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ABSTRACT 

!

Segmentation is the key step towards extracting information from medical images for further 

analysis. This study investigates the accuracy of organ segmentation from CT images using 

the Statistical Region Merging (SRM) segmentation technique. The experiments were 

conducted using data set of 12 consecutive CT slices for heart and 8 CT slices for spleen. The 

data sets were previously manually segmented by an expert in human anatomy and these sets 

constituted the ground truth to judge the accuracy of an automatic segmentation using SRM. 

The results of SRM segmentation technique depend on a parameter (Q) which value 

determines granularity of the outcome.  A wide range of Q values was investigated in relation 

to the accuracy of segmented heart and spleen. The accuracy was measured using the Dice 

and Jaccard indexes. The results show that the SRM segmentation technique can potentially 

provide high accuracy segmentation of 80% and above for both heart and spleen. However, 

neither heart nor spleen can be segmented at this level of precision as a single component 

and an additional post-processing is needed to merge eligible regions into one piece 

corresponding to the whole organ.  
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CHAPTER 1: INTRODUCTION 

!

1. Introduction 

!

Computed tomography (CT) scan is a new generation technological method in which beams of X-rays 

are passed to gather structural and systematic information of the human body for medical diagnosis. The 

CT image is developed through the absorption profile of the X-rays. CT is now a popular process for 

imaging and diagnosing problems with crucial body parts such as the brain, liver, heart and spleen 

(Prince and Links 2006). Image segmentation is an important process for splitting images based on 

similarities between the image components, such as the intensity of colour, sharpness and texture 

(Gonzalez and Woods 2004; Pratt 2001; Pal and Pal 1993). Virtually, in the segmentation process, 

images are divided in to objects. Image segmentation can be performed for several reasons including 

studying the anatomy of the human body; identifying regions of interest (ROI) such as locating tumours, 

lesions and other abnormal changes; measuring the volume of tissue in determining tumour growth; 

assisting in earlier treatment planning for radiation therapy; and calculating radiation doses (Sharma and 

Aggarwal 2010). It has been recognised that segmentation is a key issue in CT scan imaging. 

  

To provide a well-balanced segmentation process, a large number of methods, such as amplitude 

segmentation-, edge- and region-based approaches, have been used in the field of CT scan imaging. 

Advancements in technology have prompted the development of automatic segmentation of CT scan 

images. Accordingly, researchers have developed various algorithms to simplify the imaging process 

while increasing its accuracy. Among the different algorithms, region-based segmentation methods have 

emerged, which are built on the principle of homogeneity, suggesting that similar characteristics of 

pixels can be used to cluster homogeneous region. Three types of region-based segmentation include 

merging regions, splitting, and splitting and merging. In the process of merging regions, one can choose 

seeding points to start the process and the result depends on the choice of seed. Furthermore, the regions 

can be extended by merging neighbouring pixels in accordance with the merging criteria. The merging 

process will continue until all of the pixels are clustered in their respective regions according to the 

merging conditions (Sharma and Aggarwal 2010). 

!

Texture is an important phenomenon for the region-based merging process, which can be 

defined as a composition of mutually related elements (Sonka, Hlavac and Boyle 1999). A 

texture might have different structural and tone-based features, which express the fineness 



!

!

9!

and coarseness of the texture. The intensity properties of pixels relate to tone; whereas, 

structure refers to the relationship between the pixels and is space oriented. Three different 

types of approaches are used to extract texture features: statistical, structure-based and 

spectral-based. By applying statistical extraction to the features, which may represent a 

complex space vector, texture features can be determined. The level of statistics of the feature 

might be classified using orders such as first, second and higher depending on the image 

greyness (Sharma and Aggarwal 2010; Haralick 1979; Julsez 1981; Fukunaga 1990). As an 

emerging technique in the CT scan process, this study evaluates Statistical Region Merging 

(SRM) segmentation for delineating contours of CT images for the heart and spleen. 

 

1.1 Background of the project 

!

Several studies (Tesar et al., 2008; Prasad et al., 2008; Koss et al., 1999) have found that the 

individual segmentation methods have some specific limitations. For example, the spectral 

frequency-based approach is less efficient than other approaches, while one of the key 

limitations of the model-based method is that it requires manual interaction to initiate a model 

and appropriate parameters need to be selected. Another drawback of the model-based 

method is its poor capacity to exhibit convergence to concave boundaries (Pham, Xu and 

Prince 2000). Although the atlas-based segmentation approach has a third generation 

algorithm, its performance is limited by factors including the registration procedure and the 

manual tracing protocol. In addition, one may find it very challenging to segment complex 

structures in respect to the variability of their size, shape and properties. The atlas-based 

segmentation method also requires expert knowledge to build the database (Wolz et al. 2013; 

Ding, Leow and Wang n.d.). It has been observed that the statistical approach is useful for 

random patterns or textures. In particular, in SRM segmentation, each pixel has a unique 

region at the beginning, where the merging of adjacent pixels can occur in the neighbouring 

areas. A labelled image is created by merging segments where no label exists to create a 

connected region with other regions (Dvorak, Bartusek and Gescheidtova 2014). During the 

process of the SRM method, it is important to conduct an experiment to measure its 

performance. 
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1.2 Significance of the project 

!

The SRM technique originated from the work of Nock and Nielsen in 2004. The image 

segmentation algorithm is often validated by comparing the automated image with the 

manually segmented image. In this process, manually segmented images are resized to 

126×128 pixels so that the automatically generated segment can work on the resized images 

using three dimensional (3D) SRM and 3D EGS. Effective dose calculation needs to identify 

body tissue including the key organs such as heart, liver, stomach, spleen and spinal cord. 

Experiments have shown that the 3D SRM and 3D EGS approaches are feasible and effective 

(Bajger, Lee and Caon 2012). CT is related to a high dose radiological process, which might 

be harmful for patients. To reduce the harmful effects, it is essential to estimate the accurate 

dose for an individual, which is often difficult to obtain. An   anatomical model is required to 

calculate effective doses for CT procedures involving human organs (Caon, Bibbo and 

Pattison 1999). A human anatomy model is developed from the cross-sectional medical 

images that originate from medical imaging. In this context, the results of this research 

project will provide evidence on applicability the SRM technique in the segmentation of two 

selected organs: the heart and the spleen. 

 

1.3 Aim 

 

The aim of this project is to evaluate the SRM segmentation technique for the heart and the 

spleen in CT images and find the optimal value of the parameter Q (see Section 2.2.2.1) 

yielding with a high level of accuracy and minimum eligible components. 
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CHAPTER 2: LITERATURE REVIEW 

!

2. Literature review 

!

