 66

8 Performance Evaluation 70
8.1 Experimental Conditions . 70

8.1.1 Data . 71
8.1.2 Caveats . 71

8.2 Ray Tracing . 72
8.3 Trilinear Projection . 74
8.4 Speed up . 76

v

8.5 Tessellation Methods . 76
8.6 Multiple Trilinear Projections . 80
8.7 Nonlinear Projection for Visualisation, and Reflections and Refractions . . . 82
8.8 Summary . 84

9 Related Work 85
9.1 Ray Tracing . 85

9.1.1 Beam Tracing . 86
9.1.2 Spatial Subdivision . 87
9.1.3 Hardware Ray Tracing . 87

9.2 Ray Tracing Nonlinear Projections . 88
9.2.1 Ray Tracing with Extended Cameras 88
9.2.2 Cubism and Cameras: Free-form Optics for Computer Graphics . . 89
9.2.3 Multi-Perspective Images for Visualisation 90
9.2.4 General Linear Cameras . 90

9.3 Scanline Rendering . 91
9.3.1 Multi-Pass Rendering . 91
9.3.2 Reflections on Spheres and Cylinders of Revolution 92
9.3.3 Multiple-Center-of-Projection Images 93

9.4 Object Distortion for Nonlinear Projections 93
9.4.1 Distortion Methods for Visualisation 93
9.4.2 Interactive Reflections on Curved Objects 95
9.4.3 Specular Path Perturbation . 95
9.4.4 Region of Influence Cameras . 96

9.5 Approximating Reflections on Curved Objects with Image Based Rendering 96
9.5.1 Environment Mapping . 97
9.5.2 Extended Environment Mapping . 97
9.5.3 Parameterized Environment Maps 98
9.5.4 Light Field Rendering . 99

9.6 Summary . 99

10 Conclusion 101
10.1 Summary . 101
10.2 Contributions . 101

10.2.1 Projecting a Scene Point with Trilinear Projection 102
10.2.2 Projecting a Scene Triangle with Trilinear Projection 102
10.2.3 Parametric Triangle Slicing . 103
10.2.4 Scene Space Clipping . 103
10.2.5 The Application of Trilinear Projection in Visualisation 103
10.2.6 The Application of Trilinear Projection in Rendering Reflections and

Refractions on Curved Surfaces . 104
10.3 Further Work . 104
10.4 Conclusion . 105

vi

A Expanded Equations 106
A.1 Parametric Triangle and Scene Point Coplanarity Test 106
A.2 Line Segment Intersection Coplanarity Cubic 107
A.3 Precalculation for Cubic Coefficients . 109

B Vector Properties 110

C View and Scene Data 111

D Tabulated Performance Results 114
D.1 Ray Tracing Results . 114
D.2 Trilinear Projection Results . 118
D.3 Trilinear Projection with Scene Space Clipping Results 121
D.4 Ray Tracing on Different Configurations . 124
D.5 Trilinear Projection on Different Configurations 126
D.6 Trilinear Projection with Scene Triangle Tessellation

Results on Different Configurations . 128
D.7 Trilinear Projection with Parametric Triangle Slicing Results on Different

Configurations . 131

E Context in Planar 3D Navigation 134

F Multi-Perspective Images for Visualisation 142

G Inward Looking Projections 151

Bibliography 156

vii

List of Figures

1.1 “Fishermans Evening Song” by Xu Daoning, circa 11th Century 2
1.2 “High and Low” by M. C. Escher, an example of a nonlinear projection . . 3
1.3 A strip camera photograph of a man’s head [Dav01] 4
1.4 A multi-perspective image for use in image resynthesis [Chu01] 5
1.5 A multi-perspective image for use in image resynthesis [WFH+97] 5
1.6 A child’s depiction of a cube, subsequently redrawn [Wil97] 6

2.1 Projection surfaces (top view): (a) discontinuity of ray directions on a pro-
jection surface defined by perspective projections and (b) continuity of ray
directions on a shared-normal interpolated projection surface 10

2.2 Triangle with arbitrary normal vectors . 11
2.3 Triangle with interpolated normal vectors 12
2.4 A Phong shaded cube: (a) normal vectors perpendicular to the faces (b)

normals coincident with the cube centre . 13
2.5 Ray tracing a trilinear projection with rasterising 14

3.1 Interpolated surface ray intersecting a scene point 15
3.2 A parametric triangle shown at different values of t 17

4.1 A (2,2,2,3) shape configuration: (a) ray trace (b) trilinear projection 34
4.2 A (3,3,3) shape configuration: (a) ray trace (b) trilinear projection 34
4.3 A (4,2,3) shape configuration: (a) ray trace (b) trilinear projection 34
4.4 A (4,5) shape configuration: (a) ray trace (b) trilinear projection 35
4.5 A (6,3) shape configuration: (a) ray trace (b) trilinear projection 35
4.6 A (2,7) shape configuration: (a) ray trace (b) trilinear projection 35
4.7 A (9) shape configuration: (a) ray trace (b) trilinear projection 36
4.8 Example of the error inherent in the linear approximation of curved shapes 37
4.9 Scene triangle tessellated into 25 triangles approximating a (4,5) shape con-

figuration . 38
4.10 Scene triangle sampled at 5 extra t levels per shape approximating a (4,5)

shape configuration . 39
4.11 A shape partially behind the viewing plane 40

5.1 A scene triangle spanning two trilinear projections with a discontinuity . . 45

viii

5.2 A trilinear projection edge swept out into scene space and intersected with a
scene triangle . 46

6.1 A Distortion-Oriented Display mesh projection surface 52
6.2 A Distortion-Oriented Display projection surface and a cube scene 53
6.3 A perspective projection of a cube . 54
6.4 A Distortion-Orientation projection of a cube (a) ray trace (b) trilinear pro-

jection . 54
6.5 A maze distorted in a cylindrical fashion to show context 55
6.6 A multiple-perspective approach to showing first person detail and side view

context . 56
6.7 A cube rendered from a surface derived from Figure 6.6 (a) ray trace (b)

trilinear projection . 57
6.8 An spherical mesh mapping a relation between the scene data and surface . 58
6.9 A cube rendered by a spherical projection surface (a) ray trace (b) trilinear

projection . 59

7.1 A diagram of a first-hit reflection . 61
7.2 Error in an approximation of first-hit reflections 63
7.3 A cube reflected in a sphere . 65
7.4 A cube reflected on a sphere: (a) ray traced, (b) 1x1 surface, (c) 2x2 surface,

(d) 3x3 surface, (e) 4x4 surface, (f) 5x5 surface 67
7.5 A cube reflected on a plane with perturbed normals, implemented as a 5x5

trilinear projection surface: (a) ray traced (b) trilinear projection 68
7.6 A cube refracted through a plane with spherical normals: (a) ray traced, (b)

1x1 surface, (c) 2x2 surface, (d) 3x3 surface, (e) 4x4 surface, (f) 5x5 surface 69

8.1 Execution time versus resolution for ray tracing different configurations . . 72
8.2 Execution time versus resolution for ray tracing across different complexity

scenes . 73
8.3 Execution time versus number of scene triangles for ray tracing across differ-

ent resolutions . 73
8.4 Execution time versus resolution for trilinear projecting different configurations 74
8.5 Execution time versus resolution for trilinear projection across different com-

plexity scenes . 75
8.6 Execution time versus number of scene triangles for trilinear projection across

different resolutions . 75
8.7 Relative speedup versus resolution for trilinear projection across different

configurations . 76
8.8 Relative speedup versus resolution for trilinear projection across different

complexity scenes . 77
8.9 Relative intensity of the difference mask versus tessellation factor for para-

metric triangle slicing over different configurations 78
8.10 Relative intensity of the difference mask versus tessellation factor for scene

triangle tessellation over different configurations 78

ix

8.11 Relative intensity of the difference mask versus tessellation factor averaged
over each configurations for parametric triangle slicing and scene triangle
tessellation . 79

8.12 Execution time versus tessellation factor averaged over each configurations
for parametric triangle slicing and scene triangle tessellation 79

8.13 Execution time versus number of trilinear projections for ray tracing across
different resolutions . 80

8.14 Execution time versus number of trilinear projections across different resolu-
tions . 81

8.15 Execution time versus number of trilinear projections across different resolu-
tions . 81

8.16 Relative execution time for clipped and non-clipped trilinear projection ver-
sus number of trilinear projections across different complexity scenes 82

9.1 A conventionally rendered set of columns 88
9.2 Columns rendered from a torus surface . 89
9.3 A hand-drawn nonlinear projection of a street scene [Gla00] 90
9.4 A cube rendered from a hemisphere surface [VC01b] 91
9.5 Catacaustic of the reflection congruence [Gla99] 92
9.6 A nonlinear projection of an elephant [RB98] 94

x

List of Tables

4.1 Possible shape configurations . 29

8.1 Execution time for rendering examples in this thesis 83

B.1 Vector properties of the trilinear propjection 110

C.1 . 112
C.2 . 113

D.1 Ray tracing results over random scene data 117
D.2 Trilinear projection results over random scene data 120
D.3 Trilinear projection with clipping results over random scene data 123
D.4 Ray tracing results on a 2,2,2,3 configuration example 124
D.5 Ray tracing results on a 2,3 configuration example 124
D.6 Ray tracing results on a 3,3,3 configuration example 124
D.7 Ray tracing results on a 4,2,3 configuration example 124
D.8 Ray tracing results on a 4,5 configuration example 124
D.9 Ray tracing results on a 6,3 configuration example 124
D.10 Ray tracing results on a 9 configuration example 125
D.11 Trilinear projection results on a 2,2,2,3 configuration example 126
D.12 Trilinear projection results on a 2,3 configuration example 126
D.13 Trilinear projection results on a 3,3,3 configuration example 126
D.14 Trilinear projection results on a 4,2,3 configuration example 126
D.15 Trilinear projection results on a 4,5 configuration example 126
D.16 Trilinear projection results on a 6,3 configuration example 126
D.17 Trilinear projection results on a 9 configuration example 127
D.18 Trilinear projection scene triangle tessellation results on a 2,2,2,3 configura-

tion example . 128
D.19 Trilinear projection scene triangle tessellation results on a 2,3 configuration

example . 128
D.20 Trilinear projection scene triangle tessellation results on a 3,3,3 configuration

example . 129
D.21 Trilinear projection scene triangle tessellation results on a 4,2,3 configuration

example . 129

xi

D.22 Trilinear projection scene triangle tessellation results on a 4,5 configuration
example . 130

D.23 Trilinear projection scene triangle tessellation results on a 6,3 configuration
example . 130

D.24 Trilinear projection scene triangle tessellation results on a 9 configuration
example . 130

D.25 Trilinear projection with parametric triangle slicing results on a 2,2,2,3 con-
figuration example . 131

D.26 Trilinear projection with parametric triangle slicing results on a 2,3 configu-
ration example . 131

D.27 Trilinear projection with parametric triangle slicing results on a 3,3,3 config-
uration example . 132

D.28 Trilinear projection with parametric triangle slicing results on a 4,2,3 config-
uration example . 132

D.29 Trilinear projection with parametric triangle slicing results on a 4,5 configu-
ration example . 133

D.30 Trilinear projection with parametric triangle slicing results on a 6,3 configu-
ration example . 133

D.31 Trilinear projection with parametric triangle slicing results on a 9 configura-
tion example . 133

xii

List of Listings

3.1 Projecting a scene point onto a parametric triangle 25

4.2 Sorting vertex lists into shapes . 28

4.3 Sorting vertex lists into shapes and ordering by connectivity 32

4.4 Sampling with discrete parametric triangle slices 40

4.5 Calculating view-plane intersections . 42

5.6 Finding edge intersection t values . 47

5.7 Finding clipping points in shapes . 48

5.8 Inserting clipping points into shapes . 49

xiii

Acknowledgements

This work was supported by a Flinders University Research Scholarship for which I am very

grateful. None of this would have been possible without the support of a great many people

whom I would like to thank. My partner, Fran, for being there when I needed it most,

thank you. My family, who supported me in a myriad of ways, from their love down to the

practical everyday things. My supervisor, Paul, for his endless advice and enjoyable research

discussions. All my fellow research slaves, aka PhD candidates, for their camaraderie, and

especially Aaron and Ron for always being there for a chat. To my friends whom I have

neglected too much whilst writing this thesis, I apologise.

1

Chapter 1

Introduction

Geometric projections map multi-dimensional data to a lower dimensional repre-

sentation. In computer graphics rendering of 3D scenes this dimension reduction is from

3D to 2D. Most projections used in graphics are linear, which means that these projections

fall into two categories: perspective and orthographic. Perspective projections simulate the

physics of optics; they map data back to a single point in space through a virtual screen, so

that distant data is smaller on the virtual screen than nearer data. Perspective projections

allow data to be viewed as if through a virtual human eye or camera lens. Orthographic

projection maps data to a plane, preserving size over distance. Orthographic projections

such as top, side or front views are common in architectural drawing.

Nonlinear projections differ from linear projections in that straight lines in 3D

may not be straight lines when projected. Nonlinear projections occur in art, in reflections

and refractions on curved surfaces, and in data visualisations. Previous techniques for

nonlinear projection have used ray tracing or have relied on distortion of the scene data. This

thesis presents new techniques for rendering nonlinear projections in a manner analogous

to perspective transformation matrix rendering. The new technique is called a trilinear

projection because its basis is a trilinear interpolation. Multiple trilinear projections can be

used to represent more complex nonlinear projections while maintaining continuity across

sub-projections.

1.1 Nonlinear Projection

Nonlinear projections occur naturally as reflections and refractions on curved objects. The

strange and distorted images seen in an amusement park funny mirror are a familiar example

2

Figure 1.1: “Fishermans Evening Song” by Xu Daoning, circa 11th Century

of the distortion nonlinear projections generate. These images have also been examined in

art, photography and computer graphics where they have variously been named cubist im-

ages, multi-perspective images, multiple-centre-of-projection images and multi-perspective

panoramas.

1.1.1 Artistic Nonlinear Projection

Traditional Chinese landscape paintings frequently contain different foci, or sub-images,

which are seamlessly joined. These paintings are similar to the panoramas used for cartoon

drawing and image resynthesis, as is discussed in Section 1.1.3. For example, in Figure 1.1

the perspective shifts from left to right, following the path of the stream.

German artist M. C. Escher frequently depicted views with multiple vanishing

points, or perspectives. For example, “High and Low” [Esc92] shown in Figure 1.2, has

five different vanishing points: top left and right, centre, and bottom left and right. While

the automatic generation of an image like this from 3D geometry may not be practical, it

illustrates the concept and the aesthetic potential.

1.1.2 Strip Cameras

Strip cameras are widely used in surveillance and mapping. These cameras have a continu-

ous roll of film that slides past a slit as a picture is being taken. The camera may be moved

whilst shooting, providing a change in point of view from one section of the film to another.

For example, if used from a moving aeroplane a strip camera can capture a long section

of curved earth as if it were flat. The technique has also been used for artistic purposes,

capturing strange and unusual images, such as in Robert Davidhazy’s work show in Figure

1.3.

Roman et al [RGL04] use cross-slit cameras to render seamless multi-perspective

3

Figure 1.2: “High and Low” by M. C. Escher, an example of a nonlinear projection

4

Figure 1.3: A strip camera photograph of a man’s head [Dav01]

images of urban landscapes. These cameras are similar to virtual strip cameras and are

used to re-interpret standard video footage. The moving video footage is indexed by the

cross-slit cameras to create a single image that approximates the image a real version of the

cross-slit camera would have captured.

1.1.3 Multi-Perspective Images as a Basis for Resynthesis

Hand-drawn and computer-generated panoramas with multiple points of view have been

used as the basis of image resynthesis. Cartoon animation from panoramas is an early

example of resynthesis that has been adapted to computer-generated images by Wood et

al [WFH+97] (see Figure 1.5). Chu and Tai [CT01] use Chinese landscape paintings and

computer-generated images as a basis of resynthesis (see Figure 1.4). When a small sub-

section of the panorama is viewed it approximates a standard single viewpoint. If multiple

subsections are taken along a path on the panorama and sequenced into an animation,

the effect gives the appearance of motion because the viewpoint shifts continuously in a

multi-perspective panorama.

1.1.4 Visualisation with Nonlinear Projection

As a visualisation technique, nonlinear projections can be justified by a more abstract

understanding of computer depiction. Durand [Dur02] examined computer depiction more

generally as a mapping of scene properties to picture properties. While linear projections

are familiar, they may not always capture the relevant properties of the scene succinctly.

For example Willats [Wil97] describes a cube drawn by a child (Figure 1.6) that shows the

colouring of all sides of the cube in a single image. The effect is reminiscent of Figure 6.9,

which shows a nonlinear projection of a cube as seen from the surface of an inward-looking

5

Figure 1.4: A multi-perspective image for use in image resynthesis [Chu01]

Figure 1.5: A multi-perspective image for use in image resynthesis [WFH+97]

6

Figure 1.6: A child’s depiction of a cube, subsequently redrawn [Wil97]

sphere. All sides of the cube are shown in a single image, similar to the child’s depiction.

1.2 Ray tracing and Scanline Rendering

Nonlinear projections have previously been successfully implemented with ray tracing. In

contrast, this thesis is fundamentally concerned with a scanline-based alternative to render-

ing nonlinear projections. Ray tracing and scanline rendering exhibit many fundamental

similarities. This is particularly true when tracing primary rays (those which come directly

from the viewpoint without reflection or refraction). Consider a point in scene space and its

projected equivalent on the image plane. Ray tracing casts a ray from the eye point through

the image point to determine the scene point. Scanline rendering projects the scene onto the

image plane to determine the image point. Both algorithms determine if a particular image

plane point ‘sees’ a given scene point. Geometrically the algorithms are nearly identical.

Scanline rendering takes advantage of the case where rays are all coincident (they

meet at the viewpoint) and the sampling is over a regularly spaced grid (the screen buffer).

When these conditions are met, converting a 3D triangle to 2D pixels can be efficiently

rendered by computing the projection at only the vertices and then interpolating across the

surface of the triangle. Scanline rendering is thus particularly suited to the case where the

number of polygons is not large compared with the number of pixels.

Both ray tracing and scanline rendering continue to increase in sophistication and

performance, with scanline rendering remaining the common implementation for interactive

and non-interactive rendering tasks.

1.3 Thesis Scope

This thesis presents algorithms pertaining to a new form of nonlinear projection called

trilinear projection. At its most basic level the rendering method transforms 3D points, lines

7

or triangles to a 2D representation. However, once transformed many standard graphical

features such as lighting and texturing [FDFH90] can be implemented without alteration

to the standard algorithms.

The thesis also presents some possible applications of the trilinear projection and

explores issues of execution complexity and scalability. However, it does not examine the

efficacy of the projection at meeting any production scenario constraints. Performance can

vary greatly depending on many factors and the implementation referenced in this thesis

only represents a proof of concept.

1.4 Thesis Overview

The remainder of this thesis is organised as follows: Chapter 2 presents trilinear interpo-

lation as a basis for nonlinear projections. The mathematics of trilinear interpolation are

detailed. Nonlinear projection surfaces are defined and trilinear interpolation is used to

describe a nonlinear projection surface. Ray tracing from a nonlinear projection surface is

examined with reference to computational performance.

Chapter 3 details an algorithm to project a 3D point with a trilinear projection.

Given a projection triangle whose rays are interpolated across the surface in a trilinear

manner, the algorithm computes the rays that intersect a given point. A restatement of

the constraints that describe the system leads to a more efficient implementation in certain

situations.

Chapter 4 expands the results of the previous chapter to examine the shapes

formed by projecting three scene points that define a triangle. The chapter shows that

a projected triangle may produce from one to four different shapes of from two to nine

vertices. An algorithm to organise these vertices into regular polygons is detailed. Two

different tessellation methods to reduce artifacts caused by linear interpolation between

vertices are presented. The first method tessellates the scene triangle; the second method

samples the scene triangle between vertex solutions. For solutions partially behind the

trilinear projection, a view plane clipping algorithm is defined.

Chapter 5 shows how multiple trilinear projections can be joined to form more

complex nonlinear projections. Rendering solutions for each trilinear projection are con-

strained to a triangular section of the screen. Discontinuities arising from naively joining

multiple projections are addressed with a clipping algorithm.

Chapter 6 shows how trilinear projections can be used to render nonlinear pro-

8

jections for visualisation. Visualisation techniques such as distortion-oriented displays and

map projections are defined in terms of nonlinear projections. These projections are then

used to render an example scene and the results shown.

Chapter 7 details how trilinear projections can be used to approximate reflections

and refractions on polygon meshes. Using the vector equations for reflection or refraction

and applying them to the normals of the polygon mesh gives a projection surface approxi-

mating the reflection or refraction. Simple scenes are demonstrated with different projection

surface resolutions. Projection surface resolution increases visual accuracy at the cost of

computation time.

Chapter 8 presents an analysis of computation time and visual accuracy for trilin-

ear projection and ray tracing. Parameters such as screen resolution, tessellation factor and

projection surface resolution are varied and results averaged over random and specific data

sets. These results are discussed and conclusions drawn as to where trilinear projection is

likely to be better suited than ray tracing.

Chapter 9 examines previous work in nonlinear projections. Nonlinear projections

in art work, visualisations and reflections and refractions and their implementations are

reviewed.

Chapter 10 summarises the algorithms presented in this thesis. Further work and

directions are detailed. The context of the thesis is analyzed with respect to the results of

the work.

9

Chapter 2

Nonlinear Projection Surfaces

This chapter describes an approach to the problem of defining and rendering from

a nonlinear projection. Ray emitting surfaces are introduced as a way of describing pro-

jections that extend beyond linear. The triangular mesh is examined as a curved surface

approximator and ray emitting surface. Ray tracing from a triangular mesh projection

surface is detailed.

2.1 Projection Surfaces

The geometry of standard perspective or orthographic projections when viewed from a ray

tracing orthodoxy defines the way in which initial or eye rays are generated. In perspective

projection eye rays emanate from a point, and in orthographic projection from a plane. The

direction of the eye rays in perspective projection is such that they diverge from the eye

point, and in orthographic projection they are parallel. These projections can be seen as

linear, because a line in scene space is drawn by a set of rays that define a line in screen

space. In this thesis we are concerned with rendering projections that are not linear, so

that lines in scene space may map to curves in screen space.

A nonlinear projection can be defined by the nature of its geometry, as seen from

a ray emitting basis. The locus of points derived from a projection’s ray starting points can

define a surface. The directions of these emitted rays can be defined as functions across the

surface of starting points. Equally, the mapping between surface and screen positions can

be described as a function on the surface of starting points. This approach is described by

Löffelmann and Gröller [Löf95], who calls the collection of such surfaces and the functions

upon them ‘Extended Cameras’. Glassner [Gla00] takes a similar approach and defines ‘cu-

10

(a) (b)

Figure 2.1: Projection surfaces (top view): (a) discontinuity of ray directions on a projection
surface defined by perspective projections and (b) continuity of ray directions on a shared-
normal interpolated projection surface

bist cameras’, which consist of two NURBS (Non-Uniform Rational B-line Splines) surfaces,

one for eye ray positions and another for ray directions. Viewing these cameras as surfaces

means that the problem of finding sufficiently expressive and efficient nonlinear ray emitting

surfaces is analogous to that of finding a representation of a traditional curved surface.

2.2 Mesh Surfaces and Surface Continuity

Complex surfaces can be represented as a mesh of simpler surfaces, which are generally easier

to render and manipulate, allowing for rendering performance and modeling flexibility. A

mesh of triangles is commonly used to approximate surfaces for display in computer graphics

because the triangle is an easily rendered surface. If a triangular mesh is used as a ray

emitting surface, this would sufficiently express the starting points of the rays but not

necessarily their direction. Each triangular sub-surface could be treated as a perspective

projection surface, so that each triangle effectively has an eye point attached to it. The

ray directions on a triangular patch converge to the relevant eye point, but start on the

triangle’s plane.

Figure 2.1 (a) shows a top-down view of a two-section perspective projection. An

11

unavoidable discontinuity occurs because the rays at the intersection point trace back to

two separate eye points. An image rendered by this projection surface would sharply change

from one sub section to another. Continuity can be maintained if the ray directions in some

way smoothly change from one sub-surface to the next. In Figure 2.1 (b) a diagram of a

continuous viewing surface is presented, where the segments share a ray path on their join.

Section 2.3 details how such a surface can be constructed.

2.3 Representing a Curved Surface with a Trilinear Interpo-

lated Triangle

In computer graphic scenes composed of triangles the illusion of smoothly curving facets is

generated by arbitrary normals that are defined at the vertices of the facets. These normals

are not perpendicular to the triangle, but rather to the curved surface that the triangle is

approximating. Parameters that rely on the normal of a surface, such as shading, can be

calculated on the vertex normals and interpolated across the face of the triangle. A triangle

with arbitrary normal vectors defined at its vertices is shown in Figure 2.3.

Figure 2.2: Triangle with arbitrary normal vectors

With interpolated normals a mesh with smoothly changing normal directions can

be constructed. Using these normals as the rays of a projection surface forms the basis of

this thesis. Each single triangular section of the mesh is a trilinear projection.

2.3.1 Interpolation

Interpolation across a triangle can be defined with Barycentric coordinates. A Barycentric

point is the weighted sum of the triangle’s vertices with weights α1, α2 and α3. This is

12

shown in Equation 2.1.

p = α1p1 + α2p2 + α3p3 (2.1)

It should also be noted that α1, α2 and α3 must sum to 1. Therefore, one of the three

weights is unnecessary.

α1 + α2 + α3 = 1 (2.2)

α1 = 1− α2 − α3 (2.3)

Traditionally, in computer graphics α2 and α3 are named u and v. So, given a triangle

with vertices p1, p2 and p3 and normals n1, n2 and n3, a point and normal on that triangle

defined by the parameters u and v is shown in the following equations:

tripoint (u, v) := (1− u− v) p1 + up2 + vp3 (2.4)

trinorm (u, v) := (1− u− v) n1 + un2 + vn3 (2.5)

A triangle with normal vectors interpolated across its surface is shown in Figure 2.3.

Figure 2.3: Triangle with interpolated normal vectors

2.3.2 Phong Shading

Phong shading uses interpolated normals, computed according to Equation 2.5, to calculate

smoothly changing shading values. Figure 2.4 (a) shows a flat shaded cube. The shading

values are calculated according to the actual normal to the cube’s surface. Figure 2.4 (b)

shows a cube shaded according to the Phong algorithm where the normals at each vertex are

pointing directly away from the center of the cube. With interpolated normals the shading

gives the cube the appearance of being curved, though with an unchanged silhouette.

13

(a) (b)

Figure 2.4: A Phong shaded cube: (a) normal vectors perpendicular to the faces (b) normals
coincident with the cube centre

2.4 Ray Tracing with a Trilinear Projection

Ray tracing with a trilinear projection differs from conventional ray tracing only in that the

eye rays do not come from a single point. For each pixel a ray is generated by converting x

and y values into u and v and substituting these values into Equations 2.4 and 2.5. With

a triangular mesh, each trilinear projection maps to a triangular region of screen space.

Ray tracing in this manner can be accelerated by the application of triangle ras-

terising algorithms. Triangle rasterising converts a triangle defined by three points into a

series of pixels. One way of doing this is to take a horizontal line of pixels at a time. The

starting and ending pixels on the horizontal lines increment or decrement by a constant

amount between lines. Additionally, properties such as the position on the surface of the

triangle change by a constant amount from pixel to pixel. Properties derived from the

position on the surface in a linear manner, such as the ray position and direction, can also

be reduced to a constant step each pixel.

Figure 2.5 shows a trilinear projection with a section converted to pixels. The

interpolated surface rays change by ∆n each pixel.

2.5 Summary

While ray tracing provides an obvious way to implement nonlinear projections such as

the trilinear projection, ray tracing is not often used for interactive and animated computer

graphics because it is expensive to compute. A scanline based method for trilinear projection

is potentially more efficient, but requires that the problem of mapping a scene point to

14

pixels

interpolated rays

view triangle

∆n ∆n ∆n ∆n

Figure 2.5: Ray tracing a trilinear projection with rasterising

the projection surface must be solved. Chapter 3 examines this problem and presents an

analytical solution.

15

Chapter 3

Projecting a Point with a Trilinear

Projection

The key question in projecting to a curved surface is as follows: given a point in

the scene, where will it be imaged by the surface? Note that, depending on the geometry

of the surface, there may be several images of a given point. If the surface is composed of

trilinear triangles, the problem becomes how to map a scene point to a trilinear projection.

We wish to find which ray or rays emanating from the triangle intersects the scene point.

The problem is illustrated in Figure 3.1.

Figure 3.1: Interpolated surface ray intersecting a scene point

16

3.1 Projecting a Point with a Trilinear Projection

A ray can be defined parametrically by a point, p and a normal n:

ray (t) := p + tn (3.1)

Taking the earlier definitions of a point and normal on the surface of a triangle in Equations

2.4 and 2.5, a ray on the surface of the triangle defined by u and v becomes:

ray (u, v, t) := tripoint (u, v) + t.trinorm (u, v) (3.2)

= (1− u− v) p1 + up2 + vp3 + t ((1− u− v) n1 + un2 + vn3) (3.3)

So for a scene point ps:

ps = ray (u, v, t) (3.4)

= (1− u− v) p1 + up2 + vp3 + t ((1− u− v) n1 + un2 + vn3) (3.5)

Solving for u, v and t in 3D means a system of three equations and three unknowns. Because

the t and u, v terms are interdependent it is not a linear system. Analytical solutions often

do not exist for solving nonlinear systems, and numerical analysis must be used.

