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2.1 Introduction

To describe the mechanism of steady current drive in our experiments we follow the
simplest physical MHD model of non-linear Hall-effect current drive developed by
HuGRASS and JONES and given in the paper of JONES(1984). In this model the ions
are assumed immobile and uniformly distributed and the electrons are treated as an
inertialess, pressureless, negatively charged fluid.

The large-aspect-ratio limit is taken, in which we consider an infinitely long
plasma cylinder of radius a. Appropriately phased radio-frequency currents are passed
through a series of helical coils of pitch length £ which are wound around the plasma
at a radius a. We define a wavenumber associated with the coil structure, k& = 2« /L.
~ The antenna is shown schematically in Figure 2.1a.

The analysis presented in this chapter is based on the mathematical techniques
used in the paper by DUTCH,MGCCARTHY AND STORER(1986). This paper will
be referred to later as simply DMS(1986). As pointed out by BERTRAM(Private
Communication, 1986), this paper made the incorrect assumption that that the radial
component of the oscillating plasma screening current must vanish at the axis (r=0).
The current drive analysis in this chapter is an independent calculation using the
original techniques, for which the basic equations and their numerical solutions have
been independently revised and used with the correct boundary conditions.

The solutions which BERTRAM(1987) obtained when he reworked the DMS(1986)
publication showed some minor differences when compared with the analysis presented
in this chapter. Numerical solutions obtained using the two codes written to solve the
basic equations have been compared for four distinct combinations of chosen plasma
parameters and external fields. In all four cases reasonable agreement was shown
between corresponding numerical solutions, thus giving confidence in each code. The
most recently published results of BERTRAM(1988) are very closely reproduced with

the numerical code written by the present author.



FIGURE 2.1(a) Schematic diagram showing the m = 1 double-helix coil
structure used to drive steady toroidal and poloidal current. The coils are

shown in the large aspect ratio limit for clarity. 2.1(b} The helical (ﬁ,)‘(,f)

and cylindrical (7,8, %) cooordinate systems used in the analysis.
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2.2 The Helical Coordinate System

In this section we introduce a helical coordinate system naturally related to the coil
structure and shown schematically in Figure 2.1b. The particular choice of coor-
dinate system and the vector algebra which follows is largely based on the work of
| RYU(1983). Use of this helical coordinate system leads to considerable simplification
of the equations governing the plasma. Ilowever, as pointed out by RyU(1983), there
! appear to be inherent difficulties associated with the use of helical coordinates, which
puts them in a different class to those curvilinear coordinate systems found treated
in textbooks.
\ A general poloidal (azimuthal) mode number m is retained in the analysis, al-
I though for the present experiments with double helical coils, m = 1.
Consider a helical coordinate system based on the unit vectors 7, § and (f where

| 7 is the usual radial unit vector in cylindrical coordinates (#, 4, 2).and :

o= X ity = mh 4 ke
Vx|
| and [ = #xg
Then = mé + krz
k@'f‘
- ]CQT
I 2
where ko = (K + )} (2.1)
r

\ The ¢ coordinate axis is chosen to be along the direction defined by the external helical
driving coils, so that in the large aspect ratio limit considered here we have a/0¢ =0.
In the limit & = 0 where the windings are straight and parallel, ¥ corresponds to 0

and ( corresponds to 2.

We can express an arbitrary vector A as :

A = Ar+Ad+ Az
= ATTA""AXJA('{'AC&

—
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so that
A, = mAg ;;:rkrAz 2.2)
A = —krA;:‘O;I‘— mA, (2.3)
or
A = mAxk-;rkrAc (2.4)
A = krAxk:—rmAg (2.5)

In order to express Maxwell’s equations and the generalised Ohm’s law in helical
coordinates it is necessary to determine the appropriate form of the differential oper-
ators. The correct form of the required operators can be obtained from their form in
cylindrical coordinates, using the coordinate transformation equations (2.2)—(2.5).

