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Abstract 

Interactive Soft Tissue for Surgical Simulation 

By, Gregory S. Ruthenbeck 

Doctorate of Philosophy in Engineering at Flinders University of South Australia. 

Principal supervisor: Prof. Karen Reynolds. Co-supervisor: Assoc. Prof. Paul Calder. 

Medical simulation has the potential to revolutionise the training of medical 

practitioners. Advantages include reduced risk to patients, increased access to rare 

scenarios and virtually unlimited repeatability. However, in order to fulfil its 

potential, medical simulators require techniques to provide realistic user interaction 

with the simulated patient. Specifically, compelling real-time simulations that 

allow the trainee to interact with and modify tissues, as if they were practising on 

real patients. 

A key challenge when simulating interactive tissue is reducing the 

computational processing required to simulate the mechanical behaviour. One 

successful method of increasing the visual fidelity of deformable models while 

limiting the complexity of the mechanical simulation is to bind a coarse 

mechanical simulation to a more detailed shell mesh. But even with reduced 

complexity, the processing required for real-time interactive mechanical simulation 

often limits the fidelity of the medical simulation overall. With recent advances in 

the programmability and processing power of massively parallel processors such as 

graphics processing units (GPUs), suitably designed algorithms can achieve 

significant improvements in performance. 

This thesis describes an ablatable soft-tissue simulation framework, a new 

approach to interactive mechanical simulation for virtual reality (VR) surgical 

training simulators that makes efficient use of parallel hardware to deliver a 

realistic and versatile interactive real-time soft tissue simulation for use in medical 

simulators. 
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Chapter 1. Introduction 

Unlike interactive computer entertainment, the key interactions within virtual 

reality (VR) surgical simulations do not simply move a vehicle, aircraft or point of 

view. Surgical simulations must allow the user to perform subtle interactions with 

simulated tissues in a realistic manner. Even though many of the requisite 

technologies have matured to a level that supports the degree of realism required, 

new techniques are required to enable interactive mechanical simulation of tissues 

and organs with realistic tactile feedback. Consequently, new medical simulations 

are expensive to develop and leave little time to focus on overarching requirements 

like content, scenarios, and learning outcomes.  

In traditional teaching, opportunities to practice skills are often limited by 

access to willing patients or cadavers. Furthermore, practise of any non-expert on 

patients exposes these patients to increased risk. Hence, there is great potential for 

medical simulators to improve medical training and reduce the training system‟s 

reliance on early skills development on patients. Immersion is an important part of 

the simulation-based learning experience. Contextual learning facilitates recall of 

the skills practised and hence improves learning outcomes. However, realism 

needs more than visual or auditory effects; tactile feedback is critical in a large 

number of medical interventions.  

Delivering a realistic and compelling manual interaction requires a user 

interface that replicates the key interactions that normally occur with a real patient. 

Relatively recent advances in computer interfaces have produced devices that 

accurately capture the motion of a stylus in three dimensions. A number of these 

devices also deliver precise force feedback. These haptic devices provide the 

hardware required to develop a new range of medical simulations with the ability 

to accurately simulate the key manual interaction. However, just as a computer 

display requires algorithms and rendering techniques to deliver visual realism, 
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haptic devices also require the development of specialised algorithms to deliver the 

same levels of realism to our sense of touch. 

Many medical procedures involve manipulating and modifying intricate 

structures with diverse mechanical characteristics using subtle visual and haptic 

cues for guidance. For example, even the relatively simple surgical procedure 

performed to remove a patient‟s tonsils involves identifying the boundary of the 

tonsil and following a thin layer of separating tissue. This separating layer is 

identified using subtle cues involving not only the appearance, but also subtle 

variations in the mechanical characteristics at and around this boundary layer that 

influence the „feel‟ encountered by the surgeon. Many other surgical procedures 

are even more intricate.  

Developing the simulation software to achieve the required subtleties and 

levels of realism requires a range of technologies to work efficiently in unison. 

Software libraries developed for other types of simulation and computer 

entertainment provide a range of useful features. Rendering and visualisation alone 

can consume a large fraction of a simulation project‟s development time. Scene 

graph and rendering libraries can save considerable time during development via 

features such as managed asset loading and efficient management of the graphics 

pipeline for high-quality rendering. Similarly, software libraries to support 

common tasks such as real-time collision detection and physics-based effects are 

also available. Prudent use of these libraries can save time by reducing the need to 

re-implement common features. However, despite the apparent benefits of using 

these libraries, simulating tissue realistically requires systems to be efficiently 

integrated at a low level. Hence, very few features of existing high-level software 

libraries can feasibly be combined to deliver the high quality key interactions 

required in medical simulations.  

A compelling tissue simulation must exhibit realistic mechanical behaviour 

in response to user interaction. Modelling mechanical behaviour at interactive rates 

is the subject of continuing research. One strategy for reducing run-time 

computations is to move as much processing offline as possible. This approach has 

produced some excellent results, although it does not produce a model that can be 

ablated or cut interactively as needed in surgical simulations. Similarly, existing 
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techniques that use a coarse mechanical simulation bound to a detailed visual 

representation result in a model that cannot be modified (cut or ablated) 

interactively. Hence, a new approach is required to cater to medical simulation‟s 

unique requirements. 

This thesis describes a new method for simulating interactively ablatable 

soft-tissue with haptic feedback at higher resolution than existing methods. The 

method exploits the parallel computing capabilities of modern graphics processing 

units to achieve diverse material mechanical characteristics at higher resolution 

and haptically interactive rates. In order to place the new tissue simulation in 

context this thesis also reviews the state-of-the art of medical simulation and the 

relevant existing technologies. 

1.1 Thesis Aims 

The tissue simulation framework presented in this thesis improves the 

effectiveness of virtual reality medical simulations by addressing the following 

aims: 

Aim 1: To review the current state of medical simulation and relevant developer tools. 

Aim 2: To plausibly simulate the mechanical characteristics of a diverse range of 

tissues. 

Aim 3: To enable users to manipulate (deform, cut and ablate) the simulated tissue 

realistically. 

Aim 4: To provide accurate force feedback in response to interactions with the tissue. 

Aim 5: To maximise detail and visual realism. 

1.2 Thesis Outline 

This section provides an overview of the remainder of this dissertation. 

Chapter 2 begins with a discussion of the role of medical simulations in 

medical teaching. The relative advantages of simulation-based teaching over 

existing teaching methods are summarised. A closer focus on how simulations can 

further improve the learning experience of students is provided beginning with an 

overview of learning modalities and a discussion of how simulations can better 

cater to students with different learning styles. The current state of the art of VR 
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medical simulations is then presented. Thereby, Chapter 2 develops a deep 

understanding of the current state of medical simulation in partial fulfillment of 

Aim 1. 

Chapter 3 critically reviews and summarises the software libraries and 

existing developer tools that are available for VR medical simulation development. 

Performance of real-time interactive systems is limited by the computing hardware 

on which it executes. Significant recent advances in parallel computing hardware 

have resulted in devices with substantially increased processing capabilities. Two 

such devices are summarised together with their significance to medical 

simulations. 

Chapter 3 completes the discussion of existing simulations and 

development tools thereby addressing Aim 1. Subsequent chapters contain more 

specific reviews of the literature related to the development of the tissue simulation 

framework that is the subject of this thesis. 

Chapter 4 presents the design rationale and an overview of the tissue 

simulation framework (Aims 2-5). 

Chapter 5 addresses Aim 2 (and also relates to Aims 3 and 4). Prior work in 

the area of real-time mechanical simulation of soft bodies is presented. An 

overview of mesh topologies is given to provide context for the design decisions 

made. A new method of modelling deformable soft-tissues in real time is presented 

in which the algorithms developed allow the system to work efficiently with the 

other components of the tissue simulation. Specific optimisations to facilitate 

efficient execution on GPGPU hardware are detailed together with a number of 

enhancements which enable the simulation to model a diverse range of tissues with 

minimal impact to processing load. 

Chapter 6 addresses Aims 3 and 5. It reviews current methods for 

polygonal surface mesh generation from volumetric data and presents a new 

method for creating polygonal surfaces from volumetric data that can be 

interactively modified. 
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Chapter 7 addresses Aims 2, 3 and 5. It describes how the mechanical 

simulation (Chapter 5) and interactive marching tetrahedra (Chapter 6) components 

were combined to create the tissue simulation framework.  

Chapter 8 addresses Aim 4. It briefly presents the range of haptic devices 

currently available and reviews the available haptic rendering software libraries. It 

then describes three alternatives for haptic rendering of the tissue simulation. Best 

usage scenarios for each approach are discussed. A simple new approach for 

testing and presenting haptic rendering algorithms is described and used to 

evaluate the haptic rendering methods. 

Chapter 9 describes three new medical simulators developed by the author. 

The simulators make use of the tissue simulation framework (described in chapters 

4 to 8) and demonstrate its effectiveness when used to provide the key interaction. 

Chapter 10 summarises the contributions of this thesis and identifies 

promising directions for future work.  
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Chapter 2. Virtual Reality for Medical Training 

Virtual reality (VR) medical simulations will revolutionise medical teaching in the 

next decade [52, 84]. Traditional medical training has a number of deficiencies that 

simulation-based training can directly remedy. When teaching relies on developing 

skills by practicing on actual patients, these patients are exposed to unnecessary 

risks. Further, by limiting teaching to only the cases that present during their 

training, trainees do not receive consistent learning opportunities and may have 

insufficient practice of important skills. Conversely, simulations deliver a tailored 

learning experience that can be standardised, and can cater to different learning 

styles in ways that traditional teaching cannot. They also facilitate self-directed 

learning and allow trainees to develop skills at their own pace and to repeat 

specific scenarios that enable them to remedy skills deficiencies in a safe 

environment. This chapter explores the benefits of VR simulation-based medical 

training and reviews the current state of the art. 

Until recently, medical training had remained largely unchanged for 

hundreds of years despite changes in the tools and techniques used to practice 

medicine [53]. Even today, patients are put at risk during normal training when 

skills are practiced on real patients [5, 60]. As stated by Roberts et al. in 2006, 

“Surgical training is changing: one hundred years of tradition is being challenged 

by legal and ethical concerns for patient safety, work hours restrictions, the cost of 

operating room time, and complications” [120]. Simulation offers more efficient 

training that, unlike traditional training, is completely repeatable. Vozenilek et al. 

neatly capture the significance and potential of simulation-based medical training 

by reforming the old dictum, “See one, do one, teach one” to become, “See one, 

simulate many, do one competently, and teach everyone” [157]. As the 
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effectiveness of simulation is demonstrated [3, 8, 57, 133], acceptance of 

simulation-based training will increase.  

During the learning of any given proficiency there is increased risk to the 

patient [60, 168]. Simulation-based medical training reduces the risks to which 

patients are exposed [168]. Training institutions routinely require trainees to 

practice on real human patients (who are there because of their declining health). 

This presents a conflict of interests; what‟s best for the learning of the trainee isn‟t 

what‟s best for the patient. Some of the risk can be mitigated by ensuring that 

trainees are closely supervised and that each mentor is responsible for the smallest 

possible number of trainees. However, each trainee must perform deliberate 

practice to develop skills to an expert level [41]. So, rather than expose patients to 

serious risks, simulations offer a safe alternative where trainees can practice 

repeatedly to gain increased proficiency in complete safety [29]. 

The acquisition of clinical ward skills by undergraduate medical trainees 

can be haphazard [79]. Not all trainees are exposed to a complete range of 

situations and cases, which in turn limits the opportunities to practice and develop 

key skills. Additionally, trainees often work in groups where it is possible for 

individuals to avoid situations that confront their deficiencies. Medical 

emergencies in particular require quick and accurate assessment of the situation 

and prompt appropriate action. Simulation can be particularly effective in 

improving trainees‟ performance in medical emergencies [160] by allowing them 

to experience the emergency rather than simply discussing how to manage one. 

Simulations allow trainees to experience situations safely and repeatably, no matter 

how rare or dangerous these scenarios are in real life. 

Just as exposure to rare situations can be limited, medical trainees may 

never gain experience recognising and treating rare conditions, pathologies, or 

responding to rare events. Simulations can readily address this by incorporating 

almost any symptoms, conditions, or situations into a training scenario. At the 

single-patient level, simulations provide a unique capacity for simulating 

uncommon conditions and rare surgical events. Further, simulation provides a fully 

controlled environment to train practitioners how to handle pressure, retain their 

composure, and take appropriate action. This is similar to pilots practicing how to 
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handle rare events such as engine fires, unresponsive controls, or any number of 

faults. If a trainee has been trained to handle the pressure and take appropriate 

action, serious complications are avoidable.  

Simulations are repeatable. Simulation developers have fine-grained 

control of the details of each simulated training scenario. This control gives new 

flexibility for targeted learning, which provides a mechanism for more rapid 

development of training programs and simplifies adaption of training in response 

to any number of events, including widespread changes to treatment protocols or 

healthcare policies. Simulations that focus directly on these changes can be an 

excellent way of updating skills. Specific deficiencies of individual students may 

also be identified during training. Though it may be possible to tailor course 

content to address group deficiencies via traditional means, simulation offers new 

potential for individuals to benefit from self-directed learning. With procedural 

content and user authoring, simulations give users the ability to contribute to 

content thereby building and refining content available to a wide audience.  

Procedural simulations provide a new mechanism for increasing 

independent and self-directed learning. Simulated scenarios can be repeated any 

number of times, and simulation users can thereby repeat difficult procedures until 

they have mastered them. Trainees can also perform self-directed learning, which 

focuses learning to address known deficiencies.  

Simulation can open new channels of communication. For example, a 

surgical simulation provides new opportunities to simplify communication by 

allowing students to point to or “grab” an anatomical feature and say “what‟s 

this?” rather than using cadavers or plastic models. 

Simulation reproducibility gives training institutions a means of performing 

fully standardised computer-based assessment. This extends to a new range of 

proficiencies that may be un-assessable via traditional means. For example, a 

simulation can record the motion of simulated surgical implements, measure 

unsteadiness, or detect whether the user has accidentally scraped parts of the 

anatomy adjacent to the “target”. 
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As the demands on medical practitioners increase, the pressure is increasing 

to find effective alternatives to traditional teaching practices that reduce reliance on 

teaching provided by expert mentors. VR medical simulation is being 

demonstrated as an important component of teaching reforms. Most importantly, 

medical simulation protects patients by allowing training to take place before 

contact with real patients. Simulation also provides opportunities for new types of 

learning not normally possible in many medical scenarios. For example, trainee 

surgeons can practice any number of times on simulated patients without requiring 

access to cadavers or necessarily even their mentor. These advantages, combined 

with a full control of the simulated environment, and the ability for the training 

experience to be refined and developed year after year, make simulation a critical 

component of medical training that will grow and mature as the potential of new 

technologies are realised. 

2.1 Learning Modalities 

Learning can be grouped into three basic learning modalities: auditory, visual, and 

kinaesthetic. It has been shown that an individual will typically learn well in one 

particular modality and will learn less effectively when information is presented in 

either of the other two modalities [6, 46]. This section explores how virtual reality 

simulation caters to each of the learning modalities and hence provides potentially 

better learning than traditional teaching.  

Visual learning is well catered for by virtual reality. Today‟s computer 

graphics are approaching photo realism (though this isn‟t necessarily the optimal 

visual style at all times). VR environments provide a unique opportunity to depict 

environments and structures in ways that are impossible using other media. Key 

structures can be highlighted, inanimate structures can be animated, and tools can 

be manipulated using pre-recorded animations. All of these freedoms give VR the 

potential to create more effective training experiences. 

A good mentor will verbally explain what they are doing and why. Hence, 

auditory learners are well catered to by the expert mentor in the traditional master-

apprentice approach currently commonly used in surgical training. Although 

simulations have a long way to go before natural language interaction with an 
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expert system is possible, it is relatively easy to employ text-to-speech or pre-

recorded phrases to enrich the learning experience offered in VR.  

It could be argued that kinaesthetic learning can be provided using the 

common user interface of the mouse [161]. However, fully realising the potential 

of kinaesthetic learning requires specialised computer-human interfaces such as 

tactile displays [116, 158] and haptic devices [63, 127, 140]. These interface 

devices no longer operate solely to input data to the computer, but also deliver 

tactile and haptic experiences to the user. This is particularly relevant to medical 

part-task trainers such as intubation simulations, tonsillectomy simulations, and 

dental simulations [148], where the key to proficiency is learning how to 

manipulate tools and structures effectively. Although the fidelity of current haptic 

interfaces may be questionable, there is clearly potential for haptically enabled VR 

medical simulation to enable trainees to learn how tissues feel and more generally 

learn kinaesthetically. 

Recent research by Ferguson et al. [48] suggests that “students with a 

„convergers‟ learning style tend to perform better” leaving students with the hands-

on “accommodators” learning style less well catered to. Accommodators prefer 

hands-on experience as a way of learning. Haptic interaction caters to this type of 

learner in new ways and thus provides new opportunities to improve learning 

outcomes.  

Desktop haptic devices are particularly promising in delivery of 

kinaesthetic learning experiences where the range of motion typically used in the 

real procedure can fit within the workspace of the haptic stylus. In such situations 

it is possible to replicate the procedure‟s workspace at the same scale as in reality. 

This scenario can be further enriched by aligning the visualisation with the stylus 

workspace thus minimising the leap-of-faith some other simulations may require. 

In summary, VR simulations can cater well to each of the learning 

modalities. Of particular interest are recent advances in computer-human 

interaction that provide new ways to interact, such as haptic devices. These 

advances create new (simulation-based) opportunities for kinaesthetic learning that 

is common in medical undergraduates [12], especially within surgical disciplines.  
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2.2 VR Medical Simulations: The State of the Art 

VR simulation has come a long way in the past decade, and has now reached a 

point where it has been demonstrated to effectively improve learning outcomes in 

clinical settings [134]. This section details a selection of the best and most relevant 

VR medical simulations currently available.  

2.2.1 Dental and Bone Surgery Simulators 

Although bone surgery and dentistry differ in terms of the anatomy and in the 

wider context, the critical interaction for both is the manipulation and remodelling 

of rigid structures (bones or teeth) during surgery. Hence, the technology 

developed for these simulators is very similar. These simulators commonly employ 

volumetric models of rigid structures, here referred to as voxel-based surgical 

simulation.  

Voxel-based surgical simulation technology has much in common with 

medical image processing. Medical imaging data are often used in surgical 

planning [132]. These are the same data as used by voxel-based simulations. There 

is a lot of overlap between the two representations (medical imaging for surgical 

planning and voxel-based datasets for simulation). The techniques used to visualize 

computed tomography (CT) or magnetic resonance images (MRI) are increasingly 

being employed in computer graphics [33] and certain types of medical 

simulations, the most significant of which will be summarised here. 

Researchers at Stanford University have produced several haptically 

interactive VR medical training simulations including Temporal Bone Surgery 

[97], Craniofacial Surgery [98],  and Dental Surgery [148]. The type of interaction 

supported by each of the simulators is very similar: volumetric tissue removal (or 

re-positioning) of rigid bone (or tooth) tissue with haptic feedback. The haptic 

feedback is computed in real time from the interaction of the tool with the voxel-

based representation of the bone or tooth. Further, additional fidelity and effect is 

added to simulate the forces resulting from the motion of the abrading tool tip. 

However, this approach does not support volumetric tissue removal from soft or 

deforming tissues.  
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Other bone surgery simulators have also been developed. Most notably, 

Voxel-Man TempoSurg is a commercially available temporal bone surgery 

simulator developed by the Voxel-Man Group with the University Medical Center 

Hamburg-Eppendorf, Germany. TempoSurg includes support for the import of 

patient-specific data from CT scan data.  

In 2007, Tolsdorff et al. used TempoSurg to “to evaluate the quality of 

patient-specific models as well as the benefit of preoperative simulation for the 

surgical procedure to follow” [152]. In the 20 cases involved in the study, they 

found that the quality of preoperative rehearsals of middle-ear surgery was 

substantially improved. Moreover, concerning the adequacy of the models, 

Tolsdorff et al. write, “the quality of simulation [was] close to exercising with 

cadaveric specimens with the decisive advantage that it does reflect the patient‟s 

individual anatomy”. This demonstrates that certain types of VR medical 

simulators are “coming of age” where realism and learning benefits are clear. The 

use of voxel-based techniques as applied to tissue simulation will be discussed in 

more detail in Chapter 6. 

2.2.2 Intubation Simulators 

Endotracheal intubation is a difficult and risky procedure that is commonly 

performed on patients in order to maintain a clear airway and for administering a 

general anaesthetic [60]. The procedure can be briefly summarised as using a 

laryngoscope to manipulate the tongue and insert a tube into the trachea. 

The interaction between the laryngoscope and the tongue is key to the 

success of the simulator. The tongue must deform realistically in real time in 

response to contact with the laryngoscope. Realistic visco-elastic modelling of the 

deforming tongue is especially challenging. The tongue is a large muscle with 

internal variability and dynamic behaviour even when the patient is unconscious,  

which makes it particularly difficult to simulate well.  

Rodrigues et al. were the first to create a real time interactive mechanical 

model of the tongue [121-123]. Their biomechanical model of the upper airway 

included all key elements at, by today‟s standards, relatively low resolution. It 

included interconnected mechanical models of “the tongue, ligaments, larynx, 
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vocal cords, [and] bony landmarks” [122]. The finite-element-method (FEM) was 

employed to simulate the behaviour of the tongue, “from simple linear elastic 

material to complex non-linear visco-elastic material” [122].  Resolution of the 

models was quite low to run on the available hardware (for example, the 

laryngoscope consisted of 35 thin-shell elements). The described configuration of 

the mechanical system is intricate; it includes specialised hidden mechanical 

interconnections to impart the desired properties [121]. This suggests that the 

system is highly specialised and used some innovative techniques to enhance the 

mechanical characteristics of the system. Empirical validation of the model was 

performed which showed “that the non-linear model behaves most closely to the 

experimental studies” [123]. The visual quality of their simulator is poor by 

today‟s standards; models consist of low numbers of flat-shaded polygons with no 

texture images, bump-maps or the like to add realistic surface detail.  

In 2003 Mayrose et al. reported on their development of a virtual reality 

intubation simulation [87]. Models were derived from the North American 

National Institute of Health (NIH) Visible Human dataset. They employed a mass-

spring based mechanical model to provide real time haptic interaction with 

volumetric 3D models. Visual realism was not given high importance and 

consequently the simulation‟s visual realism is low. No validation of the 

mechanical model or the simulation as a whole was performed. Chapter 9 provides 

a more detailed description of intubation simulation generally and also describes a 

new intubation simulation (ISim) that I have developed using the tissue simulation 

framework described in Chapters 4 to 8. 

2.2.3 Eye Surgery Simulators 

Since Sinclair and others developed the first ophthalmic simulators over a decade 

ago [137], a number of eye surgery simulations have been developed ([65, 74, 78]). 

Eye surgery simulators are one application where real time soft-tissue is simulated, 

but where the simplicity of the morphology has made it possible to produce useful 

simulations before other more complex scenarios are possible. Of particular 

interest is Faure et al‟s Ophthalmic Surgery Simulator, which simulates the 

vitrectomy procedure (removal of part or all of the clear gel known as the “vitreous 
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humor” located between the lens and the retina), and was built using the 

Simulation Open Framework Architecture (SOFA) Framework [4]. Although the 

simulation has not been clinically evaluated, the available documentation describes 

simulation elements such as haptically interactive cut-able membranes. It is clear 

from the published work that the simulation is reasonably realistic and is capable 

of delivering a high level of realism to users. However, despite the use of SOFA, 

the development of support for the key interactions was clearly quite complex. 

More information about SOFA is provided in Chapter 3. 

2.2.4 Minimally Invasive Surgery and Endoscopic Simulators 

Minimally invasive surgical (MIS) procedures (also known as keyhole surgery) 

such as laparoscopy, and arthroscopy are well suited to VR simulation largely 

because the user interface is relatively easy to replace with equivalent devices 

interfaced to a computer.  When performing a real MIS procedure the operator is 

guided visual feedback from an optic-fibre camera displayed on a monitor, and 

haptic feedback  via the handpieces of the surgical instruments. Since visual 

feedback is delivered from a monitor, not directly from the anatomy of the patient, 

exceptional simulation validity can be achieved. Likewise, endoscopic procedures 

use visual feedback via the endoscope (presented on a monitor) and haptic 

feedback via the endoscope handle. 

Although creation of realistic interfaces for MIS or endoscopic simulations 

is simpler than other types of VR medical simulations, these simulations must 

address some unique challenges based around the fact that the key interactions take 

place within tightly enclosed spaces. Handling collisions at haptic refresh-rates 

under these conditions is particularly challenging. Consequently, much of the 

research conducted into developing MIS simulators has focussed on this area. This 

technology is important to advancing VR medical training simulations beyond the 

level that is currently possible.  