Before starting the literature review, the problem questions have been formulated in line with the aim of 

the project. The key problem questions help to determine the research gaps, and the deliverables will be 

conveyed in accordance with those research gaps. 

!

2.1 Problem questions 

!

The following problem questions aim to establish the existing research gaps: 

(1) What segmentation methods are used in the CT scan imaging process and how 

effective are they for the growing demand of CT scans? 

(2) What constraints limit the performance of the existing segmentation processes used in 

CT scans? 

(3) How effective and efficient is the performance of SRM segmentation for human 

organs in the context of CT scans? 

Based on the above research questions, a reasonable number of relevant and recent articles 

have been reviewed to obtain insights into the segmentation processes and their relevant 

concepts. 

 

2.2 Existing segmentation techniques in CT imaging 

!

The existing literature describes and discusses a range of segmentation techniques which 

have different inherent limitations. Image segmentation is used for analysing the image and 

pattern recognition (LaValle and Hutchinson 1993). From a semantic viewpoint, image 

segmentation represents objects rather than a set of pixels. From a practical viewpoint, image 

segmentation provides the scope by which to estimate robust parameters and descriptors. In 

brief, image segmentation is used to present the images in a semantically meaningful way, 

making them easier to analyse (Ballard and Brown 1982). 
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Srinivasan and Shobha (2007) reviewed the segmentation process from existing literature and 

expressed that image segmentation is a primary step to analyse the images from the object 

detection, appreciation and identification. The segmentation method allows digital images to 

be partitioned into a number of regions. Finally, the entire image can be covered or a set of 

counters can be extracted through the image segmentation process. Pixels from a particular 

region have unique characteristics or computed properties including colour, intensity or 

texture. However, pixels belonging to adjacent regions have largely different properties. 

Srinivasan and Shobha (2007) described different types of techniques and methods in their 

review including edge detection, region splitting, growing methods and multi-scale 

segmentation. 

 

Furthermore, image segmentation is important for dividing images into homogenous regions, 

which can be used for high level image processing including analysis, pattern recognition, 

object classification and change detection (Li et al. 2009). In addition, multi-spectral and 

multi-scale images are essential for conducting analyses because they contain all kinds of 

information and object characteristics that are required. Two key types of segmentation 

techniques were prominent in the existing literature: the atlas-based and SRM approaches. 

 

2.2.1 Atlas-based approach 

!

2.2.1.1 General principles 

!

The atlas-based approach is a popular method of segmenting complex CT and MR images. It 

combines closed contours of the entire human body, liver, stomach and spleen, which have 

been segmented from a reference CT image (Fleckenstein and Jensen 1993). 

 

Two types of atlases are commonly used to segment images, such as 3D and 2D atlases. 

While 3D atlases are comparatively complex in nature as they are a combination of multiple 

parameters, 2D atlases are easily controllable because of their simplicity. In 3D CT/MR 

images, segmentation of the surfaces of the anatomical structures are performed using 3D 

atlases (Thurfjell et al. 1993; Dawant et al. 1999; Hartmann et al. 1999; Rueckert et al. 2002; 

Cuadra et al. 2004; Lorenzo-Vald’es et al. 2004); thus, individual anatomical structures need 
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individual 3D atlas-based algorithms. In other words, the algorithms must be anatomically 

structure specific. In general, atlas-based registration techniques are used for processing atlas-

based segmentation. Furthermore, the boundaries of the segmented anatomical structures are 

determined from the registered atlas contours (in the case of 2D) and surfaces (in the case of 

3D). 

 

The atlas-based segmentation algorithm has two key steps: global transformation and local 

transformation. Global transformation aligns the algorithm with the target image, and the 

local transformation or deformation of the atlas accurately registers the algorithm with the 

corresponding image features (Ding, Leow and Wang n.d.). 

  

2.2.1.2 Application of the atlas approach in the CT images 

!!

Ding, Leow and Wang (n.d.) conducted an experiment for segmenting abdominal CT 

volumes into multiple slices utilising a single 2D atlas approach. The results of the test 

showed that their algorithm was successful and accurate in segmenting abdominal CT images 

into 34 CT slices of 1 mm thickness. The experiment outcomes indicate the flexibility of the 

developed algorithms, making them compatible for segmenting CT images for different 

patients. This study contributed to solving the problems of segmenting images of the human 

body. 

 

In 2D atlas-based method, good initialisation is needed to ensure the local deformation avoids 

affecting the control system by extracting the wrong subject boundaries. However, to 

compute the optimal transformation parameters, an iterative optimization algorithm needs to 

be applied. 

 

Linguraru et al. (2010) investigated normalised probability-based atlases in segmenting and 

quantifying livers and spleens to extract imaging biomarkers with volume and height. The 

study developed a clinical tool to segment the liver and spleen in relation to normal and 

pathological contexts, where the volume and height errors were 2.2% and 2.8%, respectively. 

This segmentation method a combined statistics related to the enhancement, shape and 

location of the liver and the spleen. The authors found in the segmentation process that the 

process of initialising the models is simultaneous, whereas the segmentation process is 
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sequential. Linguraru et al. (2010) concluded that automated computer-assisted tools, which 

can generate the liver and spleen biomarkers, have the capacity to assist in detecting 

abdominal disorders, which are independent of routine clinical data analysis. 

Wolz et al. (2013) introduced a method of segmentation combining aspects from multi-atlas 

registration and patch-based segmentation. Their findings showed that the accuracy level was 

92% for the spleen. Another probabilistic atlas for modelling organ appearances such as the 

liver, kidney and spinal cord was proposed by Park, Bland and Meyer et al. (2003). It showed 

the accuracy of the improved segmentation method using an unsupervised approach. 

Incorporating spatial priori knowledge, atlases were applied for different abdominal organs. 

In addition, Okada et al. (2012, pp. 173–180) applied atlases by combining inter-organ spatial 

relationships to form a model shape for performing multi-organ segmentation. Wang et al. 

(2012) developed organ segmentation in mice using the probabilistic atlas model. This multi-

atlas registration model showed a high variability in the global appearance of the brain. 

However, the main advantage of this approach was that it does not need any specialisation 

and prior parameter settings. 

 

Although many studies (e.g. Isgum et al. 2009; Commowick and Malandain 2007; Han et al. 

2008; Ramus, Commowick and Malandain 2010; Rikxoort et al. 2010; Artaechevarria, 

Munoz-Barrutia and Solorzano 2009) have employed strategies to overcome the challenges 

of the multi-atlas segmentation approach, some limitations remain, including issues 

pertaining to accuracy. 

 

2.2.2 SRM approach 

!

2.2.2.1 Principles of SRM 

 

The SRM technique is an algorithm used for segmenting medical imaging to estimate the 

values with a region and group these values based on the pre-established merging criteria 

(Calderero and Marques, 2010). 

