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4.9 Crossing numbers of Ĝ for small graphs . . . . . . . . . . . . . 153

4.13 The upper bound in Theorem 4.20 when n is fixed . . . . . . . 160

4.14 The upper bound in Theorem 4.20 when d is fixed . . . . . . . 161

4.16 Known crossing numbers of GP (n, 4) . . . . . . . . . . . . . . 164

4.17 Minimum found number of crossings by Quickcross for the

graphs GP (n, 4). . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.18 Known crossing numbers of GP (n, 5) . . . . . . . . . . . . . . 165

4.20 Minimum found number of crossings by Quickcross for the

graphs GP (n, 5). . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.33 n-dimensional cube experimental results . . . . . . . . . . . . 175



LIST OF TABLES vii

4.35 Sheehan graph experimental results . . . . . . . . . . . . . . . 178

5.1 Ranking of importance for unknown results related to graph

products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.1 f(n, d) for different parities of n and d. . . . . . . . . . . . . . 190

C.1 Predicted crossing numbers for the Cartesian product of a five

vertex graph with cycles and stars. . . . . . . . . . . . . . . . 200

C.2 Predicted crossing numbers for the join product of a five vertex

graph with discrete graphs, paths and cycles . . . . . . . . . . 201

C.3 Predicted crossing numbers for the Cartesian product of a six

vertex graph with paths, cycles and stars. . . . . . . . . . . . 202

C.4 Predicted crossing numbers for the join product of a six vertex

graph with discrete graphs, paths and cycles . . . . . . . . . . 206



List of Figures

1.1 Two drawings of K3,3. . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Planarisation of a drawing . . . . . . . . . . . . . . . . . . . . 10

1.3 Drawing modifications which remove crossings . . . . . . . . . 12

1.6 Two drawings of the Petersen graph . . . . . . . . . . . . . . . 18

2.1 Star insertion path example . . . . . . . . . . . . . . . . . . . 34

2.2 Contracting a cycle in the dual graph . . . . . . . . . . . . . . 36

2.3 Edge contractions in the dual graph . . . . . . . . . . . . . . . 41

2.4 Crossing orientation with respect to an edge . . . . . . . . . . 44

2.5 Data structures example . . . . . . . . . . . . . . . . . . . . . 44

2.6 A pair of edges crossing twice example . . . . . . . . . . . . . 46

2.7 Modification to rectify edges crossing twice . . . . . . . . . . . 47

2.9 Incident edges which cross example . . . . . . . . . . . . . . . 48

2.10 Modification to rectify incident edge crossings . . . . . . . . . 48

2.11 Updating crossing order lists example 1 . . . . . . . . . . . . . 51

2.12 Updating crossing order lists example 2 . . . . . . . . . . . . . 52

2.13 Constructing crossing order lists example . . . . . . . . . . . . 54

2.14 Identifying new crossing orientations . . . . . . . . . . . . . . 57

2.17 Quickcross heuristic runtime plot for the graphs Gi�Pj . . . . 69

2.18 Quickcross heuristic runtime plot for the graphs Gi�Cj . . . . 70

viii



LIST OF FIGURES ix

2.19 Quickcross heuristic runtime plot for the graphs Ci�Cj . . . . 70

2.20 Quickcross heuristic runtime plot for the graphs P (j, 3) . . . . 71

2.21 OGDF heuristic runtime plot for the graphs Gi�Pj . . . . . . 71

2.22 OGDF heuristic runtime plot for the graphs Gi�Cj . . . . . . 72

2.23 OGDF heuristic runtime plot for the graphs Ci�Cj . . . . . . 72

2.24 OGDF heuristic runtime plot for the graphs P (j, 3) . . . . . . 73

2.26 Quickcross initial embedding runtime - KnownCR graphs . . . 74

3.2 The four smallest cubic graphs with crossing number 7 . . . . 95

3.4 McGee graph plus an edge drawn with 10 crossings . . . . . . 99

3.5 McGee graph plus an edge drawn with 9 crossings . . . . . . . 99

3.6 A cubic graph on 28 vertices with crossing number 10 . . . . . 101

3.7 The Sunlet graph, S6. . . . . . . . . . . . . . . . . . . . . . . . 105

3.9 Planar drawing of S6�K1,1. . . . . . . . . . . . . . . . . . . . 106

3.10 Construction of drawings of K1,m�Cn . . . . . . . . . . . . . . 107

3.11 The subgraph Hi of Sn�K1,3 . . . . . . . . . . . . . . . . . . . 109

3.12 The subgraph H ′i of Sn�K1,2 . . . . . . . . . . . . . . . . . . . 109

3.13 The drawing of Fi, if Fi is not crossed by itself . . . . . . . . . 111

3.14 A list of all 21 connected graphs on five vertices . . . . . . . . 116

3.15 A list of all 156 graphs on six vertices . . . . . . . . . . . . . . 117

3.17 G6
110�Pn drawn with 3n− 1 crossings . . . . . . . . . . . . . . 119

3.18 G6
137�Pn drawn with 4n crossings . . . . . . . . . . . . . . . . 120

3.20 G6
63�Cn drawn with 2n crossings . . . . . . . . . . . . . . . . 122

3.21 G6
64�Cn drawn with 2n crossings . . . . . . . . . . . . . . . . 122

3.22 G6
98�Cn drawn with 3n crossings . . . . . . . . . . . . . . . . 123

3.23 G6
75�Cn drawn with 2n crossings . . . . . . . . . . . . . . . . 123



LIST OF FIGURES x

3.24 G6
77�Cn drawn with 2n crossings . . . . . . . . . . . . . . . . 123

3.25 G6
92�Cn drawn with 3n crossings . . . . . . . . . . . . . . . . 124

3.28 G6
62�Sn drawn with 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
crossings . . . . . . . 126

3.29 G6
121�Sn drawn with 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n crossings . . . . . . . . 127

3.31 G5
9 +Dn drawn with n(n− 1) crossings . . . . . . . . . . . . . 130

3.32 G5
8 +Dn drawn with Z(5, n) crossings . . . . . . . . . . . . . . 131

3.33 G5
17 + Cn drawn with Z(5, n) + n+ 3 crossings . . . . . . . . . 131

3.36 G6
104 +Dn drawn with Z(6, n) + 4

⌊
n
2

⌋
crossings . . . . . . . . 134

3.37 G6
140 +Dn drawn with Z(6, n) + 2

⌊
3n
2

⌋
crossings . . . . . . . . 134

3.38 G6
85 + Pn drawn with Z(6, n) + n+ 1 crossings . . . . . . . . . 135

3.39 G6
79 + Cn drawn with Z(6, n) + 4

⌊
n
2

⌋
+ 3 crossings . . . . . . . 136

3.40 G6
85 + Cn drawn with Z(6, n) + n+ 3 crossings . . . . . . . . . 136
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Summary

This thesis aims to provide a broad study of the crossing number problem.

In particular, we describe a new heuristic for crossing minimisation, and

demonstrate that it performs comparably to the state of the art existing

heuristics. We then take advantage of the new heuristic to help in developing

various new results and conjectures related to crossing numbers. We begin by

introducing crossing numbers, along with the required graph theory concepts,

in Chapter 1.

Then, in Chapter 2, we introduce a new heuristic method for minim-

ising crossings in graphs. Our basic approach is to begin with a, presumably

sub-optimal, drawing of a graph and then use solutions to the related star in-

sertion problem to iteratively obtain new drawings with fewer crossings. We

implement the heuristic, dubbed Quickcross, and spend a significant amount

of effort making the implementation efficient for practical use. To this end,

in Section 2.3, we discuss several of the schemes and design features of the

implementation. Then, in Section 2.5, we make experimental comparisons

between the various combinations of schemes of Quickcross by running it

on several sets of graphs which have previously been used for benchmark-

ing purpose. Where appropriate, we also make comparisons with the cur-

rent state-of-the-art crossing minimisation heuristics included in the OGDF

package. We observe that Quickcross compares well in many instances, and

identify several consistently strong performing schemes of Quickcross which

we recommend for practical use.

xii
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In Chapter 3, we consider several problems relating to crossing numbers,

and develop some new, exact results. Even though Quickcross is only a

heuristic, for the problems considered in Chapter 3 it is often a useful tool

in developing these results. First, in Section 3.1, we consider the problem

of determining the minimum number of vertices of a cubic graph which has

crossing number at least k. By using Quickcross to perform a significant

body of computations, we are able to extend the previously known results

from k = 8 up to k = 11. A corollary of these results confirms a folklore belief

that the Coxeter graph is an example of a minimal cubic graph with crossing

number at least 11. Next, in Section 3.2, we consider the crossing number

of the Cartesian product of a sunlet graph and a star. We use Quickcross

to predict what the crossing number of this family of graphs might be, and

then confirm our prediction for the first few cases where the size of the

star is fixed. We also determine general upper bounds and conjecture that

these are tight. Then, in Section 3.3, we consider all families of graphs

resulting from the graph product of a fixed small graph with an arbitrarily

large path, cycle, star or discrete graph. There has been considerable effort

over the last three decades to determine the crossing numbers of such families

of graphs. We expand upon the known results by determining the crossing

number for 29 new such families. We then use Quickcross to predict formulas

for the crossing numbers of all remaining families of such graphs where the

crossing numbers are unknown. After the results determined in Chapter 3

are taken into account, there are still 609 results of this type remaining to

be determined.

In Chapter 4, we consider several problems relating to crossing num-

bers, and develop some new bounds and conjectures. For these problems,

Quickcross serves more as a guide our investigations rather than a direct

aid. In Section 4.1, we build upon an observation made during our research

in Section 3.3 concerning the Cartesian product of any fixed graph with an
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arbitrarily large cycle. We propose that for any graph, the crossing number

of its Cartesian product with an appropriately large cycle obeys a simple

formula related to the crossing number of a, much smaller, auxiliary graph.

We also demonstrate that every known result of this type in literature agrees

with our proposal. Then, in Section 4.2, we consider the join product of a

complete graph and a discrete graph. The crossing number of the first few

small cases of this family has already been determined. For the general case,

we determine recursive lower bounds and then also determine new upper

bounds with a drawing procedure. Our formula for the upper bound has a

simple form and a pleasing interpretation. Next, in Section 4.3, we consider

the generalised Petersen graphs. We discuss the somewhat scattered history

of results for these graphs and then experimentally examine the smallest

infinite family of these graphs for which no genuine investigation has been

conducted to date. We determine drawing procedures for these graphs, and

so provide a new upper bound for the crossing number. We also provide evid-

ence that this bound is tight. Next, in Section 4.4, we consider the n-cube

graphs. The number of vertices in the n-cube grows exponentially with n and

as such, these graphs are only tractable with heuristic methods for around

n ≤ 10. During our experimentation, we obtained drawings of the n-cube

for 7 ≤ n ≤ 8 possessing strictly fewer crossings than a previously thought

tight upper bound. Although we were not the first researchers to notice that

the upper bound was not tight, this is the first time a heuristic method has

successfully found such drawings. Lastly, in Section 4.5, we consider the

Sheehan graphs, which are a family of graphs that are of interest in a differ-

ent graph theory context; specifically, the Hamiltonian cycle problem. The

crossing number of these graphs has not previously been considered and so

we aim to make some preliminary observations. We observe that the tested

crossing minimisation heuristics have significant difficulty finding solutions

with few crossings. After a significant amount of effort, we obtain drawings
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for which the numbers of crossings is very close to a particular formula.

Finally, we conclude this thesis in Chapter 5 by summarising the results

obtained throughout, and discuss some of the ripe areas of future research.

This includes both a discussion of new heuristic approaches that might prove

fruitful, and also ideas on how best to further extend the theoretical results

developed in this thesis.
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Notation

The following notations are used throughout the thesis.

cr(G) The crossing number of G

crD(G) The number of crossings in the drawing D of G

Cn The cycle graph with n vertices

d(v) The degree of a vertex v ∈ V (G)

DG A drawing of G into the plane

Dn The discrete (empty) graph with n vertices

∆(G) The maximum degree of any vertex in G

E(G) The set of edges of G

G A graph with vertex set V (G) and edge set E(G)

G5
i One of the 21 non-isomorphic, connected graphs

on 5 vertices where i is given in Figure 3.14

G6
i One of the 156 non-isomorphic graphs on 6 ver-

tices where i is given in Figure 3.15

H(n) The conjectured value of cr(Kn),

1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
G�H The Cartesian product of graphs G and H

G ∼= H The graphs G and H are isomorphic

G+H The join product of graphs G and H

Kn The complete graph with n vertices

Kn1,n2,...,nk The complete multipartite graph with partitions

of cardinalities n1, n2, . . . , nk

xix



Notation xx

NG(v) The set of vertices which are adjacent to vertex

v

O(f(x)) A function bounded from above by a constant

positive multiple of f(x) for all x > N for some

N

Ω(f(x)) A function bounded from below by a constant

positive multiple of f(x) for all x > N for some

N

Π A combinatorial embedding of a planar graph

Π∗ Dual graph of the embedding Π

Pn The path graph with n+ 1 vertices

Sn The star graph with n+ 1 vertices (also Kn,1)

Sn The sunlet graph with 2n vertices

Θ(f(x)) A function bounded both above and below by a

constant positive multiple of f(x) for all x > N

for some N

(u, v) The edge with end vertices u and v

V (G) The set of vertices of G

Z(n1, n2) The conjectured value of cr(Kn1,n2),⌊
n1

2

⌋ ⌊
n1−1

2

⌋ ⌊
n2

2

⌋ ⌊
n2−1

2

⌋



Chapter 1

Introduction

In this thesis, we are primarily concerned with drawings of graphs. Consider

the complete bipartite graph K3,3, as displayed in its typical drawing in

Figure 1.1 (a). A natural question to ask is: what is the best way to draw this

graph? One possibility is to draw K3,3 with the aim of making the number of

edges which cross each other small. Then, after some thought, a drawing of

K3,3 with only a single edge crossing may be devised, such as in Figure 1.1

(b). If it can be proved that we have drawn K3,3 with the minimum possible

number of edge crossings, then this number is the crossing number of K3,3.

Informally, the crossing number problem asks: Given a graph G, what is the

minimal number of edge crossings in any drawing of G. The act of trying to

find drawings with few crossings is referred to as crossing minimisation.

(a) (b)

Figure 1.1: Two drawings of K3,3.

Crossing minimisation was noticed by Paul Turán in 1944 and described

in his welcome note to the first issue of the distinguished Journal of Graph

1
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Theory [137]. The observation of Turán specifically concerned crossing min-

imisation in the family of complete bipartite graphs and this problem is now

commonly referred to as Turán’s Brick Factory Problem. The first attempts

at solutions were published independently by Kazimierz Zarankiewicz and

Kazimierz Urbanik in [147] and [138]. However, over 10 years later, their ar-

guments were found to be flawed and despite significant effort, the problem

remains open today [71]. Nonetheless, their proposed result is believed to

be correct, and the general conjecture has become known as Zarankiewicz’

conjecture.

The crossing number of the complete graphs is perhaps a more natural

question to ask compared to the complete bipartite graphs. The first serious

investigations into the complete graphs were made by Anthony Hill in 1958

and the conjectured result, which also remains open, has been named after

Hill [68]. The general difficulty of studying crossing numbers is perhaps best

illustrated by these two ‘original’ conjectures, which have withstood ongoing

attacks at solutions for over half a century despite significant and ongoing

effort [113, 108, 4, 45].

In this introductory chapter, we begin by providing some concepts and

definitions from graph theory. Then, we are in the position to review some

of the landmark results related to crossing numbers and also some of the

variants of crossing numbers. Later, in each chapter of this thesis, we provide

a focused literature review specifically on results related to the content in that

chapter.

1.1 Definitions and concepts

Throughout this thesis we shall be working with many different concepts and

as such require many definitions. Here we will define some general notions

that will be used throughout the thesis and within each chapter we will make
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additional definitions specific to that chapter as needed. The majority of our

concepts are standard and further detail can be found in most books on graph

theory such as [23].

1.1.1 Basic definitions

A graph G is an object comprised of a set of vertices V (G) and a set of edges

E(G) ⊆ {u × v | v ∈ V (G), u ∈ V (G)}. We follow the usual convention

and say that the order of G is the cardinality of the vertex set and the size

of G is the cardinality of the edge set. A graph is called undirected if the

edges are unordered, that is, the edge (u, v) is the same as the edge (v, u).

Otherwise the graph is directed. A graph is simple if there is at most one

edge between any pair of vertices, and there is no edge connecting a vertex

to itself. Unless otherwise stated, every graph considered in this thesis is

assumed to be simple and undirected.

For an undirected graph G, if (u, v) ∈ E(G) then we say that u and v

are adjacent. For an edge (u, v) = e ∈ E(G), we say that vertices u and

v are incident to e and also that e is incident to u and v. The degree of a

vertex v, denoted as d(v), is equal to the number of adjacent vertices to v

and the largest degree of any vertex in G is denoted as ∆(G). The set of all

adjacent vertices to v ∈ V (G) is called the neighbourhood of v and is denoted

as NG(v). If the graph to which the neighbourhood belongs is clear from

context, then we shall drop the subscript G. Thus d(v) = |N(v)|.

A graph G is k-regular if every vertex has degree k. In the special case

that a graph is 3-regular, it is called a cubic graph.

A walk in a graph G is a list of vertices v1, v2, . . . , vk such that (vi, vi+1) ∈

E(G) for each i = 1, 2, . . . , k − 1. A path is a walk such that each of the

vertices are unique. A walk is closed if it begins and terminates at the same

vertex, that is, v1 = vk. In the case that a walk is closed and each vertex
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other than the first (last) vertex is unique, then it is called a cycle. The

length of a walk (path) v1, v2, . . . , vk is k−1. Note that in the case of a cycle,

the length is the number of vertices in the cycle.

A simple graph G is connected if for any two vertices u, v ∈ V (G) there

exists a walk between u and v. Otherwise the graph is disconnected. A

connected component (sometimes simply called a component) of a simple

graph is a set S ⊆ V (G) such that for any two vertices u, v ∈ S there exists

a walk between u and v and for any vertices v ∈ S and w ∈ V (G) \ S,

there does not exist a walk between v and w. Thus a connected graph has

just the one connected component and a disconnected graph has more than

one connected component. Note that with these definitions, a single isolated

vertex which possibly contains an edge to itself (a loop) and no other edges

constitutes a connected component.

A connected graph G is k-connected if there does not exist a set of k − 1

vertices in G whose deletion (along with their incident edges) disconnects the

graph. Similarly a connected graph G is k-edge-connected if there does not

exist a set of k − 1 edges such that the deletion of those edges disconnects

the graph.

A subgraph of a graph G is formed by a set of vertices S ⊆ V (G) and

a set of edges T ⊆ {u × v | v ∈ S, u ∈ S, (u, v) ∈ E(G)}. If H is a

subgraph of G, then G is also a supergraph of H. A vertex induced subgraph

of G is the graph formed by a set of vertices S ⊆ V (G) and a set of edges

T = {(u, v) | v ∈ S, u ∈ S, (u, v) ∈ E(G)}. An edge induced subgraph of

G is the graph formed by a set of edges T ⊆ E(G) and the set of vertices

S = {u | ∃v ∈ T, (u, v) ∈ T}.

Two graphs G and H are isomorphic if there is a bijective function f

between the vertex sets of G and H such that any two vertices u, v ∈ V (G)

are adjacent if and only if f(u) and f(v) are adjacent in H. We shall use

G ∼= H to denote that G and H are isomorphic.
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An edge contraction is an operation on an edge (u, v) where the edge (u, v)

is deleted and the vertices u and v are identified into a new vertex. A graph

H is a minor of a graph G if, there is some sequence of edge deletions and

edge contractions in G which results in a graph that is isomorphic to H.

A graph is planar if it can be drawn into the plane in such a way that its

edges only intersect at their endpoints. Note that the plane is homeomorphic

to the surface of a sphere, minus one point. Hence if a graph is planar, then

the famous polyhedron formula of Euler holds. That is,

|V (G)| − |E(G)|+ F = 2, (1.1)

where F is the number of faces of the corresponding polyhedron. There

is a limit to the number of edges which a planar simple graph can have.

This can be seen by noting that each edge is on the boundary of at most

two faces and each face is bounded by at least three edges. Hence, if we

count each edge twice, we are counting each face at least three times and so,

2|E(G)| ≥ 3F . Then multiplying (1.1) by 3,

3|V (G)| − 3|E(G)|+ 3F = 6,

and substituting in 2|E(G)| ≥ 3F , we obtain an upper bound on the number

edges in any planar graph,

3|V (G)| − 3|E(G)|+ 2|E(G)| ≥ 6,

|E(G)| ≤ 3|V (G)| − 6.

One of the seminal results in relation to planar graphs is Kuratowski’s The-

orem, which provides a complete characterisation of planar graphs:

Theorem 1.1 (Kuratowski [99]). A graph G is planar if and only if neither

K5 nor K3,3 are minors of G.
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1.1.2 Graph products

Some graphs can be thought of as resulting from specific graph products,

and we outline two such products here that will be used in this thesis.

The Cartesian product of two graphs G1 and G2, denoted as G1�G2, is

the graph whose vertex set is {(v1, v2) | v1 ∈ V (G1), v2 ∈ V (G2)} and two

vertices (u1, u2) and (v1, v2) are connected with an edge if and only if one of

the following two conditions is satisfied:

1. (u1, v1) ∈ E(G1) and u2 = v2, or

2. u1 = v1 and (u2, v2) ∈ E(G2).

The join product of two graphsG1 andG2, denoted asG1+G2, is the graph

whose vertex set is V (G1)∪V (G2) and edge set is E(G1)∪E(G2)∪{(v1, v2) |

v1 ∈ E(G1), v2 ∈ E(G2)}.

1.1.3 Asymptotic notation and complexity

Let g(x) be a function defined on some unbounded set of positive reals, and

suppose that there exists a constant M such that g(x) > 0 for all x ≥ M .

We say that g(x) = O(f(x)) if there exists constants C > 0 and N such that

|g(x)| ≤ Cf(x) for all x ≥ N . Intuitively, this implies that |g(x)| is bounded

above by some constant factor of f(x), for all large enough x. Similarly, we

say that g(x) = Ω(f(x)) if there exists constants C > 0 and N such that

g(x) ≥ Cf(x) for all x ≥ N . Intuitively, this implies that g(x) is bounded

below by some constant factor of f(x), for all large enough x. We say that

g(x) = Θ(f(x)) if there exists constants C1 > 0, C2 > 0 and N such that

C1f(x) ≤ g(x) ≤ C2f(x) for all x ≥ N . Intuitively, this implies that g(x) is

bounded both above and below by some constant factor of f(x), for all large

enough x.

For the below discussions, given a graph G, let n = |V (G)| and m =
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|E(G)|. A simple graph G is a dense graph if m = Θ(n2), otherwise it is

a sparse graph. Note that the maximal number of edges in a simple graph

is attained by the complete graph which has (n2 − n)/2 edges. A simple

application of the pigeonhole principle gives a one-way relation between a

dense graph G and its maximum degree ∆(G).

Lemma 1.2. If a graph G is dense, then ∆(G) = Ω(n).

Proof. By definition, there exists constants C1 > 0 and C2 > 0 such that

C1n
2 ≤ m ≤ C2n

2.

Therefore, there are at least 2C1n
2 end-vertices of edges which are spread

across n vertices. Then there is at least one vertex v which is incident to at

least (2C1n
2)/n edges. Hence,

∆(G) ≥ d(v) ≥ 2C1n.

Therefore, ∆(G) = Ω(n).

We shall be describing various algorithms throughout this thesis, and will

be discussing the runtimes of these algorithms. An algorithm takes an input

of size x and performs some number of operations before it concludes. If the

algorithm concludes in g(x) = O(f(x)) operations, then we shall say that the

algorithm takes O(f(x)) time. For the following discussion, an algorithm is

polynomial time if it takes O(f(x)) time where f is some polynomial in x.

Similarly an algorithm is linear time if f is linear in x and exponential time

if f is exponential in x.

We briefly introduce some complexity classes related to the problems

tackled in this thesis, but skip much of the detail and subtleties of this

broad subject. The interested reader is referred to [60] for comprehensive

discussions about complexity theory. A problem is a decision problem if it

can be posed as a true or false question. A decision problem lies in the
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set called non-deterministic polynomial time (NP) if a true output can be

verified in polynomial time. A decision problem P is in NP-complete if it

is in NP, and in addition, every other problem in NP can be reduced to P

in polynomial time. Intuitively, NP-complete is the set of decision problems

which can have any other NP problem reduced to it quickly, and any solu-

tion can be verified quickly, however, it is not necessarily quick to find that

solution in the first place. A decision problem P is NP-hard if every problem

in NP can be reduced to P in polynomial time, but a true output no longer

needs to be verifiable in polynomial time. Thus NP-hard decision problems

are a superset of the NP-complete decision problems.

It is not known if there exists any decision problems in NP-complete which

can be solved in polynomial time. This important question is connected

to the famous P vs. NP problem which is unquestionably the largest open

problem in this area. From the property that any NP problem can be reduced

to any NP-complete problem in polynomial time, if one problem in NP-

complete could be solved in polynomial time, then using such a reduction,

every problem in NP could be solved in polynomial time.

As the size of the input to a problem increases, many problems in NP-

complete and NP-hard become intractable for computers to solve. Many

real-world scenarios can be posed as NP-complete and NP-hard problems

and this is one reason why the study of heuristic methods for these problems

is of current importance.

1.1.4 Embeddings, drawings and crossing numbers

The following definitions are standard in literature, and are repeated from

[40].

An embedding of a graph G onto a surface Σ (a compact, connected 2-

manifold) is a representation of G onto Σ such that vertices are distinct
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points on Σ and each edge e is a simple arc on Σ connecting the points

associated with the end vertices of e. The embedding must also satisfy:

An arc of edge e does not include any points associated with vertices other

than the end vertices of e, and two arcs never intersect at a point which is

interior to either of the arcs. Two embeddings are equivalent if there is a

homeomorphism of Σ which transforms one into the other. The equivalence

class of all such embeddings is a topological embedding of G.

An embedding Π is a two cell embedding if each of the connected com-

ponents of Σ − Π are homeomorhpic to an open disk. In this present work,

we are only concerned with embeddings in which Σ is the surface of a sphere

and so each embedding is a two cell embedding.

A topological embedding of G onto the sphere uniquely defines a cyc-

lic ordering of the edges incident to each vertex of G and the collection of

these cyclic orderings is a combinatorial embedding for G. A combinatorial

embedding Π defines a set of cycles in G which bound the faces of any em-

bedding belonging to the associated topological embedding, and so we may

talk about the set of ‘faces’ of Π. Similarly, Π defines a dual graph Π∗ which

is isomorphic to the dual graph of any embedding belonging to the associ-

ated topological embedding. Note that the edges e1, e2, . . . , em of G are in

one-to-one correspondence with edges e∗1, e
∗
2, . . . , e

∗
m of the dual graph Π∗.

A drawing D is a representation of a graph G onto the plane with similar

conditions to an embedding. Vertices are represented as distinct points, and

each edge e is represented by a simple arc between the points associated

with the end vertices of e. The drawing must also satisfy: An arc of edge

e does not include any points associated with vertices other than the end

vertices of e, and any intersection between the interiors of arcs involves at

most two arcs. Given a drawing D of G, the intersections which occur in the

interiors of arcs are the crossings of the drawing and the number of crossings

is denoted by crD(G).
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Definition 1.3 (The crossing number). The crossing number of a graph is

denoted by cr(G) and is the minimum number of crossings over all possible

drawings of G.

In what follows we shall also describe some variants of the crossing num-

ber. To help distinguish these cases, the crossing number is sometimes re-

ferred to as the plane (or planar) crossing number. It is now clear that if

crD(G) = 0, then G is a planar graph, and we say that D is a planar draw-

ing of G. Then, for any non-planar drawing D, the planarisation of D is a

planar drawing of the planar graph obtained by replacing crossings of the

initial drawing with dummy vertices of degree 4. Hence the graph corres-

ponding to the planarisation of D has n+ crD(G) vertices and m+ 2crD(G)

edges. Figure 1.2 provides a simple example of a drawing D of a graph, which

has 1 crossing, and a planarisation D′ of D. The combinatorial embedding

corresponding to D′ can be represented by the collection of cyclic orderings

(clockwise) of edges around each vertex:

v1 : {e1, e6, e4}
v2 : {e5, e1, e3}
v3 : {e4, e7, e2}
v4 : {e2, e8, e3}
v5 : {e5, e8, e7, e6}

v1

v2

v3

v4

e6

e1

e5

e2

e3

e4 v1

v2

v3

v4

v5

e6

e8

e1

e5

e7

e2

e3

e4

Figure 1.2: On the left, a drawing of a graph and on the right, a planarisation
of the drawing.

In what follows, when no confusion is possible, we shall refer to the arcs

of a drawing or embedding as ‘edges’ of the drawing (or embedding) and the

points associated with vertices as ‘vertices’ of the drawing (or embedding).
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Definition 1.4. A drawing is a good drawing if the edges of the drawing

satisfy the following conditions:

1. No two edges cross each other more than once.

2. No two edges which share a common end vertex cross.

3. No edge crosses itself (note that this trivially holds from the definition

of a simple arc).

The following is a simple exercise, which is discussed without proof in [89]

and shows that any drawing which attains cr(G) crossings is a good drawing

of G. We include a proof here for the sake of completeness.

Lemma 1.5. For any graph G, any drawing which attains cr(G) crossings,

is a good drawing.

Proof. Consider a drawing D of G which is not a good drawing and suppose

that D has cr(G) crossings. We work through the conditions of Definition

1.4 and show that for each condition, there exists a modification to D with

fewer crossings, violating the assumption that D has cr(D) crossings.

(1) Suppose D has a pair of edges, e1 and e2, which cross more than

once. We may reroute e1 and e2 as in Figure 1.3 so that the e1 now crosses

exactly those edges that e2 crossed within the rerouted sections and vice

versa. Rerouting the edges in this removes at least one crossing from D, and

the number of crossings in the rest of D remains unchanged.

(2) Suppose now that D has a crossing between two edges, e1 and e2,

which share a common end-vertex. We may reroute e1 and e2 as in Figure

1.4 so that e1 now crosses exactly those edges that e2 crossed within the

rerouted sections and vice versa. Clearly the number of crossings between e1

and e2 have reduced and the number of crossings in the rest of D remains

unchanged.
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(3) Finally, suppose an edge e1 of D crosses itself, then we may reroute

e1 as in Figure 1.5 so that the number of crossings is reduced.

e1 e2 e1

e2

Figure 1.3: Modifying edges e1 and e2 we remove at least one crossing
between e1 and e2 and the number of crossings in the rest of
D remains unchanged.

e1

e2 e1

e2

Figure 1.4: Modifying edges e1 and e2 removes one crossing between e1 and e2

and the number of crossings in the rest of D remains unchanged.

e1
e1

Figure 1.5: Modifying e1 removes at least one crossing from D.

1.2 Crossing numbers

Crossing numbers and crossing minimisation has an enormous body of lit-

erature and there are several valuable resources to help navigate this. The

fascinating beginnings and early research on crossing numbers are recounted

in [20]. For over a decade, Imrich Vrt’o has maintained an extensive bib-

liography of research relating to crossing numbers [139]. In 2018, Markus

Schaefer released a (perhaps overdue) book detailing some of the successful

approaches to studying crossing numbers [125]. Schaefer also maintains a de-

tailed survey on the many different variants of the crossing number at [126].
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A discussion on some of the successful research focusing on algorithmically

computing crossing numbers is given in [26]. Finally, a recently released

comprehensive survey on all graphs and graph families with known crossing

numbers is given in [39]. In the following, we only scrape the surface of some

results which have provided decades of fruitful research.

Lower bounds on the crossing number of general graphs were originally

conjectured by Erdős and Guy in 1973 [53]. By placing a condition on the

number of edges, this was subsequently proved by Ajtai et al. in 1982 [9]

who provided a lower bound on the number of crossings which depends upon

a constant c.

Theorem 1.6 (Ajtai et al., 1982 [9]). There is a constant c > 0 such that

for any graph G on n vertices and m ≥ 4n edges,

cr(G) >
cm3

n2
.

Ajtai et al. originally proved Theorem 1.6 for c = 1
100

. Later, this was

improved to c = 1
64

by Chazelle et al. in an email conversation summarised

in [8]. Different values of c as well as different conditions on the number of

edges have been considered closely in a line of research which is summarised

in Ackerman [5]. The most recent result, by Ackerman in 2015 (revised 2019)

[5], showed that if m ≥ 6.95n, then c can be increased to 1
29

.

The conjectured values for the crossing numbers of the complete graphs

and the complete bipartite graphs are interesting in their own right, but

they have also been utilised to derive many other theoretical results. For

this reason, the conjectured values have been assigned specific notation as

functions. We define

H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
,
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and similarly,

Z(n1, n2) :=
⌊n1

2

⌋ ⌊n1 − 1

2

⌋ ⌊n2

2

⌋ ⌊n2 − 1

2

⌋
.

Then, the original conjectures, named after Hill and Zarankiewicz are as

follows.

Conjecture 1.7 (Hill’s Conjecture). Consider the complete graph on n ver-

tices Kn, then

cr(Kn) = H(n).

Conjecture 1.8 (Zarankiewicz’ Conjecture). Consider the complete bipartite

graph on n1 + n2 vertices Kn1,n2, then

cr(Kn1,n2) = Z(n1, n2).

From a mixture of theoretical arguments and brute force computations,

Conjecture 1.7 is now known to hold for values of n ≤ 12 [69, 113]. The next

unknown case cr(K13) has been considered in [109, 3] and narrowed down

to one of two remaining possible values, either 223 or 225. Conjecture 1.8

is known to hold for min{n1, n2} ≤ 6 [89, 71], as well as the specific cases

where 7 ≤ n1 ≤ 8 and n1 ≤ n2 ≤ 10 [143].

The problem of determining the crossing number in general graphs is

known to be an NP-complete problem [61]. The problem remains NP-

complete even when restricted to certain families of graphs. Known restric-

tions include the family of cubic graphs [79] and the family of planar graphs

with the addition of a single edge [28]. Interestingly, the crossing number

is an example of a fixed parameter tractable problem [64]. The fixed para-

meter problem can even be solved in linear time [88], however, the known

algorithms to solve the fixed parameter problem are of no practical use.
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1.2.1 Variants of the crossing number

There are many interesting variants of the crossing number which have been

studied and these are comprehensively detailed in [126]. These notions have

arisen from both theoretical and practical perspectives and we now describe

a few of the widely studied variants.

Book crossing number

A book of k ‘pages’ is a collection of k half-planes with all of their boundary

lines identified to form the ‘spine’ of the book. Graph drawings on a book

are restricted to the following: All vertices lie on the spine of the book, and

each edge is contained entirely in a single page.

The book crossing number on k pages, bcrk(G) is the minimum number

of crossings of any drawing of G which obeys the above restrictions. It is

known that bcr2(Kn) = H(n) [2] and in general De Klerk et al [44] provides a

two parameter function f(k, n) such that bcrk(Kn) ≤ f(k, n) for all integers

k, n > 0 and they conjecture that equality holds.

Genus crossing number

The genus crossing number extends the notion of the usual crossing number

by considering drawings onto surfaces of different genus. Let Σg be a surface

of genus g. Given a graph G, the minimum number of crossings of any

drawing of G onto Σg is denoted as crΣg(G). It is known that crΣg(G) =

Ω(m3/n2) if 0 ≤ g < n2/m and crΣg(G) = Ω(m2/n) if n2/m ≤ g ≤ n/64

[128].

Maximum crossing number

For a graph G, consider the drawings of G such that edges with a common

end-vertex do not cross and each pair of edges crosses at most once. Then the
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maximum number of crossings in any such drawing is the maximum crossing

number of G, denoted maxcr(G). It is known that maxcr(Kn) =
(
n
4

)
[122]

and that maxcr(Kn1,n2,...nk) =
(
p
4

)
−
∑k

i=1(
(
ni
4

)
+ (p − ni)

(
ni
3

)
), where p =∑k

i=1 ni and k ≥ 2 [76]. In [12], Archdeacon conjectures that maxcr(H) ≤

maxcr(G) for any subgraph H ⊆ G. This problem remains open and is

in contrast to the analogous problem for the standard crossing number, in

which the result is obtained by a simple observation. The maximum crossing

number is also closely related to Conway’s thrackle conjecture [104] which

postulates that if G admits a drawing such that every pair of edges either:

has a common end-vertex, or crosses exactly once, then |E(G)| ≤ |V (G)|.

Rectilinear crossing number

The rectilinear crossing number, denoted cr(G) is the smallest number of

crossings in any drawing of G onto the plane such that edges are all straight

line segments. Clearly cr(G) constitutes an upper bound for cr(G), that is,

cr(G) ≤ cr(G). It is also known that in some cases the inequality is strict,

for example, 18 = cr(K8) < cr(K8) = 19 [17, 131]. Indeed, for the complete

graphs, it is known that the inequality is strict for n = 8 and all n ≥ 10 [1].

The exact value of cr(Kn) has been computed for all n ≤ 27 [7] and efforts

continue towards extending this to larger values.

1.3 Motivating example

In many cases, the exact crossing number of a graph is found by obtaining

agreeable upper and lower bounds. The upper bound is usually found by

way of a drawing construction and the lower bound is usually obtained the-

oretically. We now demonstrate one example of finding agreeable upper and

lower bounds in order to obtain the crossing number of the famous Petersen

graph.
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Recall that the girth of a graph is the length of its shortest cycle. The

following lower bound was utilised in the 1960’s and was most probably

noticed earlier.

Lemma 1.9. Let G be a finite graph without loops or parallel edges. Let

n = |V (G)|, m = |E(G)| and g be the girth of G. Then

cr(G) ≥
⌈
m− g

g − 2
(n− 2)

⌉
. (1.2)

Proof. Let D be an optimal drawing of G with cr(G) crossings and consider

iteratively removing, both from the drawing and from the graph, those edges

which are crossed. If we remove all such edges, then we will arrive at a planar

drawing of some planar graph. Let h be the smallest possible number of

edges whose removal produces a planar graph and let G′ denote the resulting

planar graph. Let n = |V (G′)| = |V (G)|, and m′ = |E(G′)|, thus m′ = m−h.

Euler’s polyhedron formula holds for G′,

n−m′ + F = 2, (1.3)

where F is the number of faces in an embedding of G′. Let g and g′ be the

girths of G and G′ respectively and note that by deleting edges from G, we

cannot decrease the girth, thus g′ ≥ g. Each face of an embedding of G′ is

bounded by a cycle and hence the following holds

Fg′ ≤ 2m′. (1.4)

Multiplying (1.3) by g′, we get

ng′ −m′g′ + Fg′ = 2g′,

and then utilising (1.4),

ng′ −m′g′ + 2m′ ≥ 2g′,

g′(n− 2) ≥ m′(g′ − 2),
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g′(n− 2)

g′ − 2
≥ m′ = m− h.

