Biodegradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Soils by Defined Bacterial and Fungal Cocultures

A Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

By

Christopher WM Lease B.App.Sc (Env Health) B.Sc (Hons)

School of Biological Sciences Flinders University of South Australia Adelaide, South Australia

AUSTRALIA

Declaration

I CERTIFY THAT THIS THESIS DOES NOT INCORPORATE WITHOUT ACKNOWLEDGMENT ANY MATERIAL PREVIOUSLY SUBMITTED FOR A DEGREE OR DIPLOMA IN ANY UNIVERSITY; AND THAT TO THE BEST OF MY KNOWLEDGE AND BELIEF IT DOES NOT CONTAIN ANY MATERIAL PREVIOUSLY PUBLISHED OR WRITTEN BY ANOTHER PERSON EXCEPT WHERE DUE REFERENCE IS MADE IN THE TEXT.

Christopher WM Lease School of Biological Sciences Flinders University of South Australia Adelaide Australia

Acknowledgements

The Australian Research Council, Lucas Earthmovers and Flinders University of SA for their financial support of this project.

To my supervisors, Dr Nick McClure for providing the opportunity to undertake this work and to work with him (if only for too short a while). Dr Richard "Supe" Bentham for your vast fungal expertise, entertaining (and at times insulting) meetings and valiant defensive skills. Dr Albert "Alby" Juhasz, who would have thought a chance meeting at an airport and evacuation from bushfires would have provided an opportunity to access one of the best in the business. To you all, your friendship and support has been invaluable throughout this degrading experience.

To the folk in the harmony lab – Doona, for your ceaseless encouragement and being a good mate; Diddie – for scaring me into good lab practice and being a good mate; Mitch – for recruiting me into the Mnobbers, reviving my love of goal keeping and being a good mate and Tash – for your quiet good nature, GC wisdom and being a good mate. Also to all the folk from Flinders Bioremediation (Richard, Charles and Raya) - thanks !

To all the folk who helped with identifying the bugs – Sharyn, Bruce, Chris and Nigel, thanks for your help and patience.

To my old and new friends who either stuck with me from the start or I met along the way, thanks for keeping me sane (and the impromptu fishing trips Adny !).

To my families (Leases and the Zottis) – thanks for your continuing love and support. A special note for Mama, one of the greatest benefits of this undertaking was getting to know you better.

Finally, to Maria (and Ruby), for everything (again !) – I dedicate this thesis to you and two girls I haven't met yet.

"Everything that lives, lives not alone, nor for itself" William Blake

Publications

Conference Abstracts

<u>Lease C</u>, Bentham R and McClure N (2002) *Degradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons by Defined Fungal-Bacterial Co-Cultures in* Proceedings of the Environmental Engineering Research Event Blackheath NSW (Poster)

Stewart R, Juhasz AL, <u>Lease C</u>, Dandie C, Waller N and Bentham R (2004) *An Emerging Technology for High Molecular Weight PAH Bioremediation – Bacterial – Fungal Co-Cultures in* Proceedings of Enviro 04 Conference and Exhibition, Sydney, Australia (Poster)

Lease C, Bentham R, Juhasz AL and Stanley G (2004) *Breaking Benzo[a]pyrene: The Case for Cocultures in* Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, United States of America (Platform Presentation – Winner of Student Paper Prize)

Manuscripts in Preparation

Juhasz AL, Waller N, <u>Lease C</u>, Bentham R and Stewart R (*submitted*) *Pilot Scale Bioremediation of Creosote-Contaminated Soil – Efficacy of Enhanced Natural Attenuation and Bioaugmentation Strategies*

Summary

Despite microbial degradation being the primary route of degradation of PAHs in soils, high molecular weight polycyclic aromatic hydrocarbons (such as benzo[a]pyrene) have consistently proven to be resistant to microbial attack. However, recent research has demonstrated the potential for bacterial-fungal co-cultures to achieve biodegradation of high molecular weight PAHs. The aim of this research was to determine the efficacy of co-culture bioaugmentation for the remediation of high molecular weight PAHs.

PAH degrading bacteria were enriched on multiple PAHs and isolated on pyrene from both contaminated (soil from a former manufactured gas plant) and uncontaminated (agricultural soil, termite mound matrix and kangaroo faeces) sources. The bacterial isolates were identified using 16SrRNA analysis as *Mycobacterium* sp. Strain BS5, *Mycobacterium* sp. Strain KA5 and *Mycobacterium* sp. Strain KF4 or fatty acid methyl ester (FAME) analysis as *Ralstonia pickettii* and *Stenotrophomonas maltophilia*.

The initial phase of assessment of PAH degradation by fungal and bacterial coculture components was undertaken using liquid media. Two fungal isolates from a previous investigation into the coculture process (*Penicillium janthinellum*) and the American Type Culture Collection (*Phanerochaete chrysosporium*) were assessed for their ability to degrade benzo[*a*]pyrene in minimal media and MYPD. The fungal isolates were found to be able to degrade benzo[a]pyrene cometabolically in MYPD. The bacterial isolates and two others from previous investigations were assessed for their ability to degrade single PAHs (fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene) in liquid culture. This process was used as an initial screen to select the best bacterial isolates for further investigation of PAH degradation by axenic cultures and cocultures with the fungal isolates using a PAH mixture. Based on the results of these experiments four bacterial isolates (VUN 10,010, *Mycobacterium* 1B, *Mycobacterium* sp. Strain KA5) and the two fungal isolates were selected to investigate further using a PAH mixture composed of the previously mentioned PAHs. It was found

that the use of a fungal bacterial coculture increased the degradation of the PAH mixture beyond that of axenic bacterial cultures. Based on these experiments, the coculture composed of *P. janthinellum* and VUN 10,010 was selected for assessment of its ability to degrade the same PAH mixture in spiked soil microcosm experiments.