Commercial simulators for a range of medical procedures that use easily 

mimicked user interfaces (such as MIS, arthroscopy, and catheter insertion) have 

been developed by a number of companies. These simulators are the most refined 

type of VR simulators available due largely to the close match between the 
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simulation user interface and the interface of the real medical devices. Hence the 

user interaction with the simulator very closely approximates reality. The most 

significant products have been developed by Simbionix USA Corporation, Mentice 

AB (Sweden) (which acquired Xitact, Switzerland), Immersion Corporation (US), 

Medical Simulation Corp (US), Voxel-Man Group (Germany), VirtaMed AG 

(Switzerland), SimSurgery AG (Norway), and Surgical Science AB (Sweden).  

Aside from the simulators produced commercially, several MIS and 

endoscopy-type simulators have recently been developed by research groups. 

Hellier et al. [64] at the Australian Commonwealth Scientific and Industrial 

Research Organization (CSIRO) have developed a multi-threaded colonoscopy 

simulation framework. The simulator provides robust simulation of the 

deformation of the colon, high visual fidelity, and a specially built haptic interface 

[128] that enables the user to manipulate a real endoscope with tactile feedback. 

Their work provides an excellent solution for “cavity simulators”. However, 

surgical simulators and VR medical simulations more generally cannot be 

developed using this framework without additional technology. 

Several arthroscopy simulators have been developed [51, 166], although 

recent activity developing this specific application appears to be limited [88]. 

These simulators are the least relevant to this thesis because they typically make 

minimal use of deformable structures and all interactions are via specialised 

(keyhole) instruments, whereas the ideal tissue simulation technology would be 

more flexible and applicable to many different medical simulation types.  

Harders et al. at ETH Zurich (Swiss Federal Institute of Technology) have 

developed an impressive hysteroscopy simulator [61, 62] that is now being 

commercialised by VirtaMed AG (and distributed in partnership with Simbionix). 

This simulator renders the uterine cavity with high visual fidelity and allows the 

user to cut deformable polyps and myomas. Ablation is also supported. According 

to their paper [62], their approach to cutting is “optimized for our specific 

application domain” and is relatively complex, requiring further work before 

arbitrary cut paths in 3D are supported.  

In summary, the number of VR medical simulations is growing. Whilst 

graphical realism is high, realistic haptic feedback and interactive tissues remain a 
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key challenge. Without better core technology all simulation development must 

overcome similar obstacles. High quality medical simulation-based training 

requires new technology to enable realistic interaction. As a field, medical 

simulation research will repeatedly need to develop similar capabilities until these 

capabilities become readily available in shared development tools. 
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Chapter 3. Simulator Development Tools 

Software libraries provide reusable components to reduce the programming effort 

required to implement a given task. Many libraries exist that can simplify 

development of medical simulations. Partly due to the demand of computer 

entertainment, libraries and development tools that give developers the ability to 

deliver realistic interactive computer graphics are quite common. However, 

surgical simulations rely on subtle tactile and visual cues that are difficult or 

impossible with existing libraries, although there are smaller libraries which can be 

useful in contributing to a solution. 

Selecting and combining libraries is a good way to avoid re-implementing 

common tasks. Care must be taken to ensure that libraries, written with a certain 

usage in mind, do not prevent implementation of key features. Hence, despite the 

prevalence of game development application programming interfaces (APIs) and 

open-world simulation APIs (commonly used for flight or combat simulations), 

there are very few software libraries that cater directly to medical simulation 

developers.  

The technologies to use to develop a VR medical simulation must be very 

carefully selected. Allegiance to a particular approach to delivering critical design 

objectives (such as support for key interactions) will determine the algorithms, and 

in turn the APIs used. Libraries can substantially reduce the time and effort 

required to develop a simulation. Thus, before designing a simulator it is useful to 

review the existing libraries and consider which components can be utilised. Good 

technology selection and software design will result in a minimal amount of 

development effort to unify the available software libraries and implement new 

features to create the finished application. The more features a software library 

contributes to the features required, the more enticing it is to incorporate the library 
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into the final design. However, care must be taken to ensure that the interfaces 

required are available and that the libraries chosen don‟t force developers to 

corrupt the design in order to conform to inconvenient architectures. This section 

reviews available software libraries which provide important functionality and 

discusses their relevance and significance to VR medical simulation development. 

3.1 Software Tools 

Virtual reality medical simulations must render 3D scenes effectively. Typically 

scenes contain a number of models where each object must be rendered with 

different surface properties and lighting effects. This requires management of 

resources such as textures, shaders and other assets such as normal-maps. Although 

it is possible to manage these assets and tasks manually, there are a number of 

tools which can reduce the development effort needed and provide efficient 

methods of managing rendering the 3D scene.  

3.1.1 Scene Graphs 

A scene graph is a tree or graph data-structure that stores a set of assets used to 

render a scene (models, textures, shader programs). The use of a scene graph is 

essential for scenes consisting of large numbers of objects, especially when only a 

small fraction of objects from the entire scene are visible at any given time. Scene 

graphs are designed to optimise rendering operations by employing fast sorting and 

searching algorithms to perform tasks such as occlusion culling, z-sorting, and 

batched render calls to render scenes more efficiently. There are a number of 

scene-graph application programming interfaces (APIs) available, each with 

different feature sets and nuances. Scene-graph APIs are useful in developing any 

virtual-reality application. However, care must be taken to select an API that 

provides maximum utility without inhibiting implementation of key features such 

as interactive tissue simulation. 

Medical simulations, and surgical simulations in particular, have virtual 

scenes different to most other types of simulations and visualisations where scene 

graphs are typically employed. Surgical simulations typically consist of enclosed 

environments densely populated with interconnected structures. Under such 
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circumstances there may be little benefit, if any, in performing per-object occlusion 

tests or scene-graph sorts. Instead, a per-polygon occlusion sort is required since 

deformable objects will occlude parts of other objects depending on current 

deformation and positioning (which rarely occurs in more open environments). 

Hence, many of the advantages typically provided by scene graph APIs do not 

apply to the types of scenes commonly found in surgical simulations. However, 

some features still provide significant advantages in this context. 

3.1.1.1 Asset Loading and Run-time Data Management 

One important advantage of some scene-graph APIs is the simplified loading of 

assets such as models, textures, and shader-programs and their storage in a manner 

optimised for rendering. Without a ready solution, implementing these features can 

be time consuming. There is not only the problem of loading the assets, but also 

managing them at run time. There are also a number of complicating factors such 

as storing textures in suitable formats that are compatible with the graphics 

hardware that will run the simulation and the shader programs. At some stage these 

problems must be addressed by the developer. Some scene-graph APIs allow the 

developer to remain ignorant of many of these details. 

3.1.1.2 Rendering and Automatic Shader Resource Bindings 

Shader fragment programs (shaders) define how transforms and lighting will be 

applied in order to render a given lighting effect (refer to section 3.1.4, page 23). 

Some scene-graph APIs support automatic shader bindings. This feature is 

especially useful because it removes the need for the developer to explicitly 

manage binding of textures, matrix transforms, and other fragment program 

dependencies between the application and the shader program. Moreover, shaders 

can define rendering algorithms that require several passes. Each shader pass can 

be thought of as a new overlay to the rendering effect (though multi-pass shaders 

need not always operate in this manner). Without automatic shader binding, multi-

pass shaders require specialised run-time code that must match the definitions in 

the shader. Changes to the shaders will require changes to the run-time code and 

vice versa. This can be time consuming for developers to maintain and is another 

potential source of coding errors. 
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3.1.1.3 Disadvantages 

Scene-graph APIs can reduce flexibility and introduce unnecessary complexity at 

various levels. For example, low-level variables may be locked by the scene graph 

API (this is a common way for scene graphs to prevent changes to the scene graph 

before sorts are performed to accelerate rendering) or even completely hidden from 

the developer. Having access to low-level data such as vertex buffers is especially 

important when working with new graphics-processor APIs that use graphics 

memory for both graphics and more general purpose computations. Avoiding 

unnecessary copies of this data substantially improves performance (discussed in 

more detail in section 3.3). Many scene graphs do not expose the vertex buffer 

resource identifiers to the developer; instead these are managed by the scene graph 

itself.  

Ogre 3D is an active open-source scene-graph project with numerous 

commercial games and 3D applications to its credit [72]. It is relatively well 

documented and well supported by its online developer community. It is cross-

platform and uses an abstraction layer that allows it to render using DirectX 9 

(Microsoft‟s graphics API) or OpenGL 2 (Open Graphics Library). There are many 

plugins available to extend functionality. Of particular interest is the “oFusion” 

scene importer which includes an exporter for exporting complete scenes from 

popular 3D modelling software such as Autodesk‟s 3D Studio Max™. Automatic 

shader binding is provided by the closed-source run-time library. Unfortunately the 

closed-source run time prevents access to low-level data structures (vertex buffers 

etc) needed for efficient use with parallel programming APIs such as Nvidia‟s 

Compute Unified Device Architecture (CUDA). Ogre 3D is available under the 

Lesser GPL license, which is quite permissive. 

Scenix (formerly NVSG) is available for free from Nvidia. Source code is 

available by special arrangement to owners of some high-end products or by 

purchasing a developer license from Nvidia. The license agreement does not 

require the payment of any royalties or imply the sharing of intellectual property 

rights of applications that use it. 

Scenix manages scene loading and rendering. The asset pipeline used to 

prepare models and scenes is relatively simple and quite powerful. Scenes prepared 
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in 3D Studio Max can be exported (as “.3ds” files) into Nvidia‟s FXComposer 

which then provides tools to apply and edit shaders and then export the complete 

scene. The scene is then ready for run-time use via the Scenix run time. All asset 

loading and shader bindings are handled by the API. This provides excellent 

flexibility and enables the use of any shader program (multi-pass, post-render 

effects and so on) with minimal development effort. 

Scenix is also cross-platform. Written for use in C/C++, it makes extensive 

use of templates to enforce correct use of data types. For example, attempts to 

write data to variables of read-only types results in compilation errors rather than 

run-time errors. This provides developers with more immediate feedback and 

enforces cleaner, more explicit code. 

Scenix is strongly object-oriented and allows developers to use inheritance 

to create custom data types. This can be used to neatly integrate specialised 

features such as the tissue simulation. 

3.1.1.4 Other Scene Graphs 

Numerous other excellent scene graphs are available. A more detailed review of 

these APIs is beyond the scope of this thesis. Links to the leading APIs are 

provided for completeness below. 

OpenSG (http://opensg.vrsource.org) 

Open Inventor (http://oss.sgi.com/projects/inventor) 

PLIB (http://plib.sf.net) 

SGL (http://sgl.sf.net) 

OpenRM (http://openrm.sf.net) 

Open Scene Graph (http://www.openscenegraph.org) 

Performer (http://www.sgi.com/products/performer) 

3.1.2 Game and Simulation Engines 

Game and simulation engines (that are typically commercial) provide excellent 

support for high-quality real time rendering of interactive virtual environments. 
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However, they are targeted at interactive entertainment (mostly computer games) 

development and do not support key interactive elements required in medical 

simulations such as interactive tissue models. However, they set the standard for 

graphical realism and to a lesser extent animation. As tissue simulation and other 

key technologies for medical simulation are developed, these engines may 

integrate the features required to make them a leading option for accelerating 

medical simulation development. In the meantime we can learn from them and 

monitor their evolution to ensure that opportunities to leverage this technology are 

not missed. 

For the past several years, Crytek GmbH have set the standard for graphics 

realism in computer entertainment. Crytek released the game Far Cry in 2003. The 

game was built using their game engine, CryEngine. CryEngine was outstanding in 

its completeness and use of cutting-edge rendering techniques such as High 

Dynamic Range (HDR) lighting effects, realistic shadows, and fluid effects, 

although the fluid effects are limited to oceans, pools and puddles and their 

interaction with personnel and vehicles. These effects have much in common with 

the fluid effects required for medical simulations, but are not sufficiently similar 

that the engine would be suitable; pools of saliva and blood would not be well 

represented by effects that model water, and techniques used to model surface 

disturbances caused by personnel and vehicles are not capable of realistically 

modelling fluid behaviour in surgical simulations. 

The CryEngine engine throttles well; rendering effects are automatically 

scaled depending on the capabilities of the available hardware. Crytek have 

continued to release outstanding game engines, namely CryEngine2 and 

CryEngine3. However, when considering development of medical simulations, 

these engines serve as a benchmark as to what is possible rather than having any 

direct application for a number of reasons, in particular: license costs are high, 

medical simulations are rarely open-world environments, and the engine does not 

support haptic interaction or tissue simulation.  

There are a number of other game and open-world simulation engines 

available. These engines may be useful for emergency medical simulations and 

other larger-scale (open world) simulations. The technology employed is very 
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capable with respect to rendering realism. As commercial opportunities in medical 

simulation increase, these engines may be adapted for use in medical simulations 

provided key capabilities are supported directly or effectively integrated. 

3.1.3 Leading Commercial Game and Simulation Engines 

CryEngine, by Crytek GmbH  (www.crytek.com) 

Gamebryo, by Emergent   (www.emergent.net) 

Id Tech 5, by Id Software (http://www.idsoftware.com/business/idtech5/) 

Microsoft ESP, by Microsoft   (www.microsoft.com/ESP/) 

Torque 3D, by Garage Games  (www.garagegames.com) 

Unity, by Unity Technologies  (www.unity3d.com) 

Unreal Engine, by Unreal Technology (www.unrealtechnology.com) 

The Unreal Development Kit is now available for free use. 

Marks et al. have recently published a more detailed review of Game Engines for 

use in medical simulation development [85]. This work supports my opinion that 

whilst game engines can accelerate and simplify the development of some types of 

VR medical simulations, they do not provide support for soft-tissue models or 

haptic interaction which is central to the successful development of the majority of 

VR medical training simulations. 

3.1.4 Rendering APIs (OpenGL and DirectX) 

Graphics hardware technology has advanced very rapidly in the past ten years, and 

particularly in the past five. To provide access to growing flexibility and 

programmability, rendering APIs also have evolved. During this time, hardware 

has moved from being capable of only fixed-function pipeline rendering, to 

versatile, fully programmable shading, and finally to general purpose computing.  

Software access to graphics hardware is typically provided to application 

developers via one of two APIs: Microsoft‟s DirectX, and Silicon Graphics‟ 

OpenGL (Open Graphics Library). Historically OpenGL has set the standard. More 

recently OpenGL has failed to fulfil its potential as DirectX introduces new 
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capabilities. DirectX has pushed forward the boundaries by adding new hardware-

accelerated pipeline stages and support several unique features. Which API to use 

will become a more significant decision as feature sets diverge.  

OpenGL is a cross-platform open standard for real time computer graphics. 

Graphics device manufacturers implement their device drivers to conform to the 

specification. Open-source implementations of OpenGL such as Mesa 3D are also 

available. Open-source drivers allow developers to optimise execution on custom 

hardware such as Sony, Toshiba and IBM‟s (STI‟s) Cell Broadband Engine 

(CellBE), and they enhance low-level algorithms for new capabilities. As 

alternative approaches to real time rendering such as micro-poly, micro-voxel and 

real-time ray tracing are explored, the prevalence  and significance of alternative 

rendering engines will likely increase. 

Since the release of DirectX 10 the differences between the two APIs has 

grown. As of DirectX 11, Microsoft have introduced new shader stages for 

programmable hardware-accelerated tessellation, hull shading, sub-division 

patches, and Bezier patches, none of which have equivalents within the OpenGL 

specification at the time this was written. These new features provide opportunities 

for new methods of efficient rendering of many millions of polygons per frame. 

The limits of the traditional rendering pipeline consisting of transform, cull, 

rasterise, and lighting are being approached as the average polygon size becomes 

smaller than a pixel.  

The recent improvements to DirectX came too late to impact the choice of 

technologies for implementing the tissue simulation described in this dissertation. 

In 2007, Nvidia‟s CUDA API was at version 1.0. It had full OpenGL support and 

limited support for DirectX (for example, geometry could not be rendered from 

DirectX from CUDA memory without being copied) [108]. Consequently, 

OpenGL was used with CUDA to develop this tissue simulation. 

3.1.5 Physics APIs 

The key interactions in surgical simulation involve real-time modelling of 

interactive deformable structures. Capturing the behaviour of interacting rigid 

bodies and articulated bodies (for example tubes) is also required to improve 
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realism and increase immersion. Physics APIs provide these features via simplified 

interfaces, and hence are a useful tool for enhancing virtual reality simulations with 

interactive physics-based effects with minimal development effort. 

PhysX was originally developed by Ageia as the first physics API 

optimised to run on specialized parallel-processing hardware referred to as the 

PhysX Processor. In 2006, with the release of CUDA, a new version of PhysX that 

executes on the GPU was released. PhysX is based on technology developed by 

Novodex AG. Today, it is one of the top physics engines used in interactive 

entertainment. PhysX is now owned and maintained by Nvidia Corporation. 

PhysX is capable of handling large numbers of rigid bodies and articulated 

bodies. Moreover, it supports real-time interactive cloth simulation with variable 

simulation characteristics. Most importantly (for surgical simulation) it is capable 

of simulating fluids and deformable soft bodies. All features can interact with each 

other and the user, though in testing this can be critically limited for certain types 

of interactions important to medical simulation. 

In PhysX soft bodies can be simulated using either volumetric meshes, or 

shell meshes. These volumetric meshes are based on tetrahedra. This type of soft-

body simulation exhibits more realistic mechanical characteristics compared to 

shell meshes. However, the structure of the volumetric-mesh is fixed; it cannot be 

cut like the shell mesh. Shell-mesh based soft bodies can use an internal gas 

pressure constraint to improve the behaviour. Without this constraint the 

mechanical behaviour is significantly less realistic if used to simulate living tissue. 

However, the gas pressure constraint cannot be used where the object may be cut 

or ablated (as is often required in surgical simulation).  

PhysX supports collision detection and handling of the entire scene. 

Unfortunately, experiments with PhysX show that collisions between soft-bodies 

or cloth with other soft-bodies or rigid-bodies are not detected sufficiently reliably 

for haptic interaction. Even with careful tuning of vertex-spacing in colliding 

object pairs, objects may pop through one another.  

Since neither approach to soft-body simulation supports key interactions, 

PhysX has limited utility in medical simulations. PhysX does however have much 
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to offer in managing secondary objects in the simulation. For example, PhysX can 

simulate the surgical cloth draped over the patient, or the behaviour of tubes or 

wires connected to instruments. These are not of critical importance though they 

may improve immersion. The question for developers remains: Does PhysX 

provide enough useful functionality to justify the time required to integrate it into 

the simulation? The answer depends entirely on the application. 

Support in other physics APIs for GPU accelerated calculations is growing; 

a critical feature if cloth or deforming soft bodies are important. Havok Physics not 

far behind PhysX. The open source project Open Dynamics Engine (ODE) has 

seen declining support and limited growth over recent years. Conversely, Bullet 

Physics is an open-source project that is growing rapidly and already includes GPU 

accelerated features.  

OpenTissue is a collection of works (many by K. Erleben) maintained by 

the Datalogisk Institut på Københavns Universitet (DIKU) (Department of 

Computer Science at the University of Copenhagen). The collection is quite 

diverse and includes some interesting works on elastically deformable solids, fluid 

simulation, and collision detection. The source code of demonstration applications 

is provided, although documentation can at times be sparse. These works may be 

useful stepping stones, although reviewing what exactly is on offer can be time 

consuming. 

In summary, there are a number of physics APIs with growing feature sets 

that typically cater to the requirements of interactive entertainment and open-world 

simulations. Depending on the functionality sought, these APIs can provide 

developers with ready access to implementations of optimised physically based 

simulation algorithms. Unfortunately, none of these APIs are targeted directly at 

medical simulation development. This is particularly evident in soft-body 

intersection handling, which is either not supported or is insufficiently reliable for 

haptic interactions that are central to VR surgical simulations. Hence, the use of 

physics APIs in medical simulation is limited to providing supporting effects and 

capabilities rather than the support for the core interactions. 
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3.1.6 Collision APIs 

Collision detection and computation of the collision response are amongst the most 

processor-intensive tasks that must be handled in real-time VR simulations. 

Algorithms, techniques, and libraries have been developed to reduce the amount of 

processing required while maximising the reliability of detection and realism of the 

collision response. This section discusses collision detection for surgical 

simulation and reviews the leading techniques and libraries. 

Collision detection is the process of identify intersecting objects, and often 

the geometric primitives (tetrahedra, triangles, edges and lines or points) that 

intersect. Details of precisely which primitives are colliding are commonly 

required to compute an appropriate collision response such as the rebound 

trajectory of a bouncing ball. 

Once collisions are detected, a collision response must be computed. 

Details of the intersecting primitives and other data (e.g. the location of the 

collision relative to the centre of mass, friction models etc) are used to un-intersect 

the models without causing artefacts (e.g. jitter, popping etc), deform and deflect 

surfaces, and exchange kinetic energy between colliding objects. 

3.1.6.1 Collision Detection for Surgical Simulation 

Collision detection in surgical simulations is particularly challenging because 

models are typically deformable and densely spaced. Deforming objects can fold, 

and folds can result in self collisions, which are contacts between different parts of 

the same model. The number and complexity of objects in a given volume of 

surgical scenes gives rise to more collisions than open virtual worlds. Hence, not 

all algorithms employed in more sparse scenes are suitable.  

Collision detection is typically performed in two stages: a broad-phase pass 

identifies intersecting volumes potentially containing intersecting objects for the 

second pass, and a narrow-phase pass that identifies individual primitives that are 

intersecting. 

Developers of VR medical simulations can choose to develop collision-

detection systems from scratch, they can use the collision API from a physics API 
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or, they can use a special-purpose collision API. This section summarises the most 

significant collision APIs currently available. 

Collision detection and response is a pre-requisite of most physics 

simulation capabilities. However, even though Physics APIs include these 

capabilities, the software interfaces to enable collision detection to be performed 

by the developer are often simplified and do not provide access to the types of data 

required to support, for example, tactile feedback. Therefore, physics APIs like 

PhysX, Havok, and ODE, while containing excellent collision detection and 

collision response capabilities, do not provide access to the low level algorithms 

surgical simulation developers require. 

OPCODE is a small collision-detection library developed by Terdiman in 

2001 [144]. The library uses a bounding volume hierarchy based on an axis-

aligned bounding-box (AABB) tree. OPCODE is optimised for minimal memory 

usage. It is capable of fast detection of triangle-triangle collisions on conventional 

hardware. However, OPCODE is not optimised for fast updates to the AABB tree. 

Nor is it designed for use on parallel hardware such as GPUs. This limits its 

attractiveness for use in medical simulations since any data structure employed for 

accelerating collision detection must be capable of efficient updates to mesh 

changes because meshes in medical simulations are typically non-rigid. 

The SOLID collision-detection library was originally developed by van den 

Bergen in 2001 [156]. It is uses an iterative algorithm for computing the distance 

between objects that was originally described by Gilbert, Johnson and Keerthi in 

1988 [55, 154]. SOLID includes optimisations for fast updates to deformable 

solids [153]. It also supports fast penetration depth estimation [155] which is 

essential for haptic interaction and computation of reactive forces.  

SOLID is optimised for execution on the CPU but it does not natively work 

using polygonal meshes. Instead, objects are internally represented as primitive 

shapes and complexes of polytopes. To overcome this limitation the author 

suggests that another library (Qhull [7]) be used to decompose complex objects 

into a compatible format. Clearly, while SOLID has promising functionality well 

suited to application in medical simulations, it is not ideal.  
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RAPID is a research project developed at the University of North Carolina 

based on oriented bounding box trees [56]. It recursively subdivides polygonal 

objects and groups the subdivisions for fast collision tests. One criticism raised by 

Terdiman is the relatively large memory footprint when compared to OPCODE 

[145]. Terdiman addresses these deficiencies by re-engineering RAPID into 

another library named Z-Collide [145]. Z-Collide removes some redundant data 

stored in tree nodes and replaces the matrices used to represent rotations (3 x 3 = 9 

elements) with normalised quaternions (4 elements). Neither RAPID nor Z-Collide 

are optimised for deforming objects. Finally, V-Collide “combines I-COLLIDE's 

sweep 'n' prune with RAPID” [67]. 

H-Collide is a more recent collision detection library optimised for use in 

haptic applications [58]. It uses a hybrid hierarchical representation that uses 

spatial partitioning to separate objects occupying large areas into a hash-table for 

efficient lookups, an oriented bounding box tree (OBB-Tree) within hashed 

volumes to accelerate lookups of small sets of potentially intersecting primitives, 

and frame-frame coherence to accelerate lookups based on previous results (since 

changes between frames are minimal) [58]. H-Collide has been used to produce 

haptically interactive applications based on rigid objects. However, like most of the 

existing libraries, it is not optimised for deforming structures where the additional 

processing overhead of updating the collision detection system at run time is not 

considered. 

Whether it is beneficial to leverage existing libraries must be decided early 

in the development of any simulation. Even if the key interaction of surgical 

simulation is not possible with existing technology, there are numerous tools 

available that provide efficient solutions to some of the issues a simulation 

developer must address. Physics and collision detection APIs provide highly 

optimised and efficient software components that provide robust solutions for 

adding physics-based animation to simulations at different scales. Scene graph 

APIs streamline the process of scene creation and greatly simplify the complexity 

of run-time components required to render realistic graphics effects in real time. 