If the components of A or the scalar ¢ vary as exp (:m# 4 ikz) = expix , then

using the definition of ko given in equation (2.1) we obtain :

0 .
Vg = fa—¢+ R kot (2.6)
VA = %ai(rA)+z'kgAx (2.7)
VxA = 7thodAc]
. 10
b1 [ o)
' Jd /A 2mk
+ ¢ l koA, + ko (kx) }C-E%Ac] (2.8)
' ) : 0 (A, 2mk
(VXVX A)-,- = Lko I:—'LkoAr-l-koa— (k_)_WAC]
_ -19 0 Ax) 2mk
(V xV % A)X = kn‘r ar{kg?' l ZkoA +koar (ko kg?"z AC] }
VxVxA) = kA — koo d L2 (kgray)
( x x ¢ = o/l — 03 k2 or o A1¢

k3r2 ar \ko/  kir?

_ Zmbk l koA + ko (ﬂ) - @AC] (2.9)
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If the components of A are functions of r only, then :

« JA, 11 d

So, using equations (2.2)—(2.5) which relate the x¥ and ¢ components of a vector to

its # and z components and vice versa, we obtain :

R 2 Jd (A 2mk
VxA=x [Eg(koﬂ‘lc)] +¢ [kog (7&{,’) - ICSTAC] (2.11)

2.3 The Vacuum Fields

The externally applied currents can be approximated by the continuous distribution

2T .
je — C ERe{et(wt+m9+kz)}6(,r _ (I)
Ta ,
“zfe
= Cgcos(wt—k x)o(r — a) (2.12)

where I, is the amplitude of the discrete RF currents in the helical coils. This par-
ticular current distribution produces a vacuum magnetic field (at » = 0) of the same
amplitude as that made by the current I, flowing in discrete coils located at r = a.
To achieve the same vacuum field strength, the total continuously distributed current
must be larger than the corresponding discrete current by a factor of 4/,

The vacuum magnetic field produced by the current in the external coils is found

from Maxwell’s equations :

Vxb, = pod. (2.13)
db.
Vxe = — 5 (2.14)

Since these equations are linear both b, and e, vary as e **+X) and combining equa-

tions (2.13) and (2.14) we have :

V xV xe =—iwppd, (2.15)




With 7, as in equation (2.12) and using equation (2.9), e, is given by :

d 1 & 2 _ —QiWP-DIe H{wi+x)
— kog {kg—ra—r(kof‘ecc) } + kpee = e © 6(r — a)

with the other components being obtained from :

d /e 2mk
—ikge., k_(ﬂ>___._c _
Bocer + o ko k%’rzec 0
and 19 (reer) + ik 0
~ er TRoC,e =
r or 0%ex

the latter equation being V - e. = 0.
The solution to equation (2.16) is :

—2iwpol, a kI (kr)K] (ka)

— Hwi+x)
€el ra  Fola) For e r<a
_ ~Zwpol. a k*rK! (kr)I! (ka) gilwt+) g
7a  ko(a) kor
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(2.16)

(2.17)

(2.18)

(2.19)

where ko(a) = ko(r=a) and the constants of proportionality have been chosen to

give the correct jump in the derivative at r = a. I, and K,, are modified Bessel

functions of the first and second kind respectively. The prime denotes differentiation

with respect to the argument kr.

Using equations (2.14) and (2.8) we can obtain b, from.the solution for e.; given

~ in equation (2.19). For r < a and the case m = 1 we find :

bey = —2iBI](kr)eiwi+x)
koli(kr) .
bey = 2Bw-0—1-k——-e( t+x)
bec = 0
__pole K*a .,
where B, = — ko(a)Kl(ka)

2.20)

(

(2.21)
(2.22)
(

2.23)

Adding the complex conjugate to the field components above, we obtain the total

field produced by the external current distribution j, :

koI]_(kT‘)
k

b, = 2B, | Ij(kr)sin(wt+ x)7 + cos(wt + x)X

(2.24)
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In the limit & = 0 where the RF conductors are straight and parallel, this mag-
netic field corresponds to a transverse rotating magnetic field of amplitude B, and
frequency w. Figure 2.2 is a plot of the on-axis field amplitude B, [normalised to
B.(ka = 0)], against ka for fixed external RF coil current I.. The decrease in B,,
with increasing ka (for a given plasma of fixed radius a) is a geometrical effect due

to the decreasing pitch length of the helical windings.