3.2 Treating the Trilinear Projection as a Parametric

Triangle

To analytically solve this problem, instead of representing the surface as a set of rays, we

represent it as a parametric triangle. Each vertex has a point and a normal associated with

it. If we treat these as rays we can extend along them according to the parameter t giving

three new points, which form the vertices of a triangle as shown in Figure 3.2. The three

vertices of the parametric triangle are defined by the equations:

r1 := p1 + tn1 (3.6)

r2 := p2 + tn2 (3.7)

r3 := p3 + tn3 (3.8)

A barycentrically defined point on the parametric triangle is:

paratri (u, v, t) := (1− u− v) r1 + ur2 + vr3 (3.9)

= (1− u− v) (p1 + tn1) + u (p2 + tn2) + v (p3 + tn3) (3.10)

17

Figure 3.2: A parametric triangle shown at different values of t

The task of projecting a scene point now becomes that of finding a point paratri (u, v, t)

that coincides with the scene point. The u, v and t satisfying this constraint are the same

as those satisfying ps = ray (u, v, t) because the two equations are simply isomorphs, as

shown by expanding and then collecting the terms in Equation 3.10:

paratri (u, v, t) = p1 + tn1 − up1 − utn1 − vp1 − vtn1 + up2 + utn2 + vp3 + vtn3

= (n1 − un1 − vn1 + un2 + vn3) t + p1 − up1 − vp1 + up2 + vp3

= (1− u− v) p1 + up2 + vp3 + t ((1− u− v) n1 + un2 + vn3)

= ray (u, v, t) (3.11)

The advantage in representing the triangle as a parametric triangle is that the

parameter t can be determined independently of u and v. First, for the parametric vertices

defined in Equation 3.8, find the values of t such that the vertices and the scene point ps

are coplanar, then solve for u and v in the plane of the parametric triangle.

3.3 Determining the Coplanarity of the Parametric Triangle

and the Scene Point

Any four points can be considered a tetrahedron; four coplanar points form a tetrahedron

whose volume is 0. For a tetrahedron defined by four points A, B, C and D the volume of

18

the tetrahedron is:

volume :=
∣∣∣∣14AB • (AC×AD)

∣∣∣∣ (3.12)

This equation can also be expressed as the magnitude of the determinant of the matrix

containing the three vectors.

volume :=

∣∣∣∣∣∣∣∣
1
4

det


AB

AC

AD


∣∣∣∣∣∣∣∣ (3.13)

Composing the three vectors from the parametric vertices defined in Equation 3.8 with the

scene point ps and substituting into Equation 3.13 gives the volume of the tetrahedron

defined by those four points. When these points are coplanar this volume is 0. Removing

the unnecessary constant and magnitude gives:∣∣∣∣∣∣∣∣
p1 + tn1 − ps

p2 + tn2 − ps

p3 + tn3 − ps

∣∣∣∣∣∣∣∣ = 0 (3.14)

When fully expanded for 3D the equation becomes:∣∣∣∣∣∣∣∣
p1x + tn1x − psx p1y + tn1y − psy p1z + tn1z − psz

p2x + tn2x − psx p2y + tn2y − psy p2z + tn2z − psz

p3x + tn3x − psx p3y + tn3y − psy p3z + tn1z − psz

∣∣∣∣∣∣∣∣ = 0 (3.15)

This can be expanded, giving a cubic polynomial in terms of t. The full coefficients for this

cubic are shown in Appendix A.1. Either one or three real solutions for t exist, and each

value of t defines a potentially different triangle. The roots of this cubic polynomial can

be found analytically. Alternatively, numerical techniques such as Newton’s method can be

used.

3.4 Barycentric Coordinate Conversion

For each triangle coplanar with ps, values of u and v can be computed by solving the system

of three linear equations defined by tripoint (u, v) in Equation 2.4, with one equation for

each dimension x, y and z. As there are only two unknowns the system can be reduced

to a 2x2 linear equation system and solved using Cramer’s Rule. This rule states that

19

for a system of n equations with n unknowns described by AX = B the solutions are

x1..n = det(Ai)
det(A) where Ai is formed by replacing the ith column in A with B.

Begin by calculating for the particular value of t the vectors between the triangle

vertices p1..3 and the scene point ps:

E1 := p2 − p1 (3.16)

E2 := p3 − p1 (3.17)

E3 := ps − p1 (3.18)

Then calculate the scalar values that are the dot products of vectors E1 and E2 by themselves

and each other:

d1,1 := E1 · E1 (3.19)

d2,2 := E2 · E2 (3.20)

d1,2 := E1 · E2 (3.21)

Next, calculate the value d, which is equivalent to 1
detA in the description of Cramer’s Rule

above. Its value is important in determining the validity of the solution.

d := d1,1d2,2 − d1,2d1,2 (3.22)

Finally, with the help of intermediate scalar values a1..2, find the equivalents of det(Ai) for

u and v. These are divided by d giving the solutions for u and v.

a1 := E3 · E1 (3.23)

a2 := E3 · E2 (3.24)

u =
a1d2,2 − a2d1,2

d
(3.25)

v =
a2d1,1 − a1d1,2

d
(3.26)

If the value of d is close to zero then the triangle determined by p1..3 is degenerate,

indicating that the points p1..3 are collinear or coincident. If p1..3 are collinear then the

value of t is a valid solution if point ps lies upon this line. If p1..3 are coincident and ps is

sufficiently close to that point, the value of t defines a valid solution. If ps does not lie on

the line or point determined by p1..3 the solution is not valid. A triangle is determined to

be degenerate if the value of d is below an arbitrary threshold. Automatically calculating

an appropriate threshold based upon a particular scene and trilinear projection is left as

future work (see Section 10.3).

20

3.5 Multiple Solutions

There are up to three different solutions for u and v depending on the number of solutions

for t. Not all these solutions fit with the higher level interpretation of the task. The

solutions may be for negative values of t, meaning that the scene point ps is behind the

surface triangle. Also, the values of u and v may be such that the scene point ps does not

lie within the surface triangle. Interior values for u and v occur when u, v and u + v all lie

between 0 and 1:

0 ≤ u, v, (u + v) ≤ 1 (3.27)

Exterior value solutions can still aid the rendering process if they are part of a larger scene

primitive. Chapter 4 describes how a triangle scene primitive may be rendered. Multiple

values of u, v and t for a single point may all be interior and imaged by the trilinear

projection. For example, reflections on concave surfaces may image a scene point multiple

times. Therefore, a nonlinear projection technique must find and render multiple solutions

to be accurate.

3.6 Precalculating Partial Coefficient Values

Computing the coefficients of Equation 3.15 involves substantial calculation not directly

dependent on the scene point. These calculations depend only upon the values of the

parametric triangle itself and therefore can be reused across scene points. This is useful

because in a normal scene situation there are many scene points that need to be projected by

each parametric triangle. The most common drawing primitive, the triangle, is comprised

of three such scene points. The minor additional memory requirements of storing these

values is small in comparison to the reduction in computation.

In Equation 3.13 the volume of a tetrahedron is defined as the determinant of

three vectors formed from the four points. This can equally be expressed as the four by

four determinant shown in Equation 3.28.∣∣∣∣∣∣∣∣∣∣∣

psx psy psz 1

p1x + tn1x p1y + tn1y p1z + tn1z 1

p2x + tn2x p2y + tn2y p2z + tn2z 1

p3x + tn3x p3y + tn3y p3z + tn1z 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.28)

21

The determinant in Equation 3.28 can be expanded to Equation 3.29 where E1..4 are each

three by three determinants.

psxE1 − psyE2 + pszE3 − E4 = 0 (3.29)

Determinants E1..3 are quadratics in t and E4 is a cubic. This means the coefficient of t3

depends only upon properties of the parametric triangle and not the scene point. Further,

the other coefficients of the cubic defined by the full expansion of Equation 3.28 depend on

the scene point in a useful way. Equations E1..4 are defined by the general cubic equation,

Equation 3.30, where A1..3 = 0

Ei = Ait
3 + Bit

2 + Cit + Di, i = 1, 2, 3, 4 (3.30)

If the coefficients for the cubic equation defined by Equation 3.28 are represented by a, b, c

and d, where at3 + bt2 + ct + d = 0, then the relationship between the coefficients and the

properties (A,B, C, D)1..4 can be described as:
a

b

c

d

 =


0 0 0 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4




psx

psy

psz

1

 (3.31)

All properties (A,B, C, D)1..4 can be calculated independently of scene points. The full

derivations of (A,B, C, D)1..4 are provided in Appendix A.3. Using these pre-calculated

partial values allows for faster calculation across multiple scene points.

3.7 Parametric Triangle Sides and Containment

When rendering a scene with many scene points it may improve performance to filter out

those points without interior solutions. The earlier this can be determined, the greater the

performance benefit. When culling scenes points in a linear projection, standard algorithms

test a point by substituting it into the implicit equations of the planes that bound a desired

region. The sign of the result after substitution defines which side of the plane the point

lies on. If the point lies on the correct side of all bounding planes then it is inside; otherwise

it is outside.

Each edge of the trilinear projection sweeps out a surface in space. These surfaces

are the bounding surfaces. If a scene point is not on the correct side of the three edge

22

surfaces it will not have any interior solutions. If the scene point is not part of a larger

scene primitive, then it will not be imaged by the trilinear projection and can be culled.

Culling by testing against the bounding edge surfaces incurs an additional cost, but that

cost is less than fully projecting the scene point. If a sufficient number of scene points are

culled performance will improve.

The surface defined by each edge of the trilinear projection is a ruled surface

because it is traced out by the motion of a line in space. Equation 3.32 shows the general

parametric equation of a surface s(u, v) defined by the interpolation between four points

P0..1,0..1 by the parameters u and v.

s(u, v) = (1− u)(1− v)P0,0 + (1− u)vP0,1 + u(1− v)P1,0 + uvP1,1 (3.32)

The four points P0..1,0..1 define a skew quadrilateral. In the case of the trilinear projection

these four points map to the vertices and normals in the following way:

P0,0 = pi (3.33)

P0,1 = pj (3.34)

P1,0 = pi + ni (3.35)

P1,1 = pj + nj (3.36)

where : i, j = {1, 2, 3} , i 6= j

To use this surface as a bounding surface it must be implicitized and the parameters re-

moved. To make implicitization easier the four points P0..1,0..1 can be affinely transformed

without loss of generality. Transforming the points in this way means that when testing a

point against the surfaces the point must also be transformed. Equation 3.37 shows four

points transformed, by rotation, scaling and translation, so that the equations simplify as

much as possible.

P ′
0,0 = (0, 0, 0)

P ′
0,1 = (0, 0, 1)

P ′
1,0 = (0, 1, A)

P ′
1,1 = (1, B, C) (3.37)

The scalar values A, B and C can be determined by:

1. translating P0..1,0..1 by −P0,0,

23

2. rotating P0..1,0..1 so that P0,1 aligns with the Z-axis,

3. scaling P0..1,0..1 along the Z-axis such that Pz0,1 = 1,

4. rotating P0..1,0..1 around the Z-axis such that Px1,0 = 0,

5. scaling along the Y-axis and X-axis such that Py1,0 = 1 and Px1,1 = 1.

The surface s is defined for the three dimensions x,y and z. Replacing s(u, v) by these

dimensions gives three equations similar on the right hand-side to Equation 3.32:

x = (1− u)(1− v)Px0,0 + (1− u)vPx0,1 + u(1− v)Px1,0 + uvPx1,1 (3.38)

y = (1− u)(1− v)Py0,0 + (1− u)vPy0,1 + u(1− v)Py1,0 + uvPy1,1 (3.39)

z = (1− u)(1− v)Pz0,0 + (1− u)vPz0,1 + u(1− v)Pz1,0 + uvPz1,1 (3.40)

Values for P ′
0..1,0..1 from Equation 3.37 are substituted to simplify the equations.

x = uv

y = u− uv + uvB

z = (1− u)v + u(1− v)A + uvC (3.41)

Finally, substitution and algebraic transformation allows the values of u and v to be elimi-

nated, leaving an equation in terms of x, y and z:

z =
x

y + x− xB
− x(1 + A) + A(y + x− xB) + xC (3.42)

Finally this gives an equation for the surface purely in terms of x, y and z as shown in

Equation 3.43. This is the implicit equation of the surface defined by an edge of the

parametric triangle.

(A(B − 2)− C − 1)x2 −Ay2 + (A(B − 3)− C − 1)xy + zx + zy +

(B(1−A(B + 2) + C)− 1)x + ABy −Bz = 0 (3.43)

Transforming a scene point and substituting its x, y and z into the left hand-side

of Equation 3.43 gives a result, the sign of which defines on which side of the surface that

point lies. If this is done for each side of the trilinear projection then it can be determined

if the scene point has any interior values without fully projecting it.

24

3.8 Algorithm for Projecting a Scene Point

The algorithm for projecting a scene point, using the techniques described in this chapter,

is given in Listing 3.1. The function uvtSolutions returns all solutions for a scene point p

projected by the trilinear projection tp.

First the function tSolutions calculates the roots of the cubic defined by coeffi-

cients a, b, c and d which are the values of t at which the scene point is coplanar to the

parametric triangle. The function computeCoefficients returns the values of a, b, c and

d by using either the equations in Equation A.1 or the optimised version in Equation 3.31.

The roots are solved using analyticCubicSolveReal, which returns the real-valued roots

of the cubic.

Each value of t generates a solution for u and v. These solutions are calculated

by uvFromT which takes a scene point p and a t solution and calculates the barycentric

coordinates of p at t. The function project returns a triangle defined by the vertices tp

using Equations 3.6, 3.7 and 3.8. This triangle, tri, and the scene point p is passed to

toBarycentricCoords, a function which calculates barycentric coordinates according to

the equations in Section 3.4. If the triangle tri is degenerate and t does not give a valid

solution the returned value is marked as invalid.

Each potential solution, vertex, is checked by the function isValidSolution

which determines is the solution has been marked valid or invalid. If it is a valid solution

it is appended to the list vertexlist which holds the current set of valid solutions. When

each solution has been processed, uvtSolutions returns vertexlist which holds the list

of valid solutions.

Vertex uvFromT(Point p, TrilinearProjection tp, Real t) {
Triangle tri = project(tp,t)
return toBarycentricCoords(p,tri)

}

List tSolutions(TrilinearProjection tp, Point p) {
{a,b,c,d} = computeCoefficients(tp,p)
return analyticCubicSolveReal(a, b, c, d)

}

List uvtSolutions(TrilinearProjection tp, Point p) {
vertexlist = {}
foreach t in tSolutions(tp,p) {
vertex = uvFromT(p,tp,t)
if isValidSolution(vertex) {

25

vertexlist.append(vertex)
}

}
return vertexlist

}

Listing 3.1: Projecting a scene point onto a parametric triangle

3.9 Summary

This chapter describes the equality of surfaces rays and scene points that defines the trilinear

projection. To solve this equality analytically, a geometric interpretation of the trilinear

projection as a parametric triangle is proposed. This interpretation allows for an analytical

solution to the projection problem as a cubic in terms of t, the parameter of the parametric

triangle. The location on the trilinear projection that images the scene point can be found

by calculating the barycentric coordinates of a scene point in the parametric triangle at t.

To improve performance in the case where a trilinear projection projects many

scene points, a reformulation of the cubic in t is detailed and a scene point culling algorithm

is defined. The reformulation of the cubic at the heart of the projection allows for partial

solutions to be cached, improving performance across multiple scene points. A culling

algorithm, based on an implicit equation for the trilinear projection’s edges, allows for

points that will not be imaged within the bounds of a trilinear projection to be culled.

For completeness, pseudo-code detailing the steps in projecting a scene point with

a trilinear projection is provided. Projecting a scene point is an important step in being

able to project more complicated primitives.

26

Chapter 4

Projecting a Triangle with a

Trilinear Projection

Apart from projecting the vertices, rendering 3D polygons with linear projection

is very similar to rendering 2D polygons. Each vertex of the polygon is projected and the

connectivity of the projected vertices is maintained in post-projection space. This means

that the projected vertices are linked as before and the 2D post-projection polygon can be

drawn using standard 2D polygon-drawing algorithms.

In linear projective rendering of polygons, vertices are translated to screen co-

ordinates with edges and surface data interpolated between the vertices. In a nonlinear

projection a linear interpolation between vertices for edges and surface data is no longer

accurate. Furthermore, each vertex in the polygon may map to more than one projected

vertex, which means that connectivity is not directly transferable.

This chapter outlines how connectivity can be determined for post-projection ver-

tices. Once connected appropriately, these polygons can be rendered with standard 2D

polygon-rendering algorithms. Linear interpolation between the vertices is not necessarily

accurate so tessellation methods to improve accuracy are presented.

4.1 Drawing a Scene Triangle

Each of the vertices of a scene triangle can be separately projected with the trilinear pro-

jection generating either one or three solutions for each vertex. The manner in which the

projected vertices are connected can be understood by considering the sweep of the paramet-

ric triangle intersected with the scene triangle. At every value of t the parametric triangle

27

is a standard triangle in scene space. The intersection of this triangle’s plane with the scene

triangle’s plane forms a line. As the value of t changes the intersection line traverses the

plane of the scene triangle. The motion of this intersection line is continuous because t is

continuous, except where the intersection line is undefined because the scene triangle and

parametric triangle are parallel or coplanar.

A straight line intersects at most two sides of a triangle. Furthermore, the locus of

a continuously defined line must intersect a vertex on the end of an edge before intersecting

the edge itself. The order, from smallest to largest t value, in which projected scene triangle

vertices are intersected determines the connectivity of those vertices. Initially the line of

intersection crosses the two edges connected with the vertex projected by the smallest t

value. Each vertex thereafter toggles which edges are being intersected by the parametric

triangle. When all edges are toggled off the line of intersection is no longer traversing the

scene triangle and the projected shape is complete.

For strings of vertices, in order of t value, toggling the edge states reveals which

vertices group together to form a shape. Even though the scene triangle has three vertices,

it does not necessarily project shapes which have three vertices. Moreover, a single scene

triangle can produce up to four shapes when projected with a parametric triangle. This

particular case happens when the three scene vertices produce three t solutions each, and

the nine projected vertices form three two-vertex shapes and one three-vertex shape.

4.2 Determining Shapes

Determining projected shapes for a given scene triangle is a matter of iterating through

the projected vertices, in order of t value, and keeping track of which edges of the scene

triangle are being intersected. For each scene triangle vertex vi where i = 1, 2, 3, define a

tuple expressing which edges that vertex connects to. The tuple corresponds in order to the

edges 〈v1v2, v1v3, v2v3〉 so that for v1 the tuple, e(v1), is 〈1, 1, 0〉. Also define a state tuple,

s that represents which edges are intersected. The state tuple is initialised to 〈0, 0, 0〉 and

modified at each iteration through the vertices. Whenever the state becomes 〈0, 0, 0〉 a new

shape is started.

If uvt is the input list of vertices, sorted in ascending order of t, L is the resulting

list of shapes, and each element of L is a list of vertices in a particular shape, then Listing

4.2 shows code that determines the shapes.

ListofLists sortVertices(List uvt)
e = {<1,1,0>,<1,0,1>,<0,1,1>}

28

s = <0,0,0>
L = {}
S = {}

for each v in uvt {
if s == <0,0,0> and S != {} {
L.append(S)
S = {}

}

S.append(v)
s = xor(s,e[v.sceneVertex()])

}

return L
}

Listing 4.2: Sorting vertex lists into shapes

Each vertex in uvt stores the scene vertex it corresponds to and the u, v and t are

associated with this instance. The list e expresses the edges connected to each scene vertex.

The first scene triangle vertex is connected to the two first edges so its state is <1,1,0>.

The function xor returns a new list which is the exclusive or of its parameters.

Because of the manner in which the vertex list is generated, the length of the list

and the order of vertices are constrained to only certain combinations. Specifically, each

vertex will appear either one or three times, which means that the list can contain 3, 5, 7 or

9 vertices. Furthermore, not all vertex lists form possible shapes because the vertex must

toggle all edge crossings off to be complete. Table 4.1 shows how various complete shapes

can arise from combinations of projected vertices.

4.3 Drawing Shapes

The algorithm in Listing 4.2 is not sufficient to draw the projected shapes as polygons

because it does not fully determine the order in which the vertices are connected. However

the connectivity can be determined as an extension to the algorithm. Once ordered correctly,

the shape can be drawn as a polygon using a graphics API. Occlusion is determined by the

t value, which is in effect a post-projection depth value.

Whilst iterating through the vertices, when the state is not <0,0,0> two edges

will be active. The next vertex will either be joined to one of those edges or, if it is the

29

Number of Vertices Configuration
1 Not possible
2 A single repeated vertex
3 One of each of the vertices
4 Two repeated scene vertices
5 One scene vertex tripled and the other two vertices
6 Three doubled vertices
7 Two tripled vertices and the other single
8 Not possible
9 Each vertex tripled

Table 4.1: Possible shape configurations

last vertex in a shape, to both. Maintaining two separate lists of vertices, one for each edge

within a shape, allows each vertex to be appended after the one it is connected to. These

two lists can be named left and right. Both of these lists correspond to an edge at any

point in the process, and this determines upon which list vertices are appended. Once a

shape has been determined, one list can be reversed and appended to the end of the other.

For each step of the process two list designators leftA and rightA are maintained.

If the current vertex equals leftA or rightA it is added to the corresponding list, if it equals

neither the new vertex finishes the shape and it is placed in left by default. If leftA or

rightA equals the current vertex then the other designator is updated to the vertex not

previously contained by leftA and rightA.

For example, for a list of vertices V = 〈v2, v3, v3, v1, v3〉 which form a five-vertex

shape the following diagrams show how these vertices are formed into a polygon.

����
v2

Q
Q

Q
QQs

�
�

�
��+

v1v2 v2v3

Step 1: Since the first vertex is v2 the two edges v1v2 and v2v3 become active.

The first vertex can be placed in either list; assume it is placed in left. If the next vertex

was a v1 then it would be placed in left because it has to be connected to the edge v1v2.

Similarly if the next vertex was a v3 it would be placed in right. Finally, as a v2 would be

connected to both edges, it would finish the shape, and could be placed in either left or

right. The designators leftA and rightA are set to v1 and v3 respectively.

30

����
v2

����
v3

Q
Q

Q
QQs

�
�

�
��+

?

v1v2 v2v3

v1v3

Step 2: The next vertex is in fact v3 so it is placed in right. This toggles the active

edges such that v2v3 becomes inactive and v1v3 active. The newly active edge becomes the

edge associated with the right list. The designator leftA is set to v2.

����
v2

����
v3

����
v3

Q
Q

Q
QQs

�
�

�
��+

?

?

v1v2 v2v3

v1v3

v2v3

Step 3: The next vertex is also v3, indicating a transition to the v2v3 edge. Ac-

cordingly the vertex v3 is placed in the right list and the right list’s edge is changed. The

designator leftA is updated to v1.

����
v2

����
v3

����
v3

����
v1

Q
Q

Q
QQs

�
�

�
��+

?

?

?

v1v2 v2v3

v1v3

v2v3

v1v3

Step 4: In a similar way, vertex v1 is placed in the left list and the left list’s

edge is changed to v1v3. The designator rightA is set to v2.

31

����
v2

����
v3

����
v3

����
v1

����
v3

Q
Q

Q
QQs

�
�

�
��+

??

v1v2 v2v3

v1v3v1v3

Step 5: The final vertex is v3 which could be placed in either list; it is arbitrarily

placed in left for convenience. Previously active edges v1v3 and v2v3 are toggled off and

the shape is finished.

4.3.1 An Algorithm to Connect Vertex Lists

This algorithms maintains two lists left and right to store the vertices. The variables

leftA and rightA designate which vertex should be accepted to which list. Both leftA

and rightA are integer values (1,2 or 3) which correspond to the scene vertices. For each

vertex stored in the list uvt, which has been sorted in ascending value of t, if its associated

scene vertex does not match either leftA or rightA then that vertex finishes the current

shape. If it does match then the designator for the other list (either leftA or rightA)

must be changed. The designator is changed to the vertex not currently indicated by either

designator. This can be expressed as sum of all vertex numbers (6) minus the total of both

current designator values. At the start of each shape the value of leftA is initialised to the

current vertex’s scene vertex, so that the vertex is placed in the left list. The function

appendReverse reverses a list and appends it; other functions are the same as in Listing

4.2.

ListofLists connectVertices(List uvt) {
e = {<1,1,0>,<1,0,1>,<0,1,1>}
s = <0,0,0>
L = {}
S = {}
left = {}
right = {}
leftA = v.sceneVertex()

32

for each v in uvt {
if s == <0,0,0> and left != {} {
S.append(left)
S.appendReverse(right)
L.append(S)
S = {}
left = {}
right = {}
leftA = v.sceneVertex()

}

if v.sceneVertex() != leftA {
leftA = 6 - (rightA + leftA)
right.append(v)

}
else {
rightA = 6 - (rightA + leftA)
left.append(v)

}

s = xor(s,e[v.sceneVertex()])
}

S.append(left)
S.appendReverse(right)
L.append(S)

return L
}

Listing 4.3: Sorting vertex lists into shapes and ordering by connectivity

4.4 Example Shape Images

Once shapes have been generated and sorted appropriately they can be used to render

polygons. Figures 4.1 to 4.7 show example shapes that result from projecting scene triangles

with trilinear projection. Scene vertices have been assigned the colours red, green and blue

to indicate which scene vertex corresponds to each projected vertex. Colouring on the

face has been interpolated trilinearly. Vertices are overlain as circles on the rendering for

comparison. The shapes are named according to the number of vertices in a shape. A

shape configuration called (2,2,2,3) indicates that a scene triangle produces four shapes

33

when projected by a particular trilinear projection. Three of the shapes have two vertices

and the other one has three. Two-vertex shapes are drawn as lines and three-vertex shapes

as triangles; with more vertices the shape is drawn as an arbitrary polygon. Scene and view

triangle values used to generate these examples are shown in Appendix C.

For comparison the figures also show the result obtained by ray tracing. Depending

on the geometry of the triangles, the shapes produced by trilinear projection and ray tracing

may differ, although the position of projected vertices corresponds exactly. Section 4.5

discusses techniques to improve the accuracy of drawing shapes between vertices.

34

(a) (b)

Figure 4.1: A (2,2,2,3) shape configuration: (a) ray trace (b) trilinear projection

(a) (b)

Figure 4.2: A (3,3,3) shape configuration: (a) ray trace (b) trilinear projection

(a) (b)

Figure 4.3: A (4,2,3) shape configuration: (a) ray trace (b) trilinear projection

35

(a) (b)

Figure 4.4: A (4,5) shape configuration: (a) ray trace (b) trilinear projection

(a) (b)

Figure 4.5: A (6,3) shape configuration: (a) ray trace (b) trilinear projection

(a) (b)

Figure 4.6: A (2,7) shape configuration: (a) ray trace (b) trilinear projection

36

(a) (b)

Figure 4.7: A (9) shape configuration: (a) ray trace (b) trilinear projection

37

4.5 Tessellation

Rendering from a parametric triangle by projecting from the scene triangle vertices does not

produce results exactly the same as ray tracing, as illustrated in Figure 4.8. This error is

Curved line approximated
by a straight line

Figure 4.8: Example of the error inherent in the linear approximation of curved shapes

because the shapes are drawn with straight lines between the projected vertices, whereas the

correct result would be a curved line. To more accurately render curved lines, tessellation

can be used for either the scene triangle or the trilinear projection. Tessellation subdivides

the triangle so that the error is lessened. Tessellating scene primitives is a classic way of

reducing the error of drawing a curved surface with straight line primitives.

4.5.1 Scene Triangle Tessellation

Many algorithms exist to tessellate triangles; we use a regular sampling with barycentric

coordinates. This can be accomplished by stepping through u and v values in Equations

2.4 by a constant incrementor. The values of u and v are restricted to the range 0 ≤
u, v, (u + v) ≥ 1 to be within the bounds of the scene triangle. The result of this is a

regularly spaced set of points over the triangle. The naive approach to rendering this would

then be to join the points into triangles and render each triangle separately. However, some

vertices appear on more than one triangle and exploiting this replication results in a more

efficient method. After calculating the u, v and t for each point separately, the results can

be combined in different ways to render each triangle.

38

Figure 4.9: Scene triangle tessellated into 25 triangles approximating a (4,5) shape
configuration

Figure 4.9 shows the shape previously shown in Figures 4.4 tessellated into 25

triangles and rendered. The triangle edges have been drawn in black to highlight the

tessellation. The increased visual accuracy comes at a performance cost, 25 scene points

have been projected as compared with 3 in Figure 4.4.

4.5.2 Parametric Triangle Slices

Another tessellation strategy is to sample the scene triangle at discrete t values. For each t

value the parametric triangle is a normal triangle. The intersection of this triangle and the

scene triangle results in a line, as discussed in Section 4.1. In addition to determining the

connectivity of vertices this fact can be used to render scene triangles. For every value of t

from the smallest for a particular shape to the largest the intersection line crosses the scene

triangle. This line, clipped to the overlapping sections of the scene and parametric triangle

(for this particular t value), corresponds directly to a line on the final image. Figure 4.10

shows a scene triangle rendered with 5 extra t samples per shape.

Listing 4.4 shows an implementation to find and add tessFactor lines on a par-

ticular shape. The minimum and maximum t values of the shape are found (with minimum

being set to 0.0 in the case that minimum t < 0) with the functions minimumTValue and

39

Figure 4.10: Scene triangle sampled at 5 extra t levels per shape approximating a (4,5)
shape configuration

maximumTValue. Once the minimum and maximum are known the difference between is di-

vided by tessFactor. The function intersectTriangleTriangle intersects two triangles

to form a line segment and returns a list containing the vertices of the line segment in terms

of u, v and t.

Once the line segment vertices have been added the shape is drawn incrementally.

When drawing, after two tessellated vertices have been processed the current state is drawn.