 

Nock and Nielsen (2004) undertook a detailed study that offers theoretical and empirical 

evidence on the SRM technique and its applicability to medical imaging. The model 
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developed by Nock and Nielsen (2004) is a prototype of an image I, which is an observation 

of a statistical (true) scene denoted by I*. Further, Nock and Nielsen (2004) explained that 

the statistical region denoted by I* is uncertain, or rather, unknown, and that it is the subject 

of extraction from the given image I. Their study also postulates that the pixels in 

observations I* are represented by set of distributions Q, from which the colour levels in I are 

sampled. This implies that the intensity of each of the pixels in I can be derived by summing 

up all the Q independent random variables, and in a scenario where a grey-level image exists, 

these Q values would lie with in the interval of [0, 256/Q] (Nock and Nielsen 2004). 

Nock and Nielsen (2004) noted that the sets of Q distributions are subject to variation when 

analysed between statistical pixels and therefore hypothesised that the statistical regions in I* 

constitute the four connected segments. The study also hypothesised that the expected value 

of intensity is similar to elements that belong to a similar true/statistical region, which varies 

between adjacent regions that are statistically dissimilar. Thus, the Q values can be treated as 

a measure of the statistical complexity of I*. However, this implies that when used in 

theoretical models that are more general, smaller Q parameters would yield pixels that are 

difficult to segment. Accordingly, Nock and Nielsen (2004) reached the assumption that 

small Q values would more likely yield under-segmentation, while high Q values would lead 

to over-segmentation. Given these results, it is advisable to pick Q values in a manner that 

allows objects of interest to be well segmented. 

  

The SRM algorithm developed by Nock and Nelson (2004) begins by rearranging the pixels 

in increasing order, from the lowest to the highest pixel pairs p and p’ of I based on the 

function f(p,p’); f(p,p’) denotes the variation of the intensity values in p and p’. Further, the 

study hypothesised that if the object has single pixels, then the regions R and R’ can be 

merged if the following equation holds: 

 

P(R,R’) = !"#$!!!!!!!!!!!!!!, !"! Ŕ − !Ŕ�!"#$%,!!!!"ℎ!"#$%!!!!!!!!!!!!!!!! !≤ ! !!(!!) + !!(!!�)!!, 

 where 

 

 ! ! = !!! !! !
!! ! ! ln

!
!!!!              .                                                                                                                   (1) 

 

where,& ∣R∣ represents the number of pixels within region R, 0<�≤1, and Ŕ represents the 

average intensity with region R and g in the number of image intensity levels. 
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In equation (1), the predicate (I) is based on the postulation that the two regions denoted by R 

and Ŕ should merge if they are by-products of similar statistical (true=) regions: if  

Ē (Ŕ – Ŕ’) = 0, where Ē(Ŕ) is the expectation over all neighbouring statistical pixels of I* of 

their total Q random variables’ expectations based on their intensity values. 

The SRM technique is a member of the family of the region growing techniques that use 

statistic-based tests for fusing regions. In SRM, grouping is considered an inferential 

problem, where original imagery creates observation imagery by applying sampling 

techniques. Simultaneously, the segmentation imagery can be developed through image 

observation and the regeneration of the homogeneous boundary of region. Multi-scale 

segmentation algorithms for higher resolution (HR) imagery include region growing 

methods, where pixels can be taken as seeds and the growing region can be considered based 

on certain homogeneity criteria. 

 

Calderero (2010) described other SRM techniques based on the principles of the parametric 

probability region model, which may show properties of colour homogeneity (LaValle and 

Hutchinson 1993; Gies and Bernard 2004) or texture assumptions. Calderero (2010) 

explained the generality, accuracy and efficiency of the region models and concluded that 

under-segmentation error is more important than over-segmentation error. To overcome 

under-segmentation error, Calderero (2010) proposed the first-order Markov model, which is 

a slightly more complex statistical model. To reduce over-segmentation error, he suggested 

using area-unweighted criteria to combine the scale-oriented merging order (Calderero 2010). 

 

The segmentation process of the SRM technique comprises three steps: pre-processing, 

segmentation and segmentation merging. The general pre-processing algorithms can be used 

in MRI processing steps. Subsequent segmentation steps are conducted by applying the SRM 

algorithm. During the segmentation, particular tissues in several locations are merged to the 

regions. The pre-processing stage examines tissues such as the definition of the ROI, 

reduction of noise and compensation of inhomogeneity. Q parameters measure the statistical 

complexity of the image, the model generality and the statistical task hardness; the smaller 

the size of the segments, the larger the Q values. The advantage of the SRM technique is that 

boundary detection is possible in the areas where the clear borders of the active contours are 

invisible. 
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Li et al. (2009) emphasised that the SRM segmentation is constrained by some factors such as 

the border object and border shape. They also observed that the SRM method has the ability 

to (1) provide robust and accurate segmentation regarding spectral and shape information, (2) 

adapt to noise and corruption, and (3) handle occlusions (Li et al. 2009). However, one 

limitation of SRM, which applies the minimum heterogeneity rule (MHR), is that the 

similarity of radiometric and semantic forces the users to set non-intuitive parameters 

including the scale, weight and stop criterion. Li et al. (2009) also mentioned some 

investigation issues such as required improvements to the sort function, the merge predicate, 

the evaluation index study to estimate the results of the estimation, parameter determination 

for various classes and comparisons with other segmentation techniques. 

 

Lee, Bajger and Caon (2012) observed that segmentation is a key step in developing 

anatomical models that help to calculate medical radiation doses for children. Their study   

the SRM segmentation technique with respect to tissue segmentation in CT images and 

introduced a criterion, which allows the method to be tuned automatically. Evidence suggests 

that the SRM has a great potential for CT image segmentation with a high level of overall 

boundary precision (93.7%). 

 

This study finds that developing a range of anatomical models faces two key challenges: the 

unavailability of an ample data set of medical images with ground truth over label and the 

significant time requirement for segmenting the entire internal anatomy form their 

corresponding images. Composite models can be developed by joining the head, torso and 

limbs from different individuals (Lee, Bajger and Caon 2012). 

 

Lee, Bajger and Caon (2012) also found that the SRM technique is robust and offers a great 

level of accuracy in the automatic segmentation of CT images. The study demonstrated this 

finding by selecting six different representative tissues such as the lungs, heart, kidneys, liver, 

spinal cord and bone. The optimal region was found to be either 64 or 128 due to a minimum 

Q value required. This study suggests that active contour models (Kass, Witkin & 

Terzopoulos 1987; Xu & Prince 1998) can improve the accuracy of the SRM technique in CT 

images. 
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It is observed that parameter Q is a factor of the statistical complexity of the image. As a high 

Q value results in under merging, the expectation is to keep the Q value as small as possible, 

which is the requirement of region separation (Bajger, Lee and Caon 2012). 