Natural attenuation, axenic *P. janthinellum*, axenic VUN 10,010 and a coculture of these two organisms were assessed for PAH degradation in soil microcosms over a 100 day period. Inoculation of microcosms with the coculture resulted in the removal of benzo[a]pyrene by 11 mg/kg (\pm 1.21 mg/kg) (30%) over the 100 day incubation period. Substantial PAH degradation was also observed in the microcosms assessing natural attenuation

Using an alternative sequential inoculation method, initially inoculating with *P*. *janthinellum* then 50 days later with VUN 10,010 significantly enhanced the removal of benzo[*a*]pyrene. After 100 days incubation, benzo[*a*]pyrene was degraded below detection limits in two of three microcosms, compared to a 4.95 mg/kg (\pm 4.64 mg/kg) (14.7 %) reduction in soil microcosms inoculated using an alternative inoculation process of VUN 10,010 followed by *P. janthinellum*.

Attempts were made to optimise the process using sequential inoculation and soil amendments intended to enhance the performance of the fungal component using distilled water and 1% glucose. The addition of distilled water was not observed to substantially influence the ability of the coculture to degrade PAHs, whereas the addition of 1% glucose was found to inhibit PAH degradation.

Symbols and Abbreviations

%	Percent
BaP	Benzo[<i>a</i>]pyrene
BSM	Basal Salts Medium
BSMY	Basal Salts Medium with Yeast Extract
BSMY3	Basal Salts Medium with Yeast Extract (3%)
°C	Degree Celsius
cfu	Colony Forming Unit
DCM	Dichloromethane
DMF	Dimethylformamide
DNA	Deoxyribonucleic Acid
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylenediaminetetra-acetic Acid
EPA	Environment Protection Authority (Australia)
FID	Flame Ionisation Detector
g	Gram
ĞC	Gas Chromatography
HgCl ₂	Mercuric Chloride
K _{aw}	Octanol/Water partition coefficient
kg	Kilogram
l	Litre
LB	Luria-Bertani
LiP	Lignin Peroxidase
LOI	Loss on ignition
MnP	Manganese Peroxidase
MGP	Manufactured Gas Plant
MW	Molecular Weight
μm	Micrometre
µmols/mL	Micromoles per milliliter
μg	Microgram
mg	Milligram
mM	Millimolar
ml	Millilitre
MPN	Most Probable Number
MYPD	Malt Yeast Peptone Dextrose Broth
NA	Nutrient Agar
NB	Nutrient Broth
nm	Nanometre
NSWEPA	New South Wales Environment Protection Agency
PAHs	Polycyclic Aromatic Hydrocarbons
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PDA or PDB	Potato Dextrose Agar or Potato Dextrose Broth
рН	Hydrogen Ion Concentration (minus log of)
rpm	Revolutions per Minute

rDNA or rRNA	ribosomal Deoxynucleic Acid or ribosomal Ribonucleic Acid					
SDS	Sodium dodecyl sulphate					
Tris	Tris (hydroxymethyl) aminoethane					
USEPA	United States Environment Protection Authority					
UV	Ultraviolet					
VUN	Victoria	University	Strain	Number	(Gram	negative
	bacterium	ı)				
v/v	volume per volume					
w/v	weight per volume					
WHC	Water Holding Capacity					
х д	times gravity					

CHA	PTER 1: LITERATURE REVIEW	22
1.1	GENERAL INTRODUCTION	22
1.2	POLYCYCLIC AROMATIC HYDROCARBONS	24
1.2.1	Chemical Character	24
1.2.2	Toxicology	28
1.2.3	Sources and Extent of Contamination in the Environment	31
1.3	FATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE	37
	ENVIRONMENT	
1.3.1	Volatilisation	37
1.3.2	Photochemical Oxidation	39
1.3.3	Chemical Oxidation	41
1.3.4	Sedimentation	42
1.3.5	Bioaccumulation	42
1.4	MICROBIAL DEGRADATION	44
1.4.1	General Introduction	44
1.4.2	Bacterial Degradation of PAHs	45
	1.4.2.1 Oxygenase Enzyme Systems	46
	1.4.2.2 Cometabolism and PAH Degradation	53
	1.4.2.3 Bacterial Degradation of Fluorene	53
	1.4.2.4 Bacterial Degradation of Phenanthrene	54
	1.4.2.5 Bacterial Degradation of Fluoranthene	58
	1.4.2.6 Bacterial Degradation of Pyrene	58
	1.4.2.7 Bacterial Degradation of Benzo[a]pyrene	62
1.4.3	Fungal Degradation of PAHs	65
	1.4.3.1 White Rot Fungi	67
	1.4.3.2 Deuteromycete	70
	1.4.3.3 Manganese Peroxidases	71