2.4 Basic Equations

The total fields and currents in the plasma will be obtained from a self-consistent

solution of Maxwell’s equations and Ohm’s law. Thus we require :

JB
VxB = poJ ' (2.26)
along with Ohm’s law including the Hall term :
E = J—i—inB (2.27)
' -1 ne ’ '

In general the currents in the external coils will produce fields which can be
expressed as a full Fourier series in both y and ¢. However, HUGRASS(1985) has
shown that for m = 1 and k¥ = 0 the general solution (at long times, when the
transient effects are not important) is given quite accurately by just the zero and first

order harmonic terms. Thus we extend this to the present dnalysis and make the

approximations :
1 1,.
= By(r)+ §b(r,x,t) + §b (ry %, 1) (2.28)
1 1 '
= FEo(r) + Ee(r,x,t) + §e*(r, X, 1) (2.29)

1. 1.,
= Jolr) + 53{r x, ) + 537(r . 1) (2.30)

2
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where b, e and j are all proportional to e“**X), The asterisk denotes the complex
conjugate. Substituting the above expressions into equations (2.25)—(2.27) and ne-

glecting higher harmonics than the first, we obtain :

VxE, = 0 (2.31)
Vxe = —iwb (2.32)
V x Bo = [LUJO (233)
Vxb = poj (2.34)
1 1. .. 1.
ne 4 4
A R

For the left-hand sides of equations (2.31)—(2.34) we use the explicit forms of the
curl operator given in equations (2.8),(2.10) and (2.11).

Since Ey is a function of r only, equation (2.31) expressed in cylindrical coordinates

is :

9 — __'f' (T‘Eog) 2’ = 0 (237)
If there are no externally imposed steady electric fields we can take Egp = Ey, =0
and hence Eq, = Eq¢ = 0.

The r component of equation (2.32) gives :

qz—%h (2.38)

0

which is used to eliminate e¢ in favour of b, everywhere. After elimination of e; using

equatioﬁ (2.38), the x and ¢ components of equation {2.32) yield :

J :

E(TbT) = —tkord, (2.39)
d [e . , 2mkw

kOE (k—;;) = 3]&‘06? — ’I.wb( — E&—b.r (240)
Ampere’s law for the steady field By, equation (2.33), can be written :
3 Bo 2mk

P :
~—(korBo¢) = —korpodoy (2.42)

or
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The r component of Ampere’s law for the oscillatory field b, equation (2.34), gives
the algebraic equation :

pojr = tkobe (2.43)
which is used to eliminate j. everywhere in favour of b;. The ( and x components of

equation (2.34) yield :

a (b 2mk
ko—|-*] = ¢ + tkob, b .
e (ko) #oj¢ + tkob, + precad (2.44)
7] :
E(kurbc) = _kOT/J'OJX (245)

V-By=0and V-Jp = 0 imply By, =0 and Jo, = 0 respectively, so that the steady
component of Ohm’s law, equation (2.35), when multiplied through by uo gives :

1 0 £ . »*
neodoy = —%Re{mkbr—#ohbc}
1
= —_— - b" 2.
Ine Re{#DJ’C r} ( 46)
and
1 - -
nppodoe = _ERe{FOJ'rbx_JuUber}
1 . w A
= —%RG{Zkobgbx—#o_]xbr} (247)

where equation (2.43) has been used to eliminate j,. The r component of equation
(2.35) yields an expression for the steady radial electric field Fy,. In the oscillatory
component of Ohm’s law, equation (2.36), we substitute for j. and e; using equations

(2.43) and (2.38) respectively. We obtain :

1 . ) nk
er = —(jxBoc — jcBox + Joxbe — Jocby) + “2b (2.48)
ne Ho
1
= ex— ——(—ikob B b, |
Mix = ex #One( tkobe Bog + poJocb;) (2.49)
} w 1 .
T”C = _Ebr - pgne(ZkObCBox — ‘uojoxb,-) (250)

Equations (2.48)—(2.50) are algebraic expressions which are used to eliminate e,, j,
and j, respectively. Elimination of j; from equation (2.46) using equation (2.50) gives
1 ponew|br|2 — kngxIm{bg I‘JT}

podoy = (2.51)

ko |5,|2 + 2n2ep?
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Similarly, elimination of j, from equation (2.47) using equation (2.49) gives :

konenlm{b.b%} + poneRe{e by} — koBo Im{b by}
B, ]2 + 2n2eln?

todoc = (2.52)

We can now express j, and )¢ in terms of the variables e, b,, by, b¢, Bo, and By
by substitution of Jo, and Jg¢ from equations (2.51) and (2.52) into equations (2.49)
and (2.50). Equations (2.39)—(2.42),(2.44) and (2.45) then constitute a closed set of
four complex and two real first order coupled differential equations in the variables
€y br, by, b, Bo,, and By.

