
 

 

 

Biodegradation of High Molecular Weight Polycyclic Aromatic 

Hydrocarbons in Soils by Defined Bacterial and Fungal Cocultures 

 
 

 

A Thesis submitted for the degree of 

 

 

 

 

 

DOCTOR OF PHILOSOPHY 

 

By 

 

Christopher WM Lease B.App.Sc (Env Health) B.Sc (Hons) 

 

 

 

 
School of Biological Sciences 

Flinders University of South Australia 

Adelaide, South Australia 

 

AUSTRALIA 

 

 



 

 

 

 

 

 

 

 

 

 Declaration 

 

I CERTIFY THAT THIS THESIS DOES NOT INCORPORATE WITHOUT ACKNOWLEDGMENT 

ANY MATERIAL PREVIOUSLY SUBMITTED FOR A DEGREE OR DIPLOMA IN ANY 

UNIVERSITY; AND THAT TO THE BEST OF MY KNOWLEDGE AND BELIEF IT DOES NOT 

CONTAIN ANY MATERIAL PREVIOUSLY PUBLISHED OR WRITTEN BY ANOTHER PERSON 

EXCEPT WHERE DUE REFERENCE IS MADE IN THE TEXT. 

 

 

 

 

Christopher WM Lease 

School of Biological Sciences 

Flinders University of South Australia 

Adelaide Australia 

 

 



Acknowledgements 

 

The Australian Research Council, Lucas Earthmovers and Flinders University of SA for their 

financial support of this project. 

 

To my supervisors,  Dr Nick McClure for providing the opportunity to undertake this work and to 

work with him (if only for too short a while).  Dr Richard “Supe” Bentham for your vast fungal 

expertise, entertaining (and at times insulting) meetings and valiant defensive skills.  Dr Albert 

“Alby” Juhasz, who would have thought a chance meeting at an airport and evacuation from 

bushfires would have provided an opportunity to access one of the best in the business.  To you 

all, your friendship and support has been invaluable throughout this degrading experience. 

 

To the folk in the harmony lab – Doona, for your ceaseless encouragement and being a good 

mate; Diddie – for scaring me into good lab practice and being a good mate; Mitch – for 

recruiting me into the Mnobbers, reviving my love of goal keeping and being a good mate and 

Tash – for your quiet good nature, GC wisdom and being a good mate.  Also to all the folk from 

Flinders Bioremediation (Richard, Charles and Raya) - thanks ! 

 

To all the folk who helped with identifying the bugs – Sharyn, Bruce, Chris and Nigel, thanks for 

your help and patience. 

 

To my old and new friends who either stuck with me from the start or I met along the way, thanks 

for keeping me sane (and the impromptu fishing trips Adny !). 

 

To my families (Leases and the Zottis) – thanks for your continuing love and support.  A special 

note for Mama, one of the greatest benefits of this undertaking was getting to know you better.  

 

Finally, to Maria (and Ruby), for everything (again !) – I dedicate this thesis to you and two girls 

I haven’t met yet. 

 

“Everything that lives, lives not alone, nor for itself” 

William Blake 



Publications 

 

Conference Abstracts 

 

Lease C, Bentham R and McClure N (2002) Degradation of High Molecular Weight 

Polycyclic Aromatic Hydrocarbons by Defined Fungal-Bacterial Co-Cultures in 

Proceedings of the Environmental Engineering Research Event Blackheath NSW (Poster) 

 

Stewart R, Juhasz AL, Lease C, Dandie C, Waller N and Bentham R (2004) An Emerging 

Technology for High Molecular Weight PAH Bioremediation – Bacterial – Fungal Co-

Cultures in Proceedings of Enviro 04 Conference and Exhibition, Sydney, Australia 

(Poster) 

 

Lease C, Bentham R, Juhasz AL and Stanley G (2004) Breaking Benzo[a]pyrene: The 

Case for Cocultures in Proceedings of the 4
th
 International Conference on the 

Remediation of Chlorinated and Recalcitrant Compounds, Monterey, United States of 

America (Platform Presentation – Winner of Student Paper Prize) 

 

Manuscripts in Preparation 

 

Juhasz
 
AL, Waller

 
N, Lease C, Bentham R and Stewart R (submitted) Pilot Scale 

Bioremediation of Creosote-Contaminated Soil – Efficacy of Enhanced Natural 

Attenuation and Bioaugmentation Strategies 

 

 

 



Summary 

 

 

Despite microbial degradation being the primary route of degradation of PAHs in soils, 

high molecular weight polycyclic aromatic hydrocarbons (such as benzo[a]pyrene) have 

consistently proven to be resistant to microbial attack.  However, recent research has 

demonstrated the potential for bacterial-fungal co-cultures to achieve biodegradation of 

high molecular weight PAHs.  The aim of this research was to determine the efficacy of 

co-culture bioaugmentation for the remediation of high molecular weight PAH-

contaminated soils.  