This effectively draws from one tessellation line to the next, including any other vertices

between the lines. Drawing the shape incrementally ensures that each tessellation line is

drawn explicitly. Drawing the bounding polygon without explicitly drawing each tessellation

line would give the same silhouette but the interpolated face values (such as colour or texture

coordinates) would not be as accurate.

tesselate(TrilinearProjection tP, SceneTriangle sT,
List uvt, int tessFactor) {

t = minimumTValue(uvt)
maxt = maximumTValue(uvt)

if t < 0 {
t = 0

}

40

if maxt > 0 {
tstep = (maxt-t)/(tessFactor+1)

for i = 0..tessFactor {
t = t + tstep
uvt.append(intersectTriangleTriangle(project(tP,t),sT))

}
}

}

Listing 4.4: Sampling with discrete parametric triangle slices

4.6 Viewing Plane Intersection

Projecting with a parametric triangle means that instead of a view point, as in normal

rendering, there is a view plane which corresponds to the plane of the triangle with a t

value of 0. In a correct rendering, anything behind this plane should be hidden. In some

situations some projected vertices of a scene triangle are in front of this plane and some

behind. These shapes must only be partially drawn. The intersection between the scene

triangle and the zero t triangle defines a line, which is used to clip shapes whose vertices

have mixed positive and negative t values.