The set of differential equations are easier to solve if the fields and currents are

suitably normalised. We thus introduce the normalised variables :

b
b =
b.(0)
. — e
 wab,(0)
. 7
J =
newa
B
Bo == 0 2
Honewa
Jo = o
newa
and the normalised radial coordinate :
o
=~ 2.53
x="_ (2.59)

where b,(0) is the amplitude of the radial component of the RF field at x = 0 in the

presence of plasma. We also define the useful dimensionless quantities :

£ = ka
1
2\ 3
o = ko= (4 7)
X
2
Az o= & _ Ho¥ oo
62 2na
_ wCE_BW
To = Vei  nen
b.(0
Ll

nen
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The parameter ) is the ratio of the plasma radius a, to the classical skin depth
6. The parameter v, is the ratio of w., the electron cyclotron frequency in the
RF field B, to the electron-ion momentum transfer collision frequency v.;. In the
above definitions, n = m.vei/n.e?, is the scalar resistivity. The quantity 2A2/y =
pionewa?/b.(0) can be used to renormalise the steady magnetic field to the strength
of the RF magnetic field at x = 0. i.e.
By 2\ B,

5.(0) v ponewa?
The normalised form of equations (2.39)—(2.42) and (2.44)—(2.50) are :

%(i_z) = ier—%x(noxbt)—zmn(xb) (2.54)

;x(xb) = —ilx (l;—z) (2.55)

aa—x(l'ﬁ) = ;ﬂ%iﬁj<+i—'(xbf)+ig;§(noxbc) ‘ (2.56)

g—x('ﬁo);bc) = —aﬁ’fo}dx (2.57)

;X (B": = ’:—OJDC+2§;’:(KOXBUC) (2.58)

_%(K;O}KBM‘) = —koxJoy (2.59)

with

Joy = m [ Ki0|xbr|2-m0 (Bﬁ_‘:f) Imf(roxbebt) | (260)

o = R | o me{ (3) i}
Jo¢ = o+ 52 [2)‘2 Im{(ngxbg) Eo} + xox Re P xb
8]

- L(.tcg}riBDg)Irr:l{(.‘cox’bc)xb:}] (2.61)

KpX

and

e, = ——_]x(fcoxBoc)——EQJC Joy(Koxbe)

232 1 2X% (Box)+
Y KoX

_50.]0(( ) 737 noxbg) (2.62)
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. i 1
be = 7] (22) + = (kaxbe) (moxBoc) — Jog()] (2.63)
. ]. ?:K.o Bo ].
o = =9 [a(Xbr) + —(xoxbe) (?01) - ;JOx(Xbr)] (2.64)

2.5 Boundary Conditions

The boundary conditions given here are for the case m = 1 and are written in terms
of the normalised variables introduced in the previous section.
From the requirement that the fields and currents must be continous at the axis

(x = 0), we obtain the following conditions :

be(0) = 0 (2.65)
e(0) = 0 (2.66)
i© = o (2.67)
Boy(0) = 0 (2.68)
Jox(0) = 0 (2.69)

Using Maxwell’s equations the above conditions on e;,j, and Jo, can be rewritten
g q ¢ e X

in a more useful form. The ¢ component of equation (2.34) together with equation

(2.67) yields :
O,

=0 2.70
0x |y, (2.70)
From equations (2.65) and (2.66) and the ( component of equation (2.32) we obtain :
Oex|  _y (2.71)
% |y_,

The x component of equation (2.33) enables us to write equation (2.69) in the form:

O0Bo¢
ox

=0 (2.72)

X=0
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At the plasma-vacuum boundary (x=1), the radial component of the oscillating
plasma screening current must vanish ; j, (1) = j,(x = 1) = 0. From equation (2.43)

we obtain the equivalent condition that :
be(l) =0 (2.73)

The steady axial magnetic field must be continuous at the plasma-vacuum bound-

ary and equal to the applied nniform external axial field, B, i.e.