Using the fact that g′ ≥ g, we arrive at

h ≥ m− g′(n− 2)

g′ − 2
≥ m− g(n− 2)

g − 2
.

There are at least h crossings in D, possibly more, and so,

cr(G) ≥ h ≥ m− g(n− 2)

g − 2
.

Finally, the crossing number is an integer and so the ceiling function can be

applied.

If the girth and the edge density of the graph are sufficiently large, then

the lower bound given by Lemma 1.2 can be applied to find the crossing

number. For example, Figure 1.6 displays two drawings of the Petersen

graph P , the first with five crossings and the second with two crossings. It

can be checked that the girth of the Petersen graph is 5 and so the lower

bound from Lemma 1.2 provides cr(P ) ≥
⌈

5
3

⌉
= 2. The drawing on the right

in Figure 1.6 contains two crossings and so cr(P ) ≤ 2. Therefore we obtain

equality.

Figure 1.6: The Petersen graph drawn first with 5 crossings, and second with
2 crossings, which is a crossing optimal drawing.

In some cases obtaining drawings of graphs which possess a given number

of crossings can be deceptively difficult. Indeed, finding general drawings of

the n-dimensional cube which possess a small number of crossings have been

the subject of ongoing research for more than 30 years. Recent breakthroughs
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were made in [55], however, further improvements in [145] imply that better

upper bounds may still be obtainable.

Lastly, we remark that Lemma 1.9 was implicitly extended for use in

graphs drawn on surfaces of genus one by Guy in [72], and in [86], Kainen

generalised the result to graphs drawn on surfaces of arbitrary genus.

Theorem 1.10 (Kainen, 1972 [86]). Let G be a finite simple graph. Let

n = |V (G)|, m = |E(G)| and g be the girth of G. Then for any surface Σδ

of genus δ,

crΣδ(G) ≥ m− g

g − 2
(n− 2(1− δ)),

where crΣδ(G) is the genus crossing number of G on Σδ.



Chapter 2

A new crossing minimisation

heuristic based on star insertion

In this chapter we present a new heuristic method for minimising cross-

ings in a graph. The method is based upon repeatedly solving the so-called

star insertion problem in the setting where the combinatorial embedding is

fixed, and has several desirable characteristics for practical use. We begin by

reviewing the most successful exact and heuristic methods for crossing min-

imisation with a focus on those algorithms which have been implemented.

Next, we introduce our new proposed method and discuss some aspects of

algorithm design for our implementation. We then perform comparative ex-

periments using our implementation and provide some experimental results.

The results indicate that our method compares well to existing methods, and

also that it is suitable for dense instances.

2.1 Related work

We first review some exact and heuristic methods for crossing minimisation

in general graphs. We focus only on algorithms that have been designed for

the plane crossing number. There has also been significant effort in devel-

20
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oping algorithms for the many variants of the crossing number. However,

reviewing these is beyond the scope of this thesis and instead we just make

the observation that some, but not all, of these methods can also be used

to provide an upper bound for the plane crossing number. For example, if

a heuristic provides a rectilinear drawing of a graph G which possesses c

crossings, then c is also an upper bound for the plane crossing number of G.

Conversely, if a heuristic provides a 3-page book drawing of a graph G which

possesses c crossings, then the drawing does not necessarily provide an upper

bound of c for the plane crossing number of G. For a review of the some of

the important algorithms for the variants of the crossing number, we direct

the reader to the masters thesis of Winterbach [142].

2.1.1 Exact algorithms

To date, there have been three main methods for computing exact crossing

numbers of general graphs. For each of these, we give a brief description and

discuss an implementation which has been reported on.

Garey and Johnson algorithm

In [61], Garey and Johnson describe a brute force approach to computing the

crossing number of an arbitrary graph. Consider a graph G with |V (G)| = n

and |E(G)| = m and a fixed integer k. An interpretation of the Garey and

Johnson algorithm proceeds as follows. First, each edge of G is sub-divided

k = 1 times and the resulting graph is called G′. Thus each edge of G

becomes a ‘chain’ of k edges in G′. Next, choose k sets of pairs of edges from

E(G′). There are combinatorially many ways to choose these pairs. Each

chosen pair will hopefully correspond to a crossing in some drawing of G′.

So, each chosen pair of edges is replaced by a dummy vertex along with four

new edges connecting to their endpoints. The resulting graph is then checked
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for planarity. If every possible combination of k pairs of edges is exhausted,

and no such planar graph has been obtained, then k is incremented and the

above process is repeated. If the above is performed for k = 0, 1, 2, 3, ..., then

the first time that a planar graph is obtained gives the value for cr(G). The

planarity check can be done performed efficiently, indeed in linear time with

respect to the number of vertices in the modified graph.

Notice that there are p =
(
k|E(G)|

2

)
distinct pairs of edges in G′. Thus, for a

given k, the number of times that the planarity check must be performed can

be bounded above by
(
p
k

)
. The number of vertices in the modifiedG′ is n+mk,

and so the runtime of the above process is O(
(
p
k

)
(n+mk)). This is clearly a

fairly naive design and there are some obvious shortcuts that may be taken

advantage of. For example, there are many unnecessary vertices remaining in

the modified G′. It is also possible to impose that the drawing corresponding

to the selected k-tuple, is a good drawing, thus reducing the number of

k-tuples which need to be considered. Several methods for improving the

above algorithm have been discussed and implemented in [142], however, it

is noted that the overall structure and runtime of the algorithm remains very

similar to that which is described above. An implementation of the algorithm,

along with some improvements, were given in [142]. The implementation was

able to find cr(K6), however, cr(K7) was not tractable. We note that the

algorithm given in [142] was not the focus of the manuscript and we suspect

that with some specially designed data structures, K7 and beyond would

become tractable.

Harris and Harris algorithm

In [77], Harris and Harris propose a branch and bound method to construct

an optimal drawing of the graph in an exhaustive manner. Their method

utilises rotational embedding schemes to represent an embedding of a graph

onto a surface. For a graph G, a rotational embedding scheme is a set of
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permutations (π1, π2, ..., πn) such that, for a vertex i, πi consists of the vertices

in the neighbourhood of i. Rotational embedding schemes are analagous with

our definition of combinatorial embeddings, which play an important role in

our heuristic in Section 2.2. A well-known theorem, see [29], relates rotation

schemes to an embedding of a graph onto a surface.

Theorem 2.1. For each 2-cell embedding of G onto some surface, there

exists a unique tuple (π1, π2, ..., πn), where each πv is a permutation which

describes the cyclic ordering, in the embedding, of vertices adjacent to vertex

v. Conversely, for each tuple of permutations (π1, π2, ..., πn), there exists a

2-cell embedding of G onto some surface, such that πv describes the cyclic

ordering, in the embedding, of vertices adjacent to vertex v.

The Harris and Harris algorithm begins with an empty graph, and draws

edges one at a time, whilst preserving planarity until no more edges can be

drawn without destroying the planarity. At this stage the algorithm has con-

structed a locally maximal planar subgraph. From here, each remaining edge

is drawn in, one at a time, producing crossings. Once all edges have been

introduced, the algorithm backtracks and attempts to draw edges with fewer

crossings until it has exhaustively determined a drawing with the fewest pos-

sible crossings. The exhaustive search is achieved with a branch and bound

model. Once an edge has been introduced in the branch and bound stage,

the newly introduced crossings are planarised in order to preserve the planar-

ity of the underlying graph, on which the algorithm is modifying. Thus, at

each step of the algorithm an embedding of the partial (planarised) graph is

maintained, and this allows for the modifications to be performed by primar-

ily utilising a corresponding rotational embedding scheme. A parallelised

implementation of the algorithm by Tadjiev and Harris in [136] was able to

find cr(K8), and from the runtime, it is clear that complete graphs beyond

K8 would require additional specialised methods.

During the Harris and Harris algorithm, every possible good drawing of
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the graph is considered. If complete graphs are the sole aim of the algorithm,

then restrictions on the type of drawings produced during the intermediate

steps can be introduced. Fredrickson et al. [59] investigated these restrictions

and were able to reduce the computation time significantly for the complete

graphs. With their improved method, it is noted in [59], that cr(K8) can be

found after a few hours, however, cr(K9) remained beyond their reach.

Integer linear programming formulation

In recent years, sophisticated integer linear programming (ILP)

approaches for finding cr(G) have been developed in [26], [30] and [33]. These

methods have been reported to be the most successful in solving both dense

and sparse graphs. We provide a brief overview and direct the reader to [26]

for a detailed survey of the current results. The ILP is constructed so that

each variable corresponds to a potential crossing in some drawing of G. The

constraints of the ILP ensure that the feasible solutions define a planarisation

of some drawing of G. Hence, a solution with the minimal number of positive

variables defines a crossing-minimal drawing of the graph. The constraints

are designed to prevent any subdivision of a K3,3 or K5 occurring in the

planarisation, and hence by Kuratowski’s Theorem (Theorem 1.1), define a

planar graph. One difficulty arising from such a formulation is that these

constraints are combinatorial in number. Another difficulty is that there

is no simple way to handle the situation in which an edge is required to

be crossed more than once. The latter difficulty was originally resolved by

subdividing the edges of G many times. Each edge of G was subdivided into

k edges, where k is an upper bound on the maximum number of times an

edge may be crossed in an optimal solution. A very simplistic bound for k is

|E(G)|−d(v)−d(u)−1, because in any optimal solution, an edge never crosses

itself, or any edges incident to one of its end-vertices. These subdivisions

ensure that edges only need to be crossed at most once in the solution.
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However, doing this also requires a large number of variables (Ω(|E(G)|4))

and so an alternative method is recommended in [33] and reported to be

the current best performing formulation. Additional variables are used, from

which the order of the crossings along any edge can be deduced. This is done

specifically to resolve the problem of an edge being crossed more than once.

To handle the combinatorial number of constraints, a branch-and-cut-and-

prize method is used on the linear relaxation of the ILP. The extra variables

can then take advantage of the branch-and-cut-and-prize framework, by only

being introduced to the model when they are required. Experiments and

comparisons can be found in [33], and in [111] Mutzel explains that their

implementation is able to solve K12, however, K13 remains too difficult for

their current methods.

2.1.2 Heuristic methods

Crossing minimisation has been considered in a number of contexts. Exact

methods are often not able to solve practical problems and instead heuristic

methods are utilised. For example, in the field of automated graph drawing,

heuristics have been developed to construct drawings of graphs or networks

with desirable characteristics, one of which is a low number of crossings. Ap-

proaches including force-directed drawing algorithms [50, 73, 87] and genetic

algorithms [24, 52, 16] have been developed for this purpose. When crossing

minimisation is the sole aim, arguably the most successful heuristics to date

have been based on edge insertion procedures.

Edge insertion and the Planarisation method

In general, insertion procedures refer to the act of constructing a drawing of

a graph by starting with some partial drawing and then adding the missing

elements to it. Sophisticated algorithms based on insertion procedures have
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been developed and we discuss some of these below.

Throughout this chapter, we will often consider the situation where we

have a combinatorial embedding Π of a graph, and then need to add an

edge e to the graph and obtain an updated combinatorial embedding. In

such cases, we will say that we are inserting an edge e into Π, as follows.

Suppose that e = (v1, v2), where v1, v2 ∈ V (G), and let Γ be an embedding

which realises the cyclic orderings in Π. A simple arc connecting v1 and v2

may be added to Γ, such that the interior of the arc intersects only with

the interiors of some (possibly empty) ordered set of edges {e1, e2, . . . , ek}

already present in Γ. Clearly, for any embedding which realises the cyclic

orderings in Π, such an arc can be found which intersects exactly the same

set of edges {e1, e2, . . . , ek}. We also refer to these intersections as ‘crossings’.

The Edge Insertion Problem (EIP), which is studied in [67], has two vari-

ations depending on the definition of optimality used; the fixed embedding

variation and the variable embedding variation:

Definition 2.2. (EIP – fixed embedding) Given a combinatorial embedding

Π of a graphG and a pair of vertices v1, v2 ∈ V (G), insert the edge e = (v1, v2)

into Π in such a way that the number of crossings is minimised.

Definition 2.3. (EIP – variable embedding) Given a planar graph G and a

pair of vertices v1, v2 ∈ V (G), find a combinatorial embedding Π of G such

that inserting the edge e = (v1, v2) into Π so as to minimise the crossings

results in the minimal number of crossings among all embeddings of G.

The fixed embedding problem can be solved in O(n) time by finding a

shortest path in a modified dual graph, and this is explained in detail in

[65]. In [67] it is shown that the variable embedding problem can also be

solved in O(n) time by taking advantage of the properties of maximal tri-

connected components and SPQR trees. Note that solving the edge insertion

problem is subtly different from computing the crossing number of G + e
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(the graph G with the addition of edge e). However, it is shown in [80] that

the number of crossings introduced in a solution to the variable embedding

version approximates cr(G + e) to within some factor and the best possible

factor is proved in [27] to be b∆(G)/2c.

The planarisation method, a highly effective crossing minimisation heur-

istic, is based upon repeatedly solving the edge insertion problem. In par-

ticular, the planarisation method involves attempting to solve two separate

problems:

1. Compute a planar subgraph Gp of G - ideally a maximum planar sub-

graph.

2. Iteratively re-insert the remaining edges of G into a combinatorial em-

bedding of Gp while striving to keep number of crossings as small as

possible.

Computing a maximum planar subgraph is NP-hard [103], so instead a

locally maximal planar subgraph is usually used for step 1, which can be

computed in O(n+m) time [47].

To achieve step 2, given a planar subgraph of G, EIP (in either the fixed

or variable embedding) is solved for one of the missing edges. Then any

introduced crossings are replaced by degree 4 dummy vertices to obtain a

new planar graph, and EIP is solved again for another missing edge, and so

on until a planarised drawing of the full graph is obtained.

The planarisation method was first described in the context of EIP-fixed

by Batini et al. [18]. Later, in Gutwenger [65], the method was rigorously

developed for EIP-variable, along with an implementation and experimental

results which were also reported in Gutwenger and Mutzel [66]. In most

cases, the method based on EIP-variable provided superior solutions for the

tested graphs. However, it was observed that the EIP-variable method often
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suffered in runtime in comparison to EIP-fixed implementations, due to the

many SPQR trees which need computed (a new SPQR tree for every edge

inserted). Later, in Chimani and Gutwenger [31], implementations were also

reported on which focused on improving the post processing schemes that

can be utilised when running these methods, and again improved results

were obtained from those previously reported.

A related approach to the planarisation method is the multiple edge in-

sertion problem (MEI), which involves inserting several edges simultaneously

into a planar graph. Let F be the set of edges being inserted into some planar

graph G. For general F , solving MEI to optimality is NP-Hard [149], and

approximation algorithms have been developed in [37] and [35]. An approx-

imate solution to MEI is known to approximate the crossing number of the

graph G+F [36] and so for graphs of bounded degree and bounded |F |, the

algorithm in [37] constitutes a multiplicative factor approximation algorithm

for cr(G+F ) and the algorithm in [35] constitutes an additive factor approx-

imation algorithm for cr(G + F ). Among implementations based on MEI,

only the algorithm of Chimani [35] has been experimentally reported on. In

particular, it was considered in Chimani and Gutwenger [31], which is the

most recent analysis on the practical usage of various crossing minimisation

heuristics. Chimani and Gutwenger [31] claim that the MEI implementation

from [35] achieves roughly comparable solution quality to the best iterative

EIP-variable method, with the benefit of significantly reduced runtimes. If

runtimes are disregarded, the iterative EIP-variable method with the addi-

tion of a significant post processing step usually produced the best solutions,

however overall (in terms of both solution quality and runtime) Chimani and

Gutwenger [31] advocate that the MEI implementation from [35] was the

best heuristic for practical use.
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Methods based on star-insertion

A natural extension to the above is the star insertion problem (SIP) where

instead of a single edge, the object to be added to G is a vertex v along with

a set of incident edges of v (collectively, a star). As before, there are fixed

embedding and variable embedding versions of SIP:

Definition 2.4. (SIP – fixed embedding) Given a combinatorial embedding

Π of a graph G and a vertex v 6∈ V (G) (along with a set of incident edges

whose other endpoints are all in V (G)), insert v along with its incident edges

into Π in such a way that the number of crossings is minimised.

Definition 2.5. (SIP – variable embedding) Given a planar graph G and a

vertex v 6∈ V (G) (along with a set of incident edges whose other endpoints

are all in V (G)), find a combinatorial embedding Π of G such that inserting

v along with its incident edges into Π so as to minimise the crossings results

in the minimal number of crossings among all embeddings of G.

The fixed embedding version can be solved in O(d(v)n) time using a

method similar to the single edge insertion version [34]. We will make use of

this approach during our heuristic, and we briefly outline our implementation

of this method in Section 2.2. The complexity of the variable embedding

version was in question for a short time but was resolved by Chimani et

al. [34] who showed it to be solvable in polynomial time by method which

is briefly outlined below. Again, the number of crossings introduced in a

solution to the variable embedding version is shown in Chimani, Hliněný

and Mutzel [36] to approximate the crossing number of the graph G + v, to

within a factor of d(v)b∆(G)/2c.

The approach to solving SIP-variable, described by Chimani et al. [34],

can be summarised as follows for a given graph G and vertex v to be inserted.

1. Compute an SPQR tree T of G, and consider a face f in one of the

skeleton graphs of T (f belongs to a set of ‘interesting’ faces).
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2. Solve a dynamic program whose solution advises the best combinat-

orial embedding which admits the minimal number of crossings when

inserting v into f .

3. Repeat the above for all ‘interesting’ faces and select the solution which

results in the fewest crossings.

Although the runtime of the algorithm provided in [34] is polynomial, it

is considerably higher than solving EIP-variable, and experimental results

have yet to be reported on. Nonetheless, a heuristic analogous to the planar-

isation method, but using star insertion rather than edge insertion, could

be proposed. Indeed, in Chimani and Gutwenger [31], it is asked whether

a heuristic based on star insertion could compare to the proven practical

performance of the heuristic methods based on edge insertion. This present

work seeks to answer this question, at least for SIP-fixed, but the approach

we advocate is different in character to the planarisation method.

Heuristics based on genetic algorithms

There has been some effort to develop algorithms using the genetic algorithm

framework which include number of edge crossings as one of the characterist-

ics being optimised. These genetic algorithms use a population of candidate

graph drawings and optimise by manipulating the candidates in an attempt

to improve a set of characteristics. Once the candidates have been manipu-

lated, those with the poorest characteristics are removed from the population

and the process is repeated. Formulations which consider edge crossings as

a characteristic to optimise have been developed in [16], [24] and [52]. A

main strength of the genetic algorithm framework lies in its ability to sim-

ultaneously consider many characteristics for optimising. Although there

are several different implementations which consider edge crossings, the res-

ults indicate that when crossing minimisation is the sole aim, the genetic
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algorithms do not perform as well as other specialised crossing minimisation

heuristics, and so we do not consider them further here.

2.2 Proposed heuristic method

While the philosophy of the planarisation method is to start with a planar

subgraph and increase the number of crossings at each iteration as the full

graph is rebuilt, our approach works in the opposite direction; we start with a

combinatorial embedding corresponding to a, presumably suboptimal, draw-

ing of the full graph and at each iteration we attempt to find a combinat-

orial embedding corresponding to a drawing with fewer crossings. Unlike

the planarisation method, the heuristic we propose does not require a planar

subgraph to be computed. Instead it relies upon iteratively solving the star

insertion problem in a combinatorial embedding which corresponds to the

current (non-planar) drawing of G. With the intention of keeping the new

heuristic highly practical, each iteration is performed on a fixed combinatorial

embedding; this is discussed further in Section 2.3.

The approach that we advocate is to iteratively obtain improved drawings

of a graph in the following way. For a given drawing D of a graph G, we

attempt to find a vertex v in G satisfying the following: if we remove v, and

then reintroduce v by solving the star insertion problem in a corresponding

(fixed) combinatorial embedding, a drawing D2 can be obtained such that

crD2(G) < crD(G). If there are no vertices in the graph for which this is

possible, we say that the drawing D is locally crossing-optimal. In what

follows, we will prove the following.

Theorem 2.6. Let G be a graph containing n vertices and m edges, and D

be a drawing of G which contains k crossings. There exists an algorithm that

finds a locally crossing-optimal drawing D∗ of G in O((k + n)km) time.

It is our contention that the number of crossings in such a D∗ found by
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our algorithm is, typically, close to the crossing number of G. We provide

experimental results justifying this assertion in Section 2.5.

Let D be some drawing of G and let D′ be its planarisation. Then D′

can be mapped to an embedding on the sphere, and this realises a particu-

lar combinatorial embedding. In this sense, we say that the combinatorial

embedding ‘corresponds’ to the drawing D. Note that given such a combin-

atorial embedding, a drawing which is equivalent to D can be retrieved by

using any planar graph drawing techniques, such as [58] or [129].

Let D be a drawing of G and let Π be a combinatorial embedding cor-

responding to D. Consider deleting from G a vertex v and its set of incident

edges; it is clear that a subdrawing D − v can be easily obtained from D.

Then a combinatorial embedding corresponding to the subdrawing D−v can

be computed by iteratively merging faces of Π which share an edge associated

with one of the deleted edges. We shall call this the reduced combinatorial

embedding corresponding to subdrawing D − v and denote it as Π− v.

We define a star insertion into a combinatorial embedding Π by utilising

definitions similar to those in [67]. Let Π be a combinatorial embedding of

G, let f be a face of Π and let v be a vertex of G. Then e1, e2, . . . , ej is an

insertion path for v and f if either j = 0 and v is on the boundary of f , or

the following conditions are satisfied:

1. e1, e2, . . . , ej ∈ E(G).

2. There is a face of Π with both ej and v on its boundary.

3. e1 is on the boundary of f .

4. e∗1, e
∗
2, . . . , e

∗
j is a path in the dual graph Π∗.

Given an insertion path, an edge can be inserted into Π starting from an

arbitrary point in face f (consider this a ‘dummy vertex’ for the moment)



2.2. Proposed heuristic method 33

and ending at vertex v in such a way that it crosses precisely the edges

e1, e2, . . . , ej.

Then, suppose we have a collection of insertion paths p1, p2, . . . , p` whose

associated end vertices are v1, v2, . . . , v`. If they can all be inserted into Π

in the above fashion, such that they are pairwise non-crossing, then we say

that they collectively constitute a star insertion path. By inserting a dummy

vertex z into face f and attaching the beginnings of each insertion path to z,

the star comprising of z and the edges {(z, vi) | i = 1, 2, . . . , `} can be inserted

into Π in such a way that they cross precisely the edges in p1, p2, . . . , p`. For

a fixed face f , and a fixed set of end vertices S = {v1, v2, . . . , v`}, we say

that a star insertion path which crosses the fewest edges with respect to all

possible star insertion paths into f with the end vertices S, is a crossing

minimal star insertion path for f and S. Figure 2.1 displays an example of

insertion paths forming a star insertion path. However, the example is not

a crossing minimal star insertion path, because clearly edge (z, v3) can reach

face f with fewer crossings than in Figure 2.1.

At each iteration we begin with a combinatorial embedding Π correspond-

ing to some drawing of G. The processes within an iteration are summarised

in the following procedure, for a given vertex v ∈ V (G):

Procedure 1:

P1: Compute the reduced combinatorial embedding Π− v.

P2: Intelligently (see Procedure 1.1) choose a face f of Π−v. Compute the

number of crossings resulting from a crossing minimal star insertion

path into face f for the star comprising of v and its incident edges.

P3: If the total number of crossings has reduced, then insert the star com-

prised of v and its incident edges into f according to a crossing minimal

star insertion path.
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f

v1

v2

v3

v1

v2
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z

Figure 2.1: On the left, a collection of insertion paths forming a star insertion
path for face f and vertices v1, v2, v3. On the right, the star
comprising of vertex z and the edges {(z, v1), (z, v2), (z, v3)} has
been inserted into face f .

P4: Replace each introduced crossing with a dummy vertex of degree 4,

and obtain a new combinatorial embedding. Call this new embedding

Π and begin the next iteration.

Note that Step P2 is equivalent to solving the fixed embedding star insertion

problem for the vertex v (and its incident edges) in Π − v. To achieve this,

we use the algorithm described in Chimani et al. [34] on page 376. Since

this is an important step in our heuristic, we include its description here. We

begin by utilising a simple merging procedure in the dual graph of Π − v.

For each vertex w ∈ NG(v), we perform the following steps:

Procedure 1.1:

1. Let C be the cycle, in the dual graph, formed by the dual vertices of

those faces that are incident to w. Contract C into a single vertex,

called dw, and retain the same indices for the dual vertices which were
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not contracted (see Figure 2.2 for an example.). Remove any resulting

multi-edges.

2. Find shortest paths in the dual graph with dw as the source.

3. Store the distance from dw to each other dual vertex (those which were

not contracted), and for those dual vertices that were contracted in

step 1, set their distance to zero.

4. Discard changes to the dual graph so that the above steps can be re-

peated with a different neighbour of v.

After each w in above procedure, we have a shortest distance from each

dual vertex to a face which is incident to w. Then, after all w ∈ NG(v) have

been considered, the dual vertex possessing the minimum sum of distances

corresponds to the optimal face, say face f , for the new placement of v.

Therefore, we have found a crossing minimal star insertion path for f and

N(v). The corresponding insertion paths can be determined from the shortest

path trees.

2.3 Design methodology

In this section we outline some of the design choices and data structures of the

highly practical implementation which is used for the experiments described

in Section 2.5. We call this implementation Quickcross.

2.3.1 Initial embedding schemes

Since we focus on a fixed embedding at each iteration, the initial combinat-

orial embedding of G obviously plays a significant role in the performance

of the heuristic. Any drawing method can be used to compute an initial

embedding, but here we discuss just three possibilities. The first method
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w dw

Figure 2.2: The contraction operation in the dual graph for the vertex w ∈
NG(v). Dual edges are dashed and dual vertices are squares. The
thick dashed edges form the cycle C around w which is contracted
and then multi-edges are discarded. The resulting ‘merged’ dual
vertex is dw.

produces an embedding quickly, however the initial number of crossings can

be as large as
(
n
4

)
. The second method is slower to compute but the initial

number of crossings is usually much smaller for the case of sparse graphs.

The third method is an implementation of a force-directed graph drawing

algorithm. We will refer to these three initial embedding schemes as circle,

planar and spring, respectively.

Circle embedding scheme

The first initial embedding scheme, which we call “circle”, produces an em-

bedding using the following procedure. We first assign each vertex a co-

ordinate on the unit circle. Specifically, we place each vertex i = 1, ..., n at

coordinate (cos(2iπ/n), sin(2iπ/n)). Then, the edges are drawn as straight

lines, and the crossings can be easily computed. An upper bound on the

number of crossings for a drawing obtained by this method can be seen by

following a simple counting argument. In the case of complete graphs, the
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circle embedding in fact produces a drawing of Kn with number of crossings

equal to the maximal crossing number [122].

Lemma 2.7. The maximum number of crossings in a drawing obtained by

the circle embedding scheme is
(
n
4

)
= 1

24
(n4 − 6n3 + 11n2 − 6n).

Proof. The maximum number of crossings is attained by the complete graph

Kn. In Kn, label the vertices from 1 to n in a clockwise fashion, then any

set of 4 vertices {a, b, c, d}, where a < b < c < d, corresponds to exactly

one crossing involving the edges (a, c) and (b, d). Thus the total number of

crossings is
(
n
4

)
.

Planarisation based embedding scheme

The second initial embedding scheme, which we call “planar”, utilises a se-

quence of solutions to the star insertion problem. This idea has been con-

sidered as a heuristic for crossing minimisation in its own right (e.g. see

Chimani et al. [34]), and involves constructing an embedding in a way which

is similar to the planarisation method. We begin by finding any chordless

cycle of G (if none exist then G is acyclic and cr(G) = 0) along with an

embedding Π of this cycle, then iteratively perform the following:

1. Find a vertex v ∈ V (G) which is not yet in Π, and such that there

exists at least one edge in E(G) which connects v to a vertex already

present in Π. Denote by F the set of all edges between v and any

vertices already present in Π.

2. Find a face f of Π such that a crossing minimal star insertion path,

into f , of the star comprising of v and the edges in F , introduces the

least number of crossings among all faces of Π.

3. Insert, into f , the star comprising of v and the edges in F according to

a crossing minimal star insertion path.
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4. Replace each introduced crossing with a dummy vertex of degree 4 to

obtain a planar graph, and compute a new combinatorial embedding.

Call this new embedding Π and begin the next iteration.

At each step of the procedure we are building upon the embedding, one

vertex at a time, until we have an embedding corresponding to some drawing

of the full graph G. As will be demonstrated in Section 2.5, this method,

although still computationally efficient, is in practice slower than the circle

embedding, particularly for dense instances. However, in Section 2.5 it will

also be seen that this method tends to result in an initial embedding with

many fewer crossings, and hence substantial processing time is saved in the

subsequent iterations of the main heuristic. For this reason, this is the default

embedding choice in our implementation of the heuristic.

Spring model embedding scheme

The third initial embedding scheme, which we call “spring”, comes from the

area of force-directed graph drawing. In [87] Kamada and Kawai describe a

method for drawing a graph which minimises the energy of a spring model

representation of the graph. The resulting number of edge crossings is not

taken into consideration in the spring model, however, especially for the case

of sparse graphs, it will be demonstrated in Section 2.5 that the resulting

drawings often provide an initial embedding with relatively few crossings.

Of course, there are other force-directed graph drawing algorithms which

could be used (e.g. see [50, 73]) and we make no claim here that [87] is the

best for use in our heuristic.

It should be noted that, technically, any combinatorial embedding corres-

ponding to a valid drawing of G can serve as an initial embedding. Indeed,

our heuristic could be applied as a post-processing step of the planarisation

method, or any other similar heuristic which results in a valid drawing. To ac-



2.3. Design methodology 39

commodate this, we have included in our implementation an option for user

to specify their own initial combinatorial embedding, or to provide vertex

coordinates for a straight-line drawing obtained from any drawing routine.

2.3.2 Minimisation schemes

The heuristic descends towards its solution by selecting vertices for reinser-

tion and identifying if they can be reinserted in order to reduce the current

number of crossings. We call the method in which the heuristic descends

towards its solution a “minimisation scheme” and in the below we discuss

three implemented minimisation schemes.

The first minimisation scheme, which we call “first” works as follows.

We consider vertices one at a time, in the order of their labels. In the first

iteration, the first vertex considered is the one with the smallest label, and

in subsequent iterations the first vertex considered is the one that follows

the vertex that was re-inserted in the previous iteration. Plainly, a vertex

which was just reinserted in the prior iteration does not need to be considered

again in the current iteration because it was already inserted according to

a crossing minimal star insertion path and the embedding has not changed

since. As soon as a vertex is found which can be re-inserted in such a way

that the number of crossings is reduced, we fix this improved position and

begin the next iteration.

The second minimisation scheme, which we call “best”, works as follows.

We consider each of the vertices, and determine which should be re-inserted

so as to gain the greatest reductions in crossings. To achieve this, similarly

to “first” we consider vertices one at a time, in the order of their labels.

Then, in subsequent iterations, the first vertex considered is the one that

follows the vertex that was re-inserted in the previous iteration. In the

case of a tie between two vertices providing the same reduction in crossings,
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we simply choose the vertex which was considered earliest (although more

involved strategies could be devised). Then, we fix the improved position of

that vertex and begin the next iteration.

The third minimisation scheme, which we call “biggest face”, comes from

an observation made during experimentation; re-inserting a vertex v into

the face of Π − v with the most edges (the ‘biggest face’) often provides an

improvement. Intuitively this makes sense as the biggest face is ‘close’ to

a relatively large number of vertices. This scheme allows for a significant

speed increase during the early iterations because we may assume that the

vertex can be placed in the biggest face and then find the shortest paths

only once, using the dual vertex corresponding to the biggest face as the

source, as opposed to the other schemes which require shortest paths to be

computed up to ∆(G) times. As will be shown in Section 2.4, computing

the shortest paths is the most time-consuming process in our heuristic and

hence for dense graphs, where ∆(G) = Θ(n), we gain a significant speed

increase. If the biggest face does not provide an improvement, other faces

can then be checked according to one of the other minimisation schemes.

In our implementation, if it happens that the biggest face does not provide

an improvement for a certain number (specified by the user) of consecutive

iterations, we stop checking the biggest face first and instead continue with

the “first” minimisation scheme from that point forward.

2.3.3 Efficiently handling the dual graphs

In each iteration, and for each vertex considered, the steps of the heuristic

require the dual graph of the current embedding minus one vertex. It is

possible that we may need to consider many or even all of the vertices, par-

ticularly if we use the “best” minimisation scheme. Since the dual graph is

likely to be quite similar for each removed vertex, it is undesirable to con-

struct it from scratch each time. Instead we use a simple updating procedure
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to avoid this. We compute the dual graph once per iteration, with all vertices

present. Then, each time a vertex (along with its incident edges) is deleted

from G, the result in the embedding is that some pairs of faces (on either

side of the planarised edges being deleted) are merged into single faces. In

the computed dual graph, this corresponds to contracting the dual edge con-

necting the two faces on either side of each of these planarised edges (see

Figure 2.3). Recall that each edge of the embedding corresponds precisely

to an edge of the dual graph. We keep these edge indices consistent in our

implementation to help simplify the above process.

(a)

v

(b)

v

(c) (d)

Figure 2.3: Dual edges are dashed and dual vertices are squares. In (a),
vertex v is to be deleted. The current embedding and its cor-
responding dual graph are shown in (b). In (c), v has now been
deleted and the thick dashed edges are the dual edges which are
to be contracted. Then (d) shows the result after multi-edges
have been discarded.
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2.3.4 Pre- and post-processing schemes

Pre-processing schemes for crossing number heuristics are well understood

and are reported on in [66] and [31]. We briefly outline the usual pre-

processing schemes. The crossing number of a disconnected graph is the

sum of crossing numbers of each of its connected components. Similarly, the

crossing number of a 1-connected graph is the sum of crossing numbers of its

maximal bi-connected components. Therefore, we can decompose any input

graph into its maximal biconnected components (also known as blocks) and

handle them individually. Maximal biconnected components of a graph can

be identified in O(n + m) time by using a slight modification to a depth

first search algorithm (see [63] page 52). We make use of this pre-processing

step in our implementation of Quickcross. One important benefit is that this

allows us to assume that any graph submitted to our heuristic is biconnec-

ted, and hence we can assume that any graph with one vertex removed is

connected.

We briefly summarise some of the effective post-processing schemes util-

ised in [66] and [31]. In [66] it was identified that an effective post-processing

strategy for the planarisation method was to delete some set of edges from

the final drawing and attempt to reinsert them in a different order to produce

fewer crossings. This is effective for the planarisation method because when

inserting an edge, the optimal insertion path does not include any informa-

tion about those edges which are not yet inserted. Thus an optimal insertion

for one edge may adversely effect the optimal insertions of subsequent edges.

The most effective way to perform the above was recommended in [31] to be:

after inserting an edge, try to remove and reinsert every other edge already

in the graph to produce fewer crossings. For each of these edge insertions,

new shortest paths need to be considered, and so this method can become

very time consuming. However, in [66] and [31], these strategies achieved

significant improvements in the final number of crossings compared to no
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post-processing for the graph sets used in experimentation. Schemes analog-

ous to these can also be used to improve the solutions from our heuristic,

and we investigate this further in Section 2.6.

2.3.5 Data structures

To store a combinatorial embedding Π, a list structure containing the fol-

lowing information is utilised: For each edge e = (u, v), this list stores u and

v along with four indices; the edge index of the edge immediately clockwise

from e around vertex u, the edge index of the edge immediately anti-clockwise

from e around vertex u, and then likewise for vertex v.

Additionally, the following list structures allow for the efficient modific-

ations of the embedding at each iteration. The crossing order of an edge

e = (u, v) where u < v is a list of the edges which currently cross e in the

order starting from the closest crossing to u. Along with the crossing order

list, there is the crossing orientation list. The crossing orientation is essen-

tially the cyclic order of edges around a dummy vertex in the embedding.

Suppose that within the crossing order entries of edge e1 = (u1, v1), we have

the entry e2 = (u2, v2) where u1 < v1 and u2 < v2. Then the corresponding

crossing orientation entry is stored as 1 to indicate that the order of the edges

when traversing clockwise around the dummy vertex have the end-vertices

u1, u2, v1, v2, or -1 to indicate that the order is u1, v2, v1, u2. Note that these

are the only two possible orders (see Figure 2.4 for an example).
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v2

u2

v1u1

u2

v2

v1u1

e2

e1

e2

e1

cr. orientation w.r.t e1 is 1 cr. orientation w.r.t e1 is -1

Figure 2.4: If e1 = (u1, v1) crosses e2 = (u2, v2) where u1 < v1 and u2 < v2,
the two possibilities for the crossing orientation are displayed.

We now provide a simple example of the data structures described above.

Consider the graph drawing in Figure 2.5. The embedding corresponding

to the drawing is stored as follows. First, the six indices for each edge, as

described above, are:

e1 : 1, 4, e1, e1, e3, e5

e2 : 2, 5, e3, e3, e4, e5

e3 : 2, 4, e2, e2, e5, e1

e4 : 3, 5, e4, e4, e5, e2

e5 : 4, 5, e1, e3, e2, e4

Then, the crossing order list is:

e1 : e2, e4

e2 : e1

e3 : e4

e4 : e3, e1

Lastly, the crossing orientation list is:

e1 : 1, 1
e2 : −1
e3 : 1
e4 : −1,−1

1

2

34

5
e1

e4

e2

e3e5

Figure 2.5: A drawing of a graph with vertex and edge indices as labelled.
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2.3.6 Difficulties arising from fixed embeddings

During the intermediate steps of Quickcross, we have observed two cases

which required specialised techniques to handle. We have determined that

these cases were a result of the fixed combinatorial embedding of which Quick-

cross is based upon. We will now show how to resolve these cases and in

doing so, also determine that the final embedding produced by Quickcross

corresponds to a good drawing (according to Definition 1.4).