A

B
C

D

intersection line

t

t t
t

�
�
�
�
�
�
�
�
`````

@
@

@
@

@((((((((((((

�
�

�
�

�
�

Figure 4.11: A shape partially behind the viewing plane

Figure 4.11 illustrates an examples, where vertices B and C are on the other side

of the intersection to A and D. This does not necessarily mean that the view plane and

scene triangle intersection must be used to clip the shape. Clipping only occurs if projected

vertices have positive and negative t values; a shape that has all vertices with negative t

values can be culled.



41

Clipping can be done in two ways. The line between two projected vertices (for

instance A and B) can be clipped against the intersection line. This line between A and B

may not be entirely accurate as shown in Section 4.5 and the real intersection may be at

a different location. Alternatively the scene vertices that A and B are projected from can

also be intersected with the zero t plane giving the exact solution. This second calculation

is done in 3D and is hence more computationally expensive than the 2D clipping of the line

between A and B.

Listing 4.5 shows an algorithm to clip to the view plane. Function viewPlaneClip

checks each shape. Function zeroIntersect iterates over each edge in a shape (including

the last) calling checkCrossing. If the first vertex of an edge is below the view plane

but the next above, then the intersection point is appended. If both are below the view

plane, then nothing is appended to the shape. If the first vertex is above the view plane,

it is appended. If the first vertex is above and the second below then the intersection is

also appended. The sceneTriangle function edge returns a line corresponding to the edge

between the two specified scene vertices. With the line, l in scene space, and the triangle,

tri, at t = 0 the function intersectLineTriangle returns their intersection vertex.

checkCrossing(Vertex Va, Vertex Vb, List Lt,
TrilinearProjection tP, SceneTriangle sT) {

if Va.tValue() < 0 {
if Vb.tValue() >= 0 {
Line l = sT.edge(Va.sceneVertex(),Vb.sceneVertex())
Triangle tri = project(tp,0)
Lt.append(intersectLineTriangle(l,tri))

}
}
else {
if Vb.tValue() >= 0 {
Lt.append(Va)

}
else {
Lt.append(Va)
Line l = sT.edge(Va.sceneVertex(),Vb.sceneVertex())
Triangle tri = project(tp,0)
Lt.append(intersectLineTriangle(l,tri))

}
}

}

zeroIntersect(List V, List Lt, TrilinearProjection tP,



42

SceneTriangle sT) {
for i = 0..(V.size()-1) {
checkCrossing(V[i],V[i+1],Lt,tP,sT)

}
checkCrossing(V[V.size()-1],V[0],Lt,tP,sT)

}

void viewPlaneClip(ListofLists L, TrilinearProjection tP,
SceneTriangle sT) {

for each L’ in L {
if minimumTValue(L’) < 0 {
Lt = {}
zeroIntersect(L’,Lt,tP,sT)
copy(L’,Lt)

}
}

}

Listing 4.5: Calculating view-plane intersections

4.7 Summary

Building on the algorithm for projecting a scene point provided in the previous chapter, this

chapter examines the problem of projecting a scene triangle. Projecting a scene triangle

relies initially on projecting the vertices of the scene triangle separately. Each scene trian-

gle vertice may be projected one or three times and reconnecting the vertices is not trivial

because they may now form from one to four shapes of from two to nine vertices. This chap-

ter presents an algorithm to reconnect the vertices into their shapes. A more complicated

version of the algorithm constructs ordered polygons, where each vertex is connected to the

one before and after it in a list, which may be drawn by standard graphics algorithms.

The polygons drawn by the algorithms in this thesis are not necessarily correct

because the lines between vertices should be curved but are represented by straight lines.

To alleviate this problem tessellation methods are explored. Tessellating the scene vertex

provides more accurate rendering but at a significant performance cost. A new tessellation

algorithm is proposed that samples the scene triangle at extra values of t, the parametric

triangle parameter, within the shapes. These samples provide extra vertices on the rendered

shape at the cost of intersecting two triangles.

Linear projections are able to clip to a view frustum to correctly draw scene prim-

itives partially behind the viewpoint. A trilinear projection does not have a simple view



43

frustum, so to clip shapes that are partially behind the projection a traversal algorithm

is presented. A projected vertex is behind the projection if it has a negative value of t.

The clipping algorithm clips scene triangle edges to the trilinear projection plane when the

projected vertices change from negative to positive t.



44

Chapter 5

Multiple Surface Triangles

A projection comprising a single trilinear projection has limited curvature. More

complicated projections can be built with a mesh of trilinear triangles. In the same way

that a triangular scene mesh can be approximated as smoothly curving by sharing surface

normals, so can a projection mesh. Each trilinear triangle projection maps to a unique

triangular region of screen space. When projecting with multiple trilinear triangles, issues

of continuity arise that can be solved by clipping in scene space.

5.1 Screen Space Clipping

Screen space clipping trims the scene geometry to fit within the bounds of the trilinear

projection’s triangular region of screen space, after the scene geometry has been projected.

In current hardware, clipping planes or stencil buffers can be used to clip geometry to

the necessary triangular screen segments. A triangular projection mesh shares normals,

which means that the projection should appear continuous at the edges of a triangular

section. However, when clipped in screen space, continuity is not necessarily preserved.

Scene triangle edges that cross the boundaries between trilinear projections may not join

with their corresponding edges in the next trilinear projection. Figure 5.1 illustrates this

problem. The red and blue triangles are the projection of one scene triangle from two

different trilinear projections. If clipped in screen space, the edges of the red and blue

triangles do not meet at the boundary of the trilinear projections as they should. This is

a result of the linear approximation of the edges between projected vertices as described in

Section 4.5.



45

Figure 5.1: A scene triangle spanning two trilinear projections with a discontinuity

5.2 Scene Space Clipping

Discontinuities arising from screen space clipping can be addressed by clipping scene trian-

gles to the volume swept out by projecting the parametric triangle into scene space. The

result is equivalent to tessellating the projected scene triangle at the boundary of the next

trilinear projection. Each edge of a surface triangle forms a parametric line segment that

traces out a surface through space which may intersect with edges in the scene triangles.

To correctly clip to a parametric surface triangle region, the three parametric line segments

defining the triangle edges must be traced through all the scene triangles, and the triangles

clipped according to the intersections.

A line segment of the parametric triangle at t is defined parametrically by:

edgesegment (s, t) := pi + tni + s (pj + tnj) i, j = 1, 2, 3 i 6= j (5.1)

where s varies from 0 to 1. Consider the intersection between a parametric edge, defined

by the points pi + tni and pj + tnj , and a scene triangle edge, defined by the points ps1 and

ps2. The value of t at the intersection as projected out of the trilinear projection, can be

determined independently of s because for the two line segments to intersect they must lie

on the same plane. According to Equation 3.13 the four points are coplanar when:∣∣∣∣∣∣∣∣∣∣
ps1x − ps2x ps1y − ps2y ps1z − ps2z

pix + tnix − ps2x piy + tniy − ps2y piz + tniz − ps2z

pjx + tnjx − ps2x pjy + tnjy − ps2y pjz + tnjz − ps2z

∣∣∣∣∣∣∣∣∣∣
= 0 (5.2)



46

This can expanded giving a quadratic in terms of t. This quadratic may have two, or no real

solutions. Each value of t defines a triangle and the scene line can be intersected with that

triangle using the same algorithm as for ray tracing the intersection of a ray and triangle.

Figure 5.2 illustrates the parametrically defined edge, show in blue, intersecting an edge of

a scene triangle, shown in red, with the intersection point marked.

Figure 5.2: A trilinear projection edge swept out into scene space and intersected with a
scene triangle

5.2.1 Algorithm for Determining Intersection t Values

The determinant in Equation 5.2 can be described in terms of vector operations. When

grouped by terms of t this gives the coefficients of the quadratic of t, whose roots are the

projection lengths. Listing 5.6 can calculate the roots and coefficients for any of the edges.

In Listing 5.6 the quadratic is assumed to be coeff[0]t2+coeff[1]t+coeff[2], vertices

s1 and s2 describe two points on the line to intersect with the edge, and integers edge1

and edge2 are the enumerated numbers of the edge vertices. Other vectors are properties

of the trilinear projection as described in Appendix B. The function quadraticSolveReal

returns a list of the real roots of the specified quadratic. The t values calculated by this

listing are converted to intersection points in Listing 5.8.

List intersectLineEdge(Vertex s1, Vertex s2,
int edge1, int edge2) {

coeff = {}



47

switch(edge1+edge2) {
case 3 : intersectLineEdge12(s1,s2,coeff)
case 4 : intersectLineEdge31(s1,s2,coeff)
case 5 : intersectLineEdge23(s1,s2,coeff)
}

return quadraticSolveReal(coeff[0],coeff[1],coeff[2])
}

void intersectLineEdge12(Vertex s1, Vertex s2, List coeff) {
coeff[0] = dot(s1,cn1n2) - dot(s2,cn1n2)
coeff[1] = dot(s1,(s2*en1n2+cn1p2+cp1n2)) - dot(s2,(cn1p2+cp1n2))
coeff[2] = dot(s1,(s2*ep1p2+cp1p2)) - dot(s2,cp1p2)

}

void intersectLineEdge23(Vertex s1, Vertex s2, List coeff) {
coeff[0] = dot(s1,cn2n3) - dot(s2,cn2n3)
coeff[1] = dot(s1,(s2*en2n3+cn2p3+cp2n3)) - dot(s2,(cn2p3+cp2n3))
coeff[2] = dot(s1,(s2*ep2p3+cp2p3)) - dot(s2,cp2p3)

}

void intersectLineEdge31(Vertex s1, Vertex s2, List coeff) {
coeff[0] = dot(s1,cn3n1) - dot(s2,cn3n1)
coeff[1] = dot(s1,(s2*en3n1+cn3p1+cp3n1)) - dot(s2,(cn3p1+cp3n1))
coeff[2] = dot(s1,(s2*ep3p1+cp3p1)) - dot(s2,cp3p1)

}

Listing 5.6: Finding edge intersection t values

5.2.2 Integrating Intersection Points into Drawing Primitives

Each surface and scene triangle comprises three edges and each surface edge must be checked

against each scene edge. This means nine tests must be done per surface scene triangle

pair. Each test may furnish two valid intersection points. Additionally there is the case

of a spanning scene triangle, whose vertices and edges all fall outside the volume of the

parametric triangle but whose area does not.

To handle all these cases, intersection vertices are inserted in the shape without

culling outliers. The resulting shape is clipped again in screen space, so that spanning

and semi-spanning shapes are correctly drawn. Each edge of a projected shape is tested

and if either vertex lies outside the trilinear projection then intersecting vertices are added.



48

Listing 5.7 takes a set of shapes in viewEdgeClip and checks each one to see if intersecting

vertices need be added by calling edgeIntersect. The function edgeIntersect checks the

edge between each vertex pair of the shape including from the end to start vertices. A

vertex is deemed to be outside if its u and v parameters and their sum do not lie between

0 and 1. If either vertex is outside then spanEdge is called to insert intersection vertices.

void viewEdgeClip(ListofLists L, SceneTriangle sT) {
for each L’ in L
Lt = {}
edgeIntersect(L’,Lt,sT)
copy(L’,Lt)

}
}

void edgeIntersect(List V, List Lt, SceneTriangle sT) {
for i = 0..V.size()-1
checkEdge(V[i],V[i+1],Lt,sT);

}
checkEdge(V[V.size()-1],V[0],Lt,sT);

}

void checkEdge(Vertex Va, Vertex Vb, List Lt, SceneTriangle sT) {
Lt->append(Va);

if(!inside(Va) || !inside(Vb)) {
spanEdge(Va,Vb,Lt,sT);

}
}

boolean inside(Vertex v) {
alpha = 1.0 - (v.uValue() + v.vValue())
return ( alpha > EPSILON_ZERO_MINUS &&

v.uValue() > EPSILON_ZERO_MINUS &&
v.vValue() > EPSILON_ZERO_MINUS)

}

Listing 5.7: Finding clipping points in shapes

When either vertex lies outside the trilinear projection volume, there may be more than one

valid intersection point between them. The quadratic nature of the edge equation means

that there are two possible intersections per edge, making a total of six possible intersections

for the 3 edges of the trilinear projection. If these intersection points occur between the t

values for the starting and ending vertex and lie in the bounds of the trilinear projection,



49

they are inserted in the shape. Listing 5.8 shows the function spanEdge which finds and

inserts the valid intersection points.

void spanEdge(Vertex Va, Vertex Vb, List Lt,
TrilinearProjection tP, SceneTriangle sT) {

sVa = sT.vertex(Va.sceneVertex())
sVb = sT.vertex(Va.sceneVertexRight())

t = {}

t.append(tP.intersectLineEdge(sVa,sVb,1,2))
t.append(tP.intersectLineEdge(sVa,sVb,2,3))
t.append(tP.intersectLineEdge(sVa,sVb,3,1))

if Va.tValue() < Vb.tValue() {
tLow=Va.tValue()
tHigh=Vb.tValue()

}
else {
tLow=Vb.tValue()
tHigh=Va.tValue()

}

Ltemp = {}
for i = 0..t.size() {
if (t[i] > tLow) and (t[i] < tHigh) {
p = intersectLineTriangle(sVa,sVb,project(tp,t[i])
if inside(p) {

Ltemp.append(p)
}

}
}

Ltemp.sortByT()
if Va.tValue() < Vb.tValue() {
Lt.append(Ltemp)

} else {
Lt.appendReverse(Ltemp)

}
}

Listing 5.8: Inserting clipping points into shapes

Inserting extra clipping points into the polygons requires additional computation

to find the points and additional complexity in the resulting polygon. Both these factors



50

reduce performance. If scene triangles are sufficiently small when projected or if enough

scene triangles do not span across trilinear projections, then clipping may be unnecessary.

Such determinations are application specific.

5.3 Summary

This chapter describes how arbitrarily complicated nonlinear projections can be approxi-

mated by composite trilinear projections, with the scene rendered separately and clipped to

each projection triangle. In addition the chapter describes a scene-space clipping algorithm

to ensure continuity across multiple trilinear projections. The clipping algorithm projects

each trilinear projection edge into the scene and finds intersections with scene primitives.

These intersections are the solutions to a quadratic equation in terms of the edge’s param-

eter t. Each of these intersections is added as an additional projected vertex to the post

projection shapes. When a scene primitive is imaged across multiple trilinear projections

the added intersection points align, ensuring continuity.



51

Chapter 6

Nonlinear Projection for

Visualisation

One application of the parametric triangle projection techniques is nonlinear pro-

jections for visualisation. In data visualisation the aim is to present a view of the data

such that relationships become apparent. Distortions of the data can provide emphasis on

particular areas, or show the variation of the data against a base, such as the variation

of the earth against a perfectly smooth ellipsoid. Nonlinear projections provide a way of

implementing distortions by specifying a suitably shaped viewing surface.

Distortions of the data, while being fundamentally different in implementation

than rendering multi-perspective images, highlight the potential and applications for multi-

perspective images. Both seek to present the data in a changed way so that previously

unseen properties become apparent. This chapter describes some classes of nonlinear pro-

jections for visualisation and presents demonstration renderings made using the algorithms

put forward in this thesis.

6.1 Detail and Context

A Distortion Orientated Display (DODs) is a general visualisation technique based around

the distortion of data. DODs seek to show detail and context simultaneously. The general

problem is that when detail is shown, much of the screen is filled with that detail. If the

surrounding data is shown at the same level of detail, it would not fit on the screen. To

accommodate this, a DOD view shows a region of focus in detail, with a smooth transition

to a region of context at a lower detail level.



52

For example, Smith [Smi97] defines a distortion called a frustum display, which is

able to achieve levels of detail sufficient for a city level road map, whilst showing the context

of the whole of Australia. Both Carpendale [CCF97] and Winch [WCS00] expanded the

idea of distortion orientated displays to allow for focus regions in 3D data sets. These prove

useful for highlighting sections of particular detail in a scene without zooming and therefore

cutting out periphery data.

To implement a similar concept with nonlinear projection we define a projection

surface, shown in Figure 6.1, whose outer rays tends toward a perspective projection but

whose inner rays tend toward an orthographic or even inverse perspective projection. Each

triangular mesh section in Figure 6.1 is a trilinear projection and Figure 6.2 shows the

surface and the scene it used to render. Figure 6.3 shows the cube scene through a per-

spective projection, and Figure 6.4 shows the result of rendering the same scene with the

DOD projection surface. Figure 6.4 (a) is ray traced and (b) is rendered with trilinear

projection, showing that the trilinear projection produces results very similar to ray traced

image though much faster. The cube scene is composed of 686 scene triangles to simulate

the performance characteristics of a more complicated scene, full performance details can

be found in Section 8.7. The cube in Figure 6.4 is larger than in the perspective view in

Figure 6.3, though the checkerboard is the same size at its edges.

focus point

eye point

surface mesh

Figure 6.1: A Distortion-Oriented Display mesh projection surface



53

Figure 6.2: A Distortion-Oriented Display projection surface and a cube scene

6.2 Multiple Perspective Views

Multi-perspective views are intended to give a continuous transition between arbitrary views

on the data. Expanding on the concept of detail and context, multiple views aim to provide

different interpretations seamlessly interwoven. In previous work, [VC01a], see Appendix E,

the idea of distorting a mainly planar world onto the inside of cylinder was examined. This

was proposed, in the application of virtual maze navigation, so that two different perspec-

tives on the maze could be simultaneously realised: a local view of the undistorted maze

walls, and a navigational view of the distant maze perpendicular to the users viewpoint.

Figure 6.5 shows an example of the maze distortion.

A trilinear perspective approach to the problem illustrated by Figure 6.5 would

attempt to provide a first person, context and transitional view in a single projection. Figure

6.6 shows a side view of such a surface. The perspective projection portion provides detail,

the top orthographic provides context and the transition portion ties the two together. An

important distinction between the distortion and projection is that scene data may be seen

more than once in the projected approach. Figure 6.7 (a) shows a the cube scene ray traced

from the surface in Figure 6.6, and Figure 6.7 (b) shows a trilinear projection of the same



54

Figure 6.3: A perspective projection of a cube

(a) (b)

Figure 6.4: A Distortion-Orientation projection of a cube (a) ray trace (b) trilinear
projection



55

Figure 6.5: A maze distorted in a cylindrical fashion to show context



56

image. Again the trilinear projected image matches closely with the ray traced version.

The visualisation provides two distinct views on the cube, from the left and from the front,

and a transitional region in the middle that ties the two views together.

Figure 6.6: A multiple-perspective approach to showing first person detail and side view
context

6.3 Mappings

Distorting an object to view it better is most commonly illustrated with map projections,

which take a sphere, generally the earth, and transform it to a 2D map. Different projections

preserve different features of the data while distorting others. For example in the Mercator

projection directions are conserved, although sizes are not, to allow for easy sea navigation.

Although the distortion of size is an artifact, it allows for a better understanding of some

aspects of the globe.

In general, mappings show the variation of a data set relative to a surface, such as

the variation of the earth surface versus a sphere. Figure 6.8 shows a diagram of a spherical

mesh viewing a cube data set. The resulting visualisation communicates the nature of a

relationship between the data and viewing surface. Figure 6.9 (a) and (b) show a cube



57

(a)

(b)

Figure 6.7: A cube rendered from a surface derived from Figure 6.6 (a) ray trace (b) trilinear
projection



58

projected by a spherical viewing surface using ray tracing and trilinear projection. The

resulting image is related to a map projection, and shows a map of the cube’s faces. The

ray traced and trilinear projection images are very similar, though the zigzag pattern at the

top and bottom of Figure 6.9 (b) is due to degenerate trilinear projections at the poles.

Figure 6.8: An spherical mesh mapping a relation between the scene data and surface

6.4 Summary

Projection surfaces defined by triangular meshes provide sufficiently expressive nonlinear

projections to implement many forms of visualisations. These visualisations, similar in

nature to data distortions, provide non–traditional views on 3D scenes. These views can be

useful for gleaning information from data that is not readily available when viewed through

a standard projection. The trilinear projection algorithms in this thesis provide an accurate

and fast alternative to implementing these projections with ray tracing as shown in Section

8.7.



59

(a) (b)

Figure 6.9: A cube rendered by a spherical projection surface (a) ray trace (b) trilinear
projection



60

Chapter 7

Reflections and Refractions

Rendering reflections and refractions is an important problem in generating real-

istic scenes. The reflection on a plane from a perspective view corresponds to a perspective

view through that plane. This can be used to render planar reflections, as shown by Diefen-

bach [Die96]. Refractions and reflections on non-planar surfaces are not so simple. The ray

paths do not change in a linear manner and may be poorly approximated by linear projec-

tions. The most common nonplanar surface in computer graphics is the polygon mesh with

arbitrary normals. The nonlinear projection methods developed in this thesis can be used

to approximate reflections in polygon meshes.

7.1 Integrating Reflection and Refraction Projections into a

Scene

Reflections and refractions approximated with trilinear projections can be integrated into

the rendering pipeline in the same way planar reflections are integrated by Diefenbach

[Die96]. Incident rays on first-hit reflections and refractions depend on the eyepoint and

vertex points. With multi-hit reflections and refractions the incident ray to a particular

scene vertex can be calculated as a trilinear interpolation of the view surface triangle’s

normals with the u and v values of the scene vertex’s projection.

7.2 Reflections

The specular reflection of a ray is governed by the equation:

θr = θi (7.1)



61

where θr is the angle of reflection and θi is the angle of incidence. This leads to following

generally understood equation:

r = 2 (n · i) n− i (7.2)

where r, n and i are unit vectors for the reflection, surface normal and incidence direction.

7.2.1 First-Hit Reflections on a Polygon Mesh

First-hit reflections refer to reflections of rays that come directly from the eye point to a

reflector. Reflections off a curved surface represented by a polygonal mesh can be defined by

considering each point on a triangular section of the polygon mesh, the interpolated surface

normal and calculating the angle of incidence from the eye point to the surface point.

e

i

n

r

n1

n2

n3

p1

p2

p3

p

Figure 7.1: A diagram of a first-hit reflection

Figure 7.1 shows a diagram of a first-hit reflection. The incidence ray, i, emanates

from the eye point, e, and the ray of reflection, r, reflects off the surface of the scene triangle.

The normal vector, n, at the point of reflection, p, is interpolated from the scene triangle’s

vertex normals, n1..3. For a trilinearly interpolated surface point the reflection vector r is



62

given by:

n = (1− u− v)n1 + un2 + vn3 (7.3)

p = (1− u− v)p1 + up2 + vp3 (7.4)

i =
p− e

|p− e|
(7.5)

r = 2(n · i)n− i (7.6)

where p1..3 are the triangle vertices, n1..3 are the normals at each vertex, and e is the

eyepoint.

7.2.2 Approximated First-Hit Reflections

Reflections on trilinear projections can be approximated with the algorithms presented in

this thesis. If reflection vectors are calculated at the vertices of the reflecting triangle, this

triangle and reflection vectors can form a trilinear projection. The points p1..3 and vectors

r1..3 in Figure 7.2 form a trilinear projection approximating a reflection. The projection is

exactly correct at the vertices, but the reflection vectors across the surface will in general

only approximate the correct solution. This is because instead of interpolating the surface

normal and then calculating the reflection vector, the reflection vector is interpolated from

the vertex reflection vectors. However the computed reflection has several desirable char-

acteristics. For example it is nonlinear, which means that the reflection is curved, as is

expected, and it is continuous across multiple reflective facets. Figure 7.2 shows how the

reflection error arises. Vector r′ is interpolated as described in this section, whereas the

vector r is the correct reflected vector. The equations that define r′ are:

i1 =
p1 − e

|p1 − e|
(7.7)

i2 =
p2 − e

|p2 − e|
(7.8)

i3 =
p3 − e

|p3 − e|
(7.9)

r1 = 2(n1 · i1)n1 − i1 (7.10)

r2 = 2(n2 · i2)n2 − i2 (7.11)

r3 = 2(n3 · i3)n3 − i3 (7.12)

r′ = (1− u− v)r1 + ur2 + vr3 (7.13)



63

e

i

n r
n1

n2

n3

p1

p2

p3

r2

r3
r1 r'

i2

i1

i3

p

Figure 7.2: Error in an approximation of first-hit reflections

7.2.3 Multi-Hit Reflections on a Polygon Mesh

Multi-hit reflections do not directly trace backwards to the eye point but rather to one

or more intermediate reflectors. This means incident rays do not simply merge back to

the eye point, but may be arbitrarily more complicated. These reflections can also be

approximated by calculating the reflection rays at the vertices and projecting as a trilinear

projection, although the error in the computed reflection will be greater than for the first-

hit reflection. A more detailed polygon mesh means a more accurate approximation of the

reflection, at the cost of increased computation.

7.3 Refraction

Refraction is the bending of light due to the difference in refractive index between two

materials. Simple refraction can be described by Snell’s law, which shows the relation

between angles of incidence, refraction and the refractive index of the materials. Snell’s law

is described by the following relation:

sin θi

sin θt
=

ηt

ηi
(7.14)



64

where θi is the angle of incidence, θt is the angle of transmission, ηt is the refractive index

of the material the ray is entering and ηi is the refractive index of the material the ray is

leaving. This leads to the following equation:

q = ηi− (cos θt + η cos θi)n (7.15)

where q, i and n are the vectors of transmission, incidence and the surface normal, and

η = ηt

ηi
.

7.3.1 First-hit Refraction on a Polygon Mesh

As with first-hit reflection, incident rays all emerge from a view point. Each transmitted

ray q across the surface of a triangular section of the mesh, is determined by the following

equations:

n = (1− u− v)n1 + un2 + vn3 (7.16)

p = (1− u− v)p1 + up2 + vp3 (7.17)

i =
p− e

|p− e|
(7.18)

q = ηi− (cos θt + η cos θi)n (7.19)

7.3.2 Approximating Refraction

Refraction can be approximated with trilinear projection in a similar manner to reflection.

Transmitted rays are calculated at the vertices and these rays forms a trilinear projection.

An approximated transmitted ray q′ is described by the following equations:

q1 = ηi1 − (cos θt + η cos θi)n1 (7.20)

q2 = ηi2 − (cos θt + η cos θi)n2 (7.21)

q3 = ηi3 − (cos θt + η cos θi)n3 (7.22)

q′ = (1− u− v)q1 + uq2 + vq3 (7.23)

Again this approximated transmitted ray path is not necessarily equal to the correct ray q.

7.3.3 Multi-Hit Refraction on a Polygon Mesh

Like reflection, multi-hit refraction can mean arbitrarily complicated transmission ray sur-

faces. Approximation with trilinear projection by can still be used by calculating transmis-

sion rays at triangle vertices.



65

7.4 Example Projections

Figure 7.3 shows a scene with a reflective sphere and a cube that is being rendered from a

view point close to the sphere’s surface. The rays at the four corners of the view intersect

the sphere and are reflected off at various angles. Figure 7.4 (a) shows a ray traced image

similar to that which would be seen in the section of reflective sphere shown in Figure 7.3.

The cube scene is the same as is introduced in Chapter 6. Figures 7.4 (b) to (f) show a

trilinear projection approximation of the image with increasing projection mesh resolution.

In the 1x1 surface, Figure 7.4 (b), the trilinear projection is two coplanar triangles whose

normals are the reflection vectors show in Figure 7.3. Figures 7.4 (c) to (f) are rendered

from projection surfaces that are increasingly accurate approximations of the surface of the

sphere and the reflection vectors off the sphere’s surface. The increasing mesh resolution

means more trilinear projections are used to approximate the reflection, resulting in more

accurate rendering.

Figure 7.3: A cube reflected in a sphere

Figures 7.5 show a reflection of a cube scene on a flat plane 5x5 mesh, with

normal vectors randomly perturbed at the mesh points. This is similar to the sort of image

amusement park funny mirrors generate. Figure 7.5 (a) is the correct ray traced reflection

and Figure 7.5(b) is the reflection approximated by trilinear projection.

Figures 7.5 and 7.4 show the trilinear projection generated images are a good ap-



66

proximation to the ray traced images, although the trilinear projection images were rendered

much more quickly, see Section 8.7 for details of the rendering performance.

Figures 7.6 (a) to (f) show a refraction of a cube scene through a plane whose

normals are coincident. This simulates the effect of viewing an object through a convex

lens. Figure 7.6 (a) is the correct ray traced solution and figures 7.6 (b) through (f) show

trilinear projections to approximate this using 1x1, 2x2, 3x3, 4x4 and 5x5 resolution meshes

respectively.

7.5 Summary

Trilinear projection provides a nonlinear projection with which one can approximate re-

flections and refractions. Although ray directions are only exactly correct at the vertices,

the ray directions are continuous across the projecting surface. This continuity provides a

smoother approximation than using linear projection. Accuracy can be increased by tes-

sellating viewing surfaces, though this comes at the cost of performance. The particular

performance/accuracy trade off can be varied to suit the scenario.



67

(a) (b)

(c) (d)

(e) (f)

Figure 7.4: A cube reflected on a sphere: (a) ray traced, (b) 1x1 surface, (c) 2x2 surface,
(d) 3x3 surface, (e) 4x4 surface, (f) 5x5 surface



68

(a) (b)

Figure 7.5: A cube reflected on a plane with perturbed normals, implemented as a 5x5
trilinear projection surface: (a) ray traced (b) trilinear projection



69

(a) (b)

(c) (d)

(e) (f)

Figure 7.6: A cube refracted through a plane with spherical normals: (a) ray traced, (b)
1x1 surface, (c) 2x2 surface, (d) 3x3 surface, (e) 4x4 surface, (f) 5x5 surface



70

Chapter 8

Performance Evaluation

This chapter compares the performance of the algorithms developed in this thesis

against a ray tracing implementation. Ray tracing provides the simplest method of imple-

menting nonlinear projections, and is considered as the benchmark of visual accuracy, even

though ray tracing can suffer from aliasing problems. Most importantly, the measurements

presented in this chapter provide an estimate of the algorithm’s performance in terms of

speed for a given image size, scene and view surface complexity.

8.1 Experimental Conditions

A prototype implementation of the trilinear projection algorithms and a ray tracer was

developed using C++ and OpenGL. The prototype can draw single and multiple trilinear

projections, with or without clipping and tessellation. The ray tracing algorithm renders

trilinear projection surfaces in the manner described in Section 2.4, and some ray-triangle

intersection code is adapted from that presented by Buss [Bus03]. Reflective or refractive

projection surfaces can be generated automatically, and the ray tracing implementation can

render correct reflection and refraction solutions for comparison.

In the prototype code, ray tracing intersections are performed in software and

then pixel data is transferred to graphics hardware. With trilinear projection the projection

happens in software and then polygons are transferred to graphics hardware for rasterisation.

Execution speeds were averaged across multiple runs. Each run consisted of a

render including drawing the requisite pixels to hardware pixel buffers, but did not include

swapping buffers to screen. The results here were obtained on a 800 MHz Athlon with a

GeForce 2mx graphics card.



71

8.1.1 Data

Scenes used to measure the algorithm’s performance consisted of disconnected triangles

with arbitrarily specified vertex colours. No lighting or texture mapping was applied. The

results in Figures 8.1, 8.4 and 8.9 to 8.12 were obtained with single scene triangles of

different configurations as show in Figures 4.1 to 4.7. These scenes were designed to test the

performance of the algorithms over the different possible projected shapes, and to measure

the visual accuracy of the tessellation methods.

Results in the other figures in this chapter, except those in Section 8.7, were

obtained with random triangles constrained such that some of the scene triangle should be

rendered on the screen. Trilinear projection meshes for the random triangle scenes were

composed of random points and normals corresponding to a regular mesh on screen space.

These scenes were designed to test the performance characteristics of the algorithms over

differing scene and trilinear projection mesh complexity. Section 8.7 shows timing results

for various example scenes shown in Chapters 6 and 7 of this thesis.

8.1.2 Caveats

The ray tracing implementation used to gather the results in this chapter is naive with re-

spect to its scene organisation. Scene triangles were tested in sequence with no hierarchical

organisation. A more sophisticated ray tracing implementation would organise the scene

hierarchically so that rays need only be intersected with a subset of the scene. Such tech-

niques can considerably speed up ray tracing so that it is sub-linear in speed with respect

to scene complexity. Although not implemented in this prototype, hierarchical scene or-

ganisation can reasonably be expected to benefit trilinear projection as well. With multiple

trilinear projections each trilinear projection may see only a portion of the scene. Hierar-

chical organisation of the scene would speed up rendering by making it easier to test if a

group of triangles is seen by a particular trilinear projection.

The amount of processing done by the standard central processing unit versus the

graphics unit could be varied by different implementations. Ray tracing implementations

have been made for current graphics hardware though they are not yet prominent. Although

not explored in this thesis, it should be noted that the trilinear projection algorithms could

most likely also be fully implemented in current graphics hardware.



72

8.2 Ray Tracing

Figure 8.1 shows average execution time to render a single scene triangle against image size

in square pixels. Each line on the graph corresponds to a single scene triangle rendered

from a single trilinear projection resulting in a different configuration as in Figures 4.1 to

4.7. As expected, rendering time increased linearly with resolution. Rendering time was

approximately equal for different resulting shape configurations.

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Resolution (square pixels)

Figure 8.1: Execution time versus resolution for ray tracing different configurations

For scenes with random scene triangles, Figure 8.2 shows that execution time is

still linear with resolution. Each line on the graph corresponds to a scene with a different

number of random scene triangles.

Figure 8.3 plots the same data set as Figure 8.2 but as execution time versus

scene triangles for different resolutions. Each line on the graph corresponds to a different

resolution. Execution increased mainly linearly against the number of scene triangles except

for the largest scenes, which were slightly slower. The decrease in speed for complex scenes

could have been due to a number of factors but most likely was caused by cache misses

between memory and processor across the multiple runs.

As expected, this naive ray tracing implementation was linear in execution time

against both image size and number of scene triangles. Because ray starting position and

normal direction were determined as described in Section 2.4, rendering trilinear projection

surfaces with ray tracing should have similar performance to the ray tracing of perspective

projections.



73

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Resolution (square pixels)

Figure 8.2: Execution time versus resolution for ray tracing across different complexity
scenes

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Scene Triangles

Figure 8.3: Execution time versus number of scene triangles for ray tracing across different
resolutions



74

8.3 Trilinear Projection

Figure 8.4 shows the performance the trilinear projection algorithm under the same con-

ditions as the ray tracing algorithm in Figure 8.1. Configurations with shapes of three or

less vertices were rendered faster than shapes with four or more vertices because render-

ing complex shapes involve potential tessellation as the shapes may self intersect and be

non-convex. Most shape configurations were rendered in a constant time against resolution,

because the rasterisation of the shapes is quick in comparison to projecting the shapes.

The (9) vertex shape configuration became slower with increasing resolution after a certain

