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Abstract 

This thesis details the evolution of the iterative synthesis of 4→8 linked procyanidin 

(catechin) oligomers. This was achieved through the novel cross-coupling of a C4-

electrophilc catechin species with a C8-organometallic catechin derivative.  

Chapter 1 details a short discussion of relevant aspects of flavan-3-ols (catechins) 

such as nomenclature, reactivity, importance to red wine sensory perception and 

biological properties. Included is a short review of recent methods in biomimetic-type 

syntheses of procyanidin oligomers, with particular focus on dimeric and trimeric 

species.  

A model cross-coupling system was developed and discussed in Chapter 2. In this 

chapter, a metallated 1,3,5-trimethoxybenzene derivative was employed as a C8-

organometallic model. Coupling of a variety of metallated 1,3,5-trimethoxybenzenes 

to benzyl bromide revealed that 2,4,6-trimoxyphenylzinc chloride was readily coupled 

to this electrophile in moderate to good yields in the presence of numerous palladium 

catalysts. Following optimisation, the coupling product was obtained in very high 

yields using Pd(DPEPhos)Cl2 as a catalyst. This procedure was then extended to the 

coupling of the organozinc with a variety of substituted benzylic and aryl halides in 

good to high yields. 

The development of a Lewis acid-promoted coupling of a C4-ether with a C8-

organometallic towards the synthesis of a 4→8 catechin-catechin dimer is outlined in 

Chapter 3. Once again, the metallated 1,3,5-trimethoxybenzene derivatives used in 

Chapter 2 were employed as a C8-organometallic model. The Lewis acid-promoted 

cross-coupling of a C4-ether with 2,4,6-trimethoxyphenylboronic acid afforded a 

model pseudo-4→8-dimer in excellent yield with the desired 3,4-trans 

stereochemistry obtained in excellent selectivity. Application of the model cross-

coupling conditions using a C8-boronic acid-substituted catechin derivative provided 

a benzyl-protected catechin-4→8-dimer in consistent 90-95% yields. Debenzylation 

of the synthesised dimer provided catechin-4α→8-catechin dimer, or natural 

procyanidin B3. This natural procyanidin dimer was produced in 6 linear steps from 

(+)-catechin in 54% overall yield.  



The synthesis of a boron-protected procyanidin dimer and trimer is presented in 

Chapter 4. The synthesis of these oligomers was achieved using a C8-boron-

protected-C4-ether catechin derivative as a chain extension species. This species 

could be added to the C8-terminus of a growing oligomer chain in an iterative fashion 

using a coupling, boron-deprotection strategy. The C4-ether portion of this species 

selectively reacted with a free C8-boronic n-oligomer using the Lewis acid-promoted 

coupling method developed in Chapter 3 to provide an (n+1)-oligomer. Removal of 

the C8-boron protecting group furnished a free C8-boronic acid oligomer that could 

undergo further coupling to the chain extension species.  

The synthesis of C8-substituted catechin derivatives is discussed in Chapter 5. C8-

phenyl substituted catechins were produced in good to excellent yields using Suzuki 

and Kumada cross-couplings of both C8-boronic acid and C8-iodide-substituted 

catechins using a variety of palladium catalysts. The synthesis of an 8-8 linked 

catechin-catechin dimer and C8-alkyl substituted catechin derivatives was attempted 

using both Suzuki and Kumada methods, but were not successful. 
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A number of non-standard abbreviations have been used throughout this thesis. Given 

here are the abbreviations followed by the systematic or trivial name. 

Abbreviation Standard name 

Ac2O Acetic Anhydride 

Allyl-MgBr Allylmagnesium Bromide 

B(OMe)3 Trimethyl borate, boric acid-trimethyl ester 

BF3.OEt2 Boron Trifluoride diethyl etherate 

BnBr Benzyl Bromide 

BnCl Benzyl Chloride 

CaH2 Calcium Hydride 

CD3CN 1,1,1,-trideuteroacetonitrile 

CD3OD O-deutero, 1,1,1-trideuteromethane 

CDCl3 1-deutero-chloroform 

CH2Cl2 Dichloromethane 

CHCl3 Chloroform, 1,1,1-trichloromethane 

CsF Caesium Fluoride 

CuCN Copper-(I)-Cyanide 

CuI Copper-(I)-Iodide 

Dba dibenzylideneacetone 

DDQ 2,3-dichloro-5,6-dicyano-1,4-quinone 

DMA N,N-dimethylacetamide 

DMF N,N-dimethylformamide 

DPEPhos bis(o-diphenylphosphinophenyl)ether 

Dppf 1,1′-bis(diphenylphosphino)ferrocene 

Et3N Triethylamine 

EtMgBr Ethylmagnesium Bromide 

EtOAc Ethyl Acetate 



i-PrMgCl iso-propylmagnesium Chloride 

K2CO3 Potassium Carbonate 

K3PO4 Potassium Phosphate tribasic 

MeI Iodomethane, methyl iodide 

MgBr2 Magnesium Bromide 

MgBr2.OEt2 Magnesium Bromide-diethyl etherate 

MgCl2 Magnesium Chloride 

MIDA N-methylimidodiacetic acid 

Na2CO3 Sodium Carbonate 

Na2SO4 Sodium Sulphate 

NaH Sodium Hydride 

NBS N-bromouccinimide 

n-BuLi n-Butyllithium 

NIS N-iodosuccinimide 

PhB(OH)2 Phenylboronic acid 

PhBr Bromobenzene 

PhCl Chlorobenzene 

PhI Iodobenzene 

PhMgBr Phenlymagnesium Bromide 

PPh3 Triphenylphosphine 

Rf Retention factor 

rt Room temperature 

Sat.  aq. NaHCO3 Saturated aqueous sodium bicarbonate solution 

Sat. aq. NH4Cl Saturated aqueous Ammonium Chloride 
solution 

t-BuLi tert-Butyllithium 

THF Tetrahydrofuran 

TiCl4 Titanium-(IV)-tetrachloride 

TMSOTf Trimethylsilyl-triflate 

ZnCl2 Zinc Chloride 
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