Synthesis, Evaluation and Immobilisation of Anion Sensors Based on the 4-amino-1,8-naphthalimide Fluorophore

A thesis submitted for fulfilment of the degree of Doctor of Philosophy

Andrew J. Blok

BTech (Forens&AnalytChem), BSc (Hons)

Faculty of Science and Engineering School of Chemical and Physical Sciences

November 2013

Declaration

"I certify this thesis does not incorporate, without acknowledgement, any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another, except where due reference is made in the text".

Andrew J. Blok

on

Acknowledgements

It has been a long journey to get to this point and there have been several people whom have assisted with the research which has gone into this thesis along the way. First off, I would like to thank my supervisor Associate Professor Claire Lenehan for her friendship, guidance and understanding over the years and for never giving up on me. I'd like to thank Associate Professor Martin Johnston for all of his advice and for never grumbling about the mysterious yellow stains all over the lab. Finally I'd like to thank Dr Fred Pfeffer at Deakin University for all the helpful hints he provided with regards to the synthesis and evaluation of the sensors, despite the often long time between project updates.

Thanks to Simon for reading my thesis and his advice over the years. Treat yourself. To Taryn and Bek thanks for ensuring I never blew up the lab and also making the lab an enjoyable place to be even when things weren't going my way. Thanks for introducing me to the taste. Thanks to Jess, Eric and all the other inhabitants of the Organic Corridor over the years for the good times, the bad times and something in between.

To Oh Dark One and Rachel it was a pleasure to be a temporary inhabitant in your office over the years, to the point where at one stage I was the only one in it. Thanks to all the people in our research group over the years who have made our group meetings entertaining and filling (mmmm cake). Thanks to Kez for putting up with my grumbles over the Uni years (I can't believe I have known you the entire time and we haven't killed each other.... Yet).

To my dad, Adam and my sisters Tracy and Karen thanks for all your love and support over the years. I would like to dedicate this thesis to the memory of my mum, Elizabeth who passed away in February 2012. Even when she was sick, she was always ardent in her support of my research and I hope that wherever she is now, she knows I have followed it through to the end and am ready to set off on the next big adventure!

Summary

Molecules based on the 4-amino-1,8-naphthalimide fluorophore combined with powerful urea and thiourea recognition units have been shown to be excellent sensors for anions including dihydrogen phosphate, acetate and fluoride. The majority of the literature with regards to these particular sensors however reports solution phase sensing. This thesis details the synthesis of a series of sensors based on the combination of the 4-amino-1,8-naphthalimide fluorophore and a urea recognition unit, incorporating a terminal double bond at the imide position. This terminal double bond can then be used to immobilise the sensors onto a silica surface, broadening the potential applications of this sensing technology.

The synthesis of eight different sensors each containing the 4-amino-1,8naphthalimide fluorophore and a urea or thiourea recognition group is described. The fluorophore and the recognition group are connected covalently *via* a spacer molecule, with the use of three different spacer molecules investigated; 2-aminobenzylamine, 4aminobenzylamine and 3-aminobenzylamine. Previous literature reports had indicated that small changes in the sensor molecule influenced the properties of the sensors towards different anions. Several changes to the recognition group were also investigated (urea *vs.* thiourea, addition of a chloro group on the phenyl ring attached to the recognition group, introduction of triethoxysilyl groups to enable a different method of immobilisation).

The use of microwave irradiation as an alternative to conventional heating methods was also trialled for the synthesis of three of the sensors. Reaction time was decreased, whilst in some cases purity and yield were also improved. In one step the reaction time was reduced from fourty-eight hours to sixty minutes, whilst in another a product was able to be purified using recrystallisation, whereas column chromatography was usually required when using conventional heating techniques.

After successful synthesis of the sensors, their ability to sense anions (dihydrogen phosphate, acetate, fluoride and bromide) was monitored in the solution phase using

both fluorescence spectrophotometry and ¹H NMR spectroscopy. Strong interactions were observed upon addition of both dihydrogen phosphate and acetate to a solution of sensor in DMSO, with quenching of the fluorescent emission signal observed and also significant downfield shifts for the resonances assigned to the urea protons of each sensor in the ¹H NMR spectrum. Significant shifts were also observed for the 4-amino NH proton resonance dependant on the sensor being evaluated. Little quenching or changes in the ¹H NMR spectrum were observed upon addition of bromide to a solution of sensor. The most interesting results were obtained upon the addition of fluoride, with a colour change from yellow to red as greater amounts of fluoride were added due to deprotonation of the 4-amino NH proton. Again significant changes were noted in the ¹H NMR spectrum of each sensor.