The first case happens when a newly inserted edge crosses another edge

more than once. Of course, by Lemma 1.5, it is known that in an optimal

drawing this is never the case. However, during an intermediate step of

Quickcross, it can arise. Suppose that vertex v has just been reinserted by

Quickcross, and consider Figure 2.6. The thick dashed lines represent ‘busy’

sections of the drawing in which no better insertion path between v and

w exists. Therefore the best insertion path for e1 is to cross e2 twice. If

this happens, e2 will appear twice on the crossing order list for e1 and there

is not enough information to determine which entry corresponds to which

crossing. To avoid this confusion, if edges e1 and e2 cross each other more

than once, then e1 is subdivided into a chain of edges such that none of

the resulting edges cross e2 more than once. A check is then performed in

future iterations to see if the set of edges resulting from an earlier subdivision

still cross any edge more than once. If not, those subdivisions are removed

and the edges are merged back into a single edge. Note that subdividing

an edge can not change the crossing number of a graph and so this is a

safe procedure. Even so, Lemma 2.8 shows that by the time the heuristic

concludes, no two edges cross each other more than once and hence, by this

time, all previous subdivisions will have been reverted. Note that, in practice,

these subdivisions are a rare occurrence.

Lemma 2.8. In the drawing D corresponding to the final embedding from



2.3. Design methodology 46

e2

e1 v

w

Figure 2.6: A situation in which crossing edge e2 twice is the optimal inser-
tion path for e1.

the conclusion of Quickcross, no two edges cross each other more than once.

Proof. Let D have k crossings, and suppose that e1 crosses e2 more than

once. We will argue that Quickcross is able to find a superior embedding,

contradicting the fact that Quickcross has concluded. Let c1 and c2 be two

crossings of e1 and e2 such that traversing along e1 we arrive first at c1

and then later at c2 without further crossing e2 inbetween. During a single

iteration of Quickcross, at least one of e1 and e2 may be rerouted in search of

a path with fewer crossings. Consider rerouting e1 to be ‘near’ e2 in the way

shown in Figure 2.7 (a). In doing so we remove some number of crossings, say

d1, from e1 and and at least one of c1 and c2. Figure 2.8 shows that we cannot

assume that both c1 and c2 can be removed. However, we may introduce new

crossings in this process. In particular, e1 now crosses those same edges that

e2 crosses between c1 and c2, say d2 in number. Then because Quickcross has

concluded, we must have k − d1 − 1 + d2 ≥ k, and hence,

d2 − 1 ≥ d1. (2.1)

Similarly we may reroute e2 to be ‘near’ e1 as in Figure 2.7 (b). In doing so

we remove d2 crossings and at least one of c1 or c2, and add in d1 crossings.

Then because Quickcross has concluded, we have k − d2 − 1 + d1 ≥ k, and

hence,

d1 − 1 ≥ d2. (2.2)
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Since 2.1 and 2.2 cannot both be true, one must provide an improvement,

and since neither of them require us to move any vertices, they can both be

performed by Quickcross, contradicting the assumption that Quickcross has

concluded.

e1
e2 e2

e1
(a) (b)

Figure 2.7: Modifications which remove one of the crossings c1 or c2 by shift-
ing e1 to be close to e2 and vice-versa.

e1

e2 c1

c2

Figure 2.8: Redirecting edges e1 or e2 as in Figure 2.7, can only remove 1 of
c1 or c2.

Next, it may happen that the current embedding possesses a multi-edge

between a dummy vertex and one of the original vertices of G. This multi-

edge causes undesirable behaviour in several of the procedures of Quickcross.

Let edge e1 = (v, w), then this case can arise when e1 crosses another edge,

say e2, which is also incident to w. As with the first case, this can happen

during the intermediate steps of Quickcross and a situation in which this

arises is shown in Figure 2.9 (a) (vertex v has just been reinserted). In

the subsequent iterations, if such a crossing becomes the closest crossing to

vertex w, for both edges e1 and e2, then the embedding contains a multi-

edge between the dummy vertex for this crossing and w. Figure 2.9 (b)

shows that this may occur when a vertex, which was previously ‘blocking’

a good v to w path is subsequently moved (vertex y in the figure). We
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e1

e2

(a)

e1

e2

(b)

v w

y

v
w

Figure 2.9: In (a), a situation in which crossing edge with a common end-
vertex is the optimal insertion path. In (b), if vertex y is sub-
sequently reinserted (somewhere else) then in the embedding, a
multi-edge is created.

e2

e1

Figure 2.10: Modification which removes a crossing by interchanging a seg-
ment of e1 and e2.

employ a simple operation, shown in Figure 2.10, which modifies the current

embedding, essentially in the same way as in Lemma 1.5, and removes this

crossing. Another simple argument shows the following:

Lemma 2.9. In the drawing D corresponding to the final embedding from

the conclusion of Quickcross, no two edges with a common end-vertex cross.

Proof. The proof is very similar to Lemma 2.8. Let D have k crossings,

and e1 crosses e2 and vertex v is common to both e1 and e2. We will argue

that Quickcross is able to find a superior embedding, contradicting the fact

that Quickcross has concluded. Let c be the crossing between edges e1 and

e2 and consider interchanging the segment of e1 between c and v with the

same segment of e2 as in Figure 2.10. We may do this because we know that

e1 and e2 are both incident to v. Now we have removed crossing c and e1

crosses those edges that e2 crossed in the interchanged segment, and vice-

versa. Therefore the total number of crossings has reduced, by one, which is

the required contradiction.
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These two cases usually arise when nearby edges have not been moved by

Quickcross for some time, and hence are not drawn optimally in the current

drawing. The heuristic concludes when it has tried the reinsertion process

for every vertex and has been unable to find a drawing with fewer crossings.

Lemmas 2.8 and 2.9 lead to the following corollary:

Corollary 2.10. The final drawing D obtained from Quickcross is a good

drawing.

Proof. Lemmas 2.8 and 2.9 show that conditions 1 and 2 of a good drawing

(Definition 1.4) are satisfied at the conclusion of Quickcross, and condition

3 holds trivially.

2.3.7 Updating the crossing lists

In this subsection we describe how the crossing order and crossing orientation

lists are updated in the implementation of Quickcross. Managing these lists

effectively is an important ingredient in the efficiency of the overall heuristic.

Crossing order list

At the beginning of an iteration of Quickcross, the crossing order list and

crossing orientation list correspond to the dummy vertices of the current

embedding Π. Then, after a vertex v is chosen to be re-inserted, these lists

must be updated to reflect its new placement. Let f be the face of the

reduced embedding Π − v into which v will be inserted. Note that f also

corresponds to a vertex in the dual graph of Π − v, which we refer to as

‘vertex f ’. Similarly, given a vertex y in the dual graph of Π − v, we refer

to the corresponding face as the ‘face y’. To insert v into f , we must direct

a number of incident edges of v into their new placement, possibly crossing

other edges of Π − v in doing so. Because any particular edge of Π − v

may be crossed by many of these incident edges, the order in which the new
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edges should be listed in the crossing order list of a given existing edge must

precisely correspond to the intended new embedding. This is not a trivial

procedure and we now describe how to compute this ordering, and illustrate

the process with an example.

While finding shortest paths in the dual graph of Π − v, we calculate a

directed shortest path tree with f as the source (step 2 in Procedure 1.1).

Denote this tree as T . Note that T may not be a spanning tree of the dual

graph because the algorithm terminates once we have found shortest paths

to faces incident to each of the neighbours of v. We consider two cases to

elucidate the difficulty, and discuss a method to resolve it.

For u ∈ NG(v), let h(u) be the vertex in T corresponding to the face

which has u on its boundary (the ‘last’ face on the new insertion path for

u and f). Suppose that in T , for all u ∈ N(u), the f to h(u) paths are

pairwise edge disjoint. In this case, there are no two edges, both incident

to v, which are required to cross the same edge of Π − v. An example of

this is shown in Figure 2.11. Updating the crossing order list for this case is

simple. Suppose that e is an edge which is incident to v, then it is simply

a matter of identifying the edges of G which e will be crossing in its new

placement, searching the current crossings on that edge, and inserting e into

the appropriate place.
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v

(a)

f

(b)

Figure 2.11: In (a), vertex v has been reinserted into face f and its incident
edges reinserted. No edge of Π− v is crossed by more than one
of the edges incident to v. In (b), the corresponding tree T is
shown.

The second case becomes more complicated. Suppose that multiple edges,

each incident to v, cross the same edge of Π− v in their new placement. An

example is given in Figure 2.12 (a). The difficulty lies in determining the

order in which these edges will cross the existing edge (such as e1 or e2 in

Figure 2.12 (a)), and hence the order in which they should be inserted into

these crossing order lists. To identify the correct order, we use information

from Π−v along with a post-order tree traversal of T . Note that the embed-

ding Π−v also provides an embedding of T , and this embedding is needed to

determine the correct order of vertex visits during the tree traversal. During

a post-order tree traversal, once a vertex has been visited for the last time,

we say that the traversal has completed that vertex. Once the post-order

traversal has completed a particular vertex of T , we know the full order of

crossings on the corresponding edge. In the following example we discuss

how to find the ordering for the edges e1 and e2 in Figure 2.12 (a). Then,

the pseudocode in Algorithm 2.1 gives the required steps for finding these

orderings.

Example 2.11. Vertex v has been inserted into face f and each edge incident

to v has been inserted, according to shortest paths, as in Figure 2.12 (a).

The edges e1 and e2 of Π− v are crossed respectively by 3 and 2 of the edges
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v

(a)

e1

e2

e3

e4

t4

t3

t2
t5

t1 (f)

(b)

Figure 2.12: In (a), vertex v has been reinserted into face f and its incident
edges reinserted. Edges e1 and e2 are now crossed by multiple
of the edges incident to v. In (b), the tree T corresponding to
the drawing (without v) in (a).

incident to v. Our task is to identify the order in which the edges incident to v

will be placed into e1 and e2’s crossing order lists. The corresponding shortest

path tree T is shown in Figure 2.12 (b) and we will perform a post-order tree

traversal of T . Note that vertex t1 coincides with face f . Suppose that the

post traversal has just completed a vertex y. Assume that we know apriori

the crossing order (of the edges incident to v) for all of the edges on face y.

Let ey be the edge in face y, which corresponds to to edge (parent(y), y) in T .

Then by scanning face y in an clockwise manner, beginning at edge ey, and

concatenating the known crossing orders (of the edges incident to v) of all

edges on y, we compute the crossing order of edge ey. Thus by the time the

post tree traversal has concluded, the crossing order for all new crossings has

been determined. Note that the found order may then need to be reversed,

depending on the vertex indices of the planarised edge which is being crossed.

We will now perform the above tasks and Figure 2.13 illustrates the known
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crossing orders at each step.

1. According to the embedding of T determined by Π− v, the post-order

tree traversal first completes vertex t4 and there is only a single edge

incident to v in face t4 and so no scan is needed.

2. The traversal then completes vertex t3. Face t3 contains two of the

edges incident to v and so we perform a clockwise scan of face t3,

beginning at edge e2. The scan reaches vertex w2, which is the end-

vertex of edge (v, w2) then later we reach edge e3 which is crossed by

edge (v, w3). Hence we have determined that the crossing order on edge

e2 is to be {(v, w2), (v, w3)} (which may need reversing depending on

the vertex labels of e2).

3. The traversal then completes vertex t5 and there is only a single edge

incident to v in face t5 and so no scan is needed.

4. Lastly, the traversal completes vertex t2. Face t2 contains three of

the edges incident to v and so we perform a clockwise scan of face

t2, beginning at edge e1. The scan reaches the edge e4 first, which

is crossed only by (v, w1). The scan then reaches edge e2, which is

crossed by multiple edges incident to v. We already determined edge

e2’s crossing order in step 2, and so we use this information. Hence we

have determined the crossing order of e1 to be {(v, w1), (v, w2), (v, w3)}

(which may need reversing depending on the vertex labels of e2).

In Algorithm 2.1, we use a list structure C. If an edge e of Π−v is crossed

by any of the edges incident to v in their new placement, then C(e) will

contain the crossing order of those edges which cross e. Thus if a planarised

edge e is crossed by a single edge incident to v, then C(e) will just contain

a single entry. If a planarised edge e is crossed by many edges incident to v,

then C(e) will be an ordered list of each of these edges.
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Figure 2.13: Illustration of the crossing orders being determined at each of
the steps in Example 2.11.
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Algorithm 2.1 For u ∈ NG(v), let h(u) be the vertex in T corresponding
to the face, incident to u, which will be the ‘last’ face on the new v to u
path. Scanning face f in a clockwise manner involves alternating between
checking a vertex of f and then an edge of f . The operation ‘conc’ is
concatenation.
1 procedure UPDATE CROSSING ORDER(C, T, w,visited)

2 for z ∈ N(w) do

3 if visited(z) = 0 then

4 visited(z) = 1

5 UPDATE CROSSING ORDER(C, T, z, visited)

6 Denote by ew the edge in Π− v corresponding to (parent(w), w).

7 do clockwise scan of face w beginning at ew.

8 if scan is at vertex u where u ∈ NG(v) and w = h(u) then

9 C(ew) = {C(ew)}conc{(v, u)}.

10 if scan is at edge e 6= ew and e corresponds to a tree edge. then

11 C(ew) = {C(ew)}conc{C(e)}.

12 return (C, visited)

Crossing orientation list

In order to update the embedding Π − v to reflect v’s new placement, we

must be able to compute the cyclic order of edges around any of the dummy

vertices corresponding to crossings. As was discussed in Section 2.3.5, there

are only two possible cyclic orderings for these dummy vertices and we called

these orderings the crossing orientation of the corresponding crossing. If

we assume that crossing orientations are currently known at the start of an

iteration, then after moving some vertex v into face f , the only change in

crossing orientations happens for crossings on edges incident to v. Hence the

only crossing orientations which need to be computed within an iteration,

are for the new crossings introduced when v is moved into face f . This can

be achieved by following a simple procedure when updating Π− v to reflect
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v’s new placement.

Along with the current embedding Π, we have the crossing order list,

which lists crossings along any edge e ∈ E(G) in order, beginning with the

crossing closest to the smallest vertex index of e. Let e = (s, t) ∈ E(G) where

s < t and suppose e has d edges crossing it in the drawing corresponding to

Π. In Π, e is associated with a chain of edges e1, e2, . . . , ed+1 as in Figure

2.14. These new edges may be labelled so that they obey e1 < e2 < · · · <

ed+1. Now, suppose that v has been reinserted into face f and a number

of edges incident to v now cross some edges in Π − v. Suppose that edge

(v, w), where v < w, now crosses edge ek in Π − v and we need to compute

this crossing orientation. Note that ek is associated with the original edge

e = (s, t) ∈ E(G) where s < t and the crossing orientation will be with

respect to this original edge e. From computing the shortest paths, we know

which faces edge (v, w) passes through and the order in which it does so.

Let f be the face, incident to ek, which (v, w) passes through and is closer

to v, as in Figure 2.15 (a). Inside face f , we may traverse clockwise one

edge away from ek, say to er and observe the end-vertex which is common

to both ek and er. This vertex may be s or t or a dummy vertex. If the

common vertex is s, then because we traversed clockwise and s < t, we know

the crossing orientation is 1 with respect to e. Figure 2.15 (a) shows this

situation. Similarly if this vertex is t, then we know the crossing orientation

is -1 with respect to e. If this vertex is a dummy vertex, then this dummy

vertex is of degree 4, and so we may traverse this dummy vertex once, from

er, and we must arrive at another edge which is associated with e. Suppose

that we arrive at edge eq. Finally, because we created the edges along e in

order, if eq < ek, it implies that eq is closer to s than ek is. Then, because

we traversed clockwise along face f , we know that the crossing orientation

must be 1 with respect to e. This situation is displayed in Figure 2.15 (b).

Similarly if eq > er, we know that the orientation must be -1 with respect to
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Figure 2.14: e = (s, t) ∈ E(G) with s < t and 4 crossings and the corres-
ponding chain of edges in Π, where e1 < e2 < e3 < e4 < e5.
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Figure 2.15: Identifying the crossing orientation of a new crossing. Note that
edge (v, w) is not a part of face f .

e.

2.4 Implementation and Runtime

We now discuss the runtime of each of the procedures and show that the

iterations of the heuristic each run in O((k+n)m) time where k is the number

of crossings in the drawing associated with that iteration. Pseudocode for the

main loop and two subroutines are displayed in Algorithms 2.2-2.4. The code

implements the first minimisation scheme discussed in Section 2.3.2 where an

improvement is taken as soon as it is found. There is a level of abstraction

left in the pseudocode due to the numerous ways that one could perform the

required operations; highly optimised C and MATLAB implementations of

the heuristic are available at http://fhcp.edu.au/quickcross. In the discussion

below we refer to the pseudocode and summarise the methods used in our
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implementation.

2.4.1 Implementation

First we discuss the operations involved in Algorithms 2.2-2.4. During the

main loop procedure, we remove vertex v and its incident edges, which

possibly reduces the current number of crossings. Then, after identifying

the best possible new placement for v using the sip(G,Π∗, v) procedure, we

have a new number of crossings for v’s potential placement and this number

is new cr. Hence if new cr < current cr then we have found a drawing

with fewer crossings. Once an improvement has been found, Π is updated

to reflect the new placement and this involves updating each of the data

structures discussed in Sections 2.3.5 and 2.3.6. If an edge is drawn such

that it crosses some other edge multiple times, then we subdivide that edge

to avoid confusion in the data structures as also discussed in Section 2.3.5.

Similarly, if a set of edges resulting from an earlier subdivision no longer

crosses any edge multiple times, then the previous subdivisions are reverted.

From the current combinatorial embedding Π, we compute the dual graph

Π∗0 (which is then copied into Π∗ for modifications). Step P1 of Procedure

1asks us to compute the reduced combinatorial embedding Π − v. This

corresponds to removing v from Π and a set of planarised edges. Because

at this stage, it is unknown if the embedding Π − v will be utilised for the

next iteration, it is quicker to instead modify the dual graph Π∗ to reflect the

removal of v. This process is done inside of the procedure remove(G,Π∗, v)

according to the discussion on contractions in the dual graph in Section 2.3.3.

Later, if Π − v will be utilised for the next iteration, then it is computed,

along with the new placement of v.

The procedure sip(G,Π∗, v) solves the fixed embedding star insertion

problem for the vertex v (into Π − v). The contractions in Π∗, discussed
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in Section 2.2, reduce the number of times that shortest paths need to be

computed, which is the most costly process of the heuristic. Then the op-

timal placement for v is given by newface, and shortest paths are computed

once more with newface as the source vertex. The list shortest paths stores

the tree paths from newface to each w ∈ NG(v).

Algorithm 2.2 Main procedure of the heuristic. Inputs are a combinat-
orial embedding Π corresponding to some initial drawing D of G, which
is represented by the data structures discussed in Section 2.3.5.

1 procedure MAIN LOOP
2 current cr ← crD(G)
3 while true do
4 improvement found ← false
5 Find the faces of Π.
6 Π∗0 ← dual graph of Π
7 for v ∈ V (G) do
8 Π∗ ← Π∗0 (make a copy of Π∗0)
9 Π∗ ← REMOVE(G,Π∗, v)
10 (new cr, newface, shortest paths)← SIP(G,Π∗, v)
11 if new cr < current cr then
12 improvement found ← true
13 break
14 if improvement found then
15 Update Π to reflect new placement using newface and shortest

paths.
16 Check if any subdivisions are needed.
17 Check if any previous subdivisions can be removed.
18 current cr← new cr
19 continue
20 else
21 break
22 return (current cr,Π)

Algorithm 2.3 Vertex deletion procedure. Given a dual graph Π∗ and
a vertex v of G, this performs edge contractions in the dual according to
the discussion in Section 2.3.3.
1 procedure REMOVE(G,Π∗, v)
2 for e∗ ∈ E(Π∗) do
3 if e∗ corresponds to an edge of G which is incident to v then
4 Contract e∗.
5 return (Π∗)
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Algorithm 2.4 Star insertion problem solver. Given a dual graph Π∗

along with a vertex v of G, this performs edge contractions in the dual
graph according to the discussion in Section 2.2. Then the fixed embed-
ding version of the star insertion problem is solved for v.

1 procedure SIP(G,Π∗, v)
2 for w ∈ NG(v) do
3 Π∗∗ ← Π∗ (make a copy of Π∗)
4 In Π∗∗, contract the cycle formed by dual edges corresponding to

edges incident to w in Π, call the contracted vertex wd.
5 distw ← Shortest path algorithm(Π∗∗, wd).
6 Set the dist of vertices contracted to form wd to zero.

7 newface← argmink(
∑

w∈N(v) distw(k))

8 shortest paths ← Shortest path algorithm(Π∗,newface)
9 return (new cr, newface, shortest paths)

2.4.2 Runtime

In this subsection we work through the lines of the main loop pseudocode

and discuss the time complexity of each operation. The majority of the work

is simple vector manipulation and so some detail is left out here. As will be

seen, in each iteration, the runtime is dominated by the task of finding the

many shortest paths in order to solve the star insertion problem. After our

discussion, we conclude that for practical purposes, the steps performed take

no more than O((k + n)m) time.

At lines 5 and 6 of the main loop we find the faces and dual graph of

Π. This can be achieved by scanning the edges of Π in a clockwise manner

and time required for this is O(k +m).

Next, during the loop at line 7, we delete a vertex v and search for a

better placement for v. Potentially every vertex may be tried before the

algorithm moves on. So the procedures inside this loop may be repeated up

to n times per iteration.

Inside the procedure remove, which is entered at line 9 of 2.2, a number

of edge contractions are performed. In the drawing of G which is associated

with the current embedding Π, let kv denote the number of crossings on the

edges incident to vertex v. Then the time required for the corresponding
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edge contractions is O(kv + d(v)) for each v. Summing over all n vertices in

the aforementioned loop, this becomes a worst case of O(k +m).

In the procedure sip, the contractions at line 4 can be performed in

O(
∑

w∈N(v) d(w)) time, and summing over all vertices, this becomes O(nm).

At line 5 we find shortest paths on an unweighted planar graph (a simple

breadth-first search) which can be done in O(k+n) time and this is repeated

for each w ∈ NG(v) by the loop at line 2. Then, summing over all vertices,

this becomes O((k + n)m).

Back in the main loop the following procedures happen only once an

improvement has been found, so only once per iteration. At line 17 we fix the

new placement and update the existing data to reflect the new placement.

Updating the crossing order list and crossing orientation list as discussed in

Section 2.3.6 can be performed inO(k) time. Updating the four clockwise and

anticlockwise edge indices discussed in Section 2.3.5 can be done in O(k+m)

time.

Any required subdivisions are checked for at line 18 by scanning the

crossings on every edge to check whether it crosses the same edge more than

once. This scan can be performed in O(k) time. If a subdivision is required

then the corresponding lists need to be updated and this also happens in O(k)

time. Note that these subdivisions are a very rare occurrence in practice and

when they do occur, a check is put in place at each iteration thereafter to see

if the subdivision can be undone. This additional check can be performed in

O(k) time. If a subdivision is required to be undone, the corresponding lists

need to be updated and this happens in O(k +m) time.

We remark that any subdivisions do have an effect on the runtime of

future iterations because they cause n to grow, and bounding the time in-

crease is difficult. Because these subdivisions are rare cases which are usually

removed swiftly in subsequent iterations, we conclude that for practical pur-

poses the additional runtime is negligible.
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The above discussions have considered all major tasks in our implement-

ation and thus we conclude that each iteration can effectively be performed

in O((k+ n)m) time. Finally, we remark that the total number of iterations

is at most the number of crossings in the initial drawing of G. Hence a näıve

bound on the total runtime is O((k̄+n)k̄m) where k̄ is the initial number of

crossings. This emphasises the dependency between the quality of the initial

drawing and the overall performance of the heuristic.

2.5 Experiments

2.5.1 Experimental setup

In this section, we consider the performance of our proposed heuristic on

various sets of instances. As mentioned previously, we have implemented our

heuristic in both C and MATLAB, and here we report on the C implement-

ation, which we call Quickcross.

Each of the experiments reported on in this section were conducted on a

2.6GHz AMD Opteron 6282 SE with 4GB RAM, running Centos 6.7. In order

to compare the various schemes discussed in Section 2.3, each experiment is

repeated for nine different parameter settings, once for each combination of

the three initial embedding schemes (circle, planar, spring), and the three

minimisation schemes (first, best, biggest face (bf)). Then, for each of these

nine parameter settings, we use 100 different random permutations of the

vertex labels and record the result with the least number of crossings. In such

a case, we shall say that the graph was run with 100 random permutations.

Where possible, we also make comparisons with the state-of-the-art cross-

ing minimisation heuristics included in the Open Graph Drawing Framework

(OGDF) [32]. Included in OGDF are implementations of the planarisation

method based on both the fixed and variable edge insertion problem as well
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as a practical implementation of the approximation algorithm based on mul-

tiple edge insertion from [35]. Guided by the experimental results in [31], we

attempt to make our comparisons as fair as possible. We denote the heuristic

based upon fixed and variable edge insertion as fix and var respectively and

the multiple edge insertion heuristic as multi. To initialise the planarisation

method, a maximal planar subgraph is computed using OGDF’s PQ-tree

based planar subgraph algorithm, where the best found solution out of 64

restarts is chosen. We consider four of the post-processing strategies invest-

igated in [31], which include:

� No post-processing, denoted as none.

� The edge reinsertion strategy - after all edges are present in the graph,

the heuristic deletes each edge, one at a time, and reinserts it, possibly

with fewer crossings. This strategy is denoted as all.

� The incremental strategy - after each individual edge insertion during

the main heuristic, every edge currently present in the graph is deleted,

one at a time, and reinserted, potentially with fewer crossings. This

strategy is denoted inc.

� The incremental (only inserted) strategy - after each individual edge

insertion during the main heuristic, every edge except those from the

original maximal planar subgraph is deleted, one at a time, and reinser-

ted, potentially with fewer crossings. This strategy is denoted inc/ins.

Similarly to our experiments with Quickcross, when each instance is run on

OGDF for the above schemes, we use 100 different random permutations

of the vertex and edge labels and record the result with the least number of

crossings. We also note that the strategies inc and inc/ins perform a signific-

ant amount of additional work; indeed these schemes become the dominant

part of the whole algorithm. It was noted in [31] that these incremental
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schemes produce superior results at a cost of significantly higher runtimes.

We observe that the high runtimes are further exacerbated on dense graphs.

We will consider six sets of instances, the first four of which contain sparse

graphs, and the latter two of which contain dense graphs. In particular,

the sparse instances considered are the sets of instances which were used for

benchmarking crossing minimisation heuristics in [31], [65] and [66]. They are

known respectively as the KnownCR graphs, the Rome graphs, the AT&T

graphs and the ISCA graphs. The dense instances considered are sets of

complete graphs, and complete bipartite graphs. We now briefly describe

the experiments that will be carried out for each of the sets.

� KnownCR graphs - these are a set of instances containing between 9

and 250 vertices, first collected by Gutwenger [65], which can be further

partitioned into four families of graphs as follows:

– Ci�Cj: the Cartesian product of the cycle on i vertices with the

cycle on j vertices. These instances contain graphs with 3 ≤ i ≤ 7

and j ≥ i such that ij ≤ 250.

– Gi�Pj: the Cartesian product of the path on j+1 vertices with one

of the 21 non-isomorphic connected graphs on 5 vertices, where

i denotes which of the 21. These instances contain graphs with

3 ≤ j ≤ 49.

– Gi�Cj: the Cartesian product of the cycle on j vertices with one

of the 21 non-isomorphic connected graphs on 5 vertices, where i

denotes which of the 21. The crossing number of these graphs are

only known for some of the Gi and only these cases are included.

These instances contain graphs with 3 ≤ j ≤ 50.
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– The generalised Petersen graphs P(j, 2) and P(j, 3), on 2j ver-

tices. We shall only use those of type P(j, 3), as P(j, 2) are easy

for heuristics to solve as has already been observed in [31]. These

instances contain graphs with 9 ≤ j ≤ 125.

Unlike the other sets of instances in this section, all of the crossing num-

bers for the KnownCR instances are known, and hence we can compare

how close the results we obtain for various scheme combinations are to

the correct values. In particular, we report on the average relative de-

viation between the crossing numbers and the values obtained by each

heuristic and scheme combination. For these results with Quickcross,

we also illustrate the work remaining to be performed during the main

loop, by reporting the average relative deviation after only the initial

embedding is finished. We also compare the runtimes of the various

scheme combinations, separated into the time spent producing the ini-

tial embedding, and the time spent in the main loop of the heuristic.

Finally, we compare the results between the different scheme combina-

tions of both Quickcross and OGDF.

� Rome graphs - these are a set of 11,528 graphs which have been

constructed from real-life applications, first described by Di Battista

et al. [46]. They contain between 10 and 100 vertices, and are very

sparse with average edge density of 1.35. The larger graphs in this set

have unknown crossing numbers, since they are too large for the current

exact methods to solve. Hence, it is impossible to report on how close

QuickCross gets to the true crossing number. However, in [66] and

[65], the largest graphs in the Rome set were considered, that is, the

140 graphs with exactly 100 vertices. For these graphs, the average

numbers of crossings found for various crossing minimisation heuristics

were reported. We repeat this same experiment and compare the results
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for both QuickCross and OGDF, and also report on the runtimes for

each of the scheme combinations. For Quickcross, the runtimes are

separated into time spent producing the initial embedding, and time

spent in the main loop of the heuristic.

� AT&T graphs - these are a set of 311 graphs with between 25 and

312 vertices. Their crossing numbers are not known, and hence we are

unable to report on how close our results are to the crossing number.

In [31], various crossing minimisation heuristics were compared in the

following way. First, each graph was submitted to each heuristic, and

the best solutions found overall were recorded. Then, the average rel-

ative difference compared to the best found solution was reported, with

the instances partitioned according to the number of crossings found

in the best solution. Since the best number of crossings found was not

explicitly given in [31], we are unable to compare our results to this.

Instead, we perform a simpler experiment whose results can be com-

pared in the future. We report the average numbers of crossings found

over all 311 graphs, for each different combination of the heuristics and

schemes of both Quickcross and OGDF.

� ISCA graphs - these are a set of 20 graphs with between 25 and

233 vertices. They began as multigraphs from the ISCA 1985 bench-

mark set which were then appropriately modified into simple undirected

graphs in [31]. Their crossing numbers are not known, however, since

there are only 20 graphs, it is possible to compare the performance of

each individual graph for each combination of heuristics and schemes

of both Quickcross and OGDF.

� Complete graphs - Although the crossing number of the complete

graph Kn is not known for n ≥ 13, the value is conjectured, and this

conjecture is typically assumed to be correct. For each different com-
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bination of heuristics and schemes of both Quickcross and OGDF, we

report on how close they get to the conjectured value for complete

graphs with between 20 and 50 vertices.

� Complete bipartite graphs - Much like the complete graphs, the

crossing number of the complete bipartite graph Kn1,n2 is only known

in general for n1 ≤ 6, but the value is conjectured and typically assumed

to be correct. Again, for each different combination of heuristics and

schemes of both Quickcross and OGDF, we report on how close they

get to the conjectured value for graphs with n1 and n2 between 20 and

40.

Note that in the KnownCR and the Rome graphs, we consider individu-

ally the performance of Quickcross in the initial embedding, and the main

loop of the heuristic. Since we found that the behaviour exhibited is consist-

ent irrespective of the graph set considered, we do not display this breakdown

for the subsequent four sets.

2.5.2 KnownCR graphs

We partitioned the graphs into the four families described above and ran

each with the different possible combinations of heuristics and schemes. Each

graph was run with 100 random permutations and the minimum found solu-

tion was compared to the actual crossing number by computing the percent

relative deviation. Let k denote the minimum found solution, then the per-

cent relative deviation from cr(G) is: 100(k − cr(G))/cr(G). The average of

these numbers was then taken over each of the four families of graphs and

these results are displayed in Table 2.16, which we now describe in detail.

We observe that for the graphs of type Gi�Cj and Ci�Cj, the circle

and planar embeddings perform very well and they outperform the spring

embedding, as well as the OGDF inc/ins and none results by approxim-



2.5. Experiments 68

ately 2.5% or more. However, the OGDF inc and all schemes are superior

for these graphs, in some cases, reaching the optimal solution for every in-

stance. On the other hand, for the graphs of type Gi�Pj and P(j, 3), the

Quickcross circle and planar embeddings perform relatively poorly while the

spring embedding performs better. For the P (j, 3) graphs the spring embed-

ding produced average relative deviations which are approximately equal to

the best OGDF results, while they are slightly worse than the best results

from OGDF for the Gi�Pj graphs. The Quickcross best scheme performed

worse than first and bf under the same initial embedding scheme in almost

all cases, with the sole exception of the planar embedding for Gi�Cj and

P (j, 3).

Final crossings (%) for KnownCR graphs
Schemes Gi�Pj Gi�Cj Ci�Cj P (j, 3)
spring,first 3.7560 5.2257 4.9672 3.4101
spring,best 5.5655 6.6789 6.1827 4.8419
spring,bf 3.7016 4.4707 4.5493 3.2199
circle,first 8.7814 2.5407 1.5642 7.8437
circle,best 12.427 6.4100 4.8994 9.9959
circle,bf 7.8796 1.7049 1.7314 6.7071
planar,first 10.321 1.5063 1.6612 7.3148
planar,best 11.372 1.4091 1.7223 7.1430
planar,bf 9.7580 1.4994 1.5837 7.1944

fix,none 16.133 15.672 12.297 29.122
fix,inc 3.6714 1.4214 0.0192 5.4912
fix,inc/ins 12.791 11.552 6.0648 23.161
fix,all 4.5824 1.9308 0.0253 7.0755
var,none 13.786 13.318 10.1881 24.160
var,inc 2.4155 0.5262 0.0000 3.5897
var,inc/ins 10.060 8.9232 4.5974 17.6333
var,all 3.4524 0.8107 0.0000 5.3482
multi,none 14.224 13.998 10.4127 25.253
multi,inc 3.4226 1.2341 0.0232 5.4502
multi,inc/ins 10.717 9.9423 4.5327 20.032
multi,all 3.3576 0.8686 0.0072 4.6817

Table 2.16: Results for the KnownCR graphs run with the different scheme
combinations of Quickcross and OGDF. The values are the aver-
age percent relative deviation from the crossing number for the
four families of graphs within the KnownCR set.



2.5. Experiments 69

Runtimes were analysed by taking an average over the 100 random per-

mutations for each graph. These times are difficult to display meaningfully

in a single figure as there is a large amount of variation within each of the

four families of graphs. To that end, Figures 2.17-2.20 display the runtimes

for Quickcross on each of the four families, and Figures 2.21 - 2.24 display

the equivalent for OGDF. For Quickcross, it can be seen that the best min-

imisation scheme is significantly slower than the alternatives. For OGDF,

the inc scheme is also significantly slower than the alternatives.

Figure 2.17: Average heuristic runtime of Quickcross per random permuta-
tion (sec.) compared to number of vertices for the graphs
Gi�Pj.

We also briefly analyse the initial embeddings of Quickcross for these

graphs. In Figure 2.26 we display the average runtimes to complete the initial

embedding. We observe that, as indicated in Section 2.3.1, the circle embed-

ding computes an initial embedding the quickest, however it creates many

additional crossings, seen in Table 2.25, and consequently the full heuristic

has a longer runtime. Alternatively, the planar embedding scheme computes

an embedding almost as quick and the embedding has far fewer crossings,



2.5. Experiments 70

Figure 2.18: Average heuristic runtime of Quickcross per random permuta-
tion (sec.) compared to number of vertices for the graphs
Gi�Cj.

Figure 2.19: Average heuristic runtime of Quickcross per random permuta-
tion (sec.) compared to number of vertices for the graphs
Ci�Cj.
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Figure 2.20: Average heuristic runtime of Quickcross per random permuta-
tion (sec.) compared to number of vertices for the graphs
P (j, 3).

Figure 2.21: Average runtime of OGDF per random permutation (sec.) com-
pared to number of vertices for the graphs Gi�Pj.



2.5. Experiments 72

Figure 2.22: Average runtime of OGDF per random permutation (sec.) com-
pared to number of vertices for the graphs Gi�Cj.

Figure 2.23: Average runtime of OGDF per random permutation (sec.) com-
pared to number of vertices for the graphs Ci�Cj.
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Figure 2.24: Average runtime of OGDF per random permutation (sec.) com-
pared to number of vertices for the graphs P (j, 3).

which results in a significantly lower heuristic runtime.

KnownCR - Quickcross initial crossings (%)
Schemes Gi�Pj Gi�Cj Ci�Cj P (j, 3)
spring,first 382.80 1193.2 1134.6 338.23
spring,best 284.49 606.67 398.41 457.34
spring,bf 529.19 1354.2 989.87 280.59
circle,first 29783 24922 18300 27848
circle,best 29854 24704 18381 27512
circle,bf 29838 24788 18270 28092
planar,first 245.32 295.70 160.52 440.45
planar,best 241.04 300.70 160.30 447.63
planar,bf 244.68 297.30 160.78 441.48

Table 2.25: After only the initial embeddings of Quickcross for the KnownCR
graphs. The values are the average percent relative deviation
from the crossing number for the four families of graphs within
the KnownCR set.
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Figure 2.26: Average runtime to produce an initial embedding for Quickcross
(sec.) compared to number of vertices for the KnownCR graphs.

2.5.3 Rome graphs

For the 140 graphs on 100 vertices in the Rome graph set, we repeat two

experiments that have been previously performed in [65]. In the first ex-

periment, for each of the possible combinations of heuristics and schemes,

each graph is run with 100 random permutations. In the second experiment,

the number of random permutations is increased to 500. In each case, we

record the smallest number of crossings found for each graph, and report

on the average of these values over the 140 graphs in Tables 2.27 and 2.28

respectively.

For Quickcross, we include average runtimes in Table 2.27, separated into

time spent in the main part of the heuristic, and time spent in the initial

embedding. The total average runtime is then the sum of these two values.

Also, since the average runtime per permutation is almost identical after

100 permutations as it is after 500 permutations, we omit the runtimes from

Table 2.28.
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We note here that we encountered a bug with OGDF that prevented us

from considering several of the Rome graphs with the multi scheme which

we were unable to resolve. For this reason, we have omitted it from the

experiment.

For Quickcross, we observe that after 100 random permutations, the

planar embedding scheme outperforms both circle and spring in both solution

quality and average runtime. Interestingly, the best minimisation scheme out-

performs the other minimisation schemes under the same embedding scheme

in each case. This result is different to the KnownCR graphs in which the

best scheme was usually the worst performing scheme. Overall, the OGDF

var,inc scheme obtained the best results with an average of 25.514 cross-

ings, albeit with a runtime many times higher than for the other schemes

in Quickcross. Then, with the sole exception of var,inc, every configuration

of Quickcross compares favourably to the OGDF results. After 500 random

permutations, in Table 2.28 the situation is slightly different. The Quickcross

circle,best now outperforms the other Quickcross schemes, and again var,inc

obtains the best result overall.