point because the graphics hardware reached its fill-rate limit.

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Resolution (square pixels)

Figure 8.4: Execution time versus resolution for trilinear projecting different configurations

Figure 8.5 shows that execution time versus resolution is constant with trilinear

projection until a certain point. Each line on the graph represents a scene of different

complexity. At resolutions greater than 1.5 × 105 the fill rate of the graphics hardware is

important and execution time became linear with respect to resolution.

Figure 8.6 plots the same data set as Figure 8.5 but with execution time versus

the number of scene triangles across different resolutions. Each line in the figure represents

a different square scene resolution. The execution time was linear against the number of

scene triangles because each scene triangle requires a constant computation time to render.



75

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Resolution (square pixels)

Figure 8.5: Execution time versus resolution for trilinear projection across different com-
plexity scenes

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Scene Triangles

Figure 8.6: Execution time versus number of scene triangles for trilinear projection across
different resolutions



76

8.4 Speed up

The speed up in execution of trilinear projection over ray tracing was calculated as the

time to render a given scene using ray tracing divided by the time taken to render the same

scene with trilinear projection. Figure 8.7 shows a graph of speed up versus resolution for

different single triangle scenes. Each line in the figure represents a different configuration as

per Figures 4.1 to 4.7. The more complicated shapes exhibit less speedup than the simpler

shapes because the execution time for trilinear projection is less for simpler shapes. More-

over, because the trilinear projection rendering time for a simple configuration was nearly

constant, and the rendering time of ray tracing was linear, the speedup versus resolution is

linear.

T
ri

lin
ea

r
P

ro
je

ct
io

n
E

xe
cu

ti
on

T
im

e
on

R
ay

T
ra

ci
ng

Resolution (square pixels)

Figure 8.7: Relative speedup versus resolution for trilinear projection across different
configurations

Figure 8.8 shows the speed up of trilinear projection over ray tracing across differ-

ent complexity scenes, for a 1x1 trilinear projection surface. A single triangle scene exhibits

a large speedup, but all complex scenes tend toward a speed up of between 500 and 1000

times with increasing resolution.

8.5 Tessellation Methods

The two tessellation methods described in Section 4.5 were evaluated over the different

configurations for accuracy and execution time versus tessellation factor.

Visual accuracy was measured by subtracting RGB pixel values of the test image



77

T
ri

lin
ea

r
P

ro
je

ct
io

n
E

xe
cu

ti
on

T
im

e
on

R
ay

T
ra

ci
ng

Resolution (square pixels)

Figure 8.8: Relative speedup versus resolution for trilinear projection across different com-
plexity scenes

from the baseline image, generated by ray tracing, then computing the average absolute

value of the error per pixel. Because the RGB values are interpolated across the face of

the scene triangles, this technique allows errors to be estimated for more than just the

silhouette. The relative error is defined as the average RGB value of the difference mask

divided by the average RGB value of the ray traced image.

Figures 8.9 and 8.10 shows that tessellation factor versus error was similar for

scene triangle tessellation and parametric triangle slicing techniques over the different con-

figurations. Each line in the plots represents a different configuration.

Figure 8.11 shows the averaged results over the different configurations for both

tessellation techniques. Apart from initial conditions that randomly favoured one technique

over the other, the error quickly converges to the same value.

However, the two techniques have very different execution time versus tessellation

factor graphs as can be seen in Figure 8.12. Scene triangle tessellation takes a super-linear

amount of execution time whereas parametric triangle slicing is linear. This follows from the

fact scene triangle tessellation exponentially increases the number of vertices with a linear

increase in tessellation factor, whereas parametric triangle slicing increases the number of

vertices by two times the increase in tessellation factor.



78

R
el

at
iv

e
In

te
ns

it
y

of
th

e
D

iff
er

en
ce

M
as

k

Tessellation Factor

Figure 8.9: Relative intensity of the difference mask versus tessellation factor for parametric
triangle slicing over different configurations

R
el

at
iv

e
In

te
ns

it
y

of
th

e
D

iff
er

en
ce

M
as

k

Tessellation Factor

Figure 8.10: Relative intensity of the difference mask versus tessellation factor for scene
triangle tessellation over different configurations



79

R
el

at
iv

e
In

te
ns

it
y

of
th

e
D

iff
er

en
ce

M
as

k

Tessellation Factor

Figure 8.11: Relative intensity of the difference mask versus tessellation factor averaged
over each configurations for parametric triangle slicing and scene triangle tessellation

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Tessellation Factor

Figure 8.12: Execution time versus tessellation factor averaged over each configurations for
parametric triangle slicing and scene triangle tessellation



80

8.6 Multiple Trilinear Projections

This section details the performance of trilinear projection and ray tracing for multiple

trilinear projections. Figure 8.13 shows ray tracing execution time versus the number of

trilinear projections. Each line in the plot represents a different resolution for a scene with

640 scene triangles. The figure shows that ray tracing time is essentially constant versus

the number of trilinear projections, as each triangle introduces only a very small overhead

into the rendering process.

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Trilinear Projections

Figure 8.13: Execution time versus number of trilinear projections for ray tracing across
different resolutions

Figure 8.14 shows a graph of execution time for rendering the same images with tri-

linear projection versus the number of trilinear projections. Each line in the plot represents

a different resolution for rendering a scene with 640 scene triangles. With trilinear pro-

jection each additional trilinear projection effectively requires a re-rendering of the scene.

The graph shows that trilinear projection technique is linear versus the number of view

triangles, which means the additional amount of work per trilinear projection is constant.

Figure 8.15 shows the speed up of trilinear projection over ray tracing with in-

creasing numbers of view triangles across different resolutions with a 640 scene triangle

scene. As expected, the speed up decreases with more view triangles as the resolution per

view triangle decreases.

Trilinear projection requires clipping of the view for each view triangle. Figure

8.16 shows the relative cost of the scene-space clipping algorithm described in Section 4.5.2

against the simpler screen-space clipping. This figure shows the slow-down versus number



81

E
xe

cu
ti
on

T
im

e
(m

ill
is

ec
on

ds
)

Trilinear Projections

Figure 8.14: Execution time versus number of trilinear projections across different
resolutions

T
ri

lin
ea

r
P

ro
je

ct
io

n
E

xe
cu

ti
on

T
im

e
on

R
ay

T
ra

ci
ng

Trilinear Projections

Figure 8.15: Execution time versus number of trilinear projections across different
resolutions



82

of trilinear projections. Slow-down is the execution time for scene-space clipping divided

by simple screen-space clipping. Each line on the figure represents a different complexity

scene. Apart from the single scene triangle case, the slow-down does not depend on the

number of view triangles. The slow-down is initially low with a small number of trilinear

projections, then climbs before being linear with respect to trilinear projections. Overall

scene-space clipping reduces performance around two times, and the further performance

deterioration with increasing numbers of trilinear projections is only slight.

R
el

at
iv

e
Sl

ow
-d

ow
n

Trilinear Projections

Figure 8.16: Relative execution time for clipped and non-clipped trilinear projection versus
number of trilinear projections across different complexity scenes

8.7 Nonlinear Projection for Visualisation, and Reflections

and Refractions

For the examples in Chapters 6 and 7 the performance results can be seen in Table 8.1. For

all the examples trilinear projection performed many times faster than ray tracing, often

with little visual difference between the resulting images.



83

Figure Resolution Trilinear Scene Ray(ms) Trilinear(ms) Speed up
Projections Triangles

6.4 800× 800 18 686 226906.0 164.6 1379
6.7 900× 300 6 686 92163.0 49.6 1858
6.9 600× 600 200 588 40518.0 1242.0 37

7.4 (a) 800× 800 686 177926.0
7.4 (b) 800× 800 2 686 24.4 7292
7.4 (c) 800× 800 8 686 70.1 2538
7.4 (d) 800× 800 18 686 150.1 1185
7.4 (e) 800× 800 32 686 230.2 773
7.4 (f) 800× 800 50 686 360.7 493

7.5 800× 800 50 686 254066.0 410.7 619
7.6 (a) 800× 800 686 247576.0
7.6 (b) 800× 800 2 686 18.5 13382
7.6 (c) 800× 800 8 686 72.3 3424
7.6 (d) 800× 800 18 686 167.0 1482
7.6 (e) 800× 800 32 686 287.8 860
7.6 (f) 800× 800 50 686 467.3 530

Table 8.1: Execution time for rendering examples in this thesis



84

8.8 Summary

Trilinear projection provides a method of rendering nonlinear projections with performance

characteristics similar to scanline rendering. For a single trilinear projection, drawing scene

triangles involves two main additional complications over linear scanline projection: solving

the equations in Chapter 3 for each point and turning the results into its constituent poly-

gons, and drawing the resulting polygons, which are often more complicated. For scenes

rendered with a single view triangle, trilinear projection offers performance with similar

characteristics to linear scanline rendering. For multiple trilinear projections, performance

depends on the number of view triangles.



85

Chapter 9

Related Work

This work on which this research is based is in general split between the two

applications of nonlinear projections: reflections on curved surfaces and as a visualisation

technique. The two most prevalent rendering algorithms, ray tracing and scanline rendering,

each present different ways of realizing such projections. Research pertinent to the two

algorithms and particularly to rendering reflections on curved surfaces is presented and

examined.

9.1 Ray Tracing

Classical ray tracing is first clearly defined by Whitted [Whi80]. The physics of seeing can

be described simply as the process of emitted light interacting with a scene before exciting

receptors in our eyes. In its simplest form, ray tracing shoots imaginary light rays out of

the eye through the image plane into the scene. The closest intersection between this ray

and an object determines the colour the ray contributes to its associated pixel.

The similarity of ray tracing to the physical process of illumination makes it suit-

able to model many complicated effects. Amongst these effects are shadows, surface proper-

ties, reflection and refraction. The disadvantage of ray tracing is generally a larger rendering

time than scanline methods.

Recursive ray tracing, as set out in Whitted’s work, generates one ray (at least) for

each screen pixel. This ray then intersects the scene geometry. From this intersection a ray is

shot to each light source, and if the surface is reflective or refractive a reflected or refracted

ray is also spawned. The rays shot toward the light source determine if the point from

whence they originated is in shadow; if the ray intersects scene geometry before reaching



86

the source then the point is in shadow from that source. Reflected and refracted rays carry

on through the scene (themselves potentially being refracted or reflected) acquiring surface

interactions that ultimately affect the end colour of the pixel with which they are associated.

In this way ray tracing handles reflections on curved surfaces in exactly the same way as

does tracing of eye rays. Once a ray starting position and direction have been determined,

be it eye or reflection/refraction ray, its interaction with the scene is resolved in the same

manner.

Ray tracing can easily simulate complicated properties of light-surface interaction,

reducing them to problems of multiple vectors. At any ray-surface interaction, there are

vectors representing input, light source and surface normal directions. Along with surface

properties, such as colour and texture, these are the inputs to the function that determines a

portion of the colour to be attributed to the ray’s originating pixel. This makes a convenient

and flexible representation for describing illumination phenomena.

A naive ray tracing implementation makes no attempt to exploit the coherence

between rays in a scene. Since the eye rays (which originate from the viewpoint in the

scene) all intersect at a common point, this commonality can be exploited as in scanline

rendering. For a scene primitive it can be determined which eye ray will intersect it by

projecting the scene geometry onto the viewing plane.

Naive ray tracing also suffers from aliasing problems. Rays are infinitely thin,

which means sampling edges is very jagged. To overcome this problem, multiple rays per

pixel can be cast, or rays with volume (beams, cones or pencils) can be used. In cone tracing,

rays are replaced by cones. Each cone can stand for multiple rays (which exploits the

coherence between them) and is intersected against the primitives in the scene to determine

what it images. Cones have volume so aliasing caused by the point-sampled nature of ray

tracing can be eliminated.

9.1.1 Beam Tracing

Heckbert and Hanrahan [HH84] introduced the idea of using beams which are shot into

the scene instead of infinitely thin rays. These beams travel into the scene and are clipped

against scene objects. Each beam is effectively a perspective transformation, and a beam

frustum is a perspective view defined by a starting point and a rectangular frustum. The

scene objects are depth sorted and traversed in order. If an object is “seen” by the beam

it is subtracted from the beam’s 2D scene representation. The representation is initially

blank and accepts any object. Additional objects are added in accordance with polygon set



87

rules, hence hiding objects that are behind the currently held set.

When a beam intersects a reflective or refractive object a new beam is created in a

manner similar to ray tracing. The reflected or refracted beam represents the transformation

of the incident beam according to the physical laws as much as possible. The generated

beam accurately represents the optical path of a reflection on planar surfaces. However, the

nonlinear nature of refractions means that the generated beam does not necessarily exactly

represent the optical path of all light refracted from the incident beam. Reflections and

refractions on curved surfaces cannot be represented accurately by beams.

9.1.2 Spatial Subdivision

The cost of testing intersections between rays and surfaces can be reduced by the prudent

arrangement of surface geometry within hierarchical structures. The path through the

hierarchical structure for the ray is computed and intersections are only checked for objects

in the cells through which the ray passes. These cells can be checked in order, so that when

the nearest intersection in the first cell is found, no further cells need be investigated. In

Havran et al’s work [HPP00] different hierarchical subdivision schemes were tested on a

standard testbed of geometry from the Standard Procedural Database described by Haines

[Hai87].

9.1.3 Hardware Ray Tracing

Scanline graphics hardware is currently popular and widely distributed, whereas ray tracing

has lacked widely available hardware solutions. As scanline hardware has become increas-

ingly general, ray tracers have been implemented in scanline hardware. The highly parallel

nature of ray tracing means that it should be well suited to implementation of Single

Instruction Multiple Data (SIMD) hardware. Each different ray path can be computed in-

dependently of any other ray path if desired. Purcell [PBMH02] and Carr [CHH02] provide

implementations that exploit this coherence on graphics hardware. Though performance

in both papers was at best equal to CPU-based implementations, the expectation is that

the rate of growth of Graphics Processor Unit (GPU) performance will exceed that of CPU

performance in the near future. Historically this has proved to be the case, due in large

part to the more parallel nature of the operations performed by the GPU hardware.



88

Figure 9.1: A conventionally rendered set of columns

9.2 Ray Tracing Nonlinear Projections

Nonlinear projections can be rendered by ray tracing if a nonlinear projection can be ex-

pressed as a set of rays. The way in which a nonlinear projection defines a set of rays has

been considered by several researchers and some approaches are examined in this section.

9.2.1 Ray Tracing with Extended Cameras

In Löffelmann and Gröller’s work [Löf95] the idea of rendering from multiple viewpoints

with ray tracing is examined. By developing an extended camera for ray tracing, the

authors present multi-perspective images with visualisation as an application. Essentially,

an extended camera is a set of 3D rays. Each ray has a starting position and a direction, and

these rays are used by a conventional ray tracer to draw the scene. Unlike a conventional

ray tracer, these rays do not necessarily originate from the same point.

Figures 9.1 and 9.2, both taken from Löffelmann and Gröller’s work, show the

extended camera ray tracing in operation. The image in Figure 9.1 is rendered normally;

the image in Figure 9.2 is rendered out of a torus camera, where rays all start on the

surface of the torus and point in the direction of the surface normal. The extended camera

is comprised of three sections: an object space transformer, a picture space transformer and

a parameter space transformer. The object space transformer is a function that returns the

3D start position of a ray given its corresponding index on the 2D screen. This function

defines a surface in 3D, and the scene is rendered “out of” this surface.



89

Figure 9.2: Columns rendered from a torus surface

The extended camera generates rays which are rendered with POVray a widely

available ray tracing implementation [oVPL04]. This means the implementation handles a

wide range of geometry and lighting conditions and the performance is that of a standard

ray tracer.

Löffelmann and Gröller’s extended cameras are similar to trilinear projection. In

their terms, the trilinear projection would be described as an extended camera corresponding

to a triangle with trilinearly interpolated normals.

9.2.2 Cubism and Cameras: Free-form Optics for Computer Graphics

Glassner [Gla00] examines nonlinear projections and their expressive power. Nonlinear

projections provide storytelling tools and can compose images that are not as limited by

the geometry of the scene. As an example, Glassner suggests a scene where there are three

characters of interest: a boy and girl in separate houses and a brother in the road between

them. These three characters can be imaged with nonlinear projection without juxtaposing

disjoint images together; a hand-drawn version is shown in Figure 9.3.

Glassner proposes that the geometry of the nonlinear projection can be defined by

two surfaces: an eye surface and a lens surface. These surfaces are NURBS (Non-Uniform

Rational B-line Spine) patches that define ray starting positions and direction vectors. Each

pixel maps to a point on both surfaces and rays are shot from the eye surface through the

corresponding point on the lens surface. Generating eye and lens surfaces to suit particular

artistic goals is not an intuitive process and a collage approach is suggested as an alternative.



90

Figure 9.3: A hand-drawn nonlinear projection of a street scene [Gla00]

The collage approach ties section of the nonlinear projection to standard rendered views,

and intermediate areas are interpolated with ray tracing. This approach is similar the

trilinear projection technique examined in Section 6.2.

9.2.3 Multi-Perspective Images for Visualisation

In earlier work [VC01b], see Appendix F, we present an interface for specifying nonlinear

perspectives based upon the OpenGL library [SA98]. Nonlinear surfaces are specified by

defining vertex and normal directions for each ray in a nonlinear projection or by specifying

other common scene primitives such as triangles, and rendered using a ray tracing imple-

mentation. Figure 9.4 shows a cube rendered from a hemisphere surface above the scene,

with the ray positions and directions defined by a Bezier surface. Specifying a nonlinear

projection using a common scene primitive such as a triangle was the inspiration for the

trilinear projection described in this thesis.

9.2.4 General Linear Cameras

Yu and McMillan [YM04] introduce General Linear Cameras (GLC) as a mathematical

description for a class of nonlinear projections defined by three rays passing through two

parallel planes. The authors define and name various special cases of these cameras, and

implement them with ray tracing and a light field rendering system.

The trilinear projection defined in this thesis is less constrained than a GLC be-

cause it is not defined by the intersection with two parallel planes. A trilinear projection is a

GLC if the trilinear projection vectors have magnitude in the direction normal to the view-



91

Figure 9.4: A cube rendered from a hemisphere surface [VC01b]

ing triangle. Therefore, the trilinear is a superset of the GLC. However, if the lengths of the

three normal vectors of a trilinear projection are varied it results in a different projection.

9.3 Scanline Rendering

In its simplest terms, scanline rendering involves a perspective transformation distorting the

scene data to represent the effect of the virtual camera, and the sampling and quantization

of the scene data to a 3D grid (the screen buffer and the z-buffer).

Like ray tracing, scanline rendering can take advantage of techniques that re-

move hidden geometry early. Occlusion culling techniques have been developed for scanline

methods which remove unseen geometry before it is drawn to the z-buffer. These techniques

usually involve spatially subdividing the scene and organising it into a hierarchy. However,

the benefit is not so great as in ray tracing, because each ray must traverse into the scene,

whereas in scanline rendering the scene is traversed only once.

9.3.1 Multi-Pass Rendering

In Diefenbach’s thesis [Die96] multi-pass methods for increased graphical realism are pre-

sented. Specular reflections and reflections, shadows, and global illumination are incorpo-

rated into a rasterising framework. Reflections on planar surfaces are rendered from a virtual

viewpoint (the viewpoint as reflected by the plane of reflection) and incorporated into the

image as an additional pass. This is very similar to beam tracing as described in Section



92

9.1.1, although using z-buffer hidden surface algorithms rather than set intersections.

While correctly handling reflections on planar surfaces the technique does not

handle reflections on curved surfaces. However it does provide a general framework by

which reflections and refractions can be drawn by different projections and incorporated

into the frame.

9.3.2 Reflections on Spheres and Cylinders of Revolution

Glaeser [Gla99] presents equations for calculating the reflection of a space point on a sphere

or cylinder of revolution. The solution to the reflex is an algebraic equation of order four,

which comes from the fact that both cases can be reduced to the 2D reflection on a circle.

Figure 9.5: Catacaustic of the reflection congruence [Gla99]

Geometrically the problem can be seen in Figure 9.5, taken from Glaeser’s work

[Gla99]. S is the point that is reflected by the circle (centre at M), as seen from viewpoint

E. A ray shot from the eye at E reflects off the circle at point R. Calculating the roots of

an order four polynomial gives four values of E. Each value of E may be valid. Lines and

polygons reflected on spheres and cylinders of revolution can be drawn by subdividing the

line or polygon sufficiently. Higher order reflections, such as reflections on spheres reflected

on spheres for instance, are not handled by this work. For a limited subset of geometry this



93

work provides an exact solution to projecting geometry onto reflective objects.

9.3.3 Multiple-Center-of-Projection Images

Rademacher and Bishop [RB98] presents generalised multi-perspective images as the basis

for resynthesis, the advantage being a variable level of sampling without multiple separate

images. The paper calls these Multiple-Centre-Of-Projection images. One section of the

panorama can be from close to a portion of the image, giving a high sampling for that

area, while others are further away and capture more of the object. Moving a virtual

camera through the scene generates the multi-perspective panorama. At regular intervals

the camera captures a single line of pixels for the final panorama. These lines, either rows

or columns, are placed next to each other, so that the viewpoint smoothly changes from one

to the next. This is effectively a virtual strip camera, as detailed in Section 1.1.2. Figure

9.6 shows a Multiple-Centre-Of-Projection image of an elephant. The virtual camera path

goes from one side of the elephant to the other, so that the image simultaneously shows

both sides and the front.

Generating a Multiple-Centre-Of-Projection is not designed to be done dynami-

cally. The generation of such images takes time of the order of the time taken to scanline

render the scene multiplied by the number of single-pixel-width images captured. The de-

scription of camera path closely matches the model of extended camera detailed in Section

9.2.1. The idea extends beyond the simple idea of a strip to that of a full surface, though

automatic generation of images with such surfaces is not examined.

9.4 Object Distortion for Nonlinear Projections

Object distortion methods are similar to perspective distortion techniques, except that

they deform geometry to approximate arbitrary nonlinear projections. Once deformed, the

geometry can be rendered by standard techniques, usually scan line rendering. Previous

research in distortion methods for visualisation do not describe distortions in terms of

nonlinear projections, but do give general motivation for the distorted viewing of data.

9.4.1 Distortion Methods for Visualisation

The fundamental problem distortion-oriented techniques solve is the “detail and context”

problem. This problem occurs when visualisations need to present information-rich detailed

views concurrently with sparser context views. A classic problem in the domain is that of a



94

Figure 9.6: A nonlinear projection of an elephant [RB98]

street map. Seeing street-level information in sufficient detail to traverse streets precludes

seeing enough of the street map to navigate larger distances.

Leung [LA94] presents a review and taxonomy of distortion-oriented techniques

particularly for text and 2D graphics. He proposes that various continuous 2D distortions

for visualisation can be subsumed under the technique of ‘rubber sheet’ warping. This

warping stretches data in a manner analogous to stretching a rubber sheet, and can express

continuous 2D deformations.

Distortion-oriented display ideas are extended to 3D data by Winch et al [WCS00]

and Carpendale [CCF97]. In Winch et al’s work, regions of interest can be zoomed in 3D.

These regions expand space around a focal point, distorting close data, and gradually falling

off as distance increases. Winch et al also explores [WCS01] occlusion around regions of

interest and transparency of occluding data.

Carpendale [CCF97] explores techniques for displaying both detail and context

within 3D graphs. This work is particularly concerned with the issue of occlusion, where a

particular graph node may be obscured by the nodes in front of it. The authors propose

techniques for nonlinear expansion of space around nodes of interest and for moving occlud-

ing nodes. Nodes that occlude a node of interest are moved out of the way by a nonlinear

region of expansion along the line between the eye point and node of interest.



95

9.4.2 Interactive Reflections on Curved Objects

The most intriguing approximation of rendering reflections on curved surfaces is described

by Ofek and Rappoport [OR99]. In this method, objects are transformed by the reflective

surface so that they may be rendered from a single viewpoint. In essence the data is distorted

to an approximation of how it will look after being viewed from a reflective surface, and

then rendered. The technique requires an appropriate tessellation of both reflective surface

and scene object to approximate the curvature of lines reflected with curved surfaces. The

performance of this technique is sufficient for real-time rendering of moderate scenes. The

technique works on standard polygon scenes making it suited for visualisation tasks, and

allowing easy integration into current applications.

The correspondence between a point in space and the reflective surface is approx-

imated by two “explosion maps”, one close to the reflective surface and one distant, both

centred on the reflective surface. An explosive map is a projection of the reflective triangles

out along their normals onto the surface of a sphere. A point in space is then projected

onto both spheres, through the centre, and averaged. The reflective triangle on which the

point falls is assumed to be the reflective triangle which ‘sees’ the point. The coordinate

at which the projected space point intersects the reflective triangle on the explosion map is

used to distort the space point to its projected position.

An explosion map is an approximation of the geometry of the reflection mapping.

The mapping of scene point to the explosion map through the centre is only accurate if the

reflection vectors of the surface happen to pass through the centre. This approximation

back to a centre is similar to the way in which environment mapping approximates all

reflection rays back to a centre. With two explosion maps, one near and the other far, the

error is probably lessened but the extent of the improvement is unclear. The explosion map

approximation generates a single corresponding point for each scene point, even if the that

point would be reflected by multiple places on that surface.

9.4.3 Specular Path Perturbation

Specular path perturbation, detailed by Chen and Arvo [CA00], approximates reflections

with perturbation methods. Given a scene point and view point the technique determines

which point on the reflective surface images that scene point. From a set of known re-

flection, view, and scene point correspondences, similar reflection correspondences can be

approximated with second-order derivatives. For scene objects imaged multiple times by

the reflective surfaces, the technique does not necessarily connect the constituent reflected



96

vertices correctly.

The approximate nature of the calculation makes it fast without losing too much

accuracy compared with ray tracing. However, the set of known reflections needs to be

pre-calculated, making the technique unsuited to dynamic scenes, though dynamic shading

can be added to the reflected images.

9.4.4 Region of Influence Cameras

Singh [Sin02] present an algorithm and interactive tool for creating nonlinear perspectives.

The concept is based around the idea of multiple cameras. Each camera has a position and

direction as well as a center of interest. Any given scene point is projected by a weighted

sum of the individual camera transformation matrices and their view-port parameters. This

is an efficient way to distort the data based on certain constraints. The weights are mainly

determined by a combination of two factors: positional influence and directional influence.

Positional influence biases weights higher for cameras whose center of interest is near the

scene point. Directional influence biases weights higher for cameras whose central line of

projection is near to the scene point.

The interactive and intuitive nature of the camera specification makes it suit-

able for certain artistic goals. Fundamentally this technique forms a distortion of the data.

However, no scene point may be imaged by multiple cameras whereas general nonlinear pro-

jections may involve imaging the same point multiple times, especially when implementing

reflections and refractions.

9.5 Approximating Reflections on Curved Objects with Im-

age Based Rendering

Reflections on curved surfaces are a natural form of nonlinear projection. Computer graph-

ics has long been interested in realistically rendering scenes including reflections. However

the problem of computing reflections on curved objects for artistic purposes is simpler then

that of computing true nonlinear projections. In particular, artistic reflections need not be

entirely accurate, and often they only reflect static geometry, and hence can make use of

pre-rendered data. Additionally they are often assumed to be small in relation to the rest

of the screen, lessening accuracy requirements and making per-pixel costs less important.

In contrast, nonlinear projections for visualisation need to be dynamic, geometrically ac-

curate and generally fill the screen. Nevertheless, research into generating reflections on



97

curved objects, especially for real-time graphics, shows how nonlinear projection can be

implemented.

Image-based rendering techniques for reflections and refractions often render to

textures that are used in a scan-line rendering system to draw the images on the reflective

or refractive objects.

9.5.1 Environment Mapping

Environment mapping was initially suggested by Blinn and Newell [BN76], and is often used

to approximate curved reflections for real-time graphics. When a scene is rendered from a

particular viewpoint, the light coming into that point is sampled. With enough samples for

a particular viewpoint, the technique can approximate the colour of any ray shot from that

point. A popular implementation of environment mapping involves rendering to the six

faces of a cube centred on a point. When used for generating reflections, this centre point is

the centre of the reflective object. For each ray that bounces off the reflective object, a ray

is shot from the centre point in the direction of the reflected ray into the cube. In effect,

this approximation moves each reflected ray to the centre of the cube. For scenes where the

reflected objects are far away from the reflective object the technique works well; otherwise

the approximation is obvious. For general nonlinear projections, environment maps may

not be sufficiently accurate. The light is sampled at only one point, making it unsuited for

nonlinear projection such as described in Chapter 6.

In other work [VC03], see Appendix G, we describe a novel extension of environ-

ment mapping that renders images from the outside of an object toward its centre. The

technique relies on an anti-perspective projection, which reverses the standard depth buffer

test, rendering closer objects as smaller than distant ones. These anti-perspective projec-

tions can be combined into a single view when used as an environment map, and can render

images as if from a sphere surrounding the centre point.

9.5.2 Extended Environment Mapping

An extension to the concept of environment mapping is proposed by Cho [Cho00] as a

way to provide more accurate images. Instead of simply sampling the light coming into

a point, a depth-mapped image is calculated for each of the six cube faces of the envi-

ronment map. Reflection rays can then be calculated from the 3D depth map, without

needing to approximate the start point of the ray. This technique amounts to rendering the

scene through a modified representation of the geometry (the depth map) that provides a



98

significant performance enhancement in some cases.

In the case that the rays being traced are distant from the point at which the

extended environment map was generated, artifacts can be introduced. The depth map

representation of the scene does not contain full information about objects that are at least

partially occluded from the point of view that the environment map is made. If a ray is

likely to be incorrect, the technique defaults to a ray tracing implementation. If a significant

number of rays are likely to be correct this may still improve performance by reducing the

amount of ray tracing needed.

For dynamic scenes the environment map needs to be generated each frame and

then used to approximate the reflection. This adds the additional performance cost of ren-

dering the scene using scanline rendering for each of the faces of the extended environment

mapped cube.

9.5.3 Parameterized Environment Maps

Another technique based on environment mapping is presented by Hakura et al [HSL01].

In this technique layers of environment maps are used. Different environment maps may

be used and layered according to the viewer’s location and direction of view, to avoid the

limitations of standard environment maps. For instance, close objects and self reflections

could be captured by different maps to distant objects.

The environment maps are generated by ray tracing from a particular view point.

Distant and local geometry is captured in two distinct maps. The maps themselves are

decomposed into separate diffuse, Fresnel modulation and incident specular layers for a

more accurate representation of the scene. The final parameterized environment map is

created by inferring an environment map using a least-squares best-fit match between the

image when rendered with the environment map and the ray-traced reference image. The

parameterized environment maps do not simply equate to a projection from a single centre

point, making them more able to capture reflections accurately. The environment map can

be parameterized across any variable, such as the position of objects and lights.

The algorithm presents good results for static scenes with a changing view point.

