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ABSTRACT

This thesis describes an investigation into the role of acetylenic and allenic

precursors in the formation of the important aroma compound β-damascenone (1).

Chapter 1 provides an introduction to the subject, beginning with a brief history of

the Australian wine industry which began with the first fleet’s arrival in 1788.  Many

of the various volatile compounds found in wine are then discussed, with particular

emphasis on β-damascenone (1).  Some previous syntheses of 1 are summarised, as

well as the in vivo generation of this compound, and also the role of

glycoconjugation in nature.  The chapter concludes with the aims of the present

work.

Chapter 2 covers the synthesis of the suspected acetylenic precursor 9-

hydroxymegastigma-3,5-dien-7-yne (36), which was prepared by the addition of 3-

butyn-2-ol to 2,6,6-trimethylcyclohex-2-en-1-one, followed by a conjugate

dehydration reaction.  The synthetic sample of 36 was shown to be identical to a

compound previously observed in the hydrolysate of 3,5,9-trihydroxymegastigma-

6,7-diene (31).  Upon acid hydrolysis, 36 produced >90% β-damascenone (1).

Chapter 3 outlines the synthesis and hydrolysis of the C9 glycoside 43, which was

prepared by a modified Koenigs-Knorr procedure on aglycone 36.

Diastereomerically pure samples of each of the two possible glycosides were

synthesised from corresponding enantiomerically pure samples of 36, which in turn

were prepared by the use of either (R) or (S) 3-butyn-2-ol.  Detailed hydrolytic

studies (at 25 ºC) were conducted on both the aglycone and the two glycosides: the

half lives of conversion of 36 into 1 were 40 hours and 65 hours at pH 3.0 and pH 3.2

respectively; the (9R) diastereomer of 43 had half-lives of 3 days and 6 days,
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respectively at the same pH values, whereas the (9S) diastereomer had half lives of

3.5 days and 6.5 days, respectively at the same pH values.

The synthesis of the other suspected precursor, megastigma-4,6,7-triene-3,9-diol (35)

is covered in Chapter 4.  This allene was prepared by addition of 3-butyn-2-ol to

phorenol, with the allene function generated by reaction with lithium aluminium

hydride.  By using (3S)-phorenol and both (R) and (S) 3-butyn-2-ol, four different

diastereomers of 35 were prepared and characterised.  The (3S, 6R, 9S)-isomer of 35

was also found to be identical to a compound previously observed in the hydrolysate

of (31).

A detailed hydrolytic study of the four synthetic isomers of 35 is contained within

Chapter 5.  This study revealed that each of the four isomers underwent rapid

epimerisation at 25 ºC and pH 3.0.  Careful analysis of the four product mixtures by

chiral GC-MS revealed that this epimerisation was occurring exclusively at C3.  The

complete absence of 3-hydroxydamascone (2) from any of the hydrolysates required

a re-appraisal of the mechanism of in vivo formation of β-damascenone (1), which

forms the focus of the second half of this chapter.

The experimental procedures (materials and methods) for all work covered in

chapters 2-5 are located in Chapter 6.
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