With careful consideration and design, combining these components carefully will 

produce higher quality simulations with far less developer effort. 
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3.1.7 Medical Imaging Tools 

Medical simulations require anatomically accurate 3D models. These models can 

be created by 3D artists. However, the time and skill required to create sufficiently 

detailed and realistic models can be reduced by using medical scan datasets to 

create templates, or ideally ready-to-use models derived entirely from real patient 

data. Depending on the type of VR application, these models can be unique to a 

given patient or completely generic. If the process used to create sufficiently 

accurate 3D models is reproducible and not dependent on large amounts of user 

input or artistic input, then new types of patient-specific applications are possible. 

Unfortunately automatic generation of simulator content directly from patient data 

is not yet widespread.  

Reviewing these tools in more detail is beyond the scope of this thesis. The 

most significant of these are listed in Table 1 (below). Common capabilities include 

the ability to segment volumetric data and generate shell mesh 3D models.  

Table 1: Leading Medical Imaging Tools 

Name Company Name or Open Source 

VTK/ITK 

3D Slicer 

Amira 

BioImageXD 

caBig-XIP 

CT-Analyser 

Farsight Toolkit 

MedINRIA 

Osirix Viewer 

ParaView 

Scan IP 

True Life Anatomy 

VisTrails 

VolView 

VR-Render 

Open source 

Open source 

Visage Imaging GmbH 

Open source 

Open source 

Sky Scan 

Open source 

Open source 

Open source 

Open source 

Simpleware 

True Life Anatomy Pty Ltd 

Open source 

Kitware Inc. 

IRCAD 
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3.1.8 Simulation APIs 

An insight into the complexity of developing a VR medical simulation can be 

obtained by considering the size of the leading game engine development teams: 

For example, Id Software (id Tech 3) employs around 115 employees [2], Crytek 

(CryEngine 3) more than 500 employees [34], and Epic (Unreal Engine) 

approximately 140 employees including 21 full-time programmers [80]. 

Fortunately, the development of VR medical simulations can be simplified. 

However, whatever simplifications are employed, there is no way to avoid the 

additional complexities created when supporting real time tissue simulation and 

haptic interaction. Fortunately, simulation APIs can reduce the development effort 

required to develop medical simulations. However, significant challenges remain 

for VR medical simulation developers irrespective of the APIs employed. 

Clearly the development of medical VR simulators is complex and 

combines numerous technologies and techniques. This section provides an 

overview of the most significant simulation APIs available for VR medical 

simulation development. These APIs combine some or all of the previously 

described APIs into a single, unified API.  

3.1.8.1 SOFA: Simulation Open Framework Architecture 

The Simulation Open Framework Architecture (SOFA) is an open-source project 

founded by researchers of the Alcove group at INRIA [31]. The project aims to 

provide an architecture to facilitate development of simulators using a modular 

architecture that maximises component re-use while “minimizing the impact of this 

flexibility on the computation overhead” [31]. It is being actively maintained and 

developed by developers at INRIA and more widely contributed to by researchers 

such as the CIMIT Sim Group, ETH Zurich, and CSIRO [139]. 

The current version of SOFA (1.0 beta 4) [139] includes support for 

different types of deformable models based on mass-springs or linear and co-

rotational finite element method (FEM) (discussed in Chapter 5), fluid models, and 
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a number of collision detection and response methods. Each component is 

configurable via XML to facilitate experimentation and simulation development. 

SOFA is designed for use in medical simulation development. A scene 

graph representation is used to describe not only the rendered scene but also the 

simulation components that combine to produce interactive simulation elements 

such as interactive tissues. The component types include mechanical system 

models, surface representations, collision detection algorithms, and constraint 

solvers. As such, SOFA is maturing to become an invaluable contribution to the 

field of medical simulation research. However, the use of such a versatile 

architecture is not without its limitations. 

Flexibility in software architectures is a trade-off with specialisation. 

Specialisation brings speed and higher performance. It therefore becomes a 

question of whether sufficient performance can be achieved while retaining the 

desired flexibility. With the rapid changes occurring in general purpose GPU 

(GPGPU) APIs (refer to section 3.3.3) the overhead of re-engineering flexible 

interfaces is particularly challenging. For example, CUDA has evolved from C-

only language support to include C++ language features. Retaining flexibility of 

components written for radically changing APIs is difficult and time consuming. 

Hence, although SOFA has a lot to offer, it requires developers to conform or 

adapt to its architecture.  

GiPSi (General Physical Simulation Interface) integrates open source 

libraries (including TAO, OPCODE, and OpenHaptics) to simplify development of 

re-usable organ-level simulation components for tactile medical simulation [24]. 

Unfortunately the project no longer appears to be active (the last release of the API 

was 29-Oct 2008), and it does not include any re-usable components for tissue 

simulation. 

Other simulation APIs include NeuroVR [43], SPRING, VRASS, SSTML, 

and ISReal [45]. None includes support for capabilities targeted at medical 

simulation development, such as deformable models, and therefore are not 

considered relevant to this discussion. 
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3.1.9 Debriefing and Assessment APIs 

VR medical simulation-based assessment should never completely replace the 

assessment performed by expert practitioners. However, there are a number of 

ways that VR medical simulations can improve the quality, depth and breadth of 

assessment. Further, debriefing is recognised as an invaluable method for 

improving learning outcomes [130], [44]. Simulation offers new mechanisms for 

data collection for more comprehensive debriefing. 

3.1.9.1 Improving and Streamlining Debriefing with VR Simulation 

Development of expert skill requires deliberate practice with informative feedback 

[41]. Feedback and reflection are important learning tools that are underused in 

medical education [19]. Debriefing provides a forum for trainees to receive 

feedback and reflect on their performance during simulation-based training. 

Commonly audio and video recordings of the students‟ performance during the 

simulation session are used during debriefing. VR simulation can go further by 

allowing all interactions, as well as the complete state of the simulation itself, to be 

recorded. This removes any potential for problems related to insufficient video 

camera vantage points where it may not be possible to see, in sufficient detail, 

critical aspects of the interaction. It also creates new opportunities for recording 

simulation sessions without requiring specially outfitted rooms so that many 

students can be simultaneously recorded in non-synchronised sessions cheaply and 

simply directly via the simulation software. These recordings can then be batched 

and expertly reviewed. Batching review is more efficient for reviewers than 

participating in whole sessions. This increases the depth and quality of feedback 

and improves standardisation since performances can be reviewed literally side-by-

side. Also, since the interaction of the student with the simulation can easily be 

reviewed without identifying the trainee, feedback can be more objective and 

completely free of any bias. 

Capturing interactions via VR simulators provides opportunities for 

developers to streamline assessment in new ways completely independently of 

whether the assessment itself is at all automated. VR simulation software can be 

used to identify the user‟s progress during a training scenario. Moreover, this can 
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be extended to automatically record time markers where the trainee performs 

milestones of a procedure. Assessors and reviewers can thereby skip to important 

parts of the session. Further, if replayable session data is collected, rather than 

video from a number of virtual cameras, the reviewer can manipulate the virtual 

camera perspective during replays to see, and highlight, issues with the student‟s 

performance that may have been hidden behind obstructing structures for the 

student. These alternate vantage points can be provided as part of the delivery of 

feedback as small videos to enhance the value of the feedback. 

3.1.9.2 Scoring 

There is research that suggests simulation-based assessment is better than written 

examination [96]. However, “Simulation-based training provides minimal 

feedback and relies heavily on self-assessment.“ [83]. In a 2006 review of the 

accuracy of self-assessment the majority of studies “demonstrated little, no, or an 

inverse relationship” between self assessment and external assessment [35]. 

Clearly there is scope for improvement. VR simulation in particular offers unique 

opportunities for improved assessment methods. By utilizing the facility of VR 

simulation to capture all user interactions it should be possible to develop 

algorithms and systems to process user interactions to automate key parts of 

assessment and thereby achieve better validity and standardisation of assessment. 

Development of meaningful scoring algorithms is a challenging area of 

research that currently remains in its infancy. There are a number of approaches 

worthy of further investigation including; motion analysis [167], dexterity 

measures, collision penalties, time and event based penalties. No assessment or 

automatic scoring APIs were found at the time this was written. 

As the fidelity of simulators improves and more specific skills are targeted 

it will be increasingly important to have verified performance metrics. Looking 

beyond definition of meaningful performance metrics, standardisation has the 

potential to solidify the credibility of simulation-based assessment. Ultimately, VR 

medical simulation offers new solutions to be used by certification and regulatory 

bodies to certify competence. 
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3.1.10 Conclusions  

Surgical simulation and medical part-task or procedural trainers that rely on 

haptically enabled interactions with soft-tissue can, to some extent, be developed 

with existing tools. However, the perfect tool for developing VR medical 

simulations does not exist. There are many that contribute different features and 

capabilities, but none is ideal. SOFA is an excellent starting point. However, in 

order to produce a flexible and efficient solution, a range of techniques and 

technologies must be combined. Doing so efficiently is especially challenging 

particularly when supporting haptic interaction. 

With the right combination of tools, simulation development has the 

potential to become accessible to a wider audience. Use of these tools will enable 

researchers and developers alike to focus their efforts to make increasingly more 

specialised contributions, thus enabling rapid improvement in the quality of VR 

medical simulators. 

3.2 Literature Surveys 

When required features are not available as part of existing software libraries it is 

necessary to develop these capabilities by building upon existing libraries and 

techniques. Recent surveys by Nealen  et al. [105], Teschner et al. [147], and Klein 

et al. [75] describe the basic models, concepts, and algorithms relevant to 

interactive VR surgical simulator development. The literature as it relates 

specifically to each of the system components is provided at the beginning of 

subsequent chapters. 

3.3 Recent Advances in Parallel Computing Hardware  

“Computer science is no more about computers than astronomy is about 

telescopes”, said Edsger Dijkstra in 1967. Just as an astronomer benefits from a 

detailed understanding of telescopes and the principles and manner in which they 

operate, in order to develop good software, a computer scientist must first develop 

an understanding of the principles and nuances of the processing hardware. 
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3.3.1 The Importance of Knowing Your Hardware 

Programming interactive virtual reality simulations demands efficient utilisation of 

hardware resources. It is simple enough to display a rendered 3D model, or even an 

animation. However, to make this animation sufficiently realistically interactive to 

teach surgical skills to a trainee surgeon requires numerous systems to work 

together efficiently in hardware and software.  

When an algorithm must run at a very high rate, specialised hardware can 

be developed. Taken to the extreme, a fully programmable gate array (FPGA) 

could be used to run complex algorithms in very few clock cycles. Conversely, 

high-performance general-purpose chips can be used to emulate more specialised 

(and expensive) hardware completely in software. There is thus equivalence 

between hardware and software. An algorithm can be implemented as specialised 

logic with specialised hardware or as a program that can be executed on more 

general hardware. The more closely that the software “fits” the hardware that it 

executes on, the more likely it is going to be able to fully tap the hardware‟s 

processing capacity and achieve peak performance. However, some compute 

devices require a more abstract approach. For example, Sony-Toshiba-IBM‟s (STI) 

Cell Broadband Engine Architecture (CBEA) uses complex caching to avoid stalls 

of several hundred instructions, which can occur in the event of a cache miss [66] 

although as Breitbart et al. point out, by using software caching “the developer 

loses the chance to utilize double buffering, which is one of the most important 

benefits of the CBEA” [20]. It is therefore important to understand the nuances of 

the hardware for which real time software is developed so that good performance 

can be attained.  

3.3.2 The Cell Broadband Engine Architecture 

With the release of the latest generation of computer gaming consoles the CBEA 

went mainstream in Sony‟s Playstation 3. This processor‟s unique architecture 

differs significantly from graphics processors. It has however been demonstrated to 

be capable of handling single instruction multiple data (SIMD), and also more 

inherently serial algorithms, substantially faster than CPUs [27] and in some cases 
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as fast as GPUs [91, 92]
1
. CBEA compares favourably with GPUs, particularly 

when considering performance versus power consumption [27]. 

 

 

Each Cell consists of a 64bit 

PowerPC core and 8 SPEs. Each 

SPE has 256KB of memory, a 

memory controller and a SPU 

with an SIMD unit and 128 16B 

registers. The main bus has an 

internal bandwidth of over 300 

GB/s for transfers between SPEs. 

[14] 

Figure 1: The Cell Broadband Engine architecture [59] 

CBEA favours throughput over latency. Latency can be hidden using prefetch 

(double buffering) and caching. Since CBEA exhibits strength in a diverse range of 

applications [27] it is worth considering its use for tissue simulation. It then 

becomes a question of cost versus gain.  As pointed out by Buttari et al. [23] 

CBEA requires a deep understanding of the architecture in order to develop 

applications that take full advantage of it. Although this is typical for programming 

specialised high-performance software generally, it is my impression that the 

complexity of developing software for the CBEA significantly exceeds that of the 

alternatives. Perhaps as tools such as RapidMind‟s dynamic compiler [89] mature, 

the complexities of developing high-performance software for CBEA may be 

substantially reduced. However, in their current state, CBEA development tools 

and compilers do not sufficiently simplify the task of developing software for this 

platform. Consequently, it is not utilized by the systems described in this thesis. 

                                                 

1
 Barry Minor (Senior Technical Staff, IBM) is quoted as having said on his blog, “we 

found that using only 7 SPEs for rendering a 3.2 GHz Cell chip could out run an Nvidia 7800 GT 

OC card at this task by about 30%”. This blog is no longer available, though its content is quoted in 

forums (see reference in main text). 
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3.3.3 General Purpose Graphics Processing Units 

This section will introduce General Purpose Graphics Processing Units (GPGPU) 

with a brief history of 3D computer graphics, because computer graphics for the 

entertainment industry has driven the evolution of programmable graphics 

hardware to a point that has resulted in a revolution for high-performance 

computing on readily available parallel hardware (GPUs). 

3.3.3.1 A Brief History: From Early Computer Graphics to General 

Purpose Parallel Computing 

When considering the best approach to a software design problem, it is useful to 

consider how the hardware that executes it is changing. There is no point investing 

in software that relies on specialised compute capabilities that are likely to soon 

become obsolete.  

In the 1980s, the first 3D applications were beginning to appear and as 

markets for computer games grew, the demand for better 3D computer graphics 

grew also. Computer games have been a driving force in the development of 3D 

computer graphics technology, and since the first 3D games appeared there has 

been healthy investment in new software and hardware to deliver better 3D 

computer graphics.  

The first 3D computer games weren‟t all truly 3D. Sometimes referred to as 

2.5D, games such as Wolfenstein 3D were limited to vertical and horizontal edges 

only and small colour palettes. This was necessary in order to achieve real time 

performance on the available hardware of the day. Clearly in this era, the CPU‟s 

compute power was a limiting factor preventing better 3D rendering. 

Later, once markets had grown, the impetus for more powerful graphics-

oriented hardware drove the development of hardware designed specifically to 

accelerate graphics computations. Early graphics accelerators used a fixed-function 

graphics pipeline to rasterize, transform, and light 3D geometry and render 3D 

scenes. Vertex-processing units (vertex “shaders”) and pixel-processing units 

(pixel shaders) were initially implemented as separate specialised processors. This 

made processing difficult to balance between the two shader types, leaving a 

significant proportion of processing units waiting idle while the other did its 
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processing. This problem was addressed with the introduction of unified shaders 

that supported a larger instruction set in order to perform the dual functionality of 

vertex processing or pixel shading. Hence all unified shaders contributed to 

processing most of the time, regardless of the relative amount of vertex or pixel 

processing required. 

GPUs have since then not only grown in raw processing power to support 

rendering increasingly complex scenes, larger textures, and output at higher 

resolutions (Figure 2), they have also become more flexible. Where once developers 

could only program the way in which multiple textures were combined to achieve 

effects such as transparency, today‟s hardware has several programmable pipeline 

stages that are far more flexible and have allowed new tasks to be performed on 

graphics processors.  

 

Figure 2: GPU and CPU processing power (left) and memory bandwidth (right) [108] 

By encoding data into textures, developers have used the graphics processor to 

accelerate numerous tasks including matrix algebra and physics computations [49]. 

This approach adapts the programmable graphics pipeline to a wide variety of new 

tasks. However, it requires a deep understanding of graphics concepts and adaption 

of a system to new tasks for which it was not originally intended. New APIs such 

as Brook/Brook++ [22] have greatly simplified developing general purpose 

software that utilises the parallel processing power of the GPU. However, this 

approach is no longer necessary with the release of general purpose computing 

APIs that execute natively on new GPGPU hardware.  

Developer support for GPGPU software development is improving; for 

example, the Nsight GPU debugger has recently been released. Moreover, GPGPU 

hardware continues to rapidly grow in power and reduce in cost. Clearly GPGPUs 
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are here to stay and any software developed for GPGPU is unlikely to quickly 

become irrelevant. 

The following section details the hardware architecture of a recent GPGPU 

that has been designed to be a flexible massively parallel processor. 

3.3.3.2 The Nvidia GT200 Hardware Architecture 

The GT200 hardware architecture is Nvidia corporation‟s second GPGPU 

hardware series. The first was the G80 series which was released in 2006 headed 

by the GeForce 8800. Due for release mid 2010 is the recently announced Fermi 

architecture, which looks set to continue the trend of advancing processing power, 

memory bandwidth, and programmability. The Fermi architecture will also 

introduce a number of features targeted at scientific computing, server applications 

and general purpose high-performance computing including ECC error correction 

and native double precision floating-point operations. However, a detailed review 

of the Fermi architecture is beyond the scope of this document. 

Nvidia‟s GeForce GTX280 is the flagship product of the GT200 series 

range. Peak performance is an impressive 933 GFLOPs for single-precision 

floating point computations [135] (some 20 times the peak performance of a Intel‟s 

recent CPU, the 3.3GHz W5590 Intel Xeon [69]). Clearly the GT200 architecture 

has enormous potential, but potential is nought unless it is attained. Let us now 

explore the philosophy of GPGPU, then the specifics of this architecture before 

discussing how best to utilise this new architecture and whether it is even suitable 

for tissue simulation at all (and the constraints its use imposes). 

“The GPU is specialized for compute-intensive, highly parallel computation – 

exactly what graphics rendering is about – and therefore designed such that more 

transistors are devoted to data processing rather than data caching and flow 

control” [108] 

The GPU is a massively parallel processor designed, like the CBEA, for 

throughput rather than minimal latency. Rather than using approaches such as 

branch prediction and out-of-order execution to accelerate thread execution (as in 

modern CPUs [136]), GPUs have many simpler cores with minimal caching.  
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When effectively programmed, latencies are concealed and the massive compute 

power of the device can be fully utilised.  

3.3.4 The GT 200 architecture 

GPUs manage tens of thousands of threads with effectively no thread management 

overheads [126]. Specifically, the GeForce GTX280 has 240 streaming processors 

(SPs) grouped into 30 streaming multiprocessors (SMs). This allows the GTX280 

to execute up to 30,720 concurrent threads (128 per SP) [54]. Each SM has 16KB 

of shared memory. Each group of 3 SMs has a 24KB L1 Texture Cache and 64KB 

of constant memory. Also each SP has its 2KB share of the 64KB SM register, and 

each SP can access the 256KB L2 cache or global memory (up to 4GB). The 

architecture is illustrated in Figure 3. 

 

Figure 3: The hardware architecture of the Nvidia GT200 GPU [54] 

GPUs excel at data-parallel processing [54]. The ideal algorithm will be 

arithmetically intensive with minimal data dependencies, and be readily 

parallelizable. Alternatively, GPUs can be used for more general, mathematically 

expressed formulations to problems. Tissue simulation can be approached a 

number of ways, some more suited to the GPU than others. The following sections 

discuss how to best simulate tissue on the GPU, and how to develop code for the 

GPU and the APIs involved. 
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3.3.5 Introduction to CUDA  

With the growing processing power and expanding feature set of the graphics 

hardware, efficient ways of programming for the GPU have grown in complexity. 

Until recently, this had been solely focussed on improving graphical realism of 

rendering using more advanced lighting, texture filtering, and surface modifier 

effects like bump mapping and parallax mapping. The application programming 

interfaces (APIs) giving access to the features of the GPU provided programmable 

shaders, then later new programmable processing stages were added (vertex 

shaders and geometry shader stages), which gave developers more freedom to 

modify geometry and explore a whole range of new techniques using the 

processing resources of the GPU. These new stages, with their SIMD capabilities, 

were optimised for vector operations. Soon after, it became increasingly common 

to use the GPU for many tasks other than computer graphics. 

When CUDA was released in 2006 it was a significant step forward. 

Although other APIs (for example Stanford University‟s Brook [22] and 

AMD/ATI‟s Close-to-Metal) provided abstraction layers to simplify development 

of general purpose software for the GPU, CUDA was the first to provide a C-like 

interface to the resources of the GPU and overcome many of the limitations of 

existing GPGPU APIs. For example, CUDA provides multiple output stream 

scatters, access to high-speed local caches, single native instruction 

synchronisation, and buffer bindings with graphics APIs to reduce the need for 

multiple redundant copies of data.  

CUDA was developed by Nvidia and is currently only compatible with 

Nvidia graphics processors. Since its release, numerous CUDA applications have 

been developed which attain over 99% of the theoretical peak processing 

performance, including molecular dynamics simulation [142], and MRI processing 

[126]. It is CUDA‟s ability to provide access to all levels of memory in a relatively 

straight-forward manner that sets it apart from other GPGPU APIs. 

3.3.6 Other GPU Programming APIs 

GPU programming has recently been greatly simplified for more general purpose 

programming (no longer just rendering). New APIs provide high-level 
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functionality while retaining low-level access to the compute resources of graphics 

processors as general purpose massively multi-threaded processors. Aside from 

CUDA, there are two other APIs that are gaining support, features, and 

capabilities; Khronos Group‟s OpenCL [103] and Microsoft‟s Compute Shaders 

[18]. 

Stanford University‟s Folding@Home [77] project was the first mainstream 

GPGPU application. The API used by the project is Brook/Brook++ [22], which 

works only with ATI/AMD graphics processors. ATI/AMD have also released 

Close-to-Metal, which provides GPGPU programmability for their graphics 

hardware.  

Shader Model 5 will be included within DirectX 11. The latest DirectX 

SDK from Microsoft contains a tech preview which uses an emulation layer to run 

the code examples on the CPU. DirectX 11 also includes new programmable 

graphics pipeline stages including tesselator, hull shader (NURBs: Non-uniform 

Rational B-Splines), and domain shader (patches). Usage of pipeline is relatively 

fixed, but stages may still be useful since they are highly optimized. 

OpenCL is an open-standard GPGPU language specification. 

Implementations have been released to run with Mac OS and other operating 

systems and graphics cards. OpenCL differs from other GPGPU APIs as its scope 

includes support for transparent parallelization. Parallel code can run on any 

available processor (single core, multi-core, or GPU) that supports OpenCL. 

3.4 Conclusion 

VR medical simulations consist entirely as a combination of hardware and 

software. The software is composed of numerous components that must operate in 

efficient unison in order to achieve a reliable and compelling user experience and 

hence achieve the best possible learning outcome. The amount of development 

effort required depends largely on how successfully existing software libraries can 

be reused. These libraries must be selected carefully in order to ensure that their 

promise can be attained in the context of the simulation software application. 

While new libraries are being created all the time, and existing libraries are 

maturing, new advances in computing hardware provides new opportunities to 
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perform aspects of processing that previously limited the quality and realism of 

components key to medical simulation. Hence it is particularly important that any 

libraries used do not inhibit efficient utilization of these new hardware. Although 

many useful libraries aim to reduce the development effort required to develop VR 

medical simulations, features that implement critical aspects are still evolving 

rapidly to take advantage of recent advances in computing hardware. Interactive 

tissue simulation that delivers reliable and compelling user interaction is one such 

component that requires further development in order for VR medical simulations 

to advance to the next level. 
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Chapter 4. A New Tissue Simulation Framework 

Many medical interventions involve cutting or removing tissue. These interactions 

rely on visual and tactile feedback to inform the practitioner in a number of ways 

including whether more pressure is needed to cut to the required depth, or whether 

hidden structures are present. The simulation of these tissues is especially 

challenging to perform in real time because of the processing required, and the 

complexity of delivering tactile feedback from a changing model.   

Stable mechanical simulation of the behaviour of soft tissues typically 

requires considerable processing power. A common strategy for reducing the 

processing required is to use pre-processing to simplify parts of the algorithm used 

to perform real time updates. However, this complicates systems where user 

interactions alter the structure of the mechanical simulation system. This thesis 

introduces a new tissue simulation framework (TSF) that combines relatively 

simple components to deliver a versatile and compelling interactive tissue 

simulation that can readily be modified and maintained in real time. 

4.1 The Tissue Simulation Framework 

The TSF maximises the detail of the visible model by separating the rendered mesh 

geometry from the mechanical simulation sub-system. This separation allows the 

framework to reduce the processing requirements of the mechanical simulation 

without reducing visible detail. It also simplifies model preparation and widens the 

possibilities for implementing each sub-system since each representation of the 

model is independent of the other. Moreover, the separation of mechanical and 

visual components allowed each of the sub-systems to be built and tested in 
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isolation, which greatly simplified development, trouble-shooting, and 

optimisation. 