Table of Contents

	1.4.3.4 Laccase	73
	1.4.3.5 Lignin Peroxidases	74
	1.4.3.6 Cytochrome P450 Oxygenases	76
	1.4.3.7 Other Enzyme Systems	77
	1.4.3.8 Fungal Degradation of Fluorene	78
	1.4.3.9 Fungal Degradation of Phenanthrene	78
	1.4.3.10 Fungal Degradation of Fluoranthene	79
	1.4.3.11 Fungal Degradation of Pyrene	79
	1.4.3.12 Fungal Degradation of Benzo[a]pyrene	80
1.4.4	Cocultures and the Removal of the Metabolic Bottle Neck	83
	1.4.4.1 Defined Fungal and Bacterial Cocultures	84
	1.4.4.2 Potential Impacts of Coculture Components on Each Other	86
1.5	BIOREMEDIATION AND THE ENHANCEMENT OF PAH	92
	BIODEGRADATION	
1.5.1	Bioaugmentation	92
1.5.2	Influences on Biodegradation and Bioaugmentation	97
1.6	RESEARCH DIRECTIONS	100
CHA	PTER 2: MATERIALS AND METHODS	102
2.1	BACTERIAL STRAINS	104
2.2	FUNGAL STRAINS	104
2.3	GENERAL METHODS	106
2.4	MATERIALS	106
2.4.1	Suppliers	106
2.4.2	Stock Solutions	107
2.4.3	Media Composition	108
2.5	MICROBIOLOGICAL METHODS	112

2.5.1	Enrichment of PAH Degrading Bacteria	112
2.5.2	Isolation of PAH Degrading Bacteria	113
2.5.3	Substrate Range of PAH Degrading Bacteria	114
2.5.4	Preparation of Inocula	114
	2.5.4.1 Bacteria	114
	2.5.4.2 Fungi	116
2.5.5	Analysis of Biomass	116
	2.5.5.1 Bacterial	116
	2.5.5.2 Fungal	117
2.6	IDENTIFICATION OF PAH DEGRADING BACTERIA	118
2.6.1	Fatty Acid Methyl Ester (FAME) Analysis	118
2.6.2	16SrDNA Gene Analysis	118
	2.6.2.1 DNA Extraction	118
	2.6.2.2 Polymerase Chain Reaction (PCR)	119
	2.6.2.3 Agarose Gel Electrophoresis	120
	2.6.2.4 PCR Product Purification and Sequencing	120
2.7	MICROBIAL DEGRADATION OF PAHs	121
2.7.1	Degradation of PAHs in Liquid Culture	121
	2.7.1.1 Axenic Bacterial	121
	2.7.1.2 Axenic Fungal	122
	2.7.1.3 Coculture	122
2.7.2	Microbial Degradation of PAHs in Spiked Soil Microcosms	122
	2.7.2.1 Soil	122
	2.7.2.2 Soil Dry Weight and Water Holding Capacity	123
	2.7.2.3 Soil pH	123
	2.7.2.4 Determination of Soil Organic Matter Content	124
	2.7.2.5 Amendments	124
	2.7.2.6 Soil Spiking	125
	2.7.2.7 Inoculation	125

2.7.3 Mineralisation of Pyrene and Benzo[a]pyrene in Liquid Cuture and Soil 126

Microcosms

 2.7.3.1 Liquid Culture
 126

 2.7.3.2 Soil Microcosm
 126

2.8	ANALYTICAL METHODS	127
2.8.1	Extraction of PAHs from Culture Medium	127
	2.8.1.1 Liquid	127
	2.8.1.2 Soil	127
2.8.2	Determination of PAH Concentration by Gas Chromatography	128
2.8.3	Detection of Radioactivity	129

CHAPTER 3: ENRICHMENT AND ISOLATION OF PAH-DEGRADING 131 ORGANISMS FROM CONTAMINATED AND UNCONTAMINATED ENVIRONMENTS

3.1	INTRODUCTION	132
3.2	ENRICHMENT FROM VARIOUS ENVIRONMENTAL SOURCES	134
3.2.1	Manufactured Gas Plant Soil	135
3.2.2	Uncontaminated Agricultural Soil	135
3.2.3	Termite Mound	138
3.2.3	Kangaroo Faeces	138
3.2.5	Broth Enrichments	138
3.3	ISOLATION OF BACTERIAL ISOLATES ON POLYCYCLIC AROMATIC HYDROCARBONS	140
3.4	IDENTIFICATION AND CHARACTERISATION OF PAH DEGRADING	145
	ORGANISMS	
3.4.1	Morphology and Substrate Utilisation	145
3.4.2	Fatty Acid Methyl Ester (FAME) Analysis	149
3.4.3	Determination of 16SrRNA Gene Sequences	152

