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Abstract

Artificial and natural instances of networks are ubiquitous, and many problems of

practical interest may be formulated as questions about networks. Determining

the optimal topology of a network is pertinent to many domains. Evolutionary al-

gorithms constitute a well-established optimisation method, but they scale poorly

if applied to the combinatorial explosion of possible network topologies. Gener-

ative representation schemes aim to overcome this by facilitating the discovery

and reuse of design dependencies and allowing for adaptable exploration strate-

gies. Biological embryogenesis is a strong inspiration for many such schemes, but

the associated complexities of modelling lead to impractical simulation times and

poor conceptual understanding. Existing research also predominantly focuses on

specific design domains such as neural networks.

This thesis seeks to define a simple yet universally applicable and scalable

method for evolving graphs and networks. A number of contributions are made

in this regard. We establish the notion of directly evolving a graph grammar

from which a population of networks can be derived. Compact cellular produc-

tions that form a hypergraph grammar are optimised by a novel multi-objective

evolutionary design system called G/GRADE. A series of empirical investigations

are then carried out to gain a better understanding of graph grammar evolution.

G/GRADE is applied to four domains: symbolic regression, circuit design, neural

networks, and telecommunications. We compare different strategies for compos-

ing graphs from randomly mutated productions and examine the relationship

between graph grammar diversity and fitness, presenting both the use of pheno-

typic diversity objectives and an island model to improve this. Additionally, we

address the issue of bloat and demonstrate how concepts from swarm intelligence

can be applied to production selection and mutation to improve grammatical

convergence. The results of this thesis are relevant to evolutionary research into

networks and grammars, and the wide applicability and potential of graph gram-

mar evolution is expected to inspire further study.
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Chapter 1

Introduction

This dissertation addresses the general issue of designing solutions for any domain

that allows solutions to be described as networks. Towards this goal, we establish

a framework for network optimisation that is based on the artificial evolution of a

(hyper-)graph grammar. We provide a detailed understanding of graph grammar

evolution by describing a series of precisely designed experiments that investigate

multiple strategies for construction, modularity, diversity, and convergence of

the networks and the associated grammar. This brief introductory chapter is

organised into multiple sections as follows. First, an essential synopsis of the

conceptual background for this research is presented in section 1.1, succeeded

in section 1.2 by a description of the research question and our approach to

answering it. For the impatient reader, section 1.3 summarises the contributions

of this thesis, and the chapter ends with 1.4, an outline of the upcoming chapters.

1.1 Conceptual Background

Networks permeate our lives. They describe a multitude of systems, natural and

artificial, ranging from the cell, a network of chemicals linked by reactions, to the

internet, a network of computers linked by cables or radio waves. Many of these

networks are defined by self-organisation, a topic of intense study in recent years.

Yet not every network is an emergent product of distributed agents. Sometimes

a network needs to be designed. The circuit of a microprocessor is an obvious

example, as is the architecture of a building or the mechanics of a jet engine, each

a network of carefully placed components.

Good designers for these networks are rare, however, and as technology be-

comes ever more complex, they will only become rarer. It is thus a valuable skill

1



2 Introduction

to be able to optimise the configuration of a network so that it solves a particular

problem to a satisfactory degree. A computer can become an effective designer

of a network if it is given a proper definition of the problem. For instance, an

exhaustive search of all possible configurations is assured to find us the optimal

solution, although this is computationally infeasible for many larger problems. A

heuristic search is more likely to determine a satisfactory solution in a reasonable

amount of time, assuming that we have the right heuristic.

Evolutionary algorithms constitute a class of heuristic optimisation algorithms

that have been applied to a great many problems, including design. Evolutionary

design of networks is fraught with a number of challenges, however. Artificial

evolution is inspired by natural evolution, yet lacks the sheer scale and sophis-

tication of the latter. Since the computational cost of evolution tends to scale

exponentially with the number of features needing evolution, the magnificent de-

signs of nature are out of practical reach of any evolutionary algorithm. Just how

complex a design can be achieved by artificial evolution?

The number of variables defining a simple graph scales at least quadratically

with the number of graph nodes, so the answer within our intended domain

appears to be: not very complex at all. A large network is not necessarily complex,

however, and this is where self-organisation can benefit even the designer. A few

simple rules can describe a huge network if it exhibits some form of regularity.

Thus, the assumption that a network arises from a set of rules may bring about

the most compact description of the network, but to benefit from this we require

a system in which not the network but the rules that define the network are

optimised.

A precedent for this is given by the growth and development of biological life.

Genes (the rules) are expressed into a fully functional organism (the network)

that has many orders of magnitude more features than there are base pairs in

the chromosome. Proposing and confirming models of biological development

is a popular research activity in the life sciences, but for this to be of use in

artificial evolution the computationally expensive details need to be abstracted

away. Grammars represent elementary but very applicable models of develop-

ment. For our purposes the sentences (solutions) that must be derived from a

grammar are networks, which implies that a graph grammar is needed. The evo-

lution of a graph grammar can capture patterns in the design of a network and

facilitate their reuse in new solutions, consequently allowing network designs to

be represented and searched more efficiently.
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1.2 Research Strategy

The hypothesis that searching a space of grammatical rules is more effective than

directly searching the space of networks forms the basis of the following research.

However, this dissertation is not about directly proving this hypothesis; as will

be shown over the next two chapters, existing research already offers extensive

support for it. The novelty here lies in the utilisation of a graph grammar, a formal

model that is quite distinct from the powerful but convoluted biology-inspired

development models or the less expressive direct coding strategies. Moreover,

unlike most research into evolutionary algorithms, the strategy is not to evolve

string or tree representations using existing techniques and then translate them

into networks, but to evolve the graph grammar directly.

The question that this study responds to concerns the nature of an effective

framework for graph grammar evolution, which incorporates the novel challenges

of directly evolving a grammar and composing a graph from disparate production

rules. Naturally, an answer would not be meaningful unless a benchmark is pro-

vided. The proposed framework will therefore be developed and tested against

a number of practical problems: symbolic regression, circuit design, neural net-

works, and communication networks. What works and what does not will hence

be determined in an empirically sound manner.

1.3 Contributions

Through exploring the idea of graph grammar evolution this work renders several

contributions towards an understanding of network design by evolution. The

following important inputs to scientific knowledge are made:

1. A survey and analysis of how networks can be optimised demonstrates the

merit of developmental models in an evolutionary search context.

2. A novel method of graph grammar evolution is presented, which transforms

the formal model of a hypergraph grammar towards being directly evolvable

by a multi-objective evolutionary algorithm.

3. The nature of the grammars and graphs obtained from graph grammar

evolution is investigated, and a comparison between alternative heuristics

is given.
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4. The relevance of diversity in graph grammars is recognised. Phenotypic

diversity objectives and island models are introduced to improve diversity.

5. The structure of evolved grammars is analysed, and an adaptive search

scheme is established for improving grammatical convergence.

Details for each of these contributions are provided within the chapters and sum-

marised in section 8.1.

1.4 Overview

The thesis starts with a review of essential concepts and existing literature that

underline this research, followed by a technical description of the intended graph

grammar evolution framework. The second half of the thesis covers extensions to

this framework and experimental evaluation of these, with an analysis of the out-

comes and further improvements suggested. Specifically, the remaining chapters

of the thesis are organised as below.

Chapter 2 introduces network theory, reviews networks as dynamic pro-

cessing structures, and discusses how networks can change to solve a problem.

Computational learning and evolution are appraised within this context. This

constitutes a fundamental introduction to concepts applied in subsequent chap-

ters.

Chapter 3 presents the benefits and drawbacks of generative representations,

and reviews previous literature in developmental models of artificial evolution.

Graph grammars are exposed as a formally elegant basis for network development;

this is concluded by an introduction to hypergraph grammars.

Chapter 4 establishes a novel variant of hypergraph grammar suitable for

artificial evolution. A complete system for evolving such a grammar and deriving

networks from it is detailed.

Chapter 5 addresses the many different ways in which graph production

rules may interact and connect to each other. This includes explicit or implicit

representations, modularity, and differences between simple graphs and pseudo-

graphs; for empirical comparison, several experiments are performed on different

problems.

Chapter 6 looks at the importance of diversity in evolving a graph gram-

mar, introducing and experimenting with several different phenotypic diversity

objectives and island models.
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Chapter 7 analyses the evolutionary convergence of the productions of a

graph grammar, testing the impact of the mutation rates, evaluation length, and

adaptive search inspired by swarm intelligence. The development of bloat and

Pareto efficiency is compared, and the network of references that forms between

evolved productions is also studied.

Chapter 8 states the conclusions, lists the contributions and summarises the

problem-specific results obtained throughout the previous chapters. It finishes

with recommendations for future research.

Appendix A provides tables of the results from all experiments. No tables

will be presented in the chapters, so please refer here for details on the perfor-

mance and size of the evolved networks.





Chapter 2

Network Adaptation

If done by hand, designing a network can be a trivial task or an impossible task,

depending on the number of components involved and the complexity of interac-

tions between them. Why do we need to design a network? The human brain

is certainly a spectacular design of a network, as revealed by its evident ability

to read this very sentence. Yet nobody would claim to have a designed those

circuits: a primary school teacher may have provided valuable feedback on the

reading task, but nothing more. It would certainly be convenient if other net-

works, like a silicon circuit or power-line network, self-designed just by exposure

to the problem. For this to be viable, a fundamental requirement is that the

network can change its own state. This chapter begins with an introduction to

and review of the processing models that represent this type of network: the au-

tomata networks. We extend from there into how networks self-organise and can

be made to self-organise within the context of computational intelligence, leading

to a brief survey of general learning, neural networks, and artificial evolution.

2.1 A Brief Note on Graphs & Networks

Before continuing with this chapter, however, we would like to clarify any poten-

tial confusion between the terms network and graph. In fact, these terms can be

used interchangeably, although here a network will usually refer to an automata

network (see below) that is assessable on a problem task, whereas the graph (or

cellular space) is a formal description of the structure of the network. Specifically,

we define a directed graph as a quadruple (V,E, s, t) where V is a finite set of

vertices, E is a finite set of edges, and s, t : E → V assign a source s(e) and a

target t(e) to each e ∈ E. In general usage, a graph is a simple graph without

7
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Simple graph Multigraph Pseudograph

Figure 2.1: Graph concepts.

loops or multiple edges. A loop is an edge that joins a vertex to itself; multiple

edges are two or more edges connecting the same two vertices. Graphs with loops

and multiple edges are called pseudographs (see figure 2.1). Thus, every graph in

the accepted sense is a pseudograph, but not every pseudograph is also a (sim-

ple) graph. We will, however, refer to pseudographs also as graphs and networks,

unless the distinction is relevant (as in section 5.4).

2.2 Automata Networks

Automata networks are dynamical systems that are discrete in time and space

(Goles and Mart́ınez, 1990). Variants of these networks operating in continuous

time also exist and play an important role in the modelling of physical systems,

although we will not consider them here in detail. Formally, an automata network

is a system (C,A, Sn, N, L) where C is a set of cells, A is an alphabet of states,

Sn : C → A is the state at time n, where n = 0, 1, 2, . . . ,M . ∀c ∈ C : N(c) is the

neighbourhood of c, where N : C → P (C) is the neighbourhood system and P (C)

the power-set of C. The triplet (C, S, N) is commonly also referred to as the

cellular space of the automata network. S is updated according to L : C → D

where D is a set of local dynamic rules δN(c) : S(c)n−1 → S(c)n. The global

dynamic rule is formed by Δ(S) = ∪c ∈ C(δN(c)(c)) and describes the behaviour

of the system.

The defining aspects of an automata network are its cellular space and the

local dynamic rules (or transition functions). The cellular space describes the

presence of, and connectivity between, processors (or cells) of the network. It

consists of a directed graph and a set of states associated with the vertices of

the graph. Each processor occupies a vertex of the graph and operates on the

associated state. The state is updated at successive time steps depending on the
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local transition function, which takes the current state and the states of adjacent

vertices as its inputs. States can be updated all at once, i.e. synchronously, or

in some prescribed (or random) order, i.e. sequentially. Input into the automata

network is encoded as a pattern of states initially assigned to part or all of the

machines, and the output is similarly retrieved after a certain number of cycles

of the network. This is a closed, autonomous model that – unlike a systolic

array – does not exchange information with its environment in the course of

its computation. However, the transition between systolic arrays and automata

networks is difficult to pinpoint, and not everyone takes this definition literally

(e.g. Zambonelli and Roli, 2001).

Unless we place further constraints on what constitutes an automata net-

work, the dynamical behaviour, i.e. the evolution of states, of the network has

no (known) mathematical shortcut – the only way to describe it is to simulate

it. Consequently, automata networks have been further constrained in order to

make them amenable to mathematical analysis and prediction. Depending on

the applied constraints, such networks are known as cellular automata, artificial

neural networks, and by various other names. The following sections provide a

review of these, as several associated concepts will be taken up in subsequent

chapters.

2.2.1 Cellular Automata

Cellular automata were introduced by Von Neumann (1966) to establish a frame-

work for studying the behaviour of complex, self-reproducing systems. They have

since become a subject of interest in a variety of fields, particularly in modelling

physical phenomena (Wolfram, 2002). Cellular automata are principally distin-

guished from other automata networks by the homogeneity of their cellular space

(Garzon, 1995). The underlying digraph is not just any graph, but a Cayley

graph – a regular graph with regular colouring. In practice, this implies that the

interconnection pattern between vertices is spatially invariant, i.e. it appears the

same at every vertex. A common instance of such a graph is a Euclidean lattice

(see figure 2.2).

A neighbourhood on such a graph may consist of just the four cells in the

principle directions (the von Neumann neighbourhood), or the corner cells as well

(the Moore neighbourhood), or a block or diamond of even larger size; in fact any

arbitrary shape. What is common, however, is a sense of locality, that nearby cells

have greater influence upon each other than remote ones. Information must be
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Cell

von Neumann neighbourhood

Moore neighbourhood

Figure 2.2: Two common definitions of neighbourhood as they apply to a Eu-
clidean lattice, a typical cellular space used for cellular automata.

propagated from neighbour to neighbour in order to reach a remote cell, but this

locality constraint also exists in nature, because of physical constraints on how

quickly information can spread from one place to another. However, in cellular

automata the local transition rules of each cell are also identical, i.e. spatially

invariant, which is less naturally plausible, since, for example, the human body is

constructed of a variety of cells that interact differently. A non-uniform cellular

automaton has cells that can obey diverse rules. Sipper (1996) demonstrated

the superior performance of non-uniform cellular automata over uniform cellular

automata on the density classification task, but other research in this field remains

sparse.

The most common way of expressing a local transition rule is a transition table

analogous to a truth-table, with rows describing the state of the neighbourhood

and a next-state column indicating the next-state of the cells. The simplest rules

are those that obey the superposition principle: the next state of a cell depends

linearly on the local distribution of its neighbours. Linear cellular automata

exhibit only a limited repertoire of global behaviours, but are reasonably well

understood. On the other hand, totalistic cellular automata, such as Conway’s

Game of Life, are significantly more complex. Totalistic rules update a cell’s

state dependent on the density of its neighbours. Even though this represents

only the mildest generalisation of linear rules, Conway’s Game of Life can simulate

a Universal Turing Machine. The computational universality of such a cellular

automaton can rarely be exploited, however. There are two fundamental problems

in the study of a cellular automaton. Given a local transition rule, we would
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like to characterise the global effect of this rule – this is known as the forward

problem. From a design point of view, however, it is the inverse problem that is

of paramount importance: given a desired global effect, we would like to know

the local rules that induce this effect.

2.2.2 Threshold Automata

A popular approach for addressing the inverse problem is inspired by the oper-

ation of biological neurons in the brain. Signal transmission between biological

neurons is a complex chemical process in which specific transmitter substances

raise or lower the electrical potential across the membrane of the receiving neuron

(Bear et al., 2006). Once this potential has reached a certain threshold, a pulse

(or action potential) is emitted that induces further transmitter release to other

cells. McCulloch and Pitts (1943) proposed a simple computational model of the

neuron as a binary threshold unit. Specifically, the model neuron computes the

weighted sum of its inputs from other neurons, and outputs a one or zero ac-

cording to whether this sum is above or below a certain threshold value. We can

replicate this model on a totalistic cellular automaton by allowing the transition

function of each cell to be a compound rule formed of a sequence of two steps. In

the first step, the states of the neighbouring cells are multiplied by real numbers

acting as weights, and the products are added to obtain a weighted sum. In the

second step, the threshold operation – actually a special type of totalistic rule –

is applied to this sum, and the cell is assigned a state accordingly.

Cellular automata that employ this rule are referred to as linear-threshold

automata, a widely applied variant of which are the Cellular Neural Networks

(CNNs) introduced by (Chua and Yang, 1988a,b). Each cell of the CNN has a

continuous-valued internal state and an output. The internal state is computed

as a sum of a local bias value and the inputs derived from two so-called templates:

The feedback template, which constitutes the outputs of the neighbouring cells;

and the control template, which constitutes the input into the CNN, e.g. an

image to be processed. Both templates are associated with parameter arrays

that typically define the inter-cell connection weights. Templates are usually

considered to be spatially invariant, although non-uniform CNNs have also been

investigated (Roska and Chua, 1992).
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Transition Table
Next StateNeighbourhood

Cellular Automaton
(automata on regular graphs)

SInput Links

Summation
Function

Output Links

Activation / Transfer
Function

Node

Neural Network
(threshold automata on arbitrary graphs)

Figure 2.3: Automata networks are defined by their topology and local transition
functions, illustrated here for two popular instances of automata networks.

2.2.3 Neural Networks

Research into artificial neural networks (ANNs) was originally aimed towards

modelling networks of real neurons in the brain, but has gradually shifted towards

the more practical aspects of employing such networks for signal processing and

other tasks. The previous section introduced an extremely simplified model of

neural communication, where a crucial feature was omitted, however. Biological

neurons conduct their signals along long fibres (called axons) that can project

to very remote regions of the human body. To some extent this circumvents

the constraints of locality by providing remote communication without having

to pass through other cells. Neural networks are generalised threshold automata

where no locality constraints are placed on the digraphs of their cellular space.

Furthermore, the local transition function is not homogeneous – it varies from

site to site, depending on the weight of its connections.

Neural networks have been intensively researched since the days of McCulloch

and Pitts’ (1943) seminal work on neural modelling. An early wave of activity

in the 1960s was centred on networks called perceptrons (Minsky and Papert,

1969), which have their neurons organised into layers with feedforward connec-

tions between one layer and the next, that is, the digraph of the cellular space is

a unidirectional bipartite graph. Given appropriate inter-cell connection weights,

passing an input pattern into one layer is expected to produce a desirable output

from another. Following a revival of interest in the 1980s, perceptrons, specifi-
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cally those with multiple fully connected layers and sigmoid threshold functions,

have become the most studied and utilised of networks. The main other focus

in neural network theory is on associative content-addressable memories, such as

the Hopfield network (Hopfield, 1982), which can store several binary patterns

in such a way that the attractor dynamics of the system carries any state of the

network to a state matching the nearest of the stored patterns. The majority of

proposed networks differ with respect to the learning algorithms that are applied;

the undoubtedly most popular one – backpropagation – will be covered in section

2.4.1.

2.2.4 Random Boolean Networks

Random Boolean networks (RBNs) are a generalisation of cellular automata,

where, as with neural networks, each node can be affected by potentially any

node in the network. RBNs were originally developed by Kauffman (1969, 1993)

as a model of genetic regulatory networks, which describe the complex interac-

tions between genes. In the classic RBN, nodes have binary states, but more

recent work has also investigated RBNs where nodes can take multiple values

(Ballesteros and Luque, 2005). Each node is connected to a fixed number of

other (or the same) nodes, with the topology typically defined randomly. Local

transitions rules are also chosen randomly for each node, as is the initial state.

Consequently, a vast number of different networks are conceivable, yet there

are general properties that apply to all (Gershenson, 2004). The state space of a

network is finite, so eventually a state will be repeated. Since the state update

is assumed to be deterministic, the network dynamics have thereby reached an

attractor, either a fixed-point attractor if it is a fixed state, or a periodic attrac-

tor, if the state moves back and forth between two or more configurations. A

categorisation of networks is possible in terms of these attractors and the phase

transitions (changes in behaviour) based on different initial conditions or online

perturbations of the network. These characteristics are highly sensitive to changes

in network topology, as demonstrated in a study by Oosawa and Savageau (2002).

Networks with uniform degree distributions for their nodes have more and longer

attractors but less correlation in their dynamics, whereas skewed topologies show

the opposite. A scale-free topology, a feature typical of self-organised complex

networks (see section 2.3 below), balances these parameters much more favourably

than the extreme topologies.
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2.3 Complex Networks

Networks that are composed of parts interacting in non-trivial ways are referred

to as complex networks and are found to characterise a wide variety of biolog-

ical, social, and technological systems. Recent empirical studies have focused

on the role played by topological structures in the dynamics of these systems.

Examples include the Internet and the World Wide Web, cellular networks, cita-

tion networks, ecological networks, neural networks, power networks, and others;

an extensive review of these results is provided by Albert and Barabási (2002).

Despite exhibiting otherwise very distinct interaction dynamics, all of these sys-

tems share common principles of structural self-organisation – and they are all

remarkably effective at what they do. It may be assumed that these principles

are valuable for the design of networks in general.

Traditionally the study of complex network has been the domain of graph the-

ory, which proposes random graphs, i.e. graphs with no apparent design principle,

as the simplest and most straightforward realisation of a complex network. It is

intuitively clear, however, that complex systems such as the Internet exhibit some

form of organisation encoded into their topology. The desire to understand such

interwoven systems has brought along significant challenges. Statistical mechan-

ics has given researchers an arsenal of successful tools to predict the behaviour

of a system as a whole from the properties of its constituents; for example, it

forms our basis of understanding how Hopfield networks operate as associative

memories (cf. section 2.2.3). Frequently, the capacity to predict depends on the

simplicity of interactions between elements of the networks, yet there are many

systems where these interactions are not simple. Motivated by these circum-

stances, three concepts have come to occupy a prominent place in contemporary

thinking about complex networks: clusters, small worlds, and scale-free degree

distributions.

The inherent tendency to cluster is a common property of complex networks

and is quantified by the clustering coefficient. In a random network, the proba-

bility that two neighbours of any node of the network are themselves neighbours

of each other (i.e. the clustering coefficient) is equal to the probability that two

randomly selected nodes are neighbours. Watts and Strogatz (1998) determined

that complex networks have much larger clustering coefficients than random net-

works and proposed a new class of network models, collectively called small-world

models. These models interpolate between highly clustered regular lattices and

random networks, but retain a very short characteristic path length between any
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two nodes of the network, around ln(N) for a network with N nodes.

A famous manifestation of the small-world model are the “six degrees of sep-

aration” uncovered by Milgram (1967), who concluded that any pair of people

in the United States are connected by a path of six acquaintances. The cause

of short path lengths in small-world networks is the existence of shortcuts be-

tween nodes (Watts, 1999). Every shortcut is likely to connect widely separated

parts of the network and thus has a significant impact on the characteristic path

length of the entire network. Watts and Strogatz (1998) proposed an algorithm

to construct small-world networks. Starting from a regular ring lattice where

each node is connected to its nearest neighbours on either side, a small fraction

of connections is then re-wired to other randomly selected nodes. Barabási and

Albert (1999) realised that this didn’t reflect any natural process. Most physical

networks represent open systems which grow by the continuous addition of new

nodes. Furthermore, new nodes exhibit preferential attachment, that is, the like-

lihood of connecting to an existing node depends on that node’s degree. As an

analogy: having many friends makes it easy to have even more.

The resulting number of edges each node has, the node degree, is characterised

by a distribution P (k), which described the probability that a randomly selected

node has exactly k edges. In a random network, the majority of nodes have ap-

proximately the same degree, close to the average degree k. In a complex network

defined by growth and preferential attachment, the degree distribution often has

a power-law tail, that is, P (k) ∼ k−λ. Such networks are referred to as being

scale-free (Barabási and Albert, 1999). Cohen and Havlin (2003) demonstrated

that scale-free networks can also be, and are likely to be, small-worlds. In fact,

scale-free networks with an exponents 2 < λ < 3 have a characteristic path length

of approximately ln(ln(N)), notably shorter that what is usually regarded as a

small-world. Short path lengths are desirable because they maximise information

flow across the network, which can have a significant effect on the dynamics of the

network. For example, Bohland and Minai (2000) observed that the performance

of an associative memory based on a small-world network can match that of a

random network, whilst requiring only a fraction of the total connection length.

Assimilating concepts from complex network science into the intentional de-

sign of networks merits investigation, because the former reflects natural con-

straints of design. Conversely, the constraints assumed previously for cellular

automata stem from the reductionist thinking prevalent in the physical sciences

– the attempt to find a minimal set of laws that uniformly applies to all of space

and time. At higher levels of abstraction, however, these constraints do not
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hold. Locality is undermined by the possibility of signals propagating at different

speeds. Spatial invariance similarly breaks down if contrasted with the diversity

of cells in the human body and brain. This is not to say that this particular

set of constraints, or any other for that matter, is somehow wrong. Cellular au-

tomata, neural networks and automata networks are computationally equivalent

(Garzon, 1995). Yet brain and computer are computationally equivalent, too,

and both outperform each other on different tasks. Some approaches to solving

a particular problem have simply proven themselves more effective than others.

Constraints need to be chosen accordingly, based on the task at hand and the

resources available.

2.4 Network Learning

The previous section hinted at the sheer diversity of connected machines, both

natural and artificial, that are possible, each of which may exhibit its own unique

dynamics. The classification of these dynamics has become a science by itself, as

exemplified by Wolfram’s well-cited observations about a very limited set of cellu-

lar automata (Wolfram, 1983). Wolfram attempted to categorise the behaviour of

comparatively simple one-dimensional cellular automata into various dynamical

classes, but whether this has been of much practical use to anyone is debatable.

What this exercise did reveal is that even remarkably simple networks operating

on simple rules can produce enough complexity to require years to reach human

understanding.

Such dynamical richness, if mastered, also promises to be a useful tool in

solving problems. To solve a specific problem it becomes necessary to find the

automata network that exhibits the precise dynamics required for its solution.

For a Von Neumann machine we can conveniently write a series of instructions

that – akin to an assembly line – transform a problem into a solution. Conversely,

for an automata network we must orchestrate all the processing units and their

interactions from a problem configuration into a solution configuration. As the

stock market demonstrates to us on a daily basis, the prediction or even control of

massively parallel and potentially chaotic systems constitutes a serious challenge.

Nonetheless, there are countless such systems to be found in nature, the human

brain being amongst them, and they fulfil their purpose rather effectively. Nobody

designed these systems, they designed themselves – they adapted. Adaptation is

an automatic solution-finding process. Its replication on a computer comprises
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the very core of the field of artificial intelligence, and there are a variety of ways

for accomplishing it.

2.4.1 Weight Learning

A term closely associated with adaptation is learning. A learning system may

determine a solution to a problem by exposure to this problem. In the above

context, the system would have to learn the nature of a particular automata

network, i.e. its structure and any attributes associates with it. By far the most

common attribute that is being learned in this context are the edge weights

of perceptrons. The popularity of perceptrons is in no small part due to the

effective learning algorithms that can be and have been devised for them, which

are typically based on the idea of gradient descent.

Each configuration of weights produces a different error in a supervised learn-

ing environment. This grants us a function of error against weights and hence an

error landscape, or error surface. By evaluating the derivative of this function, we

can determine the weight change needed to reduce this error. Learning by gradi-

ent descent involves adjustment of the weights in small steps along the gradient

given by the derivative, until a minimum of the function – i.e. a minimal error –

is attained. A parallel implementation of this would call for the error information

to be propagated from the output nodes back through the network – hence we

also refer to this approach as backpropagation learning (Rumelhart et al., 1986).

Gradient descent has an inherent propensity to become easily trapped by

local optima. Two kinds of local optima can be distinguished (Bianchini and

Gori, 1996): those inherent to the structure of the chosen problem (structural

local optima) and those resulting from mathematical idiosyncrasies of the cho-

sen network (spurious local optima). In the presence of such optima, there is

no assurance that the best possible weight configuration will be found. Further-

more, while backpropagation can be applied to recurrent networks, the smallest

weight changes may lead to vastly different dynamics if networks are simulated

over many iterations (Doya, 1992). The application of backpropagation loses its

effectiveness in such cases, as the possible learning trajectories along the error

surface become increasingly unstable. Recurrent neural networks can be trained

by alternative means, such as the Hebb rule, which determines that connection

weights between neurons should change relative to the correlation between their

firing patterns (Hebb, 1949). However, success of this is only assured for very

constrained network designs, such as symmetric designs, e.g. Hopfield networks.
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2.4.2 Structure Learning

Gradient descent, as presented previously, is feasible if an appropriate derivative

function with respect to the weights has been found. For weight learning in a

perceptron with differentiable threshold functions this is a straightforward exer-

cise. For the majority of other learning problems, however, it is not. Weights

are meant to model the synapses between biological neurons. Weight learning

hence reflects synaptic change, which is a major source of functional change in

the brain – but it is not the only source of change. Adult neurogenesis, i.e. the

perpetual incorporation of new neurons into neural structures, has been long con-

jectured and shown in models to play a crucial role in brain plasticity and learning

(Cecchi et al., 2001). The classic example is the seasonal death and regrowth of

neurons in canaries, which renew their yearly repertoire of songs in this manner

(Alvarez-Buylla et al., 1992).

Weight learning is not the only possible – or even necessary – form of adapta-

tion in an artificial neural network either. In fact, the success of weight learning

is often dependent on the number and arrangement of neurons and edges within

the network, which is not in any way adjusted by backpropagation. Too many

neurons and links, and the network will fail to generalise; too few, and the net-

work won’t be able to learn the task at all. Very little theoretical knowledge exists

about how to find a suitable network architecture for a given task. Beyond simple

trial and error, a range of heuristic algorithms have been suggested to address

this problem. Incremental algorithms initially assume a simple network and add

neurons and links until the network can learn the task (e.g. Fahlman and Lebière,

1990; Frean, 1990), while pruning methods start with a large network and prune

off superfluous components, usually to improve generalisation (e.g. Mozer and

Smolensky, 1989; Cun et al., 1990). Both types of algorithm represent a form of

structural gradient descent that can only explore a subset of topologies and is

intrinsically limited by the lack of gradient information for the discrete topology

space, leading to slow and unreliable convergence (Angeline et al., 1994). Explor-

ing a wider range of topologies beyond small, fully connected feedforward designs

is not directly feasible with any of these methods.

2.5 Evolutionary Computation

For the majority of problems we can define an error function that will tell us

(numerically) how good a particular solution is at solving the problem. If we ran-
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Select some or all of the solutions as parents

Create offspring solutions by mutating or recombining parent solutions

Evaluate offspring solutions on the objective function

Replace some or all of the parent solutions with offspring solutions
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Figure 2.4: Although there are many different instances of evolutionary algo-
rithms, the iterative process of generation, selection, and regeneration is common
among all.

domly generate more solutions, we are likely to find solutions that are better than

others. By sampling the error function in this manner, we generate information

about the associated error space that can help us deduce where superior solutions

might be found. Unlike gradient descent, this information is obtained not from

a single solution, but a population of solutions. Evolutionary optimisation is the

umbrella term for optimisation techniques of this kind.

Evolutionary optimisation is inspired by the concept of biological evolution,

which was first formulated by Darwin (1859) and is believed to be responsible for

the complexity of life as we see it. The Darwinian theory of evolution explains the

adaptation of species by the principle of natural selection, which favours those

species that are fittest, i.e. most adapted to their environment, and consequently

most successful at reproducing. The notion of universal Darwinism (Dawkins,

1983) asserts that the same characteristics that make life susceptible to evolu-

tionary change can also be found in other systems. Plotkin (1993) has proposed

the g-t-r heuristic as the fundamental characteristic of the general evolutionary

process, comprising the three phases of generation, testing, and regeneration.

Numerous evolutionary algorithms (EAs) have been developed which exploit

this process for function optimisation, the principal ones being: evolution strate-

gies, evolutionary programming, genetic algorithms, and genetic programming.

Common to all of these is the notion of increasing the overall fitness of a popula-

tion of ‘species’, say, particular network configurations, by replacing poor species

with improved ones (Bäck et al., 1997). For this purpose, a population of offspring
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Figure 2.5: A problem that requires the optimisation of two parameters might
have a fitness landscape as shown above. An evolutionary algorithm can find the
best solution – the global optimum – by sampling the fitness landscape with a
population of parameter configurations. If the number of samples is too small, a
local optimum may be discovered instead.

is generated from the existing population by means of special operators applied

to selected multi-sets of species. Those that are selected form a new population;

the cycle is repeated until a species is deemed sufficiently fit to solve whatever

problem we had in mind in the first place.

2.5.1 Exploring the Fitness Landscape

The concept of a fitness landscape, an energy landscape modelling the evolution-

ary process, was introduced by Wright (1967). At each point of this landscape,

the vertical position is given by the fitness of the corresponding species (the

higher, the fitter), and the neighbourhood of points is given by corresponding

variations thereof (see figure 2.5). Mutations represent small and typically undi-

rected variations to a species, analogous to the random fluctuations of simulated

annealing. Mutation and natural selection alone are commonly proposed as the

key mechanisms for any macroscopic explanation of evolution, i.e. the develop-

ment of species over time (Bäck, 1996). The evolutionary process can hence be

understood to ascend local gradients of the fitness landscape by making small

changes in the neighbourhood of the population mean and selecting for variants

that are fitter. Evolutionary programming (EP), developed by Fogel et al. (1966),

and evolution strategies (ES), developed by Schwefel (1981), are algorithms that
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pursue this strategy to discover solutions to given optimisation problems. EP

uses finite state machines as the representation of individuals, although later it-

erations of EP use real-valued vectors. ES is targeted at parameter optimisation

problems right from the start; consequently, a solution is represented as a pair

of real-valued vectors v = (x, σ), where x represents a point in the search space

and σ is a vector of standard deviations. Mutations are realised by replacing v

so that

σ = σ · eN(0,Δσ) and x = x+N(0, σ′), (2.1)

where N(0, σ) is a vector of independent random Gaussian numbers with a mean

of zero and standard deviation σ, and Δσ is a parameter of the method. In the

(μ + λ) notation also common with ES and adopted in this thesis, μ marks the

number of parents, λ stands for the number of offspring, and the + specifies elitist

selection (the best of parents and offspring survive).