Soft tissues encountered during surgery exhibit diverse and complex 

characteristics such as non-linear visco-elastic deformation. This is compounded 

by variations within the tissue, and the interconnections between tissues that are 

commonly found throughout the body. Rather than focus on simulating the 

mechanical dynamics of these tissues with absolute accuracy, the TSF employs 

approaches that target simplicity and efficiency. This allows higher-resolution 

models to be used, which in turn increases opportunities for the system to model a 

broader range of tissues. Additionally, by employing multiple instances of the 

system, resolution can be added only where it is needed.  

Simplicity is important for a number of reasons. User interactions with the 

system (such as cutting and ablation) will cause structural changes that the system 

must handle reliably and accurately. The methods used to model the tissues‟ 

mechanical behaviour are designed to handle these changes efficiently, and without 

adding additional complexity or processing load to the system. 

The structures found in living systems are amongst the most elaborate and 

complex. The structures of the sinus cavity, for example, are both intricate and 

convoluted (see Chapter 9 for an example of the TSF being implemented for sinus 

surgery simulation). The TSF reduces the workload of modelling these structures 

by utilising commonly used volumetric medical scan data as the basis of the 3-

dimensional models. Optionally, this data can also be used to vary the mechanical 

properties of the tissue volumetrically, which means that a single instance of the 

TSF can exhibit varying mechanical properties that correlate with the volumetric 

densities from the scan data. The separated high-resolution visible model is easily 

generated directly from medical volumetric scan data (resolutions of 256 cubed 

voxels, approximately 17 million voxels) as demonstrated in Chapter 6. By 

circumventing the need to manually model complex anatomical structures, the TSF 

reduces the time and development effort required to use it in a diverse range of 

applications. 

Numerous medical interventions and part-tasks rely on tactile feedback to 

inform user interactions. Delivering a compelling tactile illusion is particularly 
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challenging because our sense of touch is sensitive to higher frequency variations 

than our vision. Visual updates at 60Hz are enough to deliver the illusion of 

smooth and continuous video, but tactile rendering requires updates of the order of 

1kHz to deliver a smooth and compelling tactile experience. This requirement 

imposes significant new challenges on the realisation of the tissue simulation 

because the mechanical simulation, already a potential processing bottleneck, must 

model deformations at far higher rates to support reliable haptic rendering.  

The importance of high performance and efficiency are two-fold. Although 

simulating the mechanical dynamics of a changing model at interactive rates is our 

primary concern, optimal performance also increases the level of detail of the 

model that can be achieved at interactive rates. The separate mechanical simulation 

and visible model allow the fidelity and resolution of the mechanical dynamics to 

be traded with visual fidelity and realism. High-resolution representations of both 

sub-systems would be ideal and, as hardware processing capacity continues to 

increase, the TSF will remain relevant by allowing the use of increasingly complex 

models.  

To sustain processing performance required for real time response, the TSF 

utilises the processing capabilities available on the graphics processing unit (GPU). 

The evolution of the traditional fixed-function graphics pipeline into a fully 

programmable pipeline has allowed more general computations to take advantage 

of the processing available on the GPU [111]. 

However, processing on the GPU is typically only beneficial on Single-

Program Multiple-Data (SPMD) structures. As such, determining and integrating 

aspects of the algorithms suitable for processing on the GPU is crucial to ensure 

beneficial gains in simulation performance. Furthermore, the synchronisation of 

data between the GPU and the central processing unit (CPU) remains necessary as 

the haptic device (controller for user interactions) is managed by the CPU.  

In summary, by separating the mechanical simulation system from the 

high-resolution volumetric model the tissue simulation can be adapted to a wider 

range of applications. Scenarios requiring mechanical simulation of large volumes 

can use a larger mechanical simulation node size to efficiently span the model 
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without requiring excessive processing. Conversely, if fine cuts are needed then the 

volumetric model resolution can be tuned to more closely match the mechanical 

simulation so that any alterations to the visible model are accurately reflected in 

the mechanical simulation. 

4.2 System Overview 

The remainder of this chapter introduces the complete TSF. The system is 

described in more detail in subsequent chapters.  

The TSF comprises four representations of the 3-dimensional tissue model 

(Figure 4, below). A high-resolution volumetric model is used to enable simple and 

robust interactive cutting and tissue removal. This volumetric model is used to 

generate a shell mesh (rigid render mesh model) that is optimised for efficient, 

high quality rendering using conventional lighting and shading algorithms. A 

coarse mechanical simulation that matches the topology of the other models is used 

to deform the render model. The memory required to store the multiple 

representations is negligible compared to the processing and bandwidth savings it 

achieves. 

Mechanical 
Simulation (GPU)

High Resolution
Volumetric Model

Rigid Render
 Mesh Model

Mesh
Coupling 

(GPU)

Deformed Render
Mesh Model (GPU)

 

Figure 4: Tissue Simulation Framework block diagram 

The high-resolution volumetric model simplifies cutting and ablation by allowing 

fast, simple collision detection. When a cutting instrument intersects occupied 

voxels of the volumetric model, those voxels are deleted. Only the changed sub-
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volumes are then evaluated to update the closed surface that forms the rigid render 

mesh model (Figure 5). This output render mesh is optimised for efficient high-

quality rendering using common shading and lighting algorithms. 

The mechanical simulation is updated at high rates using the GPU. High 

update rates are important for two reasons; 1. The mechanical behaviour of the 

system will remain stable for a wider range of material characteristics when the 

elapsed time between updates is small (Chapter 5). 2. A high update rate is needed 

to achieve high quality haptic rendering (Chapter 8). 

Changes made by the user to the high-resolution volumetric model update 

both the rigid model and the mechanical simulation. Updates to the render mesh 

are direct and implicit via the algorithms employed to create the render model. In 

order to maintain the mechanical model as an accurate analogue of the render 

mesh, changes to the volumetric model are used to update the coarse volumetric 

mesh used by the mechanical simulation. This is required to ensure that the 

representative models remain coherent, which ensures that the TSF behaves 

realistically when, for example, dissected tissue is moved away from the substrate. 

 

Figure 5: Initialisation and run-time loop 
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The interactively cut-able and ablatable high-resolution model and the state of the 

mechanical simulation must be combined to produce the interactive soft tissue. 

Avoiding excessive memory transactions between the CPU and GPU is imperative 

to ensure that the overall system performance is not constrained to the lesser 

performance of this memory interconnect. The render mesh geometry must be 

copied to GPU memory for rendering to screen. Hence, the TSF uses the GPU to 

map the deformed state of the mechanical simulation onto the interactive high-

resolution render mesh to produce a deformed render mesh model. The deformed 

render mesh model is then rendered directly from the GPU without the need for 

additional memory transactions between CPU and GPU. Furthermore, the mesh 

coupling processing is performed at the lesser rate of 60Hz since its output is 

required solely for generating the final render (refer to Chapter 8 for details of how 

haptic-rate updates are avoided in this part of the system). 

Collision detection has the potential to consume large amounts of 

processing resources. The TSF avoids this by re-using fixed (constant) mappings 

between sub-volumes of each representation of the model. Contact determination is 

reduced to simple spatial mappings that require negligible processing resources. 

These efficiencies are used to achieve haptic rendering at the required update rate. 

Since the TSF uses multiple representations of the same model, haptic rendering 

algorithms were developed that explore the efficacy of the different options. They 

are described and compared in Chapter 8. 

The TSF achieves its aims (detailed in Chapter 1) by avoiding common 

pitfalls of existing techniques. Chapter 9 presents a number of examples of how the 

framework has been used to add critical functionality to a range of VR medical 

simulations that would not be possible with existing development tools (Chapter 

3). The algorithms developed for each component build on the strengths of existing 

tools (Chapter 3) and techniques to provide new functionality in a reusable 

framework. 
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Chapter 5. Mechanical Simulation 

This chapter describes the mechanical simulation component introduced in Chapter 

4. The design targets efficiency and versatility ahead of realism to create a system 

that is capable of modelling a diverse range of mechanical behaviours and in so 

doing can be applied to the simulation of a range of tissue types commonly 

required in medical simulations. 

The mechanical simulation component is the software system used to 

simulate the physical behaviour of the tissue in response to user interactions (Aim 

3) and different mechanical loads in real time. Real-time mechanical simulation is 

notoriously processor intensive and the subject of continued research as 

applications demand higher fidelity and resolution at interactive rates. VR medical 

simulation training imposes additional requirements, such as cut-ability and higher 

update rates for haptic rendering, on the tissue simulation. These additional 

requirements reduce the number of approaches to mechanical simulation that can 

be used.  

Mechanical simulations typically model objects as numerous 

interconnected sub-elements. The configuration and type of sub-elements, together 

with the algorithms employed to model their inter-relationships, define the material 

dynamics. Typically, the mathematical expression that defines the relationship 

between sub-elements is homogeneous and must be evaluated for each update. 

These types of mechanical simulations are ideal candidates for parallel execution.  

There is good potential for fast execution of certain types of mechanical 

simulations on GPUs because of the repetition of computations across a large 

number of independent nodes. However, there are a number of challenges to 

achieving new levels of flexibility, topological complexity, and plausible 
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mechanical behaviour, particularly at the rates required for haptic interaction. The 

type of sub-elements used and the material dynamics model must be carefully 

designed in order to execute efficiently while providing the additional features 

demanded by VR medical training simulation. For example cutting and tissue 

removal, when implemented using the finite-element-method (FEM), “are non-

trivial and require comprehensive book-keeping and computer power to work in 

practice” [21].  

This chapter describes a novel approach to efficient and versatile 

mechanical simulation that is engineered to efficiently leverage the massive 

available compute power of GPUs whilst adding new capabilities essential to the 

success of VR medical training simulations. 

5.1 Background 

The two most significant approaches to mechanical simulation are the Finite 

Element Method, and the Damped Mass-Spring model. Each method has its own 

nuances and can be implemented in numerous ways to provide different 

capabilities. One key challenge is adapting them to support cutting and ablation to 

enable their use in real time VR medical simulations. 

Underlying these two approaches to mechanical simulation is a 3-

dimensional lattice of interconnected nodes or elements. Different lattice 

arrangements can be used to produce changes in the mechanical characteristics of 

the simulation. Moreover, different structural arrangements result in different 

mechanical attributes and affect the overall complexity and stability of the system. 

More importantly, the lattice arrangement also impacts the ease with which support 

for cutting and other interactions can be incorporated into the system.  

5.1.1 Structure and Valence 

Most approaches to real time mechanical simulation of deformable structures 

employ a static representation of 3-dimensional structure. This structure not only 

defines the locations at which material behaviour is modelled, but also the 

interconnections through which changes to the model are propagated. The number 

of interconnections within the structure determine the valence. Specifically, the 
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valence is the number of connections of a given node to neighbouring nodes. 

Different structures or arrangements of connections will result in different valence. 

When the mechanical system itself uses a higher-order representation such as the 

finite element method (see section 5.1.2.1) minimal valence is all that is required to 

have a stable mechanical simulation. However, mass-spring based approaches to 

mechanical simulation (see section 5.1.2.4) typically require higher valence in 

order to avoid problems such as folding or popping (where nodes jump 

unpredictably to achieve lower entropy) or to produce specific mechanical 

properties. A minimally valent approach described by Teschner et al. [146] avoids 

popping and folding by utilizing a volume preservation constraint in the 

computation of internal forces.  

5.1.1.1 Tetrahedral Volumetric Meshes 

In 3-dimensions, the minimum valence required in order to fully constrain a node 

is four. This results in a tetrahedral mesh structure which can take various forms. A 

regular tetrahedral mesh is composed of uniform tetrahedra. This limits the 

mechanical model‟s ability to represent the rendered model directly (since regular 

tetrahedra cannot form any arbitrary 3-dimensional shape). However, regular 

tetrahedral grids provide a number of advantages. The regular structure has known 

interconnections, which simplifies lookups of neighbours without the need for 

stored adjacency data. Also, regular grids have uniform density and, when used 

with mass-spring systems, minimise problems with folding while retaining 

minimal valence.  

 

Figure 6: A regular tetrahedral mesh [81] 

 

Figure 7: An irregular tetrahedral mesh [94] 

Irregular tetrahedral meshes can vary greatly. Poorly formed tetrahedral meshes, 

just like poorly formed 2-dimensional triangular meshes, can include slivers 
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(tetrahedra with greatly varying edge lengths) or very large or very small 

tetrahedra. At best a mesh with highly variable size or shape will merely waste 

computations. However, irregular tetrahedral meshes can remove the need for 

multiple representations of the same object at run time by using the same lattice for 

modelling mechanical behaviour and rendering. Moreover, if a system can support 

mesh irregularities then it may simplify addition of support for cutting and other 

effects. 

Finally, other advantages of tetrahedral grids include simplified barycentric 

coordinates (coordinates centred about a tetrahedron‟s centroid) that are useful for 

binding other datasets to the deformed coordinate space of the mechanical 

simulation. For example, texture information (volumetric or surface textures) and 

higher-resolution shell-meshes (for accurate rendering) can be bound to the 

mechanical simulation to create visually detailed deforming models without the 

high computational cost associated with simulating the mechanics directly. 

Tetrahedral meshes are non-trivial to generate. However, there are tools 

available to generate them. For example, TetGen, PhysX, and ADINA. 

5.1.1.2 Cubic Volumetric Meshes 

Unlike tetrahedral meshes, cubic meshes allow for very simple implicit addressing, 

which can facilitate more efficient implementation of the simulation system by 

reducing the computations and memory usage normally associated with looking up 

the location of connected nodes. This is particularly important for GPU-based 

implementations which are often memory bandwidth limited. Cubic lattices also 

allow the developer to map node data directly into cubic texture memory, which 

can be significantly faster than more abstract approaches where direct use of 

texture memory is not a viable option. 

Common cubic lattice arrangements have direct equivalents in 2-

dimensions. The simplest lattice connects nodes only to their nearest neighbours 

orthogonally (Figure 8). In 3-dimensions this results in a valence of 6 (for non-edge 

nodes). Without additional constraints, this arrangement is highly susceptible to 

folding and is inherently unstable since nodes are not sufficiently constrained. 

Diagonal springs, often referred to as “shear-springs”, can be added to stabilise the 



CHAPTER 5. MECHANICAL SIMULATION 

56. 

mesh (Figure 9). Further mechanical stability can be achieved by extending the 

connectivity beyond the nearest neighbour. Figure 10 illustrates this concept in two 

dimensions by adding secondary connectivity. Many arrangements are possible by 

extending the range of connections even further and optionally interconnecting any 

or all possible pairs of nodes. 

 

Figure 8: Simple square-lattice 

[129] 

 

Figure 9: Square lattice with 

diagonals [138] 

 

Figure 10: Square lattice with 

diagonals and secondary 

connectivity [118] 

5.1.1.3 Adaptive and Hybrid Schemes 

 

Figure 11: A 2D Delaunay triangulation [68] 

 

Figure 12: Adaptive tetrahedral tessellation [76] 

When a single mesh is to be used for mechanical simulation and rendering, or 

where additional accuracy is required around areas of higher detail, adaptive 

tessellation can be used to create the volumetric mesh. A common problem with 

adaptive mesh generation is large variations of the angles between element edges 

(dihedral angles). Large dihedral angle variations are indicative of an irregular 

mesh () which in turn will reduce the fidelity of the mechanical simulation unless 

special provisions in the simulation are made to normalise the stiffness of springs 

based on their arrangement. Stiffening the spring connecting nodes on the shortest 
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edge will improve the triangle‟s (or tetrahedron‟s) tendency to be less resistant to 

compression and consequently potential problems with “popping”. 

 Adaptive tessellation techniques can also be employed to handle changes to 

a mesh during cutting. 

5.1.2 Real-time Mechanical Simulation Techniques 

Real time physics modelling of deformation has its roots in mechanical 

engineering where non-real time simulation has long been used to evaluate and 

analyse the mechanical characteristics of everything from components and 

containers to architectural designs. The methods used are generally mathematically 

well defined and understood. However, a mechanical engineer need typically only 

know if a certain load will cause a component to fail whereas a tissue simulation 

for VR surgical simulation must model a dynamic system with changing structure. 

Some approaches have been adapted to such usage, while others prove difficult 

despite considerable research effort having been expended. 

5.1.2.1 The Finite Element Method 

The Finite Element Method (FEM) represents an object volumetrically as a finite 

set of elements, usually tetrahedra. FEM-based mechanical simulations use a 

number of simplifying assumptions to find approximate solutions, via numeric 

integration, to a set of partial differential equations (PDEs) that model each 

element‟s structural mechanics. Considerable research has been performed into 

adapting the FEM to real time applications. Different methods have been found for 

improving efficiency, though achieving sufficient efficiency for real time use while 

adding support for surgical interaction remains a challenge. This section 

summarises significant works based on FEM relevant to the VR medical 

simulation applications. 

Müller and Gross [102] describe a real time FEM formulation that supports 

“elasticity, plasticity, melting and fracture”. This work demonstrates excellent 

stability of the mechanical simulation, particularly under large rotational 

deformations. Its ability to simulate fractures suggests that it may be possible to 

adapt their approach to surgical applications. 
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Morris [101] describes how to create models with calibrated mechanical 

properties based on FEM for real time usage. Similarly, Sedef et al. [131] describe 

how to perform “Real time Finite-Element Simulation of Linear Viscoelastic 

Tissue Behavior Based on Experimental Data”. 

Other mechanical simulations for real time applications based on FEM 

suggest different methods for optimising performance: Nikitin [106] unifies FEM 

and pre-computed Green‟s Functions, Masutani et al. [86] describe a surgical 

simulator based on “FEM and deformable volume-rendering”, Miller et al. [90] 

demonstrate an “Explicit Lagrangian FEM”. Recent work by Cotin et al. [32] 

focuses on efficient modelling of soft-tissue. 

Some success has been achieved in creating real time FEM-based 

simulations that allow the types of interaction (such as cutting) required in VR 

surgical simulation applications. Berkley et al. [15] have developed a virtual 

suturing simulation. They use a pre-computed stiffness matrix to improve run-time 

performance. However, the model cannot be cut or the mesh topology altered since 

this would require modifying the stiffness matrix which, at the time of writing, was 

too slow for maintaining real time update rates [15]. Wu et al. [163] use a range of 

optimisation techniques, including some use of the GPU, to accelerate efficient 

shading to create a deformable soft-tissue model that can be cut. 

Clearly FEM is an excellent choice when mechanical behaviour must be 

accurately modelled. However, adapting FEM so that interactions such as cutting 

are supported is not trivial. 

5.1.2.2 The Boundary Element Method 

The Boundary Element Method (BEM) is similar to FEM but uses a set of surface 

elements rather than volumetric elements to model an object. This simplifies the 

simulation generally and reduces computational load [70]. However without 

internal structure BEM is more prone to exhibiting undesirable behaviours like 

folding. Further, supporting re-modelling interactions like cutting is complicated 

by the lack of internal structure [95].  
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5.1.2.3 Green’s Function 

A Green‟s function is an “integral kernel that can be used to solve an 

inhomogeneous differential equation with boundary conditions” [159]. James and 

Pai [71] describe a method for real time modelling of deformation using pre-

computed Green‟s functions, capacitance matrix algorithms, and wavelets. 

Performance is accelerated by adapting the resolution of the displacement field that  

deforms the model. Schoner [129] describes the use of a Discrete Green‟s Function 

Matrix to achieve real time simulation of deformable models. Though each of these 

approaches utilise the Green‟s function, they are very different. James‟ method is 

considerably more complex and achieves higher frame-rates for more complex 

models, whereas Schoner‟s work is the converse (simpler and slower). However, 

neither approach supports interactive mesh-modification such as cutting. 

5.1.2.4 Mass-Spring 

Mass-spring simulation of deformable objects uses discrete approximations and 

explicit integration to model material dynamics (whereas FEM uses a continuum 

model). The mass-spring approach to mechanical simulation uses the relative 

position of nodes to compute the force of interconnections. The structural 

representation of the object can be similar (or even identical) to that used in an 

FEM based simulation. However, rather than solve the dynamics of each element, 

the force between pairs of nodes can be computed by simulating interconnections 

as damped springs. According to Hooke‟s Law, the force from any given spring is 

proportional to the displacement from its original length (F = kx, where F is the 

restorative force of a spring that is equal to the product of the deviation x of the 

spring length from its rest length, and the spring constant k). Alone, this 

formulation results in oscillations between nodes and an inherently unstable system 

because of the lack of damping. Hence it is typical to use damped springs (Figure 

13) where the restorative spring force opposes the rate of change in length of the 

spring, which thereby reduces or removes oscillations (depending on the amount of 

damping). 
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Figure 13: A damped spring cooper [30] 

Equation 1 shows Hooke‟s law with additional terms (   ̇) expressing the damping 

force. The damping force is proportional to the rate of change of the spring length 

 ̇. Finally, Newton‟s 1
st
 Law of motion (Equation 2) is used to determine the 

acceleration a of a given node due to the total force F and its mass m. 

         ̇  

Equation 1: Damped spring equation 

  
 

 
 

Equation 2: Newton's first law 

A given node within a 3D model will be connected to a number of other nodes. 

The arrangement of the interconnections and the size of the neighbourhood to 

which a node is connected will affect the overall behaviour of the mechanical 

simulation, thereby changing the material properties. Different structural 

arrangements and their significance have been discussed in more detail in section 

5.1.1. 

  ∑         ̇

 

 

 

Equation 3: Total force on a node with i damped-spring connections 

With such a simple basis, a mass-spring system is relatively simple to augment for 

effects such as cutting. It is also relatively efficient provided the lattice structure 

used has reasonably low valence. On the other hand the stability and realism of 

mass-spring based systems is arguably lower than FEM based approaches. 

However, as I will discuss later there are ways to address these shortcomings (see 

section 5.2.2). 
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5.1.2.5 Particle Based and Others 

Smoothed particle hydro-dynamics (SPH) is a technique commonly used for 

modelling fluids. This approach has been adapted by Desbrun et al. [36] in order to 

simulate cutable deformable solids. Unfortunately this work appears only to be 

demonstrated in 2-dimensions and, looking at more recent publications by the 

authors, appears not to have been further developed. The concept of particle-based 

deformable solids may have advantages particularly when handling interactions 

with fluids (the interaction of interconnected or adjacent systems is simplified 

when their representations have similarities).  

5.2 Cubic Rotational Mass Springs: A New Approach 

A number of techniques have been reviewed that are suitable for real time 

simulation of deformable bodies. Each technique has its advantages: FEM based 

techniques have excellent stability and analytically verifiable accuracy; mass-

spring based systems can be more computationally efficient and are simpler to 

augment for mesh cutting. Unfortunately, mass-spring based mechanical 

simulations are also prone to folding. Shear springs (see Figure 9, page 56) with or 

without additional spring connections beyond the nearest neighbour (e.g. Figure 10, 

page 56) reduce this problem, however, the additional connections not only result 

in additional computations, but also increase the number of nodes involved in 

position update calculations which complicates parallelisation and adds to memory 

bandwidth requirements. Here I describe a new approach that addresses these 

issues: Cubic Rotational Mass Springs (CRMS). 

Thomaszewski et al. [149] showed (in two dimensions) that mass-spring-

based systems can benefit from corotational constraints to improve the mechanical 

stability and realism of mechanical behaviour. I have extended this concept to three 

dimensions by connecting each node to its 6 nearest neighbours orthogonally 

(Figure 14). Interconnections are of two types; linear damped springs (Figure 15), and 

angular damped springs (Figure 16). In three dimensions, this results in 6 linear 

springs and 12 angular springs (4 per plane) per node. At first impression this may 

seem excessive since, in the rest position, each of the angles are complementary; if 

nodes are aligned with the axes then one angle can simply be calculated from the 
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other. However, under the full range of distortions that occur during deformation 

each angle must be evaluated individually. 

 

Figure 14: Each node is connected to six neighbours 

 

Figure 15: Linear springs 

 

Figure 16: Angular springs 

Calculating and applying the linear spring constraints is trivial. However, the 

calculation of the angular spring constraints is more complex. Figure 17 illustrates 

the corrective forces applied due to the angular springs for deflection angles of 

±45°.  

a) b) 

 

 

 

Figure 17: Angular spring corrective forces (90° rest angle) 

When computed in 3D-space, forces caused by the angular spring are always 

planar and acting in directions on the plane formed by the two linear springs 

(edges). The angular spring deflection   is computed using the dot product of the 

edge vectors according to Equation (4). It is important to note that the acos 

function cannot discriminate between angles reflected about 180 degrees and so 

this equation is only valid in the range -90° <   < 90°. This causes angular spring 

deflections outside of this range to incorrectly maintain seek to   with an offset of 

180°. Soft linear springs can remove this problem by enabling edge-springs to 



CHAPTER 5. MECHANICAL SIMULATION 

63. 

compress or extend without forcing angular joints to deform outside the valid 

range.  

            ̅̅ ̅̅    ̅̅̅̅    (4) 

The direction  ̂ of the force applied to the node due to an angular spring is 

computed from the pair of edges (Equation (5)) as shown in Figure 17.  

 ̂  
  ̅̅ ̅̅    ̅̅̅̅

|  ̅̅ ̅̅    ̅̅̅̅ |
  (5) 

For simplicity, we combine the deflection   and the direction  ̂ to form the term d 

(Equation (6)). 