3.5	DISCUSSION	153
3.5.1	Enrichment and Isolation from Contaminated Soils	156
3.5.2	Enrichment and Isolation from Uncontaminated Soils	157
3.5.3	Identification of Isolates	158
3.5.4	Mycobacterium spp.	159
3.5.5	Ralstonia pickettii	162
3.5.6	Stenotrophomonas maltophilia	163
3.6	CONCLUSIONS	163
CHA	PTER 4: PAH DEGRADATION IN LIQUID MEDIA	165
4.1	INTRODUCTION	167
4.2	DEGRADATION OF PAHS IN LIQUID CULTURE BY AXENIC	169
	MICROBIAL ISOLATES	
4.2.1	Abiotic PAH Removal	170
4.2.2	Degradation of Benzo[a]pyrene in BSM and MYPD by Fungal Isolates	171
4.2.3	Bacterial Degradation of Single PAHs	172
	4.2.3.1 Phenanthrene	175
	4.2.3.2 Fluoranthene	178
	4.2.3.3 Pyrene	184
	4.2.3.4 Summary of Degradation of Single PAHs by Fungal and Bacterial	185
4.2.4	Axenic Degradation of ¹⁴ C Radiolabelled [4,5,9,10- ¹⁴ C] Pyrene and $[7-^{14}C]$ Benzo[<i>a</i>]pyrene	188
	4.2.4.1 Pyrene Mineralisation	188
	4.2.4.2 Benzo[a]pyrene Mineralisation	192
4.3	AXENIC DEGRADATION OF A PAH MIXTURE IN BSMY	192
4.3.1	Abiotic Controls	192
4.3.2	Fungal Axenic Cultures	194
4.3.2	VUN 10,010 Axenic Cultures	196
4.3.3	Mycobacterium 1B Axenic Cultures	196