_ ezt
BOZ'X:I - BUZ

or in terms of helical components, using equation (2.5) :

K.XBOX + mng

= B&* (2.74)

KopX X=1
The RF magnetic field must also be continuous at the plasma-vacuum boundary.
To solve for the magnetic field outside the plasma, we imagine an infinitely thin
vacuum layer between the plasma boundary and the helical antenna. The solution of
equation (2.15) in this vacuum region is :

217,
YKo

e = (I, + cKj)eitt) (2.75)

where ¢ is an arbitrary constant. Hence from equation (2.38) we have :

23:w (Ii + CK;)ei(wH-X) (276)

by = —

V - b = 0 can be used to determine the xy component of the vacuum RF magnetic

field : :
i O

= ——(xb, 2.77
by= K07 (2.77)

which yields the result :
by = 2 (1 4 oK 4 ax(Il + cK?)] et (2.78)

YKoX
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The requirement that the RF magnetic field must be continuous at the plasma bound-
ary allows the unknown constant ¢ to be eliminated from equations (2.76) and (2.78).

We arrive at the boundary condition :

} 29.%3(1) .
15 (K + mxK) — o, K, = T80 o (2.79)

where #3(1) = k}(x = 1) and the righthandside has been considerably simplified

with the use of Bessel function relations. Equation (2.79) allows us to determine the
vacuum magnetic field (via 4,) necessary to produce the desired RF magnetic field
inside the plasma for the chosen values of the external fields and plasma parameters.

The degree of penetration of the RF magnetic field into the plasma is thus determined.

2.6 Solution of the Current Drive Equations

2.6.1 Analytic Solutions

There are two important limits in which the equations presented in Section 2.4 can be
solved analytically. These limits are specified in terms of the dimensionless parameters
v and A introduced earlier.

In the first limit (7, A — 0), the effect of the Hall term in Ohm’s law is neglected.
This limit applies to the case of very small RF field amplitudes, B.,, or very resistive
plasmas (7 — oo) and yields a solution which corresponds to the classical skin effect.
The applied RF field is prevented from penetrating into the interior of the plasma by
large induced screening currents and is confined to a thin layer at the surface of the
plasma with thickness equal to the classical skin depth §. This limit is not considered
to be very interesting in the context of non-linear Hall-effect current drive and will
not be treated in any detail here.

In the second, strongly non-linear limit (y/A* > 1, with 4, A both large), the Hall

term dominates the resistive term in Ohm’s law. This limit describes cases where

the applied RF field amplitude is large (B, > ponewa?) and the plasma resistivity
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is small (7 — 0). In this limit we find that the oscillating plasma screening currents
vanish and the RF magnetic field completely penetrates the plasma (y = +,), so
that its amplitfude is everywhere equal to that in the presence of a vacuum. Under
these conditions of full penetration, the electron fluid moves in synchronism with
the applied RF field resulting in large steady plasma currents being driven. Analytic
expressions for the fields and currents inside the plasma in the above limit are derived

below. From equation (2.57), in the limit v/A% > 1 we have :

be =0 (2.80)
and hence from equation (2.43) :

i»=0 (2.81)
Equations (2.60) and (2.61) yield for the x and { components of the steady driven

plasma current, Jo, and Jo; respectively :

1
0
1 .
Jo( = WRe{exbr} (283)

Substituting the above expression for Jo, into equation (2.64) we find :
Je=0 (2.84)

Equations (2.55) and (2.56) are now closed and can be solved for the r and ¥ com-
ponents of the RF magnetic field :

%(xbr) = —iKoxb,

8 (b, .
E{'(K’—O) = Zbr

The solution of these equations which matches the external RF field at the plasma
boundary (x = 1) and also satisfies the requirement of being finite valued at the origin
is :

by, = 27 (ex) (2.85)
g

b, = 2RO (2.86)

TR
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where the external field is assumed to bem = 1. The RF magnetic field in the plasma,
whose components are given by equations (2.80),(2.85) and (2.86), is the same as the
vacuum magnetic field calculated in Section 2.3 . The externally applied RF magnetic
field is said to be fully penetrated.
Taking the real part of equation (2.54) we find that since the righthand side is
purely imaginary :
Re{e,} =0 (2.87)