    ̂ (6) 

Similarly, the linear spring deflection   is calculated from the change in edge 

length from the rest length of the linear spring   (Equation (7)). 

  
|  ̅̅ ̅̅ |   

 
 

(7) 

The direction of the linear spring force  ̂ is applied inline with spring itself 

(Equation (8)). 

 ̂  
  ̅̅ ̅̅

|  ̅̅ ̅̅ |
 (8) 

We combine the linear spring deflection   and the direction  ̂ to form the term x 

(Equation (9)). 

    ̂ (9) 

The total spring force   at a given CRMS node combines the damped spring 

equation (Equation 1) with the angular and linear spring deflection terms for the 6 

linear springs and 12 angular springs (Equation 10). 

  ∑            ̇   ∑(           ̇)

  

   

 

   

 

Equation 10: Total spring force at a node 
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5.2.1 Integration 

Simple Euler integration was used for its efficiency and its ability to handle 

velocity discontinuities caused when handling collisions. Equation 11 shows how the 

current position       and current velocity       are updated according to the time 

step   , acceleration a, and previous position       and velocity      . 

                    

                

Equation 11: Euler integration 

5.2.2 Stabilising the System 

Mass-spring systems are inherently unstable under high loading. When stress or 

strain forces are large, one common problem is referred to as overshoot. When 

explicit integration schemes are used and if springs are under high loads, overshoot 

can quickly produce an unstable system which, without special measures, will 

cause nodes to oscillate and quickly accumulate kinetic energy that can result in 

“jiggling” or potentially “explosion” whereby the system becomes unstable.  

5.2.2.1 Limiting System Kinetic Energy 

One approach to extending the maximum deformation for which the system can 

remain stable is to reflect overshoot according to the projected position of a node 

given the integration period and the current spring stiffness. Alternatively, system 

stability can be maintained for higher forces by adding a speed-dependent kinetic 

damping. This will act to reduce the kinetic energy in the system (the motion of the 

nodes). CRMS uses this technique increase the stability of the system. When set 

too high, the system-kinetic-energy constant („ksys‟) gives similar behaviour to an 

overdamped system. Since use of this approach relies only on that rate of change of 

the linear spring it is very efficiently applied in parallel. 

Finally, in order to further enhance the stability of the system a simple 

velocity limit was used when forces and consequent acceleration of nodes relative 

to one another is high, the relative velocity of nodes quickly increases. Increased 

damping is will lessen the problem, but when damping is set too high the system 

becomes slower and less responsive (like a sponge filled with oil). Use of a 
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velocity limit increases the stability of the system for a wider range of mechanical 

characteristics without over-damping the system. 

Both methods of extending the stability of the system are applied 

efficiently within the GPU implementation resulting in only a few additional 

instructions per node update. 

5.2.3 Performance Optimisations 

CPUs use branch prediction and elaborate caching strategies to hide memory 

latencies to optimise execution speeds of a few threads. Conversely, GPUs are 

throughput-oriented with smaller caches and are optimised to execute thousands of 

threads in parallel. Further, GPUs have comparatively more processing capability 

and less memory (and bandwidth) per processing unit than CPUs. Therefore, in 

order to optimise software for efficient execution on the GPU the developer must 

take steps to minimise the impact of memory latencies and limited bandwidth per 

processing unit. Two key strategies were employed in developing a mechanical 

simulation that maximises performance on the GPU:  

1. Compute rather than look up data wherever possible.  

2. Exploit coalesced global memory usage. 

5.2.3.1 Implicit Node Addressing 

Updates to the mass-spring system use the relative position of each node‟s 

neighbours. Mass-spring systems based on irregular tessellations must explicitly 

address nodes by storing pre-computed adjacency information. Explicit addressing 

can also improve performance by removing the need to repeat nearest neighbour 

searches at run time.  

By using a regular cubic lattice structure, CRMS avoids any expensive 

local searches completely because adjacent nodes are implicitly addressed; 

Addresses are calculated rather than read from global memory, which reduces 

global memory access, instead adding a small number of computations for 

calculating the address of adjacent nodes. Consequently, memory-related 

bottlenecks are avoided, resulting in better utilisation of the GPU‟s compute 

capabilities.  
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In summary, CRMS resists folding while minimising the number of nodes 

involved. The memory bandwidth required during updates is reduced by 

minimising the number of connected nodes, thus allowing better utilisation of GPU 

resources than existing methods. Moreover, the simplicity of the mass-spring 

approach provides a strong basis for the tissue simulation and allows for cutting 

and volumetric tissue removal (refer to Chapter 7). The remainder of this chapter 

outlines the performance of the system on the GPU and demonstrates its 

extensibility by applying a range of specialisations to enhance its application in VR 

medical training simulations. 

5.3 Demonstration 

The CRMS runs efficiently on the GPU by splitting update computations into one 

GPU thread per node. The system can be adjusted to exhibit a wide range of 

mechanical characteristics. Material stiffness can be varied from soft tissue through 

to stiff, almost-hard tissue. Damping can also be tuned to vary the 

“responsiveness” of the simulation. Critically damped or slightly under-damped 

springs will result in jelly-like behaviour. Conversely, overdamping produces less 

responsive tissue, which reverts to its original shape more slowly. Additionally, the 

separation of parameters controlling the properties of angular springs versus linear 

springs enables the simulation to produce new behaviours. For example, stiff 

angular springs and soft linear springs will result in tissue that is compressible but 

which resists bending and shear deformations. Soft angular-springs and stiff linear-

springs cause the lattice to collapse (fold flat around itself). However, when subject 

to strain (extension) this configuration exhibits behaviour which can be likened to 

woven fabric; resistant to strain and low-resistance to shear loads.  

CRMS is capable of simulating grid resolutions up to 64 x 32 x  32 at interactive 

rates (update rates above 30Hz) (Figure 18). Relatively long and thin structures can 

be simulated when stiff springs are used (Figure 19).  
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Figure 18: High-resolution square beam 

(64x32x32 nodes) 

 

Figure 19: Long stiff beam (32x8x8 nodes) 

CRMS will twist in response to torsional forces (Figure 20). Individual cells (cubes 

of eight nodes) can be deflected past 22.5 degrees without folding resulting in 

stable simulation of large deflections (Figure 21).  

 

Figure 20: Twisting deformation of beam 

 

Figure 21: Large rotational deformation 

Cloth can also be simulated efficiently with a single-layer of CRMS. The lattice 

cannot be punctured or popped-through (see 8.6.1.1) even when stretched. Under 

tension, the rotational springs do not significantly alter the behaviour of CRMS 

(Figure 22 and Figure 23). 

 

Figure 22: Cloth with linear springs only 

 

Figure 23: Cloth angular and linear springs 

The effect of the angular springs is far more significant when the CRMS cloth is 

draping or hanging (Figure 24 and Figure 25). 



CHAPTER 5. MECHANICAL SIMULATION 

68. 

 

Figure 24: Cloth with angular and linear springs 

 

Figure 25: Cloth with linear springs only 

Unlike many cloth simulations, CRMS allows multi-layered cloth to be simulated. 

This creates a mattress-like effect that is useful for simulating layers of tissue 

(Figure 26). 

 

Figure 26: Two layered cloth with angular and linear springs (32x32x2) 

5.3.1 Improving Performance with Memory Access Coalescing 

Although CRMS minimises the usage of global memory, data such as node 

positions must be stored there because of its size and the access patterns required. 

Accessing global memory is relatively slow and consequently will limit 

performance by stalling processing. Global memory access coalescing can be used 

to perform a staggered pre-fetch of data stored in global memory, thereby hiding 

latency and increasing overall performance. Consequently, global memory 

coalescing is one of the most significant ways to increase performance on the GPU 

[109]. 

In order to use global memory access coalescing, certain criteria must be 

met. Recent changes to CUDA expand the range of access patterns that will be 

coalesced [108]. However, the simplest access pattern is the one targeted by 

CRMS. This pattern is achieved when each thread accesses global memory with a 

consistent address offset to temporally adjacent threads. In order to fulfil CUDA‟s 

requirements for coalescing, global data is stored as arrays with the pre-requisite 

types as specified in the Programming Guide [108]. Each node update performs six 
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lookups with typically consistent address offsets (the exception being near mesh 

boundaries), which allows updates to occur substantially faster since groups of 

sixteen threads (termed “warps” in the CUDA context) can access 64 byte blocks 

of memory using one instruction for the entire group. 

5.4 Extensibility 

It is particularly important that the tissue simulation be capable of mimicking the 

behaviours of real tissue. Many tissues can exhibit plasticity and visco-elasticity. It 

is normally difficult to create a mechanical simulation that can mimic these 

properties and requires considerable effort and expertise to model them accurately. 

However, it is more important that the simulation be compelling rather than 

absolutely accurate, provided that immersion is not inhibited and properties are not 

misleading it is sufficient to use techniques which deliver a compelling illusion. 

Here I demonstrate the versatility of the system design by describing a range of 

effects that significantly alter the behaviour of CRMS with minimal overhead. 

5.4.1 Approximating Plasticity 

Plasticity and visco-elasticity can be approximated in CRMS using a simple 

heuristic that modifies the spring rest-length as a function of current spring length 

(proportional to stress/strain). When a compression threshold is exceeded 

(minimum spring length), the spring‟s rest length is scaled with time. Without a 

recovery function, these changes to the rest length modify the rest-shape of the 

mechanical simulation, thereby mimicking plastic behaviour. By adding the 

recovery mechanism, visco-elastic behaviour is approximated. 

5.4.2 Anisotropy (Axial bias) 

Many tissues exhibit different properties when probed in different directions. The 

mechanical characteristics along one axis can differ significantly from the 

mechanical properties along another axis. Muscle tissue is an obvious example, but 

even apparently homotropic tissue can also exhibit anisotropic mechanical 

behaviour due to vasculature or other structures that are nominally aligned. 

Consider the kidney. Nephrons are radial structures that lead to different 

mechanical characteristics in radial and tangential deformations.  
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Anisotropic characteristics can be added to the mechanical model by 

adding axial stiffness and damping modifiers. A normalised 3-dimensional vector 

can be used to modulate the stiffness and damping of a volume at the same 

resolution as the mechanical simulation. For example, to simulate the anisotropic 

behaviour of a tensed muscle, a larger multiplier in the axis of the muscle-fibres 

would increase the spring stiffness while perpendicular to this axis it will decrease.  

5.4.3 Approximating Nonlinearities using Fluid Dispersion 

Tissue tonometers collect information about the mechanical characteristics of 

tissue. Tissue that is recovering from damage, such as burns, exhibits a range of 

mechanical characteristics “from the initial fluid-rich stage through the fatty 

middle stage to the fibrous end point stage”, which can be differentiated using 

tonometry [11]. This illustrates the diverse mechanical properties, even within a 

single tissue type, that living tissue can exhibit and also has provided the 

inspiration for a new technique that can be readily incorporated into CRMS. 

Evaluating the change in volume of CRMS cubes can be efficiently 

computed in parallel. This change in volume can be used to compute the pressure 

within each set of nodes forming a (deformed) cube. The pressure then modulates 

the spring stiffness. Diffusion can also be efficiently simulated using a diffusion 

rate to propagate the pressure into adjacent cubes. Additional hardware 

acceleration can be achieved by leveraging the raster-operations capabilities of the 

GPU to propagate pressure values throughout the lattice by storing values in a 3D 

texture and down-sampling them. The effect of the down-sampling thereby 

approximates fluid dispersion. 

5.4.4 Heterogeneity (Variability) 

Each of the augmentations to the mechanical simulation already described in this 

section can be applied globally or locally per-node. When applied locally it is 

possible to vary the mechanical properties throughout the material. In so doing, the 

system can model a diverse variety of tissues within the same instance of the tissue 

simulation. This enables the system to describe anatomies at various scales with 

detail only limited by the number of nodes it is possible to simulate on the given 
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hardware. Hence, CRMS can scale with advances in hardware to create more 

detailed and realistic simulations without having to re-engineer the system.  

Furthermore, it is simple to define mechanical simulation parameters on a 

per-node basis to achieve diverse mechanical properties within a single instance of 

the CRMS. The main limiting factor when adding per-node variables is that 

reading these values from memory will eventually saturate the available 

bandwidth. This limit is however reached much later than if the approach were 

used in existing systems because of the reduced valence of CRMS. 

One way to further reduce bandwidth usage is to use a physical property 

palette. A small number of parameter sets can be used to describe a limited number 

of primary tissue types. Then, rather than needing to read       values from 

memory (where n1 is the number of parameters and n2 is the number of nodes) the 

GPU need only read the palette blend weights for each node and store the palettes 

of parameters in local memory. 

5.4.5 Animation 

Traditionally, animation uses poses and keyframes. Models are put into poses 

using joints and blend weights applied to the rigid model. Animating the behaviour 

of the mechanical simulation can use the same approach to create different rest-

shapes that the system will attempt to revert to. 

A flexing muscle not only changes shape, its mechanical properties also 

change. In order to simulate this behaviour, the mechanical simulation parameters 

can be animated. There are different options available to provide this functionality. 

For example, linear spring stiffness and damping can be animated independently at 

specific nodes of the simulation. 

The mechanical parameters can also be animated. Matrix palette skinning 

uses a palette of matrices for each vertex [50]. Rather than use the palette of 

matrices to drive the position of vertices directly, instead CRMS could use a 

palette of mechanical properties and a time series of blend weights to describe 

animated changes to mechanical properties of the simulation. 
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This idea is particularly exciting when considering its ability to enrich the 

medical simulation. For example, triggers such as cuts to a specific part of the 

simulation can be used to trigger transitions to new mechanical property presets. In 

this way a pulsing artery can go flaccid (and stop pulsing) if severed or if blood 

pressure in the patient model is reduced. 

5.4.6 Tearing 

Since each node of the simulation is updated independently, the forces within the 

system caused by a given node of the simulation can easily be masked or omitted 

from the simulation. By introducing a tearing threshold, CRMS can control the 

force needed to cause a node‟s forces to be masked, which allows the mechanical 

simulation to be torn. Implementing tearing in this way does not preserve volume 

(since nodes along the tear are removed rather than split), but it is simple and 

robust and produces a compelling effect particularly when using a high-resolution 

mesh. 

5.5 Summary 

CRMS simulates diverse material characteristics and capabilities normally only 

present in offline (non real time) approaches or non-cutable FEM-based methods 

by efficiently leveraging the massive parallel compute capability of the GPU to 

maintain the high update rates necessary for haptic interaction (Chapter 8). The 

impact of limited memory bandwidth is reduced by using a cubic lattice that 

enables fewer adjacent node lookups, which are further accelerated using coalesced 

memory access. It also includes a range of enhancements that extend the range of 

potential uses of the system. Finally, CRMS has been engineered to facilitate 

efficient integration into the complete tissue simulation system, which is detailed 

in subsequent chapters.  
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Chapter 6. Interactive Marching Tetrahedra 

The CRMS component (described in Chapter 5) uses a simple cubic grid that, 

without further enhancement, cannot produce a high quality visualisation. Further, 

the CRMS grid is intended to be scalable so that grid cells can be used to represent 

whole organs efficiently using minimal processing resources. This allows multiple 

instances of the CRMS system representing different structures to coexist within a 

single simulation. At these resolutions, details of finer structures are lost. This 

chapter describes a new system to add high-resolution detail and produce a 

standard 3D mesh output that can be readily visualised with common rendering 

algorithms (Aim 5). Moreover, this high-resolution 3D overlay is optimised to 

support cutting and ablation with minimal processing (Aim 3). 

Having described a system that delivers a plausible real time soft-tissue 

mechanical simulation (Aim 2), a method of visualising it is required. The simplest 

solution is to directly visualise the mechanical simulation. However, this requires a 

high-resolution in order to achieve a reasonably realistic render. Moreover, it 

presents problems in conditioning the grid surface so as to cater to the rendering 

algorithm‟s requirements. For example, in order to compute the lighting of a 

surface, high-quality rendering algorithms require surface normals. Since normals 

to the surfaces of the CRMS‟ cubic grid are aligned with each of three orthogonal 

axes, any rendering algorithm would need to overcome this or else the grid would 

not appear smooth. A more general approach is required that can readily be 

rendered with realistic lighting effects (Aim 5). 

Several existing tools are capable of coupling a high-resolution render 

mesh with a mechanical simulation, for example Nvidia‟s PhysX. However, as 

Chapter 3 points out, none of the existing tools support the types of interactions 
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required in VR surgical simulation. In particular, in addition to adding high-

resolution detail and realistic rendering, additional functionality to enable cutting 

and ablation is also required. Existing approaches commonly insert additional 

vertices into the mesh to create the new edges created by the cut. This can be 

difficult to maintain, particularly when cuts are made into already cut edges. If not 

done carefully, inaccuracies accumulate, resulting in a reduced quality mesh. These 

difficulties can be overcome by using a uniform approach to surface generation 

that is capable of representing cut and ablated areas in the same manner as 

unmodified surface areas. However, this may remove some opportunities for 

surface optimisation. 

The technique described herein is based upon technology originally 

developed to process medical imaging data. Medical scans such as Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) output volumetric 

datasets. These datasets are large, often consisting of tens of gigabytes. In order to 

facilitate visualisation and reduce the amount of data needed for storing and 

sharing medical scan data, techniques to generate surface meshes from the scan 

data have been developed. Marching cubes is one of the most widely used 

methods.  

6.1 A Review of Marching Algorithms 

Lorensen and Cline first presented the marching cubes algorithm to create triangle 

meshes from medical imaging datasets [82]. The marching cubes algorithm is 

initialised by establishing a grid of points over the region of interest. Each point is 

assigned a state according to the region of interest. The algorithm then iterates 

through the grid as cubic elements (voxels), a set of eight points, and provides a 

solution for triangulation for each element based on the states of the cube. By 

symmetry, the triangulation solution provided is reduced to 14 patterns that are 

stored as a lookup table. However, the problem inherent to the marching cubes 

algorithm is the generation of inconsistent topology, or holes, under certain states 

[38].  

The inconsistency generated by the marching cubes algorithm can be 

resolved by subdividing the cubic elements into tetrahedral elements. However, as 
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reported by Zhou et al. [165], there are two methods for subdividing the voxels 

into tetrahedras, which results in differing surface topology that depends on the 

initial subdivision methodology. Zhou et al., propose a cubic interpolation to 

resolve the inconsistency, but with a lookup table of 59 patterns, the solution is far 

more complex than the original marching cubes algorithm. To alleviate the 

complexity, Chan et al. [25] developed a tetrahedral tessellation scheme that 

retains the advantages of Zhou et al‟s but with fewer patterns. 

6.2 Marching Tetrahedra 

Chan et al’s tetrahedral tessellation scheme is based on the body-centred cubic 

lattice. As shown in Figure 27, the tessellation scheme is applied to a lattice with an 

interpolated grid point in the centre of each voxel. Twelve tetrahedra are evaluated 

for each voxel to form the isosurface (3 orthogonal sets of 4). This results in 

consistent topology with but has the  disadvantage of increasing the number of 

triangles used when compared to the original marching cubes algorithm. However, 

since the scheme does not lead to any ambiguities in generating the surface mesh, 

it provides an ideal basis for the overall framework to re-mesh the surface 

interactively. 

 

Figure 27: Chan et al's marching tetrahedra tesselation scheme 

An isosurface is generated from a grid of voxels by iterating through all voxels and 

generating surface triangles wherever these voxels span an edge. For each voxel, 

three sets of four tetrahedra are evaluated. Cube corner voxel values are 

interpolated to give the body-centre voxel. Individual voxels are evaluated to 

determine which of eight cases (7 edge cases or empty) has occured (Figure 28). 

Zero, one or two triangles per tetrahedra are then added to the isosurface (triangle 
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mesh) model. Vertex positions are moved along tetrahedra edges according to 

voxel values to improve the accuracy of the generated isosurface. 

 

Figure 28: The seven edge cases for the marching tetrahedra algorithm [17] 

6.3 Interactive Marching Tetrahedra: A New Approach 

This component (IMT) increases the resolution of the CRMS model and outputs 

surface mesh geometry in a format that can be rendered using common lighting 

algorithms. Equally importantly, it provides an efficient method for adding support 

for interactive cutting and volumetric tissue removal (ablation). 

IMT employs the same tessellation scheme as the marching tetrahedra 

algorithm developed by Chan et al. and introduces an efficient method for updating 

changing sub-volumes. This enables IMT to sustain the high update rates required 

for high-quality haptic rendering for an interactive model that can accumulate any 

number of cuts.  

A common approach to improving the performance of marching algorithms 

is to use two passes. The first pass identifies boundary voxels, and the second 

computes the surface. The identification of the boundary voxels can be accelerated 

using spatial partitioning schemes similar to those employed in real time collision 

detection, such as binary spatial partitioning. By reducing the computational cost 

of handling empty voxels, overall performance is substantially increased. 

However, although faster than directly applying a marching algorithm, the 

resolution of the volume that can be surfaced at interactive rates is limited.  
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The processing required to perform interactive updates is proportional to 

the volume of interaction; the volume of the cutting part of a blade, or the volume 

of tissue removed during a single update. Since these volumes are typically far 

smaller than the tissue being modelled, the user only interacts with a very small 

percentage of the entire model at a time. This approach substantially reduces the 

processing required, allowing a much higher resolution volumetric model to be 

used. The system‟s performance is determined by the computational cost of 

updating small volumes, rather than the entire model. 

Since the volumetric model can now be dynamically modified, the surface 

model‟s complexity varies. Normally the changing surface mesh would require 

vertices of the mesh to be appended and deleted depending on whether the surface 

area of the model has increased or decreased. In turn, the required vertex buffer 

memory changes. Since GPUs require vertices to be stored in contiguous memory, 

an efficient mechanism for handling the changing vertex count is required. 

Computer graphics APIs (section 3.1.4) support a number of methods for 

presenting geometry to the graphics pipeline. Use of an index buffer reduces the 

memory needed by allowing multiple triangles to re-use any given vertex, and it 

also provides the abstraction layer needed for dynamically re-sizing the mesh since 

the vertex and index buffers can  be pre-allocated. 

The computational costs associated with dynamically managing new 

memory allocations during run time are avoided by using pre-allocated graphics 

memory to store vertices and indices of the model. As triangles around the volume 

of interaction are moved they are deleted and recreated in their updated location. 

When triangles are associated with a changing part of the volume they are first 

marked for re-use and then overwritten with the new triangles. All indices of 

triangles marked for re-use are changed to reference a single point to prevent them 

from being rendered. Though not as neat as proper deletion, this avoids moving 

index and vertex data and in so doing allows more detailed models to be cut and 

ablated at interactive rates.  
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6.3.1 Improving the Mesh Quality 

The output of the marching algorithm is an unordered set of triangles, which is far 

from optimal for rendering since it contains approximately three times the number 

of vertices and vertex normals as would be required by the same mesh stored as a 

triangle strip. Since the volume is a closed surface, each triangle vertex is shared 

by at least three other triangles. The un-optimised output of the marching algorithm 

can be displayed directly but doing so is a waste of processing. A mesh 

optimisation stage is introduced to improve the mesh quality. 

6.3.1.1 Mesh Optimisation 

The mesh optimisation stage introduces a new processing stage to efficiently 

improve the quality of the marching algorithm‟s output. Output is optimised by 

reducing the amount of redundant data used to represent the model. The 

optimisation also improves the quality of the mesh by removing tiny triangles 

formed by the marching tetrahedra algorithm. 

  

  

Figure 29: An IMT generated 4x4 voxel “ball” (left: unoptimised, right: optimised) 

Coincident or tightly grouped vertices are replaced with references to a single 

vertex, which reduces the total number of vertices used. Referencing vertices in 

this way also makes identifying tiny triangles trivial since they now reference the 

same vertex more than once. Hence, these triangles can be efficiently removed 
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from the render model. Figure 29 shows the effect of the optimisation stage on a 

simple model. The un-optimised model is composed of 144 triangles that are 

explicitly stored as 432 vertices (3 x 144) whereas the optimised model is 

comprised of 108 triangles and only 70 vertices. Notice also that the optimised 

model appears smoother since vertex normals are combined as a weighted average 

(according to triangle area) of the triangle normals.  

Processing is required to perform updates to the model by using spatial 

hashing. This greatly simplified proximity tests that are performed when new 

vertices are added. Reference counts are maintained in order to identify when a 

given vertex can be removed from the rendered set, and its memory location 

marked for re-use.  

6.4 Demonstration 

The IMT approach has been used to create models of up to 256 cubed voxels 

(approximately 16.8 million voxels) that can be interactively cut and ablated 

(Figure 30). The maximum supported resolution is a limitation of the data-

structures used rather than processing load. The system is currently implemented to 

create basic parametric shapes, however, it is relatively simple to base the model 

on any volumetric dataset including medical scan data (Figure 31).  

 

Figure 30: Raw output of the IMT algorithm  

(2563 voxels)  

 

 

 

 

 

 

 

 

Figure 31: The IMT algorithm initialised 

using CT scan data of a tooth 
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The optimisation stage efficiently removes small and excessively thin sliver 

triangles from the model (Figure 32). Normals can optionally be smoothed to 

improve the final render quality (Figure 33). The model shown in Figure 32 was 

originally composed of 8,794 triangles (blue wireframe mesh). After the 

optimisation stage the model consisted of 5,418 triangles (a reduction of 38%). 