4.3.5 Mycobacterium sp. Strain KA5 Axenic Cultures 199 4.3.7 General Observations of Axenic Isolate's Degradation of the PAH Mixture 201 4.4 COCULTURE DEGRADATION OF THE PAH MIXTURE 202 4.4.1 Coculture of VUN 10,010 and P. janthinellum 204 4.4.2 Coculture of VUN 10,010 and Ph. chrysosporium 205 4.4.3 Coculture of Mycobacterium IB and P. janthinellum 207 4.4.4 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 211 4.4.6 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of Benzo[a]pyrene 219 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of the PAH Mixture <	4.3.4	Mycobacterium sp. Strain BS5 Axenic Cultures	198
4.3.7 General Observations of Axenic Isolate's Degradation of the PAH Mixture 201 4.4 COCULTURE DEGRADATION OF THE PAH MIXTURE 202 4.4.1 Coculture of VUN 10,010 and <i>P. janthinellum</i> 204 4.2 Coculture of VUN 10,010 and <i>Ph. chrysosporium</i> 205 4.4.2 Coculture of VUN 10,010 and <i>Ph. chrysosporium</i> 206 4.4.3 Coculture of <i>Mycobacterium</i> 1B and <i>P. janthinellum</i> 207 4.4.4 Coculture of <i>Mycobacterium</i> sp. Strain BS5 and <i>P. janthinellum</i> 210 4.4.5 Coculture of <i>Mycobacterium</i> sp. Strain BS5 and <i>P. janthinellum</i> 213 4.4.6 Coculture of <i>Mycobacterium</i> sp. Strain KA5 and <i>P. janthinellum</i> 214 4.4.7 Coculture of <i>Mycobacterium</i> sp. Strain KA5 and <i>P. janthinellum</i> 213 4.4.8 Coculture Degradation of {4,5,9,10- ¹⁴ C] Pyrene and {7- ¹⁴ C] Benzo[<i>a</i>]pyrene 218 4.4.10 Coculture Degradation of Benzo[<i>a</i>]pyrene 219 4.4.10.2 <i>f</i> -14C] Benzo[<i>a</i>]pyrene 222 4.5 DISCUSSION 222 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of the PAH Mixture 233 4.5.2 Bacterial Degradation of the PAH	4.3.5	Mycobacterium sp. Strain KA5 Axenic Cultures	199
4.4 COCULTURE DEGRADATION OF THE PAH MIXTURE 202 4.4.1 Coculture of VUN 10,010 and P. janthinellum 204 4.4.2 Coculture of VUN 10,010 and P. intrinellum 205 4.4.3 Coculture of Mycobacterium IB and P. janthinellum 207 4.4.4 Coculture of Mycobacterium IB and P. intrinellum 207 4.4.4 Coculture of Mycobacterium IB and P. intrinellum 208 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain S5 and P. intrysosporium 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. intrysosporium 214 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and P. intrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 219 4.4.10.1 [4,5,9,10-14C] Pyrene 222 224 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.3 Fungal Degradation of Benzo[a]pyrene 222 4.5.4 Bacterial Degradation of the PAH Mixture 235 4.5.5 Cocultu	4.3.7	General Observations of Axenic Isolate's Degradation of the PAH Mixture	201
4.4.1 Coculture of VUN 10,010 and P. janthinellum 204 4.4.2 Coculture of VUN 10,010 and Ph. chrysosporium 205 4.4.3 Coculture of Mycobacterium IB and P. janthinellum 207 4.4.4 Coculture of Mycobacterium IB and Ph. chrysosporium 208 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain BS5 and Ph. chrysosporium 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 219 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 236 5.1 INTRODUCTION 240 5.2	4.4	COCULTURE DEGRADATION OF THE PAH MIXTURE	202
4.4.2 Coculture of VUN 10,010 and Ph. chrysosporium 205 4.4.3 Coculture of Mycobacterium 1B and P. janthinellum 207 4.4.4 Coculture of Mycobacterium 1B and Ph. chrysosporium 208 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 233 4.6 CONCLUSIONS 236 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.1.1 INTRODUCTION<	4.4.1	Coculture of VUN 10,010 and P. janthinellum	204
4.4.3 Coculture of Mycobacterium 1B and P. janthinellum 207 4.4.4 Coculture of Mycobacterium 1B and Ph. chrysosporium 208 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain BS5 and P. ianthinellum 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and P. ianthinellum 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10.14C] Pyrene and [7-14C] Benzo[a]pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 235 4.6 CONCLUSIONS 236 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Ki	4.4.2	Coculture of VUN 10,010 and Ph. chrysosporium	205
4.4.4 Coculture of Mycobacterium 1B and Ph. chrysosporium 208 4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain BS5 and Ph. chrysosporium 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 218 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 236 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.1.1 Loss of PAHs in Killed Control Microcosms 242 <	4.4.3	Coculture of Mycobacterium 1B and P. janthinellum	207
4.4.5 Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum 210 4.4.6 Coculture of Mycobacterium sp. Strain BS5 and Ph. chrysosporium 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 219 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 223 4.5.2 Bacterial Degradation of Single PAHs 232 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 235 4.6 CONCLUSIONS 236 CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL 238 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOI	4.4.4	Coculture of Mycobacterium 1B and Ph. chrysosporium	208
4.4.6 Coculture of Mycobacterium sp. Strain BS5 and Ph. chrysosporium 211 4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.9 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 218 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 223 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 235 4.6 CONCLUSIONS 236 CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL 238 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Killed Control Microcosms 242 <td>4.4.5</td> <td>Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum</td> <td>210</td>	4.4.5	Coculture of Mycobacterium sp. Strain BS5 and P. janthinellum	210
4.4.7 Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum 213 4.4.8 Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 218 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 230 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.6 CONCLUSIONS 236 CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL 238 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Killed Control Microcosms 242 5.2.1 Natural Attenuation in Uninoculated Control Microcosms 243	4.4.6	Coculture of Mycobacterium sp. Strain BS5 and Ph. chrysosporium	211
4.4.8 Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium 214 4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 218 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 235 4.6 CONCLUSIONS 236 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Killed Control Microcosms 242 5.2.2 Natural Attenuation in Uninoculated Control Microcosms 243	4.4.7	Coculture of Mycobacterium sp. Strain KA5 and P. janthinellum	213
4.4.9 General Observations of Coculture Degradation and Growth 216 4.4.10 Coculture Degradation of [4,5,9,10- ¹⁴ C] Pyrene and [7- ¹⁴ C] Benzo[a]pyrene 218 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 235 4.6 CONCLUSIONS 236 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Killed Control Microcosms 242	4.4.8	Coculture of Mycobacterium sp. Strain KA5 and Ph. chrysosporium	214
4.4.10 Coculture Degradation of [4,5,9,10-14C] Pyrene and [7-14C] Benzo[a]pyrene 218 4.4.10.1 [4,5,9,10-14C] Pyrene 219 4.4.10.2 [7-14C] Benzo[a]pyrene 220 4.5 DISCUSSION 222 4.5.1 Fungal Degradation of Benzo[a]pyrene 222 4.5.2 Bacterial Degradation of Single PAHs 225 4.5.3 Fungal Degradation of the PAH Mixture 230 4.5.4 Bacterial Degradation of the PAH Mixture 232 4.5.5 Coculture Degradation of the PAH Mixture 232 4.6 CONCLUSIONS 236 CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL 238 5.1 INTRODUCTION 240 5.2 ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS 241 5.2.1 Loss of PAHs in Killed Control Microcosms 242 5.2.2 Natural Attenuation in Uninoculated Control Microcosms 243	4.4.9	General Observations of Coculture Degradation and Growth	216
4.4.10.1 [4,5,9,10-14C] Pyrene2194.4.10.2 [7-14C] Benzo[a]pyrene2204.5DISCUSSION2224.5.1Fungal Degradation of Benzo[a]pyrene2224.5.2Bacterial Degradation of Single PAHs2254.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms242	4.4.10	Coculture Degradation of $[4,5,9,10^{-14}C]$ Pyrene and $[7^{-14}C]$ Benzo $[a]$ pyrene	218
4.4.10.2 [7-14C] Benzo[a]pyrene2204.5DISCUSSION2224.5.1Fungal Degradation of Benzo[a]pyrene2224.5.2Bacterial Degradation of Single PAHs2254.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243		4.4.10.1 [4,5,9,10-14C] Pyrene	219
4.5DISCUSSION2224.5.1Fungal Degradation of Benzo[a]pyrene2224.5.2Bacterial Degradation of Single PAHs2254.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243		4.4.10.2 [7-14C] Benzo[a]pyrene	220
4.5.1Fungal Degradation of Benzo[a]pyrene2224.5.2Bacterial Degradation of Single PAHs2254.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5	DISCUSSION	222
4.5.2Bacterial Degradation of Single PAHs2254.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5.1	Fungal Degradation of Benzo[a]pyrene	222
4.5.3Fungal Degradation of the PAH Mixture2304.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL5.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5.2	Bacterial Degradation of Single PAHs	225
4.5.4Bacterial Degradation of the PAH Mixture2324.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5.3	Fungal Degradation of the PAH Mixture	230
4.5.5Coculture Degradation of the PAH Mixture2354.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5.4	Bacterial Degradation of the PAH Mixture	232
4.6CONCLUSIONS236CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.5.5	Coculture Degradation of the PAH Mixture	235
CHAPTER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL2385.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	4.6	CONCLUSIONS	236
5.1INTRODUCTION2405.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	СНАР	TER 5: TRIALS OF COCULTURE PAH DEGRADATION IN SOIL	238
5.2ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS2415.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	5.1	INTRODUCTION	240
5.2.1Loss of PAHs in Killed Control Microcosms2425.2.2Natural Attenuation in Uninoculated Control Microcosms243	5.2	ASSESMENT OF DEGRADATION IN SOIL MICROCOSMS	241
5.2.2Natural Attenuation in Uninoculated Control Microcosms243	5.2.1	Loss of PAHs in Killed Control Microcosms	242
	5.2.2	Natural Attenuation in Uninoculated Control Microcosms	243