From equations (2.63) and (2.83) it then follows that :
=0 (2.88)
From equations (2.62) and (2.83) we have :

e = —JUCbX

b .
_be|2 Re{e, b’} (2.89)

Substituting the above expression for e, into equation (2.54) and using the solution

for the RF magnetic field given in equations (2.80),(2.85) and (2.86), we obtain the

following equation for Im{e,} :

3 Im{ex} 5011 Yo 45
il — I Jv *R '
o ( p” g m{e,} + " ngszl(ch) (2.90)
which, incorporating equation (2.87), has the solution :
—2i7, &(1 —2x%)
= 2.91
7 €x y (2 + 52)50){11(“)() ( 9 )
Hence from equations (2.83) and (2.85) we find :
£(1 — 2x?)
= 2.92
Joc (2 + rc?)_ﬁ,ox ( )
Equations (2.58) and (2.59) when solved for the steady magnetic field By yield :
1 x? 1
= —|[-= Bt 2.93
BO( fiox[ 2 +2+n‘€2+ Dzl ( )
K | 3-—2x* :
- = =7 4 Re=t 2.94
BOX Ko [2(2 + KZ) + Gz} ( )
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where Bg7" is the steady uniform external axial magnetic field (normalised to ponewa?).

The expressions for the steady driven current density and steady magnetic field, J,
and By, are simpler when given in terms of their cylindrical components. Using the co-
ordinate transformation equations (2.4),(2.5) and the expressions for Joy, Joc, Boy, Bac

just derived, we obtain the results :

2x
Joo = S (2.95)
K
Joz = 2-{——.&2 (2.96)
KX
Boy = —— _ .
04 22+ 7 (2.97)

1—x2

BOz = Bgzt + 2—!-_}{,2 (2-98)

Equations (2.95) and (2.96) are the same as those obtained by BERTRAM (1987) and
show that the azimuthal current density increases linearly with radius ‘whilst. the axial
current density is uniform. Radial profiles of the current density for several values of
the parameter £ are shown in Figure 2.3. -

The # and z components of the current density can be integrated to give the steady
driven azimuthal (poloidal) current per unit length and the steady axial (toroidal)

current respectively :

Tos 1 1
= dxJ = 2.99
newa? ju x Og(x) 24+ K2 ( )
Igz K
= : 2.100
newana? 2+ k2 ( )

Equaﬁions (2.99) and (2.100) represent the maximum possible currents which can
be driven for a given value of £ (inverse pitch length of the external coil structure).
Figure 2.4 shows the dependence of the magnitude of the steady driven currents on
the parameter k¥ = 27wa/{ for the case of full penetration. Maximum axial (toroidal)

current drive is achieved with & = +/2, rather than x ~ 1.35 as previously stated by

DuTcH,MCCARTHY AND STORER{1986).
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2.6.2 Numerical Solution

For intermediate values of the plasma parameters (4, A) the current drive equations
together with the appropriate boundary conditions are solved numerically. The set of
coupled differential equations were numerically integrated from x = 0 to x = 1 using
a multiple shooting technique.

From equations (2.70),(2.71) and (2.72) it is clear that b,(0), e,(0) and Bg(0) are
as yet undetermined. The unknown b,(0) was eliminated by solving for the fields
normalised to b,(0), as mentioned in Section 2.4. The remaining unknowns e,(0)
[actually j, (0)] and Bo;(0) were used as shooting parameters whose correct values were
determined from the requirement that the solution satisfied the boundary conditions
at x = 1. _

The boundary condition on the RF magnetic field at x = 1, equation (2.79),
enables the external vacuum magnetic field strength, B, to be determined. The
value of B, obtained in this manner can be used to renormalise the fields in the
plasma to those in vacuo.