 

PAH degrading bacteria were enriched on multiple PAHs and isolated on pyrene from 

both contaminated (soil from a former manufactured gas plant) and uncontaminated 

(agricultural soil, termite mound matrix and kangaroo faeces) sources. The bacterial 

isolates were identified using 16SrRNA analysis as Mycobacterium sp. Strain BS5, 

Mycobacterium sp. Strain KA5 and Mycobacterium sp. Strain KF4 or fatty acid methyl 

ester (FAME) analysis as Ralstonia pickettii and Stenotrophomonas maltophilia. 

 

The initial phase of assessment of PAH degradation by fungal and bacterial coculture 

components was undertaken using liquid media.  Two fungal isolates from a previous 

investigation into the coculture process (Penicillium janthinellum) and the American 

Type Culture Collection (Phanerochaete chrysosporium) were assessed for their ability 

to degrade benzo[a]pyrene in minimal media and MYPD.  The fungal isolates were found 

to be able to degrade benzo[a]pyrene cometabolically in MYPD.  The bacterial isolates 

and two others from previous investigations were assessed for their ability to degrade 

single PAHs (fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene) in liquid 

culture.  This process was used as an initial screen to select the best bacterial isolates for 

further investigation of PAH degradation by axenic cultures and cocultures with the 

fungal isolates using a PAH mixture.  Based on the results of these experiments four 

bacterial isolates (VUN 10,010, Mycobacterium 1B, Mycobacterium sp. Strain BS5 and 

Mycobacterium sp. Strain KA5) and the two fungal isolates were selected to investigate 

further using a PAH mixture composed of the previously mentioned PAHs.  It was found 



that the use of a fungal bacterial coculture increased the degradation of the PAH mixture 

beyond that of axenic bacterial cultures.  Based on these experiments, the coculture 

composed of P. janthinellum and VUN 10,010 was selected for assessment of its ability 

to degrade the same PAH mixture in spiked soil microcosm experiments. 

 

Natural attenuation, axenic P. janthinellum, axenic VUN 10,010 and a coculture of these 

two organisms were assessed for PAH degradation in soil microcosms over a 100 day 

period.  Inoculation of microcosms with the coculture resulted in the removal of 

benzo[a]pyrene by 11 mg/kg (± 1.21 mg/kg) (30%) over the 100 day incubation period.  

Substantial PAH degradation was also observed in the microcosms assesing natural 

attenuation 

 

Using an alternative sequential inoculation method, initially inoculating with P. 

janthinellum then 50 days later with VUN 10,010 significantly enhanced the removal of 

benzo[a]pyrene.  After 100 days incubation, benzo[a]pyrene was degraded below 

detection limits in two of three microcosms, compared to a 4.95 mg/kg (± 4.64 mg/kg) 

(14.7 %) reduction in soil microcosms inoculated using an alternative inoculation process 

of VUN 10,010 followed by P. janthinellum.  

 

Attempts were made to optimise the process using sequential inoculation and soil 

amendments intended to enhance the performance of the fungal component using 

distilled water and 1% glucose.  The addition of distilled water was not observed to 

substantially influence the ability of the coculture to degrade PAHs, whereas the addition 

of 1% glucose was found to inhibit PAH degradation. 

 

 



Symbols and Abbreviations 

 

% Percent 

BaP Benzo[a]pyrene 

BSM Basal Salts Medium  

BSMY Basal Salts Medium with Yeast Extract  

BSMY3 Basal Salts Medium with Yeast Extract (3%) 
o
C Degree Celsius 

cfu Colony Forming Unit 

DCM Dichloromethane 

DMF Dimethylformamide 

DNA Deoxyribonucleic Acid 

dNTP Deoxynucleotide triphosphate 

EDTA Ethylenediaminetetra-acetic Acid 

EPA Environment Protection Authority (Australia) 

FID Flame Ionisation Detector 

g Gram 

GC Gas Chromatography 

HgCl2 Mercuric Chloride 

Kow Octanol/Water partition coefficient 

kg Kilogram 

l Litre 

LB Luria-Bertani 

LiP Lignin Peroxidase 

LOI Loss on ignition 

MnP Manganese Peroxidase 

MGP Manufactured Gas Plant 

MW Molecular Weight 

µm Micrometre 

µmols/mL Micromoles per milliliter 

µg Microgram 

mg Milligram 

mM Millimolar 

ml Millilitre 

MPN Most Probable Number  

MYPD Malt Yeast Peptone Dextrose Broth 

NA Nutrient Agar 

NB Nutrient Broth  

nm Nanometre 

NSWEPA New South Wales Environment Protection Agency 

PAHs Polycyclic Aromatic Hydrocarbons 

PBS Phosphate Buffered Saline 

PCR Polymerase Chain Reaction 

PDA or PDB Potato Dextrose Agar or Potato Dextrose Broth 

pH Hydrogen Ion Concentration (minus log of) 

rpm Revolutions per Minute 



rDNA or rRNA ribosomal Deoxynucleic Acid or ribosomal Ribonucleic Acid 

SDS Sodium dodecyl sulphate 

Tris Tris (hydroxymethyl) aminoethane 

USEPA United States Environment Protection Authority 

UV Ultraviolet 

VUN Victoria University Strain Number (Gram negative 

bacterium) 

v/v volume per volume 

w/v weight per volume 

WHC Water Holding Capacity 

x g times gravity 
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