Finally after establishing the sensors were suitable for the detection of anions, immobilisation onto a silica surface was investigated. Initially the terminal double bond included in the sensor design was used to covalently attach the sensor to a hydride modified silica gel using hydrosilation chemistry. Definitive spectroscopic characterisation of the surface was hard to obtain, however deprotonation of the 4-amino NH proton by addition of fluoride to the surface was observed, suggesting successful attachment. Alternative immobilisation methods including building the sensor onto a 3-aminopropyl functionalised silica surface and by condensing triethoxysilyl groups (introduced in three of the sensors as part of the recognition unit) onto mesoporous silica were also investigated, proving that immobilisation of the sensors onto a silica surface is viable and may be an alternative to solution phase sensing.

Table of Contents

Declara	tion.		I
Acknow	/ledg	ements	
Summa	ry		
Table of	f Con	itents	v
List of F	igure	25	X
List of T	able	S	XIV
List of S	chen	nes	XVII
Abbrevi	iatio	ns and Symbols	ХХ
Summa	ry of	Host Molecules	XXIII
Chapter	r 1	INTRODUCTION	1
1.1	Ove	erview	2
1.2	Tra	ditional anion detection methods	2
1.3	Sup	pramolecular Chemistry	4
1.3	8.1	Building an Anion Sensor	8
1.3	8.2	Choosing the recognition subunit	12
1.3	.3	Choosing the signalling subunit	13
1.3	8.4	Naphthalimide based sensors	19
1.4	Imr	nobilisation strategies	29
1.5	Pro	posal	34
1.5	5.1	Step (i) Synthesis and Characterisation of Anion Sensors	35
1.5	5.2	Step (ii) Evaluation of synthesised sensors	38
1.5	5.3	Step (iii) Immobilisation of sensor on to a silica surface	38
1.6	Cor	nclusion	39
Chapter	r 2	EXPERIMENTAL	40
2.1	Ger	neral Laboratory Exercises	41

TABLE OF CONTENTS

2.2	Cha	racterisation of s	ynthesise	d compounds	42
2.2	.1	Nuclear Magnet	ic Resona	nce Spectroscopy	42
2.2.2 Mass Spectrome		etry/Accu	rate Mass Analysis	43	
2.2	.3	Other Character	isation		43
2.3	Cha	racterisation of I	mmobilise	ed Compounds	43
2.4	Eva	luation of Synthe	sised Sen	sors	44
2.4	.1	UV-Visible Spect	rophoton	netry	44
2.4	.2	¹ H NMR Spectro	scopyTitra	ations	45
2.4	.3	Fluorescence Sp	ectropho	tometry Titrations	45
2.5	Syn	thetic Procedures	5		49
2.6	Imn	nobilisation Proce	edures		62
2.6	.1	Approach 1 – Hy	/drosilatio	on via the terminal double bond	62
2.6	.2	Approach 2- Bui	ld the sen	sor on aminopropyl silica	62
26	2	Approach 2 - Sil	ميرميم الما	kaga through triathowy groups	62
2.0	.5	Approach 5 – 5h	oxane im	kage through thethoxy groups	
Chapter	· 3	SYNTHESIS –	co	INVENTIONAL HEATING	63
Chapter 3.1	• 3 Syn	SYNTHESIS – thesis of Fluoresc	coxane ini co cent Anior	NVENTIONAL HEATING	63 65
2.0 Chapter 3.1 3.2	. 3 Syn Syn	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4	co co cent Anior -bromo-1	n Sensors 1,8-naphthalimide (45)	63
2.0 Chapter 3.1 3.2 3.3	• 3 Syn Syn Atta	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp	co co cent Anior bromo-1 bacer to N	NVENTIONAL HEATING N Sensors 1,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45)	63
2.0 Chapter 3.1 3.2 3.3 3.3	• 3 Syn Syn Atta	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a	co co cent Anior -bromo-1 bacer to N llyl-4-(4-a	NVENTIONAL HEATING N Sensors L,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide	63
2.0 Chapter 3.1 3.2 3.3 3.3 3.3	• 3 Syn Syn Atta •.1	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a	co co cent Anior -bromo-1 bacer to N llyl-4-(4-a llyl-4-(2-a	NVENTIONAL HEATING NSensors 1,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide	
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.3 3.3	Syn Syn Atta .1 .2	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a	co co cent Anior -bromo-1 bacer to A llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a	NVENTIONAL HEATING NVENTIONAL HEATING 1,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide	63 65 66 68 72 (51)72 (50)74 (52)77
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.3 3.3 3.3	• 3 Syn Syn Atta •.1 •.2 •.3 Inco	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a	co cent Anior -bromo-1 bacer to N llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a recognitio	NVENTIONAL HEATING NVENTIONAL HEATING n Sensors I,8-naphthalimide (45) I-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide	
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.3 3.4 3.4 3.4	3 Syn Syn Atta 1 2 3 Inco	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a prporation of the Synthesis	co co cent Anior -bromo-1 bacer to N llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a recognitic of	NVENTIONAL HEATING NVENTIONAL HEATING n Sensors I,8-naphthalimide (45) I-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide Minobenzylamine)-1,8-naphthalimide	63 65 66 68 72 (51)72 (50)74 (52)77 78 mino)-1,8-
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.3 3.4 3.4 3.4 nap	• 3 Syn Syn Atta •.1 •.2 •.3 Inco	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a prporation of the Synthesis alimide (1)	CO cent Anior -bromo-1 bacer to A llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a recognitio of	NVENTIONAL HEATING NVENTIONAL HEATING 1,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide Minobenzylamine)-1,8-naphthalimide	
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.4 3.4	.3 Syn Syn Atta .1 .2 .3 Inco .1 ohtha .2	SYNTHESIS – thesis of Fluoresc thesis of <i>N</i> -allyl-4 achment of the sp Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a Synthesis of <i>N</i> -a orporation of the Synthesis alimide (1)	co co cent Anior -bromo-1 bacer to N llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a recognitio of 	NVENTIONAL HEATING NVENTIONAL HEATING n Sensors I,8-naphthalimide (45) I-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide Minobenzylamine)-1,8-naphthalimide N-allyl-4-(4-(N-phenylureido)benzylar	63 65 66 68 72 (51)72 (50)74 (52)77 78 mino)-1,8- 78 mino)-1,8-
2.0 Chapter 3.1 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.4 3.4 3.4 nap 3.4	Syn Syn Atta .1 .2 .1 .1 .1 .2 .1 ohtha .2 ohtha	SYNTHESIS – thesis of Fluoresc thesis of N-allyl-4 achment of the sp Synthesis of N-a Synthesis of N-a Synthesis of N-a orporation of the Synthesis alimide (1) Synthesis	co co cent Anior -bromo-1 bacer to A llyl-4-(4-a llyl-4-(2-a llyl-4-(3-a recognitio of of	NVENTIONAL HEATING NVENTIONAL HEATING n Sensors 1,8-naphthalimide (45) /-allyl-4-bromo-1,8-naphthalimide (45) minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide minobenzylamine)-1,8-naphthalimide on unit N-allyl-4-(4-(<i>N</i> -phenylureido)benzylar	