It is unclear how many samples would be needed to capture a dynamic scene, even if

the motion in the scene is pre-determinable. Each view point sample requires a full ray-

tracing pass and inference, making dynamic generation unhelpful over simply ray tracing

the view. The work presents an image-based rendering technique that is particularly suited

to rendering reflections and integrates well with current graphics hardware, but it has a



99

significant offline rendering cost. The technique does not easily lend itself to rendering

general nonlinear projections.

9.5.4 Light Field Rendering

Image-based light sampling techniques such as the Lumigraph [GGSC96] can be useful for

rendering reflections. These techniques represent the light leaving a convex hull in a scene,

and are sampled with 2D slices to generate a particular view. Essentially, light sampling

techniques map incoming ray directions and positions to colour values. The application of

this technique for reflections and refractions is explored by Heidrich et al [HLCS99]. In this

work a mapping between incoming rays and outgoing reflected or refracted rays is repre-

sented in a light-field-style structure. The outgoing rays can then be used to index another

light field or environment map to determine final colour values. The densely sampled na-

ture of the light field techniques means they are unsuited to dynamic scenes and have large

memory overheads.

9.6 Summary

This chapter presents related research in ray tracing, scanline rendering and image-based

rendering as it relates to the implementation of nonlinear projections. Ray tracing has

previously been used to implement nonlinear projections, both explicitly and as reflections

and refractions on curved surfaces. The manner in which a nonlinear projection defines the

set of rays to trace differs across the literature and is usually directed by how the nonlinear

projection is created.

Scanline methods can use multi-pass rendering to include effects such as planar

reflections into a single image, and this technique can be expanded to incorporate nonlinear

projections that approximate reflections and refractions on curved surfaces. Object distor-

tions have been explored previously as a visualisation tool and as a way of approximating

nonlinear projections. As a visualisation concept “detail and context” provides a framework

for the nonlinear viewing of data to better suit user interactions. Methods to approximate

nonlinear projections by distortion are similar to the algorithms developed in this thesis,

except that they do not necessarily define a clear solution to how a multiply imaged scene

point should be projected.

Image-based rendering techniques are the current standard for real-time approxi-

mation of reflections and refractions on curved objects. The simplest solution, environment



100

mapping, is both the fastest and the least geometrically accurate. Reflection or refraction

rays are approximated as coincident. Variations to the theme of environment mapping pro-

vide increased geometric accuracy at the cost of performance. The image-based methods

all rely on extensive pre-calculation and so do not lend themselves to dynamic scenes.



101

Chapter 10

Conclusion

This chapter summarises the findings of the thesis and views the main contribu-

tions of this work, the trilinear projection, in context. Further work directions are briefly

discussed, with the main focus on how to take the algorithms presented here to a production

environment.

10.1 Summary

In summary this thesis has developed algorithms to project scene points and scene triangles

with a trilinear projection surface. The trilinear projection as a basis for rendering nonlin-

ear projections is congruent with rendering curved surfaces in current computer graphics.

It offers continuity across curved projection surfaces and handles scenes where the data is

close to the surface as well as distant. Supporting algorithms to tessellate solutions for

greater accuracy and to cull scene data behind the view plane are provided. Multiple pro-

jection surfaces can be used to build more complicated projection surfaces, and algorithms

to integrate solutions across these projection surfaces are developed. Trilinear projection

surfaces are demonstrated for visualisation and for reflections and refractions. Preliminary

performance characteristics are presented to gauge when trilinear projections are likely to

offer a computational advantage over ray tracing solutions.

10.2 Contributions

The key contributions of this thesis are four algorithms for trilinear projection of 3D scene

data: projecting a point with a trilinear projection, reconnecting a scene triangle’s vertices



102

once projected, parametric triangle slicing to reduce error, and edge clipping in scene space.

The applications of the technique are examined in two areas. First, trilinear projection is

demonstrated as a method for implementing nonlinear projections for visualisation. Second,

reflections and refractions on curved surfaces are approximated by the trilinear projection.

10.2.1 Projecting a Scene Point with Trilinear Projection

In implementing nonlinear projections the mapping between scene points and the screen

becomes more complex. In many nonlinear projections this means that analytical solutions

to the problem of determining how a scene point is imaged do not exist. A naive expression

of the trilinear projection geometry makes for a nonlinear system of equations in solving

the mapping problem. After restating the geometry of the trilinear projection in terms of a

parametric triangle, Chapter 3 shows how the problem can be reduced to finding the roots

of a cubic polynomial, which can be found analytically. The algorithm calculates a value

for the parameter such that the generated triangle is coplanar with the scene point. As it

is likely that there will be many scene points to be imaged by each trilinear projection, an

optimisation is presented for this case. This optimisation calculates partial values of the

cubic’s coefficients for a certain trilinear projection and then reuses them over multiple scene

points. The analytical solution to the problem of projecting a scene point with a trilinear

projection makes a scanline style algorithm possible for rendering nonlinear projections.

10.2.2 Projecting a Scene Triangle with Trilinear Projection

A nonlinear projection such as the trilinear projection can image a single scene point more

than once. For a scene triangle each of the three vertices may be imaged up to three times by

a trilinear projection. Reconnecting these projected vertices may generate from one to four

shapes of from two to nine vertices. Chapter 4 details an algorithm to connect these vertices

based upon the order of their traversal by the parametric triangle. The algorithm iterates

through a list of sorted vertices and at each vertex toggles a state variable representing which

two edges of the scene triangle are active. An extension to the algorithm sorts the vertices

into shapes that are edge ordered. Each vertex in an edge ordered shape is connected to

the vertices before and after it. These edge ordered shapes can be rendered with standard

rasterising algorithms.



103

10.2.3 Parametric Triangle Slicing

A nonlinear projection does not necessarily map straight lines in scene space to straight

lines in screen space. Projecting, connecting and rendering scene primitives is inherently

an approximation of how a shape should be drawn by a nonlinear projection, because the

lines between the projected vertices are assumed to be straight. To alleviate this error,

scene primitives may be tessellated into smaller shapes. This tessellation can lead to an

significant increase in the amount of computation needed for each primitive. Section 4.5.2

presents an alternative approach that samples the scene primitive with additional values

of the parameter of the parametric triangle between vertex solutions. For each of these

in between parameter values a line across the scene primitive is sampled, giving two extra

shape vertices. The shapes are then drawn incrementally so the sampled line is drawn as

a line in the projected shape. The algorithm provides an equivalent increase in rendering

quality with a much smaller performance cost than tessellating the scene primitives.

10.2.4 Scene Space Clipping

Meshing trilinear projections together gives a way to approximate more complicated non-

linear projections in a manner similar to approximating a curved surface with a polygonal

mesh. Projected shapes may not be continuous across trilinear projections because of the

linear approximation between projected shape vertices. To obviate this problem a scene-

space clipping algorithm is developed in Chapter 5. The edges of the trilinear projection

are swept out into the scene and the intersection between these edges and the scene prim-

itives calculated. These intersection points can then be used to either clip or augment the

projected shape so that continuity across composite trilinear projections is preserved.

10.2.5 The Application of Trilinear Projection in Visualisation

Chapter 6 also briefly explores how trilinear projection can be used for visualisation. Previ-

ous work in distortions and projections including detail and context with distortion-oriented

displays are adapted to nonlinear projections and implemented with trilinear projection. A

nonlinear projection that includes views from multiple perspectives and seamlessly tran-

sitions between is implemented with trilinear projection. The mapping of a sphere to a

flat screen is examined with a nonlinear projection, itself a sphere facing inwards, and

implemented with trilinear projection.



104

10.2.6 The Application of Trilinear Projection in Rendering Reflections

and Refractions on Curved Surfaces

Reflections and refractions on curved surfaces form natural nonlinear projections. The ge-

ometry of reflections and refractions allows the mapping of incoming vectors into reflected

or transmitted vectors. Chapter 7 shows how calculating these transmitted or transformed

vectors at the vertices of the reflective or refractive object generates a nonlinear projection

that approximates the reflection or refraction. For a reflective or refractive object repre-

sented by a triangular mesh, a trilinear projection can be generated to approximate the

reflection or refraction from each facet. Rendering from these trilinear projections is an

approximation that can be improved by increasing the number of trilinear projections per

reflective or refractive object. Reflections and refractions of a simple scene are demonstrated

with trilinear projection.

10.3 Further Work

The algorithms in this thesis have not been fully applied to a real world problem. Applying

them to a production system would require analysis and balancing of issues such as which

methods to use and when. Even for a single trilinear projection tessellation can be used to

improve visual accuracy at the cost of performance, but when and how much to tessellate

remains an unsolved problem.

The number of trilinear projections required to sufficiently approximate arbitrary

curved projection surfaces is unexplored, but is an important factor in the rendering time

of the algorithms in this thesis. This is especially pertinent for reflections and refractions

on curved surfaces because each trilinear projection is itself an approximation of the light

interaction.

Numerical instability in converting to barycentric coordinates means that an ap-

propriate tolerance level depends on the data. Linear projections require that data lie in

a frustum with near and far values such that scene data can be adequately scaled to avoid

instabilities. Scaling could be used to avoid instabilities in a trilinear projection, but a

mechanism analogous to a view frustum is not readily apparent.

The concept of projecting a surface out along a parameter, in this thesis a para-

metric triangle, to resolve a projection can be expanded to more complicated surfaces. For

instance, the reflection or refraction of light on a curved surface can be characterised by

the sweep of a parameterised surface. Computing the value of the parameter which satisfies



105

the implicit equation for the surface at a particular point leads to the reflected location of

that point. Determining the implicit equation for the reflection or refraction off a particular

surface is an unsolved problem, and it is unclear how the value of the parameter could be

determined for complex surfaces.

The applications of nonlinear projections for visualisation is a relatively unexplored

field. Unusual views of data, though they can be initially confusing, allow for more viewing

constraints to be satisfied in a single image. Detail and context, multiple viewing directions,

and other combinations of viewing constraints can be continuously joined but the efficacy

of such a view for achieving any particular visual task is unexamined.

10.4 Conclusion

The problem of rendering nonlinear projections with scanline style algorithms has not pre-

viously been thoroughly examined. This thesis presents a trilinear projection algorithm

that projects scene points and triangles in a manner compatible with scanline rendering

algorithms. The performance characteristics of scanline rendering have made it very useful

in interactive and animated computer graphics, and algorithms compatible with scanline

rendering have a substantial base of hardware and software to draw upon. A limitation

of scanline rendering has been its difficulty in modeling certain complicated optical inter-

actions. The trilinear projection algorithm provides a new technique for rendering optical

interactions that presents developers with more tools to render unusual visualisations and

optical phenomena with acceptable performance.



106

Appendix A

Expanded Equations

A.1 Parametric Triangle and Scene Point Coplanarity Test

The coefficients of the cubic used to test a scene point and parametric triangle coplanarity

are a, b, c and d where at3 + bt2 + ct + d = 0. The full expansion of these coefficients in

terms of the triangle projections points p1..3 and normals n1..3, and the scene point ps is as

follows:

a = n1xn2yn3z − n1xn2zn3y − n2xn1yn3z + n3xn1yn2z − n3xn1zn2y + n2xn1zn3y

b = n2xpyn3z − n3xn1ypz + n3xn1yp2z − n1xp2zn3y + n1xn2zpy − n1xn2zp3y +

p1xn2yn3z + n1xpzn3y − p1xn2zn3y − n3xn2zpy + n3xp1yn2z + pxn1zn2y −

pxn1yn2z − p3xn1zn2y + p3xn1yn2z + n3xn2ypz − p2xn1yn3z − n2xpzn3y +

n2xp1zn3y − n3xp1zn2y + n3xn1zpy − n3xn1zp2y − pxn1zn3y + pxn1yn3z +

p2xn1zn3y − n2xn1zpy + n2xn1zp3y − pxn2yn3z + pxn2zn3y − n2xn1yp3z −

n2xp1yn3z + n2xn1ypz − n1xpyn3z + n1xp2yn3z − n1xn2ypz + n1xn2yp3z



107

c = −pxp1zn3y − p1xn2ypz + p1xn2yp3z + n1xpzp3y + n1xp2zpy − n1xp2zp3y +

pxp1zn2y + p1xn2zpy − p1xn2zp3y − p1xpyn3z + p1xp2yn3z − n3xp2zpy −

n3xp1ypz + n3xp1yp2z + pxn1zp2y − pxp1yn2z − pxn1yp2z + p3xn2ypz −

p3xp1zn2y + p3xn1zpy − p3xn1zp2y − p3xn2zpy + p3xp1yn2z − p3xn1ypz +

p3xn1yp2z + n3xp2ypz + n3xp1zpy − n2xpzp3y − n2xp1zpy + n2xp1zp3y −

n3xp1zp2y − pxn1zp3y + pxp1yn3z + pxn1yp3z − p2xpzn3y + p2xp1zn3y −

p2xn1zpy + p2xn1zp3y + p2xpyn3z − p2xp1yn3z + p2xn1ypz − p2xn1yp3z +

p1xpzn3y − p1xp2zn3y + n2xpyp3z − pxn2yp3z + pxp2zn3y + pxn2zp3y −

pxp2yn3z − n1xp2ypz − n1xpyp3z + n2xp1ypz − n2xp1yp3z + n1xp2yp3z

d = −pxp1zp3y + p2xp1ypz + pxp1zp2y − p3xp1ypz + pxp2zp3y + p3xp1yp2z +

p1xpzp3y + p1xp2zpy − p2xp1yp3z − pxp2yp3z + p3xp2ypz + p3xp1zpy −

p3xp1zp2y + pxp1yp3z − p2xpzp3y − p2xp1zpy + p2xp1zp3y + p2xpyp3z −

p1xp2ypz − p1xp2zp3y − p1xpyp3z + p1xp2yp3z − pxp1yp2z − p3xp2zpy

A.2 Line Segment Intersection Coplanarity Cubic

The intersection between two scene points, defining a scene line, and two trilinear projection

points and normals, defining an edge of the trilinear projection, where the scene points are

ps1 and ps2 and the trilinear projection points are pi and pj and the normals are ni and

nj (i, j = 1, 2, 3, i 6= j), gives a quadratic equation in terms of t. The coefficients of this

quadratic are a,b and c where at2 + bt + c = 0, the full expansion of these coefficients is as

follows:

a = −ps1xnjyniz + ps1xnjzniy − njxps2yniz + nixps2ynjz + nixps1znjy − nixps2znjy −

nixps1ynjz + njxps2zniy + ps2xnjyniz − njxps1zniy − ps2xnjzniy + njxps1yniz



108

b = nixps2ypjz − nixps2zpjy + ps2xps1ynjz − ps2xps1znjy − ps1xps2ynjz + ps1xps2znjy +

njxps2yps1z − njxps2zps1y + ps2xpjyniz + ps2xnjypiz − ps2xpjzniy − ps2xnjzpiy −

njxps1zpiy + pjxps1yniz − pjxps1zniy − nixps1ypjz + nixps1zpjy − pixps1ynjz +

pixps1znjy + pixps2ynjz − pixps2znjy + ps2xps1zniy − ps2xps1yniz − nixps2yps1z +

nixps2zps1y + ps1xps2yniz − ps1xps2zniy − ps1xpjyniz − ps1xnjypiz + ps1xpjzniy +

ps1xnjzpiy + njxps1ypiz − njxps2ypiz + njxps2zpiy − pjxps2yniz + pjxps2zniy

c = pjxps2yps1z + ps1xps2zpjy − ps1xpjypiz − pjxps2zps1y + ps2xps1ypjz + pixps2zps1y −

ps1xps2ypjz − ps2xps1zpjy − pixps2zpjy + pixps2ypjz − ps2xps1ypiz − pjxps2ypiz −

ps2xpjzpiy + ps2xpjypiz + pixps1zpjy − pjxps1zpiy + pjxps1ypiz + ps1xpjzpiy −

ps1xps2zpiy + ps1xps2ypiz + ps2xps1zpiy − pixps1ypjz − pixps2yps1z + pjxps2zpiy



109

A.3 Precalculation for Cubic Coefficients

A4 = −n1x(n2yn3z − n3yn2z)− n2x(n3yn1z − n1yn3z)− n3x(n1yn2z − n2yn1z)

B1 = (n2x(n3y − n1y) + n1x(n2y − n3y) + n3x(n1y − n2y)

B2 = (n2y(n3z − n1z) + n1y(n2z − n3z) + n3y(n1z − n2z)

B3 = (n2z(n3x − n1x) + n1z(n2x − n3x) + n3z(n1x − n2x)

B4 = −p1x(n2yn3z − n3yn2z)− n1x(p2yn3z + n2yp3z − p3yn2z − n3yp2z)−

p2x(n3yn1z − n1yn3z)− n2x(p3yn1z + n3yp1z − p1yn3z − n1yp3z)−

p3x(n1yn2z − n2yn1z)− n3x(p1yn2z + n1yp2z − p2yn1z − n2yp1z)

C1 = p1x(n2y − n3y) + n1x(p2y − p3y) + p2x(n3y − n1y) + n2x(p3y − p1y) +

p3x(n1y − n2y) + n3x(p1y − p2y))

C2 = p1y(n2z − n3z) + n1y(p2z − p3z) + p2y(n3z − n1z) + n2y(p3z − p1z) +

p3y(n1z − n2z) + n3y(p1z − p2z))

C3 = p1z(n2x − n3x) + n1z(p2x − p3x) + p2z(n3x − n1x) + n2z(p3x − p1x) +

p3z(n1x − n2x) + n3z(p1x − p2x))

C4 = −p1x(p2yn3z + n2yp3z − p3yn2z − n3yp2z)− n1x(p2yp3z − p2zp3y)−

p2x(p3yn1z + n3yp1z − p1yn3z − n1yp3z)− n2x(p1zp3y − p1yp3z)−

p3x(p1yn2z + n1yp2z − p2yn1z − n2yp1z)− n3x(p1yp2z − p1zp2y)

D1 = p1y(p2z − p3z) + p3y(p1z − p2z) + p2y(p3z − p1z)

D2 = p1x(p2y − p3y) + p3x(p1y − p2y) + p2x(p3y − p1y)

D3 = p1z(p2x − p3x) + p3z(p1x − p2x) + p2z(p3x − p1x)

D4 = p1x(p2yp3z − p2zp3y)) + (p3x(p1yp2z − p1zp2y) + p2x(p1zp3y − p1yp3z)



110

Appendix B

Vector Properties

Various vector properties of the trilinear projections points and normals can be

stored for the efficient calculation of trilinear projection edge intersections. These properties

are either the cross product or subtraction of two points or normals, and a full listing is

show in Table B.1.

Variable Name Description
cp1p2 p1 × p2

cp2p3 p2 × p3

cp3p1 p3 × p1

cn1n2 n1 × n2

cn2n3 n2 × n3

cn3n1 n3 × n1

cp1n2 p1 × n2

cp2n3 p2 × n3

cp3n1 p3 × n1

cn1p2 n1 × p2

cn2p3 n2 × p3

cn3p1 n3 × p1

ep1p2 p1 − p2

ep2p3 p2 − p3

ep3p1 p3 − p1

en1n2 n1 − n2

en2n3 n2 − n3

en3n1 n3 − n1

Table B.1: Vector properties of the trilinear propjection



111

Appendix C

View and Scene Data

This appendix shows the data used to generate the examples 4.1 to 4.7. Table C.1

shows vertex coordinates for the examples. Each scene is composed of one scene triangle

with three vertices whose coordinates are (v.x, v.y, v.z). Table C.2 shows the view triangle

parameters for the examples, each view triangle vertex has a position (v.x, v.y, v.z) and a

vector ¡n.x, n.y, n.z¿. All values in these tables were randomly generated.



112

Scene v.x v.y v.z
2,2,2,3

1.58e-001 -3.19e-001 5.22e-002
-2.17e-001 -4.18e-001 -4.91e-002
2.50e-002 -2.30e-001 -2.02e-001

3,3,3
9.62e-002 -4.57e-002 -1.10e-002
5.35e-002 -1.44e-001 -3.84e-002
7.26e-002 -1.48e-001 -1.07e-001

4,2,3
1.71e-001 9.28e-002 2.21e-001
1.52e-002 9.31e-002 2.44e-001
-2.13e-001 -7.65e-002 4.45e-001

4,5
-2.36e-001 -1.43e-001 1.30e-001
-2.42e-001 7.43e-001 1.84e-001
-3.35e-001 -1.31e-001 1.66e-001

6,3
3.13e-001 2.99e-001 5.95e-002
5.15-001 6.30e-001 3.60e-001
3.91e-001 3.82e-001 2.10e-001

2,7
-6.70e-001 -8.24e-001 3.47e-001
-7.29-001 -7.87e-001 3.78e-001
-1.17e-001 -3.88e-001 2.65e-001

9
7.04e-002 4.79e-001 1.62e-001
-1.70e-001 -3.64e-001 -3.52e-001
9.62e-002 -4.57e-002 -1.10e-002

Table C.1:



113

View v.x v.y v.z n.x n.y n.z
2,2,2,3

0.51 -0.96 0.74 0.81 0.26 -0.52
-0.73 0.82 0.06 0.06 -0.83 -0.56
-0.44 -0.70 -0.53 -0.11 0.70 0.70

3,3,3
0.82 0.46 -0.80 -0.43 -0.04 0.90
-0.25 0.14 0.67 0.36 -0.62 -0.70
0.12 -0.20 -0.09 -0.47 -0.61 -0.64

4,2,3
-0.85 -0.64 0.77 -0.14 -0.02 0.99
0.55 0.60 -0.83 -0.87 0.38 0.31
0.44 0.72 -0.08 0.70 -0.70 -0.16

4,5
0.97 -0.37 -0.39 -0.85 -0.42 0.31
-0.05 0.45 0.76 -0.20 0.80 -0.57
-0.83 -0.71 -0.38 0.55 -0.19 0.82

6,3
-0.07 -0.91 0.77 -0.32 -0.67 -0.67
-0.13 0.26 0.49 0.73 0.68 0.08
0.28 -0.25 -0.98 0.08 0.68 0.73

2,7
0.68 -0.00 -0.39 0.26 0.71 0.65
-0.43 -0.85 0.77 -0.77 -0.56 -0.32
-0.61 0.95 -0.39 0.59 -0.74 0.33

9
-0.45 0.44 -0.43 0.34 0.54 -0.77
0.58 -0.75 -0.58 -0.74 -0.52 -0.43
0.00 0.81 -0.26 0.37 0.52 0.77

Table C.2:



114

Appendix D

Tabulated Performance Results

The following sections present the full tabulated data points for the graphs in

Chapter 8 that pertain to results on random scene data.

D.1 Ray Tracing Results

Resolution (square pixels) Scene Triangles Trilinear Projections Execution Time (ms)

1 1 2 0.89

1 1 8 1.04

1 1 18 1.08

1 1 32 1.14

1 1 50 1.23

16384 1 2 17.43

16384 1 8 16.57

16384 1 18 17.88

16384 1 32 17.14

16384 1 50 18.54

65536 1 2 65.69

65536 1 8 61.82

65536 1 18 65.06

65536 1 32 63.19

65536 1 50 66.73

147456 1 2 147.29

147456 1 8 137.63

147456 1 18 143.00

147456 1 32 138.88

147456 1 50 143.00

262144 1 2 260.50

262144 1 8 244.40

262144 1 18 253.00

262144 1 32 244.40

262144 1 50 250.25

409600 1 2 410.67

409600 1 8 380.67

409600 1 18 390.67

409600 1 32 380.67

409600 1 50 384.00

1 128 2 1.08

1 128 8 1.36



115

1 128 18 1.65

1 128 32 1.96

1 128 50 2.46

16384 128 2 390.67

16384 128 8 400.67

16384 128 18 420.67

16384 128 32 364.00

16384 128 50 427.33

65536 128 2 1572.00

65536 128 8 1622.00

65536 128 18 1652.00

65536 128 32 1482.00

65536 128 50 1672.00

147456 128 2 3545.00

147456 128 8 3605.00

147456 128 18 3635.00

147456 128 32 3284.00

147456 128 50 3635.00

262144 128 2 6259.00

262144 128 8 6369.00

262144 128 18 6429.00

262144 128 32 5768.00

262144 128 50 6409.00

409600 128 2 9714.00

409600 128 8 9955.00

409600 128 18 10015.00

409600 128 32 9083.00

409600 128 50 9995.00

1 256 2 1.33

1 256 8 1.66

1 256 18 2.21

1 256 32 2.78

1 256 50 3.72

16384 256 2 751.00

16384 256 8 816.00

16384 256 18 836.00

16384 256 32 726.00

16384 256 50 846.00

65536 256 2 2944.00

65536 256 8 3205.00

65536 256 18 3255.00

65536 256 32 2834.00

65536 256 50 3235.00

147456 256 2 6639.00

147456 256 8 7241.00

147456 256 18 7211.00

147456 256 32 6439.00

147456 256 50 7110.00

262144 256 2 11787.00

262144 256 8 12789.00

262144 256 18 12729.00

262144 256 32 11316.00

262144 256 50 12568.00

409600 256 2 18587.00

409600 256 8 20029.00

409600 256 18 19898.00

409600 256 32 17786.00

409600 256 50 19398.00

1 384 2 1.60

1 384 8 2.01

1 384 18 2.84

1 384 32 3.74



116

1 384 50 5.16

16384 384 2 1142.00

16384 384 8 1301.00

16384 384 18 1321.00

16384 384 32 1132.00

16384 384 50 1332.00

65536 384 2 4547.00

65536 384 8 5077.00

65536 384 18 5097.00

65536 384 32 4437.00

65536 384 50 5067.00

147456 384 2 10155.00

147456 384 8 11477.00

147456 384 18 11367.00

147456 384 32 10065.00

147456 384 50 11166.00

262144 384 2 17905.00

262144 384 8 20299.00

262144 384 18 20069.00

262144 384 32 17695.00

262144 384 50 19769.00

409600 384 2 28031.00

409600 384 8 31785.00

409600 384 18 31365.00

409600 384 32 27820.00

409600 384 50 30514.00

1 512 2 1.94

1 512 8 2.50

1 512 18 3.52

1 512 32 4.74

1 512 50 6.81

16384 512 2 1592.00

16384 512 8 1833.00

16384 512 18 1843.00

16384 512 32 1602.00

16384 512 50 1853.00

65536 512 2 6269.00

65536 512 8 7221.00

65536 512 18 7221.00

65536 512 32 6329.00

65536 512 50 7180.00

147456 512 2 14271.00

147456 512 8 16314.00

147456 512 18 16103.00

147456 512 32 14450.00

147456 512 50 15802.00

262144 512 2 25136.00

262144 512 8 28852.00

262144 512 18 28461.00

262144 512 32 25277.00

262144 512 50 27970.00

409600 512 2 39467.00

409600 512 8 45185.00

409600 512 18 44464.00

409600 512 32 39717.00

409600 512 50 43172.00

1 640 2 2.25

1 640 8 3.07

1 640 18 4.70

1 640 32 6.30

1 640 50 9.36

16384 640 2 2324.00



117

16384 640 8 2864.00

16384 640 18 2874.00

16384 640 32 2243.00

16384 640 50 2754.00

65536 640 2 9263.00

65536 640 8 11407.00

65536 640 18 11266.00

65536 640 32 8923.00

65536 640 50 10666.00

147456 640 2 20840.00

147456 640 8 25757.00

147456 640 18 25096.00

147456 640 32 20239.00

147456 640 50 23473.00

262144 640 2 37103.00

262144 640 8 45546.00

262144 640 18 44314.00

262144 640 32 35601.00

262144 640 50 41540.00

409600 640 2 57913.00

409600 640 8 71352.00

409600 640 18 69250.00

409600 640 32 55970.00

409600 640 50 64122.00

Table D.1: Ray tracing results over random scene data



118

D.2 Trilinear Projection Results

Resolution (square pixels) Scene Triangles Trilinear Projections Execution Time (ms)

1 1 2 0.06

1 1 8 0.21

1 1 18 0.66

1 1 32 0.99

1 1 50 1.95

16384 1 2 0.11

16384 1 8 0.20

16384 1 18 0.66

16384 1 32 1.08

16384 1 50 1.86

65536 1 2 0.11

65536 1 8 0.21

65536 1 18 0.67

65536 1 32 1.09

65536 1 50 1.86

147456 1 2 0.11

147456 1 8 0.21

147456 1 18 0.67

147456 1 32 1.09

147456 1 50 1.90

262144 1 2 0.11

262144 1 8 0.20

262144 1 18 0.66

262144 1 32 1.09

262144 1 50 1.90

409600 1 2 0.11

409600 1 8 0.20

409600 1 18 0.66

409600 1 32 1.08

409600 1 50 1.89

1 128 2 6.22

1 128 8 16.15

1 128 18 47.67

1 128 32 82.38

1 128 50 137.63

16384 128 2 7.00

16384 128 8 16.15

16384 128 18 48.62

16384 128 32 83.42

16384 128 50 136.38

65536 128 2 6.95

65536 128 8 16.15

65536 128 18 49.10

65536 128 32 83.42

65536 128 50 137.63

147456 128 2 6.95

147456 128 8 16.15

147456 128 18 49.10

147456 128 32 83.42

147456 128 50 137.63

262144 128 2 8.14

262144 128 8 16.31

262144 128 18 48.62

262144 128 32 83.42

262144 128 50 136.38

409600 128 2 11.36

409600 128 8 16.15

409600 128 18 48.62

409600 128 32 83.42



119

409600 128 50 137.75

1 256 2 12.83

1 256 8 32.61

1 256 18 94.64

1 256 32 164.57

1 256 50 275.50

16384 256 2 13.85

16384 256 8 32.61

16384 256 18 96.45

16384 256 32 166.83

16384 256 50 273.00

65536 256 2 13.85

65536 256 8 32.61

65536 256 18 97.36

65536 256 32 166.83

65536 256 50 273.00

147456 256 2 13.71

147456 256 8 32.61

147456 256 18 98.27

147456 256 32 166.83

147456 256 50 273.00

262144 256 2 17.74

262144 256 8 32.61

262144 256 18 97.36

262144 256 32 166.83

262144 256 50 273.00

409600 256 2 24.41

409600 256 8 32.29

409600 256 18 97.36

409600 256 32 166.83

409600 256 50 273.00

1 384 2 18.89

1 384 8 49.57

1 384 18 141.50

1 384 32 246.40

1 384 50 414.00

16384 384 2 20.43

16384 384 8 48.62

16384 384 18 145.86

16384 384 32 250.50

16384 384 50 407.33

65536 384 2 20.43

65536 384 8 48.62

65536 384 18 145.86

65536 384 32 250.50

65536 384 50 407.33

147456 384 2 20.43

147456 384 8 48.62

147456 384 18 145.86

147456 384 32 250.50

147456 384 50 407.33

262144 384 2 25.27

262144 384 8 49.10

262144 384 18 144.43

262144 384 32 250.50

262144 384 50 410.67

409600 384 2 35.90

409600 384 8 49.10

409600 384 18 144.43

409600 384 32 248.40

409600 384 50 410.67

1 512 2 25.52



120

1 512 8 65.06

1 512 18 188.67

1 512 32 330.50

1 512 50 555.50

16384 512 2 27.32

16384 512 8 65.06

16384 512 18 193.67

16384 512 32 334.00

16384 512 50 545.50

65536 512 2 27.32

65536 512 8 65.06

65536 512 18 193.67

65536 512 32 334.00

65536 512 50 545.50

147456 512 2 27.32

147456 512 8 65.06

147456 512 18 193.67

147456 512 32 334.00

147456 512 50 545.50

262144 512 2 35.75

262144 512 8 65.06

262144 512 18 193.67

262144 512 32 333.00

262144 512 50 550.50

409600 512 2 50.55

409600 512 8 65.06

409600 512 18 193.67

409600 512 32 333.00

409600 512 50 550.50

1 640 2 31.28

1 640 8 81.62

1 640 18 234.40

1 640 32 410.67

1 640 50 701.00

16384 640 2 33.70

16384 640 8 81.62

16384 640 18 240.40

16384 640 32 414.00

16384 640 50 691.00

65536 640 2 33.70

65536 640 8 81.62

65536 640 18 242.40

65536 640 32 414.00

65536 640 50 696.00

147456 640 2 33.70

147456 640 8 81.62

147456 640 18 242.40

147456 640 32 414.00

147456 640 50 691.00

262144 640 2 43.96

262144 640 8 81.62

262144 640 18 240.40

262144 640 32 417.33

262144 640 50 696.00

409600 640 2 62.56

409600 640 8 81.62

409600 640 18 242.40

409600 640 32 414.00

409600 640 50 696.00

Table D.2: Trilinear projection results over random scene data



121

D.3 Trilinear Projection with Scene Space Clipping Results

Resolution (square pixels) Scene Triangles Trilinear Projections Execution Time (ms)

1 1 2 0.16

1 1 8 0.26

1 1 18 1.20

1 1 32 1.92

1 1 50 3.20

16384 1 2 0.15

16384 1 8 0.26

16384 1 18 1.19

16384 1 32 1.93

16384 1 50 3.14

65536 1 2 0.15

65536 1 8 0.26

65536 1 18 1.15

65536 1 32 1.93

65536 1 50 3.14

147456 1 2 0.15

147456 1 8 0.26

147456 1 18 1.15

147456 1 32 1.95

147456 1 50 3.20

262144 1 2 0.18

262144 1 8 0.26

262144 1 18 1.14

262144 1 32 1.93

262144 1 50 3.20

409600 1 2 0.26

409600 1 8 0.26

409600 1 18 1.15

409600 1 32 1.93

409600 1 50 3.22

1 128 2 17.43

1 128 8 25.92

1 128 18 98.27

1 128 32 185.33

1 128 50 315.50

16384 128 2 17.74

16384 128 8 25.27

16384 128 18 99.18

16384 128 32 182.00

16384 128 50 313.00

65536 128 2 17.74

65536 128 8 25.27

65536 128 18 100.10

65536 128 32 180.33

65536 128 50 310.50

147456 128 2 17.74

147456 128 8 25.27

147456 128 18 100.10

147456 128 32 182.00

147456 128 50 310.50

262144 128 2 17.56

262144 128 8 25.27

262144 128 18 100.10

262144 128 32 180.33

262144 128 50 313.00

409600 128 2 18.05

409600 128 8 25.27

409600 128 18 100.10

409600 128 32 180.33



122

409600 128 50 313.00

1 256 2 34.03

1 256 8 52.68

1 256 18 197.00

1 256 32 364.00

1 256 50 645.50

16384 256 2 34.52

16384 256 8 51.55

16384 256 18 198.67

16384 256 32 360.67

16384 256 50 630.50

65536 256 2 34.52

65536 256 8 51.05

65536 256 18 198.67

65536 256 32 357.33

65536 256 50 635.50

147456 256 2 34.37

147456 256 8 51.05

147456 256 18 198.67

147456 256 32 360.67

147456 256 50 640.50

262144 256 2 34.52

262144 256 8 51.55

262144 256 18 198.67

262144 256 32 357.33

262144 256 50 640.50

409600 256 2 35.55

409600 256 8 51.55

409600 256 18 200.20

409600 256 32 357.33

409600 256 50 635.50

1 384 2 51.05

1 384 8 77.77

1 384 18 295.50

1 384 32 551.00

1 384 50 956.50

16384 384 2 50.55

16384 384 8 77.00

16384 384 18 295.50

16384 384 32 546.00

16384 384 50 946.50

65536 384 2 50.05

65536 384 8 76.50

65536 384 18 295.50

65536 384 32 541.00

65536 384 50 946.50

147456 384 2 50.05

147456 384 8 77.00

147456 384 18 295.50

147456 384 32 540.50

147456 384 50 946.50

262144 384 2 50.55

262144 384 8 77.00

262144 384 18 295.50

262144 384 32 540.50

262144 384 50 941.50

409600 384 2 52.55

409600 384 8 77.00

409600 384 18 295.50

409600 384 32 540.50

409600 384 50 946.50

1 512 2 68.73



123

1 512 8 103.10

1 512 18 397.33

1 512 32 746.00

1 512 50 1281.00

16384 512 2 67.40

16384 512 8 102.10

16384 512 18 397.33

16384 512 32 736.00

16384 512 50 1281.00

65536 512 2 67.40

65536 512 8 102.10

65536 512 18 397.33

65536 512 32 731.00

65536 512 50 1271.00

147456 512 2 67.40

147456 512 8 102.10

147456 512 18 397.33

147456 512 32 731.00

147456 512 50 1271.00

262144 512 2 68.07

262144 512 8 101.10

262144 512 18 397.33

262144 512 32 736.00

262144 512 50 1271.00

409600 512 2 74.36

409600 512 8 101.10

409600 512 18 397.33

409600 512 32 731.00

409600 512 50 1271.00

1 640 2 84.25

1 640 8 128.88

1 640 18 497.67

1 640 32 926.50

1 640 50 1572.00

16384 640 2 83.15

16384 640 8 127.63

16384 640 18 497.67

16384 640 32 916.50

16384 640 50 1572.00

65536 640 2 82.38

65536 640 8 126.38

65536 640 18 501.00

65536 640 32 911.50

65536 640 50 1572.00

147456 640 2 83.42

147456 640 8 126.38

147456 640 18 501.00

147456 640 32 906.50

147456 640 50 1572.00

262144 640 2 83.15

262144 640 8 127.63

262144 640 18 497.67

262144 640 32 906.50

262144 640 50 1572.00

409600 640 2 90.92

409600 640 8 127.63

409600 640 18 501.00

409600 640 32 906.50

409600 640 50 1572.00

Table D.3: Trilinear projection with clipping results over random scene data



124

D.4 Ray Tracing on Different Configurations

Resolution (square pixels) Execution Time (ms)

16384 16.41

65536 61.82

147456 140.25

262144 246.40

409600 387.33

Table D.4: Ray tracing results on a 2,2,2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 16.97

65536 63.19

147456 144.57

262144 255.50

409600 400.67

Table D.5: Ray tracing results on a 2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 16.97

65536 64.44

147456 144.57

262144 255.50

409600 400.67

Table D.6: Ray tracing results on a 3,3,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 16.85

65536 63.19

147456 144.57

262144 253.00

409600 397.33

Table D.7: Ray tracing results on a 4,2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 16.85

65536 63.19

147456 144.57

262144 255.50

409600 397.33

Table D.8: Ray tracing results on a 4,5 configuration example

Resolution (square pixels) Execution Time (ms)

16384 16.97

65536 64.44

147456 144.57

262144 255.50

409600 397.33

Table D.9: Ray tracing results on a 6,3 configuration example



125

Resolution (square pixels) Execution Time (ms)

16384 17.26

65536 65.69

147456 148.86

262144 260.50

409600 410.67

Table D.10: Ray tracing results on a 9 configuration example



126

D.5 Trilinear Projection on Different Configurations

Resolution (square pixels) Execution Time (ms)

16384 0.02

65536 0.02

147456 0.02

262144 0.02

409600 0.02

Table D.11: Trilinear projection results on a 2,2,2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 0.07

65536 0.07

147456 0.07

262144 0.07

409600 0.07

Table D.12: Trilinear projection results on a 2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 0.02

65536 0.02

147456 0.02

262144 0.02

409600 0.02

Table D.13: Trilinear projection results on a 3,3,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 0.02

65536 0.02

147456 0.02

262144 0.02

409600 0.02

Table D.14: Trilinear projection results on a 4,2,3 configuration example

Resolution (square pixels) Execution Time (ms)

16384 0.03

65536 0.03

147456 0.03

262144 0.03

409600 0.04

Table D.15: Trilinear projection results on a 4,5 configuration example

Resolution (square pixels) Execution Time (ms)

16384 0.02

65536 0.02

147456 0.02

262144 0.02

409600 0.03

Table D.16: Trilinear projection results on a 6,3 configuration example



127

Resolution (square pixels) Execution Time (ms)

16384 0.09

65536 0.09

147456 0.16

262144 0.21

409600 0.25

Table D.17: Trilinear projection results on a 9 configuration example



128

D.6 Trilinear Projection with Scene Triangle Tessellation

Results on Different Configurations

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.05 1.00424

409600 2 0.09 1.00228

409600 3 0.15 0.47538

409600 4 0.21 0.47147

409600 5 0.29 0.54483

409600 6 0.46 0.60483

409600 7 0.60 0.42941

409600 8 0.78 0.44050

409600 9 0.97 0.47669

409600 10 1.17 0.51157

409600 20 4.57 0.29116

409600 30 9.63 0.20215

409600 40 18.20 0.19987

409600 50 27.81 0.18422

409600 60 40.84 0.17672

409600 70 60.65 0.17770

409600 80 79.31 0.18389

409600 90 102.10 0.19694

409600 100 122.44 0.17998

Table D.18: Trilinear projection scene triangle tessellation results on a 2,2,2,3 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.11 1.39485

409600 2 0.11 1.07603

409600 3 0.19 0.79223

409600 4 0.29 0.28525

409600 5 0.38 0.56777

409600 6 0.60 0.21992

409600 7 0.77 0.21212

409600 8 0.99 0.18218

409600 9 1.29 0.16966

409600 10 1.52 0.15787

409600 20 5.79 0.12484

409600 30 12.67 0.12012

409600 40 21.76 0.11776

409600 50 34.37 0.11595

409600 60 46.41 0.11631

409600 70 64.50 0.11631

409600 80 87.58 0.11649

409600 90 121.33 0.11522

409600 100 147.43 0.11341

Table D.19: Trilinear projection scene triangle tessellation results on a 2,3 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.07 0.20702

409600 2 0.13 0.19347

409600 3 0.22 0.18854

409600 4 0.34 0.18854

409600 5 0.48 0.18854

409600 6 0.72 0.18854



129

409600 7 0.93 0.18608

409600 8 1.22 0.18731

409600 9 1.55 0.18854

409600 10 1.89 0.18608

409600 20 7.20 0.18792

409600 30 15.64 0.18854

409600 40 27.05 0.18608

409600 50 42.13 0.18608

409600 60 60.06 0.18731

409600 70 80.08 0.18854

409600 80 104.20 0.18854

409600 90 135.25 0.18792

409600 100 175.33 0.18854

Table D.20: Trilinear projection scene triangle tessellation results on a 3,3,3 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.06 0.55771

409600 2 0.11 0.53959

409600 3 0.17 0.53462

409600 4 0.25 0.45222

409600 5 0.33 0.45470

409600 6 0.52 0.46538

409600 7 0.68 0.24423

409600 8 0.89 0.25292

409600 9 1.13 0.21718

409600 10 1.39 0.16977

409600 20 5.13 0.15463

409600 30 11.00 0.11889

409600 40 19.82 0.10623

409600 50 30.33 0.08761

409600 60 41.71 0.09010

409600 70 63.19 0.08563

409600 80 83.23 0.08439

409600 90 110.20 0.08464

409600 100 132.75 0.08017

Table D.21: Trilinear projection scene triangle tessellation results on a 4,2,3 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.07 0.59154

409600 2 0.11 0.36698

409600 3 0.17 0.26357

409600 4 0.24 0.20495

409600 5 0.33 0.17172

409600 6 0.51 0.15108

409600 7 0.66 0.13581

409600 8 0.83 0.12714

409600 9 1.03 0.12054

409600 10 1.26 0.11455

409600 20 4.70 0.09659

409600 30 9.91 0.08256

409600 40 17.26 0.07926

409600 50 26.61 0.07657

409600 60 40.04 0.07554

409600 70 58.39 0.07534

409600 80 77.77 0.07492

409600 90 101.10 0.07410



130

409600 100 122.44 0.07410

Table D.22: Trilinear projection scene triangle tessellation results on a 4,5 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.07 0.76289

409600 2 0.19 0.32960

409600 3 0.27 0.26822

409600 4 0.34 0.28924

409600 5 0.47 0.23459

409600 6 0.70 0.22141

409600 7 0.98 0.19731

409600 8 1.19 0.20544

409600 9 1.47 0.19647

409600 10 1.82 0.18330

409600 20 6.86 0.17741

409600 30 14.72 0.17209

409600 40 25.27 0.17237

409600 50 40.44 0.17096

409600 60 55.32 0.17265

409600 70 75.79 0.17152

409600 80 96.55 0.17180

409600 90 131.50 0.17068

409600 100 168.67 0.17096

Table D.23: Trilinear projection scene triangle tessellation results on a 6,3 configuration

example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.34 0.38838

409600 2 0.39 0.20656

409600 3 0.43 0.13136

409600 4 0.45 0.11492

409600 5 0.60 0.09637

409600 6 0.79 0.08704

409600 7 0.97 0.08055

409600 8 1.23 0.03644

409600 9 1.49 0.03745