2.5.2 Genetic Algorithms

Genetics has extended evolutionary theory by the concept of heredity, with genes

acting as transfer units. The genes of an organism constitute its genotype, or

genome, which is encoded into several chromosomes of DNA. Natural selection

applies to the phenotype, which is the collection of all measurable characteris-

tics of the organism representing an expression of the genotype within a given

environment. In practice, the distinction between genotype and phenotype is

somewhat obscured, as, for example, the DNA itself is a phenotypic feature and,

conversely, certain properties of the mother’s ovum are inherited to the child.

Furthermore, the mapping between genotype and phenotype is highly intricate.

Genes composed of DNA are transcribed into RNA, translated into polypeptides,

and then processed into proteins which self-organise into phenotypic traits (Fu-

tuyma, 1998). Complex feedback loops orchestrate the continued expression of

genes.

Genetic algorithms (GAs) (Holland, 1992) acknowledge the genotype-pheno-

type distinction, but the complexities of molecular genetics are typically omitted,

and a far simpler interpretation function translates what usually amounts to a

binary string into a construct whose fitness can be assessed. (The next chapter

is dedicated to more plausible models of the genotype-phenotype map.) GAs

are also distinguished from other evolutionary algorithms by creating offspring

through recombination, which is meant to reflect the crossover of chromosomes

in biological reproduction.
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2.5.3 Genetic Programming

Genetic programming (GP) is a genetic algorithm proposed by Koza (1992),

which is applicable to any genome that represents its information as an n-ary

syntax tree, such as a computer program. A tree is a graph in which any two

vertices are connected by exactly one path, which is less restrictive than the

linear string representation of the canonical GA. The recombination operator

is therefore also different, as it swaps subtrees of the program tree rather than

substrings of the genome. By constraining the possible meaning of each subtree,

we can enforce that any such recombination will produce a syntactically valid

tree as offspring. The size and shape of the solution – and hence of the genome –

need not be specified in advance, because any number of subtrees can be added

to the existing genome. In contrast, most other genetic algorithms assume fixed

size strings, which greatly narrows the range of solutions that can be explored by

the algorithm.

Automatically defined functions (ADFs) can be evolved during the run of

genetic programming as separate branches of a particular program and may be

called from other branches concurrently being evolved (Koza, 1994). This, to-

gether with the exchangeability of sub-trees, facilitates the reuse of successful

genetic components – and essentially adds cycles into the expression of the trees.

Genetic programming with automatically defined functions has been shown to

scale well with the problem size, both in terms of the required computational

effort and the solution size (Koza, 1994). The theoretical foundations of genetic

programming are summarised by Langdon and Poli (2002).

2.5.4 Learning vs. Evolution

Through our distinction of phenotype from genotype, two kinds of adaptation

have become possible: those that change the genotype permanently, and those

that change the phenotype during its lifetime. Learning is often associated with

the latter, as a reintegration of the phenotypic improvements into the genotype

is tricky, if at all possible, within the context of biological development and Dar-

winian evolution. It is, however, the defining attribute of Lamarckian evolution

(Futuyma, 1998). Lamarckian evolution is known to be more effective than Dar-

winian evolution in a stationary environment (i.e. where fitness optima don’t

shift) (Ackley and Littman, 1994), although less so in a changing environment

(Sasaki and Tokoro, 1997).
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Baldwin (1896) suggested Darwinian evolution might also be facilitated by

learning. Genotypes with inherently low fitness can acquire the knowledge to

survive and reproduce through learning. Learning thus produces an enlargement

and smoothing of the surface area around a fitness optimum, thereby simplifying

its discovery by evolution (Nolfi and Floreano, 1999). Not only does learning

benefit evolution, evolution can also improve learning. Since learning affects

the fitness of individuals and consequently the choice of individuals selected for

reproduction, evolution will tend to select individuals that display good learning

traits.

Despite the apparent bidirectionality of the relationship between learning and

evolution, it forms part of what in fact is a larger hierarchy. According to the

No Free Lunch theorem by Wolpert and Macready (1997), all optimisation tech-

niques, including learning and evolution, must perform identically on average

across all possible optimisation problems. A specific technique can be more ef-

fective than other techniques when applied to a specific problem, but will be less

effective when applied to other problems (Droste et al., 1998). Thus, there ex-

ists a universal trade-off between generality and effectiveness of an optimisation

technique.

A general technique will make few assumptions about a problem domain; it

can enjoy wide applicability, but will scale poorly with more difficult problems

(Michalewicz, 1993). This can be avoided by making strong assumptions in the

problem solving method, which will limit its applicability. In trying to optimise

any type of network design, the only assumptions we can make is with respect

to the nature of networks in general. The aim of this research is therefore to es-

tablish an optimisation technique that intrinsically operates within the space of

graphs, rather than strings or trees, yet also addresses the common difficulty with

networks: that they are large. Evolutionary algorithms constitute a solid foun-

dation for this endeavour; the remainder of this chapter reviews further aspects

of these and their application to network design.

2.6 Offspring Generation

Evolutionary algorithms create new solutions by variation of existing solutions,

with mutation and recombination being the two principle means by which the

variation is generated. Alternatively, offspring may be obtained from an explicit,

statistical model of the fitness landscape; methods of this nature are known as
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Estimation of Distribution Algorithms. This section serves as an introduction to

essential concepts in this area that will be of relevance in later chapters.

2.6.1 Mutation

In biology, the term ‘mutation’ refers to a variety of different, generally random,

changes affecting the genome, some of which may also affect the fitness of the

phenotype. Since the likelihood of a fitness improvement sharply decreases with

the magnitude of a random change, mutations tend to be quite small (Futuyma,

1998). In accordance with this observation, GAs tend to apply only nominal

amounts of mutation. In fact, the role of mutation in GAs is often constrained

to providing the recombination operator with a full range of alleles (i.e. possible

variations on the genetic sequence), rather than to directly contribute to the

search process (Holland, 1992). Conversely, ES and EP place an emphasis on

the mutation scheme as the sole provider of variations. The choice of mutation

scheme makes a significant difference on the search performance here.

An efficient mutation scheme should aim to produce changes that push the

phenotype by the right amount into the right direction of the fitness landscape.

Achieving this goal depends critically on the probability distribution that un-

derlies these changes. Yet no single distribution can exhibit the versatility that

would be required for an efficient exploration of every imaginable fitness land-

scape. If, for instance, the fitness optimum is close in one dimension, but distant

in another, the mutations must be scaled accordingly.

An ES achieves this by adaptively scaling and correlating the output of a pre-

defined multi-variate probability distribution – see section 2.5.1. Unfortunately,

this scheme becomes computationally very expensive if used on high-dimensional

landscapes. A functional approximation of the probability distribution can be at-

tained by the comparatively simple process of randomly sampling the differences

between population members. Differential evolution applies these differences as

mutations to its population members (Price, 1999). The distribution of muta-

tions is hence determined by the distribution of population members, which in

turn depends on the topography of the fitness landscape. The result of this is

an adaptive scheme with superior convergence properties, as demonstrated by

numerous experiments and its successful application in engineering (Lampinen

and Storn, 2004).
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2.6.2 Recombination

GAs strongly emphasise recombination over mutation as a source of improved

offspring (Bäck et al., 1997). Recombination creates offspring individuals which

are combinations of their parents. The resulting adaptive change is very different

from the accumulation of mutational changes in a population. A common recom-

bination operator is crossover, which exchanges short segments of the parents’

genotypes. According to the building block hypothesis, segments, or schemata,

that confer above-average fitness (so-called building blocks) become increasingly

dominant in subsequent generations and form instances of larger segments that

confer even greater fitness (Holland, 1992).

Environments where this is not true are called deceptive (Goldberg, 1989a).

Several forms of deception may arise when using crossover to evolve networks. For

instance, several different genotypes may translate into networks with a common

topology and dynamics. This is known as the competing conventions (or permu-

tations) problem (Hancock, 1992). Although these networks behave identically,

they represent different optima in the recombination space, so a crossover between

such parents is likely distant to either optima. Similarly, any pair of networks

whose building blocks are sufficiently incompatible will produce poor offspring.

In fact, the success of the building block hypothesis rests on several assumptions

that are not necessarily true. For instance, not all possible building blocks are

represented in a typical population, and crossover cannot create building blocks;

it only breaks them into smaller pieces by converting mutual dependencies into

entropy (Toussaint, 2003b). Likewise, in GP, a comparison by Angeline (1997)

between subtree crossover and subtree macro-mutation revealed no statistically

significant difference.

A key aspect of the apparent ineffectiveness of recombination is that most

genetic representations determine the meaning of each gene by its absolute or

relative position. If genes that belong to an optimal building block are too far

apart, random crossover is more likely to destroy than exchange a building block

between chromosomes. Biological crossover is more refined in this respect, as

homologous genes contributing to the same trait are lined up by a special protein

called RecA in a process called synapsis (Radding, 1982). Linkage learning in

artificial evolution is motivated by the desire that all alleles of a building block

should also be inherited together during recombination. A simple system for

accomplishing this is to allow the ordering of genes within a chromosome to

evolve.
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2.6.2.1 Messy GAs

The messy genetic algorithm (mGA) is the earliest algorithm to use such a floating

representation to achieve linkage learning (Goldberg et al., 1989). The mGA

dispenses with the fixed-locus assumption of the canonical GA by defining each

gene of a chromosome as an ordered pair g = (name, value). A similar scheme

will also be introduced within our system; accordingly, some noteworthy features

of the mGA are presented in this section.

Consider a 3-bit problem that requires 3 genes in its solution; consider also

the chromosome string ((1, 1)(2, 0)(1, 0)). The first entry of this string is gene

1 with value 1, the second entry is gene 2 with value 0, and the third entry is

gene 1 with value 0. The name of the gene denotes its location in the solution,

so the actual chromosome order is less relevant to its fitness (but not irrelevant;

see below). Linkage between genes can now be established by having constituent

genes of the building block in close proximity to each other.

The drawback of the variable-locus representation of the mGA is that it may

be under- or overspecified with respect to the problem being solved. For exam-

ple, the 3-bit problem presented above is underspecified, because gene 3 is absent;

and it is overspecified, because gene 1 appears twice. mGA addresses overspeci-

fication by adopting a first-come-first-served policy on a left-to-right scan of the

chromosome, i.e. the above chromosome would be expressed ((1, 1)(2, 0)) because

the second instance of gene 1 would be ignored. Underspecification is solved by

employing competitive templates. A string specifying a value for each gene name

is chosen as a template and any unspecified genes in a chromosome are borrowed

from this template. The template is established over several evolutionary eras.

In the first era, a random template is used; at the end of each other era, the best

chromosome evolved so far becomes the template for the next era.

The mGA further divides each era into two distinct phases: a primordial phase

and a juxtapositional phase. In the primordial phase, the population is initialised

to contain all possible building blocks of a specified length, and reproduction

and selection are then applied for several generations to increase the proportion

of good building blocks. The juxtapositional phase continues this, but also ap-

plies genetic operators. Since the mGA representation is of variable length, the

crossover is replaced by two operators, cut and splice. Cut partitions a string

with the probability pc = (λ − 1)pk that grows with the string length λ, while

splice joins two string together with a fixed probability ps.
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2.6.3 Estimation of Distribution Algorithms

Estimations of Distribution Algorithms (EDAs) replace the aforementioned vari-

ation operators with probabilistic model building based on fit solutions and the

sampling of this model to generate offspring solutions. Instead of the parent

population, a set of other parameters, e.g. a Bayesian network, determines the

offspring distribution. The model is constructed so that it reflects the experienced

fitness distribution and targets the search accordingly; this requires the sampling

and evaluation of the population by some heuristic rule.

Early EDAs did not estimate any interactions between variables and only gen-

erated new solutions by preserving the probabilities of individual variables of a

solution; EDAs in this category are the Population Based Incremental Learning

Algorithm (PBIL) (Baluja and Caruana, 1995), the Univariate Marginal Distribu-

tion Algorithm (UMDA) (Mühlenbein and Paaß, 1996), and the Compact Genetic

Algorithm (cGA) (Harik et al., 1999). Because the presence of significant inter-

actions between variables handicaps these algorithms, other EDAs model such

interactions.

Pairwise interactions are addressed by the Mutual-Information-Maximizing

Input Clustering algorithm (MIMIC) (De Bonet et al., 1997) and the Bivari-

ate Marginal Distribution Algorithm (BMDA) (Pelikan and Mühlenbein, 1999).

EDAs that deal with higher order interactions include the Factorized Distribution

Algorithm (FDA) (Mühlenbein and Mahnig, 1999), which uses a factorization of

the Boltzmann distribution, and the Bayesian Optimization Algorithm (BOA)

(Pelikan et al., 1999), which uses Bayesian networks to represent the distribu-

tion. EDAs are principally suited only for linear genetic representation, but can

be extended to tree and graph representations by the use of grammar models,

which will be further discussed in section 3.7.

2.7 Network Evolution

Evolutionary optimisation has been successfully and extensively applied to au-

tomata networks, particularly to the weights and structure of neural networks,

but also to the transition rules of cellular automata (Mitchell et al., 1997). The

former holds the main importance here, since we are principally interested in the

design of networks. A comprehensive survey is provided by Yao (1999), to which

we direct the reader for a historical overview of the field. The following sections
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address several points of note regarding weight evolution and basic approaches to

structure evolution, before discussing general tree and graph evolution using GP

and Cartesian GP, respectively.

2.7.1 Weight Evolution

Weight training by backpropagation may either be inapplicable if the error func-

tion is nondifferentiable or become trapped by local optima if the error function is

multimodal. Consequently, an attractive alternative for training neural network

weights is the use of evolutionary algorithms, which do not require gradient in-

formation about the error surface and can avoid local optima by sampling many

different points on the error surface at once. In practice, however, the error

surface of neural networks is not sufficiently multimodal for this to overcome the

computational expense of evolutionary algorithms, especially with large networks,

although there are numerous exceptions. Whether to apply backpropagation or

an evolutionary algorithm is thus highly problem dependent, and in practice hy-

brid algorithms often perform better on many problems than either approach

alone (Yao, 1999).

Optimising the real-valued weights of a neural network requires these weight to

be represented appropriate to an evolutionary algorithm. The canonical GA uses

binary chromosomes to encode solutions (Goldberg, 1989b), so much of the early

work in weight evolution follows this approach (Caudell and Dolan, 1989). Each

connection weight is represented by a fixed number of bits, and the chromosome is

simply a concatenation of all these connection weights. Binary representations fit

well with the classic GA operators like 1-point crossover and random bit-flipping

mutations, but can produce a somewhat arbitrary mapping to connection weights.

Weights are ultimately assumed to be real-valued, and very close points in a

real-valued space may be represented by very Hamming-distant binary strings.

Alternative coding schemes, such as Gray coding (Collins and Eaton, 1997), can

be used to map real values to special bit patterns that retain the natural ordering

of real space.

Directly operating on a real-valued representation is more appropriate for

evolving connection weights, but this requires special operators to be designed

that replace the classic binary ones. Montana and Davis (1989) trained neural

networks using this approach. EP and ES were designed for real-vector optimi-

sation, which also makes them well-suited for finding connection weights. Fogel

et al. (1990) used EP to train feedforward networks on some classic connection-



Network Adaptation 29

ist problems. Greenwood (1997) trained partially recurrent neural networks on

viseme recognition using ES, which outperformed backpropagation techniques.

Results superior to backpropagation were also achieved on a noisy function ap-

proximation task, using differential evolution in combination with a simple net-

work architecture evolution (Abbass and Sarker, 2001).

2.7.2 Structure Evolution

Optimising the structure of a neural network may not seem to matter much if

the initial network is large and fully connected, as weights can always be set to

zero if certain edges or nodes are not needed. However, as elucidated in section

2.4.2, finding a good topology can assist in the objective of finding good weights,

and evolutionary algorithms are well-suited for discontinuous search spaces of this

kind. Importantly, in problems with high sensitivity to network topology, such

as recurrent networks, using an automated approach such as evolution can be a

significant time saver for the human user (Gruau et al., 1996).

To evolve a network topology one must first decide on how to represent it.

Possible choices are a direct (or blueprint) encoding, or one of two types of indirect

(or recipe) encodings: either a parametric encoding or a generative (or develop-

mental) encoding. Each differs in how much information about the architecture is

encoded into the genotype and what kinds of architectures are easiest to describe

with this information. One of the earliest examples of ANN structure evolution

that we know of, by Miller et al. (1989), employs a typical direct encoding. A

topology of n nodes is represented by an adjacency matrix M of dimensions n×n
in which element Mij denotes the presence (Mij = 1) or absence (Mij = 0) of

a connection from node i to node j. By concatenating the rows of the matrix,

a binary chromosome for evolution by a GA is obtained. The simplicity of this

approach allows for easy implementation but has a drawback in that the size of

the chromosome scales with the size of the network rather than its complexity.

Highly regular networks are just as difficult to find as highly random ones, which

means that large networks become difficult to optimise in practice. Kitano (1990)

evaluated the direct encoding method for evolving a neural network and found

that the speed of evolutionary convergence degrades as the network scales up.

An indirect encoding may be more appropriate when seeking large networks.

An indirect encoding typically represents not individual nodes and connections

of the network, but interactions between groups of such components. With a

parametric encoding, the architecture of the neural network is described in terms
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of coarse parameters, e.g. the number of nodes in a hidden layer, which are then

optimised. This requires certain assumptions about the architecture, e.g. there

is a hidden layer, and thereby limits the novelty of the architectures that can

ultimately be discovered. Nevertheless, parametric encodings can still be very

expressive, as in the case of Harp et al.’s (1989) encoding, which was presented

around the same time as Miller above. It employs a binary string to represent

only modules of the network and the outward connections from these modules.

A module is defined here as a rectangular grid of nodes, fully connected in a

feedforward pattern. Within a module, only the nodes in the highest layer have

external connections. Each module is assigned an identification number so the

target of outgoing projections can be specified.

Generative encodings are constituted by rule sets that can produce a variety of

possible networks, typically not just a limited subset as for parametric encodings,

although some networks are still more easily expressed than others. The reader

is directed to the next chapter for details on generative encodings. Roberts and

Turega (1995) compared all three encoding schemes and found that the direct

encoding outperforms the indirect encoding on small problems, but vice versa for

larger problem sizes; the generative encoding represented an effective compromise.

2.7.3 Cartesian Genetic Programming

Unlike GP, Cartesian Genetic Programming (CGP) uses directed graphs instead

of trees to represent programs (Miller and Thomson, 2000). CGP was developed

principally for digital circuit evolution, although it has since been applied to

artificial life and related domains as well (Rothermich and Miller, 2002). Nodes

of a CGP graph must be part of a rectangular grid. The grid consists of n ×m
nodes arranged into columns and rows, ni inputs, and no outputs, as shown in

figure 2.6. Each component of the grid – nodes as well as inputs and outputs

of the grid – has a unique integer index assigned automatically. The grid is

populated with nodes according to a fixed length genotype, which is composed of

a linear sequence of integers arranged into groups. The last element of a group

specifies the function of a node, say a XOR gate; all other elements specify the

indices of the grid nodes that the inputs of this node should connect to. Note

that a fixed arity is assumed for every function. Nodes can connect to nodes

in preceding columns; the number of column to include is defined by the global

levels-back parameter. Although each node must have a function and resolved

inputs for this function, its output need not be used by other nodes. This leads to
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Figure 2.6: Cartesian GP evolves a population of strings, which can be translated
into a rectangular array of cells connected according to the input and output
indices of each cell. Shown here is program with 6 inputs, 3 outputs, and 3
functions (0, 1, 2 inside cells) (adapted from Miller and Thomson, 2000).

some neutrality in the genotype-phenotype mapping (see also section 3.3 on this

topic), which has been claimed to be very beneficial (Vassilev and Miller, 2000;

Yu and Miller, 2001). The genotype itself is evolved with a (1 + λ) evolution

strategy.

2.8 Summary

This chapter provides the reader with a perspective on the nature of change in

networks, taking account of the dynamics of networks and how networks can

be optimised towards a goal. With respect to network design, artificial evolu-

tion suggests itself as a proper balance between search effectiveness and the kind

of generality needed for optimising within multiple domains. The efficacy of

evolution at this task, however, ultimately depends on its ability to handle the

exponential growth of possible network configurations with network size. Un-

less evolution can utilise knowledge about repetitions and other patterns within

these networks, it may quickly become intractable. In view of this and the sheer

simplicity of the Darwinian principles, the capacity for complex functional adap-

tation in biological systems is remarkable. However, the likely source of this is

not a sophisticated adaptation mechanism, but a sophisticated functional repre-

sentation upon which simple mechanisms operate (Toussaint, 2003a). The next

chapter will review this idea in the context of artificial evolution, and present a

rational foundation for the system presented subsequently.





Chapter 3

From Embryogeny

to Graph Grammar

The human brain contains roughly 1011 neurons, each with an average of 105

connections to other neurons (Bear et al., 2006). Explicitly describing every con-

nection would hence require a minimum of 1011 × 105 × log2(1011) = 1.7 × 1017

bits of storage. In contrast, the human genome is composed of about 3 × 109

nucleotide bases (Venter et al., 2001), representing about twice as many bits of

information. These numbers are already several orders of magnitude apart, de-

spite most of the genome not even coding for the brain. If optimising a neural

network of the order of the brain was indeed our goal, having such an efficient rep-

resentation would likely be the deciding factor in our success, quite independent

of the optimisation algorithm. This is because the number of samples needed to

estimate the space of all possible configurations increases exponentially with the

number of parameters constituting each configuration. Unless the topography of

the configuration space is trivial, deducing the location of better samples from

previous samples amounts to a futile endeavour, as the samples are simply lost

in the vastness of high-dimensional space. We also refer to this as the curse of

dimensionality, which plagues most statistical learning problems and is not easily

overcome.

However, redundancy in the phenotype can allow for a lower-dimensional,

more efficient genetic representation. We ideally would wish to eliminate all

redundancy and determine the most compact representation. This idea is for-

malised by Kolmogorov complexity, which is (roughly) the shortest computer pro-

gram capable of generating a given message (Li and Vitányi, 1997). Kolmogorov

complexity has its roots in probability theory, information theory, and philosoph-

33
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ical notions of randomness. Its central notions are perhaps best explained in

contrast with classic information theory (Shannon, 1948), which assigns a quan-

tity of information, expressed as bits, to an ensemble of possible messages. The

minimal mean length for the bit-string encoding a given message should be pro-

portional to the negative logarithm of the probability of the message, i.e. the more

surprising the message, the more information it will carry: I(mi) = − log p(mi).

However, this does not say anything about the number of bits needed to

convey any individual message in the ensemble. If a message was composed of

a sequence of a million 1’s, then we do not need a million 1’s to describe this

message; we can encode it by expressing the million-multiplier in binary and

attaching the repeated pattern ’1’, i.e. only about 21 bits would be required.

Although determining the absolutely smallest program is typically not feasible,

the idea is nevertheless applicable. The description of some messages can thus be

compressed by a substantial amount, provided they exhibit enough regularity. A

requirement for this to work is that we have agreed on an algorithm that decodes

the encoded message.

The elaborate mapping from genotype to phenotype fulfills this role in the

biological context, and we can likewise exploit it for optimising large network

designs. The following sections investigate the expected benefits of artificial em-

bryogeny for this purpose and provide a comprehensive survey of earlier work in

this area. Grammars are subsequently established as formally neat and simply

models of generativity, and graph grammars are presented as a suitable means

of obtaining networks from such models. Finally, we touch upon the prospect of

facilitating the evolutionary search process by building grammar-based models of

offspring distributions.

3.1 Embryogeny

Unlike the direct one-to-one mapping function often employed in artificial evo-

lution to translate genes into phenotypic traits, the biological mapping function

is highly complex. Genetic changes are not directly manifested in phenotypic

changes; rather, a complex developmental machinery mediates between genetic

information and the phenotype. Embryogeny is the process of growth that de-

fines how a genotype is mapped onto a phenotype up until the fetal stage of

development. It is an appropriate and common term for the kind of generative

representation that we are investigating here (Stanley and Miikkulainen, 2003).
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In particular, embryogeny should exhibit one or both of the related properties

of polygeny and pleiotropy, which are not possible with the simple one-to-one

mapping (Bentley and Kumar, 1999).

Polygeny refers to multiple genes acting in combination to produce a phe-

notypic trait, which can have a significant impact on how this trait will evolve

in relation to other traits. Conversely, if changes to a single gene affect whole

groups of phenotypic variables, this is called pleiotropy. Biological embryogeny

exhibits some dramatic instances of this. Halder et al. (1995) forced the muta-

tion of a single control gene called eyeless in the early ontogenesis of a Drosophila

Melanogaster. This comparatively minor genotypic variation leads to a highly

correlated phenotypic variation: the growth of additional, functionally complete

eyes on the wings, legs and antennae of the fruit fly. Pleiotropy here defines

the eye as a functional module that can be reused phenotypically by triggering

a single gene. By describing the phenotype in terms of such modules, it can be

compressed into a much smaller genotype, thereby greatly reducing the number

of variables requiring optimisation and allowing evolution to progress in big leaps

rather than small steps. However, while pleiotropy enables modularity, it does

not guarantee it; additional biases in the representation are needed to facilitate

the emergence of modules like eyeless.

3.2 Modularity

Modularity concerns the effective partition of sets into distinct subsets. Given a

set of parameters, the optimality of any subset of parameters will depend on the

configuration of the remaining parameters. Thus, a subset that has been opti-

mised in one particular context may be far from optimal in another context. A

system can be understood as being modular if it can be described in terms of pa-

rameter subsets – modules – that are more tightly coupled internally, i.e. between

parameters of a single subset, than externally, i.e. between parameters of different

subsets (Simon, 1996). If a subset were entirely independent of external parame-

ters, there can only be a single optimal configuration of this subset – this would

be the ideal module. More realistically, a system may be composed of parameter

subsets that are marginally dependent upon each other, so that the number of

optimal configurations of each subset is – if perhaps not one – at least low. An

adaptive mechanism that is able to discover and manipulate these modules in

an effective manner would greatly reduce the configuration space that must be
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searched. Also referred to as divide and conquer, this complexity-reducing strat-

egy should be familiar to anyone who has ever tried to solve a tricky problem.

As the fruit fly example indicates, nature follows the same path, but the

modularity of biological design is not just visible in experiments on insects. Even

the human brain, our poster child for massive complexity, exhibits widespread

modularity at various scales of description, e.g. the organisation of the cortex

into horizontal and vertical layers defining minicolumns, which are grouped into

macrocolumns, which in turn compose larger entities (Mountcastle, 1978). In-

deed, it has become apparent that modularity, at either the genetic or phenotypic

level, or both, is a necessary characteristic of complex and highly evolvable sys-

tems (Wagner, 1995). It would therefore seem sensible to also make provisions

for modularity when trying to artificially evolve any large-scale network design.

Extensive practical research on modularity has occurred within the context

of tree evolution with GP. The most popular means of modularisation is to use

ADFs, which hide functionality into separate branches and can be called as if

they were terminals (Koza, 1994). A significant drawback is that the user must

define the number of ADFs and the arguments each takes before the evolution

commences. Architecture altering operations (Koza, 1995) and adaptive represen-

tation (Rosca and Ballard, 1994) are natural extensions to ADFs, as they allow

these parameters to be changed during the run and without requiring user input.

Alternatively, with encapsulation a point in a tree is chosen and the subtree from

that point down is henceforth treated as a new terminal (with no arguments)

(Koza, 1992). Module acquisition is similar to this, but the subtree is only en-

capsulated up to a given depth (Angeline and Pollack, 1993). The encapsulated

section is shielded from any modification, which has been shown to decrease the

time required to find a solution by reducing the amount of manipulations that

can take place in the genotype. Walker and Miller (2004) extended module acqui-

sition to CGP and thereby evolved solutions to the even-8 parity problem about

20 times quicker than before.

In the context of networks, modularity entails that inter-module edges are

sparser than intra-module edges. Previous studies into hard-coding modular-

ity into fixed-architecture neurocontrollers for game-playing (Togelius and Lucas,

2005) and evolvable-architecture neural networks for visual perception (Di Ferdi-

nando et al., 2001) have presented a strong case for improved evolvability arising

from modular designs. However, the structural description of a network module

informs us only about the probability of immediate effects between one module

and another, which is not necessarily indicative of the extent of consequent state
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ModularNon-modular

Figure 3.1: Modularity is a reduction in external dependencies between subnet-
works, which can be accomplished by encapsulating these subnetworks within
interfaces that explicitly restrict the possible structural dependencies (see also
section 5.2 on this).

changes over time (Watson and Pollack, 2005). One module may be strongly and

non-linearly sensitive to small state changes in another module, despite being

sparsely connected. In practice, the optimisation of a system is therefore not as

straightforward as its potential for structural modularity might imply. Yet this

kind of functional interdependency also has little impact on the choice of repre-

sentation that we ought to use, as it is not a property that would correlate with a

network design in a domain-independent manner. Structural modularity, on the

other hand, can be imposed upon a representation, as will be demonstrated for

network design in the next chapter.

3.3 Neutrality

If a variation to the genotype of an organism does not affect its phenotype, it

is called neutral. Neutrality is common in biological genotype-phenotype map-

pings, because they tend to incorporate some redundancy. One of the pressures

on natural evolution is to code the information in a fault-tolerant manner, so

that encodings are robust to deleterious mutations. A genetic sequence that has

evolved to be robust will have an improved likelihood of successful transmission,

and thus will continue to possess a selective advantage. We speak here of neutral-

ity selection that acts to increase the probability that mutations are selectively

neutral (Ofria et al., 2003).

The existence of neutrality selection also has implications for the evolution
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of evolvability, an effect otherwise known as canalisation (Gibson and Wagner,

2000). Canalisation is a form of genetic buffering where multiple genetic factors

within the genome stabilise a developmental pathway (Wilkins, 1992). The ex-

pressed number of variations of a phenotypic trait are decreased this way, which

affects the evolvability of a phenotypic trait, i.e. its capacity to evolve, since

the rate of evolution is proportional to the amount of additive genetic variance.

Canalisation also controls the exploration strategy of evolution. By reducing the

effects of new mutation, canalisation can allow a build-up of what is referred to as

hidden genetic variation. This variation is not expressed as phenotypic variation

and is hence independent of the selection process. It can continue to accumulate

until the canalising system breaks down, either as a result of a change in the

selection objective, or after admixture of new variation. The resulting expression

of previously hidden variations may produce a more rapid change than might

otherwise be expected to occur.

The exploration strategy of an evolutionary algorithm is principally defined by

the choice of mutation operators and the representation to which they are applied.

An obvious but misleading conclusion is that the adaptability of an exploration

strategy requires the adaptability of either the operators or the representation,

which, given that the phenotype space is defined by the problem, would entail

the adaptability of the genotype-phenotype mapping (Wagner and Altenberg,

1996). However, if the mapping allows of canalisation, then the exploration can

adapt even with fixed operators and fixed representation. Neutral variations to

the genotype affect phenotype evolution by changing the fitness effects of later

mutations, thereby allowing for distinct exploration strategies to be encoded in

the same representation (Toussaint, 2003a). The obvious drawback of direct

encoding schemes is that they allow for no neutrality beyond what is intrinsic to

the phenotype space. Canalisation requires a non-trivial means of representation

as made possible by embryogeny.

3.4 Categories of Artificial Embryogeny

Embryogeny allows for a genotype with fewer redundancies yet the facility to

encode variable exploration strategies. Exploiting these properties for network

evolution requires the design of an artificial embryogeny. Establishing a model of

the biological development process is difficult, however, because it is defined by

a complex web of interactions between genes, their phenotypic effects, and the
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environment in which the development occurs. Consequently, existing implemen-

tations of artificial embryogeny differ in their degree of sophistication and can be

categorised into external (non-evolved), explicit (evolved), and implicit (evolved)

(Bentley and Kumar, 1999). The majority of such embryogenies are external to

the genotype and designed by a researcher. Evolutionary art systems, for in-

stance, often use a fixed, non-evolvable embryogeny that specifies how each gene

affects the construction of the phenotype (Todd and Latham, 1992). The advan-

tage lies in the extent of control that the designer has over the embryogeny, but

because the embryogeny remains static during evolution, the quality of results

depends on the quality of the embryogeny the designer came up with in the first

place.

Explicit embryogenies grow designs by following the instructions of a develop-

mental program or grammar that is typically also the target of the evolutionary

search. Implicit embryogenies rely on indirect chains of interacting rules that

allow for self-adaptation and independent dynamics of the embryogeny. Implicit

embryogenies are types of constrained generating procedures, which, as Holland

(1998) describes, resemble neural nets, game theory and classifier systems. In

practice, the term tends to refer to systems based on models of gene expression

and artificial chemistry. A survey of explicit and implicit embryogenies in the

context of network evolution is given below.

3.4.1 A Survey of Artificial Embryogeny

Several different factors of morphogenesis need to be taken into account in or-

der to remain faithful to the biological archetype. This includes chemical factors

such as Turing’s (1952) mathematical theory of cell-cell interaction via chemical

substances and mechanical factors such as Odell et al. (1981)’s physical model

of cell membranes. Fleischer and Barr (1994) constructed a simulation frame-

work combining multiple such developmental mechanisms by means of ordinary

differential equations (ODEs) which are coupled via if -clauses. Simulated chem-

ical gradients are used to determine cell growth and differentiation. This model

can reproduce a wide range of biologically relevant developmental phenomena

and was also used to evolve desirable ANN topologies (Fleischer, 1995). Kitano

(1995) likewise evolved ANNs from a model of cell metabolism and division. The

genome encodes metabolic rules linked to ODEs describing chemical reactions

and changes within cells, with explicit modelling of diffusion, active transport of

chemicals, and special growth factors.



40 From Embryogeny to Graph Grammar

A key to the development of cells is gene expression, with each gene typi-

cally interpreted as an instruction on how to modify some aspect of the devel-

opment process. In biology, the operon model explains how genes form networks

of complex interactions termed Genetic Regulatory Networks (GRNs). GRNs in

biological DNA contain master control switch genes, known as Hox genes, which

orchestrate the transcription of other genes to grow high-level repeated structure.

Lewis (1978) demonstrated that mutations of Hox genes can lead to large-scale

but localised changes in phenotype. Raff (1996) argues that in some cases, dif-

ferentiation and/or duplication of a feature may allow evolution to co-opt one

copy of the feature to perform a different function role. This process is known

as exaptation (Gould and Vrba, 1982). A similar mechanism has been shown to

occur at the gene level (Ohno, 1970).