TABLE OF CONTENTS

3.4.4 Synthesis of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylthioureido)benzylamino)-1,8-
naphthalimide (2)86
3.4.5 Attempted synthesis of <i>N</i> -allyl-4-(2-(<i>N</i> -phenylthioureido)benzylamino)-
1,8-naphthalimide (62)90
3.4.6 Synthesis of N-allyl-4-(4-(N-4-chlorophenylureido)benzylamino)-1,8-
naphthalimide (3)91
3.4.7 Synthesis of N-allyl-4-(4-(N-3-(triethoxysilyl)propylureido)benzylamino)-
1,8-naphthalimide (6)93
3.4.8 Synthesis of <i>N</i> -allyl-4-(2-(<i>N</i> -3-(triethoxysilyl)propylureido)benzylamino)-
1,8-naphthalimide (7)94
3.4.9 Synthesis of N-allyl-4-(3-(N-3-(triethoxysilyl)propylureido)benzylamino)-
1,8-naphthalimide (8)95
3.5 Conclusions96
Chapter 4 SYNTHESIS – MICROWAVE IRRADIATION
4.1 Microwave Chemistry100
4.2 Synthesis of the fluorophore (45)104
4.3 Addition of the spacer106
4.3.1 Synthesis of <i>N</i> -allyl-4-(4-aminobenzylamine)-1,8-naphthalimide (51)106
4.3.2 Synthesis of <i>N</i> -allyl-4-(2-aminobenzylamine)-1,8-naphthalimide (50)108
4.3.3 Synthesis of <i>N</i> -allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110
 4.3.3 Synthesis of <i>N</i>-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit111
 4.3.3 Synthesis of N-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit111 4.4.1 Synthesis of N-allyl-4-(4-(N-phenylureido)benzylamino)-1,8-
 4.3.3 Synthesis of N-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit
 4.3.3 Synthesis of <i>N</i>-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit
4.3.3 Synthesis of N-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit
 4.3.3 Synthesis of <i>N</i>-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit
 4.3.3 Synthesis of <i>N</i>-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit
 4.3.3 Synthesis of <i>N</i>-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)110 4.4 Incorporation of the recognition unit