409600 10 1.85 0.03475

409600 20 6.67 0.02439

409600 30 15.32 0.01795

409600 40 27.32 0.01718

409600 50 44.83 0.01584

409600 60 63.81 0.01489

409600 70 83.42 0.01431

409600 80 103.20 0.01449

409600 90 130.25 0.01444

409600 100 158.86 0.01411

Table D.24: Trilinear projection scene triangle tessellation results on a 9 configuration

example



131

D.7 Trilinear Projection with Parametric Triangle Slicing

Results on Different Configurations

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.07 0.58885

409600 2 0.11 0.37333

409600 3 0.15 0.29312

409600 4 0.20 0.24747

409600 5 0.24 0.21976

409600 6 0.28 0.20085

409600 7 0.33 0.19107

409600 8 0.37 0.18389

409600 9 0.42 0.17672

409600 10 0.46 0.17020

409600 20 0.89 0.17216

409600 30 1.31 0.17998

409600 40 1.74 0.18194

409600 50 2.17 0.18128

409600 60 2.60 0.18291

409600 70 3.02 0.18226

409600 80 3.44 0.18259

409600 90 3.89 0.18324

409600 100 4.30 0.18455

Table D.25: Trilinear projection with parametric triangle slicing results on a 2,2,2,3 con-

figuration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.13 0.36672

409600 2 0.16 0.39993

409600 3 0.18 0.19488

409600 4 0.20 0.18527

409600 5 0.26 0.18436

409600 6 0.32 0.12974

409600 7 0.34 0.14172

409600 8 0.39 0.13845

409600 9 0.41 0.12067

409600 10 0.47 0.12920

409600 20 0.85 0.11740

409600 30 1.27 0.11504

409600 40 1.69 0.11450

409600 50 2.10 0.11323

409600 60 2.52 0.11450

409600 70 2.94 0.11287

409600 80 3.30 0.11359

409600 90 3.74 0.11305

409600 100 4.15 0.11359

Table D.26: Trilinear projection with parametric triangle slicing results on a 2,3 configu-

ration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.06 0.21134

409600 2 0.10 0.20333

409600 3 0.13 0.19409

409600 4 0.16 0.19409

409600 5 0.20 0.19532

409600 6 0.23 0.19285



132

409600 7 0.26 0.19100

409600 8 0.30 0.19347

409600 9 0.33 0.19285

409600 10 0.36 0.19162

409600 20 0.69 0.18608

409600 30 1.02 0.18608

409600 40 1.34 0.18669

409600 50 1.67 0.18731

409600 60 1.99 0.18731

409600 70 2.31 0.18731

409600 80 2.65 0.18484

409600 90 2.97 0.18546

409600 100 3.27 0.18731

Table D.27: Trilinear projection with parametric triangle slicing results on a 3,3,3 config-

uration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.06 0.42988

409600 2 0.09 0.29586

409600 3 0.13 0.20179

409600 4 0.16 0.21023

409600 5 0.19 0.15413

409600 6 0.23 0.14321

409600 7 0.26 0.14172

409600 8 0.29 0.12187

409600 9 0.33 0.12261

409600 10 0.35 0.11591

409600 20 0.68 0.09605

409600 30 1.00 0.09109

409600 40 1.33 0.08861

409600 50 1.66 0.08737

409600 60 1.98 0.08563

409600 70 2.29 0.08563

409600 80 2.61 0.08662

409600 90 3.01 0.08513

409600 100 3.30 0.08563

Table D.28: Trilinear projection with parametric triangle slicing results on a 4,2,3 config-

uration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.06 1.09412

409600 2 0.08 0.43426

409600 3 0.10 0.43220

409600 4 0.12 0.40578

409600 5 0.15 0.20722

409600 6 0.17 0.24871

409600 7 0.19 0.25077

409600 8 0.21 0.20372

409600 9 0.23 0.19051

409600 10 0.25 0.14551

409600 20 0.48 0.12549

409600 30 0.69 0.09928

409600 40 0.92 0.09040

409600 50 1.13 0.08937

409600 60 1.35 0.08731

409600 70 1.56 0.08669

409600 80 1.79 0.08400

409600 90 2.01 0.08318



133

409600 100 2.22 0.08421

Table D.29: Trilinear projection with parametric triangle slicing results on a 4,5 configu-

ration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.05 0.85706

409600 2 0.08 0.76962

409600 3 0.14 0.81362

409600 4 0.17 0.26654

409600 5 0.14 0.29540

409600 6 0.20 0.35622

409600 7 0.22 0.43105

409600 8 0.24 0.23487

409600 9 0.30 0.19254

409600 10 0.32 0.24019

409600 20 0.56 0.18021

409600 30 0.84 0.15807

409600 40 1.07 0.16200

409600 50 1.31 0.16312

409600 60 1.57 0.16003

409600 70 1.82 0.16368

409600 80 2.06 0.16704

409600 90 2.31 0.16312

409600 100 2.61 0.16592

Table D.30: Trilinear projection with parametric triangle slicing results on a 6,3 configu-

ration example

Resolution (square pixels) Tessellation Factor Execution Time (ms) Relative Error

409600 1 0.30 0.75621

409600 2 0.34 0.67250

409600 3 0.33 0.40378

409600 4 0.32 0.18357

409600 5 0.33 0.15479

409600 6 0.35 0.15025

409600 7 0.36 0.10211

409600 8 0.37 0.07449

409600 9 0.38 0.07324

409600 10 0.39 0.07906

409600 20 0.46 0.02755

409600 30 0.55 0.01907

409600 40 0.72 0.01712

409600 50 0.87 0.01548

409600 60 1.04 0.01515

409600 70 1.22 0.01488

409600 80 1.35 0.01502

409600 90 1.53 0.01499

409600 100 1.67 0.01522

Table D.31: Trilinear projection with parametric triangle slicing results on a 9 configura-

tion example



134

Appendix E

Context in Planar 3D Navigation



 
 

Context in 3D Planar Navigation 
 

Scott Vallance 
School of Informatics & Engineering 

The Flinders University of South Australia 
(vallance@infoeng.flinders.edu.au) 

 
Paul Calder 

School of Informatics & Engineering 
The Flinders University of South Australia 

(calder@infoeng.flinders.edu.au) 
 
 
 

Keywords: 3D graphics, navigation techniques, 
distortion viewing. 

Abstract 
 
One of the most frustrating barriers to the widespread 
use of 3D visualisation is the additional complexity in 
navigating 3D data. This paper details a new approach 
to improving navigation in 3D environments where the 
navigation is mainly planar. Data at a distance from the 
viewpoint is distorted as if projected onto a partial 
cylinder to approximate a plan view, thereby exposing 
information that may have been obscured. Previous 
approaches are compared with this new technique and 
screenshots presented. Implementation details of the 
technique are discussed as well as possible performance 
and useability issues. 
 
 

1. Introduction 
 
Navigating a virtual 3D space armed with nothing more 
than a 2D mouse, a keyboard and 2D screen is a difficult 
task. Systems which simply allow a user 6-degrees-of-
freedom movement do so at the risk of making a difficult 
to use, unintuitive interface. Metaphors are a powerful 
way of simplifying interactive tasks and making it 
intuitive. In 3D navigation the most obvious metaphor is 
that of a virtual person.  
 

In a virtual world, constraining the view to that of a 
human raises a few undesirable features. Firstly, down at 
ground level it can be very difficult to see where to go. 
Secondly, it can be hard to make sense of the lie of the 
land as objects close to the viewpoint can obscure 
important detail. There are three different types of views 
traditionally used with a virtual person: first, second and 
third person. A first person view looks out from the eyes 
of the virtual person. A second person view follows or 
tracks the virtual person, but from outside. A third 
person view is independent of the virtual person. First 
person views are the most direct. 
 
Successful navigation relies on a clear understanding of 
the current context. The context is the surrounding 
information that allows a greater understanding of the 
environment. In a word processor the amount of 
information that can be seen either side of the line 
currently being typed is the context. In a 3D navigation 
problem, the context is the amount of data seen around 
the current location or focus. Trivially, some types of 
context can be increased by a larger field of view, but this 
context comes at the expense of the detail and resolution 
of the objects surrounding the viewpoint. Attempts have 
been made in 2D and 3D visualisation to increase this 
context without losing detail, examples of this work can 
be seen in [WINCH2000], [KEAHEY1998].  
 
The goal of the work reported in this paper is to increase 
the context for navigation without unduly decreasing the 
directness of the view. Section 2 details a task that 
exposes shortcomings of previous approaches and our 
solution to it. Section 3 presents a comparison of the new 
technique with previous ones. Section 4 explains the 



implementation of the technique, followed by the 
conclusion in Section 5. Future work arising from the 
paper is briefly outlined in Section 6. 
 

2. Navigation tasks 
 
This paper investigates techniques for improving 
navigation in 3D scenarios where the navigation is 
substantially planar. In particular we have investigated 
maze navigation scenarios where the task involves both 
navigation and interaction with the local environment. 
 
Tasks involving just navigation might best be solved by 
providing a third person plan view. Tasks involving just 
interaction with the local environment might best be 
solved by providing a first person view. Tasks involving 
both navigation and interaction with the local 
environment require more complex views. 
 

2.1 Techniques 
 
Common approaches to tasks such as the one detailed 
above can involve single views or multiple views. Single 
views consist of a first, second or third person view. 
Multiple views traditionally involve a main view and 
secondary view to provide context. Examples of each of 
these techniques are: 
• Single view: a first person view, such as in a flight 

simulator. 
• Multiple views: a first person view, with a map (plan 

view) on top. 
 
Another approach to the problem is World-in-Miniature 
[STOAKLEY1995]. Here a small third person view 
shows all of the data in a miniaturised form, and an 
representation of the user can be moved through the data. 
A plan view on a first person view is a particular type of 
World-in-Miniature visualisation. 
 
While a combination of a first and third person view (for 
example a superimposed plan view) satisfies the 
navigation task by providing both context and first 
person directness, it contains an undesirable separation 
between the information. To navigate, the user need only 
focus upon the plan view. When interacting directly with 
the local environment the user must switch to focusing 
on the first person view. Although this takes only a small 
amount of time, it reduces the consistency of the 
interaction, and as a result it may negatively impact on 
the user’s spatial understanding. 

2.2 Removing the separation between viewpoints 
 
To remove this separation, we rely on the fact that the 
information provided by each viewpoint is not needed 
equally for data at different distances to the user. Put 
simply, close data needs to be viewed in first person and 
far data needs to be viewed in either second or third 
person. To implement this, data is distorted according to 
its distance from the user, so that close data is the same 
as a normal first person view, while distorted data 
approximates looking at that data from a second person 
viewpoint above the maze. This can be seen in the 
following figure, which shows a distorted maze: 
 

 
Figure 1: A maze distorted to show context 

 
In this approach both context and directness of 
interaction are provided. The disadvantage of this 
approach is the loss of context immediately around the 
viewpoint. Detail cannot be seen over the walls very 
close to the viewpoint in the above figure. 

3. Comparison 
 
In this section screenshots of various techniques that 
might be used to combine navigation and local 
interaction are presented and discussed. The amount of 
context each technique provides can clearly be seen. 
Examples of single view solutions to the task will be 
presented first, followed by multiple views and finally 
distorted views. 
 



 
Figure 2: A first person view of the maze 

 

 
Figure 3: A third person view of the maze 

 
Displaying only a single view limits the interaction. The 
view in Figure 2 allows easy local interaction but 
difficult navigation and the view in Figure 3 has easy 
navigation at the expense of directness. Navigation in 
Figure 2 is difficult because the choice of route is unclear 
without exploration. Route exploration can be time 
consuming, and is undesirable in most real world (non-
entertainment) applications.  
 
To alleviate the need to explore without removing the 
directness of a first person view, multiple viewpoints can 
be used. Figures 4 and 5 provide a discrete combination 
of viewpoints. Navigation is possible with a view that 
provides context (the smaller view in both figures), and 
local interaction is easy through the larger first person 
view. 

 
Figure 4: A World-in-Miniature view 

 

 
Figure 5: Plan view and first person view combined 

 
Figures 4 and 5 suffer from a need to switch from one 
view to another, this can be quite disconcerting as is 
discussed in [PAUSCH1995]. In their paper they present 
a method of specifying navigation with World-in-
Miniature views to alleviate this problem. Once the user 
specifies a path, the context view rotates around and 
zooms in to become the first person view. There still 
exists a fundamental separation in views with this 
technique, and rapid swapping between the context and 
first person view, may become confusing. 
 
Separation of focus tends to lead to confusion when the 
user changes focus. The user is unsure of how the 
viewpoints relate to one another. In tasks where the 
user’s spatial awareness must not be compromised, such 
as planning and architecture, this can be a serious 
concern.  
 



The next series of figures show the bending technique, 
with varying bending thresholds (see Section 4).  

  
Figure 6: Bending navigation with a ‘close’ threshold. 
 

 
Figure 7: Bending with a ‘medium’ threshold. 

 

 
Figure 8: Bending with a ‘far’ threshold. 

Unlike the plan view, the distorted view does not show 
all the maze. This means it is not a perfect tool for 
navigation, and may require, at some stages, the user to 
move around to gain the appropriate context. However 
continuity between navigation information and direct 
viewing is not compromised with this technique.  
 
Scenarios in which navigation data and local 
environment data are intertwined present a problem for 
this technique. For instance, when seeing if a close object 
aligns with a couple of more distant objects, bending will 
make this impossible. A solution would be to have some 
areas distorted and others left alone, but specifying this 
would be difficult. 
 

4. Implementing the technique 
 
To make a smooth transition from the first person view, 
to the distorted view, each vertex is rotated separately 
according to its distance from the user. This distance is 
measured only in terms of the plane the data lies on, so 
the effect is similar to bending the plane itself. The plane 
of the maze is simply the xz-plane. This means that the 
vertical displacement of the vertex from the user has no 
effect on its rotation. Figure 9 shows the idea. 
 
 
 
 
 
 
 
 

Figure 9: Schematic of the plane after bending 

 
In general, to find the distance from the user in terms of 
some plane, first project both the user’s position and the 
vertex onto that plane. This is easy in the specific case 
where the plane is the xz plane. All that needs to be done 
is to discard the y axis value. So the distance measure is: 
 

Where: 
d = distance 
xv = x coordinate of the viewpoint 
zv = z coordinate of the viewpoint 
xp = x coordinate of the vertex 
zp = z coordinate of the vertex 
 

22 )()( pvpv zzxxd −+−=

viewpoint
smooth 
transitionplane 

before threshold 
after max bend

bend  radius 



Once the distance is obtained it is checked against a 
threshold value. The threshold specifies where the 
bending effect should begin. Additionally there is a 
radius value for the bend, which effects how large the 
smooth transition area is. Once the point is further than 
the distance threshold plus the radius, it is simply rotated 
by the maximum amount. So the amount of rotation is: 

 
Where: 
d = distance 
t = threshold 
r = radius 
m = maximum bend 
 
The amount of rotation increases linearly over the bend 
radius. Non-linear relationships between rotation and 
distance have subtle effects on the technique. A non-
linear function can be used to instigate a slow onset of 
rotation followed by a fast climax. This would look like: 

 
Where: 
f = some exponent, larger values mean a quicker 
transition 
d = distance 
t = threshold 
r = radius 
m = maximum bend 
 
The point and axis of rotation depend on the exact kind 
of bending effect desired. In the prototype system, 
vertexes are distorted in a fashion similar to if they were 
projected onto a portion of a cylinder. It differs slightly 
from a cylinder in that vertices are distorted more 
according to their distance, even if they are the same 
distance from the start of the cylinder. The cylinder runs 
perpendicular to the direction of the view. So for each 
vertex, the axis of rotation is also in the direction of the 
view vector. The point around which the rotation occurs 
is above the closest point from the vertex, on the line 
perpendicular to the user in front of them and threshold 
distance from them. This can be seen in figure 10. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Determining the point of rotation for a 
cylindrical bend 

 
In this diagram, a is the point threshold distance from 
the user, and p is the point closest to the vertex on the 
line perpendicular from the viewpoint. So the point of 
rotation is above p by the amount of the bend radius. In 
the case of the plane being the xz plane, above simply 
means setting the y value to being that of the bend 
radius. If the plane is arbitrary, then the point of rotation 
is above the plane (with respect to the viewer) in the 
direction perpendicular to the plane. For a spherical 
bend, the point of rotation would simply lie on the line 
between the viewpoint and the vertex, projected onto the 
plane. 
  
Once the axis of rotation, the point of rotation and the 
amount of rotation are established it is simply a matter of 
using any maths library to implement the transformation. 
Unfortunately, the OpenGL API does not allow rotation 
transformations to be applied to vertices separately in a 
triangle [SEGAL1998]. If the rotation were to be applied 
at triangle level then splits would occur between the 
triangles of the scene that were previously flush against 
one another. 
 
This technique is applied per frame on a per vertex basis. 
Consequently performance is a concern. The technique 
should be applied in conjunction with view frustum 
culling, so only a visible triangle’s vertices will be 
modified. 

4.1 Using the Technique 
 
It is clear from this example that certain conditions need 
to be met for the technique to be helpful. Firstly, the data 
needs to be able to be seen from a plan view. If the data 









+<−
<

otherwisem

rtd
r

td
td0









+<−
<

otherwisem

rtd
r

td
td

f)(
0

viewpoint

a 

vertex 

p



has a roof or covering, context is still going to be 
obscured. The technique is not applicable to arbitrary 3D 
data sets, and as with any technique should only be used 
when the benefits are clear. Secondly, data to be 
presented in a first person view must be close to the 
viewpoint. Some data may be distant from the user but 
not obscured. This data will be distorted, even though it 
would have been seen without distortion. 
 
In the maze scenario the data is dense and regularly 
distributed. In a sparsely populated data set, the effect of 
the technique may be unclear. In these circumstances it 
may be advantageous to render a 2D grid on the plane of 
bending. In general, the effect of any technique on data 
should be directly visualized so that it is clear what is 
inherent in the data and what is a result of the technique. 
 
The amount of context can be varied by the threshold 
before the bend and the angle of the bend. A steeper and 
closer bending section decreases the similarity to a 
normal first person view, but increases the context. This 
raises the question of user specification of such 
parameters. Varying the bend threshold interactively may 
well be an effective way of controlling the amount of 
context. However other parameters may be less intuitive 
to manipulate. The type of bend used, whether it is 
cylindrical or spherical, and the acceleration of rotation 
(whether the bend is smooth or not) may well change the 
efficacy of the technique. Allowing changing of these 
parameters may unnecessarily complicate the interface. 

4.2 Applications 
 
Many interactions that are constrained to traversal on a 
surface are likely to have the context obscured by detail 
that projects out from the surface.  This is particularly 
prevalent where there is a human presence metaphor 
being used in the interaction. Furthermore constrained 
navigation in 3D can be much more effective than free 
flying as generally only 2D input devices are used. For 
example Hanson and Wernert [HANSON1997] present a 
system in which all 3D navigation is constrained to an 
arbitrary 2D guide manifold, which is more intuitive 
than free-flying. 
 
Some examples of possible real applications for this 
technique are the navigation and display of Geographic 
Information Systems (GIS) data for mining, planning 
and resource management, and real world navigation 
aided by augmented reality. 
 

GIS data tends to be very large and planar, and as such 
would lend itself well to navigation by bending. 
Augmented reality allows virtual data to be displayed 
over real vision. A map could be overlayed over the top 
of real scenery and then distorted in the distance to 
provide easy navigation. Essentially anywhere the data is 
mainly on a single plane, and the data in the distance 
provides information necessary for navigation, is a 
potential application area. 

5. Conclusion 
 
Every task has different requirements, and no one 
technique can provide all the solutions, but for certain 
problems the technique presented in this paper can 
provide context without separate viewpoints. This is 
particularly useful where distant data is to be used for 
navigation, and close data needs to be viewed to facilitate 
local interaction. In applications whose data mimics the 
real world this technique is most likely to be valuable. 
 
This paper provides an exploration of concept and a 
guide to the implementation of a novel navigation 
technique. As with all new techniques, its value depends 
on the applications found for it. Considering the wealth 
of first person, virtual human, interactions, there is the 
potential for quite a number of applications that can 
benefit from the concepts explored herein. 

6. Future Work 
 
The task presented in this paper will be extended and 
presented to a series of users to gauge the distorting 
technique’s effectiveness. It is expected that timing 
results for the task, as well as user feedback, should give 
a good indication of the relative merit of the techniques. 
Following this, the extension of the technique to a more 
realistic task will be considered. 
 
Further areas of work raised by this paper stem mainly 
from the implementation and specification of different 
kinds of distortions. Arbitrary distortion of certain 
regions and not others can enable easier navigation in a 
wider range of applications. However, how these 
arbitrary distortions are specified, whether by the user or 
designer, is an untackled problem. In such complicated 
environments it would most likely be necessary to 
directly visualize the distortion itself. This may be done 
in the form of a grid, but other solutions would have to 
be investigated.  
 



7. References 
 
[HANSON1997] Hanson, A. J. and Wernert., E. 

Constrained 3D navigation with 2D 
controllers. In Proceedings of 
Visualization '97, pp. 175-182. IEEE 
Computer Society Press, 1997. 
 

[KEAHEY1998] Keahey, T.A. The Generalized Detail-
In-Context Problem. Proceedings of 
the IEEE Symposium on Information 
Visualization. IEEE. 1998.  
 

[PAUSCH1995] Pausch, R. Burnette, R. Brockway, D. 
and Weiblen, M. Navigation and 
locomotion in virtual worlds via flight 
into hand-held miniatures. 
Proceedings of the 22nd annual ACM 
conference on Computer graphics, pp 
399 – 400. 1995. 
 

[SEGAL1998] Segal, M and Akeley, K. The OpenGL 
Graphics System: A Specification 
(Version 1.2). 
ftp://sgigate.sgi.com/pub/opengl/ 
doc/opengl1.2/opengl1.2.pdf). 1998 
 

[STOAKLEY1995] Stoakley, R, Conway M. and Pausch, 
R. Virtual reality on a WIM: 
interactive worlds in miniature. 
Conference proceedings on Human 
factors in computing systems. pp.265 
– 272. 1995. 
 

[WINCH2000] Winch, D., Calder, P. and Smith, R. 
(Focus + Context)3: Distortion-
orientated displays in three 
dimensions. In Proceedings of the 1st 
Australasian User Interface 
Conference AUIC 2000, Canberra, 
Australia, Jan-Feb 2000, pp. 126-133. 
 

 
 



142

Appendix F

Multi-Perspective Images for

Visualisation



Multi-Perspective Images for Visualisation

Scott Vallance Paul Calder
School of Informatics and Engineering
Flinders University of South Australia

PO Box 2100, Adelaide 5001, South Australia

{vallance,calder}@infoeng.flinders.edu.au

Abstract

This paper describes the concept, and previous
realisations, of multi-perspective images in nature, art and
visualisation. By showing how distortions have been used
for visualisation, it motivates the use of multi-perspective
images, which are similar in effect to object based
distortions. A new API being developed to facilitate
multi-perspective rendering is presented, with particular
reference to its suitability for interactive applications.
This API is demonstrated in a simple example of a multi-
perspective image, where five faces of a cube are shown
at once. Further work necessary to make multi-
perspective images for visualisation a reality is discussed.

1 Introduction

We define a multi-perspective image as multiple views of
a single scene from different perspectives. These views
are joined seamlessly to form an image that is a coherent
whole, without discrete subsections. The concept of
continuously joined views is not new. The idea has been
realised in many different forms; for example, reflections
on curved objects and lens effects can constitute natural
multi-perspective views. Apart from the inherent
aesthetics of the concept, we seek to explore its use as a
visualisation tool.

The motivation for exploring multi-perspective rendering
comes from the limitations of human sight in a 3D world.
The view we can see from our two eyes can be in many
situations very limited. We cannot see over tall objects,
nor through opaque objects, and we cannot see forwards
and backwards at the same time. In a virtual world, the
first two limitations can easily be dismissed – we can fly
over any object, and turn what we wish transparent. The
third limitation is what this paper specifically addresses.
We seek not just to be able to see forwards and
backwards at the same time, but to see from different
places – without having multiple separate views.

Real world multi-perspective images are used as
visualisation aids already. An obvious example is curved
mirrors on roads, which provide views of both directions
at T-junctions. We wish to allow for even more flexibility
in virtual worlds, so that visualisers can effectively look
out from arbitrary curved mirrors.

2 Previous Work
Previous work falls into three sections: work relating to
viewing from multiple viewpoints continuously,
techniques for distorting objects, and methods for
rendering reflections on curved objects. While the
previous work on multi-perspective images gives a
clearer understanding on the nature of the images, it is the
work on distortions that prompts our visualisation focus.
Previous work on reflections on curved objects relates to
the practical implementation of multi-perspective
rendering.

2.1 Multi-Perspective Images

In art, Chinese landscape painting, Cubism, and M. C.
Escher have explored the idea of multi-perspective
images. Chinese landscape paintings contain different
focuses, or sub-images, which are seamlessly joined.
These paintings are similar to the panoramas used for
cartoon drawing and image resynthesis, as is discussed in
Chu and Tai (2001). For example, in Figure 1 the
perspective shifts from left to right, following the path of
the stream.

M. C. Escher depicted a view with multiple vanishing
points, or perspectives, in his work “High and Low”
Escher (1992). This work, see Figure 2, has five different
vanishing points: top left and right, centre, and bottom
left and right. The top section of the image presents a
view from above, and the bottom section a view of the
same image but from ground level. While the automatic
generation of an image like this from 3D geometry may
not be practical, it illustrates the concept and the aesthetic
potential.

Figure 1: “Fisherman’s Evening Song” by Xu Daoning, Circa 11th Century.



Figure 2: "High and Low" by M. C. Escher

Hand-drawn and computer-generated panoramas with
multiple points of view have been used as the basis of
image resynthesis. Cartoon animation from panoramas is
an early example of resynthesis, which is explained and
adapted to computer-generated images in Wood,
Finkelstein, Hughes, Thayer and Salesin (1997). When a
small subsection of the panorama is viewed it
approximates a standard single viewpoint. If these
subsections are taken over a path on the panorama, they
give the appearance of motion when sequenced into an
animation. This is because the viewpoint shifts
continuously in a multi-perspective panorama.

Rademacher and Bishop (1998) present more generalised
multi-perspective images as the basis for resynthesis, the
advantage being a variable level of sampling without
multiple separate images. The paper calls these Multiple-

Centre-Of-Projection images. One section of the
panorama can be from close to a portion of the image,
giving a high sampling for that area, while others are
further away and capture more of the object. Moving a
virtual camera through the scene generates the multi-
perspective panorama. At regular intervals the camera
captures a single line of pixels for the final panorama.
These lines, either rows or columns, are placed next to
each other, so that the viewpoint smoothly changes from
one to the next. This is effectively a virtual strip camera,
which is explained below. Figure 3 shows a Multiple-
Centre-Of-Projection image of an elephant. The virtual
camera path goes from one side of the elephant to the
other, and we can simultaneously see both sides and the
front.

Strip cameras are used in surveillance and mapping.
These cameras have a continuous roll of film that slides
past a slit as a picture is being taken. The camera may be
moved whilst the shooting, providing a change in point of
view from one section of the film to another. If used from
a moving plane these cameras can capture a long section
of curved earth as if it were flat. The cameras have also
been used for artistic purposes, capturing strange and
unusual images, such as in Robert Davidhazy’s work
(Figure 4).

Figure 4: A strip camera image showing a head from
all sides taken from Davidhazy (2001)

In Loffelmann and Groller (1996) the idea of rendering
from multiple viewpoints with ray tracing is examined.
By developing an extended camera for ray tracing, the
authors present multi-perspective images with
visualisation as an application. Essentially an extended
camera is a set of 3D rays. Each ray has a starting
position and a direction, and these rays are used by a
conventional ray-tracer to draw the scene. Unlike a

Figure 3: Multi-Centre-Of-Projection image of an
elephant taken from Rademacher and Bishop



conventional ray-tracer, these rays do not necessarily
originate from the same point.

Figure 5: A conventionally rendered set of columns

Figure 6: Columns rendered from a torus surface

Figures 5 and 6, both taken from Loffelmann (2001)
show the extended camera ray tracing in practice. The
first image is rendered normally, however the second is
rendered out of a torus camera. The rays used all start on
the surface of the torus and point in the direction of the
surface normal.

The extended camera is comprised of three sections: an
object space transformer, a picture space transformer and
a parameter space transformer. The object space
transformer is a function that returns the 3D start position
of a ray given its corresponding index on the 2D screen.
This function defines a surface in 3D, and the scene is
rendered “out of” this surface. Defining a multi-
perspective image from a rendering surface is a
convenient representation, so we have adopted it for our
work. A multi-perspective image could otherwise be
defined as a camera path, such as in Rademacher and
Bishop (1998) described previously. However, the
camera path can be described as a surface, and vice versa.

2.2 Distortions

Distortions of the data, while being fundamentally
different in implementation than rendering multi-
perspective images, highlight the potential and
applications for multi-perspective images.  Both seek to
present the data in a changed way so that previously
unseen properties become apparent.

Distorting an object to view it better is most commonly
illustrated with the Mercator projection. This takes a
sphere, generally the earth, and transforms it to a 2D map.
In this map directions are conserved, though sizes are not,
to allow for easy sea navigation. Although the distortion
of size is an artefact, it allows for a better understanding
of some aspects of the globe. This is ultimately the point
of distorting the data, either directly or by rendering
through a curved surface – to better illustrate certain
properties of the data.

In Hurdal, Bowers, Stephenson, Sumners, Rehm, Schaper
and Rottenberg (1999) a scan of a brain was distorted into
a nearest approximation flat projection. This allows a
better appreciation of the layout of the brain from medical
imaging, with the intention of improving surgical
planning. This type of distortion is highly dependant on
the nature of the data, and does not translate well to the
visualisation of arbitrary scenes.

Distortion Orientated Displays are a general visualisation
tool based around the distortion of data. These displays
seek to show detail and context simultaneously. The
general problem is that when detail is shown, much of the
screen is filled with that detail. If the surrounding data is
shown at the same level of detail, it would not fit on the
screen. To accommodate this, in a distortion view there is
a region of focus at a certain detail level, which smoothly
transitions to a region of context at a lower detail level.
This can be seen in Smith (1997). Using a distortion
called a frustum display, the author was able to achieve
levels of detail sufficient for a city level road map, whilst
showing the context of the whole of Australia.

In 3D, both Keahey (1998) and Winch, Calder and Smith
(2000) expanded the idea of distortion orientated displays
to allow for regions of zoom – regions where the scene
data was expanded to a larger size. These prove useful for
highlighting sections of particular detail in a scene
without zooming and therefore cutting out periphery data.

The idea of detail and context is to have at least two
different perspectives on the data. In this case the
perspectives are not literal changes in viewpoint, but in
operating conditions. In Vallance and Calder (2001) the
idea of distorting a mainly planar world onto the inside of
cylinder was examined. This was proposed, in the
application of virtual maze navigation, so that two
different perspectives on the maze could be
simultaneously realised: a local view of the undistorted
maze walls, and a navigational view of the distant maze
perpendicular to the users viewpoint. Figure 7 shows an
example of the maze distortion.



Figure 7: A maze distorted in a cylindrical fashion to
show context

The cylindrical distortion works only because the data
lies mainly on a single plane. For arbitrary 3D data it is
unclear how the mapping onto a cylinder would be
helpful.

2.3 Reflections on Curved Objects

Reflections on curved surfaces are a natural form of
multi-perspective image. Computer graphics has long
been interested in realistically rendering virtual scenes
including reflections. Research into generating reflections
on curved objects, especially for real-time graphics,
shows how multi-perspective rendering can be
implemented. However reflections on curved objects are
a subset of multi-perspective images. Moreover they need
not be entirely accurate (they need only look appropriate)
and form only a small portion of the screen. Multi-
perspective images for visualisation have different
accuracy requirements and take up more of the screen.

Ray tracing is the most direct way to render reflections
from curved surfaces. When a ray intersects a reflective
surface it bounces off in a direction determined by the
angle of intersection with surface. Reflections drawn in
this manner are accurate, however ray tracing tends to be
very slow. Various methods exist for accelerating the ray
tracing. These methods range from reducing the number
of ray-surface intersection tests with hierarchal space
subdivision, to parallelising the calculations. Without
massively parallel hardware it seems unlikely real-time
ray tracing will be achieved soon, the problem is
discussed in Jansen (1993).

Environment mapping was initially suggested by Blinn
Blinn and Newell (1976), and is often used to
approximate curved reflections for real-time graphics.
When a scene is rendered from a particular viewpoint, the
light coming into that point is sampled. With enough
samples for a particular viewpoint, the technique can
approximate the colour of any ray shot from that point. A
popular implementation of environment mapping
involves rendering to the six faces of a cube centred on a
point. When used for generating reflections, this centre
point is the centre of the reflective object. For each ray
that bounces off the reflective object, a ray is shot from

the centre point in the direction of the reflected ray into
the cube. This approximation moves each reflected ray to
the centre of the cube. For scenes where the reflected
objects are far away from the reflective object the
technique works well; otherwise the approximation is
obvious. For the purposes of multi-perspective images
environment maps are not sufficiently accurate. The light
is sampled at only one point, making it unsuited for
multi-perspective, or multi-viewpoint, rendering.

An extension to the concept of environment mapping is
proposed by Cho (2000) to provide more accurate
images. Instead of simply sampling the light coming into
a point, a depth-mapped image is calculated for each of
the six cube faces of the environment map. Reflection
rays can then be traced into the 3D depth map, without
needed to approximate the start point of the ray. This
technique amounts to ray tracing the scene, though
through a modified representation of the geometry (the
depth map) that provides a significant performance
enhancement in some cases. Static scenes are required for
this technique, as otherwise the depth maps need to be
recomputed at each frame, which is very expensive. In a
multi-perspective image for visualisation, the surface will