The set of complex coupled differential equations and complex algebraic equations
derived in Section 2.4 were solved as a set of ten real first-order coupled differential

equations and eight real algebraic equations in the real variables ¥; — Y5 where :

Xbr = H+3}f2

—= = Yz+:iY)
ko

koxbe = Ys+1¥s
X = ¥ +iYe
Ko
Box = Y
Kp

koxBoe = Yio
JDX = Y'll
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Iy = Yiat+iYu
o = Yis+1Yie
€ = Y'IT + ZKS

The derivatives are denoted by :

i =1,---,10
f dx z

The normalised equations written in terms of the real Y variables are :

Y

Yis

LY+ Y7) = shraYe(Y1Ye — Y2Y5)

Y] = &ixY, (2.101)
Y, = —kixYs (2.102)
22 1 25
o= STt e (2.103)
272 1 2k
Y, = TOY16+—Y1+—4—X3YZ; . (2.104)
222
1/5, = —TRQXK:; (2105)
2)2
Yg = —TKQXK,; (2106)
, ' 28
Y = _yw+_y6 v (2.107)
Kax
1 25:
Y! = 1 ——Y .
, 272 2k
2A2
Y;_’O = —Tﬁox}fll (2110)

2111
| (Y7 + Y7+ 25) (&1
[ 58X (Y, Ve~ YaYs) +a0x(Yi Y7+ VaYe) — nuﬁﬁdnn—nm)(zum
! (¥ + Y7+ 25) '

7 1
vmn——— fa%——nnz (2.113)

2N\t K
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e
Yisa = vkoYs+ = 2/\2 Y5Y10 —Y2Y12 (2-114)
vy = v+ X ""Ysl@ + vy (2.115)
KoX 2A2
2
7
Yie = —E()—Xyz - 5\3—'1/51/9 + —Y?.Yu _ (2.116)
l 1
Yi. = —Y10Y13 — KkoYoYis + —Y:sy?u — KoYaYip — Ys (2.117)
K.o 2M2%x
1
Yis = ——YmYM — koYoYi6 + —YsYu — koY Y12 + Y (2.118)
KoX 2A2x

The procedure used to solve the set of equations (2.101)—(2.118) for the fields
and currents inside the plasma was as follows. Y)q(0), ¥13(0) and ¥14(0) were used
as shooting parameters whose correct values were determined from the requirement
that the numerical solution must satisfy the boundary conditions at the edge of the
plasma (x = 1).

Using the form of equations (2.101)—(2.118) in the limit x — 0 and the boundary
conditions at x = 0, a self-consistent set of initial values for the variables ¥; — Yj5 at
x = 0 can be specified in terms of the chosen values of the shooting parameters. Since
the equations are singular at x = 0, the boundary conditions and initial values are

actually specified at some radial position arbitrarily close to the origin (6x < 1). The

righthand sides of the differential equations {2.101)—(2.110) can then be calculated .

and the equations numerically integrated to advance the solution for the variables
Y1 — Yo to the next radially incremented position. The current values of ¥; — Yo
are used to calculate revised values for Y1, Y}; [using equations (2.111) and (2.112)],
which in turn are required to update the values of Y¥;3 — Yig and finally Yi7, Yis.
The righthand sides of equations (2.101)—(2.110) for the current radial position can

then be calculated and the above procedure repeated until the solution is advanced

to the plasma boundary, x = 1. The trial solution obtained using this method is then -

examined to determine whether the boundary conditions at x = 1 are satisfied. If so,

the correct solution has been found, otherwise the values of the shooting parameters

must be revised and a new trial solution found using the above method.
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The Harwell minimization routine VAQ5AD was used to search for the values of
the shooting parameters for which the numerical solutions best satisfied the boundary
conditions at x = 1.

In Figures 2.5 — 2.7 we present numerical solutions of the current drive equations
which have been calculated for three different pitch lengths of the external RF wind-
ings (specified by the value of the parameter ). Figures 2.5 — 2.7 each show the
variation of the normalised steady driven plasma currents (/o,/I72** and Iog/I13°%)
with -, for three values of A. For these calculations there was assumed to be no
externally applied steady axial magnetic field. Note the nonlinear dependence of the
driven plasma currents on the RF magnetic field strength (via ~,,). Figures 2.5 — 2.7
demonstrate the existence of non-unique solutions to the current drive equations as
previously reported by HUGRASS(1985). There is very good agreement between the
numerical solutions for the case x = 0.01 (Figure 2.5), where the external RF wind-
ings are almost straight and parallel, and the corresponding Rotating Magnetic Field
(RMF) current drive solutions found by HuGRASS(1985). 7

Figure 2.8 illustrates the dependence of the normalised steady driven plasma cur-
rents on the extc?mal a.xi%l magnetic field (BgZY) for the case x = 0.8 and A = 4.
- Note that the application a small diamagnetic external axial magnetic field increases
the magnitude of the driven plasma currents, whilst the presence of a paramagnetic -
external magnetic field is usually detrimental. Figure 2.8 also indicates the existence
of an optimum value for the external diamagnetic axial field, which is confirmed by

the experiments.