 

Finally, Dvorak, Bartusek and Gescheidtova (2014) stressed the need to improve the segment 

merging process, the determination of the tissue and the 3D extension. The key advantage 

compared to other emerging methods is that the method is independent of the number of 

segmented tissues. 

 

2.2.2.2 Statistic region merging as a technique on detection 

!

1. Application of SRM on mammography 

 

Bajger et al. (2010) used the SRM technique to detect mammographic masses using an 

automatic method. Images were taken from both the local database mammograms and the 

Digital Database for Screening Mammography (DDSM). The speciality of the SRM 

technique is that the segmentation process is considered as an inference problem. The SRM 

technique provides some advantages in that no prior statistical model is needed for diseased 

or normal tissues. The only required parameter is the potential to control the complexity of 

the segmentation process, and the result of the segmentation is close to optimal, although an 

over-merging error exists (Nock and Nielsen 2004). 

 

To overcome the issue of over merging in the SRM technique, Nock and Nielson (2004) 

introduced a more sophisticated version to create the scene of the images naturally. 

Experiments carried out by Bajger et al. (2010) show that the original version (2) works 

better. The simplicity of version (2) is in its simple results that give an insightful connection 

between the statistical image complexity and the size of segmented   objects. Furthermore, it 

has flexibility, as the object size can vary from 110 to 140 pixels with the spatial value image 

resolution. Bajger et al. (2010) concluded that this finding was true for any datasets whether 

they are obtained from the DDSM or the Local Database of Mammograms, as the spatial 

image resolution of the datasets was very similar. Nock and Nielsen (2004) endorsed that the 

SRM technique is superior to EGS for handling noise in the natural scenes of images. This 
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study also revealed the differences between how SRM and EGS relate to mammogram 

segmentation (Ma et al. 2007; Bajger, Ma and Bottema 2009). 

 

This study confirms the applicability of the SRM technique on mammograms. The 

experiment also found that the method produces accurate regions, which are sufficient for 

using seed components to refine the other region or other methods of merging. It has also 

been observed that mass regions are detected successfully by applying the features of lesions. 

The evidence from this study also demonstrates the improvement of the reports created by 

Bajger, Ma and Bottema (2009) and Ma, Bajger and Bottema (2009). Anyone can apply 

analytical judgement regarding the segment size based on the image characteristics. The 

findings of this study also confirm that determining the segmentation parameters does not 

affect the important lesions that are lost in the process because of over merging and suggests 

that an efficient process can make the SRM segmentation technique more sophisticated for 

detecting and analysing the image regions. 

  

Several studies have tested the SRM method (Nock and Nielsen 2004; Felzenszwalb and 

Huttenlocher 2004) and found that it significantly better handles noise. This technique is 

based on the probabilistic concentration theory, which is predictable prior to any experiments.  

  

2. Application of SRM technique on minimum heterogeneity rule MHR 

!

Li et al. (2009) used SRM successfully for object merging using the principles of initial 

segmentation and MHR. In this experiment, Li et al. (2009) applied the QuickBird imageries 

approach in demonstrating the SRMMHR segmentation method. The SRM method includes 

spectral, shape and scale information, an ability to adapt to noise and corruption, and handles 

occlusions well. This integrated SRM approach also has the ability to eliminate redundant 

objects and avoid the limitations of the Fractal Net Evolution Approach (FENA). The authors 

concluded that the SRMMHR technique provides accurate, efficient and high resolution 

imagery with a multi-scale segmentation approach (Li et al. 2009). 
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3. Application of SRM on dermoscopy 

 

As skin-imaging technology is advancing, there is a growing demand for computer-based 

diagnoses of melanoma. Celebi et al. (2007) introduced a quick and unsupervised method to 

detect borders of skin lesions with pigments by applying the SRM algorithm to dermoscopy 

images. Their study tested 90 dermoscopy images and showed that it is possible to obtain fast 

and accurate border detection. The SRM algorithm is flexible and adaptable for testing any 

dermoscopy images because it is simple, efficient and well-performed on a wide range of 

image domains. A preselected set of borders is used as the ground-truth. A metric developed 

by Hance et al. (1996) can be used to quantify the border detection error. 

 

Furthermore, Celebi et al. (2008) expressed that SRM is a colour image segmentation 

technique, which is based on the principles of region growing and merging. The SRM model 

originated from an unknown theoretical image in which statistic-based regions needed 

reconstruction. This process was simple, efficient and independent of quantization or colour 

space transformation. The pre-processing phase entails removing the black frame and 

smoothing the images. The segmentation phase involved pixel couple ordering and region 

merging. The post-processing phase included eliminating the background skin regions, 

removing isolated regions and expanding the initial border through morphological dilation to 

obtain an accurate result. 

 

The SRM technique is applied to detect skin cancer from images of skin lesions. Lau and Al-

Jumaily (2009) observed that the SRM process is a combination of growing and merging 

regions. SRM works on the principle of statistical tests in relation to region merging. Lau and 

Al-Jumaily (2009) described SRM as a more accurate process of segmentation. SRM has the 

potential to include a more useful area, and its outer region also forms a part of the ROI. 

However, SRM has one key limitation; it is less accurate than neural networks. A 

classification test revealed that the threshold of a back-propagation neural network (BNN) is 

0.5% more accurate than SRM. 
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4. Application of SRM on MRI 

 

Dvorak, Bartusek and Gescheidtova (2014) conducted an experiment to develop fully 

automatic segmentation of multi-contrast MRI images using the SRM technique. They 

developed an algorithm based on Nock and Nielsen’s approach (2004). The obtained results 

demonstrated the effectiveness of SRM at segmenting multi-contrast MRI images. The 

findings confirm that the method is independent of the number of segmented tissues and the 

developed algorithm is flexible for any parts of body and including healthy.   

 

2.2.2.3 Constraints of the SRM technique in different applications 

!

Although SRM is a fairly new technique, Celebi et al. (2007) and Zortea et al. (2011) have 

already used it to diagnose melanoma, detect breast cancer and examine post-operative 

outcomes of implementing a knee prosthesis (Celebi et al. 2007; Zortea et al. 2011; Bajger et 

al. 2010; Battiato et al. 2006). When using this method, care needs to be taken when merging 

various tissues with other regions in a small-segmented region to avoid tissue loss. Selecting 

the appropriate Q value is important in this regard. The minimum size of the regions can be 

varied from 25 to 50 pixels: 25 for small organs such as the spinal cord and 50 for larger 

organs such as kidneys or heart. The intensity difference between all organs can be no more 

than 15. 