5.1	Ge	neral				
5.1	l.1	Job plot determine	d by U	V-Visible spectrop	hotometry.	
5.1	L.2	Binding constant de	etermi	nation by ¹ H NMR	spectroscop	oy119
5.1	L.3	Binding constant de	etermi	nation by fluoresc	ence spectro	ophotometry 120
5.2	Ser	nsor Evaluation				
5.2	2.1	N-Allyl-4-(4-(N-phe	nylure	ido)benzylamino)-	1,8-naphtha	alimide (1)121
5.2	2.2	Evaluation of other	synth	esised sensors		
5.3	Cor	nclusions				
Chapte	r 6	IMMOBILISATION	OF I	NAPHTHALIMIDE	SENSORS	ONTO A SILICA
SURFAC	CE					145
6.1	Inti	roduction				146
6.2	Imr	mobilisation through	the te	erminal double bor	nd	149
6.2	2.1	Immobilisation ont	o hydr	ide modified silica	gel	149
6.3	Imr	mobilisation onto 3-a	minop	propyl functionalis	ed silica	157
6.3	3.1	Formation of napht	halimi	ide functionalised	silica (56)	
6.3	3.2	Reaction of 56 with	4-am	inobenzylamine to	o form 57	
6.3	3.3	Reaction of 57 with	phen	yl isocyanate to fo	rm 58	
6.4	Inc	orporation of silyl gro	oups ir	n the sensor moled	cule	
6.4	1.1	Immobilisation	of	N-allyl-4-(4-(N-	-3-(triethoxy	silyl)propylureido)
be	nzyla	amino)-1,8-naphthali	mide (6) – silica particle		
6.4	1.2	Formation of meso	porou	s silica		
6.4	1.3	Immobilisation	of	N-allyl-4-(4-(N-	-3-(triethoxy	silyl)propylureido)
be	nzyla	amino)-1,8-naphthali	mide (6) – mesoporous s	silica	
6.4	1.4	Immobilisation	of	N-allyl-4-(2-(N-	-3-(triethoxy	silyl)propylureido)
be	nzyla	amino)-1,8-naphthali	mide (7) – mesoporous s	silica	
6.4	1.5	Immobilisation	of	N-allyl-4-(3-(N-	-3-(triethoxy	silyl)propylureido)
be	nzyla	amino)-1,8-naphthali	mide (8) – mesoporous s	silica	170
6.5	Cor	nclusion				

Chapter 7	CONCLUSIONS AND FUTURE WORK
7.1 Cor	nclusions174
7.1.1	Synthesis of 4-amino-1,8-naphthalimide based anion sensors174
7.1.2	Evaluation of 4-amino-1,8-naphthalimide based anion sensors176
7.1.3	Immobilisation of 4-amino-1,8-naphthalimide based sensors onto silica
7.2 Fut	ure Work178
7.2.1	Synthesis179
7.2.2	Evaluation180
7.2.3	Immobilisation180
Appendix A	
Appendix B	
Appendix C	
Reference Li	ist194

List of Figures

Figure 1: Generalised structure of a host-guest interaction, with the host indicated by
the red semi-circle and the guest by the blue circle4
Figure 2: Speciation diagram for Phosphate6
Figure 3: Conformational change in a katapinand on binding of an anion
Figure 4: Structure of the amino acid residue Arginine. The guanidinium group is circled
and then it is highlighted how an anion is able to form two hydrogen bonds with the
protonated guanidinium moiety8
Figure 5: A sensor containing the binding site integrated within the signalling unit 10
Figure 6: A sensor containing a fluorophore and receptor joined using a covalent
spacer [39]10
Figure 7: Mechanisms for fluorescence quenching11
Figure 8: (a) A urea functional group interacting with an oxo-anion, (b) urea functional
group interacting with a spherical anion [32]12
Figure 9: Urea containing compound 15 (shown in black) interacting with a
phosphonate anion (shown in red) [45]13
Figure 10: Fluorescence spectrum ($\lambda_{ex}\text{=}370$ nm) of host $\textbf{14}$ in DMSO upon addition of
tetrabutylammonium fluoride (0 \rightarrow 32mM) [3]15
Figure 11: Graph showing the relative intensity of the fluorescence emission spectrum
at 419 nm of host 14 in DMSO, versus the log of anion concentration upon addition of
tetrabutylammonium acetate (\blacklozenge), tetrabutylammonium dihydrogen phosphate (×),
tetrabutylammonium fluoride (*), tetrabutylammonium chloride ($ildsymbol{A}$) and
tetrabutylammonium bromide (■) [3]16
Figure 12: Stylised mechanism for the involvement of ATP in the aggregation of 23 and
24. 23 is represented by the yellow oval with boronate group, whilst the polycation 24
is represented by the positively charged surface. Image reproduced from Kanekiyo and
co-workers [47]19
Figure 13: Generalised structure of 1,8-naphthalimide, where R_1 is the substituent at
the 4-position and R_2 a substituent at the 3-position. For 1,8-naphthalimide, $R_1=R_2=H$.
Figure 14: Nitrofurantoin interacting with surface immobilised N-Allyl-4-(N-2'-
hydroxyethyl)amino-1,8-naphthalimide (25)