Babloyantz and Hiernaux (1974) established one of the earliest artificial sys-

tems based on the operon model. It encompasses gene regulation and cell dif-

ferentiation, and implements chemical reactions as ODEs, but is restricted to

modelling only a single cell. Stork et al. (1992) would later be the first to present

a gene expression system evolving ANNs. Here the activities of two different

types of genes, control genes and structural genes, are directly encoded in an

activity table where the state of each gene is determined by evolution. A biolog-

ically more plausible encoding scheme has been developed by Jakobi (1995). In

his model, genes code for proteins and proteins activate or suppress genes, form-

ing GRNs which constitute independent dynamical systems that can be moved

from one basin of attraction into another by internal or external stimuli to the

neuron. Each protein also has a unique effect on the gross behaviour of the neu-

ron, including the growth of excitatory or inhibitory dendrites. These neurons

then compose recurrent ANNs for controlling a simulated Khepera robot around

obstacles.

Astor and Adami (2000) presented an ambitious gene expression model em-

phasising the artificial life paradigm: to design a system in such a way that com-

plex higher-order structures can emerge from low-level descriptions inspired by

biology. In practice, however, only a few neurons were grown in a two-dimensional

hexagonal grid. Other complex models of gene expression have been developed

by Eggenberger (1997a,b), used to evolve primitive Hebbian neural networks and

bilaterally symmetric (i.e. also rather primitive) 3D shapes, and Bolouri et al.

(1998), who demonstrated the evolution of an edge detecting retina through an

implicit embryogeny. Most recently, Bowers (2005) presented an embryogeny

involving diffusion of 20 chemicals, physical cell interaction, and a GRN with
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26 chemical-sensitive genes, and applied this to the problem of evolving a visu-

ally recognisable French Flag (Wolpert, 1969). The phenotype was shown to be

very robust to damage due to the modularity intrinsic to the complex genotype-

phenotype mapping. It appears that useful traits must be encapsulated in the

genotype to be effectively utilised in evolution, and this happens if the genes that

function together are also grouped together.

Growth of shape was earlier explored also by Furusawa and Kaneko (1998) and

Hogeweg (2000) in studies on multi-cellularity. A simpler model of establishing

shape was presented by Sims (1994) for the evolution and co-evolution of three-

dimensional virtual creatures. The genotypes are structured as directed graphs of

nodes and connections, which are used to build the morphology of each creature,

and can be mutated and recombined during evolution. Each morphological node

also constrains graphs of neural nodes and connection that define the dynamics

of each part of the resulting creature. Bongard and Pfeifer (2001) combined

a gene expression model with cellular encoding (see section 3.5.3) to establish

the morphology – including limbs and sensors – and neural control of a multi-

articulated simulated agent.

Morphology has also been the focus of early models of neural network growth.

Nolfi and Parisi (1991) evolved the position and branching properties of axonal

trees spreading out from artificial neurons, and added grammar-based cell division

in later work (Cangelosi et al., 1994). The disadvantage of this model is that the

number of the genes in the genome grows with the number of neurons, which

leads to a poor scaling behaviour. Dellaert and Beer (1996) presents a more

sophisticated attempt at implementing a embryogeny model and applying it to

neural network growth. Testing it on a basic avoidance task, however, revealed

that the size and structure of the search space was intractable. A simplified

GRN based on a Random Boolean Network was proposed instead and used to

successfully evolve agents that were capable of following a curved line. The

genome consists of a fixed number of network nodes, each with two inputs (other

nodes are specified by their numerical indices) and a truth table determining the

state of the node, which in turn controls various properties of cell division and

neural innervation.

Cell development can certainly be modelled without biologically realistic reg-

ulatory networks. Downing (2003) ran pieces of Push-like code in modules of

a network containing other Push programs. Push is a programming language

intended primarily for use in evolutionary computation systems (Spector and

Robinson, 2002). A genome in Push encodes a list of primitive operations that
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can act on a variety of data types. Push achieves this by having multiple data

stacks, one for each data type. Operators take arguments from the appropriate

stack and push them onto the correct stack as well. A module in the network com-

municates by pushing data onto the stacks of neighbours, migrates by swapping

places with a neighbour, and reproduces by copying its Push code into a newly

formed neighbour cell. Downing gives examples of how particular Push programs

lead to emergent processing behaviours within the resulting cellular ecologies.

Another kind of cell program was demonstrated by Miller (2003) on the French

Flag problem. A feedforward Boolean circuit is evolved by CGP to control the

quantities of chemical a cell will produce, and how it will grow and change.

Finally, a GRN can also be modelled by a recurrent neural network, as imple-

mented by Federici (2005) for the evolution of spiking neurocontrollers for sim-

ulated Khepera robots. Compared to direct encoding, the resulting controllers

were more parsimonious and revealed a steeper performance increase.

3.5 Grammar Evolution

Many of the above systems maintain an emphasis on biological plausibility and

consequently a high degree of complexity, which implies not only a considerable

computational cost in simulating the embryogeny, but also a general difficulty in

analysing such systems (and rarity; we are not aware of any detailed studies).

Consequently, artificial embryogenies often originate from intuition rather than

experimentation. A more transparent approach is to model the developmental

process as a generative grammar rather than a realistic simulation of biology.

3.5.1 Generative Grammars

A formal generative grammar G is a quadruple (N, T, P, S), where N is a finite

set of nonterminal symbols, T is a finite set of terminal symbols (disjoint from N),

P is a set of production rules, and S (in N) is a starting symbol, also known as

the axiom. Each production rule is an ordered pair p = (P, S), where predecessor

P ∈ (N ∪ T )∗ denotes a string of symbols that is to be replaced by the successor

S ∈ (N ∪ T )∗. A derivation is a series of rule applications to a string. A formal

grammar G defines a formal language L of all the strings that can be generated

by a derivation from a starting symbol. For example, the following grammar with

terminals {a, b}, nonterminals {S,A,B}, and production rules
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S → ABS

S → ε

BA→ AB

BS → b

Bb→ bb

Ab→ ab

Aa→ aa,

where S is the starting symbol (and ε is the empty string), defines the language

of all strings of the form anbn (i.e. n copies of a followed by n copies of b). Note

that all symbols in N that do not appear as the left side of a production rule are,

by default, rewritten into themselves. These default rewriting rules are usually

not included in P . In a context-free grammar (CFG), the left hand side of a

production rule may only be formed by a single nonterminal symbol, whereas no

such restriction applies to context-sensitive grammars such as the one above.

3.5.2 Lindenmayer-Systems

Lindenmayer (1968) introduced Lindenmayer-systems (commonly referred to as

L-systems), which replicate the growth characteristics of linear and branching

structures observed in plant morphogenesis. L-systems are best known for the

plant-like fractals they generate, but are also able to model the morphology of a

variety of organisms or structures. An L-system is a special kind of string gram-

mar. Whereas the production rules of most grammars are applied sequentially,

an L-system rewrites all the symbols of a string concurrently to form the new

string. (This is not unlike the updating of cellular automata discussed earlier in

section 2.2.1, but with the additional freedom of changing the number of cells.)

For illustration, assume an L-system with

N = {A,B},

T = {},

P = {(A→ AB), (B → A)},

S = {A}.
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This is Lindenmayer’s original model for the growth of algae. After the n-th

replacement iteration the following strings would be generated:

n = 1 : A→ AB

n = 2 : AB → ABA

n = 3 : ABA→ ABAAB

n = 4 : ABAAB → ABAABABA

n = 5 : ABAABABA→ ABAABABAABAAB

By iteratively applying the production rules from the axiom, a more complex

string appears to arise from a succession of simpler ones. Obtaining this string is

rarely the final objective, however. The symbols of the string can be interpreted

as instructions to produce another artifact, e.g. as commands for a LOGO-style

turtle, such as “turn left” and “draw line” (Abelson and diSessa, 1981). To draw

naturally branching plants this way, bracketed L-systems are usually employed,

which include [ and ] as symbols to respectively remember or restore the last

position and direction of the turtle.

For modelling interactions between neighbouring cells, it is possible to base L-

systems on a context-sensitive grammar. An L-system without context is known

as a 0L-system. If some production rules have a one-sided context (i.e. cA → B

or Ac→ B, where c is not replaced), it is a 1L-system, and a 2L-system may have

context on both sides (cAc→ B). Another extension of the L-system is the class

of parametric L-systems (PL-systems) (Lindenmayer, 1974). These differ from

the basic L-systems in that production rules are associated with parameters. Pa-

rameter values can be modified by algebraic expressions and may have conditions

that determine which production rule to apply. The principal advantage of a

PL-system over a basic L-system is that the given PL-system can produce a fam-

ily of strings depending on the chosen parameter values. For instance, assume a

PL-system similar to the example above, with

N = {A,B},

T = {},

P = {(A(n) : n > 0→ A(n− 1) B(n− 1)), (B(n) : n > 0→ A(n− 1))},

S = {A(4)}.
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After the n-th replacement iteration the following strings would be generated:

n = 1 : A(4)→ A(3)B(3)

n = 2 : A(3)B(3)→ A(2)B(2)A(2)

n = 3 : A(2)B(2)A(2)→ A(1)B(1)A(1)A(1)B(1)

n = 4 : A(1)B(1)A(1)A(1)B(1)→ A(0)B(0)A(0)A(0)B(0)A(0)B(0)A(0)

n = 5 : A(0)B(0)A(0)A(0)B(0)A(0)B(0)A(0) {no replacement}

The conditions of the two productions rules effectively terminate the further

growth of the L-systems after 4 iterations, because the initial parameter of A

was 4.

3.5.2.1 Graph L-System

Kitano (1990) and Boers and Kuiper (1992) are pioneering examples of evolving

grammar-based encodings of graphs. Kitano (1990) employs a context-free, de-

terministic graph L-system, which is an extension to the conventional L-system

apparently first proposed by Doi (1988). The graph L-system GGL is the sextuple

(SN , SE ,MN ,ME , P, S), where

• SN is a finite set of node symbols,

• SE is a finite set of edge symbols,

• MN is a finite set of 2× 2 matrices whose (i, j)-th element is aij ∈ SN ,

• ME is a finite set of 2× 2 matrices whose (i, j)-th element is bij ∈ SE ,

• P is a set of production rules, and

• S ∈ SN is the axiom (i.e. the starting symbol).

Each production rewrites a node or edge symbol within a node or edge matrix into

another node or edge matrix until all symbols that can be rewritten are rewritten.

Kitano (1990) uses graph L-systems to provide a compact representation of neural

networks for evolutionary optimisation. The production rule set for each network

is translated into a binary string and stored in a chromosome; the rule sets are

then evolved in this format by a genetic algorithm. Kitano applied neural network

evolution to an encoder/decoder problem and observed that the graph L-system

encoding produced a faster convergence than the direct encoding. It also scaled

better on harder problems where larger networks were required.
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Figure 3.2: The string on the left is translated into the graph on the right using
the G2L-system (adapted from Boers and Sprinkhuizen-Kuyper, 2001).

3.5.2.2 G2L-System

A more conventional 2L-system is used by Boers and Kuiper (1992), where the

string that results from the rewriting is interpreted as a graph. This was later

named the G2L-system and generalised to cyclic graphs (Boers and Sprinkhuizen-

Kuyper, 1995). Neural network optimisation is again the sole application of this

system. A string in the G2L-system is the set

Σg = � ∪ {[, ]} ∪ Σ

with Σ being the finite set of symbols of the language and � the set of integers

where each j ∈ � is read as a connector symbol. The square brackets [ and ] are

used to denote modular subgraphs. Each n ∈ Σ in the string represents a node

in the corresponding graph. The integer j behind n or ] connects the node or

subgraph, respectively, with a directed edge to the jth node or subgraph to the

right of the string if j is positive, or the left of the string if j is negative. For an

illustration of this, refer to figure 3.2.

When seeking the jth node or subgraph, each subgraph is seen as a unity and

regarded as a single node. The connectors immediately to the right of ] attach

all output nodes of the subgraph, while any connection made to the subgraph is

attached to all of the subgraph’s input nodes. Output nodes are defined as those

nodes that have no outgoing edges to other nodes of the same subgraph; input

nodes are those nodes that do not have any incoming edges from within the same

subgraph. Each production of the G2L-system has the format

L < P > R→ S

where L is the left context, R is the right context, P is the predecessor, and S is

the successor. P and S contain fully defined modules and nodes. The meaning
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of L and R differ from normal 2L-systems, where the context of a symbol being

rewritten is part of the string directly to the left and right of that symbol. In

the G2L-system, L is instead matched against the coding symbols of the nodes

from which nodes in P receive their input, while R is matched against the nodes

attached to the output from one or more nodes in P . Matching occurs in a left to

right order, and more specific production rules are preferred if there are multiple

matches; the specificity of a production is defined as the number of symbols on

the left-hand side of the production.

Each symbol of a production rule is represented by a 6-bit string. An asterisk

acts as a start and stop marker, separating each L, P , R and S and each complete

production. The genotype of a network is the sequence of symbols that define the

production set for this network. The fittest neural network topology is evolved

from a population of genotypes by a standard GA; the weights of the network

are optimised using error backpropagation. Very large modular neural network

architectures can be evolved from comparatively small genotypes using the G2L-

system, although, to the author’s knowledge, no experiments have been done to

show this to be applicable in practice.

3.5.2.3 GENRE

Hornby and Pollack (2001a) extended the use of evolved L-systems beyond neu-

ral networks to general design. This research followed earlier work by Lipson

and Pollack (2000) on evolving simple robots represented as graph-based data

structures with edges connecting bars, actuators, and artificial neurons. A direct

encoding scheme was used here. It was shown that systems beyond a certain

level of complexity were impractical to evolve and that the systems obtained had

unnatural, highly asymmetric morphologies (Hornby and Pollack, 2001b). In con-

trast, Hornby’s (2003) evolutionary design system, called GENRE, is based on a

P0L-system. The final string produced by the L-system after a given number of

rewrites is passed on to a design constructor that interprets the string symbols

as instructions to build a particular design.

The L-system is evolved directly by a simple evolutionary algorithm that uses

specialised variation operators. It is initialised from a blank template of a fixed

number of production rules (i.e. predecessors), each with a fixed number of condi-

tions and successors. Conditions are created by randomly choosing a parameter

and a constant value to compare against; successors are random sequences of pro-

duction and terminal symbols. Mutating the L-system involves random selection
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of a rule, which is then changed by randomising, incrementing, decrementing,

adding, or deleting symbols or conditions; alternatively, a sequence of symbols

may also be encapsulated and placed into a previously unused production rule.

The recombination operator randomly takes symbols and conditions from two

existing L-systems and creates a new L-system from these.

GENRE was evaluated on four design classes: table designs, neural networks,

robots controlled by oscillator networks, and robots controlled by neural networks

(Hornby, 2003). In comparison to a non-generative representation, variations to

designs (especially large variations) encoded with an L-system were more likely

to be successful during evolution, leading to fitter solutions being evolved within

a shorter time span.

3.5.3 Cellular Encoding

L-systems rewrite strings according to rules, and the systems presented above

store these rules as strings and evolve these strings. Use of other data structures

has been uncommon, but a notable exception is Cellular Encoding (CE), which

was introduced by Gruau (1992). CE represents the graph rewriting rules as a

tree, or a list of trees, known as grammar trees. The nodes of the tree are refer-

ences to graph transformations applied successively to develop a single ancestor

cell into a neural network (specifically in Gruau’s work). Figure 3.3 illustrates

this process. Each cell carries duplicate copies of the grammar trees and a pointer

to a particular tree node, whose associated transformation is executed before the

pointer moves on to the following node.

Gruau’s (1995) basic CE framework defines a number of instructions for graph

transformation, some of which are also shown in figure 3.3. A sequential division

produces two daughter cells that replace the mother cell; the first cell inherits

the incoming edges of the mother cell, while the second child inherits its outgoing

edges. In a parallel division both daughter cells inherit the incoming and outgoing

edges of their mother. Other instructions allow modifications to the thresholds of

neurons or the weights (or existence) of incoming edges. A recurrence instruction

permits the reuse of other instructions by moving the cell pointer to the root

of a grammar tree; recurrence continues until a cell-specific limit (called life) is

reached for the tree root. CE can thereby efficiently represent repeating structures

in problems such as parity and symmetry. The growth process otherwise stops

on an end program instruction.
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Figure 3.3: Network construction according to cellular encoding: the left half of
this figure depicts a tree of graph rewriting operators, together with the develop-
ing network of cells. Dotted arrows point to the instruction that applies to the
cell at each step. The subset of CE operators employed here is defined on the
right-hand side.

Gruau (1994) proved that CE can be translated into a proper graph grammar

(see also section 3.6). The principle benefit of the tree representation is that

it allows for optimisation by GP. Subtrees can be swapped with those of other

trees, and as the network specification is hierarchically organised (as a tree),

this facilitates the identification of useful modules. However, reuse is otherwise

quite restricted, because the recurrence instruction only points at roots and uses

relative indexing of trees, so a recurrence is not always portable between trees.

The choice of defined graph transformation also imposes a strong bias on the

kind of networks that are discovered. Inevitably, there has been some disagree-

ment on what is the best set of transformations. CE as described above uses node

operators, i.e. all operators apply to cells and may result in one or more other

cells, with only weak control over the edges between nodes and often generating

highly connected networks. Luke and Spector (1996) therefore propose cellular
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encoding by edge operators rather than node operators, and De Jong and Pollack

(2001) use both node and edge operators in evolving recurrent neural networks

for signal reproduction.

3.6 Graph Grammars

The theory of graph grammars can be viewed as an extension of the theory

of formal languages to graphs. Just like sets of strings can be characterised

by string grammars, sets of graphs can be characterised by graph grammars.

Graph grammars therefore provide an intuitive description for the manipulation

of graphs and graphical structures in any applicable domain. Over the last 30

years of research a great many graph rewriting mechanisms have been devised,

which can generate a variety of classes of graphs with a diverse range of properties.

The reader is referred to Rozenberg (1997) for a comprehensive review of this area.

Graph rewriting can be separated into node rewriting (or vertex replacement)

and edge rewriting (or hyperedge replacement, see section 3.6.1), depending on

whether graphs are seen as sets of vertices linked by edges or as sets of edges

glued by vertices. Vertex replacement grammars are regarded as more powerful

than hyperedge replacement grammars, but hyperedge replacement grammars

are easier to implement. In both instances, the mechanism is defined by what is

being replaced, what it will be replaced by, and how either connects to the rest

of the graph. Advanced rewriting mechanisms in each category, such as double

pushout rewriting and NCE-rewriting, respectively, can rewrite entire subgraphs

at once.

A rather different approach to graph rewriting is to define a number of opera-

tions on graphs and consider a string language of expressions over these operations

(Vereijken, 1993). With a string grammar and an appropriate function that inter-

prets each string of the generated string language, a “graph grammar in disguise”

is established, which can indeed by very powerful; e.g. see Lucas (1995) for how a

perceptron that internally performs backpropagation can be coded from this. The

grammatical development models presented in section 3.5 are further instances

of this approach. In notable contrast, the research here will pursue a different

direction by operating directly on a graph grammar as described below, thereby

avoiding the need for predefined graph operations and the interpretation stage.
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3.6.1 Hyperedge Replacement Systems

Hyperedge replacement is one of the most elementary and frequently used con-

cepts of graph rewriting and was originally introduced by Feder (1971) and

Pavlidis (1972). It constitutes a solid foundation to work with, as it is rich

with theoretical results corresponding to the properties of context-free Chomsky

languages. In essence, hyperedge replacement is a type of edge rewriting ex-

tended to hyperedges. Edges in a graph normally have arity two, that is, they

connect two vertices. A hyperedge may instead have multiple sources and targets;

it connects several vertices via a set of incoming tentacles and a set of outgoing

tentacles, as depicted in figure 3.4. A graph with hyperedges is known as a hyper-

graph. Formally, a directed, labelled hypergraph over a label set C is a quintuple

(V,E, s, t, l) where:

• V is a finite set of nodes,

• E is a finite set of hyperedges,

• s : E → V ∗ assigns a sequence of sources s(e) to each e ∈ E,

• t : E → V ∗ assigns a sequence of targets t(e) to each e ∈ E,

• and l : E → C labels each hyperedge.

Whereas in graphs the nodes are generally regarded as objects and edges as

relationships, the role of nodes and edges is reversed in hypergraphs. Edges

represent the primary objects that are related via nodes.

A multi-pointed hypergraph H is a hypergraph with additional begin and

end nodes, which are also referred to as the external nodes of H . Formally,
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a multi-pointed hypergraph over C is a septuple (V,E, s, t, l, begin, end) where

(V,E, s, t, l) is a hypergraph over C and begin, end ∈ V ∗. Let Hc be the set

of all multi-pointed hypergraphs. A hypergraph production is an ordered pair

p = (A,R) with A ∈ N and R ∈ Hc. A and R will also be referred to as the

left-hand side (LHS) and right-hand side (RHS) of the production, respectively.

A hyperedge replacement grammar HRG is a quadruple (N, T, P, Z) where:

• N ∈ C is a finite set of nonterminal symbols,

• T ∈ C is a finite set of terminal symbols,

• P is a finite set of hypergraph productions,

• and Z ∈ Hc is the axiom.

Hyperedges of a hypergraph may be replaced by other hypergraphs according

to hypergraph productions. Given a hyperedge e in a hypergraph H , if there is

a hypergraph production p = (e, R) and the begin and end nodes of the multi-

pointed hypergraph R match the available attachment nodes in H , then e may be

replaced by R. This occurs by removing the hyperedge and adding the hypergraph

R, except for the begin and end nodes; each tentacle of a hyperedge within R that

is attached to a begin or end node is handed over to the corresponding source or

target attachment node of the replaced hyperedge e.

Habel (1992) provides an illustration of hyperedge replacement, which is re-

produced below. The hypergraph grammar is

HRG = ({S,N}, T, {(S,N0), (N,N1), (N,N2)}, S),

where

N

N

1

1

1

23

2

2

3
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3
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1
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This grammar generates irregular Sierpinski triangles, for example,

or, alternatively, the triangle generated by the following derivation:

N

1

3 2

N

N

1

1

2

2

3

N

3
3 2

S

N

N

1

1

2

2

3

N

3
3 21

1

A complete formal treatment is available in Habel (1992) for the curious

reader. Note that hyperedge replacement can be extended beyond a CFG into

parallel hyperedge replacement, which generalises L-systems to graphs (Kreowski,

1993). However, for the purposes of evolutionary optimisation, we will only use

the context-free model in this thesis.

3.7 Grammar Model-Building

Grammars in general have found widespread use in evolutionary computation. A

classic example is Grammatical Evolution (GE) (Ryan et al., 1998), a GA de-

signed to evolve programs in any language that can be generated by a CFG. It

is based on earlier work by Paterson and Livesey (1997). The GE genotype is

a variable-length bit string that is read left to right to generate 8-bit integers

(referred to as codons). The modulo of each codon and the total number of pro-

ductions is used to specify the production rule to be applied for the currently

replaced nonterminal, starting from the axiom and ending when all nonterminals
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have been replaced. If all codons are read but not all nonterminals are replaced,

the expansion continues from the start of genome. The parse tree of the pheno-

type is generated depth-first, i.e. the left-most branch of the tree is completed

first. The use of a simple one-point crossover in GE means that left-most and

shallow sections of the tree are more stable than right-most and deep sections,

since the tail of the chromosome will often map into a completely different set of

productions after crossover. Instead of exploring all branches in parallel, the tree

is optimised sequentially left-to-right, which increases the risk of being trapped by

local optima. Kubaĺık et al. (2003) have suggested a bidirectional representation

to address this.

The purpose of the grammar in GE is to solve the issue of closure: the require-

ment that any evolved solution is syntactically legal, which is a constraint that

applies to any problem that involves typed arguments. With CFG-GP, Whigham

(1995) first introduced the use of CFGs to overcome closure issues in GP, but also

went a step further. GE samples solutions from a static grammar – there is no

mechanism for changing the grammar. What if the grammar could be adapted as

the evolution of solutions progresses, so that the grammar would not just produce

legal solutions, but better solutions? Whigham (1995) biased a CFG towards this

goal by choosing the fittest member of a population and propagating one of its

terminals up the program tree to the next level of nonterminals. This creates

either a new production that is added to the grammar, or if that production

already exists, increases its merit value. The merit value changes the probability

of a production being applied when a solution is generated by the grammar.

Hoai and McKay (2001) also used CFGs but in conjunction with lexicalized

tree-adjunct grammars (LTAGs), which are tree-rewriting systems. Productions

in this system consist of so-called elementary trees, each of which must have at

least one terminal node. This is easier to handle than CFG-GP because it uses

a linear genome like GE, but unlike GE, all genotypes will produce legal pheno-

types. In GE this is not always guaranteed, because, for example, a production

sequence where nonterminals are only replaced by nonterminals will never finish.

Abbass et al. (2002) presented AntTAG to explore tree derivation from LTAGs

using ant colony optimisation (ACO) (see section 7.4.1 for a discussion of ACO),

but the grammar itself remains unchanged. Conversely, PEEL (Program Evo-

lution with Explicit Learning), which also applies an ACO, but to a stochastic

parametric L-system, allows a change of grammar structure (Shan et al., 2003).

The production rules used to generate the fittest individuals of the population,

and rules with the same LHS, are split into multiple productions and/or mutated
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with a specific probability. Grammar Model-based Program Evolution (GMPE)

constitutes a further refinement of this process of modifying a grammar to pro-

duce the best possible solutions (Shan et al., 2004). GMPE applies a stochastic

hill-climbing search to learn a stochastic CFG from the best solutions in the exist-

ing population. A grammar that specifically describes only the fittest population

members is established at each generation and then generalised by merging rules

with the goal of minimising the minimum description length of the grammar. A

fraction of the next generation is then sampled using this grammar, and the pro-

cedure repeated. Novelty arises from adding random solutions to the population.

The practical outcome of this is an extension of EDA to tree space, but using a

grammar, not a probability distribution.

A changing grammar is also feasible in GE, as shown by O’Neill and Ryan

(2004), although the grammar is evolved here and not learned. The meta-

Grammar Genetic Algorithm (O’Neill, 2005) consists of a universal grammar and

a solution grammar. Two chromosomes are used: the first generates the solution

grammar from the predefined universal grammar, and the second generates the

solution itself; crossover only operates between homologous chromosomes. In this

framework, both the solution grammar and the solution based on this grammar

must coevolve. Experiments reveal significant performance gains relative to static

grammars.

3.8 Summary

This chapter highlights important features of embryogeny as seen in biology,

including the potential for pleiotropy, modularity, and neutrality. The associated

benefits of such features encourage us to employ a generative representation in the

evolution of network designs. The previous use of artificial embryogeny for related

purposes has been reviewed here and can be separated into biologically realistic

models and more abstract grammatical models. We intend to move against the

general trend by choosing an abstract model, because of its transparency and

consequent openness to a systematic investigation.

Network design by L-systems or CE is typically based around a fixed set of

user-defined graph transformations, involving specific assumptions being made

on how to describe the network. It does not need to be this way, however, as

our discussion of hypergraph grammars has made evident: the graph transforma-

tion can itself be a production rule and thereby be modifiable by evolution. An
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evolved bias of graph transformation thus becomes possible. We strive to design

a generative representation that maintains this property, based on a hypergraph

grammar. The proposed framework is named Cellular Graph Grammars and will

be presented, together with a method for evolving the grammars, in the following

chapter.



Chapter 4

Cellular Graph Grammar

Evolution

If networks are to be represented by graph grammars, then the problem of op-

timising a network becomes one of optimising a grammar. The previous chap-

ters introduced evolutionary algorithms as optimisation tools and the hypergraph

grammar as a powerful type of graph grammar. Combining these two raises some

challenges. Evolution is based on random change, which here means random

change to grammatical productions. However, in literature on hypergraph gram-

mars it is typically assumed that the replacement of a hyperedge is well-typed,

i.e. the hyperedge being replaced has a set of tentacles that match the external

nodes of the multi-pointed hypergraph.

For illustration, let us assume that a nonterminal hyperedge labelled N2 is

added to the RHS hypergraph R1 of the production associated with the hyperedge

labelled N1. When rewriting the hypergraph, hyperedge N2 is replaced by multi-

pointed hypergraph R2, which must attach to the sources and targets of the

hyperedge. If R2 is changed so that its external nodes do not match the replaced

hyperedge, then the type-correctness of the replacement is only maintained if

R1 is also changed – and this may require further changes to other hypergraphs

that R1 includes or that include R1. Obviously, it would be far simpler and less

restrictive if type differences are allowed and somehow resolved implicitly without

needing to explicitly address all the possible interactions with other hypergraphs.

A further issue with the evolution of hypergraph grammars is that each pro-

duction in the grammar must define a multi-pointed hypergraph, which must be

somehow represented. Yet even a direct encoding of graphs in general, e.g. as

matrices, requires rather sophisticated variation operators if the number of nodes

57
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is variable, because any new node will have to be connected to existing nodes if

it is intended to make a difference. The novel representation that we introduce

in this chapter uses a set of productions of hypergraph fragments called cellular

graphs to describe a hyperedge replacement grammar. We subsequently present

an evolutionary algorithm for optimising a cellular graph grammar from which a

population of networks may be derived. The algorithm is packaged into a system

(and corresponding software suite) called G/GRADE. Several applications for

network evolution using G/GRADE are also described.

4.1 Cellular Graphs

The handover operation usually defined for hyperedge replacement fuses the i-th

source with the i-th begin node and the j-th target with the j-th end node. Thus,

the type-correctness of multi-pointed hypergraphs R1 and R2 can be ignored by

simply not trying to fuse any nodes beyond those that are present. However,

this may lead to further side-effects if R1 or R2 are later modified, e.g. during

evolution. For instance, if the first begin node is removed, the formerly i-th begin

node will now attach to the (i − 1)-th source node, as illustrated in figure 4.1.

The longer the sequence of nodes in which such a mutation occurs, the larger

the ripple effect on the topology. A minor mutation can thus produce major

changes to the fitness of the derived graph, which may lead to an evolutionary

bias against changing external nodes that exist early in the sequence. As likewise

noted for crossover in Grammatical Evolution (Kubaĺık et al., 2003), this leads

to a left-to-right optimisation of the nodes, which has a greater chance of being

trapped by local optima.

Position independence (for the purpose of linkage learning) has been achieved

in GAs such as the Messy GA (Goldberg et al., 1989) by allowing the ordering

of genes within a chromosome to evolve. A similar principle can be applied here.

An identifying label l ∈ C is assigned to each external and internal node, so that

l(v) is the label of node v. The order of nodes may be restored by using l as

an index; however, this achieves position independence only for nodes, not for

the mappings s and t, i.e. the tentacles of the hyperedge. So while a begin node

with label l(k) is replaced by the k-th source, the k-th source may have changed

because a tentacle was added to or removed from the hyperedge. The solution

is to extend the mappings s and t so that the label of the external node of the

multi-pointed hypergraph is specified; the mappings hence become s : E(l)→ V ∗

and t : E(l)→ V ∗.
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Figure 4.1: 1) Hyperedge N is replaced by the graph on the left, producing the
graph shown on the right if the hyperedge tentacles are connected in a fixed order.
2) The graph associated with N is mutated by deleting a begin and end node, but
this has also changed the attachments of the other nodes. 3) These side-effects
are avoided by applying additional node and tentacle labels; now the node labels
can be matched directly against the tentacle labels.

A multi-pointed hypergraph with node and tentacle labeling is a notably larger

construct than without. This raises the question of how to represent the hyper-

graph for evolutionary optimisation. A directed hypergraph with n vertices and

m hyperedges can be represented as an n×m incidence matrix in which a nonzero

entry exists in Mij if and only if vertex i is incident to edge j. Alternatively, it

can be described by an incidence structure. The incidence structure contains a

point for each vertex or hyperedge of the hypergraph and a line (i, j) if vertex i
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of the hypergraph is in hyperedge j. Since this can be represented as an adja-

cency list, it is hence particularly suited for describing sparse hypergraphs, which

are analogous to the kind of large, modular network designs we are intending to

optimise.

As aforementioned, however, we need a more reliable means of identifying

vertices and hyperedges than a sequential numbering such as i and j above. The

hypergraph representation must assign a label l to each vertex and hyperedge.

The exact nature of the labels will be explored in the next chapter; for now, it is

sufficient to know that the set of labels can be partitioned into LE ∈ C for hyper-

edges, LV ∈ C for internal vertices, Lb ∈ C for begin nodes, and Le ∈ C for end

nodes. A hypergraph is represented as an adjacency list of hypergraph elements

identified by these labels. Specifically, it is a set of ordered pairs (LS, LT ), where

LS ∈ {LE , LV , Lb} and LT ∈ {LE, LV , Le}, but excluding any adjacency between

hyperedges (i.e. (LE , LE)) and adjacency between external nodes (i.e. (Lb, Le)).

LE(1)

LV(1)

R :1 R :2

LV(2)

LV(3) LV(4)

LV(1)

Lb(1) Lb(2)

Le(1) Le(2)

Figure 4.2: Two labelled hypergraphs assumed to be used in a hypergraph gram-
mar that includes the production LE(1)→ R2.

The following example uses this representation for the two hypergraphs R1

and R2 depicted in figure 4.2:

R1: (LV (1), LE(1)), (LV (2), LE(1)), (LE(1), LV (3)), (LE(1), LV (4))

R2: (Lb(1), LV (1)), (Lb(2), LV (1)), (LV (1), Le(1)), (LV (1), Le(2))

No position independence with respect to the tentacle mappings has been

established in this instance. For example, if one were to remove the item (LV (1),

LE(1)) from R1, then Lb(1) (instead of Lb(2)) would be handed over to LV (2). A

more informative mapping requires LS ∈ {(LE, L̂e), LV , Lb} and LT ∈ {(LE , L̂b),

LV , Le}, so that each hyperedge source or target is associated with an external

node of the embedded hypergraph. This reflects the desired extension of the s
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and t mappings discussed earlier. Labels that belong to elements of the embedded

hypergraph are hatted (ˆ) here for ease of readability. Hypergraphs R1 and R2

would hence be represented like this:

R1: (LV (1), (LE(1), L̂b(1))), (LV (2), (LE(1), L̂b(2))),

((LE(1), L̂e(1)), LV (3)), ((LE(1), L̂e(2)), LV (4))

R2: (Lb(1), LV (1)), (Lb(2), LV (1)), (LV (1), Le(1)), (LV (1), Le(2))

Now, suppose we have a hypergraph R0 that only consists of vertices LV (1),

LV (2), LV (3), LV (4) and we want to embed R2 in this hypergraph. The s and t

mappings to and from the begin and end nodes of the embedded hypergraph need

to be defined, which, without further knowledge on hand, implies randomising

(or otherwise guessing) such a mapping to produce something like the above

R1. However, this is not required if the mapping labels are not part of the host

hypergraph representation, but of the embedded hypergraph representation. So,

instead of the above, we could have LS ∈ {LE, LV , (L̂V , Lb), (L̂b, Lb)} and LT ∈
{LE , LV , (L̂V , Le), (L̂e, Le)}, where hatted labels are those of the host hypergraph,

and,

R1: (LV (1), LE(1)), (LV (2), LE(1)), (LE(1), LV (3)), (LE(1), LV (4))

R2: ((L̂V (1), Lb(1)), LV (1)), ((L̂V (2), Lb(2)), LV (1)),

(LV (1), (L̂V (3), Le(1))), (LV (1), (L̂V (4), Le(2))

R2 thus defines its own connectivity wherever it is embedded. However, the hy-

pergraph descriptions are not independent anymore, and can only be interpreted

as a set. Note that a vertex label in the definition of R2 refers to either a vertex

of R1 or of R2, depending on whether it is paired with an external node (i.e. has

a hat) or not.