 

The above SRM applications indicate that over merging is only one source of error. It was 

also found that multiscale segmentation ensures a hierarchy of segmentations at different 

scales, as scale is controlled by the Q value. Therefore, a smaller Q parameter increases the 

difficulty of the statistical estimation task and decreases the regions in the final segmentation. 

 

2.3 Summary of the review 

!

The findings from the above   literature review are clear-cut and straight-forward. The SRM 

technique has the potential to sequent a mammography, dermoscopy, MRI and SRMMHR 

images, while maintaining accuracy and simplicity. An analysis of the review in line with the 

research questions justifies conducting a study to evaluate the SRM approach in the 
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segmentation of the heart and the spleen. To fill the research gap, this research project 

evaluates the effectiveness and suitability of the SRM technique for segmentation of the heart 

and spleen in CT scan images. This project also identifies the limitations of the SRM 

technique. 
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CHAPTER 3: METHODOLOGY 

!

3. Materials  

!

3.1 Data set 

!

This project used the 12 CT images of the heart and 8 CT images of the spleen from a female 

patient aged 14 years and weighing approximately 14kg. These images were taken from the 

hospital’s archive with the patient’s identification data removed. The images had a pixel size 

of 2.53 X 2.43 mm and a slice separation of 10 mm, and the field of view of radius was 145 

mm from the scanner. 

 

3.2 Ground truth 

!

The ground truth images consist of organs that were segmented manually by an expert in 

human anatomy. The size of the ground truth images was 126 X 128 pixels. Figure 1 shows 

an example of an expert-segmented image. 

 

!

Figure 1: An example of abdominal part, an expert-segmented image. 

!
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3.3 Unions of intersections 

!

The original images were automatically segmented using SRM with Q values ranging from 8 

to 512 in steps of 8 (i.e. Q={8, 16, 24,… 512}). The output is markedly different for each Q 

value. For example, Figure 2 shows the segmented images for Q = 16, Q = 64 and Q = 256. 

 

!

!

!

Figure 2: Segmented images of different colour using the SRM technique with different Q values: Q = 16, Q = 64 and Q = 

256. 

!

The automatic segmentation image is a labelled image. Each label in the automatic 

segmented image corresponds to the ROI. The overlap between the ROI and the expert-
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segmented image contains identical eligible components. If the common region overlaps 

more than 50% of the segmented ROI (from the automatic segmented image), it is considered 

an eligible component, and the whole ROI is added (by binary union operation). The process 

is repeated for every label, and the overlap of all the labelled regions (which exceeds a 

threshold of 50% of the labelled region) are combined as a union of sets. Figure 3 shows five 

labelled components. Components 1, 2 and 3 are determined as eligible components, while 

components 4 and 5 are determined as ineligible components. 

 

 

!

Figure 3: An example of the selection process of the eligible components. 

  

Let !!!! be the set of all eligible components and N be the number of eligible components. 

Then, the union image is formed by the union of all the eligible components as 

 !!: total number of eligible compounds for the ROI of the annotated region R. 

 

!! = ! !!!!!
!!!  .                                                                                                                                                   (2)     

 

In other words, if the number of pixels in the overlap between the labelled ROI (from the 

automatic segmented image) and the annotated regions (organ tissue region in the expert-

segmented image) is larger than the non-overlap regions, the labelled ROI is used to construct 

the organ tissue in the output image by forming a union of the overlap regions for different 

labels. Finally, the union image is intersected with the annotated expert organ regions to 

produce the final RIO corresponding to the organ, 

 
!! = !! ∩ !!.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(3) 
 

2!

!

3!

!

4!

!
5!

!

1!

!
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3.4 Evaluations 

!

3.4.1 Dice index 

!

To evaluate the performance of the union of the intersection technique and the objective 

validity of the results obtained, the Dice index is used. The Dice index is a statistical test, 

which is used for measuring the overlap between the expert-segmented image and the union 

of an intersections. The Dice index between two regions A and B is defined as 

 

! !,! = 2! ! ∩ !
! ! + ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4) 

 

where ! + !  is the total number of the pixels in the set A. 

 

Equation (4) shows that the Dice index is the common/overlapped region divided by the sum 

of the individual components and results in a value between 0 and 1. The Dice index will 

result in zero if there is no overlap between the two regions and one if one region completely 

overlaps the other region identically. 

 

3-4-2 Jaccard index  

 

The Jaccard index measurement can also be used for comparing the similarities between the 

expert-segmented image and the union of an intersection image. The Jaccard index between 

two regions A and B is defined as 

 

! !,! = ! ∩ !
! ∪ ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5) 

 

Equation (5) shows that the Jaccard index is the common/overlapped region divided by the 

union of the individual components and results in a value between 0 and 1. The Jaccard index 

will result in zero if there is no overlap between the two regions and one if one region 

completely overlaps the other region. 
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CHAPTER 4: RESULTS 

!

4. Results 

!

This study performed two-dimensional segmentation of two organs – the heart and the spleen 

– in CT scans using SRM segmentation. The results of the SRM were evaluated against 

segmentation performed by an expert in human anatomy. The Dice and Jaccard indices (see 

Section 3.4) were used to evaluate the SRM segmentation technique. This chapter presents 

the results of the evaluation of the SRM segmentation technique for contour delineation of 

the heart and the spleen in CT images. Our goal is not segment the organs however, to 

investigate the potential of SRM technique towards object segmentation in CT images. Thus 

we investigate an optimal choice of SRM parameters would enable the best outcome. Ground 

truth is used to judge the performance of the technique for various choice of Q value while 

keeping the number eligible segments on Q reasonable level.      

 

4.1 Heart 

!

Figure 4 displays the means of the Dice and Jaccard index values for the heart. The SRM 

segmentation technique was performed on the heart with Q values ranging from 8 to 512 in 

steps of eight. As the heart organ appears in 12 slices, Figure 4 shows the means of the Dice 

and Jaccard index values for all related CT slices. Overall, the mean Jaccard index increases 

as the value of Q increases; however, there are some slight fluctuations and occasional dips 

for some Q values. 
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!

Figure 4: The mean Dice and Jaccard index values for 12 CT slices of the heart. SRM segmentation was performed for 64 Q 

values ranging from 8 to 512 in steps of eight. 

!

Table 1 shows the mean Jaccard index for SRM segmentation with Q values of 8, 64, 128 and 

512. This table shows the major differences between the Q values. Increasing the Q value 

from 8 to 64 results in a significant increase of 0.05 in the mean Jaccard index, thus 

indicating a higher initial rate of increase in the Jaccard index for smaller Q values and a 

lower rate of increase at high Q values. 

 

Q values 8 64 128 512 

Mean Jaccard index 0.85 0.90 0.92 0.93 

Mean Dice index 0.88 0.95 0.95 0.96 

Table 1: Evaluation of SRM for the heart using the mean Jaccard and Dice indices for different Q values. 