 

Figure 32: Optimised mesh (red) versus un-

optimised (dark-blue) (32 cubed voxels) 

 

Figure 33: The final result: optimised and 

smoothed (32 cubed voxels) 

6.5 Summary 

The IMT component enables efficiently interactive isosurfacing optimised for 

high-quality rendering. The resolutions supported are substantially higher than 

what would otherwise be possible with existing methods. This improvement is 

achieved by minimising the complexity of updates to the model geometry. 
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Chapter 7. Integration of Components 

CRMS and IMT alone are not capable of delivering a tissue simulation that users 

can cut and ablate as required (Aim 3). Like some existing soft-body simulations, 

while the CRMS mechanical simulation effectively approximates the behaviour of 

real tissues in response to user interaction, it cannot be cut. At the same time the 

IMT component efficiently provides a new method for interactive cutting and 

volumetric remodelling but is not deformable. This chapter describes how these 

two components have been combined to create a cut-able and ablatable soft tissue 

simulation framework (TSF) that realises a critical requirement of VR medical 

simulations that is not currently accessible to medical simulation software 

developers. 

Having developed efficient solutions for the two previous components; 1. 

Cubic rotational mass-springs (CRMS), and 2. Interactive marching tetrahedra 

(IMT) it was important to retain efficiency by avoiding the introduction of 

processing overheads (and memory bandwidth overheads) that undermine the 

efficiency of the system as a whole. Further, the integration must result in a robust 

whole that is both versatile and stable. Integration of these components required 

development of specialised algorithms to ensure that the visible model and the 

mechanical behaviour tightly correlated, particularly during cutting and ablation. 

The IMT component outputs a high-resolution triangle mesh that, without 

integration, remains separate from the deforming CRMS grid and is therefore rigid 

and non-deformable. This provides a higher quality render by allowing the use of a 

3D model that is optimised for display (rather than using a single mesh that fulfils 

requirements of both rendering and mechanical simulation). In order to deform the 

IMT mesh it must be coupled with the CRMS grid such that deformation of the 
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CRMS grid suitably deforms the IMT generated mesh. Furthermore, the CRMS 

grid must be maintained such that any tissue removed via the IMT component is 

reflected in the mechanical simulation. Finally, the deformation of the IMT-

generated mesh introduces an alignment problem; user interactions with the IMT 

volumetric model must now correlate with the deformed coordinate space. This 

chapter describes how each of these issues was addressed. 

7.1 Deforming the IMT Mesh 

The separation of high-resolution render geometry (IMT mesh) from a coarser 

mechanical simulation (CRMS lattice) is not new [42]. Sometimes referred to as 

cartoon meshing, mesh coupling allows a smaller number of reference points to 

warp the coordinate space of a higher resolution model (Figure 34), which reduces 

the computational cost of rendering a detailed deformable model by allowing the 

more computationally intensive mechanical simulation to use a lower resolution. 

Coupling is achieved by aligning the IMT mesh coordinate space with the 

mechanical simulation, then scaling it so that the extent of the two coordinate 

spaces match.  For each vertex of the IMT mesh, an index that identifies the cube 

of the CRMS lattice that contains the vertex is stored. This reference cube then 

defines a local coordinate space within which the vertices are located. As the 

mechanical simulation deforms (Figure 35, white dots), the coordinate frame 

deforms, thus deforming the set of rigid IMT vertices located therein (Figure 35, 

shaded). 

 

Figure 34: Wireframe IMT mesh 

 

Figure 35: Deformed IMT mesh 
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When the IMT-generated mesh changes, vertices of the render mesh are moved, 

deleted and inserted. Thus the mesh coupling system requires special handling so 

that modified vertices are always coupled with the correct cube in CRMS. This is 

relatively simple and consequently does not significantly impact performance 

because only minimal processing is required (one instruction to map the vertex to 

the CRMS coordinate space, plus one modulo operation to determine the cube 

index). 

The processing required to update coupled vertices depends on the number 

of new vertices created, which is dominated by the cost of updating the optional 

mesh smoothing and optimisation stages of the IMT component. This cost limits 

the maximum number of new vertices that can be created per frame. A few 

thousand changed vertices per frame can be updated without impacting refresh 

rates.  

7.2 Cuts and the Coupled System 

Cutting the visual model (IMT mesh) is supported by removing IMT voxels in the 

shape of the cutting instrument‟s blade. However, without further enhancement the 

system will not behave correctly since cuts in the IMT mesh are not represented in 

the CRMS lattice.  

IMT vertices are coupled to CRMS nodes that span the IMT mesh surface. 

CRMS nodes that are internal are differentiated from external (empty) CRMS 

nodes using the IMT voxel data. As cuts are made, CRMS nodes are deleted if less 

than 12.5% (⅛) of the IMT voxels are occupied (Figure 36 and Figure 37; deleted 

CRMS nodes indicated by ○, and undeleted nodes by ●). Applying this criteria 

ensures that the coarser CRMS lattice matches the shape of the IMT mesh as 

closely as possible. Marking CRMS nodes as deleted requires insignificant 

processing or bandwidth. Furthermore, no additional processing is required to skip 

updates to deleted CRMS nodes since updates are performed in parallel on the 

GPU. Hence, the only additional processing incurred by cuts is the increase in 

rendering processing due to the increased complexity of the IMT mesh. 

Higher deletion thresholds result in CRMS nodes being deleted when more 

IMT voxels remain occupied. Figure 38 and Figure 39 show the effect of a higher 
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threshold (¼) on the two cases illustrated in Figure 36 and Figure 37 (notice that 

additional CRMS nodes are deleted). In particular, Figure 38 highlights (white 

arrow) a particular CRMS node that is deleted despite being proximal to a 

significant number of occupied IMT voxels. This CRMS node occupies one of the 

lower right corners of the cube that is used to locate the local IMT mesh vertices.  

 

Figure 36: Diagonal cut where CRMS nodes less 

than an eighth occupied are deleted  

(IMT:CRMS ratio of 43:1) 

 

Figure 37: Hole where CRMS nodes less than an 

eighth occupied are deleted  

(IMT:CRMS ratio of 43:1) 

The coupling system uses undeleted CRMS nodes to infer the position of missing 

(deleted) CRMS nodes that are needed to deform the IMT mesh. The coupling 

requires at least 6 cube corners to position IMT vertices (refer to Appendix A). 

Further work is required to increase the coupling system‟s tolerance of missing 

CRMS nodes so that higher  deletion thresholds can be used. One possibility is to 

use adjacent non-deleted CRMS nodes to infer missing node locations. 

 

Figure 38: Diagonal cut where CRMS nodes less 

than a quarter occupied are deleted  

(IMT:CRMS ratio of 43:1) 

 

Figure 39: Hole where CRMS nodes less than a 

quarter occupied are deleted  

(IMT:CRMS ratio of 43:1) 

If the resolution of the IMT voxel dataset is too high compared to the CRMS 

lattice resolution, the visual and mechanical systems no longer reliably correlate; 

Cuts in the IMT model may not be reflected in the CRMS lattice. Figure 40 shows a 
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cut in the IMT model that is not represented in the CRMS model. The minimum 

viable cut width can be reduced by increasing the CRMS lattice resolution (Figure 

41). Alternatively, a higher CRMS node deletion threshold can be used (Figure 42). 

 

Figure 40: A small cut to the IMT mesh that has 

not cut the CRMS model 

 

Figure 41: Increasing the CRMS model resolution 

allows finer cuts 

One of the objectives of the TSF is to enable the use of a relatively coarse CRMS 

lattice to reduce the processing needed to perform updates to the system. Ideally 

very fine cuts (Figure 43) would result in cuts to the CRMS model. This can be 

accomplished by breaking individual spring connections between CRMS nodes 

(rather than deleting them entirely). However, this is outside the scope of this 

thesis and left for future work. 

 

Figure 42: Increasing the CRMS node deletion 

threshold allows finer cuts 

 

Figure 43: A cut through the IMT model only 

(IMT:CRMS ratio of 83:1) 

7.3 Collisions 

In order to interact with the model, TSF must detect when user-controlled 

instruments touch (collide with) the model. Rigid models can relatively easily be 

optimised for collision detection using spatial partitioning schemes or other 

methods (see section 3.1.6). Usually a broad-phase collision detection is used to 

efficiently reduce the search-space, then a narrow-phase collision detection 

identifies individual intersecting primitives (triangles, edges, or vertices).  
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While rigid structures can be pre-sorted into various data structures that 

facilitate fast and efficient lookup of small sets of collision candidates, deforming 

models are more difficult to optimise for collision queries. When a model deforms 

there is no guarantee that the initial location of a given vertex or triangle is close to 

its original location. Hence the data structure must be updated regularly, or an 

alternate method of optimising collision queries must be used. 

User interactions with tissue during surgery typically use precision 

instruments that impact small parts of the overall volume. TSF exploits this by 

mapping the model of the user controlled instrument into the deformed coordinate 

space of the CRMS model (rather than the converse). This strategy reduces the 

complexity of collision detection by making processing dependent upon the small 

number of vertices in the interactive part of the user-controlled instrument rather 

than the entire tissue model. Once the intersecting nodes of the CRMS component 

are identified, the narrow phase collision test is then conducted using the coupled 

(deformed) IMT mesh vertices. Since each vertex of the IMT mesh is mapped 

(coupled) to a CRMS node, the reactive forces (due interactions of the IMT model 

with the stylus) are also mapped efficiently into the mechanical simulation. 

In summary, collision detection is performed as follows: 

1. (optional) Use a long stride (4 or more nodes) to identify the nearest 

CRMS nodes 

2. Test all candidate CRMS nodes for intersection with the instrument 

OBB (oriented bounding box) 

3. Look up coupled IMT mesh vertices for colliding CRMS nodes 

4. Perform per-primitive (narrow phase) collision detection 

This approach efficiently avoids much of the processing that would otherwise be 

necessary to identify colliding primitives. 

7.4 Demonstration 

The tissue simulation system described in this thesis successfully delivers a new 

type of interactive soft-body simulation capable of simulating a diverse range of 

material properties. The combined IMT and CRMS systems enable the user to 

volumetrically remove tissue from anywhere within the tissue. Moreover, the 

mechanical simulation component maintains consistency with the visual 
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representation to allow parts of the tissue in any shape to be cut away from the 

original volume. Any shape can be used as the initial tissue-model. Figure 44 below 

shows the tissue simulation as it is cut and deformed. Figure 44: a) A cube of tissue 

(attached along the right edge to an invisible wall) is deforming slightly under the 

effect of gravity. b) A small stylus has removed tissue from the top of the model. c) 

A haptic stylus controls a yellow ball that causes the remaining tissue to deflect as 

it is pressed against the left edge of the tissue model. d) The stylus controlled ball 

is pressed down on the tissue model from above causing the cut to open up and the 

entire model to deform. e) More tissue is removed leaving a complex yet smooth 

shape with some thin pieces still remaining. f) The thin pieces of tissue are more 

easily deflected using the stylus controlled ball. 

   

   

Figure 44: The tissue simulation being ablated and deformed interactively 

The TSF can be tuned to deliver variable levels of mechanical fidelity or visual 

fidelity depending on the context of the simulation. Higher mechanical simulation 

resolution is useful for larger overall volumes and can also be used to retain a 

tighter correlation between the visual model and the mechanical simulation. The 

improved correlation between visual and mechanical models is due to the fact that 

the size of the volume corresponding to a set of eight mechanical simulation nodes 

defines the smallest volume which can be separated (mechanically) from the tissue 

a) 

e) 

b) c) 

d) f) 
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simulation. Therefore, a higher resolution mechanical simulation is required when 

fine details of the tissue must deform plausibly. Conversely, a coarse mechanical 

simulation can be used to reduce overall tissue simulation complexity (and GPU 

processing load) while retaining visual fidelity, provided that it is not important for 

finer details of the model to deform independently of larger volumes. 

In addition to the versatility of the mechanical simulation, the TSF also 

offers a number of flexibilities that widen its capabilities and ensure that the 

requirements of other dependent systems can be accommodated. For example, 

haptic rendering requires a faster update rate than visual rendering. Since the TSF 

allows independent configuration of the mechanical simulation and the visual 

rendering, not only are developers able to trade-off visual fidelity for mechanical 

simulation fidelity, it also allows the processing load, and number of updates per 

render, of each sub-system to be managed separately. As a second example, the 

IMT component can be used with or without the optimisation or smoothing stages. 

Disabling either of these stages reduces the processing load during topology-

changing interactions. Hence, if efficiency and high-rate updates are paramount 

then it may be better to disable these stages at the expense of decreased visual 

fidelity and a higher polygon count. 

7.5 Summary 

In summary, the CRMS mechanical simulation and IMT visualisation components 

have been successfully combined to produce a versatile tissue simulation with a 

range of new capabilities. The processing load of the CPU has been minimised by 

engineering a system that runs efficiently in parallel on the GPU. The relative 

resolution of each of the systems can be varied to allow greater emphasis on 

mechanical simulation or the render model. 
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Chapter 8. Haptics 

If a picture is worth a thousand words, is a touch worth a million? 

 

This chapter begins by briefly introducing the field of haptics and discussing the 

capabilities and shortcomings of the range of haptic hardware devices currently 

available. The body of the chapter details the methods used to add realistic tactile 

feedback (via haptic rendering) to the TSF (Aim 4) and critically discusses the 

quality of the haptic rendering achieved. 

Haptic interfaces are those that use a tactile component to enhance user 

interaction. Broadly the term can include a large range of devices that deliver 

sensory input based on touch, including for example, mobile phones that vibrate in 

response to user input. In this thesis the term “haptics” refers only to precision 

force feedback as opposed to tactile displays, vibration-based effects or any other 

tactile stimulus modality. 

The significance and importance of haptics to the efficacy of VR medical 

training simulation is a growing area of research. Haptics has a lot to offer 

computer-based medical training and indeed any training where precise manual 

skills are important. 

Computer-based visual and auditory environments have matured to the 

degree that it now possible to deliver experiences in both modalities at levels of 

fidelity that approach the limits of human perception. In the case of computer-

based visuals, colour accuracy, resolution, frame rates and lighting effects of 

computer generated imagery have become so realistic that it can be difficult to 

differentiate from reality. Increasingly high levels of visual realism are being 
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demonstrated in real time applications. However, haptic interactions have yet to 

reach the level where the sense of touch can be mimicked accurately.  

Many medical interventions and therapies use the sense of touch to collect 

information and inform interactions. Using the appropriate level of force can be 

critical, particularly in delicate surgical procedures. Haptically enabled VR medical 

training simulation offers unique capabilities to improve training. However, the 

quality and reliability of the techniques used to deliver the haptic experience 

remain a limiting factor.  

Haptic rendering is the process of computing and delivering haptic 

feedback forces. Speed is critical. While the human eye will interpret images that 

change at the rate of 30 to 60Hz as a continuous video stream, our sense of touch is 

far more sensitive in this respect and typically requires updates at the rate of at 

least 300Hz in order to deliver a stable and compelling haptic interaction [127]. 

This faster update rate together with other already relatively complex tasks, such as 

real time modelling of deformations and detecting collisions, makes development 

of reliable and compelling haptic rendering particularly challenging.  

 

Figure 45: Immersion Corporation's LapVR 

 

Figure 46: Simbionix’s GI-Bronch Mentor 

Haptics has effectively been used in a number of medical simulations, 

predominantly laparoscopic (Figure 45) or endoscopic (Figure 46) training systems 

[9, 10, 98, 100]. By limiting the number of degrees of freedom, and by using the 

same mechanical interface as the real instruments, these simulations effectively 

mimic the user interface of the instruments used to perform the real procedure. 
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Ideally, all simulations would accurately replicate the mechanical interfaces of the 

real instruments used. However, desktop haptic devices generally provide a generic 

handpiece that can represent the grip of a number of handheld instruments. Some 

instruments can be represented more effectively than others using this approach. 

Further, the lack of reactive torques in 3 degrees of feedback devices limits the 

types of instruments that can be effectively simulated. 

8.1 6DOF Haptics 

Desktop haptics devices have become cheaper in recent years. However, the price 

of haptic devices capable of rendering 6DOF force feedback (both linear forces 

and torque feedback) is still quite high. The cheapest 6DOF force-feedback haptic 

device from Sensable Technologies Inc. (USA) is upwards of AU$70,000 and 

competitors‟ prices are similar, although it is likely that in the future this 

competition will encourage price reductions and improved access to this important 

hardware.  

For certain types of simulation, 6DOF feedback is critical. When an 

implement is grasped at a distance from the point of contact, any force not at the 

grip point, for example forces applied at the tool‟s tip, induces a torque (see Figure 

47). A 3DOF feedback device is incapable of delivering such a torque, which 

makes creation of a compelling haptic interaction, where torques may at times be 

the dominant component of reactive forces, impossible. Hence, if a procedure 

makes significant use of tools that interact at a distance from the point the tool is 

held, then a 6DOF feedback device is required. 

      

Figure 47: Contacts at a distance from the hand induce a reactive torque 

Reactive Force 

Reactive Torque 
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The high cost of 6DOF feedback devices limits their use and instead motivates use 

of 3DOF feedback devices. One simple way of avoiding unrealistic interactions 

associated with the lack of reactive torque, is to move the centre of rotation to the 

tool‟s point of contact, often the tool‟s tip. This approach means that a 3DOF 

feedback device is sufficient, since rotating the tool does not move the point of 

contact. However, it will introduce a new, albeit lesser, problem since 

manipulating and rotating the tool will be somewhat strange and unintuitive since 

the user will now be effectively grasping the virtual tool‟s tip. If the resulting effect 

is distracting, or inhibits the use of the simulator, the use of a 6DOF feedback 

device may be unavoidable. 

 

Figure 48: An endoscope connected to a 3DOFeedback haptic device at its tip delivers reactive torques 

to the user’s hand 

Finally, if a single tool is to be used, a 3DOF feedback device may be sufficient to 

provide a compelling interaction even for longer tools. The real tool can be 

modified and attached to the haptic stylus. Provided it does not mechanically 

interfere with the structure of the haptic device and allows unconstrained 

movement, the linear forces delivered to the tip of the tool are now experienced by 

the user as required, including the reactive torques (Figure 48). Other complications 

that may limit this approach include; weight of the tool/instrument, differences in 

the type of handle (for example scissor grips, that may require additional sensing 
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or force-feedback capabilities), and problems associated with excessive stylus 

inertia and friction. 

8.2 Desktop Haptic Devices 

Computer graphics and haptics are similar in that the quality of the user experience 

is determined by a combination of the software and the hardware. The visual 

experience depends both on the quality of the computer generated graphics, and 

also the quality of the hardware that displays it. Similarly, the capacity of the 

haptic hardware is a defining factor in the quality of the haptic interaction 

experience delivered by a haptically enabled simulation. 

Compared to haptics devices, computer displays are a far more mature 

technology. When selecting hardware for a specific task it is relatively 

straightforward to find a display that is suitable for a given application, due at least 

partly to the standardisation of device specifications. Computer monitor 

capabilities are described in terms such as the resolution, contrast-ratio, maximum 

brightness, and pixel response times. These parameters accurately describe the 

device‟s capabilities, which enables device selection with a high degree of 

confidence that a given device will be fit for the intended purpose. On the other 

hand, specifications for haptic devices that are currently available can be difficult 

to interpret. With time these specifications will become more meaningful to those 

who use them, however, there are characteristics of haptics devices that are not 

included in existing specifications, such as what happens when the maximum force 

is exceeded. Table 2 lists the leading manufacturers of desktop haptic devices and 

the devices they offer. Figure 49 to Figure 54 show some of the most significant 

devices. 

Figure 49 shows Sensable‟s entry-level desktop haptic device. The main 

limitation of this device is that it is limited to 3 degrees of force feedback. My own 

experience with this device has shown it to be capable of sufficiently accurate 

position (and orientation) input for most tasks (the level of precision of the sensors 

exceeds that which is perceptible to the user). The maximum feedback force it can 

deliver is 9N, which can be a limitation in some applications although it is ample 

for communicating surface boundaries to the user haptically.  
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Table 2: Leading desktop haptic devices by manufacturer 

Manufacturer Products Sense Feedback 

Sensable  

 

Phantom Omni  

Phantom Desktop  

Phantom Premium 

Phantom Premium 6DOF 

6DOF 

6DOF 

6DOF 

6DOF 

3DOF 

3DOF 

3DOF 

6DOF 

Novint  Falcon 3DOF 3DOF 

Force Dimension Omega 3 

Omega 6 

Omega 7 

Delta 3 

Delta 6 

3DOF 

6DOF 

7DOF 

3DOF 

6DOF 

3DOF 

3DOF 

4DOF 

3DOF 

6DOF 

Butterfly Haptics  Maglev 200 

Maglev 200 Grasp 

6DOF 

7DOF 

6DOF 

7DOF  

Haption Virtuose 6D Desktop 

Virtuose 6D35-45 

Virtuose 3D15-25 

Virtuose 6D40-40 (non desktop) 

Inca 6D (non desktop) 

6DOF 

6DOF 

6DOF 

6DOF 

6DOF 

6DOF 

6DOF 

3DOF 

6DOF 

6DOF 

 

Figure 49: Sensable Phantom Omni 

 

Figure 50: Novint Falcon 

The other device I have experience with is the Novint Falcon (Figure 50). The 

specifications state that the maximum force it can deliver is also approximately 9N 

(given as 2lbs). However, using this device reveals that it is clearly capable of 

delivering much larger continuous forces. Passive movements of the  stylus also 

require more force from the user to move it. Hence, this device is better suited to 

less precise, higher average force, applications.  
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Higher-end devices capable of deliver 6 degrees of force (linear and 

rotational forces) are also available (Figure 51 and Figure 52). Because of the high 

price of these devices I have not yet had access to them and cannot comment on 

their performance.  

 

Figure 51: Sensable Phantom Premium 6DOF 

 

Figure 52: Force Dimension Delta6 

Butterfly Haptics provides a device that uses a different technology to deliver the 

force to the handpiece (see Figure 53 and Figure 54). Where other devices use stall-

motors, this device uses direct magnetic coupling to deliver forces to the 

handpiece. This limits it to a small range of motion whilst allowing it to deliver 

accurate forces at very high rates. 

 

Figure 53: Butterfly Haptics Maglev 200 

 

Figure 54: Butterfly Haptics Workstation 

All of the commonly available devices have small ranges of motion and therefore 

limited workspace. This restriction limits their relevance to simulations requiring 

large, free movements. However, since medical interventions commonly focus on 

relatively small areas of interest, these devices provide off-the-shelf solutions to 

what would otherwise be a very difficult capability to reproduce. 
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8.3 Haptics APIs 

This section provides an overview of the currently available software tools that 

provide access to haptics devices. These are low-level interfaces simply for 

obtaining device state information such as position, orientation, button state and 

for setting the force vector to be delivered by the stylus. 

The basic APIs from Sensable and Novint have similar capabilities; they 

provide interfaces to obtain position information (and in some cases rotational 

information) and button states together with the ability to control the feedback 

force delivered to the stylus. However, Sensable‟s APIs also provides higher-level 

functionality, which may simplify some development tasks relevant to medical 

simulation. In particular, it includes two notable options; the HL API and the 

Quick Haptics API. The HL API provides OpenGL application developers with a 

familiar method for haptically rendering 3D models. It is limited to rigid objects, 

although developers can specify when the model‟s geometry is modified such that 

the HL API may update the haptic render. Similarly, the Quick Haptics API 

includes support for haptic rendering that provides a system for very simple 

“mechanical simulation”. However, the API supports local surface deformations 

only. For example, a horizontal structure anchored on one end will not deform, but 

the area around the point of contact will. The Quick Haptics API also provides a 

framework for the development of haptically enabled applications. However, since 

this API is provided by a commercial entity, anyone needing to alter the API or 

extend it to apply it to their application development or research will be 

encumbered by intellectual property issues. 

CHAI 3D is “an open-source set of C++ libraries for computer haptics, 

visualisation and interactive real time simulation” [28]. Originally CHAI 3D‟s core 

component of interest was its device abstraction layer, which enables haptic 

devices from different manufacturers to use the same software interface. More 

recently, it has grown to include modules that support haptically interactive 

deformable bodies. CHAI 3D has been used to create a number of simulations, 

most recently a sinus surgery simulator [115]. 
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H3DAPI is an open-source, cross-platform API for the development of 

haptically enabled applications. Like Sensable‟s Quick Haptics, it provides a 

framework for developing complete applications. It uses X3D (scene descriptions) 

and OpenGL for visual rendering. No direct support for deformable or cut-able 

tissue is provided. 

Finally, Reachin Technologies is a company based in Sweden that has 

developed the Reachin API and the HaptX API. These APIs have a number of 

interesting capabilities, including networked haptics and deforming skin. However, 

since the API is commercial software (closed-source) it has limited relevance to 

this research. The available demonstration applications do not demonstrate, nor 

does the documentation show evidence of, support for cut-able models or global 

deformations. 

