APPENDIX

1. Egg weight data

from Harrison (2	2003).			
Egg Weight	2003	2004	2005	2006
Port Lincoln				
Gulls	(S, W & D)	(S & R)	(S & R)	(R & Lo)
Mean	38.8	39.55	40.49	39.15
Estimated	38.22	39.36	40.47	39.11
Mean				
Median	39	39.65	40.60	39.10
Mode	40	39	39.10	38.40
Std Dev	4.23	3.77	3.62	3.80
Min-Max	20-55	29-52	29.1-50.5	29.8-52.4
Ν	487	302	449	615

Table A.1: Egg weight (g) data for the Port Lincoln gulls for all years of research (Islands: S=Sibsey, W=Winceby, D=Donington, R=Rabbit, Lo=Louth). 2003 data from Harrison (2003).

Table A.2: Egg weight (g) data for the reference gulls for all years of research (C=Coorong, P=Pelican Island (Adelaide), V=Venus Bay, L=Lipson Island). 2003 data from Harrison (2003).

Egg	2003	2004	2004	2005	2006
Weight		Adelaide	Reference		
Reference	(C)	(P)	(V & L)	(V & L)	(L)
Gulls					
Mean	40	39.67	41.10	41.47	40.19
Estimated	40.36	39.27	41.14	41.03	39.88
Mean					
Median	41	40.20	41.20	41.60	40.00
Mode	40	40.60	44	42.30	38.60
Std Dev	4.03	4.55	3.67	4.36	3.99
Min-Max	29-50	27.5-47.2	32.5-50	29.9-58.9	32.5-50.2
Ν	86	173	123	227	107

Figure A.1: A comparison of mean egg weight (g) for each site over the four years of data collection (2003 data from Harrison, 2003).

2. Program MARK model outputs for chick survival

Table A.3:	Table A.3: Program MARK model outputs for 2004 Port Lincoln chick survival.										
Model	AICc	Delta	AICc Model		Num. Par	Deviance					
		AICc	Weights	Likelihood							
phi(t) p(t)	168.6844	0.0000	0.99944	1.00000	7.0000	0.0557					
phi(t) p(.)	183.6651	14.9807	0.00056	0.00060	6.0000	17.2308					
phi(.) p(t)	199.0034	30.3190	0.0000	0.00000	8.0000	28.1503					
phi(.) p(.)	237.5496	68.8652	0.0000	0.00000	2.0000	79.6038					

Tuble 11.4. I Togram Wirking model outputs for 2004 reference enter survival.										
Model	AICc	Delta	AICc	Model	Num. Par	Deviance				
		AICc	Weights	Likelihood						
phi(.) p(.)	126.2687	0.0000	0.91107	1.0000	2.0000	71.5366				
phi(.) p(t)	131.4719	5.2032	0.06756	0.07420	10.0000	57.3629				
phi(t) p(.)	133.8195	7.5508	0.02089	0.02290	10.0000	59.7105				
phi(t) p(t)	141.3844	15.1157	0.00048	0.00050	17.0000	45.6965				

Table A.4: Program MARK model outputs for 2004 reference chick survival.

Table A.5: Program MARK model outputs for 2005 Port Lincoln chick survival.

Model	AICc	Delta	AICc	Model	Num. Par	Deviance
		AICc	Weights	Likelihood		
phi(t) p(t)	154.7201	0.0000	0.99922	1.00000	9.0000	32.1750
phi(t) p(.)	169.0769	14.3568	0.00076	0.00080	6.0000	53.5583
phi(.) p(t)	176.9420	22.2219	0.00001	0.00000	8.0000	63.6719
phi(.) p(.)	197.2074	42.4873	0.00000	0.00000	2.0000	90.4207

Table A.6: Program MARK model outputs for 2005 reference chick survival.

Model	AICc	Delta	AICc	Model	Num. Par	Deviance
		AICc	Weights	Likelihood		
phi(t) p(t)	129.8835	0.0000	0.88648	1.00000	8.0000	16.6320
phi(t) p(.)	134.8163	4.9328	0.07525	0.08490	7.0000	31.5837
phi(.) p(.)	136.9422	7.0587	0.02600	0.02930	2.0000	44.9374
phi(.) p(t)	138.4429	8.5594	0.01227	0.01380	7.0000	35.2103

Table A.7: Program MARK model outputs for 2006 Port Lincoln chick survival.