2.5.4 AT&T graphs

For the 311 graphs in the AT&T set, we report on a different experiment to

the one previously performed in [31]. We treat this set in a similar manner as

the Rome graphs. That is, each graph was run with 100 random permutations

and in each case, we record the smallest number of crossings found, and then

report on the average of these values over the 311 graphs. Then, we repeat the

experiment and increase the number of random permuations to 500. These

results are displayed in Tables 2.29 and 2.30 respectively.

After 100 random permutations, for OGDF, similarly to the experiments

on the Rome graphs, var,inc performs very well on these graphs again with a
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Rome - 100 random permutations

Method
Avg. final
crossings

Avg. heuristic
runtime (sec.)

Avg. initial
crossings

Avg. embed
runtime (sec.)

planar,best 25.757 0.0368 54.664 0.0061
planar,first 25.779 0.0099 54.664 0.0061
planar,bf 25.800 0.0110 54.664 0.0061
circle,best 25.829 0.2547 919.87 0.0029
spring,best 25.850 0.0469 80.971 0.2591

circle,bf 25.886 0.0425 919.87 0.0029
circle,first 25.900 0.0369 919.87 0.0029
spring,first 25.950 0.0105 80.971 0.2591
spring,bf 25.964 0.0118 80.971 0.2591

var,inc 25.514 0.6305
var,all 26.021 0.2326

fixed,inc 26.364 0.0648
fixed,all 26.814 0.0473

var,inc/ins 28.321 0.2648
var,none 30.543 0.0603

fixed,inc/ins 30.550 0.0459
fixed,none 32.886 0.0432
multi,none - -
multi,inc - -

multi,inc/ins - -
multi,all - -

Table 2.27: Averages of the minimum found crossings over 100 permutations
for the Rome graphs run with the various schemes of Quickcross
and OGDF. Average runtimes per random permutation are also
displayed. The results are ordered by the average crossings and
separated into Quickcross schemes and OGDF schemes.

Rome - 500 random permutations
Method Avg. final crossings Method Avg. final crossings

circle,best 25.157 var,inc 25.093
planar,best 25.214 var,all 25.321
planar,first 25.229 fixed,inc 25.642
planar,bf 25.250 fixed,all 26.000
circle,first 25.300 var,inc/ins 27.121
spring,best 25.307 var,none 28.843

circle,bf 25.313 fixed,inc/ins 28.921
spring,bf 25.407 fixed,none 30.964

spring,first 25.457

Table 2.28: Averages of the minimum found crossings over 500 permutations
for the Rome graphs run with the various schemes of Quickcross
and OGDF. The results are ordered by the average crossings and
separated into Quickcross schemes and OGDF schemes.
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higher runtime. The higher runtimes of OGDF’s incremental schemes are now

evident because of the much larger number of vertices for the graphs in the

AT&T set. With the exception of var,inc, Quickcross obtains uniformly fewer

crossings than OGDF. The planar scheme performs very well here, while

the circle scheme performs the poorest. Again, similarly to the Rome set,

best outperforms the other minimisation schemes under the same embedding

scheme in each case. After 500 random permutations, in Table 2.30, the

situation is very similar.

AT&T - 100 random permutations

Method
Avg. final
crossings

Avg. total
runtime (sec.)

planar,best 107.5981 0.4196
planar,bf 107.6881 0.0935

spring,best 107.701 1.133
planar,first 107.7042 0.0868
spring,bf 108.0064 0.4282
circle,best 108.0354 3.9598
circle,bf 108.0868 0.2999

spring,first 108.1736 0.4284
circle,first 108.2315 0.3342

var,inc 107.8167 14.3989
var,all 110.0707 2.432

multi,all 110.1608 0.9793
multi,inc 110.6367 1.6127
fixed,inc 111.1222 2.0537
fixed,all 113.1125 0.0928

var,inc/ins 121.9936 5.5283
multi,inc/ins 125.1608 0.371
fixed,inc/ins 128.1061 0.3877

var,none 134.6431 0.1157
multi,none 138.3312 0.0479
fixed,none 140.9775 0.0453

Table 2.29: Averages of the minimum found crossings over 100 permutations
for the AT&T graphs run with the various schemes of Quickcross
and OGDF. Average runtimes per random permutation are also
displayed. The results are ordered by the average crossings and
separated into Quickcross schemes and OGDF schemes.
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AT&T - 500 random permutations

Method
Avg. final
crossings

Method
Avg. final
crossings

planar,best 106.75 var,inc 106.98
spring,best 106.83 var,all 108.26
planar,first 106.84 multi,all 108.46
planar,bf 106.85 multi,inc 109.06
spring,bf 107.03 fix,inc 109.36

circle,best 107.15 fix,all 110.97
spring,first 107.20 var,inc/ins 118.41
circle,first 107.20 multi,inc/ins 121.43
circle,bf 107.26 fix,inc/ins 123.64

var,none 130.17
multi,none 132.33

fix,none 135.18

Table 2.30: Averages of the minimum found crossings over 500 permutations
for the AT&T graphs run with the various schemes of Quickcross
and OGDF.

2.5.5 ISCA graphs

The ISCA set is comprised of only 20 graphs, which means that it is possible

to make comparisons for each individual graph. Each graph was run with

100 random permutations and in each case, we record the smallest number of

crossings found. These results are displayed in Table 2.31 with the 20 graphs

ordered by their number of vertices. Then, in Table 2.32, we display average

runtimes, but only for those schemes which were successful in attaining the

fewest crossings in several of the graphs.

Continuing the previous trend, for many of the graphs in this set, OGDF

var,inc obtained the best result, again at the expense of significantly higher

runtimes. On occasion, var,inc was beaten by either schemes from Quickcross

or other OGDF schemes. As the number of vertices increases, it becomes ap-

parent that the best results are obtained either from Quickcross, or OGDF

inc or all and the other OGDF schemes perform significantly worse. Inter-

estingly, there does not appear to be any one scheme in Quickcross which

outperforms the others in general.
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Runtime (sec.) for ISCA graphs
Vertices 25 46 48 86 109 134 138 142 143 148
spring,first 0.114 0.305 0.299 0.655 1.139 1.302 1.399 1.588 2.361 1.668
spring,best 0.116 0.390 0.339 0.929 3.208 3.258 3.203 5.167 18.19 5.762
circle,bf 0.011 0.069 0.050 0.280 1.030 1.008 1.237 1.752 4.267 1.883
planar,bf 0.007 0.032 0.017 0.065 0.310 0.218 0.243 0.418 1.571 0.490
planar,first 0.005 0.029 0.016 0.060 0.272 0.201 0.224 0.377 1.348 0.447
fixed,inc 0.023 0.156 0.062 0.136 2.572 0.711 0.736 5.501 112.3 4.550
var,inc 0.069 1.865 0.623 1.413 31.052 13.95 15.18 42.54 620.9 50.42
var,all 0.041 0.484 0.223 0.477 6.376 2.365 2.641 6.928 86.79 7.530

Vertices 150 158 173 176 180 188 210 211 212 223
spring,first 1.519 1.712 2.085 2.106 2.021 2.806 2.996 3.156 4.435 4.282
spring,best 4.280 5.562 7.881 8.902 6.718 22.39 21.49 24.39 60.31 44.90
circle,bf 1.686 1.996 2.650 3.399 2.792 6.455 5.523 4.527 9.503 8.566
planar,bf 0.343 0.428 0.619 0.722 0.445 1.777 1.375 1.361 3.640 2.541
planar,first 0.312 0.379 0.574 0.662 0.414 1.561 1.242 1.227 3.127 2.335
fixed,inc 1.155 2.790 2.733 17.62 1.514 146.7 46.88 91.04 362.1 247.3
var,inc 38.84 31.56 44.73 91.16 24.12 641.9 230.5 417.3 1461 1071
var,all 4.439 3.827 7.437 14.22 4.113 67.82 43.39 50.10 179.6 111.2

Table 2.32: Average total runtime per random permutation for the ISCA
graphs for the schemes of Quickcross and OGDF that achieved
the fewest crossings in several of the graphs.

2.5.6 Complete graphs

Recall that the crossing number of the complete graph Kn is conjectured

(e.g. see Guy [68]) to be equal to

H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Although this conjecture is widely believed to be correct, it has only been

confirmed for n ≤ 12 despite considerable effort to extend the results further

[113]. We ran the graphs Kn for 20 ≤ n ≤ 50. Each graph was run with

100 random permutations and the minimum found solution was compared to

H(n) by computing the percent relative deviation from H(n). These results

are displayed in Tables 2.33 for some selected values of n, and the runtimes

are provided in Table 2.34.

For these graphs, we observe that when n was odd, every Quickcross

scheme combination was able to obtain a drawing with H(n) crossings. How-
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ever, when n was even, each scheme reached a value which was usually very

close but not equal to H(n). The average runtime under the best scheme

is significantly higher than the other minimisation schemes simply due to

the vast amount of additional work required to consider every vertex each

iteration.

Considering the runtimes for Quickcross, although best minimisation scheme

became very slow, interestingly, this was not the case when the planar scheme

is used. We conclude that for complete graphs, the planar scheme produces

an initial embedding which is either optimal or near-optimal and hence very

little additional work is required by Quickcross.

Conversely, for OGDF, these graphs quickly became intractable for al-

most all heuristic and scheme combinations, other than fix,none, fix,all and

multi,none. For the schemes involving none, the results tended to be signific-

antly worse than those of Quickcross. The fix,all scheme seemed to perform

relatively well. We note here that the fix,all method is probably the closest

analogue to Quickcross’ planar initial embedding scheme, which might ex-

plain why these two were the best performing schemes for the respective

platforms.

2.5.7 Complete bipartite graphs

Recall that the crossing number of the complete bipartite graph Kn1,n2 is

conjectured (e.g. see Zarankiewicz [147]) to be equal to

Z(n1, n2) :=
⌊n1

2

⌋ ⌊n1 − 1

2

⌋ ⌊n2

2

⌋ ⌊n2 − 1

2

⌋
.

We ran the graphsKn1,n2 for 20 ≤ n1 ≤ n2 ≤ 40. Each graph was run with

100 random permutations and the minimum found solution was compared

to Z(n1, n2). For the sake of neatness, we only report on the cases where

n1 and n2 are multiples of five. As can be seen in Table 2.35, Quickcross
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Final crossings (%) for Kn

n 20 25 30 35 40 45 50
spring,first 0 0 0.0105 0 0.0185 0 0.0169
spring,best 0 0 0.0209 0 0.0246 0 *
spring,bf 0 0 0.0209 0 0.0246 0 0.0229
circle,first 0 0 0.0209 0 0.0185 0 0.0169
circle,best 0 0 0 0 0.0154 0 0.0145
circle,bf 0 0 0.0419 0 0.0400 0 0.0507
planar,first 0 0 0.0209 0 0.0062 0 0.0024
planar,best 0 0 0.0209 0 0.0062 0 0.0024
planar,bf 0 0 0.0314 0 0.0092 0 0.0036

fix,none 1.1111 1.2167 1.5175 1.4651 1.5327 1.2780 1.3502
fix,inc 0 0 * * * * *
fix,inc/ins 0.0617 0 * * * * *
fix,all 0.0617 0 0.0837 0 0.0615 0.0149 0.0700
var,none 1.0493 1.124 1.5489 1.1083 1.6189 1.4448 1.5410
var,inc 0 * * * * * *
var,inc/ins 0 * * * * * *
var,all 0.0617 0 0.0523 0 * * *
multi,none 1.1111 1.0330 1.4128 1.2867 1.6343 1.3361 1.3586
multi,inc 0 0 * * * * *
multi,inc/ins 1.2345 0 * * * * *
multi,all 0.0617 0 0.0837 0 0.0769 * *

Table 2.33: Percent relative deviations from H(n) after the conclusion of the
heuristic, for the complete graphs Kn. A * entry indicates that
the average runtime exceeded 3600 seconds (1 hour) per random
permutation.

was successful in obtaining the conjectured optimum in all cases and for

all scheme combinations, except K30,30 under the circle, best combination.

We suspect that these graphs are relatively easy for Quickcross to obtain a

high-quality solution. However, although the conjectured optimum is easily

reached for these graphs, the runtimes in Table 2.36 are comparable to those

for the complete graphs, due to edge density. Again, the best minimisation

scheme is significantly slower than the alternatives.

For OGDF, these graphs were intractable for the inc and inc,ins schemes.

For the none and all schemes, OGDF is able to obtain drawings in comparable

time to Quickcross, but those drawing almost never meet the conjectured

value.
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Runtime (sec.) for Kn

n 20 25 30 35 40 45 50
spring,first 0.4892 1.6260 7.3329 16.315 62.251 114.74 281.45
spring,best 2.2851 10.023 63.482 176.81 795.11 1551.0 *
spring,bf 0.5481 1.7314 7.8227 18.533 64.075 116.97 300.73
circle,first 0.4027 1.4541 6.8077 15.724 60.706 101.98 273.07
circle,best 2.1862 10.758 60.490 180.51 749.52 1215.2 3582.3
circle,bf 0.4636 1.7077 8.0522 21.293 69.723 131.98 346.20
planar,first 0.4093 0.6793 3.6526 6.5259 25.419 34.650 96.993
planar,best 0.5584 0.6924 8.3924 6.0631 76.533 35.386 266.51
planar,bf 0.4248 0.7250 3.3097 6.7406 22.067 35.586 86.218

fix,none 0.0781 0.2150 0.7258 1.7337 4.4118 8.4319 14.820
fix,inc 203.33 1592.0 * * * * *
fix,inc/ins 74.282 619.71 * * * * *
fix,all 0.8629 4.9050 17.277 59.869 172.24 476.42 617.88
var,none 1.6687 8.2514 39.804 131.24 284.97 597.59 1143.3
var,inc 1047.3 * * * * * *
var,inc/ins 349.72 * * * * * *
var,all 42.380 246.32 737.99 3068.9 * * *
multi,none 0.0788 0.2160 0.7288 1.7451 4.4177 8.3940 14.761
multi,inc 153.81 2411.3 * * * * *
multi,inc/ins 67.079 527.92 * * * * *
multi,all 21.269 89.570 302.82 975.74 2099.9 * *

Table 2.34: Average total runtime (sec.) per random permutation for the
complete graphs Kn. A * entry indicates that the average
runtime exceeded 3600 seconds (1 hour) per random permuta-
tion.

2.5.8 Concluding observations

We now conclude this section with some general observations about the res-

ults of the various experiments.

With regards to Quickcross, although there is no one scheme that consist-

ently outperforms the others, the planar initial embedding scheme and first

minimisation scheme appears to offer the best overall performance in terms

of both solution quality and runtime. The significantly increased runtime

for the best minimisation scheme makes it impractical in general, but for

extremely sparse graphs it performed well.

In general, Quickcross was able to produce solutions which were compar-

able or superior to all schemes of OGDF except for var,inc. However, var,inc
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almost always produced superior results to any Quickcross scheme, as long as

it was tractable. It appears that dense graphs provide a significant challenge

for the more elaborate schemes within OGDF that makes them unsuitable.

Conversely, it appears that performance of Quickcross scales relatively well

with the edge density of the graph for all schemes except for circle and, to a

lesser extent, best.

We note here that Quickcross answers the question posed by Chimani

and Gutwenger in [31] about the performance of a heuristic based upon the

star/vertex insertion problem, albeit only in the fixed embedding setting.

From the experiments, it appears that for sparse graphs, Quickcross func-

tions as an intermediate approach between the simplest implementation of

the planarisation method, and the more sophisticated implementations like

var,inc. That is, Quickcross obtains solutions which are significantly bet-

ter than the standard planarisation method without a significant sacrifice in

runtime, and similarly is significantly faster than the var,inc implementation

without a significant sacrifice in solution quality. For dense graphs, Quick-

cross appears to be uniformly better than current implementations of the

planarisation methods.

Nonetheless, the strong performance of the various inc schemes on sparse

graphs motivated us to consider introducing this feature into Quickcross as

well. In the following, final section of this chapter, we discuss an initial

implementation of this idea. As will be seen, the results that it produces are

comparable to those of OGDF’s var,inc scheme. Designing a fully optimised

version of this heuristic is a ripe topic for future research.

2.6 Incremental post-processing

We now investigate the computationally heavy post-processing strategy in-

troduced for the planarisation method in [31] which is denoted incremental
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post-processing. Recall that in the planarisation method, one begins with a

maximal planar subgraph, and the remaining edges of the graph are added to

the drawing, one at a time. Then, the incremental post-processing strategy

augments this approach in the following way. After each edge is added to

the drawing, all existing edges of the drawing are deleted and reintroduced,

one at a time, potentially resulting in fewer crossings. Obviously this signi-

ficantly increases the amount of work to be done, but as seen in Section 2.5,

the final result is often significantly better.

In Quickcross, by contrast, we do not introduce each edge one at a time

to the drawing. Instead, we start with a complete drawing. Hence, a strategy

such as the one above is not directly applicable to Quickcross. However, we

note that for the planar embedding scheme, we introduce one vertex at a

time. Hence, we can adapt the planar embedding scheme as follows. After

each iteration of the planar embedding scheme we have an embedding Π

corresponding to a drawing DH of some connected vertex induced subgraph

H ⊆ G. Then, recall that one of the options for Quickcross is to provide an

initial drawing. As such, we can use this option to then run a new instance

of Quickcross on the graph H using DH as the initial drawing. Quickcross

then attempts to minimise crossings and if it succeeds in finding a drawing

of H with fewer crossings, we update Π accordingly and continue with the

next iteration of the planar embedding scheme. We shall refer to this scheme

as Q-inc.

We now repeat the experiments in Sections 2.5.2–2.5.5 with the new Q-inc

strategy. In these experiments, we restrict ourselves to 100 random permuta-

tions. Note that during this process Quickcross is run independently on many

subgraphs of G, and so we may select which minimisation scheme is used each

time. Hence, in the upcoming experiments, we compare the three possible

minimisation schemes (first,best and bf).

The runtime of this strategy is not analysed here because our current im-
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plementation is rudimentary, compared to the significant effort spent mak-

ing the rest of Quickcross efficient. In its current stage of development, we

simply make the comment that the runtime of the incremental post pro-

cessing strategy is (as expected) significantly higher than any of the altern-

ative strategies for Quickcross.

Table 2.37 contains the results for Q-inc on the KnownCR graphs. For

the graph families Gi�Cj and Ci�Cj, we observe a significant improvement

compared to the results in Table 2.16. Notably, optimal drawings are ob-

tained for all of the Ci�Cj graphs. For the other two graph families, the

results obtained by Q-inc are better than the results for the planar schemes

given in Table 2.16. However, those two graph families were outperformed by

the spring scheme in Table 2.16, and that continues to be the case for Q-inc.

It appears that since Q-inc is based on the planar embedding scheme, there

is no reason to assume that it will outperform the other schemes if the planar

scheme did not already do so. However, we note that the planar embedding

scheme was almost always the best performing scheme, and so Q-inc is still

a promising approach.

Final crossings (%) for KnownCR graphs
Method Gi�Pj Gi�Cj Ci�Cj P (j, 3)

Q-inc,first 4.6688 0.8402 0 6.5585
Q-inc,best 4.6226 0.8127 0 6.6172
Q-inc,bf 4.6051 0.9010 0 6.6421

Table 2.37: Average percent relative deviations from the crossing numbers for
the families within the KnownCR graphs for the Q-inc strategy.

Table 2.38 contains the results for Q-inc on the Rome graphs with 100

vertices. All three minimisation schemes produced superior results to any of

those reported in Table 2.28. Notably, the results obtained by Q-inc here

are superior even to those results obtained in Table 2.33 where 500 random

permutations were considered.
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Rome - 100 random permutations
Method Avg. final crossings

Q-inc,first 25.000
Q-inc,bf 25.029

Q-inc,best 25.043

Table 2.38: The average number of crossings found over 100 permutations
for the graphs on 100 vertices in the Rome graphs for the Q-
inc strategy. The list is sorted by smallest average number of
crossings.

Table 2.39 contains the results for Q-inc on the AT&T graphs. Surpris-

ingly, for these graphs, all three minimisation schemes obtained the identical

minimal number of crossings for each graph in the set. We expect that this

result is a consequence of the planar embedding scheme upon which Q-inc is

based, and that the various minimisation schemes have very little effect for

these graphs. The results obtained by Q-inc are superior to those reported

in Table 2.29, and were comparable to the best results in Table 2.30 where

500 random permutations were considered.

AT&T - 100 random permutations
Method Avg. final crossings

Q-inc,first 106.849
Q-inc,bf 106.849

Q-inc,best 106.849

Table 2.39: The average number of crossings found over 100 permutations
for the AT&T graphs for Q-inc strategy.

Table 2.40 contains the results for Q-inc on the ISCA graphs. We observe

that, similarly to the AT&T graphs, all three minimisation schemes obtained

the identical minimal number of crossings for each graph in the set. In Table

2.40, we compare the results of Q-inc to the most successful scheme on these

graphs, var,inc, and also one of the best schemes from Quickcross, planar,bf.

Notably, Q-inc obtains fewer crossings than all other tested schemes from

Table 2.31 for 12 out of 20 graphs and, for some of the larger graphs in this

set, the Q-inc solution is far superior to the next best solution. Addition-
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ally, Q-inc obtains superior results compared to var,inc, which was the best

performing scheme, for 11 out 20 of the ISCA graphs.

ISCA graphs - 100 random permutations
Vertices 25 46 48 86 109 134 138 142 143 148
Q-inc,first 13 72 36 35 222 100 105 211 813 227
Q-inc,bf 13 72 36 35 222 100 105 211 813 227
Q-inc,best 13 72 36 35 222 100 105 211 813 227
var,inc 13 70 37 35 225 99 99 214 842 231
planar,bf 13 73 37 35 226 104 108 216 835 236

Vertices 150 158 173 176 180 188 210 211 212 223
Q-inc,first 145 156 216 301 94 598 461 572 1175 835
Q-inc,bf 145 156 216 301 94 598 461 572 1175 835
Q-inc,best 145 156 216 301 94 598 461 572 1175 835
var,inc 142 154 224 315 93 600 474 570 1200 860
planar,bf 148 156 231 320 94 609 468 595 1200 853

Table 2.40: Minimum found crossings over 100 permutations for the ISCA
graphs run with the Q-inc strategy. The graphs are ordered by
the number of vertices.

The results of the experiments for Q-inc are stark; there is significant

improvement to be obtained by using this kind of post-processing scheme.

Indeed, it appears that the results obtained by Q-inc are on par with var,inc,

the best performing scheme from OGDF. However, much like var,inc, it

comes at a significant computational cost. Investigating how best to imple-

ment this approach in an efficient manner is a clear task for future research.

In addition, it is worthwhile investigating whether there is some analogue

of incremental post-processing that may be applied to the other embedding

schemes in Quickcross, for those graphs where the planar embedding scheme

is not the most suitable.



Chapter 3

New exact results relating to

crossing numbers

In Chapter 2, we introduced a new crossing minimisation heuristic. As dis-

cussed in that chapter, we have also developed a highly optimised imple-

mentation of this heuristic in C, and named this implementation Quickcross.

The implementation includes pre-processing strategies, and can be applied

to any undirected graph, irrespective of its connectivity or other properties.

By modifying the various parameters and the random seed, we can obtain

many different drawings of the same graph, and then select the drawing with

the fewest crossings. If we consider sufficiently many random seeds, and

the graph is not too complex, it is reasonable to expect that the number of

crossings in this drawing is close, or even equal to, the crossing number of

the graph.

Of course, Quickcross has no way of confirming whether or not it has found

the crossing number of a graph. Nonetheless, the output from Quickcross

does have some value. First, it provides a (hopefully reasonably tight) upper

bound on the crossing number of the graph, which may be useful in some

circumstances. We will describe some such situations below. Second, if

Quickcross has been run many times, and regularly finds the same minimum

91
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number of crossings, we can be reasonably confident that this is equal to

the crossing number. This then provides insight into what should be strived

for in a subsequent proof. This approach is particularly enlightening when

considering infinite families of graphs, for which the crossing numbers may

obey a formula which is not obvious from the outset.

In this chapter, we will take advantage of the output of Quickcross. In

particular, we will address the following problems.

In Section 3.1, we consider two open conjectures of Pegg Jr. and Exoo

from 2009, about the size of the smallest cubic graphs which have crossing

number at least k. Specifically, the conjectures are about the cases k =

9, 10, 11. We will demonstrate that Quickcross is ideal for resolving these

conjectures. This is because doing so involves considering a very large set

of graphs (around 430 million), but in this case we do not require their

exact crossing numbers. Rather, we simply need to confirm that the crossing

numbers are below a certain value. The upper bounds provided by Quickcross

are suitable for such a purpose.

Then, in Section 3.2, we study a family of graphs arising from the Cart-

esian product of a Sunlet graph and a star. In particular, we seek to de-

termine the crossing numbers of this family of graphs. It is not clear from

the outset what this formula should be, let alone how to prove it. However,

the output from Quickcross, leads to a conjecture about the formula for the

crossing numbers. We then prove that the conjecture is true for some cases

where the size of the star is fixed.

Finally, in Section 3.3, we consider the crossing numbers of families of

graphs which result from a graph product of given small graphs with certain

arbitrarily large graph families. This has been a pursuit of researchers for

several decades, since the crossing number of the Cartesian product of each

connected 4-vertex graph with an arbitrarily large cycle was determined in

[19]. Researchers have since extended this by replacing cycles with stars and
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paths, and considering larger fixed graphs. They have also considered other

kinds of graph products, most notably join products involving cycles, paths

and discrete graphs. For graph products of these arbitrarily large graphs with

graphs on four vertices, these have now all been determined. However, for

the graphs with more than four vertices, many gaps remain, and researchers

have been slowly filling these gaps, often on a case-by-case basis with ad-hoc

proofs.

For a specific case, the proof typically involves establishing both an up-

per and lower bound, and then showing that these coincide. The latter is

typically much more difficult than the former. However, in some cases, a

lower bound from a related family can be utilised. This has been done in

some isolated cases. However, here we use Quickcross to perform a broad

empirical study of all cases involving graphs up to six vertices, in order to

identify in a systematic way all such situations where this is possible. As

a result, we are able to prove the crossing numbers of 29 new families of

graph products. This is a notable achievement, since over the last several

decades, and hundreds of individual papers, only 207 such results have been

previously determined.

3.1 Minimal cubic graphs with crossing num-

ber at least k

Suppose that, for a chosen integer k, we are interested in graphs with crossing

number at least k. A question that one might ask is what is the smallest

number of vertices such a graph can have. If we restrict our consideration to

cubic graphs (for which the crossing number problem is still NP-hard [79]),

some results are known. Define ak to be the order of the smallest cubic

graph with crossing number at least k. In Table 3.1 we list the values ak

for k = 1, . . . , 8, along with an example of one such cubic graph of that
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order, and the number of minimal examples; these are taken from Pegg Jr

and Exoo [114]. It should be noted that in [114], it was claimed that there

are five minimal examples of cubic graphs with crossing number at least 8,

however it has been subsequently determined during private communication

between Pegg Jr and Eric Weisstein that two of them (labelled in [114] as

CNG 8D and CNG 8E) were erroneously listed, and the correct number is

three.

k ak Example # minimal examples
0 4 K4 1
1 6 K3,3 1
2 10 Petersen graph 2
3 14 Heawood graph 8
4 16 Möbius-Kantor graph 2
5 18 Pappus graph 2
6 20 Desargues graph 3
7 22 Unnamed graphs, see Figure 3.2 4
8 24 McGee graph 3

Table 3.1: The minimum number of vertices of a cubic graph which possesses
crossing number at least k, a named example of each, and the
number of minimal examples.

It is also worth noting at this point that the crossing numbers provided for

many of the graphs listed in Table 3.1, although widely accepted as accurate

and listed as such in numerous sources, have never been formally established

in literature. We remedy that here, by using the excellent exact crossing

minimisation solver of Chimani and Wiedera [38] to confirm that all of the

minimal examples (not just the named ones) listed in Pegg Jr and Exoo [114]

have their crossing numbers correctly listed, other than CNG 8D and CNG

8E as previously noted.

Results on minimal cubic graphs with crossing number larger than 8 have,

to date, only been conjectured. It has been widely accepted that the Coxeter

graph [41] on 28 vertices has crossing number 11, and the Levi graph [101]

(also known as the Tutte-Coxeter graph) on 30 vertices has crossing number
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Figure 3.2: The four unnamed graphs on 22 vertices which constitute ex-
amples of the smallest cubic graphs possessing crossing number
7. These graphs and their drawings are taken from [114].

13, although again these results have not been formally established in literat-

ure. We again remedy this oversight here by reporting that the exact solver

[38] confirms that these crossing numbers are accurate. Then, an open ques-

tion posed by Pegg Jr and Exoo [114] is whether any cubic graphs of order

26 have crossing number 11. More precisely, they conjectured the following.

Conjecture 3.1 (Pegg Jr and Exoo, 2009 [114]). With ak as defined above,

(i) a9 = a10 = 26.

(ii) a11 = 28.

(iii) a13 = 30.

In what follows, we answer questions (i) and (ii). Specifically, we show

that (i) is false, and that (ii) is true. One corollary of these results is that the

Coxeter graph is a minimal example of a cubic graph with crossing number

11. At this stage, we have not answered question (iii), but at the end of this

section we briefly discuss how it might be attacked.

We now outline the approach that we take to resolve question (i) and (ii)

of Conjecture 3.1. First, denote by f(n) the largest crossing number of any

cubic graph on n vertices. Values of f(n) for small n can be deduced from

the known values of ak and these are displayed in Table 3.3. An important

point is that, in general, it is not necessarily the case that f(n) is equal to

the largest k such that ak ≤ n. In other words, given a value of ak, k is not
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necessarily the largest crossing number among all cubic graphs on ak vertices.

However, the following observation can be made.

n 4 6 8 10 12 14 16 18 20 22
f(n) 0 1 1 2 2 3 4 5 6 7

Table 3.3: The largest crossing number f(n), for any cubic graph on n ver-
tices.

Lemma 3.2. For any even n ≥ 4, f(n+ 2) ≥ f(n).

Proof. Let G be a cubic graph on n vertices which attains f(n) crossings.

Subdivide any two distinct edges ofG and join the newly created vertices with

an edge, call the resulting graph G′. Then, f(n) ≤ cr(G′) ≤ f(n+ 2).

Next, we consider the case of non-simple connected 3-regular graphs, and

show that there always exists a simple connected 3-regular graph of the same

order with crossing number at least as large. This result will be important

in the upcoming Lemma 3.4 and Proposition 3.5.

Lemma 3.3. Consider any non-simple connected 3-regular graph G on n ≥ 4

vertices. Then, cr(G) ≤ f(n).

Proof. Suppose that we possess an optimal drawing D of G. Since G is non-

simple, it must contain some number of multiedges and loops. It is clear from

the optimality of D that there are no crossings on the loops in D. Hence,

any loops can be deleted without altering the crossing number.

Next, we consider multiedges. Since G is 3-regular, there can be at most

three multiedges between any pair of vertices u and v. If there are three,

then u and v constitute the whole graph and n = 2. Hence, we only need to

consider the case where there are two multiedges between u and v.

Suppose that one of the multiedges is crossed more times than the other

in D. Then, it is possible to redraw that multiedge so that it is arbitrarily
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close to the other multiedge, which reduces the number of crossings. This

contradicts the optimality of D. Hence, both multiedges are crossed the

same number of times. This, in turn, implies that D can be modified so

that these two multiedges lie arbitrarily close to each other without altering

the number of crossings. Note that this also implies that both multiedges

are crossed by the identical set of edges. We refer to this modified, but still

optimal, drawing as D′.

Finally, consider any edge (or multiedge) e which crosses both multiedges

between u and v in D′. Since G is 3-regular, it is clear that another, single,

edge is incident to u, and likewise there is another edge incident to v. Hence, e

can be redirected to cross one of these single edges instead, and the number

of crossings reduces. This contradicts the optimality of D′, and hence we

conclude that there are no crossings on the multiedges. Hence, one of the

multiedges may be removed without altering the crossing number.

By applying the above to every instance of multiedges and loops, we

obtain a simple subcubic graph G′ on n vertices with the same crossing

number as G. It is clear that there exists a cubic graph on at most n vertices

with which G′ is a subdivision of, and hence cr(G) = cr(G′) ≤ f(n).

The next Lemma is crucial in reducing the computational work required

to determine the new values of ak. For the sake of dealing with the boundary

cases in the below argument, we extend f(n) so that f(2) = 0 and f(0) = 0.

Lemma 3.4. Any cubic graph G on n vertices with girth 3 has crossing

number cr(G) ≤ f(n− 2r), where r is the number of triangles in G.

Proof. Consider any cubic graph G with girth 3, we shall construct a drawing

of G with at most f(n − 2r) crossings. If G is not K4, then each triangle

of G either contains zero edges which are involved in a second triangle, or

a single edge involved in a second triangle, in which case the two triangles

form a diamond. Each diamond of G connects two vertices u and v which
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are not part of the diamond. For each diamond of G, delete it and connect

u and v with a new edge. For each other triangle of G, contract it into a

single vertex. The result is a new 3-regular (not necessarily simple) graph G′

on n − 2r vertices. Hence, cr(G′) ≤ f(n − 2r). Note from Lemma 3.3 that

this holds whether or not G′ is simple. Now, consider an optimal drawing

D′ of G′. For those vertices in D′ which were the result of a contracted

triangle, replace them with an arbitrarily small triangle such that there are

no crossings on the triangle. Similarly for those edges in D′ which were the

result of a replaced diamond, replace them with an arbitrarily small diamond

connected to the corresponding end vertices such that there are no crossings

on the diamond. These operations do not increase the number of crossings

and so the result is a drawing of G with at most f(n− 2r) crossings, hence

cr(G) ≤ f(n− 2r).

We are now in the position to present the values of a9, a10 and a11. We

first discuss a9. We observed that one of the examples given in [114] of a

cubic graph on 26 vertices, which is drawn there with 10 crossings, actually

has crossing number 9. The graph is dubbed the ‘McGee graph plus an edge’,

meaning that a pair of edges of the McGee graph were subdivided and the

newly created vertices joined by an edge. A reproduction of the drawing

given in [114] is displayed in Figure 3.4. The crossing number for this graph

has been verified to be 9 using the exact crossing minimisation solver [38].

Figure 3.5 shows the McGee graph plus an edge drawn with 9 crossings,

which we now know to be an optimal drawing.

Proposition 3.5. a9 = 26.

Proof. By the above discussion, there exists at least one cubic graph on 26

vertices with crossing number 9. Hence a9 ≤ 26.

To show the reverse inequality, we need to establish that f(24) < 9. To

achieve this, we performed a series of computations using Quickcross. Firstly,
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Figure 3.4: The cubic graph, from [114], dubbed ‘McGee graph plus an edge’
drawn with 10 crossings. Crossings are highlighted in red.

Figure 3.5: The cubic graph dubbed ‘McGee graph plus an edge’ drawn with
9 crossings, which is an optimal drawing. Crossings are high-
lighted in red.
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for any cubic graph G on 24 vertices with girth 3, G has at least one triangle

and so by Lemma 3.4 and Table 3.3, cr(G) ≤ f(22) = 7. For the other cubic

graphs on 24 vertices of girth 4 or greater (of which there are 23,780,814),

Quickcross was successful in obtaining drawings with strictly fewer than 9

crossings. Therefore we can conclude that f(24) ≤ 8, and Lemma 3.2 now

implies that for any n ≤ 24, f(n) ≤ 8. Therefore, we obtain a9 ≥ 26.

As a side note, the lower bound in Proposition 3.5, along with the known

value of a8, provides the following.

Corollary 3.6. f(24) = 8.

The proof of Proposition 3.5 relied on Quickcross producing valid draw-

ings for each graph. Although we are very confident in Quickcross func-

tioning correctly, we nonetheless decided to verify that each drawing found

was indeed valid. To do this, we planarised each of the drawings produced

by Quickcross. If the drawings are valid, then the planarisation necessarily

produces a planar graph. In each case, we then used the planarity checking

algorithm of Hopcroft and Tarjan [83] to confirm that the planarisation was

indeed planar. For all graphs tested, this was the case.

Eliminating the girth 3 graphs from consideration in Proposition 3.5 re-

duced the number graphs we needed to consider from 117,940,535 down to

23,780,814 (roughly an 80% reduction). Eliminating the girth 3 graphs be-

comes imperative when considering the next largest case (26 vertex graphs)

below.

We now discuss the values of a10 and a11. Similarly to Proposition 3.5, we

eliminate the girth 3 graphs when considering cubic graphs on 26 vertices.

This again reduces the number of graphs needing considered by roughly 80%

from 2,094,480,864 down to 432,757,568. Then, for each of these graphs, we

used Quickcross to find drawings with optimal or near-optimal number of

crossings. Unlike the 24 vertex case, this is no longer tractable on a normal
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computer. For cubic graphs on 26 vertices, Quickcross can process several

graphs per second, including time taken to read and write data to the disk.

We partitioned the graphs into sets of 50,000, resulting in roughly 8,000

individual jobs, each of which took up to 3 days to run, and distributed the

jobs over 400 cores on a High Performance Computer. Eventually we were

able to obtain drawings with 9 or fewer crossings for all of the 26 vertex cubic

graphs of girth 4 or larger. Similarly to the previous experiment, we again

verified the results using the planarity checking algorithm of Hopcroft and

Tarjan [83].

To provide an upper bound for a10, we confirmed that there exists a cubic

graph on 28 vertices which has crossing number 10. This unnamed graph is

one of the 21 cubic graphs on 28 vertices with girth 7, which is the largest

girth of cubic graphs of this order. An optimal drawing of this graph with 10

crossings is displayed in Figure 3.6. The crossing number was again confirmed

by the exact crossing minimisation solver [38].

Figure 3.6: A cubic graph on 28 vertices, which has been confirmed to have
crossing number 10, drawn optimally. The crossings are high-
lighted in red.

Proposition 3.7. a10 = 28.

Proof. From the above discussion, it is clear from the runs of Quickcross
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that f(26) ≤ 9. Hence, a10 ≥ 28. Then, having confirmed that the graph in

Figure 3.6 has crossing number 10, we conclude that a10 = 28.

The lower bound in Proposition 3.7, along with the value of a9 from 3.5

also provides the following.

Corollary 3.8. f(26) = 9.

Propositions 3.5 and 3.7 allow us to now answer question (i) of Conjecture

3.1 in the negative. In particular, we have shown that a9 is equal to 26 as

stated in Conjecture 3.1, but a10 is equal to 28, rather than 26. In addition,

the results above allow us to immediately answer question (ii) of Conjecture

3.1 as well, in the affirmative.

Proposition 3.9. a11 = 28.

Proof. As discussed previously, the Coxeter graph on 28 vertices has crossing

number 11. Hence a11 ≤ 28.