8.4 Haptic Rendering 

 

Figure 55: Block diagram of a haptically enabled simulation system [127] 

In order to support haptic interaction a simulation must compute the reactive force 

that is delivered by the haptic device. However, the simulation must first determine 

whether the haptic stylus is touching an object using collision detection. Figure 55 

illustrates a VR simulation system that includes a haptic rendering component. By 

separating haptic rendering components from the visual rendering, each sub-

system can operate independently at their respective update rates (visual simulation 

updates of at least 30Hz, and haptic updates of at least 300Hz are required).  
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The reactive force should mimic the forces that the user‟s hand would 

experience when interacting with the real environment being simulated. That is, 

when the user moves the haptic device handpiece such that the haptic stylus inside 

the virtual environment touches an object, the simulation must compute the force 

that the stylus experiences as a result of that contact. 

 

 

 

Figure 56: Elastic (left) and Inelastic (right) Collisions [104] 

The forces that are sensed when a hand-held tool touches another object are the 

result of the two objects colliding. Hard, rigid objects result in a different 

experience to that of softer, and possibly globally deformable, objects.  When hard 

objects collide the dominant forces are produced by an elastic collision. As the 

objects strike each other, objects exchange momentum and kinetic energy (Figure 

56). Reactive forces occur in a direction perpendicular to the contact-surface, 

together with a tangential component for surface friction that resists motion (Figure 

57).  

 

 

 

 

 

Medical simulations in particular must simulate the collision between hand-held 

objects, such as surgical-instruments that are relatively light-weight when 

compared to the objects they touch. In such cases the tool tip will rebound from a 

hard surface with roughly the same kinetic energy as it had before colliding. 

Conversely, collisions with soft bodies are more complex; kinetic energy is lost, 

and the reactive force must be derived from the local state of the mechanical 

simulation. 

Figure 57: Haptic force components 

Haptic Stylus 

   Model 

Freactive 

Ffriction 

Velocity 



CHAPTER 8. HAPTICS 

99. 

As was the case with the mechanical simulation, the goal of achieving 

absolute accuracy is secondary to the goal of delivering a compelling user 

interaction. In addition, the force the simulation computes must be stable in 

situations that do not normally occur in the real world, such as when one object‟s 

model is inside another model. The simulation is also limited by the characteristics 

of the haptic device. Hence, haptic rendering requires new approaches that deliver 

a compelling and realistic user experience at interactive rates while minimising the 

use of processing and memory resources.  

Different representations of 3-dimensional objects require different 

approaches. Models represented using a shell mesh rely on vertices and surface 

normals to compute collisions and subsequent reactive forces. Alternatively, in 

models represented volumetrically the intersection volume can be easily computed 

and used to compute reactive forces. The following sections detail how stable and 

compelling reactive forces can be computed from each model type (volumetric and 

shell-mesh). These algorithms have been used to add haptic capabilities to the TSF. 

8.5 Haptics in the TSF 

As described in previous chapters, the TSF represents the same 3-dimensional 

model in three ways, each of which provides a basis for the different capabilities of 

the system. A high-resolution volumetric dataset (Representation #1) is used to 

create the detailed render-mesh (Representation #2), that is warped by the 

deforming CRMS mechanical simulation (Representation #3) that is a cubic lattice. 

Depending on the application, each of these underlying representations can be used 

as the basis of the haptic rendering, and each has its own relative advantages.  

8.5.1 Voxel-based Haptic Rendering 

Volumetric representations of 3D models are amongst the simplest to compute 

reactive forces from, since testing for collisions between objects is as simple as 

testing whether any pair of voxels intersect. The challenge lies in performing 

collision detection and subsequent reactive force calculations (the basis of haptic 

rendering) with sufficient accuracy and rate that the user interaction is stable 

without requiring excessive processing.  
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The reactive force should always act in the direction that pushes the stylus 

away from the model so as to reduce the volume of intersection. With both the 

stylus and object models represented as volumetric models, the direction of the 

reactive force is computed from the centroid of the intersection volume and the 

centre of the spherical stylus model. (More generally, the centroid of the stylus 

rather than a sphere‟s centre can be used.) Further improvement to the accuracy, 

especially for soft touches, can be added by using the combined voxel densities of 

the intersection volume to weight the locations that are averaged to compute the 

centroid.  

 

Figure 58: Reactive-force (black arrow) when models completely overlap 

The calculation described above for the reactive force direction is only meaningful 

for partial intersections. The accuracy of the calculation decreases as the 

intersection volume passes the stylus centre. Figure 58 illustrates the reactive force 

direction that has been calculated using the described algorithm when the two 

models completely intersect. Hence, it is important to design the force-magnitude 

calculation such that the maximum magnitude for the reactive force is applied only 

when the error in the force-direction calculation is within acceptable tolerances.  

shows an example where the force direction is in the wrong direction due to the 

complete intersection of the stylus volume and the larger model (intersection 

centroid and stylus centre are coincident which means their delta cannot provide a 

meaningful direction). 

Having shown that the valid range of the force direction calculation is 

limited, we must define a function for computing the force magnitude that has the 

desired characteristics for all cases. The force magnitude should increase smoothly 

as the intersection volume increases, then decrease smoothly as the maximum valid 

intersection point is reached. Further, the force magnitude should not contain any 
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discontinuities or excessively fast changes. If the force increases too rapidly in 

response to contact, soft-touches (small intersections) will result in “kick-back” 

when the delivered reactive force is momentarily high before the stylus moves so 

as to no longer intersect.  

 

Figure 59: Coarse voxel sphere intersecting larger sphere 

In order to conform to the previously defined specification the force is calculated 

according to Equation 12 below where V is volume. 

                   
                                            

Equation 12: Force magnitude from intersecting voxel models 

The force magnitude is simply the weighted volume of intersection (Equation 12). 

The shape of the force response curve (given by the above calculation across the 

range of valid intersections (i.e. intersections where less than half the stylus 

volume is intersected)) can be adjusted using the constants c1 and c2. The force 

magnitude is tuned such that the maximum force does not exceed the haptic 

device‟s maximum deliverable force, and c2 is selected such that kick-back does 

not occur and small intersections are still perceptible.Figure 59 illustrates the force 

calculated using the described algorithm when a spherical stylus intersects a larger 

higher-resolution sphere. Two centroids of the intersection volume are marked; 

[red] is the centroid of the intersecting stylus voxels, [black] is the centroid of the 

intersecting model voxels. Voxels are not binary and rather can be thought of as 

containing a percentage occupied value. This is important for the tissue simulation 

since sets of eight voxels are used to compute the iso-surface (refer to Chapter 7). 

Using this algorithm for haptic rendering results in a smoother force curve (see 

section 8.6.2) than would be obtained using binary voxels.  
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 Spatial partitioning can be used to increase the efficiency of this approach. 

However, since I have used direct addressing of voxels this will only assist with 

caching which only becomes useful when memory is saturated. In its described 

form, this approach is limited to the rigid (un-deforming) high-resolution 

representation of the model in the tissue simulation. However, the smaller model of 

the stylus can be inverse-warped according to the mechanical simulation state at 

the location of the stylus. This is equivalent to warping the high-resolution 

volumetric model of the tissue according to the mechanical simulation state and 

thereby achieves haptic-rendering of the deformed volumetric model.  

8.5.2 Mechanical Simulation-based Haptic Rendering 

Since the TSF mechanical simulation is structured as a cubic-lattice, it is 

equivalent to a coarse volumetric dataset. However, the critical difference here is 

that the system deforms and moves, which is especially significant once parts of 

the model are separated. In this situation, direct computation of the index of an 

intersecting node of the mechanical simulation is not possible. 

The TSF uses coarse dynamic spatial partitioning to quickly detect which 

nodes intersect with the stylus. Nodes are grouped into axis-aligned bounding 

boxes (AABBs). Collisions between these boxes and the stylus are checked. If 

detected, the nodes within the box are checked individually for collisions with the 

stylus. Collision response moves the intersecting nodes to their nearest non-

intersecting location. Reactive-forces are obtained directly from the mechanical 

simulation and summed for all colliding nodes. 

Haptic rendering based on the mechanical simulation will only generate a 

convincing effect if the stylus intersects several nodes at once, otherwise moving 

the stylus across the surface of the model is experienced as bumps across 

individual nodes. Higher-resolution haptic rendering can be achieved using a 

voxel-based or surface-based method. 

8.5.3 Isosurface-generated Mesh-based Haptic Rendering  

Computing the haptic response from the IMT generated mesh is the most accurate, 

and the most processing intensive approach. Each of the previous approaches fails 
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to capture the maximum level of detail of the render model, which is only 

significant if the simulation relies on fine details of the surface to guide the 

interaction. 

Using the previously described approach, nodes of the mechanical 

simulation near the stylus are computed. The association used to deform the mesh 

is then used to identify candidates for the narrow-phase collision test to identify 

individual intersecting triangles. This introduces problems where triangles of the 

mesh completely within the stylus mesh will not be part of the intersecting set. 

Hence, the stylus model uses a low-resolution volumetric model with stored 

associations to groups of surface triangles of the stylus collision mesh. In so doing, 

instead of tri-tri collision tests I use tri-sphere collision test (where each voxel is 

considered as an overlapping sphere). A weighted reactive force can then be 

calculated by weighting vertex normals in a similar way to that described for the 

volumetric haptic rendering. 

8.6 Demonstration 

Evaluations of haptic rendering algorithms are generally qualitative and subjective; 

unlike graphical rendering algorithms, the quality of the final effect cannot be 

easily shared because haptic effects cannot be communicated via screen-shots or 

video. Consequently new ways to concisely measure and communicate the 

subtleties of haptic rendering algorithms are required. Ultimately, it would be ideal 

if haptic rendering were evaluated in a standardised manner, using quantitative 

quality measures that completely describe the haptic experience in a manner that is 

compatible with any haptic rendering algorithm or device. 

Ruffaldi et al. present a method for evaluating haptic rendering that uses 

“haptic trajectories” to capture the path taken by a haptic stylus for a small set of 

specific interactions [125]. They have made their data publicly available and 

encourage its use to compare other haptic render approaches with techniques they 

have used. Their method incorporates the use of precise position tracking and force 

transducers to completely describe the system, including the haptic device and the 

motion of the user‟s hand. Unfortunately the hardware used to track the haptic 

device and capture the actual forces is not readily available. 
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A key challenge of designing methods to test a haptic rendering technique 

is to constrain the variability to a manageable level without missing key 

characteristics of the haptic experience delivered. Ruffaldi et al‟s method fully 

describes a small set of interactions for a limited number of operators (users). 

Factors such as the strength of the operator‟s grip on the stylus will affect the 

behaviour of the haptic device and consequently change the haptic trajectory which 

occurs. Other factors that significantly alter the haptic trajectory include the haptic 

device used, the biomechanics of the user‟s hand and arm during the interaction, 

and the grip used including the pose of the hand and the handpiece itself. 

In order to provide a practical means to evaluating haptic rendering 

algorithms the variability of the test must be tightly controlled. The biomechanics 

of the user during testing is impossible to control completely, so let us remove it 

from the test system. Moreover, the test is further simplified by removing the 

haptic device altogether and using software to deliver a sequence of positions 

thereby moving the virtual stylus along a haptic trajectory. This creates a test 

system that can be completely defined, is readily reproducible, and can be captured 

accurately without specialised hardware. 

8.6.1 Common Problems with Haptic Rendering Algorithms 

During development of the TSF haptic rendering algorithms, a range of problems 

were encountered. This section defines the terminology used to describe the 

effectiveness of the haptic rendering of the tissue simulation. 

8.6.1.1 Pop-through 

Pop-through is the sudden decrease of reactive force that occurs when a collision 

test  used to compute contact between the stylus and other colliding models 

suddenly fails. The problem is most likely to occur when haptic rendering is based 

on surface mesh models because of problems determining when the stylus model is 

completely contained within the surface mesh model. 

Pop-through can also occur when the 3-dimensional models used to 

perform collision tests are shell meshes and the stylus model moves from 

completely external to too intersecting too far in a single time step. This can occur 
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if the frame-rate momentarily decreases, perhaps because of a momentary increase 

in CPU processing load. The stylus need only traverse the normal penetration 

depth between frames for pop-through to occur, since once intersections are too 

deep the haptic rendering algorithm may fail. (Continuous collision detection 

techniques [40] can be used to prevent pop-through.) 

8.6.1.2 Jitter  

Jitter is experienced as vibrations of approximately 10Hz to 100Hz when the stylus 

is in contact with a surface. It may be perceived as though the stylus is moving 

along a gritty or granular surface in situations where a smooth rendering is sought. 

The cause is usually inadequate haptic update rate. If the jitter frequency varies 

with the velocity of the stylus along the surface, the force calculation may be the 

cause, for example, if the force is computed from too few surface or volume 

elements. 

8.6.1.3 Bounce 

When grasping the haptic stylus with a firm but relaxed grip, bounce can be 

experienced in haptic rendering systems that are otherwise stable and compelling. 

Bounce is experienced as large amplitude (greater than 1cm) under-damped 

oscillations of the haptic stylus. The oscillation frequency may vary, but is 

typically under 10Hz. 

Bounce occurs when the haptic update frequency is too low (under 300Hz). 

In mild cases the user can prevent this artefact by gripping the stylus more firmly 

or otherwise constraining movement of the stylus. 

8.6.1.4 Kicks 

Sudden changes to the force rendered to the haptic stylus are experienced by the 

user as “kicks”. These can be caused by transient errors in haptic rendering 

computations or sudden changes in force magnitude. Simply setting the scale of 

the haptic forces too high will result in a kick when a surface is softly touched. 

Haptic rendering is a combination of delivering what the user expects and 

delivering accurate forces with a logical basis. 
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8.6.2 Voxel-based Haptic Rendering 

The C++ implementation of the voxel-based haptic rendering algorithm described 

in section 8.5.1 is given in Code Listing 1. It is completely stateless; the result of 

the algorithm will be the same for any given position regardless of previous 

position and previous motion. Since stable haptics requires an update rate of at 

least 300Hz it is important to minimise the computations required to calculate the 

haptic forces. An obvious way to do this is to minimise the resolution of the voxel 

datasets used. However, as shown in Figure 61 and Figure 62, when the voxel 

models used consist of a low number of voxels (in this case the stylus model is 8
3 

voxels and the sphere model 32
3
 voxels (see Figure 60)), the computed force is 

plausible, but not smooth. This is experienced by the user (via the haptic stylus) as 

jitter (as described in section 8.6.1.2). 

Code Listing 1: Computing the Voxel-based Reactive Force 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

vec3f ComputeHapticForce() 

{ 

    vec3f force(0.0f, 0.0f, 0.0f); 

    vec3f centroid(0.0f, 0.0f, 0.0f); 

    float total = 0.0f; 

    vector<float>::const_iterator voxel = collVoxels.begin(); 

 for (vector<vec3f>::const_iterator pos = 

           collVoxPositions.begin();  

      pos != collVoxPositions.end(); ++pos, ++voxel) 

    { 

        centroid += ((*pos) * *voxel); // weighted centroid 

        total += *voxel; 

    } 

    centroid /= total; 

     

    if (collVoxPositions.size() < halfStylusVoxCount) 

    { 

 force = normalize(stylusCentre - centroid) * 

              pow(c1 * total, c2); 

    } 

    return force; 

} 

Looking at Figure 61 and Figure 62 in more detail: As the two spheres touch, the 

volume of intersection is small with its centroid a maximum distance from the 

stylus centre. The maximum force occurs at 0.5*rstylus. The chart has been 

normalised such that the two maxima have a force of one. The force is scaled in the 

tissue simulation such that the maximum force set by the software is close to the 

maximum supported by the haptic device used. If the force is scaled too high kicks 

will occur. Figure 62 shows the result of the dot product of the force vector and the 
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direction of motion. Initially there is no contact so the direction is not computed. 

Once the two spheres touch the direction computed force is applied in the direction 

that opposes the intersection of the volumes. As the spheres intersect further the 

direction eventually switches as the stylus moves past the centre of the model. 

Notice that while the stylus is near the centre of the model there is variation (error) 

in the direction caused by inaccuracies of the rendering algorithm which uses the 

distance between the centroid of intersection and the stylus centre which are 

coincident.  

  

Figure 60: Coarse sphere-sphere intersection test 

 

 

Increasing the resolution of the voxel models used increases the level of detail they 

provide. As shown in Figure 63 and Figure 64 the haptic forces computed are free of 
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Figure 61: Force magnitude (coarse spheres) 

Figure 62: Force direction (coarse spheres) 
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jitter artefact. However, the computations required to update haptic forces via the 

method previously described increases linearly with n (where n is the number of 

voxels). 

 

Figure 63: Fine spheres 

 

Figure 64: Force magnitude (fine spheres) 

 

 

Figure 65: Smoothed force magnitude (coarse 

spheres) 

 

Figure 66: Smoothed force direction (coarse 

spheres) 

One option that has proven an effective means to reduce jitter for lower-resolution 

voxel model-based haptic rendering is to use a simple averaging window to smooth 

the output. Figure 65 and Figure 66 show the result of applying a 2-sample wide 

averaging window to the data in Figure 61 and Figure 62; the jitter has been 

removed. Use of the averaging window introduces latency into the system. 

However, provided the introduced delay does not exceed a few milliseconds, jitter 

can be removed without introducing bounce (see section 8.6.1.3). This is one way 

in which increased latency can be traded for reduced computational load. Other 

methods for reducing computational load for haptic rendering of higher resolution 

voxel models include hierarchical data structures. 
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A final example of the behaviour of the haptic rendering algorithm is 

shown in Figure 67 where the stylus is moved though a chamfered cube. Figure 68 

shows the output of the haptic rendering algorithm as two smooth peaks. The zero 

region between these peaks demonstrates that the algorithm is behaving correctly 

by masking the force when the two models fully intersect (to avoid jitter and more 

severe artefacts caused when the centroid of the intersection volume is coincident 

with the stylus centre). Figure 69 shows that the correct direction has been 

computed; 180° initially as the reactive force acts in the opposite direction to the 

motion, and -135° as the stylus exits the far side of the model. 

 

Figure 67: Sphere passing through a chamfered cube 

 

Figure 68: Force magnitude (sphere through 

chamfered cube) 

 

Figure 69: Force magnitude (sphere through 

chamferd cube) 

These examples demonstrate that the voxel-based haptic rendering algorithm used 

in the tissue simulation is reliable and delivers a plausible user experience. 

However, appropriate model resolutions must be selected to avoid performance 

problems. A simple averaging window is a useful means for removing jitter and 

maintaining a compelling user interaction. However, since the averaging window 

introduces latency it cannot be used in all cases without causing haptic rendering 

artefacts such as bounce. 
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8.6.3 Mechanical Simulation-based Haptic Rendering 

Voxel-based haptic rendering allows models to intersect and move through each 

other unlike the haptic rendering based on the mechanical simulation. Here a 

spherical stylus model is moved vertically downward into a mechanical simulation 

of a beam anchored on the right side (Figure 70). The beam is relatively soft and 

deforms as the stylus model is moved downward. 

 

Figure 70: Spherical stylus interacting with CRMS mechanical simulation 

This haptic rendering approach is not based on an intersection volume (as is the 

voxel-based approach). Instead the stylus model displaces nodes of the mechanical 

simulation and the reactive forces generated by the mechanical simulation are 

accumulated and applied to the haptic stylus (refer to section 8.5.2). 

As the stylus moves down and collides with the mechanical simulation 

model, the colliding mechanical simulation nodes are moved implicitly at the same 

velocity as the stylus. Figure 71 and Figure 72 show the haptic rendering output 

when the stylus is moved. The slight decrease in the angle shown in Figure 72 is a 

result of the deformation of the model and the consequent rotation of the computed 

reactive force. Notice that the force delivered with this method is quite rough (red 

line). Introducing a short (4-sample) averaging window improves this but the 

rendered force is still not perfectly smooth (blue line). The reason for the 

roughness is that individual nodes have mass and therefore inertia, which causes 

them to oscillate after they are displaced (due to the collision with the stylus). The 

collision response does not use common collision principles at all (no explicit 

momentum or kinetic energy transfer are used) and instead sets the node velocity 

to zero after it is displaced to minimise the “bounce” effect. The apparent 

roughness in the force calculation does not affect interaction with the model.  
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The small variations in the haptic rendering output are not significant and 

the final effect is compelling and reliable. Moreover, the algorithm is efficient and 

works well with the complete tissue simulation. 

 

 

 

8.7 Summary 

As access to 6DOF-feedback haptic devices improves, haptics will continue to 

develop in its ability to enhance simulations. Medical training simulations in 
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Figure 71: Force Magnitude (CRMS) 

 

Figure 72: Force direction relative to stylus motion (CRMS) 
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particular stand to gain a lot from this relatively new capability, particularly where 

manual dexterity or the forces felt through surgical instruments informs interaction. 

A small number of device manufacturers exist who are producing different 

types of haptic devices. There are software libraries available that provide varying 

levels of functionality. Some of these go beyond simple interfaces to manage the 

device state while others provide support for haptic rendering. In the end, the 

haptic algorithm used to compute reactive forces determines the fidelity of the 

haptic user experience. Despite these libraries, there are still opportunities to 

enhance the haptic experience a particular system can provide by developing haptic 

rendering algorithms which work natively with the model formats available at run 

time. 

This chapter has described three haptic rendering approaches which work 

directly with the different model representations present in the TSF. If it is 

important that high-resolution details of the volumetric model be rendered 

haptically, then a voxel-based can be used. If speed and computational efficiency 

are critical, then the mechanical simulation-based haptic rendering algorithm 

described is also capable of delivering stable and compelling force feedback for 

haptically enabled VR medical simulations. 
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Chapter 9. Applications 

This chapter demonstrates the success of the TSF by describing several VR 

medical simulators that have been developed using the tissue simulation to enable 

higher quality key interactions. 

9.1 An Endoscopic Sinus Surgery Simulator 

Endoscopic Sinus Surgery (ESS) is a relatively modern minimally invasive 

approach to sinus surgery, the popularisation of which has been credited (by 

Wormald [162]) to Stammberger [141] and Kennedy [73] in the mid 1980‟s. This 

surgery is performed on patients under general anaesthetic. During the surgery an 

endoscopic camera is used to view the sinuses while instruments are used to 

remove and manipulate tissues within the sinus cavity (Figure 73 - Figure 75). 

 

Figure 73: Cross-sectional view of ESS [124] 

 

Figure 74: Patient undergoing ESS [162] 

Because of the close proximity of the sinuses to the orbits (eye sockets) and the 

brain, the surgeon must be especially careful; the bone separating the sinuses from 

the brain and orbits is quite delicate. Consequently, all ESS procedures carry a 

small risk of causing eye problems or spinal fluid leaks (which in turn can cause 

meningitis) [124]. The extra opportunities for surgical training provided by 
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simulation are therefore a promising avenue for reducing the frequency of 

complications and maximising patient safety. 

 

Figure 75: Operating room setup for ESS [162] 

 

Figure 76: Paediatric backbiter reference images 

Despite some prior work developing ESS simulators [39, 115], the expense and 

lack of fidelity have limited access to these simulators and their effectiveness. The 

TSF provides key functionality that can address limitations of the existing 

simulators. Multiple instances of the tissue simulation are integrated into the 

simulation in order to allow users freedom to modify key anatomical structures 

within the sinuses using a range of surgical instruments (such as paediatric 

backbiters Figure 76 - Figure 78). 

 

Figure 77: The sinus simulator 

 

Figure 78: View of the sinus during surgery 

At the time of writing, development has resulted in a prototype (see Figure 77 and 

Figure 80) that supports two-handed interaction (one controls the endoscopic 

camera, the other controls a surgical instrument). The prototype uses anatomically 

accurate 3-dimensional models generated from patient CT data. Further, the 

models are processed to replicate the contraction of the soft sinus tissues that 

results from the administration of vasoconstriction inducing drugs, such as 

adrenaline spray, as is normally present during sinus surgery [119]. This effect is 
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simulated by using a vertex shader to offset vertices in the direction of the vertex 

normal. Figure 79 shows a view of the sinus model (the middle structure is the 

middle turbinate) where the amount of tissue contraction is varied from a 

maximum (left), to the original model (right). 

 

Figure 79: Sinus soft-tissue contraction (left: contracted, to right: original model) 

Work on this project is continuing with funding from The Garnett Passe and 

Rodney Williams Memorial Foundation. The project aims to provide a prototype 

simulator to each of the five states of Australia with major ENT training rotations 

by early 2013. The TSF provides important functionality required to simulate the 

uncinate process, amongst other structures, that are modified or removed during 

simulated surgical procedures. 

 

Figure 80: The sinus simulator in use  
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9.2 ISim: An Endotracheal Intubation Simulator 

Endotracheal intubation is a difficult procedure commonly performed as part of 

delivering a general anaesthetic or when maintaining a clear airway is otherwise 

difficult. Students typically gain experience performing the procedure on real 

patients, which both presents a risk to patients and also limits students‟ 

opportunities to master the skills required. Haptically enabled VR simulation 

presents new opportunities to develop skills trainers for practicing endotracheal 

intubation on a range of virtual patients without exposing real patients to 

unnecessary risks. 