Figure 15: Generalised structure of a sensor based on the fluorophore - spacer -
receptor concept. When the anion interacts at the receptor site, the fluorophore
emission is switched off66
Figure 16: Molecular orbital energy diagrams showing the relative energetic
dispositions of the orbitals of the fluorophore and the receptor both before and after
interaction with an anionic species67
Figure 17: General scheme for the hydrosilation process, where R represents the
naphthalimide sensor and Y represents either H or OH depending on the extent of
conversion of the silica67
Figure 18: ¹ H NMR spectrum of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylureido)benzylamino)-1,8-
naphthalimide (1) (Original Spectrum, protons of interest highlighted)81
Figure 19: ¹ H NMR spectrum of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylureido)benzylamino)-1,8-
naphthalimide (1) (Changed Spectrum, protons of interest highlighted)81
Figure 20: ¹ H NMR spectrum of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylureido)benzylamino)-1,8-
naphthalimide (1) at different concentrations. A=1 mg/mL, B=2.5 mg/mL, C=10 mg/mL,
D=15 mg/mL82
Figure 21: Chemical structures of the triethoxysilyl naphthalimide sensors with the
receptor in the <i>para</i> (6), ortho (7) and meta (8) positions92
Figure 22: Stacked ¹ H NMR (400 MHz) spectra of <i>N</i> -allyl-4-bromo-1,8-naphthalimide
(45) synthesised by microwave heating methods (top) or conventional heating
methods (bottom)105
Figure 23: Example titration curve for the determination of a binding constant using 1 H
NMR spectroscopy120
Figure 24: Binding curve obtained using fluorescence spectrophotometry121
Figure 25: Job plot for 1 and dihydrogen phosphate in DMSO122
Figure 26: Colorimetric response observed upon addition of fluoride to 1 in DMSO122
Figure 27: Colorimetric response observed upon addition of methanol to a solution of
1 complexed with fluoride in DMSO123
Figure 28: Stacked ¹ H NMR spectra of the interaction observed between fluoride and 1
in DMSO-d $_6$. The urea proton resonances are marked with a blue circle, whilst the 4-
amino proton resonance is marked by a red star124

Figure 29: ¹ H NMR spectra of the interaction observed dihydrogen phosphate and 1 in
hydrated DMSO-d6. The urea proton resonances are marked with a blue circle, whilst
the 4-amino proton resonance is marked by a red star
Figure 30: Binding curve for the complexation observed between ${\bf 1}$ and dihydrogen
phosphate determined by ¹ H NMR spectroscopy126
Figure 31: Fluorescence emission spectrum of 1 in hydrated DMSO. λ_{ex} = 503.9 nm. 129
Figure 32: Fluorescence emission spectra observed for the complex formed between 1
and dihydrogen phosphate (λ_{ex} =503.9 nm)130
Figure 33: Structures of sensors 1, 4 and 5134
Figure 34: Structures of sensors 1 and 3, highlighting the position of the electron
withdrawing chloro group in 3 138
Figure 35: Structures of sensors 6, 7 and 8140
Figure 36: Stacked ¹ H NMR spectra of the interaction observed between various
equivalents (from top to bottom 10, 5, 1, 0.1 and 0 equivalents) of dihydrogen
phosphate (TBA salt) and sensor 6 in hydrated DMSO142
Figure 37: Generalised pathways used for immobilisation of naphthalimide sensors.149
Figure 38: FTIR spectrum of hydride modified silica gel 53 151
Figure 39: FTIR spectrum of unmodified silica gel
Figure 40: Solid state ¹³ C- ¹ H CP-MAS NMR spectrum of hydride silica modified with <i>N</i> -
allyl-4-(4-(<i>N</i> -phenylureido)benzylamino)-1,8-naphthalimide, 54
Figure 41: Designation of the different condensation states of silica154
Figure 42: Solid state ²⁹ Si NMR spectrum of hydride silica modified with <i>N</i> -allyl-4-(4-(<i>N</i> -
phenylureido)benzylamino)-1,8-napthalimide, 54154
Figure 43: FTIR spectrum of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylureido)benzylamino)-1,8-
naphthalimide (1)155
Figure 44: FTIR spectrum of hydride modified silica reacted with N-allyl-4-(4-(N-
phenylureido)benzylamino)-1,8-naphthalimide, 54155
Figure 45: Addition of Fluoride (TBA salt) in DMSO to sensor modified silica, 54 (top)
and addition of methanol (bottom)157
Figure 46: Overlayed FTIR spectra of 3-aminopropyl functionalised silica reacted with
4-bromo-1,8-naphthalic anhydride (56, black) and 3-aminopropyl functionalised silica
(blue)159