A certain amount of redundancy arises with the node and tentacle labelling

that we have described so far. In particular, it is apparent from the definition of

R2 that some vertices of R1 are connected via hyperedge LE(1). Consequently,

not all of the adjacency pairs are needed for a complete definition of R1 and

R2. It is possible to simplify the representation so that each hypergraph is

defined only by the labels of the vertices and hyperedges of which it is com-

posed, plus the source/target association, so, formally, each hypergraph is a set

of L ∈ {LE , LV , (L̂V , Lb), (L̂b, Lb), (L̂V , Le), (L̂e, Le)}. Consider our two hyper-

graphs described as follows:
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R1: LV (1), LV (2), LV (3), LV (4), LE(1)

R2: (L̂V (1), Lb(1)), (L̂V (2), Lb(2)), (L̂V (3), Le(1)), (L̂V (4), Le(2)), LV (1)

V1: L̂b(1), L̂b(2), L̂e(1), L̂e(2)

where V1 is the vertex labelled by LV (1). As the description of R1 fails to spec-

ify the adjacency between elements of the same hypergraph, R1 is underdefined,

unless R2, which provides this information, is also defined. R2 remains under-

defined, however, because no edges between external nodes and the vertex are

described. The missing information can be specified for each vertex separately, as

shown with V1 above. This constitutes a wrapper for the vertex (see also section

5.3 for details), which is a set of L ∈ {L̂b, L̂e}. The benefit of this approach is

that position dependence is re-established for the incident edges of the vertex,

which is e.g. necessary if the vertex represents a noncommutative operation.

The above representation of R1 or R2 will be referred to as a cellular graph

to reflect its atomic nature and the need for multiple cellular graphs to define

an actual (hyper-)graph. We represent external node pairs (i.e. (L̂, L) pairs) as

triples (s, t, d) called cellular tentacles, where s ∈ C is called a source label, t ∈ C
is called a target label, and d ∈ {0, 1} is the directionality of a tentacle, either

incoming (0, for a (L̂S, Lb) pair) or outgoing (1, for a (L̂T , Le) pair). A cellular

graph G can thus be defined as a triple (N, T,X) where N ∈ C is a finite set of

nonterminal symbols (i.e. hyperedges), T ∈ C is a finite set of terminal symbols

(i.e. internal vertices), and X is a finite set of cellular tentacles. Gc constitutes

the set of all cellular graphs.

A cellular production is an ordered pair (A,G) with A ∈ N and G ∈ Gc,

as illustrated in figure 4.3. Cellular productions can be used in place of hyper-

graph productions in a hyperedge replacement system. A cellular production has

a simpler data structure and a shorter description length than a hypergraph pro-

duction with additional labels. The main advantage of the cellular production

lies in the simple variation operations that can be used on it, and which will

be detailed in section 4.3.1. Cellular productions do not define internal vertex

connectivity, which requires additional labels to be associated with the vertices,

as aforementioned. We will implement this by explicitly wrapping each vertex

into a dedicated cellular production, so that the cellular graph becomes the uni-

versal unit of graph construction. Ultimately, many more cellular productions

are required to describe a given graph than if one were to use the more complex

hypergraph productions, but the expressiveness of the graph rewriting system has

not been changed by this.
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Figure 4.3: Diagrammatic representation of a cellular production. Nonterminal
NG on the left is replaced by a cellular graph, where T is a terminal, NC and ND

are further nonterminals, b and e are begin and end nodes, and s and t are source
labels and target labels of each node.

4.2 Unified Grammar Model

How can a hypergraph grammar be applied to the problem of network design? An

obvious approach would be to evolve the network using Grammatical Evolution

on a hypergraph grammar. For this, a set of hyperedge productions needs to first

be defined from which any network that could be a solution can be constructed.

In principle, this is not very challenging and can be done manually; however, the

choice of production set decides which networks are easiest to construct, and this

cannot be addressed unless one has a priori knowledge about what constitutes a

fit network. Having a static grammar also precludes us from using it for the sort

of model-building discussed in section 3.7.

It is consequently more appealing to have a graph grammar that can also

change. As with string grammars there are multiple approaches for accomplishing

this, but we will focus here on the simplest one: to evolve the grammar directly. In

the previously described instances of L-system evolution (see section 3.5.2), this

is interpreted as evolving a grammar for each member of the population. From

each grammar a single network can then be derived and tested on the objective

function; the concept is visualised in figure 4.4. The grammar is represented in

the chromosome as a string that is interpreted as a set of productions, which can

be modified by mutation or recombination of the string. If a production makes
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Figure 4.4: Previous studies into using a grammar as a deterministic representa-
tion (rather than a stochastic model) involved a population of grammars – one
set of productions per solution. The alternative proposed here is to merge these
grammars into a deterministic grammar set with unique production labels.

a reference to another production, then that other production must be defined

on the same chromosome. Typically, the variation operators are not “aware” of

the interpretation of the chromosome as a graph or a grammar, yet the fitness

landscape is likely even more rugged than for a conventional GA. For example, if

part of the chromosome is exchanged through crossover, then any building block

of interacting productions is likely to be destroyed.

Addressing this problem is difficult because the productions form a network of

relations that is only observed once the string has been interpreted. The model we

propose here is that instead of distributing productions across multiple grammars

and chromosomes, we maintain only a single unified production set. Having a

single grammar usually implies the availability of choice (i.e. the existence of

multiple productions with identical LHSs), but we would also like to use the

grammar as a (deterministic) representation, so as to be able to derive any specific

network from it as needed. Since the grammar is being evolved, applying a choice

list, as with Grammatical Evolution, is not appropriate, because the choices will

have evolved, too.

Multiple productions with the same LHS can also exist within a grammar of

the aforementioned L-systems, but this is addressed by always choosing the first

production in the string that matches. If all productions of all grammars were to

be concatenated, however, always choosing the first of a kind would cause many
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Figure 4.5: The different steps involved in cellular graph grammar evolution
are shown on the right. The algorithm operates on a population of interlinked
productions, as shown on the left, where each generation adds new productions
and removes unused ones.

networks to become underivable. To restore the information contained by the

division into multiple grammars, each production could be labelled with an iden-

tifier of the grammar to which it belongs. The concatenation of all productions

into a single set would then induce no information loss.

Yet there is no need to have both a production identifier and a grammar

identifier as part of the production LHS. Once productions are allowed to call

productions from other grammars, this label duality is no more informative for

representing solutions than having a single unique label for each production (al-

though it may still be informative in other respects, as will be noted in section

8.3.3). With unique labels assigned to each production it becomes evident that

we now have a fully deterministic grammar with no choices, although this also

implies that there is only a single network that can be derived. For multiple net-

works, multiple starting productions are needed. The concatenated production

set with multiple starting productions is hence not a grammar in formal terms,

but a set of grammars where the LHS of each production of each grammar is

unique across the entire set (see figure 4.4).

Each network is associated with a starting production from which it can be

derived. So a population of networks is represented as a population of starting



66 Cellular Graph Grammar Evolution

productions and other productions that are called by these. Unlike with multiple

grammars, only one instance of a particular production has to exist, even if it is

involved in the derivation of different networks. This production set shared by all

networks is analogous to the gene pool of biological organisms. It is not the genes

that an organism holds that define it as much as the genes that it expresses.

Just as an organism is therefore a sample of the biological gene pool, the de-

rived networks are samples of the production set. The total genotypic size of the

population may thus be reduced depending on the degree of reuse of productions.

If nature is any indication, reuse is prevalent within complex solutions. It is com-

mon for individual genes to contribute to multiple phenotypic traits; moreover,

humans share at least 31% of their genes with yeast, 50% with the fruit fly, and

99% with the mouse (Pines, 2001). The extensive reuse of proven components

allows natural evolution to operate on a much smaller design space than would

otherwise be possible – perhaps we can do the same for network design.

4.3 Evolving the Grammar

The grammar evolution system first described by Luerssen and Powers (2003)

is specifically targeted at graph grammars and evolves a unified grammar set as

described above. Each nonterminal of the grammar is unique, a constraint that

allows for only a fixed number of derivations exactly matching the intended pop-

ulation of graphs. Starting productions are specially tagged productions whose

expression leads to a previously evaluated network. Productions are neither pre-

defined nor learned from any existing population, but obtained through copying

and mutation of existing productions.

Mutations are the only means of change; no recombination (crossover) opera-

tor is modelled. The mutation of nonterminals already results in a recombination

of networks, which is comparable to subtree-swapping in GP. The mutation op-

erators are described in the next section. Evolution in this framework is viewed

as a repeated growing and pruning of the production set. For every network

derived from its associated starting production, a single expressed production is

spontaneously replaced by a mutated variant. Since mutating a production that

is expressed by several different networks may result in greater or lesser fitness

depending on the graph, the mutations apply specifically to a single network and

nowhere else.

After testing all the mutated networks, the least fit solutions, both from the
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Figure 4.6: Illustration of graph grammar evolution with a maximum population
of two graphs. Starting with an empty production/graph NA in generation (1),
terminals are added to a copy NB of this production in (2), then NB is added to
itself, producing NC in (3), while the graph of NA has least fitness f and is thus
removed. NB in the graph of NC is then mutated in (4), producing ND and a
copy of NC , NE , with a reference to ND. The graph of NB is now uncompetitive,
but remains as a production used by NC . Further offspring is created in (5) and
(6), leading to NH , which exhibits a recursive self-reference.

mutated set and the existing graph population, are eliminated, as are all produc-

tions not involved in any fitter solutions. Conversely, if a mutation survived, the

grammar is modified so that the mutated network becomes one of the networks

derivable from the grammar. The mutated production is inserted into the gram-

mar; then copies are made of all the network’s productions that need to refer to

this mutated production and modified so as to refer to the mutated instance, not

the original.

This is repeated for all the productions referring to the now modified produc-

tions, including the starting production, from which the graph can now also be

derived. The process is illustrated in figure 4.6. Note that if a production is mu-

tated that is called, directly or indirectly, by many other productions of the same

network, then all of these productions must change – i.e. most of the “genome”

of the network will be copied. Conversely, changes to a production referenced by

no other production, e.g. a non-recursive starting production, require no other

changes being necessary, greatly reducing the effort in creating new offspring.
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4.3.1 Variation Operators

The mutation operators for graph grammar evolution as presented here are com-

paratively trivial, as they lack even simple knowledge of graph theoretic concepts.

Cellular graphs are changed randomly; for this, the components of a cellular graph

are organised into three lists:

• N : a list of nonterminal symbols (hyperedges of the graph)

• T : a list for terminal symbols (wrapped vertices of the graph)

• X : a list of (s, t, d) label triple (begin (d = 0) and end (d = 1) nodes of

the graph)

Keeping these components of a cellular graph in separate lists ultimately makes

it easier to also have separate mutation probabilities for each component type.

Three operations may be applied to each list:

• insert

• remove

• modify

A probability is assigned to each (operation, list) pair, so that all probabilities

sum to 1. A mutation involves randomly selecting an (operation, list) pair from

these probabilities. The operations are implemented as follows.

The insert operation adds a new element into a random position in the

list. For terminal symbols, the new element is randomly selected from the user-

defined list of all terminal symbols. For nonterminal symbols, the new element is

randomly selected from the evolved population of cellular productions. For label

triples, both s and t are each selected randomly from a user-defined label set,

with a 50-50 probability of d being 0 or 1.

The remove operation randomly selects an element from the list and deletes

it.

The modify operation randomly selects an element from the list and changes

its value. For terminal and nonterminal symbols, the existing symbol is replaced

by a new symbol randomly selected from the available sets. For label pairs,

either the s or t member is selected (again at 50-50 probability) and replaced by
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a random new label; the other members remain as is. The modify operation is

only used in a select number of experiments in the following chapters, as it is

not an essential mutation: the same result may be achieved by a combination of

remove and insert operations.

Since, unlike a hypergraph, a cellular graph defines the attachments of the

hyperedge it replaces, the insertion or modification of nonterminal symbols or

wrapped terminal symbols requires no additional mutations to establish connec-

tivity between the inserted hyperedge and its host hypergraph (assuming that the

inserted graph has any attachments at all). Given a rich set of existing cellular

graphs, constructing a specific graph hence becomes as simple as adding nonter-

minal symbols. On the other hand, obtaining label triples by randomisation fails

to ensure that the label triple will match existing labels and therefore properly

constitute a hyperedge tentacle in the graph. This issue will be a subject of

elaboration in the next chapter.

The above operators are supplemented by the increase recursion and the

decrease recursion operators, which increase or decrease the recursion limit of

the cellular production by one. The recursion depth is thus adapted with each

component separately (see also section 4.4). Note that since this has no effect on

either performance or size of the graph unless the production already calls itself,

these mutations are typically very neutral (see also section 4.4 on the nature of

the recursion limits).

4.3.1.1 Variation Operator Probabilities

None of the suggested operators are adaptive, neither in their probability of being

applied nor in the effect they have. We rely solely on population distributions

to produce any form of guidance during the search process. That being said

we have observed that choosing the right probabilities for a given problem can

improve the convergence characteristics, so an adaptive approach would likely

reveal benefits as well. The reader is pointed to Hinterding et al. (1997) for a

survey of parameter and operator adaptation.

We did not pursue this path, however, because of the need for additional

numeric optimisation and also the possibly complex interactions with the exist-

ing framework. Because manual fine-tuning would be unrealistic in practice, all

operators are instead applied at equal probabilities, except for mutations to ex-

ternal nodes, which are considered separate for begin and end nodes, and the
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increase recursion operator, which is applied with only half probability, so that

the incidence of high recursion numbers in the population is limited.

4.3.2 Size Control

In GP terminology, bloat refers to the phenomenon that solution trees may grow

during evolution more so than necessary for solving the problem (Langdon and

Poli, 1997). Several related explanations have been put forward for this. Firstly,

programs composed largely of introns – code segments that have no phenotypic

effect – are more likely to survive mutation or recombination than programs

without introns, as the phenotypic effect of the variation is more likely to be

neutral as well (Blickle and Thiele, 1994; McPhee and Miller, 1995). Miller (2001)

proposes that bloat is caused by exploration of a solution’s neutral variations,

most of which are larger than the existing solution. It has also been argued that

above a certain size threshold there are exponentially more longer solutions than

shorter or equally sized solutions with the same fitness as a currently discovered

solution (Langdon and Poli, 2002).

Certainly, if bloat is left unchecked, it is known to grow at quadratic rates

(Langdon, 2000a). This puts excessive strain on the available computing re-

sources and thus slows the optimisation process, which is clearly undesirable.

The standard method of size control is due to Koza (1992) and involves a static

population cardinality and a maximum tree depth for solutions, which, however,

puts an absolute limit on GP’s ability to explore solutions of greater complex-

ity and thus possibly higher quality. Several alternative methods have therefore

been proposed. One simple yet effective approach is to just increase the maxi-

mum tree depth when needed to accommodate an individual that is deeper than

the maximum but is better than any other individual found during the run (Silva

and Almeida, 2003). Langdon (2000b) suggested the use of special, size-aware

crossover operators that reduce the growth of solutions trees. Wagner et al. (2004)

describe a population control method based on a variable population cardinality,

with no limit on solution tree depth, but a global limit on the total number of

tree nodes in the population.

In graph grammar evolution, bloat is also an issue of significant concern.

Performance is not the only important property of the evolved networks; size

is another. A trade-off between network performance and network size is to be

expected, with larger networks performing better and smaller networks requiring

less evaluation time and space. Large networks that perform poorly are clearly
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not desirable, and hence should be selected against. But what makes a network

large? As a measure of size, we may simply count the number of edges and nodes

of the network. This is formally appropriate, but fails to consider the genetic

representation of networks as cellular productions. A cellular production need

not directly contribute to the number of nodes and edges of a network; it may

simply refer to other productions. Consequently, a small network may result from

a large number of cellular productions, which therefore needs to be restricted to

avoid a potential production bloat.

Conversely, measuring network size as the number of cellular productions in-

volved in a network might lead to very large networks, as cellular productions

can be called recursively. We therefore define size as the sum of the terminals,

nonterminals, and external nodes (i.e. label triples) of each cellular production

expressed during the derivation of a network, including cellular productions ex-

pressed before. The trade-off between performance and size will be balanced by

using a multi-objective evolutionary algorithm for grammar optimisation. This

approach has previously been followed successfully in a variety of related domains,

including tree size control in GP (Bleuer et al., 2001; De Jong and Pollack, 2003)

and evolution of a hidden layer in a neural network (Abbass, 2003).

4.3.3 Multi-objective Optimisation

The presence of multiple objectives in a problem frequently results in not just a

single optimal solution, but an entire set of so-called Pareto-optimal solutions.

Multi-objective evolutionary algorithms (MOEAs) can be employed to find this

set of Pareto-optimal solutions. The majority of recently published MOEAs use

fitness assignment based on Pareto-domination (Deb, 2001). A solution S1 is said

to dominate another solution S2 if S1 is no worse than S2 in all objectives and

better than S2 in at least one objective. If a solution is not dominated, then

it is potentially a member of the Pareto-optimal set, from which the user can

ultimately pick the most appropriate compromise between the objectives. Note,

however, that even though the MOEA takes multiple objectives into account

simultaneously, it must still transform all of these objectives into one fitness

measure, so that the evolutionary algorithm can distinguish fit individuals from

less fit ones. The transformation is typically made by assigning each solution a

measure of its nondominatedness.

If the size of the population is smaller than the size of the Pareto-optimal

set, then the MOEA is meant to return a set of nondominated solutions that
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Figure 4.7: Schematic depiction of a Pareto frontier for the various objectives
optimised in this study. (Diversity will be covered in chapter 6.)

are spread evenly along the Pareto boundary. Most MOEAs apply some form of

phenotypic niching to achieve this, which means that the spread is based on the

objective function values and not on structural differences within the solutions

themselves. Niching is used only as a secondary measure of fitness: If individual

S1 is more nondominated than S2, S1 is preferred regardless of niching, whereas if

S1 and S2 have the same degree of nondominatedness, the one residing in the most

sparsely populated region of the search-space is preferred. In our multi-objective

implementation of graph grammar evolution, we assess population density as

simply the distance between a chosen solution and its nearest neighbour, with a

bias towards the lowest error solution in case of a tie (or the newest solution, if

this fails). Otherwise the implementation of a MOEA for this project matches

the NSGA-II presented by Deb et al. (2000).

4.4 Evaluating the Network

See figure 4.8 for an illustration of how a network is constructed from a set of

cellular productions. The graph rewriting is performed in parallel. Although for

a context-free grammar this has no effect on the shape of the generated network,
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it allows us to express the graph rewriting as a distributed developmental process.

For this purpose, let us define a developmental unit as a system U = (P,H,N, U0),

where P is the set of all productions, H is an existing hypergraph, N is the label of

a hyperedge to be replaced, and U0 is an associated ancestor developmental unit

(can be empty). Starting from a single U1, a graph can be generated as follows. U1

retrieves a production p matching label N from set P and replaces the occurrence

of hyperedge e in H with the RHS of the production p. For each occurrence of a

hyperedge e in the inserted subhypergraph a new Ue = (P,H,Ne, U1) is generated

and the replacement process repeated in parallel for each new Ue, until either no

more hyperedges require replacement or the number of previous instances of a

production in the replacement path exceeds a parameter m ∈ �+ (comparable to

the life of the cell, as with Cellular Encoding, or a condition, as in PL-systems)

that is co-evolved with each production. Thus, each production’s recursion depth

is limited individually rather than globally.

From the graph rewriting process we obtain a hypergraph H as well as a set

of U that are interlinked into a (development) tree. This U tree can be discarded

if H is complete; however, the initial H0 of U1 may change for a new fitness case

(see below), in which case the final Hn is incomplete or false. The U tree can

be used to modify Hn according to the changes in H0, instead of having to fully

re-grow Hn. The generated graph becomes an automata network by adding the

appropriate semantics to the nodes – for a neural network these become threshold

automata, for example.

The developed network is usually evaluated on some optimisation problem.

Unless a network has been precluded from having recurrent connectivity (see sec-

tion 5.3.1 on how this is achieved), it cannot be evaluated layer by layer as with

a perceptron. Instead, each automaton is simulated in parallel for several cycles

until a user-defined cycle limit is reached. We achieve parallelism by splitting the

automaton update into two phases. First, each automaton updates its hidden

state based on the visible state of all the neurons to which it is connected. Subse-

quently, each automaton turns its hidden state into a visible state and continues

with step one.

If the problem requiring optimisation is a typical pattern/label-classification

task, the network needs to be linked to the appropriate sources (inputs) and

targets (outputs). For each possible source and target defined by a particular

pattern/label pair (or time series thereof), an automaton is spawned whose state

matches that of the source or target for each cycle. A vertex set of automata

representing a pattern/label pair constitutes an initial H0, to which every network
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Figure 4.9: The G/GRADE software suite.

in the evolved population will link according to the source and target mappings

of their respective starting production. States retrieved by the target automata

after several update cycles automata are compared to the expected outputs and

an error for the network may thus be computed. Once all networks are evaluated

on this pattern/label pair, they are connected to another H0 matching the next

pair and the evaluation continues. Unless otherwise specified, the order in which

the pattern/label pairs are presented is random.

4.5 The G/GRADE System

We shall refer to the system of graph grammar evolution described above as

G/GRADE (for Graph Grammar Design by Evolution). G/GRADE is also the

name of a software suite that implements this system and several simulators for

the applications described in the next section. The G/GRADE software was

coded in C++ and allows multiple projects, involving different problem domains,
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input and output files, and parameters, to be managed concurrently. It generates

and visualises various statistics of the optimisation run, and can also illustrate the

networks that are discovered through this process. Any ongoing optimisation run

can be interrupted, recorded to storage, and continued with different parameters.

G/GRADE will be employed in all of the experiments described in chapters 5 to

7, which were run on a single PC with Windows XP, Athlon 64 3000+ CPU, and

1GB of RAM. The interested reader may obtain executables or source code from

the author. Figure 4.9 displays a screenshot of the version of G/GRADE that

was current at the time of writing.

4.6 Applications

G/GRADE is only useful if it can solve problems of practical relevance. For-

tunately, network design is essential to a wide range of problem tasks. The

subsequent chapters will employ several problem tasks as testbeds for evaluating

the system presented here and any possible extensions or variations to it. For this

purpose the chosen problem tasks must be quick to simulate, so that statistically

meaningful results are achievable within a realistic time frame. On the other

hand, the tasks should also provide a challenge to the optimisation algorithm, as

well as highlight notable features of the system, and preferably be used in other

research to allow for easy comparison. With this in mind we decided on a mixed

set of tasks, which are described below. Illustrations of some of the networks

evolved by G/GRADE to solve these problem tasks are given in figures 4.11 and

4.13.

4.6.1 Symbolic Regression

Regression is about inferring a functional mapping y = f(x) between a set of

independent variables x and a dependent variable y. Regression by neural net-

works assumes an auxillary transfer function g (such as the sigmoid), so that

f(x) = WO · g(WH), where WO are the weights from hidden to output layer, and

WH are the weights from input to hidden layer. Since multilayer neural networks

of sufficient complexity can approximate any mapping, the problem of regression

primarily becomes that of optimising weights within the context of a specific

model. In contrast, symbolic regression is about generating answers directly in

the symbolic language of mathematics (Koza, 1992). This can be advantageous if
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the black box nature of neural networks is not acceptable, as in some engineering

applications or when scientific understanding is required.

Symbolic regression is commonly used in theoretical studies of GP. GP can

directly construct the actual mapping function f(x), as is typical for most test

problems, or a mapping function f1(x) that best approximates the actual f(x).

The mapping function is represented by a tree of functions selected from a set of

pre-specified low-level elementary functions. Applying graph grammar evolution

to symbolic regression produces graphs of elementary functions; this may include

any tree that GP could discover, but cycles in the graphs may also represent

subfunction reuse, or recurrence equations. The functions being regressed will be

described in the method sections of the respective experiments.

4.6.2 Neural Networks

The evolution of artificial neural networks is an extensive field of study, and given

the many practical uses of neural networks, the range of possible applications

for neuro-evolution is virtually boundless. Two tasks are therefore chosen to

reflect common challenges in neuro-evolution. The first involves the evolutionary

design of a simple multilayer perceptron (MLP), with weights being concurrently

determined by backpropagation. The MLP is intended to classify the well-known

Fisher Iris dataset (Fisher, 1936). Finding a multilayer architecture is essential for

good performance here. Although the design task is quite simple, the evolutionary

algorithm has to interact with a rather fickle learning process. Details on this

will again be provided later in the experimental methods.

The second task requires the evolution of architecture as well as weights of a

neural network on a common reinforcement learning problem, the balancing of

two poles fixed to a cart moving on a finite track (Wieland, 1991). The neural

Pole 1

Pole 2

Track

ForceForce

Figure 4.10: The pole balancing task.
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network acts as a controller for keeping the poles balanced by applying a force

to the cart to push it to the left or right (see figure 4.10). This is viable because

the poles have different lengths and therefore respond differently to accelerations

of the cart. Pole balancing is a common test problem in neuro-evolution; some

results from other studies will be provided in section 7.7.

The input to the neural network is the system state defined by the cart position

and velocity, and the position and angular velocity of each pole. Our physics

model matches that of Stanley and Miikkulainen (2002). A Runge-Kutta fourth-

order method is used to implement the dynamics of the system, with a step size

of 0.01s. All state variables are scaled to [−1, 1] before being fed to the network,

which outputs a variable force to the cart. The initial position of the long pole

is 4.5◦ and the short pole is upright; the track is 4.8m long, and poles are only

regarded as balanced if between −36◦ and 36◦ from vertical. The fitness of a

neural network is given by the number of time steps that both poles remain

balanced without the cart exceeding the track.

4.6.3 Circuit Design

Automation has been applied to circuit design for many years now, as circuit

diagrams drawn up by humans are mapped into actual layouts through the appli-

cation of simple minimization, placement and routing rules. Evolvable hardware

promises to take this much further by either eliminating or at least lessening

the need for a designer and thus also diminishing the production costs (Gordon

and Bentley, 2006). However, modern circuit designs are large and may involve

millions of transistors. Evolving circuits is therefore only practical if we can

successfully address the problem of scalability.

To accomplish this, the idea of employing a developmental process has also

been raised in this field. Several of the embryogenic approaches that we previ-

ously reviewed have been applied to the problem. Koza et al. (1999) modified

Cellular Encoding for use on circuit design and other engineering problems. Had-

dow et al. (2001) evolved L-systems that grow into a two-dimensional grid of

configurable logic blocks. Gordon and Bentley (2005) likewise employed a grid

of cells, where each cell contains evolved rules that produce virtual proteins; the

resulting pattern of the cells is then mapped into a circuit design. Miller and

Thomson (2003) also explored a growth-based system for circuit design, but each

cell in this system contains a circuit evolved with Cartesian GP that maps input

conditions to output conditions of the cell from which the main circuit is grown.
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Binomial-3 Regression

Polynomial-6 Regression 6-bit Multiplexer

Random Bit Sequence Backpropagation MLP

Pole Balancing

Figure 4.11: A sample of networks evolved by G/GRADE on 6 evaluated problem
tasks. Line delays are shown for the RBS circuit. Note that while all of the
depicted networks are performance-optimal, we did not verify that they are the
smallest possible optimal networks as well.

Circuit design is a domain that can easily be addressed by the G/GRADE

framework, although actual hardware evolution was not intended as the empha-

sis of this research. We have therefore selected two tasks requiring Boolean net-

work design as representative instances of this domain. The first task concerns

the design of a multiplexer (Koza, 1992). Multiplexers are logic circuits that

are frequently used in communication and input/output operations for trans-

mitting a number of separated signals simultaneously over a single channel.

The 6-bit Boolean multiplexer problem involves decoding a 2-bit binary ad-

dress (00, 01, 10, 11) and returning the value of the corresponding data register

(d0, d1, d2, d3). Thus, the multiplexer has 6 inputs here: two to determine the

address, and four to determine the answer. We implement the multiplexer as a

network of the Boolean operators AND, OR, NOT, and IF that is optimised by

evolution.

A more challenging design problem that involves recurrent circuitry is the
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design of a random number generator (RNG). Specifically, we are aiming at a 4-

bit de Bruijn Counter, which is a single bit RNG based on a linear feedback shift

register (LFSR) (Chu and Jones, 1999). The LFSR is mathematically represented

by the recurrence equation:

xn = a1 • xn−1 ⊕ a2 • xn−2 ⊕ . . .⊕ am • xn−m, (4.1)

where xi is the ith number generated, ai is a pre-determined binary constant,

and • and ⊕ are AND operator and XOR (exclusive-OR) operator respectively.

Through this sequence of AND and XOR operators a new number can be gener-

ated fromm previous values (xn−1, xn−2, ..., xn−m). The maximum period achieved

by an LFSR is 2m−1, but this requires a special set of ais to be used. For instance,

when m is 4, the optimal set of ais describes the simple equation

xn = xn−1 ⊕ xn−4. (4.2)

Assuming an initial seed (i.e. x1, x2, x3, x4) of 1000, the random sequence ob-

tained from this equation is a pattern repeating itself every 15 bits:

100011110101100 100011110101100 . . .

LFSRs generate only zeroes if the initial seed is all-zero. We can address this by

adding a de Bruijn Counter, which consists of an m− 1 input AND gate and an

extra XOR gate. For a seed of 0000, the random sequence of a 4-bit de Bruijn

Counter is

1111010110010000 1111010110010000 . . .

which repeats every 16 numbers, as de Bruijn Counters have a 2m period. The

specific problem that will be presented to G/GRADE is to find a circuit with the

above gates that produces the previous sequence with an initial seed of 0000. We

will refer to this as the Random Bit Sequence (RBS) circuit.

4.6.4 Telecommunications

Satisfying the ever-increasing demands for bandwidth and coverage in a very

competitive marketplace means that there is little room for error when building

expensive telecommunication networks. This has prompted researchers to develop
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Figure 4.12: The data streaming computer network: switches, depicted here as
computers, must connect units (houses) via cables so that data streams 1, 2, and
3 are accessible to all receiving units at the indicated bandwidth fraction (not all
units have maximum bandwidth).

new methodologies for finding optimal networks, which also includes the applica-

tion of evolutionary algorithms. Network design problems can be classified under

four inter-related categories: network topology design, network routing and flow

control, network performance, and network reliability.

The most obvious avenue to explore with G/GRADE is, of course, network

topology design. Much of the previous research concerns minimum spanning

trees between a set of sites, as this defines a network with a minimum of wiring

cost. Michalewicz (1991) evolved minimum spanning tree topologies for com-

puter networks using a two-dimensional binary adjacency matrix representation

and problem-specific mutation and crossover operators. Kumar et al. (1993)

optimised networks towards minimum network diameter, minimum average hop

count, and maximum reliability using a single-objective GA operating on bit-

strings, but with a network-aware crossover. A simple, string-based GA is also

used by Dengiz et al. (1995) to determine a minimum-cost topology subject to a

reliability constraint. Tanaka and Berlage (1996) addressed the design of video-

on-demand distribution networks, not only in terms of topology, but also storage

locations; the GA again uses a binary matrix as representation. Sinclair (1995)

has focused on multi-wavelength all-optical transport networks, applying first a

simple bit-string GA, but later also hybrid GA’s (Sinclair, 1997) and GP (Aiyarak
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et al., 1997) to mesh network design.

Notable among all these studies is the use of a weighting model to obtain

a fitness measure from multiple objectives. Use of a MOEA is still uncommon,

although Flores et al. (2003) achieved good results with a multi-objective GA on

the problem of optimising a fibre optic network between universities. However,

simple GAs are still frequently found even in more recent research into network

topology design (Berryman et al., 2004; Tsenov, 2005), and developmental meth-

ods for addressing the scalability problem are visibly absent. Thus, a useful

application for G/GRADE is to optimise a communications network. Although

there is much diversity and few standard problems in network topology design,

the general problem is that of allocating customers (clients) to suppliers (servers)

through links and additional nodes. The problem defined below combines a site

generation problem, where nodes can be placed freely in a continuous space, with

network topology design.

4.6.4.1 Data Streaming Computer Network

For the purpose of evaluating G/GRADE, a problem is needed that captures

the essence of the design challenge inherent in the above examples. The sug-

gested task is depicted in figure 4.12 and involves data streaming between multiple

sources and sinks; we will refer to them simply as units. These units are located

in a bounded two-dimensional landscape of size one-by-one kilometres. Any unit

may send and/or may desire to receive one or more specific data streams. Each

data stream has a bandwidth requirement B that needs to be satisfied between

the unit that sends and the one that receives; GB/s will be used as a unit of

bandwidth here. The units and their data streams are predefined in the problem.

It is the responsibility of the evolutionary system to optimise the satisfaction of

bandwidth by placing switches into the landscape. A switch has one or more

one-directional lines (cables) that connect to a unit each. The unit can request a

desired data stream from the connected switch; this request is passed on to other

connected switches and units from which the switch can receive streams. Any

unit or switch that receives a request for a stream to which it has access will pass

this stream on.

There are, however, several hardware constraints. A unit or switch cannot

send or receive more than 1 GB/s. If it receives more than 1 GB/s the incoming

streams are equally scaled to a total of 1 GB/s (i.e. packets are lost). If it receives

requests for streams, the bandwidth of all streams that are passed on are scaled
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Computer Network Topology

Figure 4.13: A sample of networks evolved by G/GRADE on 3 of the 10 randomly
designed computer network topology problems.

so that the unit or switch does not send more than 1 GB/s. Another constraint

is that each unit can only be connected to a single switch, although switches

can be connected to several other switches (with a maximum of five incoming

connections). Finally, each switch and cable in the network has a monetary cost

m associated with it. A switch costs ms = 1000 and a cable costs mc = 1000

times each kilometre laid (or fractions thereof). The goal is to minimize the cost

C = (number of switches)×ms +
∑
mc×(length of cable), while also minimizing

the amount of bandwidth absent from the desired data streams:

Bd =
n∑

i=0

(

⎧⎪⎨
⎪⎩

0 if di = 0

0 if oi ≥ di

1− oi

di
if di > 0, oi < di

),

where n is the number of units, o is the bandwidth of the arriving data stream and

d is the desired bandwidth of the unit. G/GRADE will be tested on 10 different

unit/data-stream configurations, randomly generated under the condition that

desired bandwidth never exceeds provided bandwidth. Figure 4.13 is an indication

of the kinds of networks that need to be evolved here.