The process of endotracheal intubation begins by raising and tilting back 

the head (Figure 81). Then the right hand is used to open the mouth and carefully 

insert the laryngoscope blade into the mouth (Figure 82). The laryngoscope blade is 

then used to control the tongue lift it to obtain a clear view of the epiglottis. The 

blade tip is then positioned between the base of the tongue and the valecula (above 

the epiglottis) where pressure is applied to open the epiglottis and obtain a clear 

view of the vocal chords. Finally, a tracheal tube is inserted through the vocal 

chords into the trachea where a cuff around the tube tip is inflated to achieve an 

air-tight seal. 

 

Figure 81: Performing Intubation 

(with assistance) 

 

Figure 82: A laryngoscope 

 

Figure 83: Laryngoscope handle 

attached to haptic device 

An endotracheal intubation simulator, ISim, was implemented using the TSF 

(Figure 84 and Figure 85). It builds upon a previous version (detailed in Appendix B) 

by using the TSF to improve the realism of the behaviour of the tongue, and the 

quality of the tactile feedback. The virtual laryngoscope is controlled via a 

Sensable Phantom Omni with a modified standard laryngoscope handle attached 
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(Figure 83). The TSF has improved the key interaction and is expected to result in 

improved learning outcomes.  

 

Figure 84: ISim screenshot 

 

Figure 85: TSF-based deforming tongue model 

Work on this simulator is continuing with funding from
 
the Australian Research 

Council. A commercial partner has been engaged to continue development of this 

simulator and pursue commercial opportunities for this simulator. 

9.3 A Coblation Tonsillectomy Simulator 

Although the number of tonsillectomies performed annually is estimated at half of 

the rate 40 years ago [164], tonsillectomy remains a very common surgical 

procedure. According to Paradise et al. [114] “tonsillectomy is the most commonly 

performed major surgical operation among United States children”. In a recent 

survey taken in 1996, some 287,000 children under 15 years of age underwent 

tonsillectomy in the US alone [112]. This is supported by statistics for the UK 

which put the incidence of recurrent sore throat in general practice at 10% [113].  

Fortunately surgical practices have developed since Cornelius Celsus of 

Rome first described how to perform a tonsillectomy around 40 A.D. [47]. New 

tonsillectomy surgery techniques and technology reduce risks and generally 

improve outcomes. Coblation is a relatively new method for performing 

tonsillectomy that “is associated with less postoperative pain and early return to 

daily activities. Also, there are fewer secondary infections of the tonsil bed and 

significantly lower rates of secondary haemorrhage with coblation” [13]. Other 

research supports these claims [26, 37, 93, 117, 143, 150, 151], although Noon et 

al. [107] report “significant increase in the secondary haemorrhage rate”. Overall, 
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the literature supports coblation as a modern technique that results in faster 

recovery and reduced complications. 

Coblation in this context is literally the removal of tissue using low-

frequency RF ablation. Rather than cut tissue, coblation causes molecular 

dissociation at a cellular level [16]. Consequently the surgical technique required 

differs significantly from conventional surgery. 

The surgical technique used to perform tonsillectomy “consists of 

dissection in the subcapsular plane” [70] to remove the tonsils and adenoid. 

Traditionally this dissection is performed using a scalpel and optionally forceps to 

carefully cut or tear the tonsil away. In contrast using the coblation handpiece 

(Figure 87) requires “feather pressure” to slowly separate the tonsils from the 

substrate. Learning the correct pressure and technique is critical. 

 

Figure 86: Coblation simulator screenshot 

 

Figure 87: Coblation Handpiece 

A coblation tonsillectomy simulator has been developed using TSF together with 

expert practitioners from the Flinders Medical Centre‟s otorhinolaryngology 

department with funding from a significant North American Medical Device 

manufacturer (Figure 86). The simulation was written in C++ using NVSG (refer to 

section 3.1.1). The TSF provides critical functionality to allow the interaction of 

the coblation handpiece to be simulated in a realistic manner. Development and 

feedback from clinicians is expected to result in successful publication of this work 

later this year. 
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9.4 Summary 

The TSF has served as a key component of a number of simulations. Its versatility, 

though not fully exercised in these applications, has improved the key interaction 

of these simulations. Moreover, as the code base that implements the tissue 

simulation matures it will facilitate development of new types of simulations that 

would otherwise have been very difficult, or impossible, to create. 
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Chapter 10. Conclusion 

The TSF provides an efficient new method for simulating a interactive tissue for 

VR medical simulation applications. The CRMS mechanical simulation 

component incorporates several innovations that enable it to plausibly simulate a 

broad range of mechanical properties not normally associated with mass-spring 

based methods. The system incorporates performance optimisations that play to the 

strengths of GPU hardware, such as memory usage patterns that allow coalesced 

memory access. The IMT surface-generating component builds upon the success of 

existing refined marching algorithms to enable high-resolution visualisations at 

unprecedented interactive rates. The key innovation is reducing the processing cost 

of updates by updating only small sub-volumes that have changed. The data output 

by the IMT component is formatted for compatibility with typical geometry 

streams to enable rendering with a multitude of shading techniques. Additional 

visual fidelity is added using optional mesh optimisation and vertex-normal 

smoothing stages. The combined components produce a much needed reusable 

software component capable of adding critical functionality to a broad range of VR 

medical simulation applications. To enhance the simulation experience, haptic 

rendering methods were developed that allow much needed tactile feedback to be 

based upon the CRMS mechanical simulation directly, or alternatively the higher 

resolution IMT volumetric model. A number of VR medical training applications 

that demonstrate the utility of the TSF have been developed. 

10.1 Future Directions 

The TSF can be enhanced in a number of ways to aide continuing development of 

improved medical simulations (including those described in Chapter 9): 
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10.1.1 Material Library 

The applications developed using the TSF (Chapter 9) have employed manual 

tuning of mechanical simulation parameters to achieve the required mechanical 

characteristics. It would be useful to develop a material library of commonly used 

tissue types to simplify re-use and the development of other simulations in the 

future. This could be based on experimental data (similar to [99]), however it 

should be sufficient to develop preset materials and refine them based on feedback 

from expert clinicians. 

10.1.2 Rapid Prototyping of Patient-Specific Simulations 

A material library, together with tools for importing patient data would enable the 

TSF to be used to rapidly prototype a large range of patient-specific medical 

simulations. Such a tool would be a valuable asset to VR-based medical training 

simulation developers and researchers. With sufficient refinement and 

development it would be an ideal way to empower clinicians and medical trainees 

to contribute to the development of their own simulations based on this 

technology. 

10.1.3 Performance Optimisations 

10.1.3.1 Adaptive Tesselation of the CRMS Lattice 

Adaptive tesselation of the CRMS lattice would enable sets of nodes within the 

mechanical simulation to be grouped and replaced with simpler elements. 

However, this approach is difficult to achieve without significantly reducing the 

efficiency of the current system since it removes the ability to perform direct 

implicit node addressing, which is important for exploiting memory coalescing and 

efficient parallelisation. 

10.1.3.2 Increase the Maximum Resolution of the Mechanical Simulation 

The existing implementation of the CRMS mechanical simulation (described in 

Chapter 5) is limited by the maximum number of simultaneous threads that can be 

executed in parallel on the Nvidia GTX 280. A tiling mechanism could be used to 

spawn sets of threads. This would increase the maximum resolution supported by 
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the system since the existing system performance is not processing or memory 

limited. 

10.1.3.3 Smart Node Update Scheduling in the Mechanical Simulation 

The regular cubic lattice used by CRMS can result in significant internal volumes 

where the state of the system remains relatively constant. It may be possible to 

improve performance by reducing the frequency of updates to nodes that aren‟t 

undergoing significant motion. Again, the challenge with this approach is 

efficiently implementing it in parallel. One important mechanism could be to use a 

pre-sort to identify the subset of nodes requiring an update. If this can be done 

using less processing than the processing of updates at a uniform frequency, then 

overall performance will be improved. 

10.1.3.4 Per-Spring Cutting  

A tighter correlation between the high-resolution visible model and the mechanical 

simulation could be achieved by softening, and breaking, individual spring 

connections, rather than removing nodes from the mechanical simulation. This will 

introduce additional processing and memory overheads. Whether it can be 

achieved without excessive overheads is the subject of continuing research. 

10.1.3.5 Exploit Texture Memory and Raster-Operations 

Higher performance may be possible by making more extensive use of texture 

memory and exploiting the hardware capabilities dedicated to raster-operations 

(ROPs). Even current general purpose graphics processors have considerable 

additional processing capabilities dedicated to tasks such as texture sampling and 

texture mixing. These capabilities are referred to as raster-operations (ROPs). 

10.1.4 Volumetric Overlays 

When tissues are cut during surgery there are often anatomical details, such as 

blood vessels and nerves, that should be avoided. Often these obstacles exhibit 

different properties. Cutting or ablating them may also cause responses such as 

bleeding. Moreover, some surgeries target these structures and hence the 

simulation requires them to have higher fidelity than the tissue substrate. 
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 Since the TSF employs a high-resolution volumetric model, these features 

could be added simply by defining a reserved range of densities (whereby small 

density ranges represent different tissues such as blood vessels), or alternatively, 

using a separate volumetric dataset to describe their location within the tissue. 

Certain values in the high-resolution volumetric model, once exposed by cuts, 

could trigger bleeding or other secondary effects. Moreover, since IMT can create 

a surface that follows any arbitrary iso-value, dual surfaces can be generated and 

maintained from a single dataset (just as normally occurs when segmenting CT 

data) whereby a main surface has additional detail added by secondary iso-surfaces 

that represent other tissue types within the same model. 

 Finally, the surgical instrument can be made to behave differently with the 

various tissue types to simulate the way real tissues behave. For example, when a 

scalpel is gently run through soft fatty tissue, the fatty tissue is easily cut. Cartilage 

requires more pressure to cut. This can be added to the TSF by changing the rate at 

which the cut progresses depending on the pressure of the blade. When 

implemented at sufficient resolution, this effect would greatly enhance the realism 

of certain types of interactions central to many surgical procedures. 

10.1.5 Haptic Render Testing and Evaluation Using a Psycho-motor 

Model of the Hand and Arm 

The haptic experience is influenced by the biomechanics of the user and their grip 

on the haptic stylus. A strong grip and heavy hand will produce a different haptic 

experience than someone gripping the stylus lightly. The haptic experience is also 

changed by the user‟s expectations as the stylus is moved. For example, if the user 

is striking a hard object to shatter it, the user will intuitively grip the stylus more 

firmly as the surface is struck. Hence, haptic rendering algorithms must behave 

reliably when mechanically coupled to (held by) differing biomechanical systems 

(hand and arm). In summary, when the user expects a certain force response, their 

grip changes, which in turn impacts the haptic rendering system by changing the 

haptic trajectory. 

The term ragdoll is used to describe the kinematic model of a passively 

moving human model. Ragdolls have been used in video games to model a falling 
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dead body, for example in the PC game series Hitman (developed by IO 

Interactive). More complex ragdoll like systems have been developed to reduce the 

cost of developing content for video games and movies (for example, Euphoria 

developed by Natural Motion Ltd. [1]). Of particular relevance is the work of 

Natural Motion Inc who have products that allow for intelligent ragdoll animation 

creation. Euphoria incorporates a model of the human nervous system to mimic the 

reflexes and responses to certain stimuli. For example, a surprised player in a 

rugby tackle will been more lucid, a ready player will be braced, and the 

subsequent simulation will consequently proceed very differently. A similar type 

of model of the user‟s hand and arm would enable more comprehensive automated 

testing of haptic rendering algorithms and perhaps even standardised testing that 

could be used to compare haptic rendering algorithms in a more controlled manner. 

10.2 Final Words 

The TSF fulfils an important need that had been missing from the tools available to 

developers of VR medical simulations. By efficiently leveraging modern parallel 

computing hardware it provides a realistic and versatile interactive tissue 

simulation that can be cut and ablated without restriction. Its ongoing development 

and use in a range of VR medical simulations such as those described in Chapter 9 

has the potential to revolutionise the training of medical practitioners. 
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Appendix A: Mesh Coupler C++ Code Listing 

1    __global__ void kernelUpdate(float3* deformedVertsOut, 

float3* vertsIn, unsigned int* vertsToNodes, float3* blendWeights, 

float3* defoGridNodes, unsigned char* mask, unsigned int numVerts) 

2  { 

3    const unsigned int vertId = blockIdx.x * blockDim.x + 

threadIdx.x; 

4   

5    if (vertId >= numVerts) 

6      return; 

7   

8    unsigned int nodeId = vertsToNodes[vertId]; 

9   

10    if (nodeId != NULL_NODE_ID) 

11    { 

12      float3 n0; // origin 

13      float3 w = blendWeights[vertId]; 

14      unsigned int adjNodeIds[6]; 

15      CalcAdjNodeIds(nodeId, adjNodeIds); 

16   

17      if (mask[nodeId]) // if not masked 

18      { 

19        n0 = defoGridNodes[nodeId]; // simply lookup the 

location 

20      } 

21      else 

22      { 

23        // Infer the position of the origin from a set of 3 

24        unsigned int x0Id = (mask[adjNodeIds[0]] ? adjNodeIds[0] 

: NULL_NODE_ID); 

25        unsigned int x1Id = (mask[adjNodeIds[1]] ? adjNodeIds[1] 

: NULL_NODE_ID); 

26        unsigned int y0Id = (mask[adjNodeIds[2]] ? adjNodeIds[2] 

: NULL_NODE_ID); 

27        unsigned int y1Id = (mask[adjNodeIds[3]] ? adjNodeIds[3] 

: NULL_NODE_ID); 

28        unsigned int z0Id = (mask[adjNodeIds[4]] ? adjNodeIds[4] 

: NULL_NODE_ID); 

29        unsigned int z1Id = (mask[adjNodeIds[5]] ? adjNodeIds[5] 

: NULL_NODE_ID); 

30   

31        bool cornerFound = true; 

32        float flip = -1.0f; 

33        if (!mask[nodeId]) // if the origin is masked 

34        { 

35          // Find a triple to use to infer the position of the 

origin 

36          unsigned int p0Id, p1Id, p2Id; 

37          if (x0Id != NULL_NODE_ID) 
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38          { 

39            p0Id = x0Id; 

40   

41            if (y0Id != NULL_NODE_ID) 

42            { 

43              p1Id = y0Id; 

44   

45              if (z0Id != NULL_NODE_ID) 

46                p2Id = z0Id; 

47              else if (z1Id != NULL_NODE_ID) 

48              { 

49                p2Id = z1Id; 

50                flip *= -1.0f; 

51              } 

52              else 

53                cornerFound = false; 

54            } 

55            else if (y1Id != NULL_NODE_ID) 

56            { 

57              p1Id = y1Id; 

58              flip *= -1.0f; 

59   

60              if (z0Id != NULL_NODE_ID) 

61                p2Id = z0Id; 

62              else if (z1Id != NULL_NODE_ID) 

63              { 

64                p2Id = z1Id; 

65                flip *= -1.0f; 

66              } 

67              else 

68                cornerFound = false; 

69            } 

70            else 

71              cornerFound = false; 

72          } 

73          else if (x1Id != NULL_NODE_ID) 

74          { 

75            p0Id = x1Id; 

76            flip *= -1.0f; 

77   

78            if (y0Id != NULL_NODE_ID) 

79            { 

80              p1Id = y0Id; 

81   

82              if (z0Id != NULL_NODE_ID) 

83                p2Id = z0Id; 

84              else if (z1Id != NULL_NODE_ID) 

85              { 

86                p2Id = z1Id; 

87                flip *= -1.0f; 

88              } 

89              else 

90                cornerFound = false; 

91            } 

92            else if (y1Id != NULL_NODE_ID) 

93            { 

94              p1Id = y1Id; 

95              flip *= -1.0f; 

96   

97              if (z0Id != NULL_NODE_ID) 
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98                p2Id = z0Id; 

99              else if (z1Id != NULL_NODE_ID) 

100              { 

101                p2Id = z1Id; 

102                flip *= -1.0f; 

103              } 

104              else 

105                cornerFound = false; 

106            } 

107            else 

108              cornerFound = false; 

109          } 

110          else 

111            cornerFound = false; 

112   

113          if (cornerFound) 

114          { 

115            float3 p0 = defoGridNodes[p0Id]; 

116            float3 p1 = defoGridNodes[p1Id]; 

117            float3 p2 = defoGridNodes[p2Id]; 

118   

119            float3 e1 = p1 - p0; 

120            float3 e2 = p2 - p0; 

121            float3 n = cross(normalize(e1), normalize(e2)); 

122            float3 c = (p0 + p1 + p2) / 3.0f; 

123            n0 = c + flip * n; 

124          } 

125          else 

126          { 

127            cornerFound = true; 

128   

129            if (x0Id != NULL_NODE_ID && x1Id != NULL_NODE_ID) 

130              n0 = 0.5f * (defoGridNodes[x0Id] + 

defoGridNodes[x1Id]); 

131            else if (y0Id != NULL_NODE_ID && y1Id != 

NULL_NODE_ID) 

132              n0 = 0.5f * (defoGridNodes[y0Id] + 

defoGridNodes[y1Id]); 

133            else if (z0Id != NULL_NODE_ID && z1Id != 

NULL_NODE_ID) 

134              n0 = 0.5f * (defoGridNodes[z0Id] + 

defoGridNodes[z1Id]); 

135            else 

136              cornerFound = false; 

137          } 

138   

139          if (!cornerFound) 

140          { 

141            if (   x0Id != NULL_NODE_ID) 

142              n0 = defoGridNodes[x0Id] - make_float3(1.0f, 

0.0f, 0.0f); 

143            else if (x1Id != NULL_NODE_ID) 

144              n0 = defoGridNodes[x1Id] + make_float3(1.0f, 

0.0f, 0.0f); 

145            else if (y0Id != NULL_NODE_ID) 

146              n0 = defoGridNodes[y0Id] - make_float3(0.0f, 

1.0f, 0.0f); 

147            else if (y1Id != NULL_NODE_ID) 

148              n0 = defoGridNodes[y1Id] + make_float3(0.0f, 

1.0f, 0.0f); 
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149            else if (z0Id != NULL_NODE_ID) 

150              n0 = defoGridNodes[z0Id] - make_float3(0.0f, 

0.0f, 1.0f); 

151            else if (z1Id != NULL_NODE_ID) 

152              n0 = defoGridNodes[z1Id] + make_float3(0.0f, 

0.0f, 1.0f); 

153          } 

154        } 

155      } 

156   

157      // If the adjacent node is present, use it to compute the 

x-axis 

158      float3 xAxis = make_float3(1.0f, 0.0f, 0.0f); 

159      if (adjNodeIds[0] != NULL_NODE_ID && mask[adjNodeIds[0]]) 

160        xAxis = defoGridNodes[adjNodeIds[0]] - n0; 

161      else if (adjNodeIds[1] != NULL_NODE_ID && 

mask[adjNodeIds[1]]) 

162        xAxis = n0 - defoGridNodes[adjNodeIds[1]]; 

163      //else 

164      // return; 

165   

166      float3 yAxis = make_float3(0.0f, 1.0f, 0.0f); 

167      if (adjNodeIds[2] != NULL_NODE_ID && mask[adjNodeIds[2]]) 

168        yAxis = defoGridNodes[adjNodeIds[2]] - n0; 

169      else if (adjNodeIds[3] != NULL_NODE_ID && 

mask[adjNodeIds[3]]) 

170        yAxis = n0 - defoGridNodes[adjNodeIds[3]]; 

171      //else 

172      // return; 

173   

174      float3 zAxis = make_float3(0.0f, 0.0f, 1.0f); 

175      if (adjNodeIds[4] != NULL_NODE_ID && mask[adjNodeIds[4]]) 

176        zAxis = defoGridNodes[adjNodeIds[4]] - n0; 

177      else if (adjNodeIds[5] != NULL_NODE_ID && 

mask[adjNodeIds[5]]) 

178        zAxis = n0 - defoGridNodes[adjNodeIds[5]]; 

179      //else 

180      // return; 

181   

182      // 2x vertId needed since each vertex has position and 

normal 

183      // TODO: Use 3D span and 3D min 

184      deformedVertsOut[2 * vertId + 0] = ((n0 + 

(float)dMechConfig.dimX * (w.x * xAxis + w.y * yAxis + w.z * 

zAxis)) * dCouplerConfig.vertsSpanX + dCouplerConfig.vertsMinX) / 

(float)dMechConfig.dimX; 

185      float3 norm = vertsIn[2 * vertId + 1];  

186      // Warp the normal according to the deformation 

187      deformedVertsOut[2 * vertId + 1] = norm.x * xAxis + 

norm.y * yAxis + norm.z * zAxis; 

188    } 

189  } 
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Appendix B: An Earlier Version of ISim 

Prior to developing the simulator described in 9.2 another endotracheal intubation 

simulator was developed. This earlier version uses novel image-based collision and 

deformation effects (similar to that described by Otuday et al. [110]) to simulate 

the key interaction with the simulated patient‟s tongue. Features of the simulation 

include the ability of the virtual patient to exhibit the discolouration (bluing) of the 

skin and lips due to hypoxia (Figure 89), and simulation of damage to the upper 

teeth that can be chipped if the laryngoscope collides with them or is pressed 

slowly against them with sufficient force. This allows students to observe the 

effects of this common mistake without the real-world consequences. 

 

Figure 88: An earlier version of ISim 

 

Figure 89: Bluing of lips and skin indicate 

lack of oxygen in the blood 

 Image-based Collision Detection and Deformation 

Real time physically based models are acknowledged as computationally 

expensive and are generally relatively complex. So, rather than model the 

mechanics of the tongue, I have developed a method that requires substantially less 
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processing to provide a simple tongue deformation effect that can also be 

haptically rendered.  

The effect uses low-resolution depth images that can be created even with 

older GPUs (since no special shader stages or instructions are used). Processing 

load is invariant and mainly dependent on the resolution of the images used. The 

only requirements is that the GPU provides support for render-to-texture of per-

pixel depth information (either directly from the z-buffer or using a specialised 

shader program). Additionally, in order to support haptic rendering, the render-

target texture format must also be CPU lockable (such that it can be read by the 

CPU) so that reactive forces can be computed and delivered to the haptic device.  

Effect Overview 

1. Update cameras 

2. Render depth (z-values) to textures 

3. Compute intersection volume 

4. Apply deformation to tongue model 

5. Haptic Render 

It is critical that the virtual viewpoints used to capture the depth images are 

correctly positioned. Two orthogonal cameras were used such that they both look 

directly back at each other. One is aimed at the tongue from the direction of the 

laryngoscope, the other is aimed at the laryngoscope blade from the tongue. The 

cameras are defined such that the near and far planes of the view frustums are 

perpendicular to the line connecting the centre of the laryngoscope blade to the 

centre of the tongue. Figure 90 shows a teapot model intersecting the tongue model. 

The depth information from each of the cameras is shown; the tongue depth is 

shown in red, and the teapot depth in green. Simply subtracting the values of the 

two colour channels of this image defines the intersection volume. 

Applying the computed intersection volume directly to the tongue vertices 

results in a hard edged gouge, whereas the simulation requires a smooth 

deformation effect. To correct this, the intersection volume texture is down-

sampled and blurred. This is trivial using the GPU because it uses very commonly 

used operations that are highly optimised. The softened edges result in a smooth 

transition from maximum offset to un-displaced vertices (see Figure 91). 
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Figure 90: Intersection volume from depth images 

 

Figure 91: Laryngoscope deforming tongue model 

Combining the depth textures results in the intersection volume. Mapping the 

texture coordinates back to the tongue model enables the vertices of the tongue 

mesh to be offset using the vertex shader. Hence, the tongue deforms in response 

to contact with the laryngoscope, based entirely on simple image-based operations 

(Figure 91). Additional realism is achieved by applying the offset to vertices on the 

CPU, which allows adjacency information to be used to update the vertex normals 

and improves the accuracy of the shading. Further investigation into offsetting 

normals based on the intersection volume texture would be more effective but has 

not yet been investigated. 

This approach can be extended by introducing an intersection-texture stack. 

The stack could be used to store the intersection volume (and consequent 

deformation) at regular time intervals. These textures, together with the camera 

locations (to define the axis of interaction), would enable visco-elastic behaviour to 

be modelled; the texture stack would enable prior displacement to persist after the 

objects are no longer touching. 

Haptic Rendering 

Haptic rendering can be complex. However, this technique provides a very simple 

method for detecting collisions, deforming interacting structures, and haptic 

rendering. The reactive force is computed using the assumption that the force is 

proportional to the intersection volume. This volume can be obtained trivially by 
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totalling the pixel intensities of the intersection volume texture. Other relationships 

between the intersection volume and the reactive force can be delivered by using 

the volume to lookup values of another curve. This technique was successfully 

used to remove haptic kicks (see section 8.6.1.4) that occur when the intersection 

volume is small while retaining progressive increases in reactive force when the 

intersection is larger. 

This technique is well suited to simple convex shapes. However, adding 

physically based constraints such as accurate volume preservation would be 

difficult using this method. This version of ISim was developed using C# and 

DirectX 9. With further development, image-based techniques could provide a 

very efficient method for approximating deformation and perform simple haptic 

rendering. 

 