To show the reverse inequality, from Corollary 3.8, we have shown that

for any n ≤ 26, f(n) ≤ 9 and therefore a11 ≥ 28.

A zip file is available upon request, which contains a list of edge crossings

for each cubic graph on 26 vertices with girth 4 or more. The edge crossings

correspond to a valid drawing with 9 or fewer crossings.

Some known additivity properties of the crossing number could have aided

in the computations of this section. Specifically, results shown in [22] and

[100] imply that the crossing number of any cyclically k-connected cubic

graph, where k ≤ 3 is the sum of the crossing numbers of its augmented

components, when minimal cyclic edge cutsets have been deleted. It so hap-

pens that, in this case, the augmented components are homeomorphic to

smaller cubic graphs. After handling some technicalities, it can be shown

that the following relationship holds.
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Lemma 3.10. For any k and any n1, n2, ..., nk such that n1 +n2 + ...+nk ≤

n+ 2(k − 1),

f(n) ≥
k∑
i=1

f(ni).

This means that we could have restricted our computations with Quick-

cross to cyclically-k-connected cubic graphs, where k ≥ 4 (there is also one

other easy case to consider). In particular, eliminating the 1-connected cubic

graphs would have been advantageous. However, identifying cyclically-k-

connected cubic graphs is non-trivial and we were satisfied with handing

more graphs to Quickcross instead of complicating the calculations.

Lastly, we make a remark about question (iii) of Conjecture 3.1. The

number of cubic graphs on 28 vertices is 40,497,138,011 and, of these,

8,542,471,494 have girth 4 or larger [25]. This a substantial increase from 26

vertices and there would be a large jump in computation time if our above

methods were applied to (iii). However, we suspect that other innovations,

similar to Lemma 3.4, could be used to make an answer to (iii) more tract-

able.

3.2 Cartesian product of a Sunlet graph and

a Star graph

Crossing numbers have been determined for some infinite families of graphs.

In many such cases, the family is created by taking the Cartesian product

of members of two smaller graph families. To the best of our knowledge,

the first publication along these lines was by Harary, Kainen and Schwenk

[75] in 1973, who conjectured that the crossing number of Cm�Cn, that is,

the Cartesian product of two arbitrarily large cycles, would be n(m− 2) for

n ≥ m ≥ 3. To date, this conjecture remains unproven, although a number

of partial results have been determined. In a long line of research spanning
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several decades, results have been determined for small values where m ≤ 7

[6, 10, 11, 19, 43, 75, 96, 118, 119, 121]. Also, in 2004, Glebsky and Salazar

[62] provided a breakthrough by showing that for any m, the conjecture holds

for all but a finite number of the n.

Theorem 3.11 (Glebsky and Salazar, 2004 [62]). For any m ≥ 3 and any

n ≥ m(m+ 1), consider the cycle graphs Cn and Cm, then

cr(Cn�Cm) = n(m− 2).

Other infinite graph families, for which the crossing numbers of their

Cartesian products have been studied, include paths and stars [85, 90, 21],

complete graphs and cycles [141], cycles and stars [85, 90], wheels and trees

[95], and cycles with the 2-power of paths [93]. Many of these results are

described in greater detail in Section 3.3.

In this section, we expand this growing literature by considering the

Cartesian product of a Sunlet graph and a star. The Sunlet graph on 2n

vertices, denoted Sn for n ≥ 3, is constructed by attaching n pendant edges

to the n-cycle Cn; see Figure 3.7 for an example of S6. In order to avoid

confusion with the notation for the Sunlet graph, we note that the star Sm

is equivalent to the complete bipartite graph K1,m, and so we use the latter

notation for stars in this section. We will show that cr(Sn�K1,m) ≤ nm(m−1)
2

for n ≥ 3 and m ≥ 1. We will also prove that the crossing number meets

this bound precisely for m ∈ {1, 2, 3}, and conjecture that it does so for all

m ∈ Z+.
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Figure 3.7: The Sunlet graph, S6.

3.2.1 Upper Bound

We begin by providing an upper bound for cr(Sn�K1,m). When we first

considered this family, we constructed a number of small cases, and submitted

them to Quickcross, with the intention of using its results to predict their

crossing numbers. The results from Quickcross are displayed in Table 3.8,

and it appears from those results that the crossing number of Sn�K1,m is

likely to be nm(m−1)
2

.

n
m 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
3 9 12 15 18 21 24 27 30
4 18 24 30 36 42 48 54 60
5 30 40 50 60 70 80 90 100
6 45 60 75 90 105 120 135 150
7 63 84 105 126 147 168 189 210
8 84 112 140 168 196 224 252 280
9 108 144 180 216 252 288 324 360
10 135 180 225 270 315 360 405 450

Table 3.8: Best found solutions obtained by Quickcross for the graphs
Sn�K1,m.

The first step in confirming that this is, indeed, the correct formula for

the crossing numbers is to establish it as an upper bound. In order to do so,

we need to provide a drawing procedure that meets this number of crossings.

In what follows, let the vertex labels of K1,m be v0 for the vertex of degree
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m and v1, v2, . . . , vm for the vertices of degree 1. Let the vertex labels of Sn be

u0, u1, u2, . . . , un−1 for the vertices on the cycle and let u′i denote the pendant

vertex attached to ui.

Theorem 3.12. The crossing number of Sn�K1,m is no larger than nm(m−1)
2

for n ≥ 3, m ≥ 1.

Proof. It is easy to check that Sn�K1,1 is planar; for instance, a planar draw-

ing of S6�K1,1 is illustrated in Figure 3.9, which can obviously be extended

for any n. It then suffices to give a procedure for drawing the graph Sn�K1,m,

m ≥ 2, so that the number of crossings meets the proposed upper bound.

Figure 3.9: Planar drawing of S6�K1,1.

First, note that Sn�K1,m contains Cn�K1,m as a subgraph. Begin by

drawing the subgraph Cn�K1,m in the manner illustrated in Figure 3.10(a).

For a given i = 0, 1, . . . , n − 1, the thick edges represent ((v0, ui), (vj, ui))

for j = 0, 1, . . . ,m. The dashed edges represent ((vj, ui), (vj, ui+1)) and

((vj, ui), (vj, ui−1)) for j = 0, 1, . . . ,m. Then, it is easy to see that the dashed

edges can be joined to the corresponding sections for i+ 1 and i− 1, and so

on, to complete a drawing of K1,m�Cn without introducing any additional

crossings. Hence, the number of crossings in this drawing of the subgraph

Cn�K1,m is:

n

( bm2 c−1∑
k=1

k +

dm2 e−1∑
k=1

k

)
= n

⌊m
2

⌋⌊m− 1

2

⌋
. (3.1)
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1
2...

bm/2c

1
2

..
.

dm/2e

1
2...

bm/2c

1
2

..
.

dm/2e

Figure 3.10: In (a), the construction of a drawing of the subgraph K1,m�Cn.
In (b), the extension which will be subdivided to produce a
drawing of K1,m�Sn

Next, we extend this drawing to a drawing of Sn�K1,m in the following

way. For each i = 0, 1, . . . , n − 1, place a vertex in the region between the

centre horizontal (dashed) edge ((v0, ui), (v0, ui+1)) and the first thick edge

on the side which possesses dm/2e vertices, and join this new vertex to each

of the vertices (vj, ui) for j = 0, 1, . . . ,m as in Figure 3.10(b). Then, the

number of crossings in this graph is equal to:

n

(⌊m
2

⌋⌊m− 1

2

⌋
+

bm2 c∑
k=1

k +

dm2 e−1∑
k=1

k

)

= n
⌊m

2

⌋(⌊m− 1

2

⌋
+
⌈m

2

⌉)

= n
m(m− 1)

2
.

(3.2)

Finally, if every new edge is subdivided, except for the ones emanating

from (v0, ui) for i = 0, 1, . . . , n − 1, the resulting graph is isomorphic to

Sn�K1,m. Since subdividing edges does not alter the number of crossings,

we conclude that it is possible to draw Sn�K1,m with nm(m−1)
2

crossings.

3.2.2 Exact results

We now consider Sn�K1,m for some small values of m, and show that the

crossing number coincides precisely with the upper bound from Section 3.2.1.
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Denote that upper bound by U(n,m) := nm(m−1)
2

. As noted previously,

Sn�K1,1 is planar; see Figure 3.9. This agrees with U(n, 1) = 0. Next, we

will consider the cases when m = 2 and m = 3.

In what follows, we will utilise some properties of subgraphs of Sn�K1,m,

which we denote by Hi for each i = 0, 1, 2, . . . , n − 1. In particular, Hi is

defined as the subgraph induced by the union of the following, disjoint, sets

of edges:

ai := {
(
(vj, ui), (vj, ui+1)

)
| j = 0, 1, . . . ,m}

bi := {
(
(vj, ui), (vj, u

′
i)
)
| j = 0, 1, . . . ,m}

b′i := {
(
(v0, u

′
i), (vj, u

′
i)
)
| j = 1, . . . ,m}

ci := {
(
(vj, ui), (vj, ui−1)

)
| j = 0, 1, . . . ,m}

ti := {
(
(v0, ui), (vj, ui)

)
| j = 1, . . . ,m}

ti+1 := {
(
(v0, ui+1), (vj, ui+1)

)
| j = 1, . . . ,m}

ti−1 := {
(
(v0, ui−1), (vj, ui−1)

)
| j = 1, . . . ,m}

A detailed illustration of Hi, for the case m = 3, is displayed in Figure 3.11.

For each i = 0, 1, 2, . . . , n − 1, there is a corresponding Hi in Sn�K1,m and

Hi and Hj contain common edges when j = i+ 1 or j = i− 1. The union of

all Hi is precisely Sn�K1,m.

We now consider the case when m = 2. Note that U(n, 2) = n. In

what follows, we use the following notation: consider a drawing D of a graph

which contains two edge sets a and b. Then crD(a) is equal to the number of

crossings on the edges of a in D. Similarly, crD(a, b) is equal to the number

of crossings in D between edge-pairs, such that one edge is contained in a

and the other is contained in b.

Lemma 3.13. The crossing number of Sn�K1,2 is equal to n.

Proof. From Theorem 3.12, we know that cr(Sn�K1,2) ≤ n. Hence, the task

now is to show that the reverse inequality holds. Let H ′i be the subgraph Hi

without the edges ti. An illustration of H ′i is displayed in Figure 3.12.
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ai ci

ti

ti−1ti+1

b′i

bi

Figure 3.11: The subgraph Hi of Sn�K1,3. The labels for each set of edges
lie next to one edge belonging to that set. In this drawing, the
solid lines correspond to the sets ti−1, ti, ti+1 and b′i.

aici

ti−1ti+1

b′i

bi

Figure 3.12: The subgraph H ′i of Sn�K1,2. The labels for each set of edges
lie next to one edge belonging to that set.

It is clear that H ′i is homeomorphic to K3,3, and hence there exists at least

one crossing in the subdrawing D′ of H ′i. Furthermore, at least one crossing

in D′ involves two edges which come from the edge sets (ai ∪ ti+1), (bi ∪ b′i)

and (ci ∪ ti−i), but do not both come from the same edge set. That is,

crD′
(
(ai ∪ ti+1), (bi ∪ b′i)

)
+ crD′

(
(ai ∪ ti+1), (ci ∪ ti−1)

)
+crD′

(
(bi ∪ b′i), (ci ∪ ti+1)

)
≥ 1.

(3.3)

Hence, it is clear that there is at least one crossing in each H ′i which

does not occur in any other H ′j for i 6= j, which leads immediately to the
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result.

Next, we consider the case when m = 3. Note that U(n, 3) = 3n. In order

to handle this case, we first need to prove two intermediate results, Lemmas

3.14–3.15.

Lemma 3.14. For m = 3, consider the following four edge sets: (ai ∪ ti+1),

(bi ∪ b′i), (ci ∪ ti−1) and ti. Then, in any good drawing of the subgraph Hi,

there are at least 3 crossings for which the two edges involved in the crossing

are not in the same set.

Proof. Hi is homeomorphic to K1,3,3, and Asano [13] proved that cr(K1,3,3) =

3. Any drawing of Hi corresponds to some drawing of K1,3,3. Any drawing

of K1,3,3 has at least three crossings between pairs of edges which are not

incident. These crossings correspond precisely to crossings in the drawing of

Hi which satisfy the Lemma.

Lemma 3.15. For n ≥ 3, let D be a drawing of Sn�K1,3. If, for each

i = 0, 1, 2, . . . , n − 1, the edges ti ∪ bi ∪ b′i are crossed two or fewer times in

D, then D has at least 3n crossings.

Proof. Let Fi denote the edge set ti ∪ bi ∪ b′i. Note that Fi is a subgraph of

Hi. Then, from Lemma 3.14, we have

crD
(
ai ∪ ti+1, Fi

)
+ crD

(
ci ∪ ti−1, Fi

)
+ crD

(
(ai ∪ ti+1), (ci ∪ ti−1)

)
+crD

(
Fi, Fi

)
≥ 3.

(3.4)

Assume that crD(Fi) ≤ 2 for all i = 0, 1, 2, . . . , n − 1. It will be shown

that if crD
(
ti+1, Fi

)
6= 0, or if crD

(
ti−1, Fi

)
6= 0, then a contradiction arises.

Suppose that crD
(
ti+1, Fi

)
= 1. Note that the edges of bi+1 link to all of

the endpoints of ti+1. Since the subgraph induced by Fi is 2-connected, it is

clear that it is impossible to draw (bi+1∪b′i+1) without creating an additional

crossing on the edges of Fi. Since the subgraph induced by Fi ∪ ci ∪ ti−1 is
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isomorphic to P2�S3, where P2 denotes the path graph on 3 vertices, and

cr(P2�S3) = 1 [85], the following also holds

crD
(
ci ∪ ti−1, Fi

)
+ crD

(
Fi, Fi

)
≥ 1.

This would imply that Fi is crossed at least three times, but by assump-

tion, crD(Fi) ≤ 2. Hence, crD
(
ti+1, Fi

)
6= 1. An analogous argument can be

made for ti−1 which, similarly, implies that crD
(
ti−1, Fi

)
6= 1 as well.

Suppose then that crD
(
ti+1, Fi

)
= 2. Then, since crD(Fi) ≤ 2, it must

be the case that crD(Fi, Fi) = 0, and hence without loss of generality, the

subdrawing of the subgraph induced by Fi must be equivalent to the drawing

displayed in Figure 3.13.

bi

ti b′i

Figure 3.13: The drawing of the subgraph induced by Fi, if Fi is not crossed
by itself.

Now consider the rest of the subgraph Hi, which includes edge sets (ai ∪

ti+1) and (ci ∪ ti−1). Note that the edges ci link to all of the endpoints of ti,

and these do not lie on a common face of D, so (ci ∪ ti−1) cannot be drawn

without crossing Fi at least once. This would imply that Fi is crossed at

least three times, but by assumption, crD(Fi) ≤ 2. Hence, crD
(
ti+1, Fi

)
6= 2.

An analogous argument can be made for ti−1 which, similarly, implies that

crD
(
ti−1, Fi

)
6= 2 as well.

Then, since crD(Fi) ≤ 2, the only remaining possibility is crD
(
ti+1, Fi

)
= crD

(
ti−1, Fi

)
= 0, and so (3.4) simplifies to
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crD
(
ai, Fi

)
+ crD

(
ci, Fi

)
+ crD

(
(ai ∪ ti+1), (ci ∪ ti−1)

)
+crD

(
Fi, Fi

)
≥ 3.

(3.5)

It can be easily seen that any crossing counted by the left hand side

of (3.5) is not counted for any other j 6= i. Hence summing (3.5) over

i = 0, 1, 2, . . . , n− 1 provides the result.

Finally, we are ready to propose the theorem for m = 3.

Theorem 3.16. For n ≥ 3, the crossing number of Sn�K1,3 is equal to 3n.

Proof. We will prove the result by induction. The base case where n = 3,

corresponding to a graph on 24 vertices, was proved computationally, utilising

the exact crossing minimisation methods of Chimani and Wiedera [38]. The

proof comes from a solution to an appropriately constructed integer linear

program and shows that cr(S3�K1,3) = 9. The proof file is available upon

request.

Now, suppose that cr(Sn�K1,3) = 3n for each n = 3, . . . , k − 1, but that

for n = k there exists a drawing with strictly fewer than 3k crossings. Let

D denote such a drawing. By Lemma 3.15, there must be at least one i

such that the edges of Fi are crossed at least three times in D. Hence, the

edges Fi could be deleted and the number of crossings remaining would be

strictly less than 3(k−1). However, once Fi is deleted, the resulting graph is

homeomorphic to Sk−1�K1,3, which by the inductive assumption has crossing

number equal to 3(k−1). This is a contradiction, and hence any drawing for

n = k must have at least 3k crossings. This, combined with Theorem 3.12

implies that cr(Sk�K1,3) = 3k, and inductively we obtain the result.

We conclude this section by conjecturing that the upper bound described

in Theorem 3.12 coincides precisely with the crossing number in all cases.
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Conjecture 3.17. For n ≥ 3, m ≥ 1,

cr(Sn�K1,m) = n
m(m− 1)

2

Conjecture 3.17 is supported by Table 3.8, which shows that Quickcross

was able to find a drawing meeting this conjecture in all tested cases and was

unable to find any counter-examples.

3.3 Crossing numbers of graph products in-

volving one small graph

In this section, we significantly extend the known results of crossing numbers

of graph families resulting from graph products. The first results in this

vein were developed by Beineke and Ringeisen in [19]. There are six non-

isomorphic connected graphs on four vertices. For each of these, Beineke and

Ringeisen considered their Cartesian product with arbitrarily large cycles,

and determined the crossing numbers of each of the six families. This research

was later extended by Jendrol and Ščerbová [85] and as Klešč [92] who,

instead of arbitrarily large cycles, considered arbitrarily large paths and stars.

Subsequent researchers then attempted to consider graphs with more than

four vertices, as well as other kinds of graph products, most notably the join

product.

In the years since, the crossing numbers for many of the cases where

the small graph has five or six vertices have been developed, often on a

case-by-case basis, with ad-hoc proofs which exploit the structures of the

specific graphs in question. However, there is still quite a number of open

cases remaining to be determined. A recent comprehensive survey of graph

families with known crossing numbers [39] contains a section dedicated to
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collecting all results of this kind that have been established to date. This

includes well over a hundred papers employing all manner of techniques.

In general, the approach to establishing the crossing numbers for one such

family is to provide an upper bound (typically via a drawing procedure), and

then establish a lower bound, and show that these coincide. Establishing the

lower bound is often quite technical, and is usually considered the difficult

part of the proof. However, in some cases, it is possible to use the known

lower bound from a related graph family to provide the lower bound for

an undecided case. Of course, this only determines the crossing number if

the lower bound so provided is tight, which occurs only when the crossing

numbers for the two graph families coincide. This has been applied in some

cases (e.g. see [94]), however not in a systematic way. Here, for the first

time, we attempt to do so.

We note in advance that the proofs contained in this section are, for

the most part, simple. However, they resolve a significant proportion of the

cases which have remained open for decades, despite enormous effort world-

wide and over a hundred published research papers in this area. The reason

we are in the advantageous position to make such simple breakthroughs is

twofold. First, the recent survey [39] has brought together, for the first time,

the complete list of known results, so that they may all be leveraged sim-

ultaneously. Prior to the existence of this survey, it was common for the

same graph families to be considered by multiple researchers, unaware that

they had already been decided, or that related results existed that might

be used. Second, since Quickcross is very reliable for small sparse graphs,

we can efficiently predict, with a high degree of accuracy, when two graph

families share the same crossing numbers. This enables us to determine, in a

systematic fashion, precisely which open cases may be decided using existing

results.

We begin with some observations about the crossing numbers of related
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graph families. Firstly, if H is a subgraph of G, then clearly cr(H) ≤ cr(G),

which immediately gives the following relations for the Cartesian and join

products:

Lemma 3.18. If H is a subgraph of G, then for any graph F , cr(H�F ) ≤

cr(G�F ).

Lemma 3.19. If H is a subgraph of G, then for any graph F , cr(H + F ) ≤

cr(G+ F ).

Suppose that we have H which is a subgraph of G, and Fi which is

the i-th member of some infinite family of graphs. If we already know the

value of cr(H�Fi) for all i, then by Lemma 3.18 that value constitutes a

lower bound for cr(G�Fi) as well. Then, if we can determine an upper

bound for cr(G�Fi) for each i that coincides with this lower bound, it follows

immediately that cr(G�Fi) = cr(H�Fi). However, this is obviously only

applicable if cr(G�Fi) does indeed coincide with the lower bound.

As discussed previously, this is where Quickcross is useful. We can use it

to predict the crossing numbers for the graph families resulting from H�Fi

and G�Fi, and see if they are equal. In some cases, they may not be equal

for the smallest members of the infinite families, but become equal after a

certain size. When this is observed, it indicates that an upper bound can

be found which coincides with the lower bound. Then, all that remains is

to produce an appropriate drawing procedure to establish the upper bound.

From Lemma 3.19 it is clear that the above discussion is also applicable to

join products.

In what follows, we will consider graphs on five and six vertices, and so

we now introduce some notation to help identify these graphs. Figure 3.14

displays all 21 non-isomorphic connected graphs on five vertices in the order

given by Klešč [91]. Figure 3.15 displays all 156 non-isomorphic graphs on

six vertices, in the order originally given in Frank Harary’s classic textbook,
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1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

Figure 3.14: All 21 connected graphs on five vertices.

Graph Theory [74]. These graphs are ordered by their number of edges.

Note that we include the 44 disconnected graphs on six vertices, so that the

indices may remain consistent for potential future research purposes. The

notation we use to identify these graphs is G5
i or G6

i to denote a graph on

five or six vertices, where i is the index provided in Figures 3.14 and 3.15

respectively. Note that the Cartesian product of a disconnected graph G

with another graph F results in a graph which is the union of the Cartesian

products of each connected component of G with F . Hence, for Cartesian

products, it is only necessary to consider connected graphs. Conversely, the

join product always results in a connected graph. Previously, it has been

rare for researchers to consider join products involving a small disconnected

graph, nonetheless we include the disconnected graphs in Figure 3.15 for

potential future research purposes.

We will begin by considering cases involving Cartesian products, for which

all of our new results involve six vertex graphs. Then, in Section 3.3.2, we

will consider cases involving join products, which will include both five vertex

and six vertex graphs.

In the following Theorems, there are many examples of drawing pro-

cedures for graphs. Determining the resulting number of crossings in these

drawings is usually an easy exercise and so we omit the proofs and instead

provide one detailed example from Theorem 3.23 (one of the more complic-

ated instances) in Appendix A.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150

151 152 153 154 155 156

Figure 3.15: All 156 graphs on six vertices and their indices, ordered by num-
ber of edges.
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3.3.1 Cartesian products involving one small graph

Six vertex graphs with paths

According to the recent survey of graph families with known crossing numbers

[39], these cases have been decided for 57 of the six vertex graphs, and we

reproduce the table of known results from [39] here as Table 3.16.

Table 3.16: Known crossing numbers of Cartesian products of graphs on six
vertices with paths. All results are for n ≥ 1.

i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn)

25 0 60 n− 1 90 3n− 3

26 n− 1 61 2n 93 4n

27 2n− 2 64 2n− 2 94 2n− 2

28 n− 1 65 3n− 3 103 6n− 2

29 2n− 2 66 2n− 2 104 4n− 4

31 4n− 4 67 3n− 3 109 4n

40 0 70 3n− 3 111 3n− 1

41 n− 1 72 4n− 4 113 4n− 4

42 2n− 4 73 4n− 4 118 4n− 2

43 n− 1 74 2n− 2 119 7n− 1

44 2n− 2 75 2n 120 3n− 3

45 2n− 2 77 2n− 2 121 4n

46 n− 1 79 4n− 4 125 5n− 3

47 2n− 2 80 4n− 4 130 4n

48 4n− 4 83 2n− 2 146 5n− 1

51 3n− 3 84 3n− 1 152 6n

53 2n− 2 85 2n 154 9n− 1

54 2n− 2 86 3n− 1 155 12n

59 2n− 2 89 3n− 3 156 15n+ 3
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We will now determine new results, which can be added to Table 3.16,

for the following two graphs.

G6
110 G6

137

Theorem 3.20. Consider the path graph Pn, then for n ≥ 1,

1. cr(G6
110�Pn) = 3n− 1.

2. cr(G6
137�Pn) = 4n.

Proof of 1. It can be seen that G6
110 ⊃ G6

84, and so by Lemma 3.18,

cr(G6
110�Pn) ≥ cr(G6

84�Pn). Also, from [140], we have cr(G6
84�Pn) = 3n−1.

Figure 3.17 provides a drawing procedure for G6
110�Pn with 3n− 1 crossings

and therefore cr(G6
110�Pn) = 3n− 1.

. .
.

..
.

...
...

. . .

. . .

Figure 3.17: G6
110�Pn drawn with 3n − 1 crossings (the −1 comes from the

outer ring). The solid lines are the edges of copies of G6
110 and

the dashed lines are the edges of copies of Pn.

Proof of 2. It can be seen that G6
137 ⊃ G6

121 and so by Lemma 3.18,

cr(G6
137�Pn) ≥ cr(G6

121�Pn). Also, from [94], we have cr(G6
121�Pn) = 4n.

Figure 3.18 provides a drawing procedure for G6
137�Pn with 4n crossings and

therefore cr(G6
137�Pn) = 4n.
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. .
.

..
.

...

...

. . .

. . .

Figure 3.18: G6
137�Pn drawn with 4n crossings. The solid lines are the edges

of copies of G6
137 and the dashed lines are the edges of copies of

Pn.

Six vertex graphs with cycles

To date, results are only known for graphs possessing low edge density, with

the only exception being the result with K6. In total, according to [39], the

crossing number of G6
i�Cn has been decided for 15 graphs to date. These

results are reproduced in Table 3.19.

We will now determine new results, which can be added to Table 3.19,

for the following twelve graphs.

G6
59 G6

60 G6
63 G6

64 G6
66 G6

70 G6
75 G6

77 G6
83 G6

90

G6
92 G6

98

Theorem 3.21. Consider the cycle graph Cn, then for n ≥ 6, cr(G6
59�Cn) =

cr(G6
60�Cn) = cr(G6

83�Cn) = cr(G6
90�Cn) = 4n.
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Table 3.19: Crossing numbers of Cartesian products of graphs on six vertices
with cycles.

i G6
i cr(G6

i�Cn) i G6
i cr(G6

i�Cn)

25 0 49 2n (n ≥ 4), 4 (n = 3)

40 4n (n ≥ 6),
6 (n = 3)

12 (n = 4)
18 (n = 5)

53 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

41 3n (n ≥ 5),
5 (n = 3)

10 (n = 4)
54 2n (n ≥ 6),

4 (n = 3)
6 (n = 4)
9 (n = 5)

42 2n (n ≥ 4), 4 (n = 3) 67 3n (n ≥ 4), 7 (n = 3)

43 n (n ≥ 3) 78 3n (n ≥ 6),
7 (n = 3)

10 (n = 4)
14 (n = 5)

44 2n (n ≥ 4), 4 (n = 3) 113 4n (n ≥ 3)

46 n (n ≥ 3) 156 18n (n ≥ 3)

47 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

Proof. Consider the graphs G6
113 and G6

40. It is shown in [93] and [118]

respectively that the crossing number of G6
113�Cn for n ≥ 3 and G6

40�Cn for

n ≥ 6 are both equal to 4n. Then, consider the graphs G6
90, G6

83, G6
60 and

G6
59. It is clear that G6

40 is a subgraph of each of them and that G6
113 is a

supergraph of each of them. The result follows immediately.

Theorem 3.22. Consider the cycle graph Cn, then

1. cr(G6
63�Cn) = 2n, for n ≥ 4.

2. cr(G6
64�Cn) = 2n, for n ≥ 6.

3. cr(G6
66�Cn) = cr(G6

70�Cn) = cr(G6
98�Cn) = 3n, for n ≥ 5.

4. cr(G6
75�Cn) = 2n, for n ≥ 4.

5. cr(G6
77�Cn) = 2n, for n ≥ 6.

6. cr(G6
92�Cn) = 3n, for n ≥ 4.

Proof of 1. It can be seen that G6
63 ⊃ G6

42 and so by Lemma 3.18,

cr(G6
63�Cn) ≥ cr(G6

42�Cn). Also, from [48], we have cr(G6
42�Cn) = 2n
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for n ≥ 4. Figure 3.20 provides a drawing procedure for G6
63�Cn with 2n

crossings and therefore cr(G6
63�Cn) = 2n for n ≥ 4.

Figure 3.20: G6
63�Cn drawn with 2n crossings. The solid lines are the edges

of copies of G6
63 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).

Proof of 2. It can be seen that G6
64 ⊃ G6

47 and so by Lemma 3.18,

cr(G6
64�Cn) ≥ cr(G6

47�Cn). Also, from [48], we have cr(G6
47�Cn) = 2n

for n ≥ 6. Figure 3.21 provides a drawing procedure for G6
64�Cn with 2n

crossings and therefore cr(G6
64�Cn) = 2n for n ≥ 6.

Figure 3.21: G6
64�Cn drawn with 2n crossings. The solid lines are the edges

of copies of G6
64 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).

Proof of 3. It can be seen that G6
98 is a supergraph of G6

66 and G6
70

and all three graphs contain G6
41 as a subgraph. Also, from [48], we have

cr(G6
41�Cn) = 3n for n ≥ 5 which by Lemma 3.18, provides a lower bound.

Figure 3.22 provides a drawing procedure for G6
98�Cn with 3n crossings,

which provides the matching upper bound.
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Figure 3.22: G6
98�Cn drawn with 3n crossings. The solid lines are the edges

of copies of G6
98 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).

Proof of 4. It can be seen that G6
75 ⊃ G6

49 and so by Lemma 3.18,

cr(G6
75�Cn) ≥ cr(G6

49�Cn). Also, from [48], we have cr(G6
49�Cn) = 2n

for n ≥ 4. Figure 3.23 provides a drawing procedure for G6
75�Cn with 2n

crossings and therefore cr(G6
75�Cn) = 2n for n ≥ 4.

Figure 3.23: G6
75�Cn drawn with 2n crossings. The solid lines are the edges

of copies of G6
75 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).

Proof of 5. It can be seen that G6
77 ⊃ G6

53 and so by Lemma 3.18,

cr(G6
77�Cn) ≥ cr(G6

53�Cn). Also, from [48], we have cr(G6
53�Cn) = 2n

for n ≥ 6. Figure 3.24 provides a drawing procedure for G6
77�Cn with 2n

crossings and therefore cr(G6
77�Cn) = 2n for n ≥ 6.

Figure 3.24: G6
77�Cn drawn with 2n crossings. The solid lines are the edges

of copies of G6
77 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).
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Proof of 6. It can be seen that G6
92 ⊃ G6

67 and so by Lemma 3.18,

cr(G6
92�Cn) ≥ cr(G6

67�Cn). Also, from [48], we have cr(G6
67�Cn) = 3n

for n ≥ 4. Figure 3.25 provides a drawing procedure for G6
92�Cn with 3n

crossings and therefore cr(G6
92�Cn) = 3n for n ≥ 4.

Figure 3.25: G6
92�Cn drawn with 3n crossings. The solid lines are the edges

of copies of G6
92 and the dashed lines are the edges of copies of

Cn (which cycle around and connect to the other side).

The results in Theorems 3.21 and 3.22 are stated for sufficiently large

cycles. Table 3.26 presents the values for smaller cycles not covered by the

theorems. Each of the values were verified using the exact crossing min-

imisation solver of [38], which is suitable for these small, sparse instances.

Table 3.26: Crossing numbers of Cartesian products of six vertex graphs with
small cycles, which are the missing cases in Theorems 3.21 and
3.22.

i 59 60 63 64 66 70 75 77 83 90 92 98
cr(G6

i�C3) 8 8 6 6 7 7 6 6 10 11 9 9
cr(G6

i�C4) 16 16 8 12 12 8 16 16 12
cr(G6

i�C5) 20 20 10 10 20 20

Six vertex graphs with stars

The crossing number of G6
i�Sn has been decided for 28 of the six vertex

graphs graphs to date. These results, according to [39], are reproduced in

Table 3.27.
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Table 3.27: Crossing numbers of Cartesian products of graphs on six vertices
with stars Sn for n ≥ 2.

i G6
i cr(G6

i�Sn) i G6
i cr(G6

i�Sn)

25 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
77 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
26 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
79 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
27 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
80 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
28 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
85 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n

29 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
93 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

31 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
94 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
43 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
104 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
47 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
111 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
+ 2n

48 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
120 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
53 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
124 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
59 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
125 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
+ 2n

61 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n 130 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

72 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
137 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

73 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
152 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 6n



3.3. Graph products involving one small graph 126

We will now determine new results, which can be added to Table 3.27,

for the following two graphs.

G6
62 G6

121

Theorem 3.23. Consider the star graph Sn, then for n ≥ 2,

1. cr(G6
62�Sn) = 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
.

2. cr(G6
121�Sn) = 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n.

Proof of 1. It can be seen that G6
62 ⊃ G6

27 and so by Lemma 3.18,

cr(G6
62�Sn) ≥ cr(G6

27�Sn). Also, from [97], we have cr(G6
27�Sn) = 5

⌊
n
2

⌋
⌊
n−1

2

⌋
+2
⌊
n
2

⌋
for n ≥ 2. Figure 3.28 provides a drawing procedure forG6

62�Sn

with 5
⌊
n
2

⌋ ⌊
n−1

2

⌋
+2
⌊
n
2

⌋
crossings and therefore cr(G6

62�Sn) = 5
⌊
n
2

⌋ ⌊
n−1

2

⌋
+

2
⌊
n
2

⌋
for n ≥ 2. The number of crossings in Figure 3.28 is counted as an

exercise in Appendix A.

. . . . . .

bn2c dn2e

Figure 3.28: G6
62�Sn drawn with 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
crossings. The solid

lines are the edges of copies of Sn and the dashed lines are the
edges of copies of G6

62.
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Proof of 2. It can be seen that G6
121 ⊃ G6

93 and so by Lemma 3.18,

cr(G6
121�Sn) ≥ cr(G6

93�Sn). Also, from [106], we have cr(G6
93�Sn) = 6

⌊
n
2

⌋
⌊
n−1

2

⌋
+ 4n for n ≥ 2. Figure 3.29 provides a drawing procedure for G6

121�Sn

with 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+4n crossings and therefore cr(G6

121�Sn) = 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+4n

for n ≥ 2.

. . . . . .

Figure 3.29: G6
121�Sn drawn with 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+4n crossings. The solid lines

are the edges of copies of Sn and the dashed lines are the edges
of copies of G6

121.

3.3.2 Join products involving one small graph

In addition to join products with cycles and paths, it is also common to

consider the crossing number of join products of graphs with the discrete

graph Dn, which is also commonly referred to as the empty graph. The

discrete graph is also sometimes denoted as nK1. To date it has been rare

to consider the crossing number of join products involving arbitrarily large

stars.

A number of interesting graphs can be viewed as being the result of

join products. Most notably, complete multipartite graphs can be viewed as

resulting from join products, in the following way. Consider the complete

k-partite graph Kn1,n2,...,nk . Then Kn1,n2,...,nk +Dd is isomorphic to the com-
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plete (k + 1)-partite graph Kn1,n2,...,nk,d. Hence, a number of results for join

products in fact arose from the various publications on crossing numbers of

complete multipartite graphs, and vice versa.

Our results in this section concern join products involving connected

graphs on five and six vertices, however, we note that the crossing num-

ber of join products involving the following disconnected graphs on five and

six vertices are known. D5 +Dn is the graph K5,n and similarly for D6 +Dn.

These crossing numbers are known to coincide with Z(5, n) and Z(6, n) re-

spectively [89, 71]. Next, let G be the union of C4 and one isolated vertex,

then the crossing numbers of G + Dn, G + Pn and G + Cn are determined

by Li in [102]. Lastly, let G be the union of G4
9 and one isolated vertex, then

the crossing number of G+Dn is determined by Stǎs in [132].

When referring to join products, it is common in mathematical literature

to use the notation Pn to refer to the path graph on n vertices; this is con-

trary to the more standard usage of Pn, to refer to the path graph on n+ 1

vertices. This is because the number of vertices of each input graph is an

important variable in join products, as the join product of two graphs on n1

and n2 vertices contains Kn1,n2 as a subgraph. Hence the crossing number of

the join product will inevitably contain Z(n1, n2) =
⌊
n1

2

⌋ ⌊
n1−1

2

⌋ ⌊
n2

2

⌋ ⌊
n2−1

2

⌋
.

However, despite common practice in this literature, for the sake of consist-

ency we will maintain our notation with the rest of this thesis, and use Pn−1

to refer to the path graph on n vertices.

Five vertex graphs with discrete graphs, paths and cycles

We first consider the 21 connected graphs on five vertices. According to [39],

the crossing numbers of their join products with discrete graphs, paths and

cycles have been determined for most of the graphs and we reproduce these

results in Table 3.30. It is worth noting that n(n− 1), a common expression

in Table 3.30, is equal to Z(5, n) + 2
⌊
n
2

⌋
.
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Table 3.30: Crossing numbers of joins of connected graphs on five vertices
with discrete graphs, paths and cycles. Unless otherwise noted,
the results for Dn are for n ≥ 1, the results for Pn−1 are for
n ≥ 2, and the results for Cn are for n ≥ 3. Empty cells imply
that the crossing number has not yet been determined.

i G5
i cr(G5

i +Dn) cr(G5
i + Pn−1) cr(G5

i + Cn)

1 Z(5, n) Z(5, n) Z(5, n) + 1

2 n(n− 1) n(n− 1) n(n− 1) + 2

3 Z(5, n) +
⌊
n
2

⌋
4 Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1

5 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
6 n(n− 1) n(n− 1) + 2

7 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 Z(5, n) +

⌊
n
2

⌋
+ 2

8 Z(5, n) + 1 Z(5, n) + 2

9 n(n− 1) n(n− 1) + 2

10 Z(5, n) + n Z(5, n) + n+ 1 Z(5, n) + n+ 3

11 n(n− 1) n(n− 1) + 1 n(n− 1) + 3

12 n(n− 1) n(n− 1)

13 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 Z(5, n) +

⌊
n
2

⌋
+ 2

14 n(n− 1) n(n− 1) + 1 n(n− 1) + 3

15 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 2 Z(5, n) + n+

⌊
n
2

⌋
+ 4

16 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 1(n ≥ 3) Z(5, n) + n+

⌊
n
2

⌋
+ 3

17 Z(5, n) + n+ 1

18 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 2 Z(5, n) + n+

⌊
n
2

⌋
+ 4

19 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 1 Z(5, n) + n+

⌊
n
2

⌋
+ 4

20 Z(5, n) + 2n Z(5, n) + 2n+ 2

21 Z(5, n) + 2n+
⌊
n
2

⌋
+ 1 Z(5, n) + 2n+

⌊
n
2

⌋
+ 4
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We will now determine new results, which can be added to Table 3.30,

for the following four graphs.