be moving and not static in relation to the scene, so
extended environment maps would be unsuited.

Another type of technique based on environment
mapping is presented in Hakura, Snyder and Lengyel
(2001). In this technique, layers of environment maps are
used. Different environment maps may be used according
to the viewer’s location and direction of view, to avoid
the failings of standard environment maps. Once again,
this technique requires a static scene relative to the
reflective object to be effective. Rendering these
reflections from a series of stored images is actually
image based rendering. Other image based rendering
techniques, such as the Lumigraph (Gortler, Grzesczuk,
Szeliski and Cohen 1996) can be useful for rendering
reflections. These techniques represent the light in the
space of a scene, and are sampled with 2D slices to
generate a particular view. The drawback of such a
system is that it is currently not used for many
visualisation purposes, has a large memory overhead, and
needs an unchanging scene.

The most intriguing approximation of rendering
reflections on curved surfaces is described in Ofek and
Rappoport (1998). In this method, objects are
transformed by the reflective surface so that they may be
rendering from a single viewpoint. In essence the data is
distorted to an approximation of how it will look after
being viewed from a reflective surface, and then
rendered. It requires an appropriate tessellation of both
reflective surface and scene object so that lines that
should now appear curved do. The performance of this
technique is sufficient for real-time rendering of moderate
scenes. The technique works on standard polygon scenes
making it suited for visualisation tasks, and easy
integration into current applications.



3 An API for Multi-Perspective Rendering

In developing an API to facilitate rendering from multiple
perspectives the key concerns were:

• To separate, as much as possible, technique from
calling interface.

• To allow easy integration into existing visualisation
applications.

• To allow for expansion of functionality and
techniques.

To achieve interactive rendering of multi-perspective
images a variety of different techniques will need to be
evaluated. The API is designed to flexible enough so that
different techniques can be used without major changes to
the visualisation code that uses the API.
One of the most popular API’s for 3D graphics is Silicon
Graphics Inc.’s OpenGL. It provides a clear and powerful
set of instructions for building graphical programs. The
specification is described in Segal and Akeley (1998).
This API forms the inspiration for our design, and many
of the commands resemble OpenGL syntax. By basing
the API on OpenGL it should allow for easy integration
into existing visualisation programs that use OpenGL.

The multi-perspective rendering API covers two main
tasks: describing a surface to render from and a scene to
be rendered. Two abstract classes define the base level
interfaces provided by the API for these two tasks.

Geometry: Describes the scene to be rendered.

Functions Description

Begin() Start of a geometry
description block. Vertex,
normal and colour may
only occur between a
Begin() and an End()

End() End of a geometry block

Vertex3f(float x, y, z) Place a vertex of a triangle
in the scene with the
current normal and colour

Normal3f(float x, y, z) Specify the current normal

Color3f(float a, r, g, b) Specify the current color

Other Various other commands to
specify textures and other
graphical properties

Surface: Describes the surface to render from.

Functions Description

BeginSurface() Start specifying a surface,
vertex and normal
commands may only
appear between a
Beginsurface and
Endsurface

EndSurface() End a surface specification
block

Vertex(float x, y, z) A vertex in the surface, the
exact meaning is dependant
on the type of rendering
technique

Normal(float x, y, z) Current normal for each
vertex

Viewport(float l, r, t, p) The viewing dimensions of
the screen. Determines how
the surface is mapped to
the screen

These classes are accessed through the Renderer class,
which is a conglomeration of all the interface functions so
that they may be accessed without reference to particular
Geometry or Surface objects. The rendering technique
implemented in the Renderer class, which uses specific
Geometry and Surface objects to generate an image. This
is done so that the interface looks and feels more like
OpenGL.

These abstract classes are inherited by specific
implementations. For instance, the rendering of multi-
perspective images can be done with a ray tracer, the
surface can be specified as a set of rays and the geometry
as a set of triangles. This defines three classes that inherit
from the base classes: RayTraceRenderer, RaySet and
TriStore. Figure 8 shows the relationships of the classes.
The solid arrows indicate inheritance and the dashed
arrows show usage.

Geometry

Surface

Renderer

TriStore

RaySet

RayTraceRenderer

Figure 8: Diagram of base classes and a raytracing
renderer

In the surface class, like the geometry class, the main
mechanism for passing information to the lower level
rendering technique is the vertex and normal commands.
This symmetry is deliberate, so that, with the right
technique, a surface can be used to render from or to draw
with little modification. Also this OpenGL-style
immediate-mode specification of surfaces suits an
interactive application where the surface may be
changing from frame to frame.

The types of rendering surfaces that can be represented
easily with only vertex and normal commands is similar



to the types of conventional surfaces easily specified with
those primitives. Simple point-based geometry is
analogous to a simple rayset surface, where vertex and
normal commands denote a ray’s origin and direction.

Triangular patches are probably the most common form
of 3D geometry and rendering surfaces can also be
described in this manner. While polygon patches are not
curved, it is common practice to make them appear so by
interpolating properties between the vertices of the
constituent triangles. By taking the normal values at a
particular point as denoting the direction of a ray origin at
that point, and interpolating these normals between the
vertices, a graduated or curved surface is approximated.

 Parametric surfaces are also easily specified with vertex
and normal commands, with vertices interpreted as
control points of a patch. It is hoped that these different
ways of specifying surfaces will be sufficiently rich for
most purposes.

To illustrate how the API works here is an example based
on using the RayTraceRenderer described in Figure 8:

RayTraceRenderer rtr;

void SpecifySurface() {

  rtr.Viewport(0,0,1,1);

  rtr.BeginSurface(); {

    rtr.Normal3f(0.0,0.0,-1.0);

    rtr.Vertex3f(0.0,0.0,0.0);

    rtr.Normal3f(0.0,0.0,1.0);

    rtr.Vertex3f(0.0,0.0,-1.0);

  } rtr.EndSurface();

}

void SpecifyScene() {

  rtr.Begin(); {

    rtr.Normal3f(0.0,0.0,1.0);

    rtr.Vertex3f(1.0,0.0,-1.0);

    rtr.Vertex3f(-1.0,0.0,-1.0);

    rtr.Vertex3f(0.0,1.0,-1.0);

  } rtr.End();

}

These functions, appropriate called, trace two rays into a
scene comprising of a single triangle.  The RaySet and
TriStore objects are hidden by the RayTraceRenderer and
are accessed through that class.

4 Raytracing Implementation

As a first case implementation a ray tracing algorithm
was used, with rendering surfaces defined as a set of rays.
This implementation was used to render a simple scene
with a cube a tiled floor, shown here in Figure 9. While
basic, the scene has some properties that make it an
appropriate demonstration of multi-perspective rendering.
First the cube has six numbered sides, in a normal
perspective view at most three sides can be seen at once,
due to self occlusion. Second, the tiled floor provides a
reference to the effect of the rendering surface that is
easily perceived.

Figure 9: The cube scene

To simultaneously show five sides of the cube, a curved
surface is placed over the scene. This surface is
constructed initially from 16 control point Bezier patch,
which is decomposed in a set of rays. The surface can be
seen here in Figure 10, and is roughly hemispherical in
nature. Figure 11 shows the cube scene rendered through
the surface, with five of the cube’s faces visible.

Figure 10: A surface for visualising all sides of a cube

The surface spans the cube scene, with the rays pointing
inwards in a direction normal to the surface. The
generation of the rays from the Bezier equations and
control points is a significant performance cost in itself.



Figure 11: The cube scene rendered from the surface
in Figure 10

The surface was constructed by manually entering
appropriate values for the Bezier control points. This is
undesirable from an interaction point of view, one of the
key aims of our research. As a first experiment in the
interactive specification of rendering surfaces, a 1-
dimensional control is proposed. A slider dictates the
amount of perspective on a normal rendering surface. A
zero value corresponds to an orthographic projection, and
the positive values correspond to an increasingly severe
perspective projection.  Negative values correspond to a
‘reverse’ perspective projection where distant objects
seem larger, and closer objects smaller. Figures 12
through 14 show a perspective view, an orthographic
view and finally a ‘reverse’ perspective, respectively.

Figure 12: A perspective projection

Figure 13: An orthographic projection

Figure 14: A ‘reverse’ perspective projection

The floor of the cube scene appears to be upside down in
Figure 14, as the distant top edge is now larger than the
closer bottom edge. A simple 1-dimensional slider barely
captures the possibilities of interactively controlling the
rendering surface, but does allow for an evaluation of
such things as API design and system performance. The
OpenGL like multi-perspective rendering API is well
suited to interactively specified rendering surfaces
because the surface is specified in a manner similar to
that of dynamic geometry.

The rendering performance of the ray tracing
implementation of the API is too slow for interactive
performance. Frames take seconds to render each, even
over such a simple scene.  The ray tracing
implementation is admittedly naïve, and does not include
such common speedups as BSP culling of scene
geometry. The API is designed to easily allow for the
development and integration of new techniques, and these
are already being worked on.



5 Conclusions and Further Work

While the performance of the API in terms of frames per
second is far from interactive, the design and conceptual
groundwork has been laid for more detailed investigation
into multi-perspective images from visualisation. By
extending previous work on interactive reflections on
curved objects to multi-perspective images for
visualisation performance issues will be addressed. The
raytracing implementation described in this paper forms
an important base line for measuring the accuracy of
faster implementations.

The interactive manipulation of viewing surfaces is an
unexplored field, the simple 1-dimensional interaction
described here is a start, though things will be much more
complicated with more dimensions of freedom. Another
aspect this paper does not touch on is in the useful
application of multi-perspective images. The cube world
in Figure 11 demonstrates clearly one of our reasons for
pursuing multi-perspective images, the ability to see more
than is otherwise possible. With appropriate tools and
interfaces we believe multi-perspective images will be a
valuable tool for visualising complex data.

6 References

BLINN, J.F. and M.E. NEWELL (1976): Texture and
Reflection in Computer Generated Images.
Communications of the ACM, v19, n10, p542-547.

CHO, F. (2000):  Towards Interactive Ray Tracing in
Two- and Three-Dimensions.  PhD Thesis. University
of California at Berkeley.

CHU, S. H. and C. L. TAI (2001): Animating Chinese
Landscape Paintings and Panorama using Multi-
Perspective Modeling, Proceedings of Computer
Graphics International 2001, Hong Kong, IEEE Press.

DAVIDHAZY, A. (2001):, Peripheral Portraits and
Other Strip Camera Photographs, Retrieved October,
2001: http://www.rit.edu/~andpph/exhibit-6.html .

ESCHER, M. C. (1992): The Graphic Work. Evergreen,
Germany.

GORTLER, S., R. GRZESCZUK, R. SZELISKI and M.
COHEN (1996): The Lumigraph. In Proceedings of
SIGGRAPH 96, pp. 43-54.

HAKURA, Z., SNYDER, J., and LENGYEL, J. (2001):
Parameterized Environment Maps.  In Proceedings of
the 2001 Symposium on Interactive 3D Graphics,
I3D01.

HURDAL, M. K., P. L. BOWERS, K. STEPHENSON,
D. W. L. SUMNERS, K. REHM, K., SCHAPER, D.
and A. ROTTENBERG (1999): Quasi-conformally flat
mapping the human cerebellum, in C. Taylor and A.
Colchester (eds), Medical Image Computing      and
Computer-Assisted Intervention, Vol. 1679 of Lecture
Notes in Computer Science, Springer, Berlin, pp. 279-
286.

JANSEN, F. W. (1993): Realism in real-time? In
Proceedings Fourth Eurographics Workshop on
Rendering, Cohen, Puech and Sillion (eds).

KEAHEY, T. A. (1998): The Generalized Detail-In-
Context Problem. Proceedings of the IEEE Symposium
on Information Visualization. IEEE.

LOFFELMANN, H. and E. GROLLER (1996): Ray
tracing with extended cameras. The Journal of
Visualization and Computer Animation, 7(4): pp. 211-
227.

LOFFELMANN, H. (2001): Diploma Thesis, “Extended
Cameras for Ray Tracing”. Retrieved October 1, 2001,
http://www.cg.tuwien.ac.at/~helwig/projects/dipl/

OFEK, E. and A. RAPPOPORT (1998): Interactive
reflections on curved objects. In Proceedings
SIGGRAPH 98, pp 333-342.

RADEMACHER, P., and G. BISHOP (1998): Multiple-
center-of-projection images. In Proceedings of
SIGGRAPH 98, pp 199-206. ACM.

SEGAL, M., and K. AKELEY (1998): The OpenGL
Graphics System: A Specification (Version 1.2).
ftp://sgigate.sgi.com/pub/opengl/doc/opengl1.2/opengl
1.2.pdf

SMITH, R. (1997): Distortion Oriented Displays for
Demanding Applications. PhD Thesis, Gippsland
School of Computing and Information Technology,
Monash University.

VALLANCE, S. and P. CALDER (2001): Context in 3D
Planar Navigation. In Proceedings of the Australasian
User Interface Conference AUIC 2001, Queensland,
pp. 93-99.

WINCH, D., P. CALDER, and R. SMITH (2000): Focus
+ Context3: Distortion-orientated displays in three
dimensions. In Proceedings of the 1st Australasian
User Interface Conference AUIC 2000, Canberra,
Australia, pp. 126-133.

WOOD, D., A. FINKELSTEIN, J. HUGHES, C.
THAYER, and D. SALESIN (1997): Multiperspective
Panoramas for Cel Animation. In Proceedings of
SIGGRAPH 97 Conference, pp 243-250, ACM



151

Appendix G

Inward Looking Projections



Inward Looking Projections 
Scott Vallance  Paul Calder 
School of Informatics and Engineering 
Flinders University of South Australia 

{scott.vallance|calder}@infoeng.flinders.edu.au 
 

 
 

Abstract 
This paper presents a technique for rendering inward looking 
projections. We call these projections anti-perpsective because 
they run counter to normal perspective projection and converge to 
a point in front of the image plane. A real world analog for this 
type of projection is the reflection seen on a spherically concave 
mirror. In fact the technique can be used to render reflections on 
perfectly spherically curved mirrors. Our implementation builds 
on environment mapping work that captures a sample of the light 
coming into a point; we propose an inward looking spherical 
camera that captures a view from all around an object. The aim of 
this research is to provide a visualisation technique capable of 
viewing multiple sides of an object in a single image. 
 
CR Categories: I.3.3 [Computer Graphics]: Picture/Image 
Generation � Viewing Algorithms, I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism � Texture. 
 
Keywords: projections, reflections, environment mapping. 

1     Introduction 
Unlike many graphics techniques we are not concerned with 
matching real world phenomena. Instead this work comes about 
from purely visualisation motivated approach. Our aim was to 
provide information otherwise unavailable. Specifically we 
conceived the anti-perspective projection as a way to see both 
sides of an object at once.  

This projection works similarly to looking into a spherically 
concave mirror, that surrounds an object close to the mirror. The 
view shows more of the object than can be seen than in a 
perspective projection. Taking this idea to its conclusion, we 
propose a fully spherically projection that totally surrounds 
objects within it.  When using these projections to view an object, 
properties that span the entirety of the object, such as surface 
details, can be seen in a single view. The result is somewhat 
similar to a Plate Carree projection of our globe, though for 
arbitrary objects. 

2     Map Projections 
A Plate Carree projection of the globe maps the sphere onto a  

cylinder that is then unraveled. Essentially the Plate Carree 
projection is a longitude/latitude grid, as discussed in Birch 
[1964]. Although somewhat lacking as a cartographical tool, it 
does adequately project a 3D sphere onto a plane so that all angles 
may be viewed. Such mapping techniques effectively take a 3D 
point and map it to a position on a 2D plane. With a polygon 
model which is defined by its vertices, applying the projection on 
each vertex leaves the intervening detail, such as any textures, 
incorrectly transformed. In computer graphics, projections like 
this are commonly used to make maps that can guide the 
production of textures. In this context it is called UV mapping. 
This paper provides a technique to achieve similar results that are 
correctly transformed all across an object and not just at the 
vertices.  

3     Perspective Projection 
A traditional perspective projection mimics the way our eye sees 
the world so that distant objects appear smaller. In ray tracing 
terms, rays emanate from the eye-point and diverge from one 
another. This view can be implemented with a simple 
transformation that projects 3D points onto a plane representing 
the screen, along the line to the viewpoint. Details of the 
transformation can be found in graphics references such as Foley, 
van Dam, Feiner and Hughes [1990]. 

Conventional perspective projections use a z-buffer to ensure 
that only visible surfaces are drawn. A z-buffer stores a depth 
value for each pixel and typically only overwrites a pixel if the 
new value has a smaller depth value. This ensures the final value 
of the pixel has come from the 3D surface closest to the 
viewpoint. This depth is stored in a finite number of bits so a 
maximum and minimum depth need be established. Along with 
the constraints of the screen size these measurements define a 
viewing volume (see Figure 1). Any 3D data within that volume 
can be projected; anything outside is culled.  

viewpoint

image 
plane 

maximum depth

viewing direction

 

 
Figure 1: A Perspective Projection Viewing Volume 

 
Note that in Figure 1, both the pyramid and cube would be 

roughly the same height in the rendered image. The section from 



the image plane to the viewpoint is not actually part of the 
viewing volume, but is drawn to show how the volume converges 
to the viewpoint. 

4     Anti-Perspective Projection 
In an anti-perspective projection there is no viewpoint; instead 
there is a point of convergence. In ray tracing terms, rays emanate 
from the image plane and converge to a point in front of it. The 
viewing volume this creates is shown in Figure 2. 

Figure 2: A Anti-Perspective Viewing Volume 
 

The anti-perspective projection divides the scene into two 
parts, the near field (before the point of convergence) and the far 
field. For the far field volume everything we see will be upside 
down but otherwise like a standard perspective projection. For the 
near field volume more distant objects will appear larger than 
closer ones.  

4.1     Near Field Viewing Volume 
Our algorithm for rendering the near field viewing volume 

takes advantage of the similarities between this view volume and 
a perspective view volume. The only difference is that we wish to 
project the data onto the large end of the viewing volume instead 
of the smaller. In terms of the projection transformation itself the 
direction is irrelevant. This means we can render the volume as a 
perspective transformation starting at the point of convergence 
and ending in the image plane.  

Direction is only important when determining the pixel depth. 
If we use a modified z-buffer algorithm that only overwrites a 
pixel if is further than the previous value, we can effectively draw 
only those faces which are closest to the far end of the volume. 
OpenGL provides glDepthFunc() to chose the type of depth test to 
be done. Passing a value of GL GREATER will set the z-buffer to 
work in the desired manner. 

 

Certain properties in rendering are direction sensitive, 
including lighting calculations and front-face determination 
through winding. For correct rendering these need to be adjusted 
to compensate for the backwards nature of the rendering. Winding 
direction needs be reversed and normal vectors pointed in the 
opposite direction. Our implementation uses the OpenGL 
mechanism for changing the winding used to determine front 
faces with glFrontFace(). Normal vectors can be multiplied by �1 
to flip them. 

The series of operations to render the near field view volume 
are as follows: 

• Enable reverse depth buffering.  
• Flip front face winding if applicable.  
• Rotate the scene so the z-axis lies perpendicular to, and 

facing, the image plane 
• Translate the scene so the viewpoint is the point of 

convergence 

• Render the scene normally with normal vectors flipped. 

4.2     Far Field Viewing Volume 
Any objects after the point of convergence are upside down. This 
section of the viewing volume can be rendered as a perspective 
projection from the point of convergence. The maximum depth of 
the viewing volume is the end of the overall viewing volume and 
the minimum depth is set close to the viewpoint. If this minimum 
depth is too large, objects near the point of convergence may be 
culled effectively leaving a hole in the projection. The near field 
volume also has a hole between the minimum depth and point of 
convergence. As long as neither of these holes contains any 
vertices the projection will render correctly.  

convergence point 

maximum depth 

image 
plane 

viewing direction

  
The far field view volume can be rendered as follows: 
• Rotate the scene so that the z-axis is perpendicular to, 

and facing away from, the image plane. 
• Translate the scene is so the viewpoint is the point of 

convergence. 
• Rotate the scene 180 degrees around the z-axis. 
• Render the scene. 

4.3     Combining the Viewing Volumes 
After rendering the near field view volume, the z-buffer depth 
values span a range of possible depth values with the maximum 
depth at the point of convergence. With appropriate use of 
glDepthRange() before the section is rendered we can restrict the 
maximum depth value to a portion of the entire range. To render 
the far field view volume the depth range to lie between the 
absolute maximum and the maximum of the portion we just 
rendered. As the depth values for the first section were reversed, 
we set the second depth range to be reversed (with the far value 
smaller than the near value) and continue using our backwards z-
buffer. To combine the two volumes: 

F

• Set the depth range to be [0.0, portion], where portion is 
the fraction of the entire view volume before the point 
of convergence. 

• Render the near field volume. 
• Set the depth range to [1.0, portion]. 
• Render the far field volume, still using the backwards z-

buffer. 
The depth range needs to be switched because we are combining 
two views from opposite directions. It is equally valid to render 
the near field volume with a reversed depth range and normal z-
buffer and then the far field volume with a normal depth range 
and z-buffer. Computationally the methods are the same, though 
we initially implemented the near field volume with a reversed z-
buffer. 

A perspective projection of a cube is shown in Figure 3, 
which is then rendered in anti-perspective view in Figure 4. The 
bottom of the cube, which is not visible in Figure 3, can clearly be 
seen in Figure 4. In Figure 4 it almost appears that we can see 
inside the cube, but it is the outer faces that are showing. The two 
back faces are still obscured, to display them a projection must 
totally surround the cube. 

Figure 3: A perspective Projection of a Cube



4.4 Spherical Concave Mirror Reflections 
A spherical concave mirror behaves exactly as an anti-perspective 
projection. Any set of rays emanating from a single point that 
reflect off the mirror will pass through a point of convergence. An 
anti-perspective view positioned at the position of the concave 
mirror that has the same point of convergence will capture the 
same information if there are no inter-reflections. Therefore the 
anti-perspective view can be used to texture the concave mirror 
object accurately portraying the reflection from that viewpoint on 
the mirror. This is shown in Figure 5. 

 

Figure 5: Reflection Rays on a Spherically Concave Mirror 
 

If the point of convergence is surrounded by the concave 
mirror a single anti-perspective view is not sufficient. Multiple 
anti-perspective views can be combined in this case.  Combining 
these views can be done similar to the way in which spherical 
environment maps can be generated from cube maps and is 
detailed in the following section. 

5 Virtual Spherical Camera 
Conceptually a spherical camera captures all the light coming into 
a point. This generates something like an extended fish-eye lens 
view where the front, back, top, bottom and sides can all be seen. 

Typically such images are used as the basis of environment 
mapping. Environment mapping allows for an approximation of 
complex reflections to be made, by simplifying reflections such 
that they all effectively bounce off the centre of the sphere 
represented by the environment map. The idea was first published 
by Blinn and Newell [1976]. 

The efficient generation of these environment maps is a 
significant concern because in a dynamic scene the environment 
map must be updated every frame. The environment map is 
typically one of two different types: a sphere map or a cube map. 
A sphere map has the middle as the front of the view, surrounded 
by the sides, top and bottom. The front forms a ring around the 
edge. A cube map presents the front, back, sides, top and bottom 
as separate segment of the final image like a dissected cube. 
Figures 6 and 7 show a sphere map and cube map respectively. 

James Blinn�s original environment mapping work used a 
different type of map, sometimes called a longitude/latitude map. 
This is because the x and y axes of the map correspond to 
longitude and latitude, similar to the way a Plate Carree map 
projection is similarly laid out. Figure 8 shows an environment 
map from Blinn�s original paper and is available from Debevec 
[2002]. Each different shaded section represents a wall, ceiling or 
floor of a simple cubic room. 

 

Figure 4: An Anti-Perspective Projection of a Cube

 

Front 

Top 

Back Right

Bottom 

Left

viewpoint 

point of converge

anti-

nce 

perspective 
view 

concave mirror 

 
Figure 6: A Sphere Map 

 
 

 Back

 

Left

Top

Bottom 

RightFront

Figure 7: A Cube Map 



 
 

 
Figure 8: A Longitude/Latitude Map From Blinn [1976] 
 
A cube map can be created by rendering a view for each of 

the faces. The sphere map is more difficult to render but can be 
created by warping a cube map to the appropriate shape as 
detailed by Ned Greene [Greene 1986]. A 2D mesh warp can 
transform the cube map�s faces, once rendered, to that of the 
sphere map.  

A cube has six faces so six views must be rendered to form 
one. A simpler solid shape, the tetrahedron, has four faces and it 
can also be used to generate environment maps. Fortes [2000] 
presented a tetrahedral environment map that can be warped to a 
sphere or other map. The advantage of the tetrahedral map is that 
only four views need be rendered. 

6 Inwards Spherical Projection 
An inwards spherical camera is like a normal spherical camera 
except that the rays are directed from the surface of the sphere to 
the centre, rather than the other way, thus generating a view of 
every side of an object. In the same way that warping several 
normal perspective views can generate a spherical view, warping 
anti-perspective views can generate an inverse spherical view. 

Our implementation uses a tetrahedron as a base for the 
spherical projection to reduce the number of projections needed. 
For each face of the tetrahedron we render an anti-perspective 
view. The anti-perspective views converge on a point in the centre 
of the tetrahedron. The extent of the anti-perspective viewing 
volumes is the point of convergence, so only the near field 
volume need be rendered for each one. For visualisation purposes 
it was unnecessary for the view to continue past the point of 
convergence, though this could easily be done. 

Once the four views are rendered they can be warped to 
another environment map style. For this we chose implementation 
a longitude/latitude map. In environment mapping the map is an 
intermediate data structure, whereas in our visualisation work the 
map is displayed. To generate the map, the views are copied to 
textures and then used to texture a mesh that warps the views to 
the shape of the longitude/latitude map.  

The series of operations is as follows: 
 
• For each face of the tetrahedron render an anti-

perspective view from the face converging on the centre 
of the tetrahedron, to a portion of the screen 

• Copy the screen to the texture buffer 
• Draw a 2D warped mesh (in the shape of the desired 

map) using the textures previously rendered 
 
 

Figure 9: An Inward Looking Spherical View of a Cube 
 
Figure 9 shows a cube rendered with an inward spherical 

projection. It very closely resembles the environment map in 
Figure 8, but instead of being inside a cubic room the virtual 
camera surrounds the cube. All sides of the cube are visible in a 
single continuous image. 

7 Conclusions and Further Work 
This paper presents a technique for rendering anti-perspective 
projections. It can be used both for implementing reflections on 
spherically concave mirrors and as a visualisation tool. By 
building on research into environment maps, the projection can be 
extended into an inward looking spherical camera. This can 
render a view surrounding an object, showing all sides of an 
object at once. The performance of the technique is acceptable for 
interactive use as it is comparable to work in interactive 
generation of standard environment maps. 

We are currently investigating further aspects of the 
visualisation and other uses of the techniques. For example the 
inward spherical projection may provide an interesting basis for 
image resynthesis as it captures a lot of the information for an 
object in a single image. A cylindrical projection is being 
investigated to compliment the spherical projection. 

References 
T. W. Birch. Maps topographical and statiscal. Oxford Press, 

1964. 
J. F. Blinn and M. E. Newell. Texture and reflection in computer 

generated images. Communications of the ACM, 19(10):542--
547, Oct. 1976. 

P. Debevec, http://www.debevec.org/ReflectionMapping/Blinn/, 
Accessed on September 2002. 

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer 
graphics: principles and practice, 2nd edition. Addison-
Wesley, 1990. 

T. Fortes. Tetrahedron Environment Maps, Master's Thesis, 
Department of Computing Science, Chalmers University of 
Technology, Gothenburg, Sweden, 2000. 

N. Greene, Environment Mapping and Other Applications of 
World Projections, IEEE Computer Graphics and Applications, 
November 1986, pp. 2130. 



156

Bibliography

[BN76] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated

images. Communications of the ACM, 19(10):542–547, 1976.

[Bus03] Samuel Buss. 3D Computer Graphics: A Mathematical Introduction with

OpenGL. Cambridge University Press, 2003.

[CA00] Min Chen and James Arvo. Perturbation methods for interactive specular reflec-

tions. IEEE Transactions on Visualization and Computer Graphics, 6(3):253–

264, 2000.

[CCF97] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia.

Extending distortion viewing from 2D to 3D. IEEE Computer Graphics and

Applications: Special Issue on Information Visualization, 17(4):42–51, / 1997.

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 37–46. Eurographics Association, 2002.

[Cho00] F. Cho. Towards Interative Ray Tracing in Two- and Three-Dimensions. PhD

thesis, University of California at Berkeley, 2000.

[Chu01] Siu-Hang Chu. Animating chinese landscape paintings and panoramas. Master’s

thesis, Hong Kong University of Science and Technology, 2001.

[CT01] S. H. Chu and C. L. Tai. Animating Chinese Landscape Paintings and Panorama

using Multi-Perspective Modeling. In Proc. of Computer Graphics International.

IEEE Press, 2001.

[Dav01] A. Davidhazy. Peripheral portraits and other strip camera photographs.

Retrieved October, 2001 from the World Wide Web http://www.rit.edu/

~andpph/exhibit-6.html, 2001.



157

[Die96] Paul Diefenbach. Pipeline Rendering: Interaction and Realism Through

Hardware-Based Multi-Pass Rendering. PhD thesis, University of Pennsylva-

nia, 1996.

[Dur02] Fredo Durand. An invitation to discuss computer depiction. In Proceedings of

the 2nd international symposium on Non-photorealistic animation and render-

ing, pages 111–124. ACM Press, 2002.

[Esc92] M. C. Escher. The Graphic Work. Evergreen, 1992.

[FDFH90] J. D. Foley, A. Van Damme, S. K. Feiner, and J.F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, 2nd edition, 1990.

[GGSC96] S. Gortler, R. Grzescuzk, R. Szeliski, and M. Cohen. The lumigraph. In Proc.

of SIGGRAPH, 1996.

[Gla99] Georg Glaeser. Reflections on spheres and cylinders of revolution. Journal for

Geometry and Graphics, 3(2):121–139, 1999.

[Gla00] Andrew Glassner. Cubism and cameras: Free-form optics for computer graphics.

Technical report, Microsoft Research, 2000.

[Hai87] Eric Haines. A proposal for standard graphics environments. IEEE Computer

Graphics and Applications, 7(11), 1987.

[HBS+99] M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Sumners, K. Rehm,

D. Schaper, and A. Rottenberg. Quasi-conformally flat mapping the human

cerebellum. In C. Taylor and A. Colchester, editors, Medical Image Computing

and Computer-Assisted Intervention, volume 1679 of Lecture Notes in Computer

Science, pages 279–286. Springer, 1999.

[HH84] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Pro-

ceedings of the 11th annual conference on computer graphics and interactive

techniques, pages 119–127, 1984.

[HLCS99] Wolfgang Heidrich, Hendrik Lensch, Michael F. Cohen, and Hans-Peter Seidel.

Light field techniques for reflections and refractions. In Rendering Techniques

’99: Proceedings of the 10th Eurographics Workshop on Rendering (EGRW-99),

1999.



158

[HPP00] Vlastimil Havran, Jan Prikryl, and Werner Purgathofer. Statistical comparison

of ray-shooting efficiency schemes. Technical Report TR-168-2-00-14, Vienna

University of Technology, 2000.

[HSL01] Z. Hakura, J. Snyder, and J. Lengyel. Parameterized environment maps. In

Proc. of the 2001 Symposium of Interactive 3D Graphics, 2001.

[Jan93] F. W. Jansen. Realism in real-time? In Proc. of the Fourth Eurographics

Workshop on Rendering, 1993.

[Kea98] T. A. Keahey. The generalized detail-in-context problem. In Proc. of the IEEE

Symposium on Information Visualization, 1998.

[LA94] Y. K. Leung and M. D. Aerley. A review and taxonomy of distortion-oriented

presentation techniques. ACM Transactions on Computer-Human Interaction,

1(2):126–160, 1994.

[LG96] Helwig Löffelmann and E. Gröller. Ray tracing with extended cameras. Journal

of Visualization and Computer Animation, 7:211–228, 1996.

[Löf95] Helwig Löffelmann. Extended cameras for ray tracing. Master’s thesis, Vienna

Technical Institute, 1995.

[OR99] Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. In Proc

of SIGGRAPH 99, 1999.

[oVPL04] Persistence of Vision Pty. Ltd. (2004). Persistence of Vision (TM) Ray-

tracer. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia.

http://www.povray.org/, 2004.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray

tracing on programmable graphics hardware. ACM Transactions on Graphics,

21(3):703–712, July 2002.

[RB98] P. Rademacher and G. Bishop. Multiple-center-of-projection images. In Proc.

of SIGGRAPH 98, 1998.

[RGL04] Augusto Roman, Gaurav Garg, and Marc Levoy. Interactive design of multi-

perspective images for visualizing urban landscapes. In Proceedings of IEEE

Visualization 2004, 2004.



159

[SA98] M. Segal and K. Akeley. The OpenGL Graphics System: a Specification (Version

1.2), 1998.

[Sin02] Karan Singh. A Fresh Perspective. In Proc. Graphics Interface, pages 17–24,

May 2002.

[Smi97] R. Smith. Distortion Oriented Displays for Demanding Applications. PhD

thesis, Gippsland School of Computing and Information Technology, Monash

University, 1997.

[VC01a] Scott Vallance and Paul Calder. Context in 3d planar navigation. In Proc. of

the Australian User Interface Conference AUIC 2001, 2001.

[VC01b] Scott Vallance and Paul Calder. Multi-perspective images for visualisation. In

Proceedings of the Visual Information Processing Workshop 2001, 2001.

[VC03] Scott Vallance and Paul Calder. Inward looking projections. In Proceedings of

GRAPHITE 2003, 2003.

[WCS00] Donovan Winch, Paul Calder, and Ray Smith. Focus + context3: Distortion-

orientated displays in three dimensions. In Proc. of the Australasian User In-

terface Conference AUIC 200, 2000.

[WCS01] Donovan Winch, Paul Calder, and Raymond Smith. Solving the occlusion prob-

lem for three-dimensional distortion-oriented displays. In Proceedings of the 2nd

Australasian conference on User interface, pages 108–115. IEEE Computer So-

ciety, 2001.

[WFH+97] D. Wood, A. FinkelStein, J. Hughes, C. Thayer, and D. Salesin. Multiperspec-

tive panoramas for cel animation. In Proc of SIGGRAPH 97, 1997.

[Whi80] Turner Whitted. An improved illumination model for shaded display. Commu-

nications of the ACM, 23(6):343–349, 1980.

[Wil97] J. Willats. Art and Representation. Princeton University Press, 1997.

[YM04] Jingyi Yu and Leonard McMillan. General linear cameras. In Tomás Pajdla and

Jiri Matas, editors, Computer Vision - ECCV 2004, 8th European Conference

on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings,

Part II, volume 3022 of Lecture Notes in Computer Science. Springer, 2004.