Model	AICc	Delta	AICc	Model	Num. Par	Deviance
		AICc	Weights	Likelihood		
phi(.) p(t)	388.5645	0.0000	0.59070	1.00000	11.0000	76.6322
phi(t) p(t)	389.3082	0.7437	0.40726	0.68950	15.0000	67.9104
phi(t) p(.)	400.0058	11.4413	0.00194	0.00330	11.0000	88.0735
phi(.) p(.)	405.9957	17.4312	0.00010	0.00020	2.0000	113.6830

 Table A.8: Program MARK model outputs for 2006 reference chick survival.

Model	AICc	Delta	AICc	Model	Num. Par	Deviance
		AICc	Weights	Likelihood		
phi(t) p(t)	31.2479	0.0000	0.62471	1.00000	2.0000	3.9895
phi(t) p(.)	33.5808	2.3329	0.19458	0.31150	3.0000	3.9895
phi(.) p(t)	34.2089	2.9610	0.14214	0.22750	3.0000	46176
phi(.) p(.)	36.8172	5.5693	0.03858	0.06180	2.0000	9.5588

3. Reproductive output parameter data for all islands

			Port Lincoln Area						Reference Sites				Adelaide Area
		R	abbit Isla	nd	Sibsey	Island	Louth Is	Lipson Island		nd	Island C		Pelican Island
		2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2004
Clutch	Mean	2.49	2.37	2.44	2.19	2.25	2.51	2.64	2.3	2.27	1.93	1.72	2.37
Size	StDev	0.7	0.72	0.57	0.65	0.61	0.57	0.68	0.68	0.64	0.58	0.63	0.67
	Range	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
	Ν	51	95	161	83	100	90	25	90	48	30	32	30
Egg	Mean	39.71	40.13	38.97	39.43	40.84	39.5	42.74	42.03	40.19	39.21	39.2	39.67
Weight (g)	StDev	3.47	3.44	3.68	3.97	3.77	3.98	3.08	4.39	3.99	3.39	3.4	4.55
	Range	32-52	29.1-	29.8-	29-49	31.6-	30.4-	35-50	31.6-	32.5-	32.5-	29.9-	27.5-
			50.5	51.6		49.3	52.4		58.9	50.2	45.8	46.3	47.2
	Ν	123	225	391	179	224	224	66	207	107	57	50	71
Egg	Mean	38.1	38.86	38.36	39.25	39.39	38.6	40.26	40.38	39.29	39.84	39.84	38.73
Volume	StDev	3.34	3.29	3.32	3.14	3.29	3.36	2.71	3.87	3.73	3.14	3.01	3.42
(cm ³)	Range	30.4-	29.8-	29.7-	32.1-49	31.7-	29.04-	34.1-	29.6-	29.8-	34.03-	31.3-	31.5-
		45.2	47.5	50.03		47.6	48.5	47.5	55.9	47.01	46.03	47.2	45.3
	Ν	123	225	392	172	224	224	66	207	107	57	49	71
Hatching	Mean	91.98	72.06	79.88	77.34	90.91	80.43	59.03	51.81	59.76	96.3	88.89	-
Success	StDev	18.12	38.86	34.62	33.98	26.38	33.58	43.95	47.13	41.83	13.34	25.32	-
(%)	Range	33.3-	0-100	0-100	0-100	0-100	0-100	0-100	0-100	0-100	50-100	0-100	-
		100											
	Ν	27	33	82	25	33	23	24	79	41	27	27	-

Table A.9: Silver Gull reproductive output parameters on their breeding islands.

Figure A.2: Percentage of nests with a hatching success in each category for each breeding colony in 2004.

Figure A.3: Percentage of nests with a hatching success in each category for each breeding colony in 2005.

Figure A.4: Percentage of nests with a hatching success in each category for each breeding colony in 2006.