G5
6 G5

8 G5
9 G5

17

Theorem 3.24. Consider the discrete graph Dn, then for n ≥ 1,

1. cr(G5
6 +Dn) = cr(G5

9 +Dn) = n(n− 1).

2. cr(G5
8 +Dn) = Z(5, n).

Proof of 1. It can be seen that G5
9 ⊃ G5

6 ⊃ G5
2 and so by Lemma 3.19,

cr(G5
9+Dn) ≥ cr(G5

6+Dn) ≥ cr(G5
2+Dn). Also, from [82] and independently

[84], we have cr(G5
2 + Dn) = n(n − 1). Figure 3.31 provides a drawing

procedure for G5
9 +Dn with n(n− 1) crossings and therefore cr(G5

9 +Dn) =

cr(G5
6 +Dn) = n(n− 1).

. . . . . .

bn
2
c dn

2
e

Figure 3.31: G5
9 +Dn drawn with n(n− 1) crossings. The black vertices are

those of G5
9 and the white vertices are those of Dn.

Proof of 2. It can be seen that G5
8 ⊃ G5

1 and so by Lemma 3.19, cr(G5
8 +

Dn) ≥ cr(G5
1 +Dn). Also, from [89], we have cr(G5

1 +Dn) = Z(5, n). Figure

3.32 provides a drawing procedure for G5
8 + Dn with Z(5, n) crossings and

therefore cr(G5
8 +Dn) = Z(5, n).
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. . . . . .

Figure 3.32: G5
8 + Dn drawn with Z(5, n) crossings. The black vertices are

those of G5
8 and the white vertices are those of Dn.

Theorem 3.25. Consider the cycle graph Cn, then for n ≥ 3, cr(G5
17+Cn) =

Z(5, n) + n+ 3.

Proof. It can be seen that G5
17 ⊃ G5

10 and so by Lemma 3.19, cr(G5
17 +Cn) ≥

cr(G5
10 + Cn). Also, from [146], we have cr(G5

10 + Cn) = Z(5, n) + n + 3

for n ≥ 3. Figure 3.33 provides a drawing procedure for G5
17 + Cn with

Z(5, n) + n + 3 crossings and therefore cr(G5
17 + Cn) = Z(5, n) + n + 3 for

n ≥ 3.

. . . . . .

Figure 3.33: G5
17+Cn drawn with Z(5, n)+n+3 crossings. The black vertices

are those of G5
17 and the white vertices are those of Cn.

Six vertex graphs with discrete graphs, paths and cycles

So far, join products involving 6-vertex graphs have only been considered

in-depth for connected 6-vertex graphs, and are only known for some cases.
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These results, according to [39], are reproduced in Table 3.34.

Table 3.34: Crossing numbers of joins of particular graphs on six vertices
with discrete graphs, paths and cycles. The results for Dn are
for n ≥ 1, the results for Pn−1 are for n ≥ 2, and the results for
Cn are for n ≥ 3. Empty cells imply that the crossing number
has not yet been determined.

i G6
i cr(G6

i +Dn) cr(G6
i + Pn−1) cr(G6

i + Cn)

25 Z(6, n) Z(6, n) Z(6, n) + 1

31 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

40 Z(6, n) + 1 Z(6, n) + 2

44 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
45 Z(6, n) + 2

⌊
n
2

⌋
48 Z(6, n) + 4

⌊
n
2

⌋
49 Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

59 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1

60 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1 Z(6, n) +

⌊
n
2

⌋
+ 2

61 Z(6, n) + n Z(6, n) + n+ 1 Z(6, n) + n+ 3

66 Z(6, n) + 2
⌊
n
2

⌋
72 Z(6, n) + 4

⌊
n
2

⌋
73 Z(6, n) + 4

⌊
n
2

⌋
74 Z(6, n) + 2

⌊
n
2

⌋
79 Z(6, n) + 4

⌊
n
2

⌋
83 Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

85 Z(6, n) + n

93 Z(6, n) + 2n

94 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 3

103 Z(6, n) + 2
⌊
n
2

⌋
+ 2n Z(6, n) + 2

⌊
n
2

⌋
+ 2n+ 2

109 Z(6, n) + 2n Z(6, n) + 2n+ 1 Z(6, n) + 2n+ 3

111 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

120 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 2 Z(6, n) + 3

⌊
n
2

⌋
+ 4
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Table 3.35: Continuation of Table 3.34.

i G6
i cr(G6

i +Dn) cr(G6
i + Pn−1) cr(G6

i + Cn)

124 Z(6, n) + n+ 3
⌊
n
2

⌋
125 Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1

130 Z(6, n) + 2n

133 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 2

137 Z(6, n) + 2n

152 Z(6, n) + 3n

We will now determine new results, which can be added to Table 3.34,

for the following nine graphs.

G6
48 G6

72 G6
73 G6

79 G6
80 G6

85 G6
104 G6

128 G6
140

Theorem 3.26. Consider the discrete graph Dn, then for n ≥ 1,

1. cr(G6
48 + Dn) = cr(G6

72 + Dn) = cr(G6
73 + Dn) = cr(G6

79 + Dn) =

cr(G6
80 +Dn) = cr(G6

104 +Dn) = Z(6, n) + 4
⌊
n
2

⌋
.

2. cr(G6
128 +Dn) = cr(G6

140 +Dn) = Z(6, n) + 2
⌊

3n
2

⌋
.

Proof of 1. It can be seen that G6
104 is a supergraph of G6

48, G6
72, G6

73,

G6
79 and G6

80 and all six graphs contain G6
31 as a subgraph. It is shown in

[110], that cr(G6
31 +Dn) = Z(6, n) + 4

⌊
n
2

⌋
which, by Lemma 3.19 provides a

lower bound. Figure 3.36 provides a drawing procedure for G6
104 + Dn with

Z(6, n) + 4
⌊
n
2

⌋
crossings, which provides the matching upper bound.
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. . . . . .

bn
2
c dn

2
e

Figure 3.36: G6
104 + Dn drawn with Z(6, n) + 4

⌊
n
2

⌋
crossings. The black

vertices are those of G6
104 and the white vertices are those of

Dn.

Proof of 2. It can be seen that G6
140 is a supergraph of G6

128 and both

graphs contain G6
103 as a subgraph. It is shown in [127], that cr(G6

103 +Dn) =

Z(6, n) + 2
⌊

3n
2

⌋
which, by Lemma 3.19 provides a lower bound. Figure 3.37

provides a drawing procedure for G6
140 +Dn with Z(6, n) + 2

⌊
3n
2

⌋
crossings,

which provides the matching upper bound.

. . . . . .

bn
2
c dn

2
e

Figure 3.37: G6
140 + Dn drawn with Z(6, n) + 2

⌊
3n
2

⌋
crossings. The black

vertices are those of G6
140 and the white vertices are those of

Dn.

Theorem 3.27. Consider the path graph Pn, then for n ≥ 2, cr(G6
85 +Pn) =

Z(6, n) + n+ 1.
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Proof. It can be seen that G6
85 ⊃ G6

61 and so by Lemma 3.19, cr(G6
85 +Pn) ≥

cr(G6
61+Pn). Also, from [98], we have cr(G6

61+Pn) = Z(6, n)+n+1 for n ≥ 2.

Figure 3.38 provides a drawing procedure for G6
85 + Pn with Z(6, n) + n+ 1

crossings and therefore cr(G6
85 + Pn) = Z(6, n) + n+ 1 for n ≥ 2.

. . . . . .

Figure 3.38: G6
85+Pn drawn with Z(6, n)+n+1 crossings. The black vertices

are those of G6
85 and the white vertices are those of Pn.

Theorem 3.28. Consider the cycle graph Cn, then for n ≥ 3,

1. cr(G6
48+Cn) = cr(G6

72+Cn) = cr(G6
73+Cn) = cr(G6

79+Cn) = Z(6, n)+

4
⌊
n
2

⌋
+ 3.

2. cr(G6
85 + Cn) = Z(6, n) + n+ 3.

Proof of 1. It can be seen that G6
79 is a supergraph of G6

48, G6
72, G6

73

and all four graphs contain G6
31 as a subgraph. It is shown in [134], that

cr(G6
31 +Cn) = Z(6, n) + 4

⌊
n
2

⌋
+ 3 for n ≥ 3 which, by Lemma 3.19 provides

a lower bound. Figure 3.39 provides a drawing procedure for G6
79 + Cn with

Z(6, n) + 4
⌊
n
2

⌋
+ 3 crossings, which provides the matching upper bound.
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. . . . . .

bn
2
c dn

2
e

Figure 3.39: G6
79 + Cn drawn with Z(6, n) + 4

⌊
n
2

⌋
+ 3 crossings. The black

vertices are those of G6
79 and the white vertices are those of Cn.

Proof of 2. It can be seen that G6
85 ⊃ G6

61 and so by Lemma 3.19, cr(G6
85+

Cn) ≥ cr(G6
61 +Cn). Also, from [98], we have cr(G6

61 +Cn) = Z(6, n) +n+ 3

for n ≥ 3. Figure 3.40 provides a drawing procedure for G6
85 + Cn with

Z(6, n) + n + 3 crossings and therefore cr(G6
85 + Cn) = Z(6, n) + n + 3 for

n ≥ 3.

. . . . . .

Figure 3.40: G6
85+Cn drawn with Z(6, n)+n+3 crossings. The black vertices

are those of G6
85 and the white vertices are those of Cn.

Given the existing catalogues of known results, along with the new results

determined in this section, we can now identify all of the remaining graph

families resulting from the five and six vertex graphs for which results are

yet to be determined. Specifically, there are 607 such cases. Much like when

proving results involving the Sunlet graphs in Section 3.2, it can be valuable
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to predict, in advance, what the crossing numbers are likely to be. To that

end, we decided to use Quickcross to help predict the crossing numbers. First,

we considered all cases where the result is known. For each family, we ran the

first few instances with Quickcross, and used the results to make a prediction

about the formula for its crossing numbers. In every case where the formula

for the crossings numbers are known, it coincided with the predicted formula

from Quickcross. Given that Quickcross was able to accurately predict all

of the known cases, we then turned to the remaining cases. The full list

of predicted results for the graph families resulting from five and six vertex

graphs are displayed and discussed further in Appendix C.

To conclude this chapter, we now make a brief point about benchmarking.

In literature, there are a few benchmark sets of instances for the crossing

number problem. For example, several of these were considered in Section

2.5. However, for most of these, the actual crossing numbers are not known.

It is only the KnownCR instances, originally collected by Gutwenger [65] in

Section 4.3.2 of his thesis, where the correct values are known and have been

proved. The recent comprehensive survey of known results, along with the

additional results form this chapter, could be used to significantly expand

upon the KnownCR set for use in future research. The consideration of

all known results in order to produce a broad benchmark set with known

crossing numbers is a topic for future research.



Chapter 4

New bounds and conjectures

relating to crossing numbers

Throughout Chapter 3, we were able to take advantage of Quickcross to

directly aid in the problems we considered. In this chapter, we again take

advantage of Quickcross, however, it will now only serve as a guide in our

investigations instead of a direct aid. This is because the types of graphs that

we investigate in this chapter present some algorithmic difficulties in terms

of tractability and solution quality. These difficulties have also contributed

to the lack of exact results for many of the graphs considered in this chapter.

Consequently, the power of Quickcross as a prediction tool for the crossing

number is limited, and it becomes unreliable even when the graphs are of

moderate size. Nonetheless, it is still useful for the small instances, and we

take advantage of this here.

This chapter is laid out as follows. First, in Section 4.1, we formalise

an observation that was made during our investigations in Section 3.3. The

observation was that the crossing number of a Cartesian product of a fixed

graph with an arbitrarily large cycle appeared to always obey a simple for-

mula. The formula arises by considering the crossing number of a much

smaller and simpler graph. We conjecture that the crossing number of a

138
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Cartesian product of a fixed graph with an appropriately large cycle always

obeys this formula and we also demonstrate that all known proved cases agree

with our conjecture. This work can be viewed as a narrower and alternat-

ive approach to the general theory of tiles, which was initially developed by

Pinontoan and Richter in [115], and then further in [116] and [49].

In Section 4.2, we study the crossing numbers of a family of dense graphs,

which has only been determined in literature for a few small cases. Spe-

cifically, we study the two-parameter family of graphs arising from the join

product of a complete graph and a discrete graph. We begin by determin-

ing lower bounds on the crossing numbers by adapting a classical counting

argument to this family. We then take advantage of properties of cylinder

drawings of the complete graph to determine an upper bound on the crossing

numbers of this family. Although it is not obvious from the drawings that

the upper bound would be tight, values obtained from Quickcross seem to

suggest that they are, and we conclude this section with a conjecture that

this is the case.

Next, in Section 4.3, we study the well-known family of generalised Peter-

sen graphs with parameters n and k. Specifically, we focus on the smallest

cases for which the crossing numbers are unknown. We show that Quick-

cross is able to obtain results which coincide with recent conjectures about

the crossing numbers for the case where k = 4 and n is arbitrary. Motiv-

ated by this, we use Quickcross to consider the case when k = 5 and n is

arbitrary, for which there are no conjectures about the equality of crossing

numbers in literature and provide the drawing procedures which give these

upper bounds. We determine new upper bounds, which we conjecture are

equal to the crossing numbers for this case. We were able to discover these

drawing procedures by running Quickcross many times, storing the drawings

it produced and then identifying which of these drawings have properties

which may be generalised.
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Next, in Section 4.4, we consider the n-cube, a graph whose vertices

and edges correspond to those of the n-dimensional cube. Research on the

crossing numbers of n-cubes has a fascinating history and even determining

upper bounds remains a notoriously difficult problem. One reason for this

is that the number of vertices of the n-cube increases exponentially with n.

Quickcross is able to obtain a solution to the 7-cube and 8-cube with fewer

crossings than a long-conjectured upper bound from the 1970’s. The fact that

the upper bound was not tight was recently discovered by Yang et al. [145]

who produced a constructive procedure for drawing the n-cube with fewer

crossings. However, this is the first time a heuristic approach has discovered

such a drawing.

Lastly, in Section 4.5, we make some preliminary observations about a

family of graphs, the Sheehan graphs, whose crossing number has not yet

been investigated. We observe that the the crossing number of these graphs

is of the same order as the complete graphs. We also observe that the Shee-

han graphs provide significantly difficult instances for the tested crossing

minimisation heuristics. We also demonstrate a formula for the number of

crossings, for which our best found solutions follow very closely.

4.1 Cartesian products involving cycles

A common line of research into crossing numbers has been to consider infinite

families of graphs which result from graph products. As discussed in Section

3.2, the earliest such published result was due to Harary, Kainen and Schwenk

[75] who conjectured the following.

Conjecture 4.1. For m ≥ n ≥ 3, consider the cycles Cn and Cm. Then,

cr(Cn�Cm) = (n− 2)m.

Despite an enormous amount of effort, this conjecture (in its original
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form) remains unproven. Indeed, it appears that determining the crossing

numbers of graph families resulting from Cartesian products involving cycles

is, in general, a difficult task. In [39], an exhaustive list of graphs and

graph families with known crossing numbers was given, including Cartesian

products involving small fixed graphs with arbitrarily large paths, cycles, and

stars. Of this set, it was the Cartesian products involving cycles that had

the fewest proved results.

In this section, we propose a conjecture for the crossing numbers of

Cartesian products involving arbitrarily large cycles. In particular, if the

new conjecture can be proved, we will show that Conjecture 4.1 follows as

well. We will demonstrate that all known proved crossing number results in-

volving Cartesian products of cycles obey this new conjecture. Furthermore,

we will use Quickcross to do an expansive experimental analysis of Cartesian

products involving cycles to provide evidence that the new conjecture is valid.

For any given graph G, we define a related multigraph Ĝ which will be

useful in the upcoming discussion.

Definition 4.2. Consider a graph G containing n vertices. Then Ĝ is formed

in the following way. Begin with the union of G, and two vertices v1 and v2.

For every vertex v in G, add edges (v, v1) and (v, v2) to Ĝ. Finally, add n

edges (v1, v2) (so that the result is a set of multiedges of cardinality n).

An example of a graph G and its related Ĝ is displayed in Figure 4.1.

v1 v2

Figure 4.1: On the left, a graph G and on the right, the corresponding graph
Ĝ.

In what follows, we will provide evidence that the following conjecture is



4.1. Cartesian products involving cycles 142

true.

Conjecture 4.3. For a given graph G containing n vertices, define p :=

cr(Ĝ). Then, there exists an integer qG ≥ 0 such that, for all m > n,

cr(G�Cm) =


mp if m is even,

mp+ qG if m is odd.

The rationale for believing Conjecture 4.3 is as follows. The graph G�Cm

can be thought of as consisting of m individual copies of G, plus some edges

corresponding to Cm which join the copies together. Then, suppose we have

an optimal drawing of Ĝ. It is obviously undesirable to cross the multiedge

since this would introduce n crossings, so we assume that the crossings occur

elsewhere (this will be proved shortly in Lemma 4.4). Then, if those mul-

tiedges are deleted, and v1 and v2 are replaced with copies of G, what results

is one small part of G�Cm. Clearly then, the p crossings in an optimal draw-

ing of Ĝ correspond to the crossings on an individual copy of G, plus any

extra crossings introduced by the edges leaving that copy to go to its neigh-

bouring copies. This can then be replicated for each copy of G, resulting in

mp crossings. The only remaining question is if there are any extra cross-

ings introduced as the dangling edges are joined together to form G�Cm.

We will prove in Theorem 4.6 that when m is even, this can be achieved

without introducing any new crossings, and when m is odd, crossings may

be introduced, but only between at most one pair of neighbouring copies of

G. Finally, we will then provide empirical evidence that this does, indeed,

lead to an optimal drawing of the graph.

We begin with the following lemma.

Lemma 4.4. There exists an optimal drawing of Ĝ such that none of the

multiedges (v1, v2) are involved in any crossings.

Proof. Consider an optimal drawing D̂ of Ĝ. Clearly the number of crossings
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on each multiedge connecting v1 and v2 must be the same, otherwise we may

reroute them to be arbitrarily close to the multiedge with the fewest cross-

ings and obtain a contradiction to the optimality. The same argument also

implies that D̂ can be modified, without increasing the number of crossings,

so that all multiedges between v1 and v2 lie arbitrarily close to each other

and cross the exact same set of edges. Call the resulting drawing D̂′. Now, in

D̂′, there are n edges emanating from v1 which connect to vertices of G, and

there are n multiedges emanating from v1 which connect to v2. The modi-

fications to produce D̂′ ensure that the cyclic ordering of edges emanating

from v1 are partitioned so that the n multiedges between v1 and v2 occur

consecutively and then the n edges connecting v1 to vertices of G occur af-

terwards. This situation is displayed in Figure 4.2 and the same property

holds for v2. This permits D̂′ to be further modified, without increasing the

number of crossings, so that v1 and v2 lie arbitrarily close to each other. To

do this, consider any edge e which crosses the multiedges between v1 and

v2. Then v1 can be moved to the opposite side of e. This removes at least n

crossings from the multiedges and then the edges between v1 and the vertices

of G can be drawn so that they cross e where the multiedges used to cross.

The partitioning of the edges around v1 ensures that the total number of

crossings does not increase. This process is illustrated in Figure 4.3 (a) and

(b). Thus we have obtained an optimal drawing of Ĝ with no crossings on

the multiedges (v1, v2).

v1

n edges to v2n edges to G

Figure 4.2: The cyclic ordering of edges around v1 in D̂′.

Corollary 4.5. Any optimal drawing D̂ satisfying Lemma 4.4 can be drawn

so that v1 and v2 lie in the unbounded region.
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v1 v2

e

v1 v2

e

(a)

(b)

Figure 4.3: In (a), the multiedges between v1 and v2 are crossed by e. In (b),
v1 has been moved to the other side of e without increasing the
total number of crossings.

Proof. Consider the planarisation of D̂. Since there are no crossings on the

multiedges (v1, v2), it is clear that there exists a face in this planarisation

that contains both v1 and v2. Then, it is sufficient to make this face the

unbounded face.

Lemma 4.4 and Corollary 4.5 lead to the following upper bound on

cr(G�Cm).

Theorem 4.6. For a given graph G containing n vertices, define p := cr(Ĝ).

Then, there exists an integer qG ≥ 0 such that, for all m > n,

cr(G�Cm) ≤


mp if m is even,

mp+ qG if m is odd.

Proof. We shall construct a drawing of G�Cm which meets the upper bound.

The approach will be to start with m disjoint drawings of G, and then join

these together in such a way as to produce G�Cm. First, consider the graph

Ĝ, and let D̂ be an optimal drawing of Ĝ such that there are no crossings on

the multiedges (v1, v2); from Lemma 4.4, we know that such a drawing must
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exist, and from Corollary 4.5 we can draw this drawing so that v1 and v2 lie

in the unbounded region. Then, delete the multiedges (v1, v2) from D̂.

Next, we create m disjoint drawings of G, which we denote by Di for

i = 1, 2, . . . ,m. For the drawings with odd label, we simply set Di = D̂, and

for the drawings with even label, we set Di to be equal to the mirror image

of D̂. For each Di, let v1,i and v2,i denote the vertices v1 and v2 from the

definition of Ĝ. We then arrange these m drawings in a circle in the order

of their indices. If m is even, it is clear that every drawing is the mirror

image of both of its neighbours. If m is odd, then there is exactly one pair of

neighbours which are drawn identically. Without loss of generality, let this

pair be D1 and Dm. These situations are displayed, in detail, in Figure 4.4.

We will first handle the case when m is even. For each drawing D2i

with even label, consider its neighbour D2i−1. Since they are reflections,

the cyclic permutation of edges emanating from v2,2i is exactly the inverse

of those around v2,2i−1. This implies that we can modify the drawing so

that the vertices v2,2i and v2,2i−1 are deleted, and then each vertex of D2i is

connected, by a new edge, to its corresponding vertex in D2i−1, by simply

following the previously deleted edges. An example can be seen in Figure 4.5.

It can be easily seen that doing so does not alter the number of crossings.

Then, an analogous modification can be made for drawings D2i and D2i+1 on

vertices v1,2i and v1,2i+1 without altering the number of crossings. Applying

this modification to all drawings with even label produces a drawing of the

graph G�Cm. Since the number of crossings has not changed, it is simply

equal to mp.

Next, we handle the case when m is odd. The argument from the previous

paragraph can be applied to all drawings D2i with even label here as well, and

the number of crossings remains unchanged at mp. Then, all that remains

is to modify the drawings of D1 and Dm to obtain a drawing of G�Cm.

Vertices v1,1 and v2,m still exist in the drawing at this stage. We can then
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v1,1

v2,1 v2,2

v1,2

v1,3

v2,3v2,4

v1,4

(a)

D1 D2

D3D4

v1,1

v2,1 v2,2 v1,2 v1,3

v2,3

v2,4

v1,4v1,5

v2,5

(b)

D1

D2

D3

D4D5

Figure 4.4: In (a), each Di is a mirror image of Di−1. In (b), each Di is a
mirror image of Di−1, with the exception of D1 which is identical
to D5. The edges and vertices of G inside each Di are highlighted
red to emphasise that they are mirror imaged.
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Figure 4.5: The modifications to produce a drawing of G�Cm, when m is
even.

simply delete these vertices, and each vertex of D1 can be connected, by a

new edge, to its corresponding vertex in Dm. However, in this case, we may

need to increase the number of crossings to do so. Suppose that this is done

in an optimal way (so as to introduce the least new crossings). Then we set

qG to be the number of new crossings introduced in this step. The result is

a drawing of G�Cm which contains mp+ qG crossings.

Given that Theorem 4.6 provides a valid upper bound for Cartesian

products involving cycles, we now revisit Conjecture 4.3 which claims that

the crossing number coincides with this upper bound. We now provide evid-

ence to support Conjecture 4.3.

We first consider all proved results for crossing numbers of Cartesian

products involving cycles. In a recent survey [39] of graph families with

known crossing numbers, an exhaustive list of Cartesian products involving

cycles with known crossing numbers was provided. In particular, the follow-

ing results are known.

Theorem 4.7. Consider the path Pn for n ≥ 1 and the cycle Cm for m ≥ 3.

Then,

cr(Pn�Cm) = 0.

Theorem 4.8 ([121, 19, 96, 118, 6, 62]). Consider the cycles Cn and Cm for
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3 ≤ m ≤ n. Then, if either m ≤ 7, or m(m+ 1) ≤ n,

cr(Cn�Cm) = (m− 2)n.

Theorem 4.9 (Jendrol and Ščerbová, 1982 [85]). Consider the star S3, and

the cycle Cm for m ≥ 3. Then, cr(S3�C3) = 1, cr(S3�C4) = 2, cr(S3�C5) =

4, and

cr(S3�Cm) = m, n ≥ 6.

Theorem 4.10 (Klešč, 1991 [90]). Consider the star S4, and the cycle Cm

for m ≥ 3. Then, cr(S4�C3) = 2, cr(S4�C4) = 4, cr(S4�C5) = 8, and

cr(S4�Cm) = 2m, n ≥ 6.

Theorem 4.11 (Zheng et al., 2008 [148]). Consider the complete graph Kn

for n ≤ 7, and the cycle Cm for m ≥ 3. Then,

cr(Kn�Cm) =
1

4

⌊
n+ 2

2

⌋⌊
n+ 1

2

⌋ ⌊n
2

⌋⌊n− 1

2

⌋
m. (4.1)

Also, equation (4.1) holds if n = 8, 9, 10 and m is even.

Finally, there are a number of graph families resulting from the Cartesian

product of small fixed graphs with arbitrarily large cycles. These were dis-

cussed in detail in Section 3.3, and in Table 4.6, we reproduce the list, given

in [39], of all such known results, adding in the twelve new results proved in

Section 3.3.

Recall that Conjecture 4.3 makes two claims. First, that cr(G�Cm) is

linear in m, for m ≥ |G|, and second that the leading coefficient can be

determined by finding the crossing number of Ĝ. It is clear from the above

known results that the crossing number is, indeed, linear in m in all cases.

Perhaps interestingly, the constant term qG = 0 in all of those cases other

than the case G5
16�Cm where qG = 1. Then, to confirm that these results all

agree with Conjecture 4.3, we need to find cr(Ĝ) for the various graphs.
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Table 4.6: For graphs G such that cr(G�Cm) is known, we display their
crossing numbers. All results are correct for m ≥ 1.

id G cr(G�Cm) id G cr(G�Cm) id G cr(G�Cm)

G3
1 0 G5

11 3m G6
59 4m

G3
2 m G5

12 2m G6
60 4m

G4
1 m G5

13 3m G6
63 2m

G4
2 0 G5

14 3m G6
64 2m

G4
3 m G5

16 2(m+
⌊
m+1

2

⌋
) G6

66 3m

G4
4 2m G5

21 9m G6
67 3m

G4
5 2m G6

25 0 G6
70 3m

G4
6 3m G6

40 4m G6
75 2m

G5
1 0 G6

41 3m G6
77 2m

G5
2 2m G6

42 2m G6
78 3m

G5
3 m G6

43 m G6
83 4m

G5
4 m G6

44 2m G6
90 4m

G5
5 m G6

46 m G6
92 3m

G5
6 2m G6

47 2m G6
98 3m

G5
7 2m G6

49 2m G6
113 4m

G5
8 3m G6

53 2m G6
156 18m

G5
9 2m G6

54 2m C7 5m
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Theorem 4.12. The following three items are true for m ≥ 1.

1. cr(P̂m) = 0,

2. cr(Ŝm) =
⌊
m
2

⌋ ⌊
m−1

2

⌋
,

3. cr(Ĉm) = m− 2.

Proof. We first consider items 1 and 2. It is obvious that P̂m is planar, as

can be seen in Figure 4.7 (a) satisfying item 1. It is also clear that Ŝm

is isomorphic to the graph K1,1,1,m with one of the edges connecting the

partitions of cardinality one replaced by a multiedge of cardinality m + 1.

If there exists an optimal drawing of K1,1,1,m such that one of the edges

connecting the partitions of cardinality one is not crossed, then it is clear

that the crossing numbers of Ŝm and K1,1,1,m coincide. Figure 4.7 (b) displays

such a drawing of K1,1,1,m. Then, it was shown in [117] that cr(K1,1,1,m) =

Z(3, n) =
⌊
m
2

⌋ ⌊
m−1

2

⌋
, satisfying item 2.

(a) (b)

v1 v2

Figure 4.7: In (a), a planar drawing of P̂m. In (b), a procedure for draw-
ing K1,1,1,m optimally such that one of the edges connecting the
partitions of cardinality one is not crossed.

We now turn our attention to item 3. In Ĉm, label the vertices of Cm in a

cyclic fashion as u1, u2, . . . , um. First, we claim that in any optimal drawing
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u1u2

uk−1 uk

uk+1 uk+2

um−1um

c

u1u2

uk−1 uk

uk+1 uk+2

um−1um

Figure 4.8: On the left, c is a crossing between two edges of Cm. On the
right, the modification removes c and reduces the total number
of crossings by one.

of Ĉm, there are no crossings between any pair of edges of Cm. To show

this, we follow of argument of Klešč et al. in [95]. Assume the contrary and

let c be a crossing on the edges of Cm. Then the crossing c partitions the

vertices of C in two sets as u1, u2, . . . , uk and uk+1, uk+2, . . . , um. But then

we may redraw Cm as in Figure 4.8 so that the cyclic labelling of Cm is now

u1, u2, . . . , uk, um, um−1, . . . , uk+1 and the crossing c is removed. Since each

vertex ui is linked to v1 and v2, the other edges in the graph do not need to be

redrawn. Hence, the number of crossings has reduced by one, contradicting

the optimality. This claim ensures that in any optimal drawing of Ĉm, either

the crossings occur on the multiedges, or they occur on edges of the form

(v1, ui) or (v2, uj).

Next, we inductively prove that cr(Ĉm) = m− 2. The graph Ĉ3 contains

K5 as a subgraph and thus cr(Ĉ3) ≥ 1. This, along with the upper bound

from Theorem 4.6 implies that cr(Ĉ3) = 1. Now, assume that Ĉm = m − 2

holds for all m = 3, 4, . . . , k − 1 but that Ĉk < k − 2. Consider an optimal

drawing of Ĉk with no crossings on any of the multiedges. By Lemma 4.4,

such a drawing exists. Then, by the earlier claim, there must exist at least

one pair of edges e = (v1, ui) and f = (v2, uj) such that there is a crossing on

either e or f . Deleting edges e and f produces a graph which is homeomorphic

to Ĉk−1 and has at most k − 3− 1 = k − 4 crossings, which contradicts our

inductive assumption. Hence we obtain that cr(Ĉm) = m − 2 which proves

item 3.
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Theorem 4.12 verifies Conjecture 4.3 for the results in Theorems 4.7-4.11.

For the result in 4.11, it is worth noting that the graph K̂m is isomorphic to

Km+2 with one of the edges replaced by a multiedge of cardinality m. Note

that all complete graphs are edge-transitive, so it doesn’t matter which edge

is replaced. If there exists an optimal drawing of Km+2 such that there is at

least one edge drawn with no crossings, then the crossing numbers of K̂m and

Km+2 coincide. It is currently an open question whether there always exists

optimal drawings of the complete graph such that there is an edge drawn

with no crossings on it. However, for the cases where the crossing number of

Kn is known, such drawings are known to exist. Hence, cr(K̂m) = cr(Km+2)

for m ≤ 10 and so these cases also support Conjecture 4.3.

Finally, we consider the various results involving the Cartesian product

of a small fixed graph with arbitrarily large cycles. For each of these small

fixed graphs G, we used [38] to compute cr(Ĝ). Their crossing numbers are

displayed in Table 4.9, and it is a simple exercise to check that they coincide

with the coefficients in Table 4.6.

Given that all known results for crossing numbers of Cartesian products

involving cycles agree with Conjecture 4.3, we conducted an additional, thor-

ough experimental exercise to provide further evidence. Recall that in Sec-

tion 3.3, we used Quickcross to predict the crossing numbers of Cartesian

products of six-vertex graphs with arbitrarily large cycles, paths and stars;

these are included in Appendix C. For the special case of cycles, we exten-

ded this exercise to all small fixed graphs of orders n = 5, 6, 7, 8 and also

used Quickcross to predict the crossing number of Ĝ in each case. Note that

this set includes 12,103 graphs, so we do not list the results here. In every

single tested case, the crossing numbers predicted by Quickcross agreed with

Conjecture 4.3. Although this experiment does not conclusively determine

the various crossing numbers, it nonetheless provides additional empirical

evidence that Conjecture 4.3 is true.
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Table 4.9: For graphs G such that cr(G�Cm) is known, we display the cross-

ing numbers of Ĝ.

id G cr(Ĝ) id G cr(Ĝ) id G cr(Ĝ)

G3
1 0 G5

11 3 G6
59 4

G3
2 1 G5

12 2 G6
60 4

G4
1 1 G5

13 3 G6
63 2

G4
2 0 G5

14 3 G6
64 2

G4
3 1 G5

16 2 G6
66 3

G4
4 2 G5

21 9 G6
67 3

G4
5 2 G6

25 0 G6
70 3

G4
6 3 G6

40 4 G6
75 2

G5
1 0 G6

41 3 G6
77 2

G5
2 2 G6

42 2 G6
78 3

G5
3 1 G6

43 1 G6
83 4

G5
4 1 G6

44 2 G6
90 4

G5
5 1 G6

46 1 G6
92 3

G5
6 2 G6

47 2 G6
98 3

G5
7 2 G6

49 2 G6
113 4

G5
8 3 G6

53 2 G6
156 18

G5
9 2 G6

54 2 C7 5
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4.2 Join product of a complete graph and a

discrete graph

Let Kn be the complete graph on n vertices and let Dd be the discrete graph

on d vertices, that is, the graph consisting of d isolated vertices. In the

following, we will consider the join product Kn +Dd. For example, K3 +D3

is shown in Figure 4.10.

Figure 4.10: A drawing of K3 +D3.

The graph Kn + Dd is isomorphic to the complete multipartite graph

Kd,1,1,...,1, where there are n partitions of cardinality one. Some crossing

numbers for this family are known and for the sake of consistency, we present

all of the known results in the form of a join product instead of complete

multipartite graphs. In particular, it is easy to check that for the graphs

K2 +Dd, the following is true.

Lemma 4.13. For any positive integer d,

cr(K2 +Dd) = 0.

In the following, recall that H(n) = (1/4)
⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
and

Z(n1, n2) =
⌊
n1

2

⌋ ⌊
n1−1

2

⌋ ⌊
n2

2

⌋ ⌊
n2−1

2

⌋
.

For the graphs K3 + Dd, the following holds by an argument similar to

those used throughout Section 3.3 and although it was probably noticed much

earlier, it is explicitly given in [117].
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Lemma 4.14 (Qian and Huang, 2007 [117]). For any positive integer d,

cr(K3 +Dd) = Z(d, 3).

The case K4 +Dd was determined by Ho in 2009 [81].

Theorem 4.15 (Ho, 2009 [81]). For any positive integer d,

cr(K4 +Dd) = Z(d, 4) + d.

The final case for which the crossing numbers are known, K5 + Dd was

determined by Ĺ’u and Huang in 2008 [105].

Theorem 4.16 (Ĺ’u and Huang, 2008 [105]). For any positive integer d,

cr(K5 +Dd) = Z(d, 5) + 2d+

⌊
d

2

⌋
+ 1.

Note that, if d = 0, then Kn + Dd
∼= Kn and, if d = 1, then Kn + Dd

∼=

Kn+1. Therefore, for the general case, we focus on d ≥ 2. Additionally,

note that, if d = 2, then Kn + Dd is isomorphic to the complete graph on

n + 2 vertices with one edge deleted. For this case, some crossing numbers

for small instances are determined in [112] by adapting arguments originally

used for complete graphs.

Theorem 4.17 (Ouyang et al., 2014 [112]). For n ≤ 10,

cr(Kn +D2) =
1

4

⌊
n+ 4

2

⌋⌊
n+ 1

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋
.

For the general case, we derive a recursive lower bound by adapting a

classical counting argument (for example, see [89]):

Lemma 4.18. For d ≥ 2,

cr(Kn +Dd) ≥
nıcr(Kn−1 +Dd) + 2cr(Kn+1)

n− 2
.

Proof. Suppose D is a good drawing of Kn + Dd. Let c be a crossing of
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D between the edges (u, v) and (w, x). Then c falls into exactly one of the

following three types:

1. |{u, v, w, x} ∩ V (Dd)| = 0.

2. |{u, v, w, x} ∩ V (Dd)| = 1.

3. |{u, v, w, x} ∩ V (Dd)| = 2.

Let the number of crossings of types 1, 2, 3 be denoted as c1, c2, c3. Now

consider the n subgraphs, along with their corresponding subdrawings in

D, created when each vertex from V (Kn) is deleted, one at a time. Each

drawing of these subgraphs is a drawing of Kn−1 + Dd, and hence, has at

least cr(Kn−1 +Dd) crossings. We can easily count the number of subgraphs,

in which a particular crossing must be included. In particular, a crossing of

type 1 is in exactly (n − 4) of these subgraphs. A crossing of type 2 is in

exactly (n− 3) of these subgraphs. A crossing of type 3 is in exactly (n− 2)

of these subgraphs. Then,

(n− 4)c1 + (n− 3)c2 + (n− 2)c3 ≥ ncr(Kn−1 +Dd). (4.2)

Suppose D is an optimal drawing of Kn+Dd. Then c1+c2+c3 = cr(Kn+Dd)

and so,

(n− 2)cr(Kn +Dd)− c2 − 2c1 ≥ ncr(Kn−1 +Dd). (4.3)

Notice that c1 corresponds to the number of crossings in a drawing of Kn.

Next, by an averaging argument, there exists at least one vertex y ∈ V (Dd)

such that the number of crossings on edges incident to y, which are also

type 2 crossings, is at least c2/d. Adding these crossings to c1, we obtain all

crossings of a drawing of Kn+1, and so,

c2

d
+ c1 ≥ cr(Kn+1). (4.4)
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and hence substituting the above into (4.3),

(n− 2)cr(Kn +Dd) +
2− d
d

c2 − 2cr(Kn+1) ≥

ncr(Kn−1 +Dd).

(4.5)

For d = 2, the result follows immediately. For d > 2 the second term on the

left hand side is negative and so we may ignore it and the result follows.