LIST OF FIGURES

List of Tables

Table 1: Comparison of Hosts 14, 19 and 20 and their interaction with various anions (0
to 32 mM anion added) [3]16
Table 2: Fluorescent enhancement seen in host molecules 21 and 22 upon addition of
various anions in 100 times excess in methanol [46]17
Table 3: Binding constants (log β) for the interaction of 27 and 28 with various anions
as determined by fluorescence spectrophotometry [51]22
Table 4: Details of solutions made for Job plot experiments. 45
Table 5: Addition of guest to host, amount of equivalents added per addition of guest
for ¹ H NMR spectroscopy experiments46
Table 6: Wavelengths utilised for fluorescence spectrophotometry titration
experiments47
Table 7: Addition of guest to host, amount of equivalents added per addition of guest
for fluorescence spectrophotometry experiments48
Table 8: Comparison of reaction time and yield using conventional and microwave
heating methods for the addition of the 4-amino group to the fluorophore111
Table 9: Summary of products synthesised using microwave irradiation, and details
comparing to the synthesis via conventional heating115
Table 10: Chemical shift (δ) (ppm) observed upon addition of dihydrogen phosphate to
1 in hydrated DMSO-d _{6.}
Table 11: Chemical shift (ppm) observed upon addition of ten equivalents of anion to ${f 1}$
in hydrated DMSO-d ₆ 127
Table 12: Binding constants (log K) for the complexation of 1 with anions as
determined by ¹ H NMR spectroscopy in hydrated DMSO-d ₆ 127
Table 13: Percentage fluorescence quenching observed for 1 upon addition of various
anions in hydrated DMSO130
Table 14: Binding constants for the complexation of ${f 1}$ with anions determined by
fluorescence spectrophotometry in hydrated DMSO130
Table 15: Binding constants for sensors 1 , 3-8 determined by ¹ H NMR spectroscopy and
fluorescence spectrophotometry

Table 16: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to ${\bf 4}$ in hydrated DMSO-d_6134
Table 17: Fluorescent quenching observed of 4 upon addition of anion, in hydrated
DMSO
Table 18: Summary of products synthesised using microwave irradiation, and details
comparing the synthesis via conventional heating
Table 19: Binding constants for sensors 1, 3-8 determined by ¹ H NMR spectroscopy and
fluorescence spectrophotometry176
Table 20: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to 1 in DMSO-d6 with 0.5% water
Table 21: Fluorescent quenching observed (as a % of the original signal before
addition of guest) of 1 upon addition of anion, in DMSO with 0.5% water187
Table 22: Binding constants (log K) for the complexation of 1 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence
Table 23: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to ${f 3}$ in hydrated DMSO-d ₆ 188
Table 24: Fluorescent quenching observed (as a % of the original signal before
addition of guest) of 3 upon addition of anion, in hydrated DMSO188
Table 25: Binding constants (log K) for the complexation of 3 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence
Table 26: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to ${\bf 4}$ in DMSO-d_6 with 0.5% water
Table 27: Fluorescent quenching observed (as a % of the original signal before
addition of guest) of 4 upon addition of anion, in DMSO with 0.5% water189
Table 28: Binding constants (log K) for the complexation of 4 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence
Table 29: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to 5 in hydrated DMSO-d ₆ 190
Table 30: Fluorescent quenching observed (as a % of the original signal before
addition of guest) of 5 upon addition of anion, in hydrated DMSO190
Table 31: Binding constants (log K) for the complexation of 5 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence

Table 32: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to 6 in hydrated DMSO-d ₆ 191
Table 33: Fluorescent quenching observed (as a % of the original signal before addition
of guest) of 6 upon addition of anion, in hydrated DMSO191
Table 34: Binding constants (log K) for the complexation of 6 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence191
Table 35: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to 7 in hydrated DMSO-d ₆ 192
Table 36: Fluorescent quenching observed (as a % of the original signal before
addition of guest) of 7 upon addition of anion, in hydrated DMSO192
Table 37: Binding constants (log K) for the complexation of 7 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence
Table 38: Changes in chemical shift (ppm) observed upon addition of ten equivalents of
anion to 8 in hydrated DMSO-d ₆ 193
Table 39: Fluorescent quenching observed (as a % of the original signal before addition
of guest) of 8 upon addition of anion, in hydrated DMSO193
Table 40: Binding constants (log K) for the complexation of 8 with various dihydrogen
phosphate and acetate as determined by ¹ H NMR and fluorescence193

List of Schemes

Scheme 1: Synthesis of N-Allyl-4-(N-2'-hydroxyethyl)amino-1,8-naphthalimide (25) by
Niu and co-workers [48]30
Scheme 2: General scheme for the organosilisation process. Where n=1-3 and Y=H or
Si(OSi) ₂ R depending on the extent that cross linking occurs [13]
Scheme 3: General scheme for the silanisation process. Where n=1-3 and Y=H or
$Si(OSi)_2R$ depending on the extent that cross linking occurs. The typical acid source
used is hydrochloric acid34
Scheme 4: General scheme for the hydrosilation process. Where Y=H or Si(OSi)_2R
depending on the extent that cross linking occurs. The catalysts commonly used
include metal complexes such as hexachloroplatinic acid or free radical initiators such
as tert-butyl peroxide34
Scheme 5: Proposed synthetic pathway for the synthesis of sensors based on the 4-
bromo-1,8-naphthalimide fluorophore35
Scheme 6: Synthetic pathway for the synthesis of sensors based on the 4-bromo-1,8-
naphthalimide fluorophore68
Scheme 7: Synthesis of 4-bromo-1,8-naphthalimide (49)69
Scheme 8: Synthesis of N-allyl-4-bromo-1,8-naphthalimide (45)70
Scheme 9: Single step synthesis of <i>N</i> -allyl-4-bromo-1,8-naphthalimide (45)72
Scheme 10: Synthesis of <i>N</i> -allyl-4-(4-aminobenzylamine)-1,8-naphthalimide (51)73
Scheme 11: Synthesis of <i>N</i> -allyl-4-(2-aminobenzylamine)-1,8-naphthalimide (50)74
Scheme 12: Synthesis of <i>N</i> -allyl-4-(3-aminobenzylamine)-1,8-naphthalimide (52)77
Scheme 13: Synthesis of N-allyl-4-(4-(N-phenylureido)benzylamino)-1,8-naphthalimide
(1)79
Scheme 14: Synthesis of N-allyl-4-(2-(N-phenylureido)benzylamino)-1,8-naphthalimide
(4)
Scheme 15: Synthesis of N-allyl-4-(3-(N-phenylureido)benzylamino)-1,8-naphthalimide
(5)85
Scheme 16: Synthesis of <i>N</i> -allyl-4-(4-(<i>N</i> -phenylthioureido)benzylamino)-1,8-
naphthalimide (2)