4.7 Summary

Our contribution with this chapter is to have transformed hypergraph grammars

into cellular graph grammars that are amenable to evolutionary exploration us-

ing simple variation operators. We also introduce a novel unified grammar model

for evolving a population of networks as a grammar. As with other grammar-

model building schemes, changes to the grammar lead to new networks, yet the
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grammar also deterministically encodes every network being evolved, which can

simply be derived as needed. Since there is consequently no distinction between

the grammar of one network and the grammar of another, recombination opera-

tors become superfluous. The resulting system constitutes a powerful foundation

for optimising network design, but not every aspect of it has been defined yet.

The following chapters will address the outstanding questions and empirically

determine some answers using the application tasks that have been presented

here.



Chapter 5

Methods of Graph Construction

Deriving a network from a cellular graph grammar entails the expression of a

sequence of cellular productions that will ultimately result in a set of vertices and

(binary) edges connecting these vertices, i.e. the solution network. Each cellular

production defines a cellular graph, which has set of begin and end nodes, each

in turn defined by a pair of source and target labels. Fusion between begin and

end nodes is established by finding labels that match other labels. Clearly, there

is some freedom in the interpretation of what it means to match a label and

what the exact consequences are. This chapter addresses four major issues in

this context: the nature of labels and a suitable definition of a label match; the

scope of the label lookup; possibilities for simplifying the model; and the nature

of the graphs evolved using this model.

5.1 Graph Gluing Models

Our fundamental assumption for label matching is that we are looking for target

labels that match a particular source label, not vice versa. The node associated

with a target may be adjacent to multiple nodes of matching sources, but the

node of a source may only be adjacent to a single node of a matching target

(see 5.1). The reason for this is that begin and end nodes are never actually

manifested as actual vertices of the graph, nor are the edges between them; they

are only placeholders for the internal vertices defined by the terminals. So when

we pick any particular begin or end node, it is possible to trace it back to one

(and only one) specific terminal vertex of the graph. If, alternatively, each begin

or end node were able to represent multiple terminal vertices, we would lose the

85
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Figure 5.1: A node with a given source label is assigned to a node with a target
label that matches the source label. During graph construction, the former node
is replaced by the latter; we do not permit a single node to be assigned to, and
thus replaced by, multiple nodes.

ability to distinguish these vertices, but this is very important if the network

defines operations that are noncommutative or require a fixed number of inputs.

5.1.1 Strict Matching

The key to gluing the nodes of various cellular graphs into a cohesive network

lies in the nature of the label matching. The most apparent interpretation of the

term “match” is to mean that both labels are identical – we will refer to this

definition from now on as strict matching. It is a sensible approach if you want

to manually design a graph, but, once again, the random modifications required

by evolutionary search can make this problematic. Assume the simple case of

adding a begin node to a production. For the added node to make any difference,

the source of the begin node needs to match the target of a node in its scope.

Two exceptions might occur here: either A) a matching target is not found,

or B) multiple targets with the same label match the source. In case A), the

addition of the begin node has no effect: no edge is created. In case B), multiple

different edges are possible – but which one should we choose? Since only one

edge is permitted for the begin node, this edge is therefore the only edge that

will be created for this particular cellular graph. All other edges are essentially

unavailable to the search process, because every choice we make within our gluing

models must be deterministic, so that a particular network always arises from the
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same starting production.

Now, consider that the binomial probability mass function is

b(x, n, p) =

(
n

x

)
px(1− p)(n−x). (5.1)

The probability of a target matching a specific source (i.e. the probability of

an edge being created from all the possible edges that could be created) is the

probability of the label of the source occurring once in the target set plus the

probability of the label of the source occurring multiple times in the target set

multiplied by the probability that the target that is selected is the one that is

wanted, i.e.

Pcreate =

g∑
y=1

b(y, g,
1

a
)× 1

y
, (5.2)

where g is the number of targets and a the number of possible labels (selected

from a global set). Pcreate is shown against g and a in figure 5.2. This plot reveals

not only that there is a generally rather slim chance that a particular target is

picked, but also that there should be a correspondence between the number of

targets in the scope and the number of labels in the global set. While a larger

set of distinct labels diminishes the likelihood of a match, a smaller set increases

the occurrence of multiple nodes with identical labels within the same scope.

Estimating the appropriate size of the global label set is difficult because target

numbers vary depending on the nature of the problem and individual cellular

graphs.

During the evolution of cellular graphs, a source label that is guaranteed to

match a target can be obtained by selecting from one of the targets within the

host graph. This requires a lookup of perhaps multiple cellular graphs that are

within this scope, a rather complex operation for what would constitute just

part of a single mutation step. If targets are also added using this principle,

then no new labels can ever arise within a scope – and hence no new edges.

Selecting labels randomly is thus at least occasionally absolutely necessary. A

different approach to edge creation is to modify both the production harbouring

the source as well as the production harbouring the target, but since with each

begin or end node that is added a new source and a new target are needed, a

cascade of label modifications may suddenly be required. We therefore avoid this

option.

In the presence of multiple targets with identical labels, labels alone are not
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Figure 5.2: The probability of a successful strict match against the size of the
label set and the number of potential targets in the current scope.

sufficient for choosing a target. With random labels the probability of duplicate

labels is

Pdup = 1− b(1, g, 1
a
), (5.3)

where b is the binomial probability mass function, g is the number of targets and

a the number of possible labels. With label selection from scope for both sources

and targets a becomes the number of different targets or sources, respectively,

which is in all cases less than or equal to the number of possible labels, so the

probability of duplicates is further increased. In certain problem domains, it may

be possible to choose between – or combine – these duplicates (e.g. by applying

an OR operation), but this cannot be generalised. How do we choose between

identically-labelled targets in a domain-independent manner? An additional bias

is necessary, which should give a preference of one target over another – yet this

was the main purpose of having labels in the first place.

The most apparent solution involves an implementation-based ordering, or
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an additional, unique (e.g. “age”) label, so that one can simply choose the first

(“oldest”) target that matches the label. Targets are sorted into a queue according

to this identification, with the first member of this queue becoming the selected

target. This would imply that all subsequent targets of the same label are never

chosen, which, if there are many such targets, also implies that most of the

possible edges are never explored. A feasible means of addressing this is to equally

distribute connections among identically labelled nodes. The first member of the

queue becomes the selected target, but is then pushed to the back. The next

target of that label will hence be a different first queue member. This resembles

chained hashing in that a single key leads to a list of slots, but the access order

then determines the exact slot. The downside of either of these approaches is

that the position independence of the representation is lost.

5.1.2 Soft Matching

It is evident from the various instances above that strict matching could limit

the effectiveness with which the space of possible edges is explored. Although

solutions for overcoming these instances have also been suggested, they are com-

putationally expensive and have their own limitations. An alternative method of

label matching has been suggested and described by Luerssen and Powers (2005)

and will be referred to as soft matching. Instead of using a small set of labels,

a label set that is maximally large is used, so multiple instances of the same la-

bel within the same scope are less likely to occur. Secondly, because this means

labels would rarely match according to the strict matching criterion, a label is

now matched with the label that is nearest. A distance metric must hence be

defined for the label space. An obvious advantage is that a label will always

match another label, unless no other label exists.

Determining connectivity with a diversity of labels means less dependence

on any additional node order (e.g. age, implementation order). This establishes

a high degree of position independence in the representation. Yet, although the

likelihood of multiple identical labels is reduced, they can still occur; for instance,

from multiple identical nonterminals in a production, all of which will be replaced

by cellular graphs with the same begin and end node labels. Given the large

number of possible labels and the small subset present within the scope of a

cellular production, a suggested fix is to append an additional source and/or

target label to both the nonterminals and terminals. The additional source label

(from now on referred to as the source offset) adds to the source labels of all begin
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Figure 5.3: Soft matching involves distance-based matching on a large set of
labels (shown here as decimal numbers) and is therefore a more complex scheme
than strict matching, which requires exact matches on a small set of labels, but
is also prone to duplicate labels and sources that miss out on targets.

nodes of the associated hyperedge (or inputs of the terminal), and the additional

target label (from now referred to as the target offset) adds to the target labels

of all end nodes (or outputs of the terminal).

The probability of two identical labels being identical after such a transfor-

mation is equal to the probability of any two labels being identical (P = 2−64

for a 64-bit implementation), which virtually eliminates the problem of deciding

between identical labels arising from identical terminals or nonterminals. Should

identical labels or equidistant labels still occur, duplicate labels and distances

are resolved by representation order, as with strict matching. We did not follow

up on a further solution to the duplicates problem – which is to ensure that all

labels in the entire population are unique. This is permissible as, unlike with

strict matching, no two labels ever need to be identical, but the implementation

would be complex (e.g. a global list, a high-period random number generator,

etc.) and identical distances are still not avoided.

When applying both a source and target offset, two identical terminals or non-

terminals within the same scope will behave as if they had different source labels

– hence different inputs – as well as different target labels, which make them sepa-

rately accessible to other cellular graphs. Applying only a target offset also allows

this kind of differentiation, but the node outputs would be identical because of
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identical inputs (unless the represented operations are non-deterministic). Thus,

without a source offset there is only a very limited benefit to having more than one

identical terminal or nonterminal in a production, and more complex structures

have to be established using multiple productions.

Source and target offsets can also be imagined as the positions of the terminal

or nonterminal in a Euclidean space (that is, if source and target are equal; other-

wise they form what might be interpreted as a tunnel or wormhole). Sources and

targets of begin and end nodes are offsets with respect to this position. Extending

this to multi-dimensional labels allows a physical interpretation of the system as a

simulation of growth, based on relative distances between components (i.e. nodes)

of the organism (i.e. graph) being grown. The term relative is important here, as

the neighbourhoods are defined by the cellular graphs, so unlike neural growth

simulations such as Nolfi and Parisi (1991) and De Jong et al. (2001), no absolute

coordinate system exists. The potential advantage of this is that we never run

out of space for placing nodes and edges, since space can be “created” each time

a cellular production is applied.

5.1.3 Method

Does soft matching deliver any benefits over strict matching in practice? To

answer this question, both these schemes have been evaluated on three distinct

problems selected from the application domains listed in section 4.6. Please note

that some of the conclusions of later experiments in this chapter are already

applied – as indicated – to these experiments, since they are a culmination of

earlier experiments, which were reported in Luerssen (2005a) and Luerssen and

Powers (2005).

5.1.3.1 Binomial-3 Regression

As a target for symbolic regression, we chose the binomial-3 polynomial, which

is defined as

f(t) = (t+ 1)3. (5.4)

Fitness cases are 21 equidistant points generated by this function over the interval

of t = [−1, 1]. The binomial-3 polynomial has found previous use as a regression

target for analysing the difficulty of GP problems (Daida et al., 2001). It is less

trivial than the quadratic polynomial, the default target in the field, and it is

highly multimodal.
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We employ G/GRADE to evolve a population of 20 symbolic regression net-

works for each of 1000 generations. A (μ + λ) evolution strategy is used, with

all parents producing a single offspring each (μ = 20;λ = 1000). The context

of a networks consists of the independent variable t as input, and the function

value f(t) as output. Each network may only be composed of automata that im-

plement the operations {+,−,×, div}, where div returns 1 if the divisor is zero,

otherwise it returns the actual result of the division. If an automaton has less

than two inputs, the missing inputs are assumed to be 0 for {+,−, div} and 1

for {×}. Networks are evaluated by making a feedforward pass from input t to

output f(t); recurrent connections are not permitted (see section 5.3.1 on how

this is achieved).

5.1.3.2 Random Bit Sequence

The second problem involves the design of a small Boolean circuit that approx-

imates the output of a 4-bit de Bruijn Counter, as detailed in section 4.6.3.

The fitness of the network is defined as the MSE between this random bit se-

quence and the sequence produced as an output by the network. The network

must be composed of automata that implement Boolean operations from the set

{AND,OR,XOR}; if an automaton has less than two inputs, the missing inputs

are assumed to be 0. The population consists of 20 network evolved for 5000

generations.

Each network is simulated for 36 cycles (2 × 16 cycles + 4 cycles lead-in),

with outputs compared every 2 cycles for the last 32 cycles against the target

sequence. A faster evaluation (e.g. in 16 cycles) is not viable, since within a

single cycle each automaton can only affect its immediate neighbours, so a larger

graph may take multiple cycles to generate the next output. The limit of 36

cycles was chosen based on our informal observation that solutions are indeed

possible within this limit and rare when using fewer cycles. To make it possible

for a variety of networks to be synchronized with the intended rate of output

sampling, we additionally simulate line delays for automata inputs. Longer line

delays are applied randomly with a geometric probability of 0.5 to each input of

any new terminal added to a cellular graph. These delays are then stored with

the graph; during simulation, they increase the number of cycles required by a

signal on the affected edge to become available to the automaton.
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5.1.3.3 Backpropagation MLP

The third problem task for this experiment is finding a multilayer MLP that

classifies the Iris dataset (see also section 4.6.2). Unlike with the previous tasks,

the population here consists only of one network that is evolved for 1000 gener-

ations (i.e. a (1+1) strategy is used). The nodes of the network are log-sigmoid

neurons trained with standard backpropagation and an adaptive learning rate

(LRstart = 0.1, LRinc = 1.05, LRdec = 0.7, LRthres = 1.04). The network space is

restricted to feedforward architectures only.

Weights are initialised randomly and uniformly within the range [0,1]. The

reasons for evolving only one network are,

• the problem is easy,

• backpropagation is computationally expensive,

• we want to be at least competitive with random guessing by the user, so

the effort required by this evolutionary approach should be minimal.

The network and its offspring are therefore trained for just one cycle at each

generation, and any weight changes are inherited by their respective offspring

(i.e. we apply Lamarckian evolution). Weights are stored with neurons rather

than as tentacle attributes. Only once network derivation is complete are the

weights mapped onto the inputs of a neuron deterministically using the associated

edge labels as indices into a weight vector, which also allows for a limited degree of

position independence. We regarded the dissociation of weights from the grammar

representation as the most immediate solution to the concern that edges are

formed from potentially multiple tentacles. Simply adding up tentacle weights

would imply that the size of a single weight is dependent on the number of

productions required to describe the network, which is not a sensible bias.

75 patterns from the Iris set are presented in random order to the networks,

a forward and backward pass are applied, then 75 different patterns from the Iris

set are also presented, and the fitness MSE is computed by comparing the actual

output against the target output. The total computational effort for this setup is

twice that of training the mean-generation network for 1000 epochs, or somewhat

less than if the user were to guess the topology of and then train a neural network

with validation.
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5.1.3.4 Computer Network Topology

The final problem task, the optimisation of a communications network first in-

troduced in section 4.6.4.1 and denoted Computer Network Topology (CNT ), is

only applied to evaluating the impact of offsets on soft matching. The simulator

is incompatible with strict matching, as it exploits the target offsets for the posi-

tioning of switches and cables in the virtual landscape. Accordingly, (x, y) label

pairs instead of single labels are assigned to each node, so that we may operate

on a two-dimensional landscape. A Euclidean distance function is employed to

match labels, but also to determine distances between nodes, which contribute

to the cost objective of the solution. As previously, the labels are initialised ran-

domly and not changed by evolution, so the cost optimisation is unlikely to be

as effective as if we had evolved the labels and hence the positioning. However,

the choice of method for doing so and the potential consequences of this were not

something we wished to address here. G/GRADE has to optimise 10 different,

randomised landscapes 10 times each. The performance objective is given by the

mean percentage of unfulfilled data streams of requesting units.

5.1.3.5 Experimental Configuration

The experiments will compare 12 variations of strict matching and 4 variations

of soft matching against each other. Results are averaged over 100 separate

runs, each with a different random seed. Statistical significance is determined

using a non-parametric Wilcoxon rank sum test on the best solutions of the final

generation of each run. Differences with p < 0.05 are regarded as significant, but

no Bonferroni correction is applied to any of these comparisons, unless otherwise

noted. (p-values will be shown, unless they are exceptionally small.)

Across all problems, a maximum of 1000 productions and 1000 terminals

per production are permitted for each network, although no networks actually

reached this limit in these experiments. Terminals are implicitly wrapped into

productions, as further described in section 5.3. The permitted mutations are

those discussed in section 4.3.1, but excluding the modify operator. A single

production is selected for mutation and a single mutation is applied at a time,

with a geometric probability of 0.5 that further mutations are applied. Selection

favours solutions that are nondominated across two objectives: the function error,

which is the mean squared error over all training samples, and the size of the

network, as defined in section 4.3.2.
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Strict matching selects randomly from a set of integer labels in an interval I

(as defined below), or, at a probability PR selects randomly from the labels of the

immediately visible scope (see section 5.2), unless there is no other label in the

scope. Interval I is either [1, 5] or [1, 100], and three values for PR are suggested:

0.0, 0.5, and 0.9, which produce different proportions of random selection against

selection from context. (1.0 is avoided, as only a single label value would ever

arise from this.) Additionally, strict matching is also tested either with or with-

out redistribution for duplicate labels on combinations of the above parameters,

leading to a total of 12 configurations.

Soft matching always selects randomly a floating-point label from a uniform

distribution between [0, 1). The possible coordinate space with offsets is limited

by having a wrap-around from 1 to 0 and vice versa. The minimum difference

(with possible wrap-around) between two labels is used as the default distance

measure. The independent variable for the soft matching experiments is the

addition of nonterminal and terminal offsets. Besides the elementary case of

no offsets, we also test using offsets for only the target labels of a terminal or

nonterminal (marked Target Offset), using the same offset for source labels and

target labels (marked Point Offset), and using different offsets for source labels

and target labels (marked Tunnel Offset).

5.1.4 Results & Discussion

The results for the experiments described above are shown as box plots in figures

5.5 and 5.6. The error rates and sizes of the networks are also summarised in

tables A.1, A.3 and A.5 in Appendix A. Please refer to Appendix A for tabulations

of the numerical results of all the experiments in this thesis.

The results reveal that the performance of strict label matching is dependent

on the parameter PR. As was expected from equation 5.2, having a large label set

to choose from reduces the likelihood of randomly finding a label that actually

matches one in the local scope. This obstacle is overcome by selecting from

existing labels in the scope. Selecting 50% or 90% of labels by this method leads

to a significantly better final MSE of the best solution (p < 4× 10−10). PR = 0.9

exhibits less error than PR = 0.5 for all problems, but the difference is only

significant with the RBS circuit (p < 0.0007). PR evidently needs to be greater

than 0 to ensure that there is a diversity of distinct labels, but there appears to

be some tolerance as to exactly what PR is set to.
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Figure 5.4: Box plots are helpful in visualising the distribution of results. This
is a simple box-and-whiskers plot, as the whiskers extend to the minimum and
maximum and outliers are not separately plotted here. Notches show the approx-
imate confidence intervals around the medians for box to box comparison. The
medians of two boxes differ at the 0.05 significance level if the notches of either
box do not overlap.

While selecting labels from the scope results in a performance improvement,

determining which labels are in the scope of the cellular graph being mutated

is not a trivial matter: it requires a partial expansion of the grammar into the

graph embedding this cellular graph. This increases the overall complexity and

computation cost associated with the system. A simpler alternative is to reduce

the total set of labels that we can choose from, which increases the likelihood of

randomly selecting a label that already exists in the scope. The results support

this hypothesis. Using a set of 5 labels instead of 100 labels leads to significantly

better performance for PR = 0, but for instances of non-zero PR performance is

inconsistently better or worse depending on the problem.

Reducing the label set can be problematic for two reasons. Firstly, if there

are only n labels but the problem involves n+1 inputs, it becomes unsolvable be-

cause the representation becomes constrained in its ability to distinguish between

nodes. This should not be an issue with the problems tested here, but nonethe-

less represents a potential limitation of the framework. Secondly, the likelihood
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Figure 5.5: Minimum MSE box plot of different configurations of the strict match-
ing scheme compared to soft matching with target offsets. Configurations are
denoted P/L/R, where P is the probability of using an existing label, L is the
size of the label set, and edge redistribution is specified by the R. Refer to figure
5.4 for a brief description of how to read box plots.
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Figure 5.6: Box plot of results from using different offset schemes for soft match-
ing. The asterisk (*) denotes the default configuration, i.e. the configuration also
used in other experiments.

of label duplication in the same scope increases. Without any additional bias,

selecting a target label that already exists in the scope constitutes a neutral mu-

tation in at least half of all instances, since the other existing targets may be

preferred. We have suggested redistributing labels of the same source across all

targets of the same label as a means of addressing this. Indeed, applying the

queue-based edge redistribution significantly improves the success rates (i.e. the

fraction of runs that produce optimal solutions) on the Binomial-3 regression and

the performance on the neural network task, where a lack of unique labels seems

to be an impediment to finding the best solution.

However, this strategy fails to have any notable impact on the RBS circuit.

In the study by Luerssen and Powers (2005), some problems similarly benefited

from edge redistribution, while others did not. Since edge redistribution only

applies to instances where duplicate labels occur, duplicates must hence be a

hindrance in solving some problems; but what makes a problem sensitive to this
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is not clear from these results. With this reasoning in mind, having a small label

set, and hence a greater probability of duplicates, should also benefit more from

edge redistribution, but the results are not conclusive about this.

Soft matching avoids this issue for the most part, as labels are rarely dupli-

cates by default. Soft matching without additional offsets is significantly superior

to the best parameterization of strict matching on the Binomial-3 regression and

the RBS circuit (no comparison exceeds p < 10−8), but not on the Backpropaga-

tion MLP. With Target Offset the difference is significant on every tested problem

(no comparison exceeds p < 10−12). Adding offsets to each terminal and non-

terminal leads to significantly better performance than without any offset. The

compositional freedom added to the graph grammar by these offsets appears to

outweigh any complexity issues caused by the increase in the number of labels

requiring optimisation. The target offset alone is mostly sufficient, however. It is

only significantly worse than the other offsets on the RBS circuit, especially on

the success rate, where only one in a hundred runs is a winner, as compared to

11% for Point Offset.

The conclusion from these results is that strict matching is not an appropriate

means of label matching in an evolutionary optimisation system; soft matching

with offsets is certainly superior. The simplest effective soft matching, with target

offsets only, will therefore be used as the default configuration for all subsequent

experiments, unless noted otherwise.

5.2 Graph Modularity

Section 3.2 proposes that a system that can be decomposed into modules may

be more easily optimised. For this to be practical, the optimisation system must

account for the representation of modules. A module is expected to have minimal

dependences with components external to the module. These dependencies usu-

ally relate to a well-specified interface of the module that acts as a dependency

bottleneck. This way a successful design can be protected from being affected by

changes to other components of the system.

In the graph domain, achieving structural modularity translates into restrict-

ing the number of vertices inside a module that have edges to vertices outside

the module. The begin and end nodes of the multi-pointed hypergraph provide

a natural feature for restricting such edges, since it is only these nodes that al-

low binding to components external to the hypergraph. By limiting the number
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end nodes of included cellular graphs. No connections between target labels
of begin nodes and source labels of end nodes are permitted, as they are not
required for describing any graph, yet increase the difficulty of implementation
by a considerable amount.

of begin and end nodes or reducing the number of edges from begin and to end

nodes within the hypergraph we directly reduce the number of possible structural

dependencies and thereby turn the hypergraph into a module. In the cellular pro-

duction model, the same effect is accomplished by limiting the cellular tentacles

of a cellular graph – we will hence also refer to these tentacles as the interface of

the cellular graph.

Since all dependencies between cellular graphs involve the interface, the label

matching approach that was presented in the previous section cannot just match

any labels, but needs to be restricted to a specific scope for each label type. This

is shown in figure 5.7 and represents the baseline scope of a cellular graph. No

label outside the scope boundary is visible from within the cellular graph, which,

for a graph composed of many cellular graphs, greatly reduces the number of

possible sources and targets for which labels must be matched. There are draw-

backs to this, however. To connect nodes that are separated by multiple scope

boundaries, numerous begin or end nodes need to be defined among intermediate

productions in order to bridge these scope boundaries. This is akin to passing

down a parameter in a sequence of function calls.

The purpose of modularity is to make connections between widely separated

modules difficult, but there are instances in which this limitation is a hassle. For

instance, in a proper modular framework we should assume that the problem



Methods of Graph Construction 101

nodes (or variables, in a non-graph representation) are external to the solution,

i.e. they constitute inputs and outputs to the network module. Thus, by the scop-

ing rules suggested above only the starting cellular production has direct access

to these top-level nodes. Connecting a node in a deeply embedded production

with an input and an output of the graph requires edges from the input to the

node back to the output to be established for each intermediate scope boundary.

Moreover, if the number of edges between modules is increased (e.g. on a prob-

lem with many data lines), the probability of bridging multiple consecutive scope

boundaries drops exponentially, unless fitness also scales reasonably smoothly

with the degree of completion of the interface (which is rather unlikely in the

current framework).

In GP, only edges from the node to the output (the root of the tree) must be

determined, because variables can be located anywhere in the tree. Unlike with

the above approach, looking at the root of the GP tree tells us nothing about

the variables accessed, so this approach is not very modular, but it requires only

half as many edges on average to be established during evolution. So a simple

method for making modularity more selective and less restrictive is to permit

global variables as in GP. This can be achieved by assigning a flag to each begin

and end node indicating whether it matches labels in the local scope or the global

scope. In the global scope, only top-level sources and targets are matched. The

benefit of such global tentacles is expected to apply mainly to graphs with many

incoming and outgoing edges at the top-level, as boundary bridging to the top-

level can be skipped by applying the global flag. The disadvantage is a loss of

assured modularity; you cannot determine the inputs and outputs of the network

solely by looking at the starting production anymore.

One of the principal issues arising with problems of many variables is that,

unless global tentacles are used, the starting production must define tentacles

to access each variable, and this can only be done by adding these tentacles

through mutation of the production. If two separate productions each solve a

different half of the problem of accessing all the variables, then each of them has

to independently evolve the other half as well, as there is no mechanism by which

both could combine. Hence, the second modification to our algorithm is to assign

a modularity-flag to each cellular graph that defines whether the scope boundary

should apply at all (Luerssen and Powers, 2005). If the flag is off, then the scope

boundary of the next including cellular graph that is modular is used instead.

In practice, this means that if a cellular production NH is referring to a non-

modular cellular production No, it is equivalent to the definitions of NH and No
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Figure 5.8: Label offsets add to the labels of associated hypergraphs (or vertices,
not shown). A non-modular production No concatenates to the referring produc-
tion NH , hence moving the nodes of the embedded cellular graph into the scope
of the host cellular graph. Connections are established subsequently. Please note
that not all labels are actually shown on the left.

being concatenated (see figure 5.8 for an illustration of this). A cellular graph with

many incoming and outgoing edges can now be defined in terms of non-modular

cellular graphs, which may then also be reused for defining other cellular graphs.

The need to re-discover the same or similar interfaces by adding each tentacle

individually is thus greatly reduced. Additionally, there is now the potential for

linkage learning in the concatenation of interfaces, as the position independence

of external nodes allows for a floating representation as with mGAs (cf. section

2.6.2.1).

5.2.1 Method

The experimental method of section 5.1.3 is reapplied here with the same pa-

rameters on the same problem tasks: Binomial-3 Regression, RBS circuit, Back-

propagation MLP, and the CNT design. For label matching we use soft matching

with target offset.

The first experiment introduces global tentacles. Instead of matching labels

in the local scope, global tentacles match labels (and hence nodes) in the global

scope of the starting production of the graph. Begin and end nodes added to a

production during mutation have a probability of PglobalIO of constituting global

tentacles. Values of PglobalIO = 0.1 and PglobalIO = 0.5 are evaluated in this
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Figure 5.9: Minimum MSE box plot comparing the default modular configuration
against using selectively modular productions and global tentacles at 10% and
50% insertion probability.

experiment against the default of no global tentacles.

Selective modularity is implemented in the second experiment. The initial

cellular graph is modular. However, anytime a cellular graph is mutated, there is

a 10% chance of changing the modularity flag, i.e. making the graph non-modular

if it is modular, or vice versa. This is in addition to any other conventional

mutations that may occur.

5.2.2 Results & Discussion

The results, shown in figure 5.9, fail to provide clarity on the evolutionary im-

pact of modularity. Neither the addition of non-modular productions nor of

global tentacles produces consistent changes across all problem tasks. The stated

hypothesis was that modularity would increase the number of graph grammar

components required to describe a network, and this was slowing evolutionary
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convergence. However, significant performance gains from making modularity

optional are only observed with the CNT design (p < 0.02), but not on the other

problems. The likely reason for this is that they involve far fewer variables than

the CNT design – indeed, the circuit design problem only has a single output. The

problem variables are therefore highly available and increasing their availability

any further (with PglobalIO = 0.5) can lead to a performance dip. For problems of

this nature there appears to be no notable overhead imposed by modularity and

the consequent need to pass problem variables through multiple interfaces, but

the results for the CNT design indicate that this statement cannot be generalised

to all other problems.

5.3 Implicit and Explicit Gluing Models

Cellular graphs do not define how terminal vertices connect. Additional infor-

mation is needed to establish edges from a terminal to another terminal or any

component of the cellular graph. It is clear that with label matching as the sole

means of defining connectivity, terminals must be assigned labels as well. One

method consistent with our framework involves wrapping each terminal into a

cellular production so that it may be attached like a hyperedge by a cellular

graph. The actual connection between the terminal and the external nodes of

the cellular graph into which it is wrapped would need to be defined manually in

this case. If the cellular graph is modular, then the terminal is hidden from other

cellular graphs and could be treated like any other cellular graph.

However, with some of the terminals of the evaluated problem tasks, the degree

of the vertex may be variable, e.g. a neuron can have any number of inputs. This

would imply that we need to define a different production for each vertex degree

of a particular terminal, which seems perhaps a bit too much manual effort.

One possibility, and the approach also used in the previous experiments, is to

implicitly wrap each terminal into a default production, which connects to up to

n + 1 nodes of any label, where n is the maximum number of inputs defined for

that terminal type, and the terminal has one output. If source and target offsets

are defined for cellular graphs, a source label and a target label are also attached

to each terminal in the cellular graph. Nodes are chosen as inputs in order of

proximity to the source label (or 0 for setups without source offset), while the

terminal output is connected to the source matching a target label (or 0 for setups

without target offset); nodes are never chosen more than once. A drawback of
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Figure 5.10: The explicit gluing scheme employed so far involves matching la-
bel pairs. Fewer labels are needed if we assume that the n-th external node is
connected to the n-th possible source/target. This, however, increases position
dependency within the representation.

this method is that it is formally less “pure” than with explicitly user-defined

cellular graphs, as we now need to distinguish between evolved cellular graphs

(for nonterminals) and implicitly generated cellular graphs (for terminals).

5.3.1 Feedforward Networks

We can exploit the possible differentiation between the implicitly wrapped ter-

minals and the nonterminals of explicitly evolved cellular productions to impose

feedforwardness (i.e. a cycle-free topology) on the solution networks. Two of the

four problem tasks – the regression and the neural network – used in the experi-

ments of this chapter require only feedforward architectures. The search process

can be facilitated here by restricting the search space to only such architectures.

The following rule is applied: nonterminals only receive incoming edges from

begin nodes, and terminals can receive incoming edges from all nodes except di-

rectly from other terminals. This changes the label matching process so that if

a selected source does not satisfy the rule the next best source that does satisfy

the rule is selected. Thus, the only permitted interaction between nonterminals

and/or terminals within the same scope is the nonterminal providing an input to
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the terminal. Interactions between two or more nonterminals or between two or

more terminals is not possible with this rule, which results in cycle-free networks

being derived.

5.3.2 Method

We wish to evaluate whether implicitly wrapping terminal vertices into cellular

productions is a good idea by comparing it against hand-coded cellular produc-

tions that also wrap the same terminals. In the latter instance, all terminals

are hidden to the system, so enforcing feedforwardness by distinguishing between

nonterminals and terminals is not possible anymore. We will first see what im-

pact the removal of the feedforward constraint has on the Binomial-3 Regression

and the Backpropagation MLP, although self-loops will still be prohibited and

signals along any cyclic links are ignored. A performance decrease is expected,

because fewer of the possible network configurations are now suitable for solving

the problem.

Subsequently, terminals for all problem tasks will be replaced by hand-coded

productions reflecting the different input arrangements that these terminals might

encounter. For the Binomial-3 Regression, there will be a production for each of

{+,−,×, div} with two incoming tentacles and one outgoing; a production for

{+} with one incoming tentacle and one outgoing; and a production for each

of {+,×} with only an outgoing tentacle, representing the constants 0 and 1

that are implicitly established by this. For the RBS circuit, there will be a

production for each of {AND, OR, XOR} with two incoming tentacles and one

outgoing, as well as two additional productions for OR with one or zero incoming

tentacles, respectively, and one outgoing. For the neural network, there will

be 5 productions wrapping the sigmoid neuron, for each of one to five incoming

tentacles (and one outgoing tentacle always). Likewise, for the CNT design, there

will be five possible switches with one to five inputs.

The mutations for inserting or removing terminals have been removed, and

the mutation probabilities for inserting or removing nonterminals have been dou-

bled instead. 50% of inserted nonterminals are allocated to our hand-designed

productions; this avoids having their insertion probability dependent on the total

number of productions in the population.

Finally, to round out this exploration of implicitly defined productions, we

will also evaluate implicit definitions of nonterminals. The target nearest to the
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Figure 5.11: In this box plot, implicit gluing models for terminal vertices are
compared against explicit, user-defined production models. FF signifies a feed-
forward constraint on the architecture (see section 5.3.1), whereas simple denotes
that only simple graphs are allowed (using the Simple (Terminal + Nonterminal)
configuration, see section 5.4).

source offset of the nonterminal is fused with the earliest begin node automatically

without matching it against a source label (which therefore becomes superfluous);

terminals are also defined implicitly, but target labels are still defined as previ-

ously. A major drawback here is that certain topologies, such as a XOR-like

architecture, require more productions to be constructed. Moreover, it greatly

increases the position dependency of external nodes within the representation,

which we originally (in section 4.1) intended to avoid.