	5.2.2.1 Influence of BSMY on PAH Degradation by Indigenous Microcosms	245
	5.2.2.2 Influence of Distilled Water on PAH Degradation by Indigenous	245
	Microcosms	
	5.2.2.3 Influence of 1% Glucose on PAH Degradation by Indigenous Microcosms	247
5.2.3	PAH Degradation in Inoculated Microcosms	249
	5.2.3.1 PAH Degradation in Axenic VUN 10,010 Microcosms	249
	5.2.3.2 PAH Degradation in Axenic P. janthinellum Microcosms	250
	5.2.3.3 PAH Degradation in Coculture Microcosms	252
5.2.4	Assessment of PAH Degradation Using Sequential Inoculation	254
	5.2.4.1 Inoculation of VUN 10,010 then P. janthinellum	254
	5.2.4.2 Inoculation of P. janthinellum then VUN 10,010	255
5.2.5	Assessment of PAH Degradation Using Sequential Inoculation with Amendments	257
	5.2.5.1 Sequential Inoculation in Microcosms Amended with Distilled Water	258
	5.2.5.3 Sequential Inoculation in Microcosms Amended with 1% Glucose	258
5.2.6	General Observations on PAH Degradation in Spiked Soil Microcosms	260
5.2.7	Radiolabelled Spiked Soil Microcosms	264
5.3	DISCUSSION	266
5.3.1	Natural Attenuation	267
5.3.2	Previous Coculture Observations	269
5.3.3	Sequential Inoculation	271
5.3.4	Amendments	273
5.3.5	Radiolabelled Experiments	276
5.4	CONCLUSIONS	277
CHA	PTER 6: CONCLUSIONS AND RECOMMENDATIONS	279

6.1 THESIS SYNOPSIS

6.2 CONCLUSIONS

6.3	RECOM	MENDATIONS FOR FUTURE WORK	283		
6.3.1	Assessment of Fungal-Bacterial Interactions 2				
6.3.2	2 In-Situ Chemical Oxidation and Bioremediation				
6.3.3	6.3.3 Development of Effective Tags, Biomarkers or Molecular Probes for Monitoring				
	Inoculant	S			
APPE	INDICES		286		
Appen	ndix 1	Degradation tables for experiments using the PAH mixture in BSMY medium inoculated with fungal, bacterial and cocultures.	287		
Appen	ndix 2	Degradation tables for experiments using spiked soil inoculated with axenic <i>P. janthinellum</i> , VUN 10,010 and the <i>P. janthinellum</i> and VUN 10,010 coculture. Also includes degradation tables for experiments using spiked soil sequentially inoculated with the <i>P. janthinellum</i> and VUN 10,010 cocultures provided with amendments.	296		
BIBL	IOGRAPH	IY	302		

List of Figures

Figure 1.1	Page 26	Structure and Molecular Formula of 16 Polcyclic Aromatic Hydrocarbons Designated Priority Pollutants by the USEPA		
Figure 1.2	Page 32	Bay / Fjord Regions (Benzo[<i>c</i>]chrysene) and Numbering of Rings (Benzo[<i>a</i>]pyrene) on the PAH Molecule		
Figure 1.3	Page 36	Average Concentration ($\mu g m^{-3}$) of PAHs from Various Emission Sources in Chicago		
Figure 1.4	Page 38	Putative Model of Fate of a PAH (Phenanthrene) in Soil		
Figure 1.5	Page 47	Various Mechanisms of Microbial Polycyclic Aromatic		
8		Hydrocarbon Degradation		
Figure 1.6	Page 55	Pathways of Bacterial Fluorene Degradation		
Figure 1.7	Page 57	Pathways of Bacterial Phenanthrene Degradation		
Figure 1.8	Page 59	Pathways of Bacterial Fluoranthene Degradation		
Figure 1.9	Page 61	Bacterial Degradation of Pyrene by <i>Mycobacterium</i> sp. Strain PYR-1		
Figure 1.10	Page 64	Proposed Pathway for the Degradation of Benzo[<i>a</i>]pyrene by <i>Mycobacterium</i> sp. Strain RJGII-135		
Figure 1.11	Page 66	A Portion of the Lignin Polymer Structure		
Figure 1.12	Page 82	Oxidation of Benzo[a]pyrene by Fungal Ligninases		
Figure 1.13	Page 85	Idealised Fungal / Bacterial Co-culture Degradation of a High Molecular Weight PAH (benzo[<i>a</i>]pyrene).		
Figure 3.1	Page 136	Photograph of the former Manufactured Gas Plant at Buckle Street, Glenelg (c. 1900)		
Figure 3.2	Page 136	Schematic diagram of former Manufactured Gas Plant at Buckle Street, Glenelg.		
Figure 3.3	Page 139	Kanmantoo agricultural land used for the cultivation of pea straw and wheat.		
Figure 3.4	Page 139	Cross section of termite mound matrix used for enrichments		
Figure 3.5	Page 139	Western Gray Kangaroo (<i>Macropodus fuliginosus</i>) faeces used for enrichments		
Figure 3.6	Раде 143	Example of zones of clearing formed around colonies isolated		
i igui e 5.0	1 age 140	from manufactured gas plant soil enrichments on BSMY agar plates containing 250 mg/l pyrene		
Figure 3.7	Page 144	Zones of clearing formed around colonies isolated from		
0	0	manufactured gas plant soil enrichments on BSMY agar plates		
Figure 3.7	Page 150	Chromatogram from FAME analysis of the bacterial isolate from		
		the termite mound matrix, identified as <i>Ralstonia pickettii</i> .		
Figure 3.8	Page 151	Chromatogram from FAME analysis of the bacterial isolate from		
8	8	kangaroo faeces, identified as Stenotrophomonas maltophilia.		
Figure 4.1	Page 173	Time course for benzo[<i>a</i>]pyrene degradation by <i>P. janthinellum</i> in BSM		
Figure 4.2	Page 173	Time course for benzo[<i>a</i>]pyrene degradation by <i>P. janthinellum</i> in MYPD.		
Figure 4.3	Page 174	Time course for benzo[<i>a</i>]pyrene degradation by <i>Ph. chrvsosporium</i> in BSM		
Figure 4.4	Page 174	Time course for benzo[a]pyrene degradation by <i>Ph.</i>		
Figure 4.5	Page 179	Phenanthrene concentration in BSMY inoculated with axenic bacterial cultures.		