2.7 Helical Mesh Vacuum Field.

In this section, we derive an approximate expression for the vacuum magnetic field

produced by the helical mesh antenna [DUTCH, MCCARTHY AND STORER (1987)]

which is described later in Section 3.6.3 and shown schematically in Figure 3.9¢c.
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As the helical mesh antenna consists of a superposed set of m = 41 and m = —1
double-helix coils, we make use of the vacuum magnetic field calculations for the
m = 1 double-helix antenna in Section 2.3. The discrete external RF currents are
approximated by continuous current distributions and we consider the large aspect
ratio cylindrical Limit.

In the absence of plasma, the structure fields can be calculated from the individ-
ual structure currents and linearly combined. We start from the structure currents

represented in the natural helical coordinate systems (#, % +1,&' +1) and (#, X_;, ¢y)

for the m = +1 and m = —1 conductors respectively:
21, s, 2l , |
i = R [_._'3. H{wi+xt1) Sle Jilwttx-1) ]5 — )
Je e 7ra,e Gyt wae C_1|6(r —a) (2.119)

which can be written in cylindrical coordinates as:

2f, . —k ] Z 2 e i —k g — %
je = Re [Tr_;ez(wt+9+kz) (#) + ___ez(wt—-9+kz) (#):l 5(7-_.0,) (2120)
ot wa of

and summed to give:

41

wa kor

.= [kr cos(wt + kz) cos()8 + sin(wt + kz) sin(ﬂ)é] 8(r—a) (2.121)

I, is the amplitude of the RF currents in the helical conductors which are located
at a radius @ and have pitch length £ = 27 /k, with ko = (k® + 1/r2)'/2
The total structure field can be found by using Maxwell’s equations in helical

coordinates. Using the previous results for the double-helix antenna, equations (2.20)

to (2.23), we find:

—QiBwI{(k'r) (ef(m'-+x+1) + ei(wt+x_1)) P
+2Beka [ (fr) (ei(ut+x+1)7~c+1 T ei(wt+x_1)5c_1)

b. = Re

(2.122)

where B, has its usual definition (equation (2.23)) and measures the strength of the

RF magnetic field at » = 0 for the m = 1 double-helix coils. f;(kr) is a modified

Bessel function of order 1.
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Expressing the above magnetic field in cylindrical coordinates we get:

—2iB, Ij(kr) (elur+0+ha) 1 gilwt=0vkn)) 4
b. = Re 2Bk ; [N ; I (2.123)
+""jf"‘°‘f]_(k1") [et(ut+9+kz) (%‘IZ) + eilwi—8+kz) (- + Tz)]

kor
ie.

I'(kr) sin(wt + kz) cos(0)r

be = 4B, { —LI(kr)sin(wt + kz)sin(6)@ (2.124)

+ 1 (kr) cos(wt + kz) cos(8) 2
from which we may note immediately that the field has all three spatial components,
which progress as a wave on the structure in the axial (z) direction as indicated by
the sin(wt + kz) dependence, but do not progress in the poloidal direction .

Immediately we see from the simplest model (of electrons being entrained to move
with the field lines provided eb/m; € w <« eb/m,, while ions remain essentially at
rest), that net current can be driven in the axial direction but not in the azimuthal
(poloidal) direction.

For a more detailed discussion we note that the changing structure fields 9b/9t
cause screening currents 7 to flow in the plasma, which in the case of low resistivity
will be out of phase. It is the time averaged cross product of these screening currents
with the structure field (§ x b) which is identified in the generalised Ohm’s law as
providing the driving mechanism. Unlike our earlier treatment of this model for
double-helix current drive, which is a two-dimensional problem, the analysis of the

helical mesh current drive configuration is a three-dimensional problem, whose full

analysis must be presented elsewhere.