5.3.3 Results & Discussion

Results are averaged over 100 runs and can be seen in figure 5.11 (for implicit

terminals) and figure 5.12 (for implicit nonterminals). Particularly noteworthy
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Figure 5.12: Implicit gluing is extended to also include nonterminals (i.e. cellular
graphs), so that external nodes can be defined without source labels.

is the negative effect of allowing cycles in the solution graphs of problems that

only require a feedforward graph. This significantly reduces both median perfor-

mance and the success rate when compared to feedforward graphs (p < 0.0004 for

each), which is expected, given that the search space is increased without a corre-

sponding increase in viable solutions. Much better results with cyclic graphs are

obtained in Luerssen (2005a) and Luerssen and Powers (2005), where the graphs

are simulated for multiple passes. Recurrent feedback may affect fitness in those

cases, and it appears that there exist some compact recurrent solutions, which

may explain the performance gap compared to this experiment.

Performance on three out of the four problem tasks is not significantly different

with hand-coded terminal productions than with implicit terminal productions,

although the lack of feedforward constraint remains a drawback. Only the RBS

circuit reveals a significant advantage in favour of implicit terminal productions

(p < 0.002). Any differences must be attributed to either the different mutation

distributions when selecting terminals (e.g. there are 3 terminals with the RBS
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circuit, but 5 hand-coded productions); the different sizes of the resulting graph

grammar, as grammars with implicit terminal productions grow relatively less

in size with each added terminal; or the fact that nodes are never chosen twice,

which may bias the graph design (see section 5.4).

Assessing hand-coded terminal productions differently from other production

would address these issues, but the results indicate that implicit terminal pro-

ductions are quite effective. Since they are also more convenient than defining

productions by hand, we will continue to use them throughout other experiments.

On the other hand, implicitly wrapped nonterminals will not be used due to our

concern about the aforementioned drawbacks – although this is not supported

by the results on these problem tasks. Performance with implicitly wrapped

nonterminals is remarkably similar, except on the CNT design, where it is even

significantly better (p < 0.00004). It thus appears that a simpler model of graph

gluing than the cellular graph model might be entirely viable in practice, if not

in theory.

5.4 Enforcing Simple Graphs

It is not graphs that we derive from the evolved graph grammar, but pseudo-

graphs, because the grammar can easily describe a graph with a self-looping edge

or more than one edge joining the same pair of vertices. In fact, within a modular

graph grammar it is impossible to determine whether two or more of the incident

edges of a node are multi-edges, because this would require knowing whether

they are incident on the same other node. Yet this other node may be outside

the scope of the first node and hence not open to inspection. Consequently, the

variation operators cannot, without actually deriving the network, ensure that

an evolved network is always a simple graph. However, the graph grammar itself

can be constrained to only produce simple graphs. We suggest two such schemes

for preventing pseudographs. Neither scheme involves removing loops or combin-

ing multi-edges, as this would likely starve the terminal vertices of any available

edges.

The first scheme is based on the implicit gluing presented in the previous

section. When deciding on the connectivity of a terminal we verify that each

possible input source is different (i.e. not just the external node, but the terminal

it represents). Any input source that is identical to a previous input source

is eliminated from consideration, so no pseudographs can arise. In some cases
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there may be very few different input sources within the scope, but if there exist

multi-edges between nonterminals (i.e. “multi-tentacles” between hyperedges),

then by eliminating identical input sources for nonterminals as well, we improve

the diversity of input sources within the scope. This is our second, extended

scheme against pseudographs.

Clearly, these schemes make the process of connecting nodes a more elaborate

process. Is it truly desirable to avoid pseudographs? The additional representa-

tional flexibility of pseudographs has some potential benefits. For example, the

arithmetic concept of 2x can be represented by two edges both incident on a

node representing x and a node representing an adder; in a simple graph, two

instances of x would either be necessary or such kind of reuse would require a

more elaborate graph with more nodes and edges. On the other hand, if the

intended solution is not a pseudograph, then the larger search space constituted

by pseudographs will merely slow down the evolutionary convergence.

5.4.1 Method

This experiment is intended to show whether pseudographs are of help or hin-

drance in finding solutions to our standard set of problem tasks. Our investi-

gation relies on the two suggested schemes for avoiding pseudographs described

above; we compare this against the default (pseudograph) setup used previously

in this chapter. No other parameters are changed. Avoiding multiple edges dur-

ing implicit terminal gluing is labelled Simple (Terminal), while avoiding multiple

edges during the matching of nonterminal tentacles is labelled Simple (Terminal

+ Nonterminal); allowing multiple edges is labelled Pseudograph.

5.4.2 Results & Discussion

Results are shown in figure 5.13. On most problem tasks, no significant differ-

ences in performance are observed between pseudograph and simple graph. The

sole exception is the CNT design where the Simple (Terminal + Nonterminal)

configuration more than halves the error rate (p < 9× 10−6). No such improve-

ment arises from constraining just the edges incident on terminal vertices, so,

clearly, the occurrence of multi-tentacles has practical relevance in describing

simple graphs with a cellular graph grammar. Since only one in four problem

tasks responds to the simple graph constraints, however, this reasoning cannot

easily be generalised. The overall results in fact imply that there is no universal
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Figure 5.13: The default model of graph construction can create pseudographs.
Two extensions of the label matching scheme are compared here, which constrain
the search to simple graphs. The first prohibits a terminal node from forming
multiple edges with another node, the second also prohibits hyperedge nontermi-
nals from doing so.

penalty for trying to solve problems as pseudographs, even though they can easily

be solved by simple graphs, and there are far more pseudograph topologies imag-

inable than simple graph topologies. A possible explanation for this lies in the

implicit terminal wrapping used here, which already biases against multi-edges

by never choosing a node twice, so the benefits of the simple graph constraint are

marginalised. This is supported by the notable performance improvements ob-

served in figure 5.11 when combining the simple graph constraint with hand-coded

productions. Yet various problems that emphasise the benefits of pseudographs

are certainly also imaginable, e.g. a problem where properties of a single node

are required many times by another node. Taking into account the additional

effort of applying the constraints, it thus appears that there is little justification

for artificially constraining the output of the evolved graph grammar – which is
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intrinsically a pseudograph – into simple graphs, at least for performance reasons

on most problems.

5.5 Summary

In this chapter we made several discoveries towards an effective model of graph

construction. The most obvious method of label matching that arises from the

framework of hyperedge replacement, the idea of strict matching, performed

rather poorly. We provided a theoretical justification of why strict matching

may fail and this was fully born out by the results. The soft labelling model

that we alternatively suggested, which involves nearest neighbour label match-

ing on a diverse set of labels, was comparatively much more successful. It also

provides the option of additional node offsets, which reduce the problem of label

duplicates and indeed give better performance, although it is not clear just how

much offset is actually needed. On the issue of label lookup, employing a strictly

modular scope of only looking up the immediate host graph is quite effective, de-

spite this also implying that the root cellular production must define the interface

for the entire network. However, only a single problem benefited from making

modularity more selective or allowing global variables as terminals.

We also investigated whether source labels could be eliminated by implicitly

allocating tentacles according to the distance of a source node from a target node.

Indeed, this implicit gluing was our default approach for terminal definition, as

otherwise the user would have to specify the cellular graph extension for each

terminal type. Implicit gluing was found to be mostly beneficial, and it can be

extended to nonterminals, although it appears to make less of a difference there

and could, in theory, complicate the evolution of certain topologies. The reason

why it is beneficial at all may have to do with the nature of the networks derived

from the graph grammar: they aren’t graphs, but pseudographs. Forcing the

derivation to generate simple graphs leads to only few notable performance im-

provements, but the implicit gluing already biases strongly against pseudographs

(without excluding them) by never choosing a node twice. We will therefore

continue to use implicit gluing for terminals, but explicit gluing for nonterminals.



Chapter 6

A Case for Phenotypic Diversity

Initialisation is an important phase in many evolutionary algorithms. GAs require

an initial population of random strings that contain a diversity of schemata that

can be recombined to form strings of potentially higher fitness. In GP, a variety

of methods exist for generating an initial population of syntax trees (Luke and

Panait, 2001). Most commonly used is the ramped half-n-half method introduced

by Koza (1992), which either randomly picks functions and terminals or just

functions to build a tree no deeper in any branch than a user-specified limit.

This population of trees again provides a reservoir of diverse building blocks

from which potentially fitter trees can be constructed.

Building blocks are also essential for graph grammar evolution. New graphs

are defined from productions that already exist, and these must come from some-

where. Starting with random productions, however, is not viable, because recur-

sive relationships between the productions can make it difficult to control the size

of the resulting graphs. Additionally, unlike with trees, vertices are not required

to be adjacent to other vertices, so a random initialisation will often produce

disconnected graphs. In the context of automata networks we already know in

advance that such solutions will not be fit. They also constitute a poor source

of building blocks, as cellular graphs define their own connectivity, and discon-

nected cellular graphs are therefore likely to remain disconnected when reused in

different graphs.

The alternative to obtaining diverse building blocks from some kind of ini-

tialisation method is to generate them during evolution. Diversity refers to the

differences between members of a population. Genotypic diversity is the diversity

among genomes in the population, whereas phenotypic diversity is the diversity

among fitness values in the population. Maintaining a diverse population is es-

113
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sential to the long-term success of any evolutionary system, as this implies the

continued global exploration of productive regions of the configuration space in-

stead of local search trapped by local optima. An effective method for facilitating

diversity should therefore not just eliminate the need for initialisation, but also

improve the search process throughout all generations. This chapter will address

this issue in the unique framework of graph grammar evolution. The principal

emphasis will be on phenotypic diversity, as genotypic diversity is difficult to

estimate for a graph grammar – more on this below.

6.1 Diversity Objectives

Several methods have been proposed to improve diversity and combat prema-

ture convergence in evolutionary algorithms, including spatial separation, fitness

sharing, and crowding. Spatial separation is a major topic in its own right and

therefore reserved for section 6.2, but the other methods are discussed here.

Fitness sharing involves penalising the fitness of a solution if it is similar

to other population members (Goldberg and Richardson, 1987). Rosca (1995)

used fitness values to define an entropy and free energy measure for phenotypic

diversity. High entropy reveals the presence of many unique fitness values, with

the population evenly distributed over these. Bersano-Begey (1997) tracked the

number of solutions that solved specific fitness cases (i.e. training cases), which

was used to discover and promote more distinctive solutions. Fitness sharing

among different fitness cases has also been applied to GP, reducing the occurrence

of premature convergence (McKay, 2000; McKay and Abbass, 2001).

Crowding forces new individuals to replace those that are genotypically sim-

ilar (De Jong, 1975). This is closely related to niching (previously discussed in

section 4.3.3), which is applied in MOEAs such as NSGA-II (Deb et al., 2000).

MOEAs select for solutions that represent Pareto-optimal trade-offs between mul-

tiple objectives. Niching strategies can evenly spread solutions across the Pareto-

boundary (Deb et al., 2003), but this is not guaranteed to lead to diverse building

blocks and can indeed be detrimental to the scalability of the algorithm (Sastry

et al., 2005). While our purpose for using MOEAs is size control, selecting against

size is known to lead to premature convergence on small solutions (De Jong and

Pollack, 2003).

MOEAs can facilitate diversity if we add diversity as another objective; but for

this we need a measure of diversity. A common method for determining genotypic
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diversity is to compute an edit distance based on string matching, which can also

be used to determine distance between GP trees (O’Reilly, 1997). De Jong et al.

(2001) achieved both smaller and more diverse trees by using tree distance as

a genotypic diversity objective in the multi-objective optimisation of n-parity

problems. Bui et al. (2005) explored several diversity objectives, including mean

and minimum genotype distances; the latter was also implemented by Toffolo

and Benini (2003), and competitive results were achieved in all instances. The

principal drawback of genotype distance measures is their limited applicability to

graph grammars, as the extensive neutrality intrinsic to graph grammars would

allow these to improve distance while remaining isomorphic. Since genotypic and

phenotypic diversity are closely intertwined – a decrease in genotypic diversity

will often cause a decrease in phenotypic diversity – a possible solution is to

employ a phenotypic diversity objective instead. We suggest a number of simple

phenotypic diversity measures in the following section.

6.1.1 Measures of Phenotypic Diversity

The error returned by the objective function is the most available phenotypic

trait of a solution and hence a solid basis for measuring phenotypic diversity.

To reduce any bias attributable to the nature of the specific objective function

used, the solutions can be ranked against each other on this function; distances

are then computed as differences of ranks. We suggest six different rank-based

distance measures here:

The mean distance of solution i is the absolute difference between ranks,

Di =

∑N
j=0 |Ri − Rj |

N
(6.1)

where N is the number of other solutions. Since it is often easier to attain worst

rank than best rank, using this measure encourages poor performance. A measure

less biased towards poor performance is to compare whether two solutions i and

j show non-identical performance,

Sij =

{
1 if Ri �= Rj

0 otherwise.

The diversity of solution i can be defined as the proportion of solutions that are
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different in performance,

Di =

∑N
j=0 Sij

N
(6.2)

This ‘difference’ measure is logarithmically related to the phenotypic entropy of

the solution:

H(i) = − log(1−
∑N

j=0 Sij

N
), (6.3)

but since the diversity objective is ranked as well, we can use the simpler difference

measure while obtaining the exact same effect.

The above approach encourages solutions to be different, but no worse than

necessary to achieve a difference. For numeric optimisation, this would obviously

lead to a population of very similar solutions. In the case of graph optimisation

similar performance can be attained by very different graphs, so this is arguably

less of a concern. However, solutions with equal mean performance can still be

different, and the measures presented so far do not recognise this. Distinguishing

these solutions without comparing their genotypes is only feasible if there are

multiple fitness cases that can be compared separately. Then the mean rank

distance can be averaged across each case c,

Di =

∑C
c=0

∑N
j=0 |Rci − Rcj|
C ×N , (6.4)

where C is the number of fitness cases. Two solutions perform non-identically if

Sij =

{
1 if

∑C
c=0 |Rci −Rcj | > 0

0 otherwise,

so that diversity may again be defined as the proportion of non-identical solutions,

Di =

∑N
j=0 Sij

C ×N . (6.5)

Pareto-dominance across all fitness cases can also be established, so that domi-

nated solutions can be excluded from the above measures. Thus, satisfying fewer

fitness cases is only regarded as diversity if these fitness cases are different. The

rank distance of a solution i is its distance to another solution that does not

dominate it,

Sij =

{ ∣∣∣∑C
c=0 |Rci −Rcj

∣∣∣ if j does not ∈-dominate i

0 otherwise,



A Case for Phenotypic Diversity 117

and the proposed diversity measure is the mean of these,

Dij =

∑N
j=0 Sij

C × Pi
, (6.6)

where Pi is the number of solutions that do not dominate i. Within this domi-

nance framework, two solutions can also be defined to differ if

Sij =

{
1 if

∑C
c=0 |Rci − Rcj| = 0 and j does not ∈-dominate i

0 otherwise,

and diversity can be the proportion of non-identical solutions that do not domi-

nate,

Dij =

∑N
j=0 Sij

C × Pi
. (6.7)

For comparison, using each of the fitness cases as a separate objective in the

MOEA will also be evaluated. Instead of a single performance objective, there

is now a performance objective for each separate fitness case. Solutions thereby

remain non-dominated as long as they are superior to all other solutions in at

least one fitness case. In this instance, ensuring a diversity of Pareto efficient

solutions becomes the principal responsibility of the niching mechanism. It has

to spread the solutions along a Pareto frontier in n+1 dimensions, where n is the

number of fitness cases (i.e. performance objectives), and, as by default, there is

also a single size objective.

6.1.2 Age as a Diversity Heuristic

Over many generations and large populations the effort of calculating entropy or

distance for each solution may have a noticeable impact on optimisation speed.

A much simpler objective is based on assigning a time stamp to each solution,

depending on when the solution was first evaluated (Luerssen, 2005a). In contrast

to a previous study by Abbass and Deb (2003) that also employed this idea, we

favour newer solutions over older solutions, thus mirroring the biological aging

process and health benefits of youth. A significant benefit to diversity here is

that any changes to offspring that are otherwise neutral will survive into the next

generation because of the youth of the offspring. Two different time stamps are

suggested for maximisation: one is the birth generation of the solution (we mark

this as the solution age on tables and figures), the other is the sequence number

of the solution, which is incremented for every solution and hence unique. The
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main effective difference between using age or sequence is that with sequence

the newest solution is never dominated, and older solutions are more strongly

dominated than with age, because they may be dominated by otherwise identical

solutions of the same generation. Note that the order in which solutions produce

offspring (and hence their sequence order) is randomised in each generation.

6.1.3 Method

The proposed diversity measures are evaluated on the Binomial-3 Regression, the

RBS circuit, and the CNT design. The Backpropagation MLP task is replaced by

the task of balancing two poles on a cart controlled by a neural network that we

evolve (as described in section 4.6). This change was deemed appropriate because

the MLP design task involved a population of one, leaving no room for phenotypic

diversity. Moreover, the outputs, and hence diversity, of the network is affected

by learning, which greatly complicates the relationship between evolution and

diversity.

Solutions to the first three tasks are evolved using the same method as de-

scribed in the last chapter, with a population of 20 graphs and soft matching,

target offsets, default modularity, and pseudographs. We address the pole bal-

ancing in the same way, but the terminals are constituted by log-sigmoid neurons

and real-valued weight vectors are initialised randomly with a standard Gaussian

distribution (μ = 0, σ = 2). However, unlike with the CNT design, we will not

just rely on randomisation for generating the weight values. New weight vectors

are determined by adding the weighted difference vector between two weight vec-

tors (of different, randomly chosen neurons) to a third vector, a method based

on Differential Evolution (Price, 1999) with parameter F = 0.2 and a crossover

probability of 0.9. A new mutation is added to the set of allowed mutations that

generates such a new weight vector for a randomly chosen neuron; it is applied

during evolution so that one third of all mutations are weight changes.

Two additional problems from the domains of symbolic regression and circuit

design are also investigated: the regression of the sixth-order polynomial

f(x) = x6 − 2x4 − x2 (6.8)

with fitness cases constituted by 21 equidistant points generated by this function

over the interval of x = [−1, 1]; and the design of a 6-bit Boolean multiplexer,

as presented in section 4.6.3. Results for these two problems have already been
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published previously in Luerssen (2005b) and will be repeated here for further

comparison and interpretation. A new addition are the results for the age and

sequence measures of diversity, which are unique for this experiment. The method

is otherwise detailed in the aforementioned paper and differs in a few details from

the method used for the other tasks: the population size is 10 for the regression,

and 30 for the multiplexer; the modify mutation operation is applied at equal

probability as the other operations; and each run ends after 5000 generations

instead of 1000. The paper also evaluates pole balancing over 100000 cycles with

these parameters (but a population size of 50); however, due to performance

and consistency issues with respect to the next section, the pole balancing was

reevaluated here with a population of 20 members simulated for 1000 cycles. See

section 7.2 in the next chapter for additional 100000 cycle runs.

We optimise the network designs with a MOEA applied to three objectives:

the function error, the network size, and a diversity measure. On all problems

except the pole balancing, 9 different diversity measures are evaluated. The first

three measures are based on entropy (i.e. ‘difference’ in our implementation),

including mean rank entropy (equation 6.2, marked Entropy on the figures and

in tables), mean rank entropy across fitness cases (equation 6.5, marked Case

Entropy), and the mean rank entropy across fitness cases for non-dominated

solutions only (equation 6.7, marked ND Entropy). The next three measures

are based on distance and include the mean rank distance (equation 6.1, marked

Distance), the mean rank distance across fitness cases (equation 6.4, marked Case

Distance), and the mean rank distance across fitness cases for non-dominated

solutions only (equation 6.6, marked ND Distance). Finally, we also use each

fitness case as a separate performance objective in Pareto optimisation (marked

Case Pareto), and the age of the solution (marked Age) and the sequence number

of the solution (marked Sequence) as alternative diversity measures. For pole

balancing, only the mean rank entropy and distance measures, and the age and

sequence measures are evaluated, due to the absence of multiple fitness cases.

6.1.4 Results & Discussion

The performance outcomes of using the different diversity measures are shown in

figures 6.1 and 6.2; the success rates are listed in tables A.1 to A.7 in Appendix

A. On the Binomial-3 regression, the best results are obtained with the simple

entropy measure, which gives a mean error of 0.0155 for the best solutions. With

a diversity measure, the mean error is 0.054, which appears a lot worse, yet the
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Figure 6.1: Minimum MSE box plot of the default configuration against 9 different
diversity measures involving additional objectives for optimisation. The asterisk
(*) denotes the default configuration, i.e. the configuration also used in other
experiments.
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Figure 6.2: Minimum MSE box plot of the default configuration against 9 different
diversity measures involving additional objectives for optimisation. The asterisk
(*) denotes the default configuration, i.e. the configuration also used in other
experiments.
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difference is only borderline significant (p < 0.03). The other entropy measures,

the non-dominated distance measure, and the age/sequence measures show lesser

improvements that are not significant. We can attribute this to the very high

standard deviations in the results, which cause uncertainty about the visible

performance increases. Conversely, a decline in performance is observed when

using either simple distance or fitness case distance as a diversity objective, or

using fitness case Pareto performance instead. The success rates for both the

simple distance measure and fitness case Pareto are 57%, which is significantly

worse than the 71% without a diversity measure (p < 0.005) and also significantly

worse on the less sensitive non-parametric test than any of the entropy measures

(all below p < 0.003). Using fitness case distance or non-dominated distance leads

to some improvement, with non-dominated distance having a significantly better

MSE than either simple distance (p < 0.002) or fitness case distance (p < 0.05).

While the benefits of diversity are not clear-cut with the Binomial-3 regres-

sion, they are very prominent with the 6th-order polynomial. No convergence at

all happens on the regression of the latter unless we explicitly facilitate diver-

sity. In contrast, a 100% success rate is attained with the non-dominated entropy

measure; a perfect solution is found after 6058 evaluations on average. Entropy

measures are all very effective, and there are no significant differences between

these. Only if we do a Z-test on success rates do we find that applying entropy to

fitness cases is significantly superior to the simple entropy measure (p < 0.003).

Selecting for distance is overall significantly less effective at obtaining good MSEs

than selecting for entropy (p < 10−10), but the distance measure improves sig-

nificantly if applied to fitness cases (p < 0.002), especially if only non-dominated

solutions are considered (p < 0.00003). Overall, the use of entropy objectives,

distance objectives, or fitness case Pareto leads to significantly better outcomes

than without any diversity measure. Unlike on the other problem tasks, age and

sequence objectives have no notable impact on performance here.

RBS circuit evolution clearly benefits from diversity as well. All diversity

measures improve performance, and this improvement is significant except for

the simple distance objective. The distance objective is significantly better on

the MSE if applied to fitness cases than otherwise (p < 4× 10−13), but solutions

obtained by use of any distance measure are also very large in size, typically more

than 20 times of what is obtained otherwise. The required increase in evaluation

time does not appear justifiable in practice compared to the other measures. The

best performance, and also without the degree of bloat associated with the dis-

tance objectives, is observed with the fitness case Pareto approach. Although we
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would expect the Pareto frontier to become far too large to be sampled appropri-

ately in this way, the results tell a different story and are significantly superior

to those of all other measures.

The benefits of facilitating diversity are less pronounced with the 6-multiplexer

problem. 81% of runs already produce an optimal solution in the absence of a

diversity measure, which increases to a maximum of 91% when using the non-

dominated entropy measure (p = 0.01 on the success rate, p < 0.04 on the

non-parametric test). Smaller improvements and in many instances reductions in

performance are produced by the other diversity measures. Indeed, the distance

measure produces significantly worse MSEs than without any diversity measure

(p < 0.006), but taking fitness cases into account improves this significantly

(p < 0.00006), which is also true when applied to the entropy measure (p < 0.004).

Likewise, using age or sequence objectives has a negative impact on performance,

which is significant for the sequence objective (p < 0.0006). The lack of strong

results is surprising given that performance benefits of diversity are quite large

with GP on this problem (McKay, 2000).

Only a single fitness case is used for pole balancing, so none of the fitness

case-based diversity measures can be applied. MSEs are generally low, but not all

solutions manage to balance the pole for the entire cycle sequence. Surprisingly,

the age measure produces a 100% success rate (as compared to 82% without),

and the sequence measure is close with 98%, which is significantly better than

all other evaluated diversity measures (no comparison exceeds p < 10−7 on the

success rate, p < 0.03 on the non-parametric test). The entropy measure also

leads to an improvement, but this is not significant, whereas the distance measure

(with only 71% success rate) is significantly worse than every other measure on

the success rate (p < 0.02).

The CNT design problem benefits significantly from every diversity measure

except the simple distance objective, which had a negative, but not significant,

influence on performance. The best performance is produced by the fitness case

Pareto approach, with an MSE of 0.0627 (compared to 0.1801 without diversity),

but the solutions were typically twice as large as otherwise. The performance,

however, is significantly better than for any other diversity measure except the

age and sequence objectives, which also performed well, with the highest success

rate of 42% provided by the use of the sequence objective (as compared to 23%

without diversity).

In conclusion, using phenotypic difference (i.e. entropy) as a diversity mea-
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sure is generally quite effective, particularly if differences between fitness cases

are taken into account. Mean distance measures are less effective; performance

reductions are observed with the simple phenotypic distance, but computing dis-

tance over fitness cases produces better results. Solutions arising from these

measures are frequently much larger than otherwise, with a correspondingly neg-

ative impact on evaluation time. Evaluation on the chosen problem tasks is

computationally far more costly than any other aspect of evolution, including

the diversity estimation. Since the preservation of diversity may have a notable

impact on solution size, however, the choice of diversity measure is still critical

in determining the mean computation time. Selecting for age or sequence is a

particularly efficient strategy in this regard, as it is not only exceptionally simple,

but generally improves performance without significant size increases, although

it clearly also fails at dislodging solutions out of some local optima, such as with

the 6th-order polynomial regression. The use of multiple performance objectives

for Pareto optimisation is a mixed bag, with some problems benefiting, others

not, and solution bloat being a frequent problem as well.

6.2 Island Models

Separating individuals spatially from each other qualitatively changes evolution-

ary behaviour by slowing down the flow of information between subsets of the

population, thus encouraging their diversity by allowing them to evolve more in-

dependently of other parts of the population. A classification of the approaches

for separating individuals includes two main models: the coarse-grained island

model (Martin et al., 1997) and the fine-grained neighbourhood, or cellular, model

(Pettey, 1997). These models were originally intended for distributed, parallel im-

plementations of evolutionary algorithms, but they often not only produce time

savings, but better solutions, too (Whitley et al., 1999).

In the island model the population is explicitly divided into several smaller

subpopulations, called demes. An evolutionary algorithm evolves each deme in-

dependently, but, periodically, information is exchanged by migrating individuals

from one deme to another. Based on concepts from population genetics, the idea

here is that random genetic drift will cause each deme to explore different re-

gions of the search space, and migration will communicate important discoveries

among the demes. The migration rate is an important parameter here, as high

rates cause global mixing, reducing the isolation advantage, whereas a low rate

may lead to each deme converging prematurely.
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The neighbourhood model defines a cellular space for the population by as-

sociating each individual with a cell of the grid. Different neighbourhoods can

be defined for the cells (such as presented in section 2.2.1). Fitness evaluation

is done simultaneously for all the individuals, but individuals can only interact

with their direct neighbours when it comes to mating, reproduction, and selec-

tion. Once again, the idea is that information slowly diffuses across the space

forming semi-isolated subgroups of individuals, each exploring different regions

of the search space.

6.2.1 Graph Grammar Islands

In G/GRADE each solution consists of productions that are part of a global

gene pool; new solutions are created by randomly selecting from this pool, so

a production may become part of several solutions. Applying an island model

to G/GRADE entails a partitioning of this gene pool. Because of shared use,

however, moving a solution from one deme to another cannot be done by moving

all of its associated productions – they need to be copied. Copying is computa-

tionally expensive in this framework and since a conventional island model such

as this has been explored time and again, a G/GRADE-specific alternative is

investigated instead. The need for copies comes from the implicit requirement

that productions can only refer to productions on the same deme. Without this

requirement, any production can be moved to any deme; if it is a starting produc-

tion, then the solution itself is considered to have moved there. Solutions compete

only against those of the same deme, so the island model would be applied to the

selection process alone. There would be no effect on the choice of productions for

new solutions, i.e. the mating aspect of the island model.

This latter aspect may be included by making production choices dependent

on the deme. Production choice matters only in two instances: when we choose

a production for mutation, and when we add a production to another production

as part of the insert mutation. Choosing a production for mutation by a deme

that matches that of the solution does not achieve any sort of localisation; it

just modifies the effective mutation rate for each production. Consequently, we

only explored choosing productions for insertion according to deme, which we

will refer to as local mating. The deme to match in this case is the deme of the

production that is being mutated, as this causes localisation along the call chain

between productions – neighbouring productions will tend be on the same deme

and so will alternative choices for these productions, which focuses the search
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Figure 6.3: The island model as applied to graph grammar evolution: islands are
arranged in a ring, with offspring being allowed to move to neighbouring islands.

along these choices. The various interactions of productions across islands are

visualised in figure 6.3.

One confounding factor is how multi-objective selection occurs in the context

of multiple islands. Since solutions only need to compete against other solutions

on the same island, the probability of being dominated (and hence the average

degree of dominatedness) increases with the number of solutions on that island.

This balances the distribution of the population across the islands, because the

chance of survival is higher for solutions from less populated islands. Globally,

however, each solution has fewer solutions to compete against, so there are many

more nondominated solutions in the whole population than without an island

model. Thus, the number of nondominated solutions is more likely to exceed

the global size limit for the population. To maintain this limit we must rely
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strongly on multi-objective niching estimation (see section 4.3.3), yet niches on

individual islands tell us little about global niches. For example, each island

might hold a copy of an empty solution, because it is a Pareto efficient solution,

but this would contribute nothing to the search process. To avoid this kind of

predicament but still retain the diversity benefits of the island model, we evaluate

the niching globally across all islands, so that being on a different island only

affects domination, not niching.

6.2.2 Method

The population size in our previous experiments has been 20 for the most part;

this is very small compared to what you might expect in an island model. Using

a Moore- or Von Neumann-neighbourhood with 4 or 8 neighbours, respectively,

would necessitate at least that many demes (and thus very small deme popu-

lations) and allow for very easy transitions between any pair of demes. Conse-

quently, our model here is based on a 2-neighbour cellular space forming a ring,

where transition is possible from any island to any of its two neighbours (see

figure 6.3).

We compare the island model with local selection but a fully global produc-

tion pool against the island model with local selection and local mating. The

number of demes is fixed at 5, and there is no limit to how many solutions or

productions may exist in a deme. The population starts, as previously, with a

single empty starting production in the first deme. The choice of mutations has

been expanded so that productions (and starting productions, hence solutions)

can transit randomly to one of the two neighbouring demes. This transition mu-

tation is applied at the same probability as any insert or remove mutation. The

total number of mutations remains identical, so other mutations are applied at a

somewhat lower effective probability than before. However, this ought to worsen

performance according to the trends observed in section 7.1; if performance nev-

ertheless improves it should be safe to say that this is due to the island model.

These models are tested against running 5 populations (of 4 or 16 members)

in complete seclusion to each other to establish whether there is any benefit

to transitions at all. Each deme starts with a single empty production, and

productions are exclusive to each deme. Finally, the effect of different deme

numbers is also evaluated, but only on the model without local mating. Rings

with 2, 5, and a more fine-grained 20 demes are used.
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Figure 6.4: Minimum MSE box plot on different numbers of islands and con-
straints on global interactions: with Local, only local productions can be added
to a network; with Isolated, no migration between islands is allowed.

6.2.3 Results & Discussion

Dividing the population into any configuration of islands leads to an improved

MSE on every problem – there are no instances in which the performance is

actually diminished. The improvements are not always significant, however, and

the number of islands appears to matter. For the Binomial-3 regression and the

pole balancing, the best results are obtained with 5 islands (with a significance of

p < 0.009 and p < 0.0002, respectively, against the single island). On the CNT

design, the success rate of 35% is also best with 5 islands (p < 0.02), but the

results distribution continues to become better with more islands (p < 0.003 for

80 islands). This trend is most visible with the RBS circuit, where the optimum

corresponds to the maximum number of islands, both with respect to success

rate (13% against 1%, p < 0.0004) and the mean MSE (0.09 against 0.13, p <

0.000005).
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Figure 6.5: Final generation solutions for the default experimental configuration
plotted against performance and size. Black dots are nondominated solutions,
grey dots are dominated solution. Additionally, the minimum Pareto frontier
(dotted line) and median Pareto frontier (solid line) are superimposed. Note
that if the minimum frontier is not visible, it is actually identical to the median
frontier; hence, the more dotted line is visible, the less effective the evolutionary
search at determining the best possible frontier.

Choosing productions locally from an island rather than from a global reposi-

tory appears to make no significant different on the tested 5 island configuration.

Since networks that migrate from one island to another can still refer to the

original, but now remote, productions, the practical differences to a fully global

production repository are rather minor, so this is perhaps not a surprise. On

the other hand, evolving populations on 5 isolated islands (which is equivalent

to running G/GRADE 5 times with 1/5th of the population) leads to worse per-

formance than with the standard island model. Migration between islands is

evidently essential for obtaining performance benefits from the island model.

Besides the improved solutions that can be obtained from the island model,
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Figure 6.6: Pareto frontier for final generation solutions using the 5 island model,
plotted against performance and size. See caption of figure 6.5 for legend.

the computational cost can be reduced as well, as fewer comparisons are required

for evaluating the Pareto domination. However, the benefit is minimal in the im-

plementation presented here, because we estimate the crowding across all islands.

We are not aware of any papers that have tried to use MOEAs in conjunction with

island models. Since dominance is evaluated for each island separately, a proper

Pareto frontier indeed seems unlikely to arise. Figure 6.5 plots the minimum

Pareto frontier (what is truly Pareto-optimal) and the median Pareto frontier

(what is typically found), as well as each performance/size compromise in the

final generations of all evolutionary runs using the default configuration. The

Pareto frontier for the 5 island configuration is likewise shown in figure 6.6. Im-

mediately visible with the island model is the much greater diversity of solutions

that make up the population. Notably, however, the Pareto frontier remains in-

tact, and compromises between size and performance can be determined even

when using an island model. The median Pareto frontier is not as optimal as for
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the default configuration, but the differences appear surprisingly small.