Figure 4.6	Page 180	Changes in microbial numbers in experiments using phenanthrene as a carbon source in BSMY inoculated with axenic bacterial cultures
Figure 4.7	Page 182	Fluoranthene concentration in BSMY inoculated with axenic bacterial cultures
Figure 4.8	Page 183	Changes in microbial numbers in experiments using fluoranthene as a carbon source in BSMY inoculated with axenic bacterial cultures
Figure 4.9	Page 186	Pyrene concentration in BSMY inoculated with axenic bacterial cultures
Figure 4.10	Page 187	Changes in microbial numbers in experiments using pyrene as a carbon source in BSMY inoculated with axenic bacterial cultures
Figure 4.11	Page 190	Cumulative ¹⁴ CO ₂ Generation in Axenic Inoculated [4,5,9,10- ¹⁴ C] Pyrene in BSMY Biometers
Figure 4.12	Page 191	Mass Balance from Axenic Inoculated [4,5,9,10- ¹⁴ C] Pyrene in BSMY Biometers.
Figure 4.13	Page 193	Changes in PAH concentration in BSMY abiotic controls supplemented with a PAH mixture
Figure 4.14	Page 195	Changes in PAH concentration in BSMY axenic <i>P. janthinellum</i> inoculated cultures supplemented with a PAH mixture
Figure 4.15	Page 195	Changes in PAH concentration in BSMY axenic <i>Ph. chrysosporium</i> inoculated cultures supplemented with a PAH mixture
Figure 4.16	Page 197	Changes in PAH concentration in BSMY axenic VUN 10,010 inoculated cultures supplemented with a PAH mixture
Figure 4.17	Page 197	Changes in PAH concentration in BSMY axenic <i>Mycobacterium</i> 1B inoculated cultures supplemented with a PAH mixture
Figure 4.18	Page 200	Changes in PAH concentration in BSMY axenic <i>Mycobacterium</i> sp. Strain BS5 inoculated cultures supplemented with a PAH mixture
Figure 4.19	Page 200	Changes in PAH concentration in BSMY axenic <i>Mycobacterium</i> sp. Strain KA5 inoculated cultures supplemented with a PAH mixture
Figure 4.20	Page 206	Changes in PAH concentration in BSMY VUN 10,010 and <i>P. janthinellum</i> inoculated cultures supplemented with a PAH mixture
Figure 4.21	Page 206	Changes in PAH concentration in BSMY VUN 10,010 and <i>Ph. chrysosporium</i> inoculated cultures supplemented with a PAH mixture
Figure 4.22	Page 209	Changes in PAH concentration in BSMY <i>Mycobacterium</i> 1B and <i>P. janthinellum</i> inoculated cultures supplemented with a PAH mixture
Figure 4.23	Page 209	Changes in PAH concentration in BSMY <i>Mycobacterium</i> 1B and <i>Ph. chrysosporium</i> inoculated cultures supplemented with a PAH mixture
Figure 4.24	Page 212	Changes in PAH concentration in BSMY <i>Mycobacterium</i> sp. Strain BS5 and <i>P. janthinellum</i> inoculated cultures supplemented with a PAH mixture
Figure 4.25	Page 212	Changes in PAH concentration in BSMY <i>Mycobacterium</i> sp. Strain BS5 and <i>Ph. chrysosporium</i> inoculated cultures supplemented with a PAH mixture