Upper bounds on the crossing number of cr(Kn + Dd) can be shown

by constructing a drawing procedure. In [120], Richter and Thomassen in-

vestigated so-called cylinder drawings of Kn. The cylinder drawings of Kn

are a family of drawings of Kn where there are two concentric cycles with

every vertex lying on one of the cycles and such that no crossings exist on

either cycle. We observe that specific edges of the cylinder drawings have a

large number of crossings on them and utilise this to derive an upper bound

for cr(Kn + Dd) by removing as many of these edges as possible. The de-

rived bound obtains the exact value of cr(Kn + Dd) for the known cases of

n = 2, 3, 4, 5 as well as the cases described in Theorem 4.17, where d = 2.

When d = 0, the derived bound coincides with H(n), and when d = 1, it

coincides with H(n+ 1) (recall that Kn +D1
∼= Kn+1). In the following, we

will construct a particular drawing of Kn +Dd which we will denote a spiral

cylinder drawing.

First, we begin with a well-known construction of a cylinder drawing of

Kn+d and then delete the edges of a vertex induced subgraph of Kd to reduce

it to a drawing of Kn + Dd. Construct a cylinder drawing of Kn+d, for

n+ d ≥ 6, in the following way:

1. Place d(n+ d)/2e vertices on a small circle.

2. Draw straight lines between each of the d(n + d)/2e vertices to form(d(n+d)/2e
4

)
crossings.

3. Place b(n + d)/2c vertices on a larger circle which encloses the small

circle, in the configuration illustrated in Figure 4.11, depending on
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whether n+ d is odd or even.

4. Connect the vertices of the larger circle, using the unbounded region,

to form another
(b(n+d)/2c

4

)
crossings.

5. Choose a vertex on the inner circle and connect it to each vertex on

the outside circle, drawing the edges in a clockwise fashion.

6. Choose the next vertex anticlockwise on the inner circle and repeat the

previous step.

Cylinder drawings for K7 and K8 are illustrated in Figure 4.11. Note that

in those illustrations, the edges inside the inner cycle are omitted for clarity,

as are the edges in the unbounded region. It is a simple exercise to count the

crossings of this drawing for general n, and it coincides exactly with H(n).

Figure 4.11: Cylinder drawings of K7 on the left and K8 on the right.

It is clear that, beginning with the graph Kn+d, the edges of a vertex

induced subgraph formed by any set of d vertices can be deleted and the

resulting graph is Kn + Dd. So, we will begin with the cylinder drawing of

Kn+d described above, which has H(n + d) crossings, and then count how

many crossings are removed when edges of the drawing are deleted to obtain

a drawing of Kn + Dd. Beginning with the vertex located at the top of the

inner circle, label the vertices on the inner circle in a anticlockwise fashion as

a1, a2, . . . , ad(n+d)/2e. Then, beginning at the vertex immediately anticlock-
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wise from the top vertex on the outside circle (if n+ d is even), or the vertex

immediately anticlockwise from the top spot which is missing a vertex (if

n+d is odd), label the vertices on the outside circle in an anticlockwise fash-

ion as b1, b2, . . . , bb(n+d)/2c. Delete the edges of the vertex induced subgraph

formed by the vertices {a1, a2, . . . , add/2e} ∪ {b1, b2, . . . , bbd/2c}. We refer to

the resulting drawing as a spiral cylinder drawing of Kn + Dd. Figure 4.12

displays example drawings of K3 +D4 and K4 +D4.

a4

a1

a2

a3

b3b1

b2

a4

a1

a2

a3

b3

b4

b1

b2

Figure 4.12: On the left, a spiral cylinder drawing of K3 + D4 and on the
right, a spiral cylinder drawing of K4 +D4.

The proof of the upcoming theorem, although not particularly difficult,

is rather tedious, and involves the consideration of many cases. For the

sake of clarity, we omit the proof here; however, the full proof is included in

Appendix B.

Theorem 4.19. For n+ d ≥ 6, the number of crossings in a spiral cylinder

drawing of Kn +Dd is Z(n, d) +H(n) + f(n, d) where,

f(n, d) =
1

2

⌊
nd

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋

Theorem 4.19 leads directly to the following corollary.

Corollary 4.20. cr(Kn +Dd) ≤ Z(n, d) +H(n) + f(n, d) where,

f(n, d) =
1

2

⌊
nd

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋
.
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Having established a new upper bound for the crossings numbers of Kn+

Dd, we were interested in determining how tight the upper bound is. We

repeatedly submitted various instances of the graphs Kn +Dd to Quickcross

in an attempt to find any drawing with strictly fewer crossings than the

upper bound in Theorem 4.19. In all tested cases, Quickcross was unable to

do so. Furthermore, for all tested values of the parameters, Quickcross finds

drawings with exactly the stated upper bound. In particular, Quickcross

obtained drawings of Kn + Dd meeting the bound precisely for all values of

n and d such that n + d ≤ 50. The results of this experiment lead us to

propose the following conjecture.

Conjecture 4.21. cr(Kn +Dd) = Z(n, d) +H(n) + f(n, d) where,

f(n, d) =
1

2

⌊
nd

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋

Tables 4.13 and 4.14 display some formulas which result from Theorem

4.19 when n or d are fixed. For all of the known cases discussed at the begin-

ning of this section, the formulas coincide with the exact crossing numbers.

n New upper bound Known results
2 0 0
3 Z(3, d) Z(3, d)
4 Z(4, d) + d Z(4, d) + d
5 Z(5, d) +

⌊
5d+2

2

⌋
Z(5, d) +

⌊
5d+2

2

⌋
6 Z(6, d) + 6d+ 3 -
7 Z(7, d) + 3

⌊
7d+6

2

⌋
-

8 Z(8, d) + 18d+ 18 -
9 Z(9, d) + 6

⌊
9d+12

2

⌋
-

10 Z(10, d) + 40d+ 60 -
11 Z(11, d) + 10

⌊
11d+20

2

⌋
-

12 Z(12, d) + 75d+ 150 -

Table 4.13: Resulting formulas from the upper bound in Theorem 4.20 when
n is fixed. Note that, for n ≤ 5, the formulas coincide with the
exact crossing numbers.

Lastly, we remark that the next case for which exact results are yet to
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d New upper bound
0 H(n)
1 H(n+ 1)
2 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n+4

2

⌋ ⌊
n+1

2

⌋
3 Z(n, 3) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+5

2

⌋ ⌊
n+4

2

⌋
− 4
)

4 Z(n, 4) + 1
4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+8

2

⌋ ⌊
n+5

2

⌋
− 8
)

5 Z(n, 5) + 1
4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+9

2

⌋ ⌊
n+8

2

⌋
− 16

)
6 Z(n, 6) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+12

2

⌋ ⌊
n+9

2

⌋
− 24

)
7 Z(n, 7) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+13

2

⌋ ⌊
n+12

2

⌋
− 36

)
8 Z(n, 8) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+16

2

⌋ ⌊
n+13

2

⌋
− 48

)
9 Z(n, 9) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+17

2

⌋ ⌊
n+16

2

⌋
− 64

)
10 Z(n, 10) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+20

2

⌋ ⌊
n+17

2

⌋
− 80

)
11 Z(n, 11) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+21

2

⌋ ⌊
n+20

2

⌋
− 100

)
12 Z(n, 12) + 1

4

⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ( ⌊
n+24

2

⌋ ⌊
n+21

2

⌋
− 120

)
Table 4.14: Resulting formulas from the upper bound in Theorem 4.20 when

d is fixed. Note that, for d = 2, the formula coincides with the
exact crossing number, for the known cases of n ≤ 10 (from
Lemma 4.17).

be determined is K6 + Dd. When n is even, the upper bound in Corollary

4.20 collapses nicely to H(n) + Z(n, d) + d(H(n + 1) − H(n)). There is a

neat interpretation of this formula. Consider one of the vertices from Dd.

When the join product is performed, it along with Kn forms Kn+1. Hence, it

adds some number of crossings to the drawing, and if Kn is drawn optimally,

this number is at least (cr(Kn+1) − cr(Kn)). This argument can be made

for each of the d vertices. Also, the addition of these edges for all d vertices

collectively introduces Kn,d as a subgraph, and so the number of crossings

also increases by at least cr(Kn,d). Then, one way to complete a proof of

cr(Kn + Dd), would be to establish that if vertices of Dd can be joined to

Kn with fewer than (cr(Kn+1)− cr(Kn)) crossings, then either the Kn or the

Kn,d are drawn sufficiently sub-optimally. For the case K6 + Dd, the values

in the above argument cr(K6), cr(K7) and cr(K6,d) are all known and these

graphs may be small enough to complete the argument via a brute force
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computation.

4.3 Generalised Petersen graphs

The generalised Petersen graph GP (n, k) is defined as the graph on 2n ver-

tices labelled as {u0, . . . , un−1, v0, . . . , vn−1} and with the edge set {(ui, ui+1),

(ui, vi), (vi, vi+k); i = 0, . . . , n − 1} where the subscripts are read modulo n.

Figure 4.15 displays example drawings of GP (6, 2) and GP (9, 4). With this

notation, GP (n, k) is isomorphic to GP (n, n−k) and so it is standard to only

consider k ≤ n/2. Then, in all cases except for k = n/2, generalised Petersen

graphs are simple and 3-regular. It is worth noting that, in literature, it is

common for generalised Petersen graphs to be denoted by P (n, k). However,

in order to avoid confusion with the notation for paths, which we consider

extensively in this thesis, in what follows, we will use GP (n, k) to denote a

generalised Petersen graph.

Figure 4.15: Drawings of GP (6, 2) on the left and GP (9, 4) on the right.

For some values of the parameters n and k, the crossing number of

GP (n, k) is known, and in fact, some of these graphs were considered in

Section 2.5.2 when benchmarking the performance of Quickcross. It is also

known that there are several different isomorphism classes for the general-

ised Petersen graphs and these are fully characterised in [133]. We will begin

by considering the smallest unknown general case, GP (n, 4), for which only
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partial results are known. We will show that Quickcross appears to reliably

find drawings for these graphs which coincide with the myriad known results

and conjectures. Motivated by this, we use Quickcross to predict the crossing

numbers for the next case, GP (n, 5).

For k = 1, generalised Petersen graphs are always planar. The cases when

k = 2 and k = 3 are now fully decided; the history of these cases is described

in a recent survey [39].

In 1986, Fiorini [56] was the first to consider the case when k = 4. In

particular, he considered GP (4h, 4), and claimed the following result.

Theorem 4.22 (Fiorini, 1986 [56]). For any integer h ≥ 4,

cr(GP (4h, 4)) = 2h.

This result has been accepted in literature. However, we note here that

no proof was given in Fiorini’s paper (which was primarily devoted to the

case when k = 3), and to the best of our knowledge no subsequent pa-

per has addressed this oversight. As part of a general investigation of the

graphs GP (n, 4), Chimani [30] has independently verified that the values of

cr(GP (4h, 4)) provided by Theorem 4.22 are correct for all h ≤ 44.

Lin et al. [144] provided a drawing procedure for each graphGP (4h+2, 4),

h ≥ 3, which possesses 2h+ 2 crossings. This implies an upper bound and it

is conjectured independently in [144] and [30] that equality holds.

Conjecture 4.23 (Lin et al., 2009 [144], Chimani, 2008 [30]). For any integer

h ≥ 3,

cr(GP (4h+ 2, 4)) = 2h+ 2.

Finally, Chimani [30] proposed conjectures for the two remaining cases

GP (4h+1, 4) and GP (4h+3, 4), and verified the conjectures for many small

and moderate values of h by utilising his integer programming exact methods.
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Conjecture 4.24 (Chimani, 2008 [30]). For any integer h ≥ 3, and k ∈

{1, 3},

cr(GP (4h+ k, 4)) = 2h+ 4,

with the sole exceptions of GP (13, 4) and GP (17, 4) whose crossing numbers

are 7 and 10 respectively.

For small values of n, some other special cases of GP (n, 4) were first

determined in [57, 42, 56, 70, 144, 107, 124] by utilising various theoretical

methods and exact algorithms. These are summarised in Table 4.16. More

recently, in [30], Chimani reconfirmed these values and extended the known

values to considerably larger values of n.

n 8 9 10 11 12 13 14 15 16 17
cr(P (n, 4)) 1 3 4 5 4 7 8 10 8 10

Table 4.16: Some known crossing numbers of graphs GP (n, 4) for small or-
ders.

We ran Quickcross on the graphs GP (n, 4), for n = 8, 9, . . . , 100. The

minimum obtained number of crossings for each n is displayed in Table 4.17,

separated into the four cases listed above so to make the pattern obvious.

For the graphs GP (4h, 4), the crossing number is given in Theorem 4.22 and

Quickcross obtains optimal drawings of GP (4h, 4) for all h < 20. Beyond

this point, Quickcross struggles to find optimal drawings and the discrepancy

between the best found solution and cr(GP (4h, 4)) is between 0 and 2 for

20 ≤ h ≤ 25. For the graphs GP (4h+2, 4), the crossing number is not known,

however the value in Conjecture 4.23 provides an upper bound. Quickcross

obtains drawings of GP (4h+2, 4) for which the number of crossings meets the

upper bound for all h < 18. Similarly to the previous case, for 18 ≤ h < 25,

the discrepancy between the best found solution and the upper bound is

between 0 and 3. For the graphs GP (4h+1, 4) and GP (4h+3, 4), Quickcross
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h
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4h 4 8 10 12 14 16 18 20 22 24 26 28 30 32
4h+ 1 7 10 14 16 18 20 22 24 26 28 30 32 34 36
4h+ 2 8 10 12 14 16 18 20 22 24 26 28 30 32 34
4h+ 3 10 12 14 16 18 20 22 24 26 28 30 32 34 36

h
n 17 18 19 20 21 22 23 24 25
4h 34 36 38 41 42 46 47 49 52
4h+ 1 38 40 42 44 46 48 50 52 -
4h+ 2 36 39 40 43 47 48 51 53 -
4h+ 3 38 40 42 44 46 48 50 52 -

Table 4.17: Minimum found number of crossings by Quickcross for the graphs
GP (n, 4).

was able to obtain a solution that agrees with Conjecture 4.24 in all cases

for h < 25.

Although Quickcross was unable to obtain optimal solutions in all tested

cases, for moderate sizes of n, it was successful in at least meeting the best

known solutions. Buoyed by this outcome, we now investigate the next smal-

lest unknown case, namely the graphs GP (n, 5), for which even conjectures

of exact values for general n have not yet been published. Some values of

cr(GP (n, 5)) are known for small n. Table 4.18 displays these values and the

results are due to [42, 56, 70, 144, 107, 124].

n 10 11 12 13 14 15 16
cr(GP (n, 5)) 1 3 8 9 6 5 8

Table 4.18: Known crossing numbers of graphs GP (n, 5) for small orders.

We note here that in [42], it was claimed that cr(GP (17, 5)) = 14, how-

ever, in our experimentation, Quickcross finds a drawing of GP (17, 5) with

13 crossings. One such drawing of GP (17, 5) is displayed in Figure 4.19, and

so we conclude that there was an error in the arguments of [42].

In Table 4.20, we display the minimum obtained number of crossings from
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Figure 4.19: GP (17, 5) drawn with 13 crossings. The blue edges form the
cycle u0, u1, . . . , u16, u0 and the red edges form the cycle with
edges {(vi, vi+5)} for i = 0, . . . , d− 1.

h
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5h 1 5 11 18 24 28 32 36 40 45 49 53 57 61
5h+ 1 3 8 14 22 26 30 34 38 43 46 50 54 59 63
5h+ 2 8 13 19 24 28 32 36 40 44 48 53 57 61 65
5h+ 3 9 14 19 24 28 32 36 40 44 49 53 57 60 65
5h+ 4 6 12 20 24 28 32 36 40 45 49 52 56 61 65

Table 4.20: Minimum found number of crossings by Quickcross for the graphs
GP (n, 5).

Quickcross for values of n ≤ 79. After observing the clear pattern in Table

4.20, the following conjecture appears appropriate.

Conjecture 4.25. For any integer h ≥ 5,

1. cr(GP (5h, 5)) = 4h,

2. cr(GP (5h+ 1, 5)) = 4h+ 2,

3. cr(GP (5h+ 2, 5)) = 4h+ 4,

4. cr(GP (5h+ 3, 5)) = 4h+ 4,

5. cr(GP (5h+ 4, 5)) = 4h+ 4,

With the exception of GP (25, 5), for which cr(GP (25, 5)) = 18.
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The first step in seeking to confirm Conjecture 4.25 is to provide upper

bounds meeting the conjectured values. As usual, this can be achieved by

providing appropriate drawing procedures. However, it is not trivial to dis-

cover such drawing procedures in these cases. In order to aid us in doing so,

we took advantage of the output from Quickcross.

Our hope was to discover a drawing procedure which generalises for any

value of n. To start with, we considered small values of n, and attemp-

ted to produce a nicely structured drawing with the conjectured number of

crossings. In an ideal situation, such a drawing can be generalised to larger

values of n. However, there may be many possible drawings with the conjec-

tured number of crossings that are not easily generalisable to larger values

of n. Identifying such a drawing that is amenable to such generalisation is a

challenge in its own right.

Each time Quickcross is run, we obtain such a drawing (discarding the

runs where the conjectured number of crossings is not reached). The draw-

ing is not provided graphically; it is captured inside of Quickcross’ data

structures, as discussed in Chapter 2. Of course, any planar graph drawing

procedure (applied to the planarisation of the drawing) can be used to pro-

duce a graphical drawing, however such procedures do not usually provide

an easily interpretable drawing. Hence, it is typically necessary to manually

play with the drawing to determine if it is useful.

Obviously, there are countless possible drawings, and most of them are

unlikely to lead to an easy generalisation. It is undesirable to manually con-

sider each of them individually. To address this, we conducted the following

experiment. We repeatedly ran Quickcross, and recorded the various pro-

duced drawings. Then, we analysed the data structures of these drawings to

identify only those with desirable properties for further analysis. However, it

was not clear in advance what properties are desirable in a drawing. We ex-

perimented with various properties until we discovered one that led to nicely
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structured drawings, which we describe now.

Recall that a generalised Petersen graph has vertices labelled {u0, u1,

. . . , un−1, v0, . . . , vn−1}. Define U := {u0, . . . , un−1} and V := {v0, . . . , vn−1}.

Then its edges can be partitioned into three disjoint sets; edges whose vertices

are both contained in U , edges whose vertices are both containted in V ,

and then the remaining edges with one vertex from U and one from V .

Respectively, we will refer to these three sets of edges as blue edges, red edges,

and black edges. Then, the property that led to nicely structured drawings

is as follows. We requested that none of the black edges cross one another,

and looked for a minimal number of crossings between red and blue edges.

Drawings that obeyed this rule became increasingly rare as we increased n.

However, after running Quickcross millions of times on many instances, we

were able to find some good candidate drawings, and consider them more

closely.

Following this experiment, we are now able to give drawing procedures

for GP (n, 5) which meet our conjectured values. Specifically, we now show

that the following upper bounds on cr(GP (n, 5)) hold.

Theorem 4.26. For any integer h ≥ 5,

1. cr(GP (5h, 5)) ≤ 4h,

2. cr(GP (5h+ 1, 5)) ≤ 4h+ 2,

3. cr(GP (5h+ 2, 5)) ≤ 4h+ 4,

4. cr(GP (5h+ 3, 5)) ≤ 4h+ 4,

5. cr(GP (5h+ 4, 5)) ≤ 4h+ 4,

With the exception of GP (25, 5), for which cr(GP (25, 5)) ≤ 18.

Proof. We present five drawing procedures for the five cases above. Each

procedure contains two parts; one part which remains invariant for different

values of h, and one part in which the extra vertices are added when consid-

ering different values of h. We shall call the invariant part the base of the
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construction. In each case, the number of crossings can be easily counted by

first counting the crossings in the base. In each case, the base corresponds

to a drawing of the graph for a particular value of h. Then, each time h is

increased by one, we introduce ten new vertices. Five of the new vertices are

added to the cycle of blue edges, and each of them are attached to a corres-

ponding new vertex on the cycle(s) of red edges. This is then simply repeated

for each subsequent increase in h. In each case, it will be seen that adding in

these ten new vertices and their edges introduces exactly four crossings into

the drawing (shown in the example Figures).

For the graphs GP (5h, 5), Figure 4.21 displays a drawing of GP (25, 5)

with 18 crossings. Then, for general case, the base of the construction comes

from GP (30, 5), that is, h = 6. Figure 4.22 displays the base of the con-

struction which contains 24 = 4h crossings. The right hand side of Fig-

ure 4.23 shows the additions needed to produce drawings of the next case

GP (35, 5) = GP (5(h+ 1), 5), with exactly 4(h+ 1) crossings.

Figure 4.21: GP (25, 5) drawn with 18 crossings.

For the graphs GP (5h + 1, 5), the base of the construction comes from

GP (26, 5), that is, h = 5. Figure 4.24 displays the base of the construction

which contains 22 = 4h + 2 crossings. The right hand side of Figure 4.25

shows the additions needed to produce drawings of the next case GP (31, 5) =
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GP (5(h+ 1) + 1, 5), with exactly 26 = 4(h+ 1) + 2 crossings.

Figure 4.22: GP (30, 5) drawn with 24 crossings.

Figure 4.23: GP (35, 5) drawn with 28 crossings.

Figure 4.24: GP (26, 5) drawn with 22 crossings.

For the graphs GP (5h + 2, 5), the base of the construction comes from

GP (27, 5), that is, h = 5. Figure 4.26 displays the base of the construction

which contains 24 = 4h + 4 crossings. The right hand side of Figure 4.27

shows the additions needed to produce drawings of the next case GP (32, 5) =

GP (5(h+ 1) + 2, 5), with exactly 28 = 4(h+ 1) + 4 crossings.

For the graphs GP (5h + 3, 5), the base of the construction comes from

GP (28, 5), that is, h = 5. Figure 4.28 displays the base of the construction
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Figure 4.25: GP (31, 5) drawn with 26 crossings.

Figure 4.26: GP (27, 5) drawn with 24 crossings.

Figure 4.27: GP (32, 5) drawn with 28 crossings.

which contains 24 = 4h + 4 crossings. The right hand side of Figure 4.29

shows the additions needed to produce drawings of the next case GP (33, 5) =

GP (5(h+ 1) + 3, 5), with exactly 28 = 4(h+ 1) + 4 crossings.

For the graphsGP (5h+4, 5), in this final case, the base of the construction

comes from GP (24, 5), that is, h = 4. Figure 4.30 displays the base of the

construction which contains 20 = 4h + 4 crossings. The right hand side of

Figure 4.31 shows the additions needed to produce drawings of the next case

GP (29, 5) = GP (5(h+ 1) + 4, 5), with exactly 4(h+ 1) + 4 crossings.
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Figure 4.28: GP (28, 5) drawn with 24 crossings.

Figure 4.29: GP (33, 5) drawn with 28 crossings.

Figure 4.30: GP (24, 5) drawn with 20 crossings.

Figure 4.31: GP (29, 5) drawn with 24 crossings.
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Recall that for n ≤ 16, the values of cr(GP (n, 5)) are known. For n ≥

25, we have now established an upper bound for cr(GP (n, 5)). For the in-

between cases where 17 ≤ n ≤ 24, the values given in Table 4.20 provide

upper bounds on cr(GP (n, 5)). Although for these cases, drawings which

meet the upper bounds do not in general have the same structure as those

given by the drawing procedures in Theorem 4.26, they can be easily retrieved

from the output of Quickcross.

4.4 n-dimensional hypercube graphs

The n-dimensional hypercube graph, commonly referred to as the n-cube, is

the graph whose vertices and edges are those of the n-dimensional hypercube.

Let Qn denote the n-cube, then |V (Qn)| = 2n and |E(Qn)| = 2n−1n. A

drawing of Q4 is displayed in Figure 4.32. The crossing number of the n-

cube is the subject of long standing conjectures. In 1970, Eggleton and Guy

[51] claimed to have determined an upper bound on the crossing number

of Qn. However their proof was subsequently shown to contain an error

and the proposed upper bound remained a conjecture for nearly 40 years.

Despite this, it was widely believed to be accurate with Erdős and Guy

even conjecturing that equality would hold [53]. Finally, in 2008, a drawing

procedure was found by Faria et al. [55] which confirmed the conjectured

upper bound.

Theorem 4.27 (Faria et al., 2008 [55]).

cr(Qn) ≤ 5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

Recently, in a yet to be published manuscript [145] by Yang et al., it

is claimed that the methods of Faria et al. also contained a hiatus which

is corrected by Yang et al. However, they also obtain new superior upper

bounds. They claim to improve upon the bound in Theorem 4.27 by showing
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Figure 4.32: The 4-dimensional hypercube graph.

the following.

Theorem 4.28 (Yang et al., 2017 [145]).

cr(Qn) ≤


139
896

4n −
⌊
n2+1

2

⌋
2n−2 + 4

7
23bn2 c−n, if 5 ≤ n ≤ 10

26695
172032

4n −
⌊
n2+1

2

⌋
2n−2 − n2+2

2
2n−2 + 4

7
23bn2 c−n, if n ≥ 11.

Theorem 4.28 implies that the prediction of Erdős and Guy that equality

holds in Theorem 4.27 was incorrect. Theorem 4.28 also indicates that it may

yet be possible to find even better bounds for large values of n. Some lower

bounds for cr(Qn) are also known, and the best of these is due to Sýkora and

Vrt’o [135], who showed the following.

Theorem 4.29 (Sýkora and Vrt’o, 1993 [135]).

cr(Qn) ≥ 4n

20
− (n2 + 1)2n−1.

Exact crossing numbers for the n-cube are only known for the first few

cases. Trivially, cr(Q3) = 0 and it was shown in [43] that cr(Q4) = 8. The

crossing number of Qn for n ≥ 5 has not yet been established.

We ran Quickcross on the graphs Qn for n ≤ 10, and compared the best

obtained solutions to the upper bounds. These results are displayed in Table

4.33. Note that the number of vertices increases by a factor of two with

each n and for the cases of |V (Q9)| = 512 and |V (Q10)| = 1024, Quickcross
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n Quickcross
Upper bound
(Faria et al.)

Upper bound
(Yang et al.)

3 0 0 0
4 8 8 8
5 56 56 56
6 352 352 352
7 1758 1760 1744
8 8168 8192 8128
9 36386 35712 35424

10 157647 151040 149888
11 - 624128 619456

Table 4.33: The minimum achieved crossings by Quickcross for the n-cubes.
Values from the previously best upper bound in Theorem 4.27
and the recent superior upper bound in Theorem 4.28 are also
displayed.

runs in a matter of minutes, but for |V (Q11)| = 2048 an initial embedding

typically has around 750,000 crossings and the vectors corresponding to com-

binatorial embeddings become too large to store and manipulate efficiently

in our implementation. For n ≤ 6 we obtained the upper bounds of Faria

et al. and Yang et al., which agree for n ≤ 6. Interestingly, for 7 ≤ n ≤ 8

we found solutions which contained fewer crossings than the upper bound

of Faria et al. These solutions, discovered independently from [145], confirm

that equality does not hold in Theorem 4.27. Despite significant additional

effort, we were not able to obtain a solution to Q6 with less than the upper

bound of 352 crossings and hence we predict that n = 7 is the smallest n for

which Theorem 4.27 does not hold with equality. More precisely, we predict

that indeed cr(Q5) = 56 and cr(Q6) = 352. Note that this also agrees with

Theorem 4.28.
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4.5 Sheehan’s maximal uniquely

Hamiltonian graphs

In [130], Sheehan showed that for a graph on n ≥ 4 vertices, the maximal

number of edges such that there exists precisely one Hamiltonian cycle, is

m = bn2/4c + 1. Sheehan claimed that there was a unique such graph for

each n ≥ 4 and gave the construction; however, it was later discovered by

Barefoot and Entringer [15] that the graphs are not unique. Nonetheless

Sheehan’s construction is fascinating in its own right and we will refer to

the set of graphs obtained by his construction as the Sheehan graphs and

denote them as Sh(n). The Sheehan graph on n vertices is constructed in

the following way. Begin with a cycle on n vertices with the vertices labelled

v1, v2, . . . , vn in a cyclic fashion. Then, for every even labelled vertex vd, add

edges going to each of the vertices {vd+2, vd+3, . . . , vn}. Figure 4.34 displays

an example drawing of Sh(16), with the unique Hamiltonian cycle occurring

on the boundary.

Figure 4.34: Sheehan graph on 16 vertices.

Although we are not concerned with the Hamiltonian property of Sheehan

graphs, they are a family of graphs which are dense and which also contain

a large amount of variation in their degree sequence. Indeed, a Sheehan
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graph on n vertices has the ordered degree sequence {2, 2, 3, . . . , dn+1
2
e, dn+1

2
e

, dn+1
2
e+1, . . . , n−2, n−1}. In this sense, they are the most irregular graphs

upon which we report results in this thesis. The density of Sheehan graphs

leads to difficulties when attempting to find the unique Hamiltonian cycle,

even for state-of-the-art Hamiltonian Cycle Problem solvers [14]. Motivated

by this, we were interested to investigate whether the Sheehan graphs also

provided difficult instances for crossing minimisation. The crossing number

of the Sheehan graphs has not previously been investigated and so we only

make some preliminary observations here. First, the following is a simple

observation, but we include it here as an initial result for these graphs.

Lemma 4.30.

cr(Sh(n)) = Ω(n4)

Proof. For each odd labelled vertex vk, delete all edges which are incident

to vk, except (vk, vk−1) and (vk, vk+1). The remaining graph is a subdivision

of Kbn2 c, hence this subgraph contributes at least cr(Kbn2 c) crossings to any

drawing of Sh(n). A counting argument, similar to that which is used in

Lemma 4.2 of Section 4.18, can be used to show that cr(Kbn2 c) = Ω(n4).

After testing the Sheehan graphs with Quickcross, we observe that they

provide a family of very difficult instances. Even for moderate values of n,

after running Sh(n) many thousands of times, Quickcross occasionally still

improves upon its best found solution. We suspect that this difficulty is

also present for other crossing minimisation heuristics and we attempted to

investigate this by also running Sh(n) with OGDF’s implementation of the

planarisation method. As discussed in Section 2.5, some schemes of OGDF

lose tractability on dense graphs, and so we used the schemes (fixed, all),

(variable, all) and (multi, all). We observe that OGDF also had difficulty

finding solutions with few crossings and these results are displayed in Table

4.35. We note that, the results between Quickcross and OGDF should not be
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compared as the graphs were run with a vastly different number of random

permutations over an extended period of time.

Given the difficulty we encountered in running these graphs to optimality,

we cannot be confident that the numbers contained in Table 4.35 coincide

with the crossing numbers, particularly for the larger instances considered.

This makes it difficult to predict a formula for the crossing number of Sh(n).

Nonetheless, for n ≤ 20 both Quickcross and OGDF agree with one another,

and for those cases we observe that the best found solutions closely, but not

exactly, obey the following formula.

f(n) :=

⌊
1

320
n(n− 2)(n− 4)(n− 6)

⌋
.

Given that, for n ≤ 20, the differences between the best found solutions

and f(n) all fall within ±1, we predict that the crossing number of Sheehan

graphs lies within the range f(n)±O(1). However, until we are able to more

effectively handle the larger instances, there is no way of verifying whether

this continues to be a reasonable assumption as n increases.

n Quickcross OGDF f(n) n Quickcross OGDF f(n)
7 0 0 0 19 196 196 196
8 1 1 1 20 253 253 252
9 3 3 2 21 321 320 317
10 6 6 6 22 398 399 396
11 10 10 10 23 490 492 487
12 18 18 18 24 597 600 594
13 28 28 28 25 722 725 716
14 42 42 42 26 861 870 858
15 59 59 60 27 1022 1033 1018
16 84 84 84 28 1205 1217 1201
17 114 114 113 29 1411 1424 1406
18 152 152 151 30 1642 1665 1638

Table 4.35: The minimum achieved crossings by Quickcross and OGDF for
the Sheehan graphs on n vertices. The values of the formula f(n)
are also displayed.



Chapter 5

Conclusions and future work

We conclude this thesis with a summary of the results obtained, and a dis-

cussion about the potential future research resulting from the work within

each chapter.

In Chapter 2, we designed and implemented a crossing minimisation heur-

istic which uses solutions to the star insertion problem as its main workhorse.

Significant effort was spent making our implementation efficient for prac-

tical use and we named the implementation Quickcross. We discussed the

various features included within Quickcross and also some of the import-

ant algorithmic design decisions that were made. Then, we experimentally

compared the different schemes of Quickcross by running it on some well

known sets of graphs that have previously been used to compare crossing

minimisation heuristics. In addition to these sets, we were also interested

in the performance on dense graphs and chose some complete and complete

bipartite graphs to run and make comparisons on. We identified several

consistently strong performing scheme combinations for Quickcross and also

observed others which struggled, specifically on the dense graphs.

Then, in Chapter 3, we used Quickcross to aid in developing new results.

First, we extended some known results about the smallest cubic graphs with

crossing number at least k. Along the way, we also determined some new

179
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values for the largest crossing number of any cubic graph on n vertices.

Next, we studied the crossing number of the Cartesian product of a sunlet

graph and a star. We found that the usual induction method for proving the

crossing numbers of these types of families extended nicely to these graphs

and we proved the crossing number of the first few cases of this family.

We also made a conjecture about the crossing number for the general case

and showed an upper bound that meets the conjectured value. We then

investigated the crossing numbers of families of graphs resulting from a graph

product of a fixed small graph with arbitrarily large cycles, paths, stars and

discrete graphs. We were able to obtain the crossing numbers for 29 new such

families of graphs. To investigate the many remaining gaps in known results

of this type, we used Quickcross to predict what the crossing number of the

unknown cases might be. As evidence to the strength of our predictions, we

demonstrated that Quickcross also accurately predicted the crossing number

for all of the known cases.

In Chapter 4, we considered graph families which are difficult to attack

heuristically, either due to size, density or structure. First, we discussed the

crossing number of the Cartesian product of a fixed graph with an arbitrarily

large cycle. We observed that all known results about such graphs obeyed

a simple formula and we conjectured this to be the case for the Cartesian

product of any fixed graph with an appropriately large cycle, and provided

substantial empirical evidence that this was the case. Next, we studied the

crossing number of the join product of a complete graph and an empty graph.

We determined lower bounds with a counting argument and then determined

upper bounds with a drawing procedure. For all cases where the crossing

number is known, our upper bounds coincide with the crossing number. We

then studied the crossing number of the generalised Petersen graphs. With

the aid of Quickcross, we were able to predict what the crossing number of

the family GP (n, 5) could be. We also used Quickcross to search for easily
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generalisable drawings for this case, and hence determined upper bounds for

the crossing number coinciding with our predictions. Next, we studied the

crossing number of the n-cube. Quickcross obtained a drawing of the 7-cube

and 8-cube which possesses strictly fewer crossings than a long assumed tight

upper bound. Although we were not the first researchers to notice this, our

observation, independently from the recent unpublished work of Yang et al.

[145], confirmed that the aforementioned upper bound is not tight. Finally,

we made some preliminary investigations into crossing number of the Sheehan

graphs. We observed that Sheehan graphs provided instances of dense graphs

for which crossing minimisation heuristics have significant difficulties finding

near optimal drawings. We also demonstrated a function which gives values

extremely close to the best found results from Quickcross.

5.1 Future work arising from Chapter 2

In Chapter 2, we detailed the implementation of Quickcross, which we have

heavily optimised. As such, there are no real directions of future work in

terms of improving Quickcross itself. However, there are several interesting

additions to Quickcross which could be futher considered.

In Section 2.6, we investigated a preliminary implementation of an ana-

logue to the incremental post-processing strategy which was first introduced

in [31]. The results from our implementation were promising, even with

our rudimentary design and expectedly higher runtime. We expect that an

efficient implementation of this method will produce one of the best prac-

tical crossing minimisation heuristics for relatively sparse graphs. Creating

such an efficient implementation would be beneficial to the community of

researchers investigating crossing minimisation.

In a recent line of research, Leaños and Salazar [100] along with Bokal

et al. [22], studied the additivity of crossing numbers over minimal edge
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cut sets in graphs. Specifically, they determined conditions under which the

crossing number of a graph is the sum of crossing numbers of its augmented

components when minimal edge cut sets have been deleted. These results

could be applied to provide a more sophisticated preprocessing scheme for

Quickcross, and would provide significant benefits when running Quickcross

on specific kinds of large graphs. Such a preprocessing scheme would re-

quire the identification of minimal edge cut sets and these can be found in

polynomial time by the likes of the Edmonds-Karp algorithm for maximum

flow.

A common disadvantage of all current crossing minimisation heuristics is

their efficiency on dense graphs. It would be interesting to investigate meth-

ods which are specifically designed to aid crossing minimisation heuristics in

solving dense graphs. Such a method may also lead towards a better under-

standing of some of the most important open problems in this area, which

concern dense graphs.

5.2 Future work arising from Chapter 3

In Section 3.1, we extended the known results about minimal cubic graphs

with crossing number k. At first, it seems unlikely that our same approach

can be used to further extend these results, simply due to the enormous

number of graphs needing considered to decide the next open case. However,

if it was possible to reduce the number graphs which need to be considered by

a theoretical argument, then new results may follow. For example, we were

able to eliminate the graphs of girth three, but if graphs of even larger girth

could also be eliminated, we expect that this would lead to further results.

In Section 3.3, we investigated the full catalogue of known results about

crossing numbers of products of certain fixed small graphs with paths, cycles,

stars and discrete graphs. Perhaps the next natural step in this direction
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is to strive for a complete list of such results for all fixed graphs on five

and six vertices. Often these results have reasonably simple, but ad hoc

proofs, and we expect that many cases remain undecided simply because they

have not yet been fully investigated. Also, until the very recent survey [39]

detailed the full list of known results, it was common for researchers to waste

time reproving existing results. After taking into account the new results

discovered in this thesis, there are 607 families (including both Cartesian

and join products) whose crossing number remains to be determined. To this

end, we now rank each of these families in order of importance by assigning

a number p to each family. The number p is based on the following: if the

crossing number of that family is proved, then p is the number of additional

families with unknown crossing number whose proof follows as a corollary.

These additional results can be obtained by arguments analogous to those

used throughout Section 3.3. In Table 5.1, we display those families with

unknown crossing number for the largest values of p.

5.3 Future work arising from Chapter 4

In Section 4.2, we determined lower and upper bounds for graphs resulting

from the join product of a complete graph and a discrete graph. Of course,

this family contains both Kn and Kn,d as a subgraph and so one could not

hope to prove any substantial exact results about this family without first

knowing the crossing number of Kn and Kn,d. Nevertheless, the crossing

number K6 and K6,d are both known and yet the crossing number of K6 +Dd

is yet to be determined. Although we were unsuccessful in proving this

crossing number, we remain confident that it does in fact coincide with our

upper bound. This result would also fill one of the remaining gaps in Table

3.34 of Section 3.3 for the graph G156
6 +Dn .