4. Calculations for proportion of tuna feed in Silver Gull diet

Assumptions

In the calculation of the proportion of tuna feed in the diet of Port Lincoln Silver

Gulls the following assumptions were used:

- Estimates were based on the largest number of gulls observed, which was 27,000 nests or 54,000 gulls in 2005.
- Fledging success (chick output per nest) was taken as 1.25 chicks per nest (Chapter 4) = 33,750 (1.25*27,000)
- The population was thus estimated as a total of 87,750 gulls (54,000 adults + 33,750 chicks)
- The numbers of immature birds could not be estimated so they are excluded from the calculation
- Adult Silver Gull consume about 60g of food per day (Kotega, 1991)
- Juvenile Silver Gulls (chicks up to fledging) consume about 12g of food a

day (chick regurgitations average weight was 2g (Harrison 2003; 2005) and chicks were fed every 90 minutes (Smith, 1995)).

• 240 days of tuna feeding (conventionally tuna, are farmed or fed for a maximum of 180 days or six months, however, as some companies may catch fish as early as December, whilst others may catch in February, not all companies are feeding for the same period of time and hence tuna feed is available to birds from as early as January to possibly the end of September each year (270 days). However, very few pontoons contain tuna in September and hence this month was excluded from the calculations, though seabirds would still be scavenging a small amount of food. Therefore the calculations were based on the assumption that feed was readily available for 8 months or 240 days.

Calculations assuming 100% of tuna feed in diet (for calculating a maximum value as a comparison)

(33750*12g) + (54000* 60g)) *240 = **787.32 tonnes** of tuna feed consumed by Silver Gulls per annum.

Calculation of the proportion of tuna feed consumed from dietary analysis

The dietary analysis (raw data) suggested that 14 out of 49 (28%) of the diet samples contained tuna feed. Thus assuming about 28% of the population (87,750) tuna feed gives 24,570 (15230 adults, 9340 chicks) gulls that annually consume (15230*60g) +

(9340*12g)*240 = 246.21 tonnes of tuna feed.

Observations on tuna farms

Observations of the percentage of baitfish scavenged from the tuna farms suggest that an average of 1.3% is taken by Silver Gulls. If the industry uses ~60,000 tonnes of baitfish per season, 1.3% works out to be about **570 tonnes** of tuna feed scavenged by Silver Gulls per annum. However, the average abundance of 285 Silver Gulls (Chapter 3) at pontoons suggested this was slightly lower at **534 tonnes** (285*130 pontoons=37,050 gulls: 37,050*60*240 days=534 tonnes). 570 (tuna farm feed loss estimation)/ 787 (if 100% of population consumed tuna feed) = 72%.

534 (seabird abundance estimation)/787 (if 100% of population consumed tuna feed) = 68%.

5. Egg oiling data for individual islands

islands used	islands used in the trial.								
Hatching	F	Rabbit Islan	d	Louth Island					
Success	Control	Т1	ТЭ	Control	Т1	Т?			

Table A 10. A comparison of hatching success for the three treatments on the two

Hatting	ſ	AUDIT ISIAII	u	Louth Island			
Success (%) per	Control	T1	T2	Control	T1	T2	
nest							
Mean	88.5	0	0	80.4	0	0	
St Dev	32.6	0	0	33.6	0	0	
Ν	26	46	30	23	44	22	

Table A.11: A comparison of the fate of oiled eggs for each treatment on each island.

Fate of Nests	s for Each	Rabbit	Island	Louth Island		
Treatment per Island		T1	T2	T1	T2	
		N=44	N=30	N=39	N=22	
Predated	Mean	34%	47%	28%	32%	
	Ν	15	14	11	7	
Missing	Mean	66%	50%	62%	54%	
(not hatched)	Ν	29	15	24	12	
Abandoned	Mean	0%	3%	10%	14%	
	Ν	0	1	4	3	

Relaying Rate	Rabbit Island		Louth Island	
(%) per nest	T1	T2	T1	T2
Mean	2.27	3.33	2.56	18.18
Ν	(1) 44	(1) 30	(1) 39	(4) 22

Table A.12: A comparison of re-laying rate expressed as % of nests with gulls with treated nests that relayed on each island

Source: http://www.puna.net.nz