Figure 4.26	Page 215	Changes in PAH concentration in BSMY <i>Mycobacterium</i> sp. Strain KA5 isolate and <i>P. janthinellum</i> inoculated cultures supplemented with a PAH minture.
Figure 4.27	Page 215	Changes in PAH concentration in BSMY <i>Mycobacterium</i> sp. Strain KA5 Isolate and <i>Ph. chrysosporium</i> inoculated cultures supplemented with a PAH mixture
Figure 4.28	Page 221	Mass balance from coculture inoculated [4,5,9,10- ¹⁴ C] pyrene in BSMY biometers.
Figure 5.1	Page 246	Changes in PAH concentration in uninoculated PAH spiked soil microcosms assessing natural attenuation supplemented with BSMY
Figure 5.2	Page 246	Changes in PAH concentration in uninoculated PAH spiked soil microcosms assessing natural attenuation supplemented with distilled water
Figure 5.3	Page 248	Changes in PAH concentration in uninoculated PAH spiked soil microcosms assessing natural attenuation supplemented with 1% glucose
Figure 5.4	Page 251	Changes in PAH concentration in PAH spiked soil microcosms supplemented with BSMY inoculated with an axenic culture of VUN 10,010
Figure 5.5	Page 251	Changes in PAH concentration in PAH spiked soil microcosms supplemented with BSMY inoculated with an axenic culture of <i>P</i> . <i>ianthinellum</i>
Figure 5.6	Page 253	Changes in PAH concentration in PAH spiked soil microcosms supplemented with BSMY inoculated with a coculture of VUN 10,010 and <i>P. janthinellum</i>
Figure 5.7	Page 256	Changes in PAH concentration in PAH spiked soil microcosms supplemented with BSMY sequentially inoculated with VUN 10.010 followed by <i>P. janthinellum</i> at day 50
Figure 5.8	Page 256	Changes in PAH concentration in PAH spiked soil microcosms supplemented with BSMY sequentially inoculated with <i>P. ianthinellum</i> followed by VUN 10.010 at day 50
Figure 5.9	Page 259	Changes in PAH concentration in PAH spiked soil microcosms supplemented with distilled water sequentially inoculated with <i>P. ianthinellum</i> followed by VUN 10.010 at day 50
Figure 5.10	Page 259	Changes in PAH concentration in PAH spiked soil microcosms supplemented with 1% glucose sequentially inoculated with <i>P. janthinellum</i> followed by VUN 10,010 at day 50

List of Tables

Table 1.1	Page 27	Physical and Chemical Properties of USEPA 16 Priority
		Polycyclic Aromatic Hydrocarbons
Table 1.2	Page 32	Summary of Results of Tests for Genotoxicity and
		Carcinogenicity for the 33 Polycyclic Aromatic
		Hydrocarbons Studied
Table 1.3	Page 35	PAH Levels in Soils from Contaminated Sites, Australia
Table 1.4	Page 40	Suggested Half Lives of Polycyclic Aromatic Hydrocarbons
	-	in Various Environmental Compartments

Table 1.5	Page 48	Polycyclic Aromatic Hydrocarbons Oxidised by Different Species/Strains of Bacteria
Table 1.6	Page 68	Polycyclic Aromatic Hydrocarbons Oxidised by Different Species of Fungi
Table 1.7	Page 94	Considerations for Process Design in Bioremediation
Table 2.1	Page 105	Bacterial Strains used in this study.
Table 2.2	Page 115	Range of Substrates Tested as Sole Carbon and Energy
		Sources for Bacterial Isolates
Table 3.1	Page 137	Analysis of Soils used for Enrichments (Former Manufactured Gas Plant Soil and Kanmantoo Soil) and Microcosm Trials (Kanmantoo Soil).
Table 3.2	Page 141	Summary of observations from enrichment process for environmental isolates
Table 3.3	Page 146	Morphology of the Bacterial Isolates. Description of colony morphology is based on growth on R2A after 48 hours.
Table 3.4	Page 147	Growth of Bacterial Isolates on various carbohydrates and metabolites
Table 3.5	Page 148	Growth of Bacterial Isolates on various surfactants, phenols, hydrocarbons and PAHs.
Table 3.6	Page 154	16S rRNA Identification of Bacterial Isolates.
Table 4.1	Page 176	Percentage Removal of Single PAHs by Bacterial Isolates in BSMY Media
Table 4.2	Page 203	Comparison of Degradation of Single PAH and PAH Mixture of Axenic Bacterial Isolates
Table 4.3	Page 217	Comparison of degradation rates of PAH mixture in BSMY between axenic bacterial isolates and coculture combinations
Table 5.1	Page 242	Variance Between Samples in Soil Microcosm Experiments
Table 5.2	Page 244	Concentration of fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene in autoclaved and HgCl ₂ -killed inoculum microcosms supplemented with BSMY containing PAH spiked Kanmantoo soil.
Table 5.3	Page 261	Comparison of rates of PAH degradation in PAH spiked Kanmantoo soil microcosms for the various inoculation protocols and amendments
Table 5.4	Page 263	Comparison of Extent and Rate of PAH Degradation in Liquid (BSMY) and Kanmantoo Soil Medium inoculated with a coculture and axenic cultures of <i>P. janthinellum</i> and VLIN 10 010
Table 5.5	Page 265	Amount of ${}^{14}CO_2$ evolved from ${}^{14}C$ radiolabelled Benzo[<i>a</i>]pyrene in PAH spiked soil microcosm experiments.