6.3 Summary

Several means of facilitating phenotypic diversity were evaluated in this chap-

ter, and it has become quite evident that diversity is a crucial requirement for

the effective evolution of the graph grammar. Significant performance improve-

ments were observed with most measures, including entropic diversity objectives,

age/sequence objectives, and island models, but typically excluding distance-

based diversity objectives, which tend to directly encourage poorly performing

and bloated solutions. Potential speed improvements were noted (but not re-

alised) for island models, and age/sequence objectives perform remarkably well

(with some exceptions) despite their simplicity. The actual differences between

the measures were otherwise quite minor, and without an investigation into the

evolutionary dynamics affected by diversity no conclusion can be made on what

constitutes an ideal measure. However, the last word on diversity is not spoken

yet, as the next chapter will, among other things, address some of the interactions

between diversity and size and reveal some additional, interesting results.





Chapter 7

Convergence Outcomes

and Analysis

A population is said to have converged if the genotypic or phenotypic diversity of

the population has collapsed to a small value with little chance of recovery. Some-

times this is a positive event, as evolutionary algorithms are meant to converge

upon optima as they are discovered. However, in a multi-modal fitness landscape

these optima are frequently only local optima. If the population fully converges

upon a local optimum, we speak of premature convergence. This may lead to

stasis, with no subsequent progress in optimisation, or the search will continue

locally, but with minimal diversity and the associated risk of again being trapped

by another local optimum. Evolutionary algorithms can avoid local optima by

facilitating diversity as presented in the previous chapter, but also if the popula-

tion is large enough or if the mutation rates are high enough so that the search

resembles simulated annealing. This is rather undesirable in practice, however, as

it slows convergence down. A proper compromise between fast convergence and

reliable convergence is needed, and the aim of this chapter to establish one for

graph grammar evolution. To begin with, we extend upon the previous chapter

by investigating how evolution responds to changes in the rate of mutation and

the size of the population. A model for accelerating convergence by adapting the

search bias is then presented. We also explore the influence of the size objective

on convergence and, ultimately, take a closer look at the graph grammars that

result from convergence and how this compares to other systems.

133
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7.1 Rates of Change

The force that drives convergence is the rate of change, which is a function of

the size or number of mutations being applied to the productions that describe

the networks. For any optimisation to occur, some of these mutations must bring

about new networks that are fitter than their parents. If mutations were indeed

mostly beneficial, raising the mutation rate would lead to faster convergence.

Realistically, any problem worth addressing will have a search space composed of

mostly unfit solutions, so random changes – and, above all, large random changes

– are likely to lead away from the fit regions. Yet large mutations are requisite for

overcoming local optima, and local optima are very common with cellular graph

grammars, because a small change often has no effect on the network design

unless another change is also applied. Since adding something to a cellular graph

increases its size and thereby reduces fitness, we may encounter a circumstance

where no single mutation can produce a fitter network than what currently exists.

The mutation rate used in our previous experiments is 1 mutation plus a 50%

chance of additional mutations (i.e. a geometric probability distribution). Thus,

a wide range of mutation numbers applies throughout evolution, with higher

numbers less common. Nevertheless, as we clearly observed with the sixth-order

polynomial regression in the last chapter, this alone is not a guarantee that a

better solution is found. The purpose of this section is therefore to explore how

graph grammar evolution responds to changes in the mutation rate. Although

this is trivial in principle, there are some possible snags here. Until now it was

conveniently assumed that only one production is mutated for each network.

Raising the mutation rate for that one production may produce extensive changes

to a network, because of the many other productions that can be called. As

the productions involved must already exist in the population, however, this

is analogous to doing multiple crossovers, and only very little change has been

accomplished, namely to a single production. If two productions need to change

in concert to describe a fitter network and neither is independently viable in the

population, then the search will stall.

Clearly, we need to apply mutations to multiple productions simultaneously,

but this is associated with several drawbacks. Firstly, multiple modified produc-

tions diminish some of the benefits of G/GRADE that were espoused in sections

4.2 and 4.3, because most of the genome will now be copied during reproduc-

tion. Furthermore, changes to a production may cause different productions to

be expressed than before – potentially none of the productions originally chosen
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Figure 7.1: Performance box plot for different mutation rates for each mutated
production. 1(+0.5) denotes a 50% probability of additional mutations beyond
1; the asterisk (*) again indicates the default value used in other experiments.

for mutation! An effective means of resolving this is to choose new productions

for mutation whilst the network is being derived. Since the outcome of the new

derivation is unknown, however, a fair (i.e. controlled) distribution of mutations

among the expressed productions becomes intractable, and changes to a specific

production P at a later stage of development cannot easily apply to earlier ex-

pressed instances of P . We therefore choose a much simpler alternative, which is

to just discard all the mutations to the productions not expressed, although this

limits how many mutations can be effectively applied at once.

7.1.1 Method

We compare the default mutation rate of 1 plus 50% probability of additional

mutations, denoted 1(+0.5), applied to a single production against applying 1,

2, 4, or 8 mutations to the production. Additionally, the application of 1(+0.5)
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Figure 7.2: Performance box plot for different maximum numbers of mutated
productions for each network. 1(+0.5) denotes a 50% probability of additional
productions being chosen for mutation.

mutations to each of 1(+0.5), 2, 4, or 8 productions is evaluated. Only different

productions are mutated, there are no duplicate selections; thus, if there are fewer

productions in a network than are meant to be chosen, all productions will end up

being mutated. The test problems are the Binomial-3 regression, the RBS circuit,

the pole balancing, and the CNT design, optimised with G/GRADE and using

the previously established default parameter choices (and applying no diversity

objectives).

7.1.2 Results & Discussion

The results revealed in figures 7.1 and 7.2 indicate that there is little additional

performance to be achieved by just scaling up the existing random mutation mech-

anism, although convergence suffers if only one mutation is applied at a time (and

significantly so, p < 10−13, on every problem except the pole balancing). Increas-
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ing the number of mutations on a single production leads to an improvement in

performance. Although there is a fall-off observed for 8 mutations (except for

the CNT design), the system seems to be quite robust to high mutation rates on

single productions.

In contrast, raising mutation rates by targeting multiple productions generally

causes worse results to arise, with the exception of mutating additional produc-

tions at a 50% chance. This actually seems to improve the outcome, although it

is only significant for the RBS circuit (p < 0.004). The results reflect that an in-

crease in the number of mutated productions should not have much of an impact,

because mutated productions are less likely to call other mutated productions

and some solutions may require less than 4 or 8 different productions.

In summary, for both the mutation rate per production and the number of

productions being mutated it is advantageous to employ variable – rather than

static – rates and numbers, respectively. This suggests that different networks

in different contexts require different mutations and that there may hence be a

better way of choosing mutations than randomly from a uniform or geometric

distribution – more on this in section 7.4.

7.2 Evaluation Length

The previous chapters have uncovered various successful strategies for improving

the outcome of network optimisation, but this outcome has always been with

respect to a fixed number of evaluations, i.e. the population size multiplied by

the total number of generations. Since the computational effort of evolution is

a function of the number of evaluations, achieving global convergence with fewer

evaluations is an important goal. However, merely reducing the population or

the number of generations will typically just produce worse solutions, so our goal

in this section is to determine the trade-off between these parameters. We will

compare different population sizes against different lengths of evolution, but the

total number of evaluations remains fixed. If the system behaves like a local

search (i.e. gradient descent) algorithm, then a reduction in the population size

should hence lead to a performance improvement.

In practice, the length of a single run may be less significant than the total

number of evaluations, over all possible runs, required to find the optimal solu-

tion. As discussed previously, evolution of graph grammars can end in premature

convergence, but it has been difficult to observe consistent stalling within just
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1000 generations (cf. figures 7.14 to 7.17 in section 7.6.4 later in this chapter), so

we are curious to see how evolution progresses, if at all, over further generations.

The length of evolution will thus be increased by a factor of 50 (to 50000 genera-

tions). Since this also increases the time required for the experiment, we cannot

compare each possible parameter configuration; only the default configuration

and a combination of several effective extensions of the G/GRADE framework

will be evaluated (see below).

7.2.1 Method

Recall that the default population size for the Binomial-3 regression and the pole

balancing task is 20; for the RBS circuit and the CNT design it is 80. Here we

will employ population sizes of 5, 20, and 80 for each problem task. The default

number of generations is 1000, but is changed for the other evaluated population

sizes, so that the total number of evaluations remains constant. Results are

averaged over 100 runs, as previously.

For the extended runs, a generation limit of 50000 is applied, but to complete

these runs in a reasonable amount of time, we average the results over only 30

runs. The default configuration is compared against an enhanced configuration,

combining the following framework extensions introduced previously: using point

offsets for nodes (see section 5.1), allowing for more than one production to be

mutated (see section 7.1), and using fitness case entropy as a diversity objective

(except for pole balancing, where in the absence of a potent diversity objective,

we will use the 5 island model; see sections 6.1 and 6.2). Pole balancing will also

be performed over 100000 cycles in this experiment, in order to produce results

that are comparable to previous studies.

7.2.2 Results & Discussion

Figure 7.3 has performance box plots for the tested combinations of population

size and run length. It seems a safe bet to employ a small population over many

generations, but the performance differences are mostly not large enough to allow

us to define a “correct” population size. Clearly, G/GRADE exploits sequential

(local) and parallel (global) exploration of the search space similarly well. Sig-

nificant differences are only observed on the pole balancing task, where the 80

network population performs significantly worse (p < 7 × 10−6); and the RBS

circuit, where the default configuration used so far turns out to be the worst
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Figure 7.3: Performance box plot for the default population, marked with an
asterisk (*), against evolving smaller and larger populations against correspond-
ingly more or fewer generations (shown as Population/Generations).

(p < 0.0004 for each comparison). Tables A.1 to A.7 also include results for

decreasing or increasing population size without adjusting the number of gener-

ations, which, as expected, causes reductions and improvements in performance,

respectively.

Figure 7.4 plots the performance of individual runs over 50000 generations.

We observe in several runs of each problem that convergence indeed stalls. The

use of the enhanced configuration greatly reduces this, leading to 100% success

rates on all problems except the RBS circuit, which is constrained by the size

objective – see section 7.5 for a discussion. The improved results are, at least

over the first 1000 generations, clearly due to the diversity measure being applied,

which performs insignificantly worse on its own.

Balancing poles over 100000 cycles is slightly more difficult than over 1000

cycles, with a success rate of 73% as compared to 82% over 1000 generations
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Figure 7.4: Each figure shows the performance of the lowest error solution for each
of 30 runs over 50000 generations (or until all runs converge). Left-hand figures
are from the default configuration of G/GRADE; right-hand figures are from a
enhanced configuration that uses point offsets, multiple production mutation, and
a fitness case entropy objective (or, for pole balancing, a 5 island model).
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using the default configuration. With the enhanced configuration, this rises to

97%, which is competitive to the island model results obtained for 1000 cycles, so

it appears unlikely that the results were greatly biased by previously simulating

pole balancing over only 1000 cycles; at best, the benefits of various framework

extensions were underestimated.

7.3 A Basic Convergence Proof

If certain optimisation runs fail to find the global optimum, we might ponder

whether this is because G/GRADE is somehow constrained from finding the

global optimum at all. However, a convergence guarantee can be established,

with some conditions, for G/GRADE as for any GA; the following is inspired by

a GA convergence proof by Hartl (1990). For a finite set of feasible solutions S

and an associated error E,

F : S → E (7.1)

is the objective function. If x ∈ S then the goal of optimisation is

F (x)→ min(E). (7.2)

Let’s define a neighborhood N(x) of x according to the mapping N : S → S, so

that each y ∈ N(x) is a neighbour of x. A locally optimal solution is an x ∈ S
such that

∀y ∈ N(x) : F (x) ≤ F (y) (7.3)

and a globally optimal solution is an x ∈ S such that

∀y ∈ S : F (x) ≤ F (y). (7.4)

In G/GRADE we can mutate productions of a given solution x to obtain so-

lution y from the neighborhood N(x). This gives us a matrix R of transition

probabilities such that

R(x, y) = P{Xt+1 = y|Xt = x} (7.5)

where Xt denotes a state of the system at generation t. A state y is reachable

from state x with a non-zero probability if there exists z1, . . . , zs ∈ S such that

z1 ∈ N(x), z2 ∈ N(z1), . . . , y ∈ N(zs).

Let m ∈ Sp be the combined vector of p elements of S, where p is the size
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of the population. A Markov chain now describes the sequence of populations

that would arise from applying G/GRADE. To allow convergence, the global

optimum state m0, must be absorbing, so at least one best population member

must be selected during transition. Likewise, to ensure that m0 is reachable from

all m, at least one newly mutated member must be selected randomly, so that

every state m �= m0 is transient. In G/GRADE, this is only guaranteed if we

also employ the sequence diversity objective, so this will be assumed here. It is

known that a Markov chain with a finite state space and irreducible transition

matrix visits every state infinitely often with probability one regardless of the

initial distribution (Iosifescu, 1980), thus:

lim
t→∞

P{at least one solution in the population is globally optimal} = 1. (7.6)

Consequently, by exploring randomly and keeping the best solution even G/GRA-

DE is destined to find the global optimum, but the low probabilities associated

with certain moves in state space, such as the successful creation and use of build-

ing blocks, also ensure that this is not a very meaningful statement in practice.

By increasing the diversity of the population through measures presented in the

last chapter, the transition matrix should become more uniform and raise the

chance of otherwise improbably changes. The next important step is to maxi-

mally exploit such changes if they turn out to be beneficial.

7.4 Adaptive Search

The grammatical representation established for networks in this thesis belongs

into the group of indirect context representations. These are typified by asso-

ciating each component with a reference that any other component can use to

specify interactions, rather than relying on their position within a representation,

as for explicit context representations (Lones and Tyrrell, 2004). Cartesian GP

is classic example of this, as each component is assigned a coordinate by which

other components can access its output (Miller and Thomson, 2000). However,

these references or coordinates are often assigned arbitrarily, so that there is no

correlation with the behaviour of the component. Moving a component from one

solution to another is unlikely to work out, as the references are either different

or refer to different components – and therefore the context is disrupted.

In G/GRADE, references can adapt to the extent that cellular productions

with “compatible” labels are more likely to produce successful offspring, yet when
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applying variation we take no account of any measure of compatibility. A sophis-

ticated method of determining this property is to create a profile of the function-

ality of each component and its context, and ensure that components are suitably

matched during evolution (Lones and Tyrrell, 2004). However, this option raises

the difficult problem of how to assess and match functionality. We may alterna-

tively, and more straightforwardly, assume that ancestry provides direct evidence

of common functionality (Stanley and Miikkulainen, 2002). Our intention is to

combine this idea with a more adaptive means of changing solutions, so that the

chance of successful offspring is improved. Changes proven to be effective should

occur more frequently, but instead of evolving a mutation distribution with evo-

lution (as with ES, see section 2.5.1), we will pursue the promising idea of swarm

intelligence as it applies to graph grammar evolution.

7.4.1 Swarm Intelligence

Ants are remarkably proficient at establishing shortest route paths between their

colony and food sources. Since ants only have severely limited perception and

intelligence, this seems to be quite an ethological paradox. To resolve it we

have to look at more than just the individual ant, but the ant collective. Ant

communication is primarily through chemicals called pheromones, which a moving

ant lays on the ground as a trail (Wilson, 1971). An ant will wander randomly,

until it encounters a trail, which it might decide to follow. This reinforces the

trail, which can lead to a positive feedback (autocatalytic) mechanism where more

and more ants follow the trail. Since a shorter trail will have more ants traversing

it back and forth, the shortest path to a food source emerges over time from these

group dynamics (Dorigo et al., 1991).

Ant Colony Optimization (ACO) (Dorigo et al., 1999) is a class of algorithms

striving to make use of this phenomenon by defining a set of simple computa-

tional agents – ants – that solve a problem. The ants explore a graph of states

corresponding to partial solutions of the problem. A solution to the problem is

incrementally constructed by the ants moving between these states. Where an

ant moves depends on the feasible expansions of its current state and the proba-

bility distribution of the respective moves. Only local information may be used

and no look ahead to predict future states is allowed.

The probability of a move is defined by its trail, which indicates how benefi-

cial this move has been in the past, and optionally its attractiveness, based on

a priori information about the problem space. Trails are updated after the ants
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have finished their solution, increasing or decreasing the pheromone levels de-

pending on whether the corresponding moves were part of good or bad solutions,

respectively. Pheromones also evaporate at the end of each algorithm iteration,

so that stagnation – every ant following the same path – is avoided. In the earliest

ACO model, the Ant System (AS) (Dorigo et al., 1996), all ants lay trails, but in

the subsequent Ant Colony System (ACS) (Dorigo and Gambardella, 1997) only

the best solution updates (and evaporates) the pheromones. This reduces con-

vergence time by focusing the search on the neighbourhood of the best solution

discovered so far. The trail update rule is

τij(t)← (1− ϕ)τij(t) + Δτij(t) (7.7)

where Δτij(t) =
∑m

k=1 Δτk
ij(t), m is the number of ants at each iteration, and

ϕ ∈ (0, 1] is the pheromone trail decay coefficient (Dorigo et al., 1999).

Further changes from AS and ACS are the use of a candidate list, which is

a list of preferred states to be reached from the current state, and the use of a

pseudo-random-proportional state transition rule. This adds a probability q that

instead of making moves according to the established probability distribution,

only the highest probability move is chosen. Tuning q allows us to modulate the

trade-off between exploration and exploitation. An ant should exploit moves that

have been found effective in the past, but – in order to discover these – must also

explore moves not previously selected.

ACO is perhaps the best-known technique implementing the concept of swarm

intelligence (SI) (Ramos et al., 2005). SI refers to the emergence of coherent func-

tional global patterns from the collective behaviour of simple agents interacting

locally. This constitutes a foundation for distributed problem solving without

centralized control. Particle Swarm Optimisation (PSO) is another instance of

this, which originates in the simulation of the social dynamics of flocking organ-

isms, like insect swarms governed by basic rules such as nearest neighbour velocity

matching (Eberhart et al., 2001).

Aggregation patterns of this kind can be observed in societies of organisms

as simple as bacteria and as complex as humans (Chowdhury et al., 2004). One

of the mediating factors that allows the collective to exceed the capacities of the

individual, as we have observed in the case of ants, is stigmergy (Theraulaz and

Bonabeau, 1999). Stigmergy refers to the elicitation of environment-changing

behaviours based on the sensory effects of environmental changes produced by

previous and past behaviour of the collective. By making changes to a com-
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mon environment (creation of artefacts, changes in position, etc.), individuals

indirectly interact with each other, because these changes affect the way further

changes will be made. This establishes a form of distributed learning and memory

among the whole society, ultimately leading to such wonders as the construction

of termite nests – far beyond the comprehension of the individual termite.

7.4.2 Adaptive Production Search

We aim to absorb some of the principles of swarm intelligence into searching the

space of cellular graph grammars. The existing process is essentially a variation

on an evolutionary algorithm. Evolutionary algorithms and ACO differ in that

the evolutionary algorithm represents the knowledge about the problem as a pop-

ulation of solutions, whereas ACO maintains a memory of past performance in

the form of pheromone trails. Within G/GRADE such a memory may provide

useful guidance in exploring the grammar, as the premise of grammar-guided

search has so far only been partially fulfilled. G/GRADE presently generates off-

spring by copying and changing one or more of the productions that make up an

existing network. A large network can only arise if productions are added to the

network, that is, nonterminals are added to one of its constituent productions.

Productions can only survive if they are useful in some existing network – thus,

unlike any random construct, these productions also have a higher probability

of being useful in a new network that solves the same problem. Naturally, this

probability diminishes if there are niches for many different networks in the pop-

ulation, because we might randomly pick a production and use it in a context for

which it was not evolved.

Reinterpreted as ACO, each production is a partial solution, and the addition

of a production constitutes a move. Unlike ACO, G/GRADE has no explicit

probabilities assigned to each move. Consequently, production choice is highly

random and depends solely on the composition of the grammar, which is a func-

tion of the problem task and not very well understood at this stage. Multiple

near-identical production in a population may reinforce their own exploitation,

but this conflicts with the ease of reuse in G/GRADE. Having an adaptable

probability distribution as with ACO would provide superior guidance, but par-

tial solutions in G/GRADE are exceedingly short-lived: productions are added

and removed with every generation. The path that one ant builds can hence

rarely be followed by another. ACO for G/GRADE does not appear directly

feasible, but a more limited model is possible and will be presented next.
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Figure 7.5: Adaptive production search: When mutating a network, the prob-
ability of a production being chosen for mutation is dependent on θ, which is
then replaced by a descendant also determined by θ before random mutation is
applied.

At least two choices must be made when generating offspring from a network.

First, we choose one of the productions expressed during derivation of this net-

work. Instead of randomly choosing from a uniform distribution, as in the existing

framework, the following heuristic inspired by PBIL (Baluja and Caruana, 1995),

an early EDA (see section 2.6.3), is implemented: the chance of a production

being chosen is decreased if it rarely results in successful offspring. A real value

θ is stored with each production. When choosing a production to mutate, the

chance of a specific production Ri being chosen from m productions is

P (Ri) =
θi∑m
j=1θj

. (7.8)

θ is multiplied or divided by a user-defined factor ρ > 1 depending on whether

the new offspring of this production survives into the next generation or is elim-

inated, respectively. No evaporation of θ occurs here. θ is simply reset to 1 for

every new production, as the expected success of mutating a new production may

be independent of the success of mutating the original production (e.g. in a dif-

ferent context). The presented mechanism should globally reduce the mutation

of productions that rarely lead to good offspring (e.g. productions fully optimised

for their context) and focus on other productions that do.

The second choice concerns the nature of mutations. Applying the above

method to the different variation operators would potentially allow for a good
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balance between the possible variations to be achieved, but as this has been done

for numerous other evolutionary algorithms previously, we did not follow it up.

However, some of the graph grammar variations involve additional choices, such

as a choice of label and a choice of production being added, all from potentially

very large sets. As, in some cases, multiple variations may be needed to produce

fit offspring, a highly specific sequence of such variations is just not likely to

occur. Yet if it does occur, it never needs to occur again, as it will be stored as

a new production.

Our suggestion here is to make use of the genetic lineage when applying vari-

ation. Recording a lineage from a production to all its descendants provides a list

of moves that are known to be successful. This includes any moves that involve

new references to other productions. A descendant is likely to be located in a

context similar to its ancestors, so replacing an ancestor with a descendant seems

a promising move. Following this line, we will replace a production, once chosen

for mutation, by one of its descendants – and then apply additional variations

(as we would without the replacement).

The descendant is chosen according to the above system of preferred mutation

targets, as illustrated in figure 7.5. The upshot of this is that the replacement

effectively applies previously successful variations immediately, so the search can

emphasise the neighbourhood of productions with high offspring ratios. In the

context of multi-objective evolution (starting from the smallest network), it also

shifts the search effort away from those sections of the frontier (of other small

networks) that have been explored already.

7.4.3 Method

We apply the above SI-inspired extensions separately and in combination. Choos-

ing a production for mutation according to real value θ will be referred to as the

Target choice; replacing a production by a descendant is the Lineage choice.

The pheromone factor is ρ = 1.2 and the probability of replacement by a descen-

dant is ψ = 0.9. These values were chosen a priori : ρ should be set so that a

production’s respective θ is substantially different – but not excessively different

– after several successful (or failed) mutations, whereas ψ should allow for some

cases where no descendant is chosen, but also have a large value so as to increase

the experimental effect here. The parameters are otherwise as with the default

configuration. Results from 100 runs are summarised in figure 7.6.
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Figure 7.6: Performance box plot for applying adaptive production target choice,
adaptive production lineage choice, and the complete model.

7.4.4 Results & Discussion

Figure 7.6 reveals the results of using the SI-inspired extensions. No evident trend

can be observed across the different problem tasks. Applying lineage replacement

results in better performance on all tasks compared to the default configuration,

but the difference is not significant. Further informal experiments on our part,

using different parameters and diversity measures all produced similar results.

On the whole, this is not a favourable outcome for this attempt at a more adap-

tive search process. Why does it fail? It is likely that characterising a production

through a single parameter θ is an oversimplification, as it fails to take the dy-

namic context into account – unlike with a GA, where the context of a gene is

static.

Furthermore, most of the productions in the grammar do not have many

descendants, or in fact any: only 29.8% (averaged across all problem tasks) of

final generation productions had at least one descendant present in the gram-
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mar (see figure 7.11 in section 7.6.1 for the distribution). Network evolution is

characterised by a punctuated equilibrium, and only a few offspring survive each

generation, often to replace their parents in the same niche. Under these con-

ditions any production not replaced by a descendant is equal or better than its

descendants. Although the descendants are also the only known successful mu-

tation transitions, the results suggest that a preference for the offspring over its

parent is indeed not very beneficial to overall performance.

Although performance appears unaffected by the adaptive search, it has a

notable impact on the composition of the grammar, which is much smaller despite

no decrease in average network size. We discuss this further in section 7.6.2, which

takes a closer look at the evolved graph grammars. Beyond this, it is unclear

where else an SI-like process may be applicable and useful. Determining the

complete probability distribution for good mutations appears infeasible given the

multitude of possible production contexts and mutation types, including those

involving other productions and continuous-valued labels. Learning the kind of

changes that need to be made is clearly the way to go, and neither the graph

grammar itself nor the SI-inspired techniques are quite sufficient. We will make

some specific suggestions on this issue in the final chapter.

7.5 Balancing Bloat against Performance

The objective function MSE has so far been the only quality measure that we have

relied on in comparing the different algorithms and parameter settings. However,

section 4.3.2 highlighted the issue of bloat in graph grammar evolution, and thus

a size measure was introduced as a second objective to be optimised. The size

objective restrains network growth and also provides the user with the freedom

to choose a compromise between network performance and derivation size.

However, in some instances only the best performing solution is acceptable

and searching the entire Pareto frontier would then seem a disproportionate effort.

Yet completely removing the size objective leads to excessive bloat – and hence

resource consumption – that is unacceptable in practice and difficult to study in

a systematic way. A viable middle ground is constituted by having size become

a secondary objective: only solutions with equal performance will compete on

the size objective, so any solution with better performance will dominate another

solution independent of its size.

We shall also use this opportunity to evaluate a variation to the size objective.
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The present measure of size is the sum total of nonterminals, terminals, and exter-

nal nodes expressed during network derivation. It is not the same as a node/edge

count of the network, but any less inclusive measure would permit bloat. There

is a potential drawback, however, in that defining the same network with fewer

productions leads to a smaller size, which encourages fewer productions overall

and hence discourages a diverse set of general and reusable productions from ever

arising. Yet the aim should be to discourage bloat, not to discourage reuse. We

suggest to address this by sharing the size of a production among all the network

in the population that make use of this production, i.e. each network only bears

its fraction of the total size of the production population (excluding recurrency,

which is still scored cumulatively). A production contributing to many networks

therefore becomes cheaper, which facilitates its reuse as any network with this

production, rather than a unique production, is under less selection pressure on

the size objective.

7.5.1 Method

Experiments are performed using our standard set of problem tasks and the de-

fault configuration, with three variations being tested: 1) the size of a production

is shared among that networks that utilise it; 2) the size objective is delegated to

being a secondary objective, consulted only on equally performing solutions (for

brevity, we denote this as No Size in the charts and tables); and 3) in addition to

size as a secondary objective, fitness case entropy (or simple entropy for pole bal-

ancing) is also included as a primary objective. This last variation was prompted

by the results obtained for 2) – we hence felt it was necessary to evaluate it as

well. Results for these experiments are exhibited in figure 7.7.

7.5.2 Results & Discussion

Allowing production size to be shared among networks triggers a significant de-

cline in performance across all tasks where reuse would be expected to matter

(i.e. all except pole balancing). At first this may seem puzzling, but analysis of

the solutions provides a clue. Using shared size causes the evolution of a gram-

mar where some productions call on many more (10+) other productions than

is otherwise typical. A coevolution appears to happen where networks minimise

their effective size by maximising references to each other’s productions. Part of

the population is thus optimised on the size objective at the expense of actual
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Figure 7.7: Performance box plot for experimental runs with a shared primary
size objective, without a primary size objective (labelled No Size), and without
a primary size objective but a diversity objective.

task performance. We learn from this that care must be taken when postulat-

ing complex objectives; it is easy to create new evolutionary niches that divert

the search from the objectives that we are really aiming for. In this case, the

algorithm exploited a means of reducing the size objective without reducing the

actual size of either the networks or the grammar.

Eliminating size as a primary objective also leads to significant performance

differences, with the Binomial-3 regression and the pole balancing performing

worse (p < 5× 10−8), yet the RBS circuit and the CNT design performing better

(p < 3 × 10−8). This is likewise reflected in the success rates and is not a

particularly helpful outcome, unless we can determine what makes these two pairs

of problems produce such contrary results. Reviewing the tables in Appendix A

reveals an interesting pattern across previous experiments. The problem pair that

performs better in this experiment has improvements in MSE mainly correlate

with increases in size of the minimum MSE solution; the opposite is true for the
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Figure 7.8: Pareto frontier for final generation solutions evolved without a pri-
mary size objective, plotted against performance and size. See caption of figure
6.5 for legend.

other pair. The problems appear to evolve differently with respect to changes in

size.

In order to better understand this, the trade-off between size and performance

of each problem must be examined. Figure 6.5 (in the previous chapter) revealed

the Pareto frontier for evolution with a primary size objective. By having size

as a primary objective, search effort is invested into finding solutions smaller

than the current minimum MSE solution. This is because many solutions in the

population are indeed smaller than the minimum MSE solution, and each solution

is allowed a single offspring, which is likely similar to its parent. Figure 7.8 shows

the Pareto frontier for evolution with a secondary size objective, which clearly

eliminates most of the smaller solutions from the population. Thus, if we achieve

a better final minimum MSE solution by having a primary size objective, then

this may indicate that the typical minimum MSE solution is larger than the final
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minimum MSE solution. While this hypothesis is supported by the very small

size of optimal pole balancing solutions (which are therefore never practically

limited by size), the Binomial-3 regression solutions are no smaller than solutions

of the RBS circuit or CNT design.

Another explanation is needed – and diversity may be the key. Figures 7.14

to 7.17 (see section 7.6.4) reveal that the mean entropy of solutions is generally

higher with a primary size objective than without. Chapter 6 established that

diversity is important in the evolution of the graph grammar, so the deterioration

of performance when using a secondary size objective may be accounted for by

the loss of diversity. The results would reflect a problem-dependent trade-off

between the general benefit of not selecting against size and the detriment of

losing diversity as a consequence of this. In line with this, both the Binomial-3

regression and the pole balancing have a relatively much lower diversity (and

hence greater performance penalty) than the RBS circuit and CNT design when

using a secondary size objective. Presumably, if a diversity objective were to be

employed in conjunction with a secondary, rather than primary, size objective,

performance improvements should be observed for any problem where size might

be constraining factor.

Accordingly, we carried out a separate experiment, which indeed corroborates

this hypothesis. Performance on the Binomial-3 regression, RBS circuit, and

CNT design improves significantly compared to the default configuration and also

compared to the previous outcomes of using diversity measures (except for the

regression, where p = 0.11). Particularly noteworthy is the improvement with the

RBS circuit, where the success rate rises to 96%, in stark contrast to 1% for the

default configuration (and 18% with only a secondary size objective). Since the

evolution of the RBS circuit frequently stalls over 50000 generations (see section

7.2), it is thus clear that the primary size objective restricts G/GRADE from

properly solving the problem, although selecting for diversity remains crucial as

well.

The disadvantage of this setup is the increase in solution size and hence com-

putational cost: while using a secondary size objective approximately doubles the

mean solution size, in combination with the diversity objective it increases almost

seven-fold on the RBS circuit – and more than 20× for the regression and CNT

design. The large mean size is caused by a small number of very big solutions,

as suggested by the large standard deviation. A big solution to the Binomial-3

regression is shown in figure 7.9, which exhibits a lot of bloat in the form of nodes

that fail to contribute to the output of the network. Much smaller solutions are
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Figure 7.9: A very large solution for the Binomial-3 regression arising from the
combined use of a secondary size objective and a diversity objective. Note the
large number of nodes without outgoing edges – they cannot affect performance.
(To improve readability, node labels are not shown.)

possible, of course, as evidenced by the earlier solution depicted in figure 4.11.

A technique for controlling size without significantly impacting on performance,

however, continues to elude us. It is not clear how much of the neutral overhead

observed in the figure 7.9 is actually required for an effective search. We will have

to leave it to future studies to address this issue.

7.6 Observations on Evolved Graph Grammars

This section constitutes an analysis and discussion of the nature of the cellular

productions being created during graph grammar evolution. Because the total

number of evolved productions is quite large, the focus will be on the productions

that make up the final generation of evolution (using the default configuration,

unless noted otherwise). The networks derivable from these productions represent

the best Pareto-dominant solutions discovered within 1000 generations. It is

worth emphasising that the final generation is often already converged and hence

in a state of stasis; during phases of rapid convergence the results below may

be different, as increases in size would be tolerated because they coincide with

increases in performance. We will also later on in section 7.6.4 have a look at how

certain statistics of the populations are developing over the 1000 generations.
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Figure 7.10: Histogram of the amount of different components in final generation
cellular graphs.

7.6.1 Cellular Graph Components

As described earlier, each cellular graph consists of nonterminal nodes, terminal

nodes, and two kinds of external nodes that represent directed tentacles, marked

incoming and outgoing here. Figure 7.10 displays a histogram of the quantity

of such cellular graph components in final generation productions, averaged over

all 100 runs on the specified problem tasks. We observe that the productions

contributing to solutions of the Binomial-3 regression have a structure that is

reminiscent of regular grammars: the typical production defines a cellular graph

with one nonterminal and one terminal. Also noteworthy is that most of the cel-

lular graphs have only one incoming tentacle, although all the terminal operators

are 2-ary. For this arrangement to be workable, the original input must be passed

straight to the deepest cellular graphs, and the actual result is computed when

the outputs of subnetworks defined by these cellular graphs are combined by the
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terminal automata of the host networks.

Solutions to the RBS circuit exhibit a similar design, but few cellular graphs

define incoming tentacles, as this problem requires no inputs to the network

at all. Without inputs to cellular graphs, however, the recurrency needed for

generating a sequence can only arise locally between terminal automata, which

suggests itself as the reason why many cellular graphs include multiple terminals.

In contrast, six inputs are necessary for success on the pole balancing task, which

is reflected in its histogram. Few references to nonterminals are observed here,

which implies that the optimal solution can be described by a single production.

This, unfortunately, also means that the pole balancing task is not very useful for

addressing questions about production bloat and reuse (as in section 7.5). Several

productions correspond to bloat here, as they have no outputs, a phenomenon

we observe for the other problem tasks as well. The histogram for the CNT

design is difficult to make definite statements about, as it summarises distinct

populations trying to solve 10 different problems. However, the high average

number of terminals and low average number of nonterminals indicate that many

of the solution networks are represented by very shallow development trees, so

a direct encoding scheme for networks may have been just as effective on this

problem.