In Section 4.3, we determined upper bounds on the crossing number of
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Table 5.1: For the families in Section 3.3 resulting from graph products and
with unknown crossing number, we rank their importance by the
number p of additional results which would immediately follow
from a proof. The indices for those additional families are also
provided.

G6
i�Pn

i p Additional results (G6
i )

102 6 107 114 122 123 124 127
58 3 115 116 133
105 3 126 129 143

G6
i�Cn

i p Additional results (G6
i )

93 5 103 121 128 137 140
31 4 48 72 73 79
99 4 107 115 118 127
48 3 72 73 79
81 3 106 107 127
101 3 112 122 134
121 3 128 137 140

G6
i�Sn

i p Additional results (G6
i )

51 4 65 70 89 90
105 4 126 129 141 143
44 3 66 74 83
81 3 106 107 127
88 3 115 116 133
99 3 115 118 133

G6
i +Dn

i p Additional results (G6
i )

7 9 10 14 18 19 21 28 33 43 46
14 7 19 21 26 28 41 43 46
13 6 24 27 36 47 54 64
37 6 56 62 76 89 90 98

G6
i + Pn

i p Additional results (G6
i )

7 9 10 14 18 19 21 28 33 43 46
13 6 24 27 36 47 54 64
14 6 19 21 26 28 43 46

G6
i + Cn

i p Additional results (G6
i )

13 7 24 27 36 45 47 54 64
11 6 32 42 44 45 52 63
21 6 35 36 47 63 64 66
22 6 35 42 44 45 63 66
37 6 56 62 76 89 90 98
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the graphs GP (n, 5). The drawing procedures that were developed have

reasonably simple generalisations to the graphs GP (n, k) for k > 5. Inter-

estingly, we suspect that these generalisations may provide an upper bound

for cr(GP (n, k)) which, for moderate values of k, is tighter than the general

upper bounds provided by Salazar in [123]. This appears to be a fertile area

for future research.

In Section 4.5, we exhibited a function f(n) which closely follows our best

found heuristic solutions to the family of Sheehan graphs. Finding a drawing

procedure for these graphs that gives f(n) crossings (or something similar)

is a topic for future research. In general, it would be interesting to study the

least dense graphs on n vertices which appear to have crossing number of

Ω(n4). A related, and tantalisingly open, question asks whether there exists

a family of cubic graphs on n vertices whose crossing number is Ω(n2).



Appendix A

Counting crossings in a drawing

We now count the crossings of the drawing construction in Theorem 3.23.

For convenience, we replicate the figure from that theorem here as Figure

A.1. The number of crossings in all of the constructions throughout Section

3.3 can be determined with similar arguments.

. . . . . .

bn2c dn2e

Figure A.1: G6
62�Sn drawn with

⌊
n
2

⌋
(5
⌊
n−1

2

⌋
+ 2) crossings. The solid lines

are the edges of copies of Sn and the dashed lines are the edges
of copies of G6

62.

186
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Figure A.1 indicates how G6
62�Sn should be drawn for arbitrarily large

n. Note that if n is odd, then more copies of G6
62 are drawn on the right.

Now, we seek to determine the number of crossings contained in Figure A.1

for general n.

Lemma A.1. The number of crossings in the drawing construction of Figure

A.1 is 5
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
.

Proof. Note that the solid lines are the edges of copies of Sn and the dashed

lines are the edges of copies of G6
62. In effect, each of the dashed vertical lines

(along with attached dashed edges) corresponds to one copy of G6
62. Also,

the vertices lying on the vertical line in the centre of Figure A.1 correspond

to the centre vertices in the copies of Sn. Now, we begin by counting the

crossings on edges belonging to the copies of Sn. Consider the copies of G6
62

moving away to the left from the centre copy, and consider specifically those

dashed edges which are drawn as straight vertical lines. It can be seen that

as we move to the left, each copy is crossed by three fewer solid edges than

the previous copy. This continues until the final copy of G6
62 for which there

are no crossings involving the solid edges. The identical situation also occurs

as we move to the right. Hence, the number of crossings between the solid

edges and any vertical dashed edge is

3

bn2 c−1∑
i=1

i+ 3

dn2 e−1∑
i=1

i.

Some of the edges of the copies of Sn also cross each other, and the number

of these can also be counted:

2

bn2 c−1∑
i=1

i+ 2

dn2 e−1∑
i=1

i.

Finally, the long looping dashed edge on the left of the diagram which begins

and ends at a central vertex, crosses
⌊
n
2

⌋
edges, and the shorter dashed

edge on the left of the diagram which begins and ends at a central vertex,
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crosses
⌊
n
2

⌋
edges. Putting all of the above together gives the total number

of crossings

5
( bn2 c−1∑

i=1

i+

dn2 e−1∑
i=1

i
)

+ 2
⌊n

2

⌋
.

It can be checked that the sums inside the brackets are equal to
⌊
n
2

⌋ ⌊
n−1

2

⌋
and thus the drawing construction provides

5
(⌊n

2

⌋⌊n− 1

2

⌋)
+ 2

⌊n
2

⌋
crossings, which is the desired number.



Appendix B

Proof of Theorem 4.19

We now provide the full proof of Theorem 4.19. Recall that beginning with

the graph Kn+d, the edges of a vertex induced subgraph formed by any set

of d vertices can be deleted and the resulting graph is Kn + Dd. Beginning

with the particular kind of cylinder drawing of Kn+d described in Section

4.2, we labelled the vertices on the inner circle in a anticlockwise fashion as

a1, a2, . . . , ad(n+d)/2e. Then, beginning at the vertex immediately anticlock-

wise from the top vertex on the outside circle (if n+ d is even), or the vertex

immediately anticlockwise from the top spot which is missing a vertex (if

n+ d is odd), the vertices on the outside circle were labelled in an anticlock-

wise fashion as b1, b2, . . . , bb(n+d)/2c. The edges of the vertex induced subgraph

formed by the vertices {a1, a2, . . . , add/2e} ∪ {b1, b2, . . . , bbd/2c} are deleted to

reduce the drawing to a spiral cylinder drawing of Kn +Dd.

Theorem B.1. For n + d ≥ 6, the number of crossings in a spiral cylinder

drawing of Kn +Dd is Z(n, d) +H(n) + f(n, d) where,

f(n, d) =
1

2

⌊
nd

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋
.

Proof. Denote the vertex set A := {a1, a2, . . . , add/2e} ∪ {b1, b2, . . . , bbd/2c}.

Because the drawing changes slightly depending on the parities of n and

d, boundary values in our counting must be handled carefully. Figure B.2

189
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displays drawings and vertex indices for the different parities of n and d

and Figure B.3 displays example drawings of K3 + D4 and K4 + D4. The

(remaining) edges in the inner and outer regions are omitted for clarity. For

the different parities of n and d, f(n, d) simplifies to the following formulas.

parity f(n,d)

n even, d even 1
16
dn2(n− 2)

n odd, d odd 1
16

(dn− 1)(n− 1)(n− 3)

n even, d odd 1
16
dn2(n− 2)

n odd, d even 1
16
dn(n− 1)(n− 3)

Table B.1: f(n, d) for different parities of n and d.

The crossings which are removed from the original drawing of Kn+d can

be partitioned into six types. The first five types are a crossing between two

edges (ai, bj) and (ak, b`). The last type is a crossing in the inner circle or

unbounded region, that is, a crossing between two edges (ai, aj) and (ak, a`)

or a crossing between two edges (bi, bj) and (bk, b`). To avoid double counting,

in the first four types of crossings, we will assume that i > k. So for any

given crossing involving at least one edge whose end-vertices are both in A,

exactly one of the following is true:

1. ai, bj, ak, b` ∈ A, where i > j and k > `.

2. ai, bj /∈ A, ak, b` ∈ A, where i ≤ j and k > `.

3. bj, ak, b` ∈ A, ai /∈ A where k > `.

4. ai, ak, b` ∈ A, bj /∈ A where k > `.

5. ai, bj ∈ A where i ≤ j.

6. The crossing occurs in either the inner circle or the unbounded region.

These six types of crossings are illustrated in Figure B.4 and they exhaust

all possibilities for crossings which are removed from the original drawing. To

see this, consider any edge e = (ar, bs) where ar, bs ∈ A. Then e can possibly

cross another edge whose end-vertices are both in A, and in this case, such a
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a1a2
a3

b1

b2

b3

b d
2b d

2
−1

b d+n
2

a d
2

a d+n
2

n even, d even

a1a2
a3

b1

b2

b3

b d−1
2b d−1

2
−1

b d+n−1
2

b d+n−1
2
−1

a d+1
2

a d+n+1
2

n odd, d odd

a1a2
a3

b1

b2

b3

b d−1
2

b d+n−1
2

a d+1
2

a d+n+1
2

n even, d odd

a1a2
a3

b1

b2

b3

b d
2
−1

b d
2

b d+n−1
2

a d
2

a d+n+1
2

n odd, d even

Figure B.2: The four possible vertex and index layouts, depending on the
parities of n and d.

a4

a1

a2

a3

b3b1

b2

a4

a1

a2

a3

b3

b4

b1

b2

Figure B.3: On the left, a spiral cylinder drawing of K3 + D4 and on the
right, a spiral cylinder drawing of K4 +D4.
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crossing is one of either type 1 or type 5. Edge e can also possibly cross an

edge which has one end-vertex in A and the other not in A, and in this case,

such a crossing is exactly one of either type 3, type 4 or type 5. Finally, e

can possibly cross an edge whose end-vertices both are not in A, and in this

case, such a crossing is one of either type 2 or type 5. Next, consider an edge

e = (ar, as) where ar, as ∈ A. Then any crossing on e is of type 6. Similarly

for the crossings of an edge e = (br, bs) where br, bs ∈ A. We now consider

each type of crossing individually, and compute the number of them.

Crossings of type 1. In this case we have ai, bj, ak, b` ∈ A and i > j,

k > `. We will consider each edge (ai, bj) separately and determine how

many crossings exist with edges (ak, b`), satisfying ak, b` ∈ A and k > `. It

was mentioned above that in order to avoid double counting, we assume that

i > k. Also, we have ` > j,or else the two edges do not cross. Hence, we

have i > k > ` > j. Note that this implies i ≥ j + 3. Then for each i and j,

we have a crossing for each k, ` satisfying i > k > ` > j. There are
(
i−j−1

2

)
such choices of k and `. Hence, the number of crossings of the first type is:

f1 :=

d d2e∑
i=4

i−3∑
j=1

(
i− j − 1

2

)
.

Crossings of type 2. In this case we have ai, bj /∈ A, ak, b` ∈ A and

i ≤ j and k > `. We will consider each edge (ai, bj) separately and determine

which crossings exist with edges (ak, b`), satisfying ak, b` ∈ A and k > `.

Given an edge (ai, bj) which satisfies ai, bj /∈ A and i ≤ j, it forms a crossing

with every edge (ak, b`) where ak, b` ∈ A and k > `. Because k and ` must

satisfy 1 ≤ ` < k ≤ dd/2e, there are
(dd/2e

2

)
such edges (ak, b`). For the edges

(ai, bj), i and j must satisfy dd/2e + 1 ≤ i ≤ j ≤ b(n+ d)/2c, hence there

are (
b(n+ d)/2c − dd/2e+ 1

2

)
such edges. Hence the following calculation gives the number of crossings of
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b1
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ak

bj
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bb d2c

ad d2e

1.
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ak ai

b` bj
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ad d2e

2.

a1a2

b1

ai
ak

bj

b`

bb d2c

ad d2e

3.

a1a2

b1

ai
ak

bj

b`

bb d2c

ad d2e

4.

a1a2

b1

ai

bj

bb d2c

ad d2e

5.

a1a2

b1

ai

aj

ak

a`

bb d2c

ad d2e

6.

Figure B.4: The six types of crossings which are removed during the con-
struction of a spiral cylinder drawing of Kn + Dd. The dashed
lines give an example of the correspondence, in the drawing,
between the a vertices and the b vertices.



B. Proof of Theorem 4.19 194

the second type:

f2 :=

(
b(n+ d)/2c − dd/2e+ 1

2

)(
dd/2e

2

)
.

Crossings of type 3. In this case we have bj, ak, b` ∈ A, ai /∈ A and

k > `. We will consider each edge (ai, bj) separately and determine which

crossings exist with edges (ak, b`), satisfying ak, b` ∈ A and k > `. Consider

an edge (ai, bj) where ai /∈ A, bj ∈ A. Then this edge forms a crossing with

another edge (ak, b`) where ak, b` ∈ A and k > `, if and only if j < ` (and

hence k > j + 1). Because k and ` must also satisfy dd/2e ≥ k > ` ≥ 1,

there are
(dd/2e−j

2

)
ways to choose such an edge (ak, b`). Note that this also

implies that j ≤ dd/2e − 2. Then, for each j, in order to satisfy ai /∈ A, i

satisfies dd/2e+ 1 ≥ i ≥ d(d+ n)/2e, of which there are d(d+ n)/2e− dd/2e

possibilities. Hence, the following calculation gives the number of crossings

of the third type:

f3 :=

dd/2e−2∑
j=1

(d(d+ n)/2e − dd/2e)
(
dd/2e − j

2

)
.

Crossings of type 4. In this case we have ai, ak, b` ∈ A, bj /∈ A and

k > `. Again, we will consider each edge (ai, bj) separately and determine

which crossings exist with edges (ak, b`), satisfying ak, b` ∈ A and k > `.

Consider an edge (ai, bj) where ai ∈ A, bj /∈ A. Then this edge forms a

crossing with another edge (ak, b`) where ak, b` ∈ A and k > `, whenever

i > k and i−1 > `. Because k and ` must also satisfy (d+1)/2 ≥ k > ` ≥ 1,

there are
(
i−1

2

)
ways to choose such an edge (ak, b`). Note that this also

implies that i ≥ 3. Then, for each i, in order to satisfy bj /∈ A, j must

satisfy bd/2c + 1 ≤ j ≤ b(n+ d)/2c, of which there are b(n+ d)/2c bd/2c

possibilities. Hence, the following calculation gives the number of crossings
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of the fourth type:

f4 :=

dd/2e∑
i=3

(b(n+ d)/2c bd/2c)
(
i− 1

2

)
.

Crossings of type 5. In this case we have ai, bj ∈ A and i ≤ j. We

will consider each edge (ai, bj) separately and determine which crossings exist

with any edges (ak, b`). Consider an edge (ai, bj) where ai, bj ∈ A and i ≤ j.

Then this edge forms a crossing with an edge (ak, b`) for particular values of

k and `. Specifically, k can be any one of

{i− 1, i− 2, . . . , 1, d(d+ n)/2e , d(d+ n)/2e − 1, . . . , j + 2}.

Then, given such a k, if it lies within {1, 2, . . . , i− 1} then a crossing exists

whenever ` is any one of

{k − 1, k − 2, . . . , 1, b(d+ n)/2c , b(d+ n)/2c − 1, . . . , j + 1}.

Otherwise, k lies within {j + 2, . . . , d(d+ n)/2e} and a crossing exists when-

ever ` is any one of

{k − 1, k − 2, . . . , j + 1}.

There are r := (i − 1) + d(d+ n)/2e − (j + 1) possible values for k, and

because the ak is connected differently here depending on whether n + d is

odd or even, we consider these cases separately.

Case where n+d is even. In this case the edge (ai, bj) forms crossings with(
r+1

2

)
edges (ak, b`). Therefore, the following calculation gives the number of

crossings of the fifth type for n+ d even:

dd/2e∑
i=1

bd/2c∑
j=i

(
r + 1

2

)
.

Case where n + d odd. In this case, a1 has no corresponding vertex on

the outside circle, and so the edge (ai, bj) forms fewer than
(
r+1

2

)
crossings
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with edges (ak, b`). Specifically, the edge (ai, bj) forms crossings with(
r

2

)
+ b(d+ n)/2c − j

edges (ak, b`). Therefore, the following calculation gives the number of cross-

ings of the fifth type for n+ d odd:

dd/2e∑
i=1

bd/2c∑
j=i

(
r

2

)
+ b(d+ n)/2c − j.

Let f5 be the function resulting from whichever of the two cases is appropri-

ate.

Crossings of type 6. In this case, we consider any crossings which occur

in the inner circle, or in the unbounded region. We first consider the inner

circle and count the crossings on each of the edges which are removed. There

are
(dd/2e

4

)
crossings being removed which involve edges (ai, aj) and (ak, a`)

where ai, aj, ak, a` ∈ A. Next, given an edge (ai, aj) with ai, aj ∈ A, for each

k ∈ {i + 1, i + 2, . . . , j − 1}, there exists d(d+ n)/2e − dd/2e crossings with

edges of the form (ak, a`) where a` /∈ A. Therefore the following calculation

gives the number of crossings being removed from the inner circle:

f6a :=

(
dd/2e

4

)
+

dd/2e∑
i=1

dd/2e∑
j=i+2

(j − i− 1)(d(d+ n)/2e − dd/2e).

Using an analogous argument, the number of crossings removed from the

unbounded region is:

f6b :=

(
bd/2c

4

)
+

bd/2c∑
i=1

bd/2c∑
j=i+2

(j − i− 1)(b(d+ n)/2c − bd/2c).

Let f6 = f6a + f6b.

We have shown that the number of crossings in a spiral cylinder drawing
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of Kn +Dd is

H(n+ d)−
6∑
i=1

fi.

Converting into an expression involving H(n) and Z(n, d), we have

Z(n, d) +H(n) + F = H(n+ d)−
6∑
i=1

fi,

and therefore,

F = H(n+ d)−
6∑
i=1

fi − Z(n, d)−H(n). (B.1)

The final task is to prove that (B.1) coincides with the expression in

Theorem B.1. In order to evaluate (B.1) it is worthwhile removing the ceilings

and floors so that the various fi can be combined into single expressions. This

requires consideration of the parity of both n and d, and hence there are four

cases to consider. To complete the proof, in each of the four cases, we used

a computer aided simplification tool to confirm that F coincides with the

simplifications given in Table B.1.



Appendix C

Predicted crossing numbers of

graphs resulting from products

In Section 3.3, we studied the Cartesian products of fixed small graphs with

arbitrarily large paths, cycles or stars and the join products of fixed small

graphs with arbitrarily large discrete graphs, paths or cycles. For many of

the possible small fixed graphs, the crossing numbers of the resulting family

have not yet been determined and for these cases, we now attempt to predict

what the crossing number should be. To achieve this, we considered all small

graphs on five and six vertices, and ran the first ten instances of the resulting

families using Quickcross. We then observed the results and predicted the

formula for the crossing numbers of each family. At the end of this pro-

cess, we observed that for all of the cases with known crossing numbers, our

predicted formulas coincided with the crossing numbers. This then leads us

to conjecture that, for the unknown cases, our predicted formulas will also

coincide with the crossing number.

To obtain the predictions, each considered instance was run with Quick-

cross many thousands of times to ensure that we are unable to find a solution

with fewer crossings. Each of our predicted formulas holds for values of n

which are ‘large enough’ and although this is often simply n ≥ 1, or n ≥ 3

198
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for cycles, sometimes these bounds are different. We omit these numbers

because they are hard to display in their entirety, however if desired, they

can be easily determined by running the instances again with Quickcross.

Although some of our predicted formulas can be written nicer, we display

them in the most pleasing general formula that we found, which we detail

now.

For Cartesian products involving paths of length n, we observed that in

all known cases, the formula is linear in n. For Cartesian products involving

cycles of length n, we rely on the prediction from Section 4.1 which indicates

that the formula should be linear in n, but may change depending on the

parity of n. Hence, some of these formulas involve floors. For Cartesian

products involving stars of size n, we observe that the general formula is as

follows

a
⌊n

2

⌋⌊n− 1

2

⌋
+ bn+ c

⌊n
2

⌋
+ d, (C.1)

for some integers a, b, c, d. For all of the join products, the formula also

obeys (C.1), with the additional requirement if the fixed graph is of order m,

then a =
⌊
m
2

⌋ ⌊
m−1

2

⌋
. Then, in each case, in order to predict the formula, we

simply look at the number of unknowns in the predicted general formula, and

compare it to that many results from Quickcross to determine the coefficients.

Finally, we check this result by seeing if it predicted the remaining found

values from Quickcross.

Tables C.1 and C.2 display our predictions for when the fixed small graph

is a five vertex graph, then Tables C.3 and C.4 display our predictions when

the fixed small graph is a six vertex graph. We include both the known

results, and our predictions; the latter cases are highlighted in green. Note

that the newly decided cases from Section 3.3 are included in the following

tables as known results.
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Table C.1: Predicted crossing numbers for the Cartesian product of a five
vertex graph with cycles and stars.

i G5
i G5

i�Pn G5
i�Cn G5

i�Sn

1 0 0 3
⌊
n
2

⌋ ⌊
n−1

2

⌋
2 2n− 2 2n n(n− 1)

3 n− 1 n 3
⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
4 n− 1 n 3

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
5 n− 1 n Z(5, n) +

⌊
n
2

⌋
6 2n− 2 2n n(n− 1)

7 n− 1 2n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
8 0 3n Z(5, n)

9 2n− 2 2n n(n− 1)

10 2n 4n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n

11 2n− 2 3n n(n− 1)

12 2n− 2 2n n(n− 1)

13 n− 1 3n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
14 2n− 2 3n n(n− 1)

15 3n− 1 5n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
16 3n− 1 4n− 2

⌊
n
2

⌋
Z(5, n) + 2n+

⌊
n
2

⌋
17 2n 5n− 2

⌊
n
2

⌋
4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n

18 3n− 1 5n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
19 3n− 1 6n− 4

⌊
n
2

⌋
4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
20 4n 6n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

21 6n 9n 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+

⌊
n
2

⌋
+ 1
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Table C.2: Predicted crossing numbers for the join product of a five vertex
graph with discrete graphs, paths and cycles

i G5
i G5

i +Dn G5
i + Pn−1 G5

i + Cn

1 Z(5, n) Z(5, n) Z(5, n) + 1

2 n(n− 1) n(n− 1) n(n− 1) + 2

3 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1

4 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1

5 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 2

6 Z(5, n) + 2
⌊
n
2

⌋
n(n− 1) n(n− 1) + 2

7 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 Z(5, n) +

⌊
n
2

⌋
+ 2

8 Z(5, n) Z(5, n) + 1 Z(5, n) + 2

9 Z(5, n) + 2
⌊
n
2

⌋
n(n− 1) n(n− 1) + 2

10 Z(5, n) + n Z(5, n) + n+ 1 Z(5, n) + n+ 3

11 n(n− 1) n(n− 1) + 1 n(n− 1) + 3

12 n(n− 1) n(n− 1) Z(5, n) + 2
⌊
n
2

⌋
+ 3

13 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 Z(5, n) +

⌊
n
2

⌋
+ 2

14 n(n− 1) n(n− 1) + 1 n(n− 1) + 3

15 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 2 Z(5, n) + n+

⌊
n
2

⌋
+ 4

16 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 1 Z(5, n) + n+

⌊
n
2

⌋
+ 3

17 Z(5, n) + n Z(5, n) + n+ 1 Z(5, n) + n+ 3

18 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 2 Z(5, n) + n+

⌊
n
2

⌋
+ 4

19 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 1 Z(5, n) + n+

⌊
n
2

⌋
+ 4

20 Z(5, n) + 2n Z(5, n) + 2n+ 2 Z(5, n) + 2n+ 5

21 Z(5, n) + 2n+
⌊
n
2

⌋
+ 1 Z(5, n) + 2n+

⌊
n
2

⌋
+ 4 Z(5, n) + 3n−

⌊
n
2

⌋
+ 4
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Table C.3: Predicted crossing numbers for the Cartesian product of a six
vertex graph with paths, cycles and stars.

i G6
i G6

i�Pn G6
i�Cn G6

i�Sn

25 0 0 4
⌊
n
2

⌋ ⌊
n−1

2

⌋
26 n− 1 n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
27 2n− 2 2n 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
28 n− 1 n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
29 2n− 2 2n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
31 4n− 4 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
40 0 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
41 n− 1 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
42 2n− 4 2n 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
43 n− 1 n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
44 2n− 2 2n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
45 2n− 2 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
46 n− 1 n 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
47 2n− 2 2n 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
48 4n− 4 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
49 2n− 2 2n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
51 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
53 2n− 2 2n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
54 2n− 2 2n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
59 2n− 2 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
60 n− 1 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+
⌊
n
2

⌋
61 2n 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n

62 3n− 5 3n 5
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
63 2n− 2 2n 5

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
64 2n− 2 2n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
65 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
66 2n− 2 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
67 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
68 3n− 1 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
70 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
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i G6
i G6

i�Pn G6
i�Cn G6

i�Sn

71 3n− 1 5n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
72 4n− 4 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
73 4n− 4 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
74 2n− 2 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
75 2n 2n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
76 3n− 2 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
77 2n− 2 2n 4

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
78 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
79 4n− 4 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
80 4n− 4 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
81 5n− 2 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
82 4n− 2 3n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3n+

⌊
n
2

⌋
83 2n− 2 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
84 3n− 1 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
85 2n 4n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n

86 3n− 1 5n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
87 3n− 1 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
88 4n− 2 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
89 3n− 3 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
90 3n− 3 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
91 3n− 1 3n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
92 3n− 3 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
93 4n 8n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

94 2n− 2 5n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
95 3n− 1 2n+ 2

⌊
n
2

⌋
5
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
98 3n− 1 3n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
99 4n− 2 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
100 4n− 2 4n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
101 4n− 2 7n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
102 5n− 3 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1n+ 5

⌊
n
2

⌋
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i G6
i G6

i�Pn G6
i�Cn G6

i�Sn

103 6n− 2 8n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
104 4n− 4 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
105 6n− 2 7n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
106 5n− 3 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
107 5n− 3 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
108 4n− 2 3n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3n+

⌊
n
2

⌋
109 4n 4n+ 4

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

110 3n− 1 5n+ 2
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
111 3n− 1 4n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+

⌊
n
2

⌋
112 4n 7n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

113 4n− 4 4n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4

⌊
n
2

⌋
114 5n− 3 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
115 4n− 2 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
116 4n− 2 4n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
118 4n− 2 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
119 7n− 1 9n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 2

⌊
n
2

⌋
+ 1

120 3n− 3 5n+ 2
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
121 4n 8n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

122 5n− 3 7n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
123 5n− 3 5n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
124 5n− 3 7n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
125 5n− 3 3n+ 6

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
126 6n− 2 6n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
127 5n− 3 6n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 3

⌊
n
2

⌋
128 6n− 1 8n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
129 6n− 2 6n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
130 4n 6n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

131 5n− 1 5n+ 4
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+

⌊
n
2

⌋
132 6n− 2 4n+ 4

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
133 4n− 2 5n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 2

⌊
n
2

⌋
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i G6
i G6

i�Pn G6
i�Cn G6

i�Sn

134 6n− 4 7n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 2n+ 4

⌊
n
2

⌋
135 7n− 1 8n+ 2

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 2

⌊
n
2

⌋
+ 1

137 4n 8n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n

138 5n− 1 7n+ 2
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+

⌊
n
2

⌋
139 7n− 1 9n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 6n+

⌊
n
2

⌋
140 6n− 2 8n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
141 6n− 1 4n+ 6

⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
142 9n− 3 9n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 4

⌊
n
2

⌋
+ 1

143 6n− 2 8n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+ 2

⌊
n
2

⌋
144 8n− 1 10n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 3

⌊
n
2

⌋
+ 1

145 7n− 1 7n+ 4
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 2

⌊
n
2

⌋
+ 1

146 5n− 1 6n+ 4
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 4n+

⌊
n
2

⌋
147 8n− 2 10n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 3

⌊
n
2

⌋
+ 1

148 7n− 1 9n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 6n+

⌊
n
2

⌋
149 10n 12n 6

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 9n+

⌊
n
2

⌋
+ 1

150 9n− 3 11n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 4

⌊
n
2

⌋
+ 1

151 8n 8n+ 4
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 5n+ 3

⌊
n
2

⌋
+ 1

152 6n 12n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 6n

153 10n 12n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 9n+

⌊
n
2

⌋
+ 1

154 9n− 1 11n+ 2
⌊
n
2

⌋
6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 7n+ 2

⌊
n
2

⌋
+ 1

155 12n 15n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 10n+ 2

⌊
n
2

⌋
+ 2

156 15n+ 3 18n 6
⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 15n+ 3
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Table C.4: Predicted crossing numbers for the join product of a six vertex
graph with discrete graphs, paths and cycles

i G6
i G6

i +Dn G6
i + Pn−1 G6

i + Cn

1 Z(6, n) Z(6, n) Z(6, n)

2 Z(6, n) Z(6, n) Z(6, n)

3 Z(6, n) Z(6, n) Z(6, n)

4 Z(6, n) Z(6, n) Z(6, n)

5 Z(6, n) Z(6, n) Z(6, n) + 1

6 Z(6, n)− n+ 3
⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
7 Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

8 Z(6, n) Z(6, n) Z(6, n)

9 Z(6, n) Z(6, n) Z(6, n) + 1

10 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

11 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

12 Z(6, n) Z(6, n) Z(6, n) + 1

13 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

14 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

15 Z(6, n)− n+ 3
⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
16 Z(6, n) Z(6, n) Z(6, n)

17 Z(6, n) Z(6, n) Z(6, n) + 1

18 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

19 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 2

20 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1 Z(6, n) +

⌊
n
2

⌋
+ 2

21 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

22 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

23 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

24 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

25 Z(6, n) Z(6, n) Z(6, n) + 1

26 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

27 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

28 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 2

29 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1

30 Z(6, n)− n+ 3
⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
Z(6, n)− n+ 3

⌊
n
2

⌋
31 Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

32 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2
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i G6
i G6

i +Dn G6
i + Pn−1 G6

i + Cn

33 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

34 Z(6, n) + n+ 2
⌊
n
2

⌋
− 1 Z(6, n) + 2n− 1 Z(6, n) + 2n+ 2

35 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

36 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

37 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

38 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

39 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

40 Z(6, n) Z(6, n) + 1 Z(6, n) + 2

41 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1 Z(6, n) +

⌊
n
2

⌋
+ 2

42 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

43 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1

44 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

45 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

46 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 2

47 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

48 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

49 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

50 Z(6, n)− 2n+ 6
⌊
n
2

⌋
Z(6, n)− 2n+ 6

⌊
n
2

⌋
Z(6, n)− 2n+ 6

⌊
n
2

⌋
51 Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

52 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

53 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1

54 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

55 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

56 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

57 Z(6, n) + 2n− 1 Z(6, n) + 2n− 1 Z(6, n) + 2n+ 2

58 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

59 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 3

60 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1 Z(6, n) +

⌊
n
2

⌋
+ 2

61 Z(6, n) + n Z(6, n) + n+ 1 Z(6, n) + n+ 3

62 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

63 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

64 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2
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i G6
i G6

i +Dn G6
i + Pn−1 G6

i + Cn

65 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

66 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

67 Z(6, n) + n+ 5
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + n+ 5

⌊
n
2

⌋
+ 2

68 Z(6, n) + 2n−
⌊
n
2

⌋
− 2 Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

69 Z(6, n) + n+ 2
⌊
n
2

⌋
− 1 Z(6, n) + 2n− 1 Z(6, n)

70 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

71 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

72 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

73 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

74 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 3

75 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 3

76 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 1 Z(6, n) + 3

⌊
n
2

⌋
+ 3

77 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1

78 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 2

79 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

80 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 1 Z(6, n) + 4

⌊
n
2

⌋
+ 4

81 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

82 Z(6, n) + 2n+
⌊
n
2

⌋
− 1 Z(6, n) + 2n+

⌊
n
2

⌋
− 1 Z(6, n) + 2n+

⌊
n
2

⌋
+ 2

83 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

84 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

85 Z(6, n) + n Z(6, n) + n+ 1 Z(6, n) + n+ 3

86 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

87 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

88 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

89 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 1 Z(6, n) + 3

⌊
n
2

⌋
+ 3

90 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 1 Z(6, n) + 3

⌊
n
2

⌋
+ 3

91 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

92 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 2

93 Z(6, n) + 2n Z(6, n) + 2n+ 2 Z(6, n) + n+ 2
⌊
n
2

⌋
+ 4

94 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 3

95 Z(6, n) + 2n− 1 Z(6, n) + 2n− 1 Z(6, n) + 2n+ 2

96 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4
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i G6
i G6

i +Dn G6
i + Pn−1 G6

i + Cn

97 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

98 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 3

99 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

100 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

101 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

102 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

103 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

104 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 1 Z(6, n) + 4

⌊
n
2

⌋
+ 4

105 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

106 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

107 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

108 Z(6, n) + 2n+
⌊
n
2

⌋
− 1 Z(6, n) + 2n+

⌊
n
2

⌋
− 1 Z(6, n) + 2n+

⌊
n
2

⌋
+ 2

109 Z(6, n) + 2n Z(6, n) + 2n+ 1 Z(6, n) + 2n+ 3

110 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 4

111 Z(6, n) + n+
⌊
n
2

⌋
Z(6, n) + n+

⌊
n
2

⌋
+ 1 Z(6, n) + n+

⌊
n
2

⌋
+ 3

112 Z(6, n) + 2n Z(6, n) + 2n+ 1 Z(6, n) + 2n+ 4

113 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

114 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

115 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

116 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

117 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

118 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 1 Z(6, n)− n+ 6

⌊
n
2

⌋
+ 5

119 Z(6, n) + 2n+ 2
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 6

120 Z(6, n) + 3
⌊
n
2

⌋
Z(6, n) + 3

⌊
n
2

⌋
+ 2 Z(6, n) + 3

⌊
n
2

⌋
+ 4

121 Z(6, n) + 2n Z(6, n) + 2n+ 2 Z(6, n) + 2n+ 4

122 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

123 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

124 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 2 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 5

125 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 5

126 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5
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i G6
i G6

i +Dn G6
i + Pn−1 G6

i + Cn

127 Z(6, n) + n+ 3
⌊
n
2

⌋
Z(6, n) + n+ 3

⌊
n
2

⌋
+ 1 Z(6, n) + n+ 3

⌊
n
2

⌋
+ 4

128 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

129 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

130 Z(6, n) + 2n Z(6, n) + 2n+ 1 Z(6, n) + 2n+ 4

131 Z(6, n) + 2n+
⌊
n
2

⌋
Z(6, n) + 2n+

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+

⌊
n
2

⌋
+ 5

132 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

133 Z(6, n) + n+ 2
⌊
n
2

⌋
Z(6, n) + n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + n+ 2

⌊
n
2

⌋
+ 4

134 Z(6, n) + 6
⌊
n
2

⌋
Z(6, n) + 6

⌊
n
2

⌋
+ 1 Z(6, n) + 6

⌊
n
2

⌋
+ 4

135 Z(6, n) + 2n+ 2
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 6

136 Z(6, n) + 2n+ 4
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 7

137 Z(6, n) + 2n Z(6, n) + 2n+ 2 Z(6, n) + 2n+ 4

138 Z(6, n) + 2n+
⌊
n
2

⌋
Z(6, n) + 2n+

⌊
n
2

⌋
+ 2 Z(6, n)− 2n+ 9

⌊
n
2

⌋
+ 7

139 Z(6, n) + 3n+
⌊
n
2

⌋
Z(6, n) + 3n+

⌊
n
2

⌋
+ 2 Z(6, n) + 3n+

⌊
n
2

⌋
+ 6

140 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

141 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

142 Z(6, n) + 2n+ 4
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 7

143 Z(6, n) + 2n+ 2
⌊
n
2

⌋
Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 5

144 Z(6, n) + 2n+ 3
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 3 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 7

145 Z(6, n) + 2n+ 2
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 2

⌊
n
2

⌋
+ 2 Z(6, n) + 8n− 10

⌊
n
2

⌋
+ 6

146 Z(6, n) + 2n+
⌊
n
2

⌋
Z(6, n) + 2n+

⌊
n
2

⌋
+ 2 Z(6, n)− 2n+ 9

⌊
n
2

⌋
+ 7

147 Z(6, n) + 2n+ 3
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 2 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 7

148 Z(6, n) + 3n+
⌊
n
2

⌋
Z(6, n) + 3n+

⌊
n
2

⌋
+ 2 Z(6, n) + 3n+

⌊
n
2

⌋
+ 6

149 Z(6, n) + 4n+
⌊
n
2

⌋
+ 1 Z(6, n) + 4n+

⌊
n
2

⌋
+ 3 Z(6, n) + 4n+

⌊
n
2

⌋
+ 8

150 Z(6, n) + 2n+ 4
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 3 Z(6, n) + 2n+ 4

⌊
n
2

⌋
+ 7

151 Z(6, n) + 2n+ 3
⌊
n
2

⌋
+ 1 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 3 Z(6, n) + 2n+ 3

⌊
n
2

⌋
+ 7

152 Z(6, n) + 3n Z(6, n) + 3n+ 3 Z(6, n) + 3n+ 6

153 Z(6, n) + 4n+
⌊
n
2

⌋
+ 1 Z(6, n) + 4n+

⌊
n
2

⌋
+ 3 Z(6, n) + 4n+

⌊
n
2

⌋
+ 8

154 Z(6, n) + 3n+ 2
⌊
n
2

⌋
+ 1 Z(6, n) + 3n+ 2

⌊
n
2

⌋
+ 4 Z(6, n) + 3n+ 2

⌊
n
2

⌋
+ 8

155 Z(6, n) + 4n+ 2
⌊
n
2

⌋
+ 2 Z(6, n) + 4n+ 2

⌊
n
2

⌋
+ 5 Z(6, n) + 4n+ 2

⌊
n
2

⌋
+ 10

156 Z(6, n) + 6n+ 3 Z(6, n) + 6n+ 6 Z(6, n) + 6n+ 12
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[48] E. Draženská, M. Klešč. On the crossing numbers of G�Cn for graphs

G on six vertices. Disc. Math. Graph Th., 31(2):239–252, 2011.
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[135] O. Sýkora, I. Vrt’o. On crossing numbers of hypercubes and cube con-

nected cycles. BIT Numerical Math., 33(2):232–237, 1993.



BIBLIOGRAPHY 224

[136] U. Tadjiev, F.C. Harris Jr. Parallel computation of the minimum cross-

ing number of a graph, In Proc. 8th SIAM Conf. on Parallel Processing

for Computer Science, 1997.

[137] P. Turán. A note of welcome. J. Graph Theory, 1:7–9, 1977.

[138] K. Urbanik. Solution du problème posé par P. Turán. Colloq. Math.,
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