Scheme 17: Attempted synthesis of N-allyl-4-(2-(N-phenylthioureido)-benzylamino)-
1,8-naphthalimide (62) from 50 90
Scheme 18: Synthesis of N-allyl-4-(4-(N-4-chloro-phenylureido)-benzylamino)-1,8-
naphthalimide (3) from 51 91
Scheme 19: Reaction between 51 and 3-(triethoxysilyl)propyl isocyanate to form 6 93
Scheme 20: Reaction between 50 and 3-(triethoxysilyl)propyl isocyanate to form 7 95
Scheme 21: Reaction between 52 and 3-(triethoxysilyl)propyl isocyanate to form 8 96
Scheme 22: Synthetic pathway for the synthesis of sensors based on the 4-bromo-1,8-
naphthalimide fluorophore, using microwave irradiation techniques101
Scheme 23: N-carboxyalkyl maleimides (66-70) and N-substituted phthalimides (71-72)
synthesised by Borah et al. [111]102
Scheme 24: N-substituted phthalimides (73-75) synthesised by Chandrasekhar and co-
workers [112]
Scheme 25: N-Phenyl-2,4,-dinitroaniline synthesised by Elder and Holtz [114]103
Scheme 26: Generalised reaction between a resin embedded amine and an isocyanate
by Yu and co-workers [115]104
Scheme 27: Microwave synthesis of N-allyl-4-bromo-1,8-naphthalimide (45)104
Scheme 28: Microwave synthesis of N-allyl-4-(4-aminobenzylamine)-1,8-naphthalimide
(51)
Scheme 29: Microwave synthesis of N-allyl-4-(2-aminobenzylamine)-1,8-naphthalimide
(50)
Scheme 30: Microwave synthesis of N-allyl-4-(3-aminobenzylamine)-1,8-naphthalimide
(52)
Scheme 31: Microwave synthesis of N-allyl-4-(4-(N-phenylureido)benzylamino)-1,8-
naphthalimide (1)111
Scheme 32: Microwave synthesis of N-allyl-4-(2-(N-phenylureido)benzylamino)-1,8-
naphthalimide (4)112
Scheme 33: Microwave synthesis of N-allyl-4-(3-(N-phenylureido)benzylamino)1-,8-
naphthalimide (5)114
Scheme 34: General scheme for the organosilisation process. Where n=1-3 and Y=H or
Si(OSi) ₂ R depending on the extent that cross linking occurs [13]147

LIST OF SCHEMES

Scheme 35: General scheme for the silanisation process. Where n=1-3 and Y=H or
$Si(OSi)_2R$ depending on the extent that cross linking occurs. The typical acid source
used is hydrochloric acid [13]147
Scheme 36: General scheme for the hydrosilation process. Where Y=H or Si(OSi)_2R
depending on the extent that cross linking occurs. The catalysts commonly used
include metal complexes such as hexachloroplatinic acid or free radical initiators such
as tert-butyl peroxide [12]148
Scheme 37: Reaction between silica gel and triethoxysilane to create hydride modified
silica gel (53)150
Scheme 38: Reaction between N-allyl-4-(4-(N-phenylureido)benzylamino)-1,8-
naphthalimide (1) where X=O or N-allyl-4-(4-(N-phenylthioureido)benzylamino)-1,8-
naphthalimide (2) where X=S and hydride modified silica151
Scheme 39: Reaction between 4-bromo-1,8-naphthalic anhydride (44) and 3-
aminopropyl-functionalised silica157
Scheme 40: Reaction between naphthalimide functionalised silica 56 with 4-
amionbenzylamine to form 57 161
Scheme 41: Reaction between amino naphthalimide modified silica 57 and phenyl
isocyanate to form 58 163
Scheme 42: Generalised Host Guest Reaction184