  

Table 2 shows that the accuracy and the number of eligible components increase when the Q 

value is increased. For an accuracy of 80%, there are 23–35 eligible components across all 12 

slices of the heart CT for Q values of 8 and 16. To increase the accuracy to 90%, the Q value 

is increased from Q = 16 (with 35 eligible components) to a Q value ranging between 24 and 

512. In this range of Q values, the number of eligible components across all 12 slices are 52 
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(at Q=24) to 494 (at Q=512). As all Q values from 24 to 512 achieve an accuracy of 90%, the 

increase in accuracy reduces with each increase in Q value; it is thus advisable to choose a 

smaller Q in the suitable range (24 to 512) as it requires a smaller number of eligible 

components to be merged. For example, Q values of 24 and 512 have a very small difference 

in accuracy but the number of components differ by a factor of approximately 9 (=494/52). 

Therefore, Q = 512 uses approximately nine times more eligible components than Q = 24, 

without a significant increase in accuracy. 

 

The accuracy of the segmentation 80% 90% 

Q value 8–16 24–512 

Number of eligible components used for all slices 
 

23–35 

 

52–494 

Table 2: The accuracy of the segmentation and number of eligible components used across all slices of the heart. 

!

Figure 5 shows a comparison of the result obtained by the SRM segmentation (on the right) 

and the expert-segmented image (on the left) for slice number 8 of the heart and a Q value of 

128. The visual comparison shows that the two segmented organs are almost identical in 

shape, contour and size, indicating that the result of the SRM segmentation is highly accurate 

and consistent with the manual results by a human expert. Of the 12 slices for the heart, the 

middle slices are nearly 98% correctly segmented; however, the earlier slices are less 

accurate, as Figure 6 shows. 
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!!!!!!!!!!!!!!!!!!!!!!!Expert'segmentation''''''''''''''''''''''''''''''''''SRM'segmentation 

        
Figure 5: An example of the binary image of the ground truth overlaid with eligible components for slice no. 8 of the heart 

with a Q value of 128. 

 

!!!!!!!!!!!Expert'segmentation'''''''''''''''''''''''''''''''''''SRM'segmentation 

          
Figure 6: An example of the binary image of the ground truth overlaid with eligible components for slice no. 1 of the heart 

with a Q value of 128, which is less accurate. 

  

To improve the display and understanding, the eligible components that merge to form the 

organ in any slice are shown in different colours in Figure 7. Notably, several components are 

not visible because one component is a subset of another component and is masked by the 

super set component. Typically, 20 or more components are required to create the heart organ 

in any slice. 
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Figure 7: An example of merging the eligible components in different colours. 

  

As the Q value is increased, the number of eligible components per slice increases. For 

example, the maximum number of eligible components in the 12 slices for a Q value of 8 is 

four components in slice number 5, while the maximum number of eligible components for a 

Q value of 512 is 61 in slice number 7. Overall, the total number of components used in all 

12 slices for a Q value of 8 is 23, which increases to 494 components for the combined 12 

slices with a Q value of 512. Figure 8 shows the combined number of components (in all 12 

slices) and the breakdown of the components per slice. 

 

Appendix 1 gives the tabular data for the number of components used to construct the heart 

organ in each slice for all Q values. 
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Figure 8: Number of eligible components used in all 12 slices with different Q values. 

  

The Dice index values across 11 slices of the heart are above 0.80, and the Jaccard index 

values across 11 slices are above 0.70, when the Q value is 8. However, for slice 12, the Dice 

index is above 0.80 when the Q value is above 64, and the Jaccard index is above 0.70 when 

the Q value is above 64. As mentioned before, the heart organ is present in 12 CT slices. In 

some slices, the Jaccard index continuously increases as the value of Q is increased, as shown 

in Figure 9. Nevertheless, in heart slice number 8, shown in Figure 10, the Jaccard index 

remains almost constant at around 0.97 for all Q values of 8 to 512. 
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!

Figure 9: An example of the Jaccard index values for heart slice no. 7 across all Q values. 

!

 

 
Figure 10: The Jaccard index remains at almost a constant value of 0.97 across all Q values from 8 to 512 for heart slice no. 

8. 

!
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By contrast, Figure 11 shows unstable behaviour for slice 12. The Jaccard index reaches less 

than 0.7 for a Q value of 64, peaks at around 0.9 for a Q value of 80, remains around 0.9 up 

to a Q value of 176 and starts to drop slightly as Q increases further. Q values of 264 to 352 

show a dip in the mean Jaccard index. 

 

 
Figure 11: An example of unstable behaviour of the Jaccard values for Q values for heart slice no. 12. 

!

 Figure 12 shows a significant drop (from 0.84 to 0.73) in the mean Jaccard index for slice 

number 1 when the Q value changes from 56 to 64. An investigation of the problem found 

that the new smaller fragmented components were starting to fail the 50% overlap test, which 

resulted in a lower number of eligible components and the subsequent drop in the Jaccard 

index. 
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Figure 12: An example of unstable behaviour of the Jaccard values for the Q values for heart slice no. 1. 

  

4.2 Spleen 

!

Figure 13 shows the mean Dice index and the mean Jaccard index for the spleen. The SRM 

segmentation was performed on the spleen with Q values ranging from 8 to 512 in steps of 

eight. As the spleen organ appears in eight slices, the Dice and Jaccard indices display the 

mean Dice and Jaccard indices over all relate CT slices. The mean Jaccard index increases 

when the value of Q is increased. However, slight variations and occasional dips were evident 

at different Q values. Table 2 shows that the mean Jaccard index values for the spleen at Q 

values of 8 and 64 are very low (0.10 and 0.71, respectively). Similarly, the mean Jaccard 

index is 0.84 at a Q value of 128 and 0.90 at a Q value of 512. 
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Figure 13: The mean Dice and Jaccard index values for eight CT slices for the spleen. SRM segmentation was performed for 

64 Q values ranging from 8 to 512 in steps of eight. 

  

 

Q value 8 64 128 512 

Mean Jaccard index 0.10 0.71 0.84 0.90 

Mean Dice index 0.11 0.73 0.90 0.95 

Table 3: Evaluation of SRM for the spleen using the mean Jaccard and Dice indices for different Q values. 

  

 

From Table 4, it can be seen that the accuracy and subsequently the number of eligible 

components increases when the Q value is increased. For an accuracy of 80%, there are 20 to 

90 eligible components across all eight slices of the spleen CT for Q values of 80 and 440. To 

increase the accuracy to 90%, the Q value is increased from Q = 440 (with 90 eligible 

components) to a Q value ranging between 446 and 512. Therefore, for 80% accuracy, the 

number of eligible components across all eight slices are 20 (at Q=80) to 90 (at Q=440), and 

for 90% accuracy, the number of eligible components across all eight slices are 95 (at Q=448) 

to 107 (at Q=512). All values of Q between 80 and 440 achieve an accuracy of 80% and all 

values of Q between 448 and 512 achieve an accuracy of 90%. It is thus advisable that for a 
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required accuracy (of, e.g., 80%), a smaller Q in the suitable range (80 to 440) should be 

chosen, as it requires a smaller number of eligible components to be merged. To achieve 90% 

accuracy, Q values of 448 and 512 have a very small difference in accuracy; thus, in the case 

of the spleen, the difference in minimum and maximum eligible components is very high. For 

example, the number of eligible components in all eight slices is 20 at Q values of 80 and 90 

at a Q value of 440. 
 

 

The accuracy of the segmentation 80% 90% 

Q value 80–440 448–512 

Number of eligible components used for all slices 
 

20–90 

 

95–107 

Table 4: The accuracy of the segmentation and the number of eligible components used across all slices for the spleen. 

  

Figure 14 shows a comparison of the result obtained by the SRM segmentation (on the right) 

and the expert-segmented image (on the left) for slice number 1 of the spleen for a Q value of 

512. The visual comparison shows that the two segmented organs are almost identical in 

shape, contour and size, indicating that the result of the SRM technique is highly accurate and 

consistent with the manual results by a human expert. There are eight slices for the spleen. At 

a Q value of 512, the organ contour in all the slices are correctly reconstructed by SRM. The 

worst case is slice number 6; however, this is still very close to the expert-segmentation 

shown in Figure 15. The outcomes for all the other slices are almost identical. 
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                   Expert segmentation                                         SRM segmentation 

              
Figure 14: An example of the binary image of the ground truth overlaid with eligible components for slice no. 6 of the spleen 

with a Q value of 512. 

  

                   Expert segmentation                                          SRM segmentation 

                 
Figure 15: An example of the binary image of the ground truth overlaid with eligible components for slice no. 8 of the spleen 

with a Q value of 512. 
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Figure 16: An example of merging the eligible components in different colours. 

  

As the Q value is increased, the number of eligible components per slice increases. For 

example, the number of eligible components in all eight slices for a Q value of 96 has a 

maximum of five eligible components slice number 2. The maximum number of eligible 

components for a Q value of 512 is 29 for slice number 3. Overall, the total number of 

components used in all eight slices for a Q value of 96 is 21, which increases to 107 

components for all eight slices for a Q value of 512. Slice 8 has only one component for all Q 

value of 104 or higher. There is no component for slice number 8 in the lower Q values. 

Slices 1 to 7 also exhibit no matched components for the smaller Q values. Figure 17 shows 

the combined number of components (in all eight slices) and the breakdown of the 

components per slice. 
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Figure 17: Number of eligible components in all eight slices with different Q values. 

  

Appendix 2 gives the tabular data for the number of components used to construct the spleen 

organ in each slice for all Q values. 

 

Some problems were encountered for different slices. For example, Figure 18 shows that no 

eligible components occurred in slice 8 up to a Q value of 96. After that, there is a sudden 

improvement in the merging, and the Jaccard index is approximately 0.75 for the remaining 

tested Q values. Slice number 8 is the most extreme case; however, there are several other 

slices where the overlap does not occur up to the threshold value of Q (which is less than 

Q=96 for slice 8). 
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Figure 18: An example of unstable behaviour of the Jaccard values for Q values for spleen slice no. 8. 

  

Some very sharp dips are also evident in the Jaccard index values when Q increases. For 

example, the Jaccard index for slice 6 of the spleen shows that changing the Q value from 88 

to 96 reduces the Jaccard index from 0.98 to 0. Similarly, when the Q value changes from 

360 to 368, the Jaccard index dips from 0.65 to 0.5. When the Q value increases, the number 

of eligible components increases because the previous eligible components (for a smaller 

value of Q) are now fragmented into a larger number of smaller components. In some cases, 

the new smaller components fail the 50% threshold test used to confirm the eligibility of the 

component. This reduces the Jaccard index for some values of Q as seen in Figure 19. 

The opposite occurs when the Q value is changed from 104 to 112. In this case, even though 

the fragments are still getting smaller, the new smaller components pass the threshold test and 

are used in the statistical merging. Therefore, the reconstruction improves and the mean 

Jaccard index increases from 0 to 0.39. The situation remains constant until the Q value 

changes to 256, when another jump occurs due to the inclusion of further eligible 

components, as shown in Figure 19. 
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Figure 19: An example of unstable behaviour of the Jaccard values for Q values for spleen slice no. 6. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

!

5.1 Discussion 

!

The results found very low mean Jaccard index values for the spleen at Q values of 8 and 64 

(0.10 and 0.71, respectively) compared to the mean Jaccard index values for the heart, which 

were 0.85 and 0.90, respectively. Similarly, the mean Jaccard index at a Q value of 128 was 

0.84 compared to 0.92 for the heart. Table 2 (in the Results section) shows that an accuracy 

of 80%–89.9% for the heart slices can be achieved with Q values of 8 or 16. For a 90% 

accuracy in heart reconstruction, the Q value needs to be in the range 24 to 512, and for the 

spleen (Table 4 in the Results section), an 80% accuracy requires a Q value in the range of 80 

to 440, while the value of Q should be between 448 and 512 for an accuracy of at least 90%. 

The spleen therefore requires a much higher Q value to achieve comparable results with the 

heart. The primary reason for the discrepancy in the results is that the heart is relatively easy 

to segment out from the larger organs, such as the left and right lungs, whereas the spleen is 

surrounded by other organs such as the stomach and is thus harder to segment out from other 

organs. The CT scan slices for the spleen are 50, 51, 52, 53, 58, 59, 60 and 61. The spleen 

does not appear in slices 54, 55, 56 and 57 because other organs occlude it. The heart is 

available in all sequential slices from 38 to 49. 

 

Tables 2 and 4 (in the Results section) show that the number of eligible components in the 

heart slices is much higher than that of the spleen. One reason for this is that the heart appears 

in 12 slices and the spleen only appears in eight slices. Even considering the number of slices, 

the heart still has a much higher number of eligible components. For example, the number of 

eligible components varies from 24 (at Q=8) to 494 (at Q=512) for the heart, while the 

number of eligible components varies from 51 (at Q=192) to 107 (at Q=512) for the spleen. 

Because at least one or more slices have missing spleen components for Q values less than 

192, these results are skewed and have not been included. 