Abbreviations and Symbols

Abbreviation, Symbol or Unit	Explanation
°C	Degrees Celsius
¹³ C	Carbon-13
¹⁹ F	Fluorine-19
¹ H	Proton (Hydrogen-1)
²⁹ Si	Silicon-29
Å	Angstrom
AcO ⁻	Acetate
ADP	Adenosine diphosphate
АМР	Adenosine monophosphate
API	Atmospheric Pressure Ionization
AR	Analytical Reagent
АТР	Adenosine 5'-triphosphate
ATR	Attenuated total reflectance
Br	Bromide
bs	Broad singlet
cf.	Compared with
CE	Capillary Electrophoresis
CH ₃ COO ⁻	Acetate
Cl	Chloride
cm	Centimetre
cm ⁻¹	Wavenumbers
cm ³	Cubic centimetres
CO ₃ ²⁻	Carbonate
COSY	Correlation Spectroscopy
CP-MAS	Cross Polarisation – Magic Angle Spinning
CPTS	3-chloropropyltrimethoxysilane
С-ТАВ	Cetyl Trimethyl Ammonium Bromide
d	Doublet
dATP	Deoxyadenosine triphosphate
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
DMSO-d ₆	Deuterated dimethyl sulfoxide
dq	Doublet of quartets
dt	Doublet of triplets
EPA	Environmental Protection Authority
ESI	Electrospray Ionisation
EtOH	Ethanol
F	Fluoride
FDA	Food and Drug Administration
FTIR	Fourier Transform Infrared Spectroscopy
g	Grams
G	Guest

GR	Guaranteed Reagent
h	Hours
н	Host
Hz	Hertz
H ₂ O	Water
H ₂ PO ₄ ⁻	Dihydrogen Phosphate
HCO3	Bicarbonate
HDMS	High Definition Mass Spectrometry
HF ₂ ⁻	Bifluoride
HG	Host-Guest complex
НМВС	Heteronuclear Multiple-Bond Correlation
HMQC	Heteronuclear Multiple-Quantum Correlation
НОМО	Highest Occupied Molecular Orbital
HPLC	High Performance Liquid Chromatography
НРМА	2-hydroxypropyl methacrylate
HPO4 ²⁻	Monohydrogen Phosphate
HSO ₄	Hydrogen Sulfate
I	Intensity
i.e.	<i>id est</i> (that is)
I _o	Initial Intensity
IC	Ion Chromatography
ICT	Internal Charge Transfer
К	Binding constant
K	Potassium Ion
KBr	Potassium Bromide
kHz	Kilohertz
kJ.mol ⁻¹	Kilojoule/mol
lb	Line broadening
Lit.	Literature
λmax	Maximum wavelength
Log	Logarithmic
m	Multiplet
m.p.	Melting point
m/z	Mass to charge ratio
MAS	Magic Angle Spinning
Ме	Methyl
MeCN	Acetonitrile
mg/mL	Milligram
μg/mL	Micrograms per millilitre
mg/mL	Milligrams per millilitre
MHz	Megahertz
min	Minutes
mL	Millilitres
μL	Microlitres
mM	Millimolar
μm	Micrometre
mm	Millimetre
mol.L ⁻¹	Moles per litre

ms	Milliseconds
μs	Microseconds
MW	Microwave
Ν	Newtons
N/A	Not available
nm	Nanometre
NMR	Nuclear Magnetic Resonance
NO ₂	Nitrogen Dioxide
NO ₃	Nitrate
ODTMA	Octadecyltrimethyl ammonium bromide
PET	Photoinduced Electron Transfer
Ph	Phenyl
ppm	Parts Per Million
PTFE	Polytetrafluoroethylene
q	Quartet
quin	Quintet
rt	Room temperature
S	Singlet
Sec	Seconds
t	Triplet
ΤΕΑ	Triethylamine
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TSPM	3-(trimethoxysilyl)propyl methacrylate
USA	United States of America
UV-Visible	Ultraviolet-Visible
v/v%	Volume/Volume
W	Watts
ZnSe	Zinc Selenide
ZrO ₂	Zirconium Dioxide

Summary of Host Molecules

N-Allyl-4-(4-(N-phenylureido)benzylamino)-1,8-naphthalimide (1) N-Allyl-4-(4-(N-phenylthioureido)benzylamino)-1,8-naphthalimide (2)

N-Allyl-4-(4-(N-chlorophenylureido)benzylamino)-1,8-naphthalimide (3)

N-Allyl-4-(2-(N-phenylureido)benzylamino)-1,8-naphthalimide (4)

N-Allyl-4-(3-(N-phenylureido)benzylamino)-1,8-naphthalimide (5)

N-Allyl-4-(4-(N-3-(triethoxysilyl)propylureido)benzylamino)-1,8-naphthalimide (6)

N-Allyl-4-(2-(N-3-(triethoxysilyl)propylureido)benzylamino)-1,8-naphthalimide (7)

N-Allyl-4-(3-(N-3-(triethoxysilyl)propylureido)benzylamino)-1,8-naphthalimide (8)