 

The mean Jaccard index values for the heart at Q values of 8, 64, 128 and 512 are 0.85, 0.90, 

0.92 and 0.93, respectively. This means that increasing the Q value from 8 to 128 increases 

the Jaccard index by 0.07, while there is only an increase of 0.01 when increasing the Q value 

from 128 to 512. The additional number of eligible components does not contribute 
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significantly to the increase in accuracy. However, the mean Jaccard index values for the 

spleen at Q values of 8, 64, 128 and 512 are 0.10, 0.71, 0.84 and 0.90, respectively. The Q 

values of 8 and 64 in this case are unusable because of a very low mean Jaccard index. For 

the spleen, slices 6, 7 and 8 do not have any eligible components for Q values lower than 64. 

All eight slices start showing at least one eligible component for a Q value of 104. Although a 

Q value of 128 increases the mean Jaccard index to 0.84 and the value is sufficiently high, the 

individual slice number six at a Q value of 128 only has a Jaccard index of 0.37. Only the 

results for Q values of 192 and higher are used because all slices at these Q values have a 

mean Jaccard index greater than 0.7. The mean Jaccard index increases to a 0.90 at a Q value 

of 512. Although there are some Q values at which the Jaccard index for individual slices 

suddenly drops due to the smaller fragmented components failing the threshold, overall the 

mean Jaccard index increases as the Q values increase. 

 

Accuracy is not the only criteria. The number of components should be kept as small as 

possible to ease the labelling task. Hence, for a required accuracy, the number of components 

can be minimised by choosing the right Q value, which uses the minimum number of eligible 

components to achieve that particular accuracy. 

 

Tables 2 and 4 present the suitable ranges of Q values that achieve a particular/specified 

threshold accuracy (80% and 90%) for the heart and the spleen. Different applications require 

different accuracies, so the value of Q can be adjusted based on the accuracy required and the 

type of organ. For example, as applications such as CT scans for detecting cancer require a 

higher accuracy, the Q value should be chosen from the correct range. The results obtained in 

this study validate the results obtained in previous studies (Lee, Bajger and Caon 2012). This 

study provides a method of determining the Q value based on the required accuracy and 

relates the accuracy with the number of eligible components. As this study used different 

techniques of segmentation from previous studies, which used atlas or probability shape 

models, the results of this study are not comparable with the other studies. 

 

5.2 Conclusion 

!

The SRM segmentation technique was used to automatically segment two organs (heart and 

spleen) in this study. The results confirm that the technique has the potential to provide Q 



!

!

45!

high accuracy (mean Jaccard index of 0.9) for both organs. However, neither the heart nor the 

spleen can be segmented at this level of precision because an additional post-processing 

would be necessary to merge eligible regions into one piece corresponding to the whole 

organ. The SRM segmentation technique can potentially be used to closely match the 

accuracy obtained by a human expert, and the Q value should be chosen depending on the 

accuracy required. Tables 2 and 4 (see Section 4) present the ranges of Q required for 

accuracies of at least 80% and 90% for the heart and spleen, respectively. The strength of this 

technique is that it does not require any image pre-processing. Manual segmentation is a 

time-consuming process and requires a human expert with sufficient experience. Automatic 

segmentation using SRM is much faster, does not require a human expert and retains 

adequate the same level of accuracy. 

 

5.3 Future work 

!

This study only automatically segmented the heart and spleen; however, future studies can 

extend the method to other organs. Additionally, future work will incorporate the labelling 

task into the SRM segmentation technique. 
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slice"2

slice"3
slice"4

slice"5
slice"6

slice"7
slice"8

"total
8

1
0

0
0

0
0

0
0

1
16

2
3

1
0

0
0

0
0

6
24

2
3

2
1

1
0

0
0

9
32

2
2

2
1

1
0

0
0

8
40

2
2

2
1

1
0

0
0

8
48

2
3

2
2

2
0

0
0

11
56

2
5

2
2

2
0

0
0

13
64

2
6

2
2

2
1

0
0

15
72

2
6

3
3

3
1

0
0

18
80

3
5

4
3

3
1

1
0

20
88

3
5

4
3

3
1

1
0

20
96

3
5

4
4

4
0

1
0

21
104

4
5

5
5

5
0

1
1

26
112

4
5

6
7

7
1

1
1

32
120

4
7

6
7

7
1

1
1

34
128

4
8

6
7

7
1

1
1

35
136

5
9

7
8

8
1

1
1

40
144

5
9

9
8

8
1

1
1

42
152

5
9

9
8

8
1

1
1

42
160

5
10

9
8

8
1

1
1

43
168

8
10

11
8

8
1

1
1

48
176

8
11

13
8

8
1

1
1

51
184

8
12

13
8

8
1

1
1

52
192

8
11

13
8

8
1

1
1

51
200

8
11

14
8

8
1

1
1

52
208

8
11

14
8

8
1

1
1

52
216

8
12

18
8

8
1

1
1

57
224

8
13

19
8

8
1

1
1

59
232

8
13

20
8

8
1

1
1

60
248

9
13

21
8

8
1

1
1

62
256

9
14

21
8

8
1

1
1

63
264

9
14

21
8

8
1

1
1

63
272

9
13

21
8

8
1

1
1

62
280

9
14

21
10

10
1

1
1

67
288

9
14

21
10

10
1

1
1

67
296

9
14

22
11

11
1

1
1

70
304

10
15

22
11

11
1

1
1

72
312

11
15

21
12

12
1

1
1
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Q
"value

slice"1
slice"2

slice"3
slice"4

slice"5
slice"6

slice"7
slice"8

"total
320

11
15

22
12

12
1

1
1

75
328

11
15

21
12

12
1

1
1

74
336

11
15

21
12

12
1

1
1

74
344

11
15

21
12

12
1

1
1

74
352

11
15

21
12

12
2

1
1

75
360

13
18

21
12

12
2

1
1

80
368

11
18

22
12

12
2

2
1

80
376

11
19

22
12

12
2

2
1

81
384

11
19

22
12

12
2

2
1

81
492

11
19

22
13

13
2

2
1

83
400

11
18

22
13

13
2

2
1

82
408

11
19

23
13

13
2

2
1

84
416

11
20

23
13

13
2

2
1

85
424

11
20

23
14

14
2

2
1

87
432

11
20

24
15

15
2

2
1

90
440

11
20

24
15

15
2

2
1

90
448

11
20

27
15

15
4

2
1

95
456

11
20

27
15

15
4

2
1

95
464

11
20

27
15

15
5

2
1

96
472

12
20

27
15

15
5

2
1

97
480

13
20

27
16

16
5

2
1

100
488

15
21

27
16

16
5

2
1

103
496

15
21

28
16

16
5

2
1

104
504

15
22

29
16

16
5

2
1

106
512

16
22

29
16

16
5

2
1
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