7.6.2 Production Reuse

Figure 7.11 displays the mean number of productions in a final generation pop-

ulation that have the indicated number of instances of being used or having a

descendant. Being used is here defined as being referenced by another production

in the derivation of some network; a descendant is an offspring of a production, ei-

ther arising by its mutation or by copy-changing to accommodate the mutation of

a referenced production. The figure reveals that a great majority of productions

are exclusive to only the network they are part of: they have not been successful

at reproduction – or not had the opportunity yet. A minority of productions in

all of the problem tasks have high usage or many descendants. The distribution

appears to be scale-free, which is expected as the referencing and reproduction

processes exhibit strong preferential attachment. If a production is used or copied

often, it is more likely to end up being used or copied elsewhere as well.

A measure of reuse (expressed in terms of the verbosity of the network de-

scription) is shown in figure 7.12 for some of the main experimental configurations

explored in previous sections. The problems previously identified as making more
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Figure 7.11: Histogram of the usage, i.e. networks to which a production con-
tributes, and the number of descendants (present in the population) of the final
generation productions.

use of multiple productions – the Binomial-3 regression and the RBS circuit –

exhibit a moderate degree of reuse, while pole balancing naturally shows very

little. Some extreme outliers are noted; the occurrence of a small number of large

recursive solutions in the population could be a possible explanation for this. We

have noted earlier that the use of adaptive search has little impact on perfor-

mance, but this figure reveals that it encourages reuse on the problems where

reuse should matter. Also noteworthy is the significant increase in reuse associ-

ated with removing the size objective as a primary objective. Reuse appears to

scale with the size of the evolved solutions, which indicates that the efficiency

of the graph grammar representation would be most evident with problems that

require larger solutions than the ones evaluated here.

Overall, the results on production components and reuse imply that solutions

originating from deep, reusable development trees occur seldomly, especially for
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Figure 7.12: Verbosity box plot for the final generation of the main different
experimental configurations. The verbosity is defined as the ratio of the total
number of productions expressed when deriving all networks over the total num-
ber of productions in the population. If verbosity is 1, then each production
belongs to a single network and there is no recursion, whereas a low verbosity
indicates that productions are being referenced multiple times (i.e. high reuse).
Adaptive refers to the use of adaptive production search (section 7.4.2), No Size
is a setup where size is only used to decide between solutions of equal MSE (sec-
tion 7.5), while Entr. + No Size combines the latter with a fitness case entropy
objective.

the CNT design and pole balancing. This is likely due to a low probability of

suitable productions arising by chance, paired with a selection process favour-

ing small size, which further penalises against groups of interacting productions.

Since our earlier attempts at improving reuse either did not lead to performance

improvements (with shared size and adaptive production search) or triggered a

rather substantial growth in solution sizes (with secondary size objective), it is

still not clear how the supposed benefits of reuse, and hence scalability, are ap-

propriately realised and exploited in practice. At this stage, reuse is shunned
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Figure 7.13: Copy ratio box plot for the final generation of the main different
experimental configurations. The copy ratio is defined as the ratio of the number
of productions copied in order to add the network to the grammar over the number
of productions contributing to the network.

more often than not, which is also a likely explanation of why more complex

label offsets have resulted in performance improvements in section 5.1.4: they

allow a production to construct more complex networks without having to resort

to as many other productions.

7.6.3 Production Copying

The need to copy only part of the genome of a solution was one of the salient

features of reproduction in the graph grammar framework. Yet by randomly

choosing a production for mutation, we are likely to pick a production from the

lower half of the derivation tree. Many references must therefore be changed,

which also requires many productions to be copied. Figure 7.13 shows the copy

ratio, the average ratio of the productions that are copied against the productions
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that are part of the original network. Extensive copying is needed for problems

that use fewer productions, although in absolute terms the number of copies

is also less because of this. Not using a primary size objective has the opposite

effect, producing ratios that are closer to what we would expected from randomly

picking a production in the tree. Adaptive search also reduces the copy ratio,

which suggests that productions near the root of derivation tree are preferred.

Deeper productions may be less mutable because they have existed for longer

and have already been optimised as building blocks.

7.6.4 Generational Development

The figures on the following pages depict the changes of various population and

solution statistics over 1000 generations, for each of the different problem tasks

and the main different configurations. The plots show, in clockwise order starting

from the legend: the MSE of the best performing solution; the mean entropy of

all population members (across all different fitness cases, i.e. fitness case entropy,

except for pole balancing); the proportion of solutions that are replaced by new

solutions each generation; the total number of productions in the population;

the mean size of all solutions, defined by the number of expressed terminals,

nonterminals, and external nodes; and the size of the best performing solution.

Network evolution without a primary size objective but with a diversity objec-

tive (denoted C. Entr. + No Size) converges most quickly among all alternative

configurations and produces the best outcome on the majority of problem tasks,

with the exception of pole balancing, where we have previously noted that the

small size of the optimal solution actually penalises any relaxation of the size

constraint. The evolutionary convergence is characterised by a rapid increase in

solution size, which starts to flatten out after a few generations and remains com-

paratively steady throughout subsequent generations, although the exact nature

of this is somewhat problem dependent.

Without either a primary size or a diversity objective (No Primary Size)

the growth of solution size is much more contained, but solutions also exhibit

inferior performance. Of the configurations with a primary size objective, the

island model produces the largest solutions, most likely for the reasons discussed

previously in section 6.2.3. Reductions in size during the evolution seem to be

uncommon, particularly when applying the primary size objective, which suggests

that either the optimisation towards a minimum size is quite ineffective, or, more

likely, that solutions much larger than the current performance optimum have a
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propensity to do poorly on the performance objective. Nevertheless, it is apparent

from the success of the C. Entr. + No Size configuration that the best outcomes

are obtained when such solutions make up part of the population.

The number of productions necessary for representing the entire network pop-

ulation is dependent on the size of the networks and the extent of reuse in the

representation. We have noted that without a primary size objective the verbosity

of the representation is decreased, but as the solutions are also very large, the total

number of productions remains high. The smallest grammars are obtained with

the adaptive production search model, which encourages reuse without penalty

to performance, although there seem to be no practical benefits to this. It was

originally expected that adaptive search could accelerate convergence, yet as the

plots indicate, adaptive search behaves very similarly to the default configuration.

On the entropy statistic, we note that using the entropy as an objective im-

proves average entropy of the solutions, but also not nearly as much as the island

model does. An explanation for this may be found in the comparatively low

rate of solution replacement that we observe with the entropy objective. It sug-

gests that not much opportunity is given for introducing the kind of structural

novelty into the population that is not directly reflected in phenotypic diversity.

The age/sequence measures for diversity (not shown here) also produce greater

improvements in entropy by maintaining an inherently high replacement ratio.

However, it is not clear why the replacement ratio for the island model is

so high – this may have nothing to do with the island model par se, but with

our attempt at establishing a Pareto frontier across the islands. The resultant

asymmetric elimination of solutions from the islands should cause new niches

(in the shape of underpopulated islands) to arise with each generation, allowing

otherwise unfit, but potentially novel, solutions to survive for more than one

generation.

At any rate, the phenotypic entropy is not a reliable indicator of performance.

The least entropy is observed with the secondary size objective on its own, which

reflects the loss of the diversity that was provided by having a Pareto frontier of

different solutions, but this configuration is not the worst performer. However,

in the Binomial-3 regression and the CNT design it is inclined to flatten out

early, which is indicative of a premature convergence of many runs. Adding the

diversity objective raises entropy (and, of course, greatly raises performance),

but in both the Binomial-3 regression and pole balancing tasks the entropy still

remains below the corresponding configuration with a primary size objective.



162 Convergence Outcomes and Analysis

0 200 400 600 800 1000

10
−2

10
−1

10
0

10
1

Generation

M
in

 M
S

E

Default
Case Entropy
5 Islands
Adaptive
No Primary Size
C. Entr. + No Size 

0 200 400 600 800 1000
10

1

10
2

10
3

Generation

S
iz

e 
of

 M
in

 M
S

E
 S

ol
ut

io
n

Binomial−3 Regression

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Generation

M
ea

n 
E

nt
ro

py

0 200 400 600 800 1000
10

1

10
2

10
3

Generation

S
iz

e 
of

 M
ea

n 
S

ol
ut

io
n

0 200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

R
ep

la
ce

m
en

t R
at

io

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Generation

T
ot

al
 P

ro
du

ct
io

ns

Figure 7.14: Generational development of performance, size, and diversity statis-
tics for the Binomial-3 regression problem. (MSE and size are shown on a loga-
rithmic Y-axis to improve readability.)
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Figure 7.15: Generational development of performance, size, and diversity pa-
rameters for the RBS circuit problem. (Size is shown on a logarithmic Y-axis to
improve readability.)
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Figure 7.16: Generational development of performance, size, and diversity param-
eters for the pole balancing problem. (MSE and size are shown on a logarithmic
Y-axis to improve readability.)
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Figure 7.17: Generational development of performance, size, and diversity param-
eters for the CNT design problem. (MSE and size are shown on a logarithmic
Y-axis to improve readability.)
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7.7 Comparisons against Other Systems

G/GRADE is a tool for optimising the topology of networks. Few assumptions are

made with respect to what these networks represent, thus G/GRADE can be ap-

plied to a large number of domains. Problems from several of these domains were

used in this thesis as test cases for evaluating various aspects of the G/GRADE

framework. Some of these problems have been used in previous research, which

permits a comparison of G/GRADE against alternative systems.

The Binomial-3 regression problem was studied in detail by Daida et al.

(2001), who evolved solutions to this problem using standard GP. The success

rate that was obtained for a population of 500 solutions evolved over 200 genera-

tions was 84%. In comparison, G/GRADE achieves 84% with the island model,

and 71% without, for a population of 20 solutions evolved over 1000 generations.

On the 6th-order polynomial regression task, CGP has a success rate of 61% with

a population of 10 solutions (and a maximum of 10 nodes per solution) over 8000

generations (Miller and Thomson, 2000), and GP achieves 64% with a population

of 4000 and 50 generations (Langdon, 2000b). G/GRADE obtains success rates

of up to 100% with a population of 20 over 1000 generations depending on the

choice of diversity objective applied (no convergence is achieved without).

G/GRADE is not very competitive on the 6-multiplexer problem, where the

minimum computational effort is 225100 evaluations if a diversity objective is

applied, and 413000 without. Koza (1992) reports a minimum effort of 245000

for standard GP on this problem, although diversity measures can further improve

this result to less than 50000 evaluations, as shown by McKay (2000). As the

6-multiplexer can be represented as a tree, we project that the performance of

G/GRADE would be improved by constraining the search space from multigraphs

to trees. Preliminary investigations into this have indicated that G/GRADE can

solve the 6-multiplexer problem with a minimum effort of 34800 evaluations if we

preserve diversity, and 67760 evaluations otherwise. Further study will be needed

to generalise these findings, however.

For the Backpropagation MLP, we trained a user-defined 2-layer neural net-

work with 2 hidden neurons and 3 output neurons, using standard backpropaga-

tion for 2000 epochs (Luerssen, 2005a). The mean MSE resulting from this setup

is 0.0157, which is also what the best evolved networks approximately achieved

(using half that many evaluations). However, the average evolved network has a

notably worse error of 0.0549, which is more typical of the performance of a single-

layer perceptron on this problem. The latter is very simple to describe as a single
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production, so it is a prominent local optimum upon which G/GRADE converges.

To determine the other neural network, the pole balancing solution over 100000

cycles, G/GRADE requires about 12700 evaluations (Luerssen, 2005b), which is

much less than the 80000 evaluations of Wieland (1991), and also compares well

to the 34000 evaluations of Cellular Encoding (Gruau et al., 1996) and 12600

evaluations of Symbiotic Adaptive Neuro-Evolution (Moriarty and Miikkulainen,

1996). It converges not nearly as fast as the 3600 evaluations reported for Neuro-

Evolution of Augmenting Topologies (Stanley and Miikkulainen, 2002), although

that study also uses a different experimental setup with a starting angle of 1◦

(rather than the more difficult 4.5◦ used by us).

No comparisons are available for the RBS circuit and the CNT design. Both

problems are unique, as they make use of G/GRADE specific features that are

uncommon in other systems.

7.8 Summary

The purpose of this chapter was to observe and improve some of the convergence

properties of G/GRADE, but – perhaps attributable the relative complexity of

the underlying algorithm – we seem to have raised many more questions than an-

swers. Our effort at accelerating convergence by implementing swarm-intelligence

inspired search adaptation failed to produce improvements to performance, al-

though it did improve grammatical convergence towards greater reuse. However,

this may not have been the limiting factor in graph grammar evolution at all, as

the most significant outcome relates to size control. We have ascertained that the

search process is severely constrained by co-optimisation towards a size objective,

yet excessive bloat occurs as soon as the effective importance of size is reduced.

The representational effectiveness of graph grammars becomes evident with the

latter, but at great computational cost; a proper balance has not been found.

However, the notion that diversity is a critical aspect of graph grammar evolu-

tion has been further reinforced. We have also noted that G/GRADE, despite

its generality, is quite competitive to other evolutionary optimisation systems on

the problem tasks evaluated here.





Chapter 8

Conclusions

The most natural representation for so many design problems is a network, but

it is often easier and more transparent to evolve strings and trees. The system

presented in this thesis is a significant step towards achieving a simple, formal,

comprehensive basis for network evolution. Of particular significance is the poten-

tial scalability and generality of this approach, because solutions with real-world

relevance literally come in all shapes and sizes. Earlier research has noted that

generative representations are an appropriate starting point for this, since they

facilitate reuse of design and can incorporate a bias of the design problem into

their structure.

The novelty of the research presented here is in the application of a genera-

tive representation based on hypergraph grammars. The hypergraph grammar

is a simple formal model, which avoids some of the complexity pitfalls of ex-

isting models that try to be biologically realistic. It hence permits for a more

systematic study, as we have demonstrated on a diverse set of design problems.

Additionally, unlike previous attempts at utilising graph grammars, the graph

transformations are not predefined and fixed, but fully evolvable, allowing for an

automatic optimisation of the network design bias and thus a greater degree of

domain independence.

Despite the prevalent use of grammars in the field of artificial evolution, it is

quite atypical to find a grammar being directly evolved. This thesis establishes

an innovative technique for evolving productions of a grammar that describes a

population of solution networks. Each solution is represented by a production

that calls upon other productions, potentially shared with other solutions, to it-

eratively construct the solution. Grammar evolution begins with a single empty

production, so each production either represents a solution or is exapted by an-

169
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other solution as a component of itself – a form of endosymbiosis, reflecting the

emergence of complexity from basic matter.

The existing structure of the grammar has strong influence over the direction

into which the grammar can evolve further. Avoiding local optima and ensur-

ing continued progress necessitates a diversity of productions to be present in

the grammar, and our research has surveyed various schemes for facilitating this.

Tentative steps have also been made towards establishing an adaptive search

model for direct grammar evolution, which better exploits the knowledge con-

tained by the grammar. Specific contributions are summarised below. We expect

that these are merely the first milestones – with more to come – towards a bet-

ter understanding of graph evolution, grammar evolution, and the intersection of

these important fields.

8.1 Contributions

A survey and analysis of how networks can be optimised demonstrates

the merit of developmental models in an evolutionary search context.

With a principal focus on the connectionist paradigm of computing, Chap-

ter 2 examines the notion of what a network is and how it can change. Various

methods for adapting the weights of network links and optimising the network de-

sign are discussed. Evolutionary algorithms appear the best suited for the latter,

but the scalability of this approach is limited. We can address this by applying

some of the basic engineering principles also employed in biological life, which in-

clude modularity, neutrality, and reuse. Chapter 3 surveys previous evolutionary

research into artificial embryogenies that are applicable to network design. The

complexity of many features of these systems is justified by biological plausibility,

yet also greatly increases the difficulty of assessing their practical usefulness. This

leads us to grammars, which capture the essence of what is desirable about bio-

logical development in a simpler framework. As existing models typically apply

to strings or trees, we present the case for evolving a graph grammar directly.

A novel method of graph grammar evolution is presented, which

transforms the formal model of a hypergraph grammar towards being

directly evolvable by a multi-objective evolutionary algorithm.

Hypergraph grammars constitute a unique conceptual foundation for the cellu-

lar graph grammar described in Chapter 4. An evolutionary optimisation system

named G/GRADE is presented that directly operates on the grammar and the
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population of networks indirectly represented by this grammar. The performance

of networks derived from the grammar determines the addition or removal of pro-

ductions from the grammar, with new productions obtained from applying a set

of simple mutation operators. The problem of bloat is addressed by selecting

in accordance with an additional size objective in a multi-objective optimisation

scheme.

The nature of the grammars and graphs obtained from graph gram-

mar evolution is investigated, and a comparison between alternative

heuristics is given.

Constructing a graph from the productions of a hypergraph grammar consti-

tutes a surprising challenge when the source of new productions is random change.

Chapter 5 explores different schemes for node and edge matching during graph

rewriting and evaluates these on several problems from domains including sym-

bolic regression, circuit design, neural networks, and communications networks.

The best results are obtained with a nearest neighbour matching scheme for large

label sets used in conjunction with additional label offsets for terminals and non-

terminals. Additionally, we investigate how to constrain graph construction so as

to generate graphs rather than pseudographs, and also discover that modularity

in the scope of matching is not only simple and efficient, but also exhibits more

consistent performance than less modular alternatives.

The relevance of diversity in graph grammars is recognised. Pheno-

typic diversity objectives and island models are introduced to improve

diversity.

Randomly initialising a grammar is likely to lead to networks that are either

disconnected or bloated or both, yet complex networks can only arise from mul-

tiple correct productions. To ensure that these exist, a diversity of productions

must be maintained. Chapter 6 suggests two representation-independent meth-

ods for accomplishing this by promoting the phenotypic diversity of networks.

Firstly, we explore the use of a variety of diversity objectives in addition to the

existing performance and size objectives. Most successful is the entropy measure

of phenotypic diversity across fitness cases, which leads to significant performance

improvements on the majority of problem tasks. Further significant improvements

are obtained in combination with a less restrictive size objective, but notable in-

creases in solution size become an issue here. Alternatively, we present an island

model for multi-objective evolution, which exhibits performance benefits compa-

rable to the first method.
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The structure of evolved grammars is analysed, and an adaptive

search scheme is established for improving grammatical convergence.

Chapter 7 investigates the generational development and statistics on the

grammars evolved for each problem task. We suggest the application of concepts

from swarm intelligence to accelerate convergence. The associated experiments

fail to produce significant performance improvements, but reveal significant in-

creases in production reuse, leading to a more compact grammar. Graph grammar

evolution is additionally found to be robust to high mutation rates, with an op-

timal performance obtained with a variable rate of mutation within a single pro-

duction and across multiple productions of a network. Finally, while G/GRADE

maintains a high level of generality, it is also shown to exhibit similar performance

to other systems on the evaluated problem tasks.

8.2 Limitations

The volume of experiments in this study is quite extensive, yet we mostly evaluate

variations of only a single property of the system against an assumed default

configuration. Testing every combination of factors would have required more

time or computational resources that were not available. Thus, not much about

the possible interactions between these factors can be known, such as whether the

benefits of the proposed model extensions actually stack or whether there would

be interference. We are therefore fairly restricted in making any conclusions on

what constitutes the optimal configuration of G/GRADE.

Another noteworthy limitation of our research is the lack of a proper assess-

ment of the scalability of the presented framework. Despite the considerable

theoretical potential and the success of other researchers in showing scalability

of generative representations, none of the design tasks employed here can be re-

garded as substantial enough to allow proper conclusions on this issue. Large

problems either require evaluation times that are not sufficiently tolerable to al-

low for a comprehensive study, or constitute very artificial problems, which we

wished to avoid here. However, some of the original justifications for the graph

grammar systems therefore remain unsupported, since the chosen set of problem

tasks, albeit diverse, does not exclude that alternative coding schemes, including

simple direct schemes, could have also produced competitive results. This is an

open question for future research, together with the items proposed in the next

section.



Conclusions 173

8.3 Future Work

Our understanding of graph grammar evolution is necessarily limited by the nov-

elty of this approach and the lack of systematic research in related fields of study.

There are many unanswered questions that remain and unsatisfactory results that

must be addressed. Consequently, we can suggest a plethora of possible directions

for future investigation, the following being the most immediately promising.

8.3.1 Strong Graph Bias

The most significant impact on performance in our study was due to a label

matching scheme that improves the likelihood of edges being formed. Thus, the

method by which graphs are constructed is evidently important, and there is

certainly further room for improvement. In particular, we have observed many

productions in the population that define no outgoing tentacles and thus have

no bearing on performance (e.g. as seen in figure 7.9). Even without specific

knowledge of the problem domain, we hold some knowledge of what makes a

good graph and hence a good graph grammar, and this knowledge should be

applied.

Section 5.4 presented a construction scheme that precludes pseudographs,

but the extent to which we can bias the graph by changing the interpretation of

productions is limited. What is needed is a less random approach to choosing

cellular graph components for network variation. Each component should be

seen as fulfilling a local objective consistent with the expected solution, such

as leaving no dangling tentacles. A simple way of achieving this is to build

networks from predefined graph templates with a greatly restricted set of variation

operators. Many self-defeating sequences of changes would thereby be avoided,

and the changes that do take place have a higher likelihood of actually affecting

the performance of the network and move evolution forward. Open questions,

however, exist in the definition and matching of templates to a given problem

task and on the exact trade-off between design freedom and performance.

8.3.2 Real Space Evolution

The use of continuous labels and addition of node offsets has effectively assigned

positions to the components of the graph model, and these positions can be

extended into any dimension. The computer network is an example problem
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where we exploited this to actually be part of the solution. However, as labelling

is performed randomly, the success potential of this is limited. Unifying the

evolution of the topology, with evolution of labels, and optionally the evolution of

node or edge attributes, would open up a number of additional real-world problem

domains in design, such as architecture, for which the current framework is not

well suited. Indeed, finding the optimal connectivity between nodes is often only

a small part of the problem. The challenge lies in ensuring that its optimisation

does not interfere with the optimisation of the other parts. In this thesis, for

example, it required the separation of weights from topology (in section 5.1.3.3),

so as to avoid constraints in the representation of the latter affecting the former.

This is not the most elegant solution, however, and finding a more cohesive model

of graph grammar and general attribute evolution would certainly go a long way

towards making G/GRADE more widely applicable.

8.3.3 Production Inheritance

The presented system of grammar evolution requires productions to be copied

and changed if they call other productions that have been copied and changed.

Not only is this computationally expensive, it also affects the composition of the

grammar in potentially adverse ways, e.g. by producing large quantities of near-

duplicates of the same production. The straightforward alternative to this, also

discussed in section 4.2, is to separate the unified grammar into many smaller,

network-specific grammars, so that changes to a network have no effect on other

networks. It is quite difficult, however, to preserve modularity while exchanging

productions between grammars, because of the complex network of production

references and possible identity conflicts with exchanged productions. Quite a bit

of copying and changing is inevitable here as well, so we believe the best choice

is a hybrid model: networks are represented separately, but can cross-reference

productions according to an inheritance tree. The model is illustrated in figure

8.1 and introduces inheritance, as typically employed in object-oriented design,

into grammar evolution.

Each production would belong to a class and can call other productions by

their identifiers. If a called production is not present in the class, we progres-

sively look up the parent class and its ancestors until the production is found.

Productions from other classes can be explicitly referenced, but otherwise follow

the same rules. Only one production identifier corresponds to the starting pro-

duction, but now each class is tagged as to whether it constitutes a network or
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production 2
calls

production 3

replaces production 3
from class A

starting
production

parent class

inherited

(deleted network)

inherited

cross-class reference

child class

1 2 3

1 41 2 32

1 2 4:C

A : Network Class

B : Class C : Network Class

D : Network Class1 4:C

Figure 8.1: The proposed production inheritance scheme defines different net-
works as classes that define productions, but not all the required productions are
defined in each class. Productions of other classes can be reused through refer-
ences to these classes (as with production 4 of class C) or through inheritance,
as shown.

not. A new class is created from an existing class by creating a production in

the new class that differs from a production in the existing class – no copying of

productions, other than the ones directly mutated, is needed. In other aspects

the above model would match G/GRADE, as classes represent networks only if

the networks are selected, and productions (and classes) only remain as long as

they contribute to networks.

Introducing object-oriented concepts into graph grammar evolution seems a

promising approach because of the common emphasis on reuse; it has been previ-

ously suggested by Lucas (2002) and fits well with current trends towards object-

oriented evolution (Agapitos and Lucas, 2006). As there may be numerous ben-

efits because of (and beyond) representational efficiency, more research into this

is patently required.

8.3.4 Grammar-Guided Search

Finally, this study has a major outstanding question – how does the grammar

help guide evolution? From a given starting production only one and the same

network is derived; any changes to expressed productions are random. Choosing

productions from a pool of productions that all relate to the problem being solved



176 Conclusions

may have possible benefits for the search process, but no theoretical model of

this has yet been established, and it is unlikely to represent a potent guidance

measure. Section 7.4.2 hence introduced an additional statistic that is assigned

to productions and used to bias search, yet it has no significant effect other

than to reduce redundancy in the grammar. Indeed, we are not clear on how

search guidance might benefit a stalled search. However, exploring larger neutral

networks beyond existing productions may be the key to this. We would need

to establish a more permissible selection scheme so that exploratory mutations

into distant search regions become viable, which, in combination with ACO-like

exploitation, could ultimately improve the convergence characteristics of graph

grammar evolution.



Appendix A

Complete Tables of Results

The performance statistics of all the experiments referred to in this document are

shown in the tables below, grouped by the problem task. Please see chapters 5,

6, and 7 for visualisations and discussions of these results. Each table displays

the statistics for every tested parameter setup of G/GRADE on a particular

problem task. The left-most column describes the experiment and experiment

series; the tick (
√

) signifies the success rate of the experiment (i.e. the percentage

of runs that produce performance-optimal solutions); MCE denotes the minimum

computational effort for a success probability of 99% (see Koza, 1992); Min MSE

is the mean squared error of the minimum-error solution of the final generation

(showing the minimum, mean, and maximum of the distribution); and Size is the

average size of a solution in the final generation or the size of the minimum-error

solution, as indicated. Standard deviations are listed after each ±. If the success

rate is shown in italic, it is significantly different than the default (according to

a two-tailed Z-test; p < 0.05). If the mean performance is shown in italic, the

distribution of results is significantly different for this experiment than for the

default (according to a Wilcoxon rank sum test; p < 0.05). Please note that no

Bonferroni correction is applied, so not all the significant results we found will

hold at once.

A.1 Binomial-3 Regression

Parameters
√

MCE Min MSE Size

×1000 Min Mean Max Mean Min Error

Default 71% 55 0.0000 0.0540±0.1064 0.3138 18.60±4.27 25.77±7.49

Discrete Labels

0.9/100/R 26% 184 0.0000 0.1163±0.1459 1.0440 12.97±2.18 20.36±5.83

0.5/100/R 12% 567 0.0000 0.1980±0.2843 1.0440 12.39±2.05 18.86±6.31

177
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0.0/100/R 0% N/A 1.0440 5.4877±2.3418 7.9916 5.25±2.82 6.12±4.11

0.9/100 15% 564 0.0000 0.0805±0.1175 1.0440 13.89±1.72 22.42±5.61

0.5/100 1% 6711 0.0000 0.1898±0.2985 1.0440 13.06±2.09 19.82±5.14

0.0/100 0% N/A 1.0440 5.4877±2.3418 7.9916 5.17±2.64 5.92±3.55

0.9/5/R 17% 297 0.0000 0.7386±1.7317 7.1074 12.02±2.57 18.03±5.66

0.5/5/R 12% 457 0.0000 0.3638±1.0639 5.4440 12.09±1.79 17.95±4.24

0.0/5/R 4% 1281 0.0000 0.7502±1.6021 5.4440 11.48±2.12 16.75±5.04

0.9/5 14% 513 0.0000 0.7456±1.7379 7.1074 12.97±3.11 20.33±6.88

0.5/5 5% 1208 0.0000 0.3690±1.0755 5.4440 12.98±2.40 20.07±6.39

0.0/5 8% 932 0.0000 0.8244±1.5956 5.4440 11.83±2.85 17.57±6.35

Node Offset

No Offset 66% 72 0.0000 0.0844±0.1639 1.0440 19.69±6.16 27.35±10.12

Point Offset 69% 76 0.0000 0.0550±0.1115 0.5710 19.99±5.10 28.84±9.38

Tunnel Offset 66% 85 0.0000 0.0631±0.1623 1.0440 20.13±5.99 28.93±10.86

Modularity

Selective 65% 72 0.0000 0.0468±0.0874 0.3138 19.91±6.52 28.00±12.47

Global IO (0.1) 76% 66 0.0000 0.0414±0.0929 0.3138 18.65±5.10 25.81±9.67

Global IO (0.5) 62% 90 0.0000 0.0729±0.1483 0.9963 19.93±5.25 27.32±9.21

Gluing Models

Implicit (Cyclic) 53% 120 0.0000 0.2138±0.3169 1.0440 17.09±4.48 22.84±7.80

Explicit (Cyclic) 37% 184 0.0000 0.2415±0.2659 1.0440 27.77±6.30 36.20±10.59

Exp. (C./Simple) 62% 93 0.0000 0.1044±0.1675 1.0440 27.90±6.06 34.97±10.61

Implicit Nonterm. 69% 63 0.0000 0.0582±0.1109 0.3138 18.76±3.73 23.83±5.61

Simple Graphs

Terminal Only 58% 87 0.0000 0.0478±0.0852 0.3138 21.80±4.98 29.40±9.01

Term. + Nont. 60% 82 0.0000 0.0504±0.0894 0.3138 20.76±4.46 27.92±7.44

Diversity

Entropy 82% 46 0.0000 0.0155±0.0389 0.2413 20.72±15.98 30.40±28.21

Case Entropy 79% 45 0.0000 0.0289±0.0743 0.3138 19.21±5.17 29.67±10.80

ND Entropy 73% 58 0.0000 0.0196±0.0339 0.1266 20.41±5.80 30.88±21.95

Distance 57% 104 0.0000 0.0642±0.0997 0.3138 40.93±79.09 29.08±10.71

Case Distance 64% 84 0.0000 0.0599±0.1072 0.3138 72.41±110.28 39.42±63.86

ND Distance 76% 69 0.0000 0.0235±0.0515 0.3138 21.60±39.64 32.38±17.45

Case Pareto 57% 91 0.0000 0.0594±0.0862 0.3138 52.09±32.10 46.15±20.70

Age 79% 60 0.0000 0.0198±0.0476 0.3138 12.42±3.00 26.12±10.34

Sequence 81% 52 0.0000 0.0253±0.0684 0.3138 20.80±13.91 39.05±20.94

Island Model

2 Islands 76% 62 0.0000 0.0350±0.0862 0.3138 15.03±2.85 25.38±8.10

5 Islands 84% 51 0.0000 0.0145±0.0428 0.3138 20.35±5.78 38.90±21.46

20 Islands 71% 77 0.0000 0.0298±0.1028 0.9963 30.45±9.23 46.11±21.80

5 Isl. (Local) 78% 63 0.0000 0.0200±0.0469 0.3138 19.89±5.35 35.14±15.36

5 Isl. (Isolated) 66% 83 0.0000 0.0507±0.1295 1.0440 16.59±3.87 27.66±9.59

Mutation Rate

1 Mutation 0% N/A 7.1074 8.0034±1.4440 10.3074 2.37±0.86 2.44±0.90

2 Mutations 34% 118 0.0000 3.9241±3.5374 7.1074 10.80±9.38 14.46±13.94

4 Mutations 90% 40 0.0000 0.0108±0.0407 0.3138 15.97±3.14 24.46±7.97

8 Mutations 88% 44 0.0000 0.0125±0.0437 0.3138 14.26±4.41 31.91±11.36

1(+0.5) Targets 78% 58 0.0000 0.0274±0.0665 0.3138 18.73±5.62 27.36±10.21

2 Targets 75% 71 0.0000 0.0328±0.0907 0.6964 14.14±3.67 25.04±7.49

4 Targets 31% 243 0.0000 0.1064±0.1197 0.3138 13.64±3.57 34.71±16.09

8 Targets 28% 297 0.0000 0.1341±0.1623 1.0440 14.46±4.37 41.20±23.17

Population Size

5 (1000 Gen.) 28% 68 0.0000 0.3374±0.7538 7.1074 19.59±9.94 32.41±16.13

5 (4000 Gen.) 70% 61 0.0000 0.0529±0.1038 0.3138 19.00±8.82 30.59±13.83

80 (250 Gen.) 71% 80 0.0000 0.0673±0.1489 1.0376 20.34±5.88 24.70±7.05

80 (1000 Gen.) 96% 77 0.0000 0.0029±0.0143 0.0726 22.34±4.27 23.94±4.64
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50k Generations

Default 100% 53 0.0000 0.0000±0.0000 0.0000 17.21±5.06 34.36±13.02

Enhanced 100% 41 0.0000 0.0000±0.0000 0.0000 18.96±5.15 41.27±14.03

Enhanced @ 1K 77% 63 0.0000 0.0137±0.0274 0.0726 20.38±6.41 42.7±14.86

Adaptive Search

Target 64% 77 0.0000 0.0791±0.1264 0.3138 17.96±4.50 24.07±7.42

Lineage 79% 50 0.0000 0.0345±0.0863 0.3138 19.74±4.67 27.64±8.46

Target+Lineage 74% 53 0.0000 0.0432±0.0943 0.3138 19.01±5.18 26.11±8.50

Size Objective

Size Shared 21% 360 0.0000 0.4511±0.6435 3.2090 8.84±5.87 51.20±54.03

No Size 31% 399 0.0000 0.1885±0.2464 1.0440 47.29±37.22 47.19±37.15

C.Entr.+No Size 86% 20 0.0000 0.0086±0.0329 0.2709 377.6±850.3 359.7±900.4

Table A.1: Results for the Binomial-3 Regression problem.

A.2 6th-order Polynomial Regression

Parameters
√

MCE Min MSE Size

×1000 Min Mean Max Mean Min Error

Default 0% N/A 0.0083 0.0083± 0.0000 0.0083 1.00± 0.00 1.00± 0.00

Diversity

Entropy 96% 13 0.0000 0.0002± 0.0012 0.0083 30.20± 26.18 43.56± 49.33

Case Entropy 99% 14 0.0000 0.0001± 0.0008 0.0083 26.47± 15.69 35.56± 29.64

ND Entropy 100% 16 0.0000 0.0000± 0.0000 0.0000 27.75± 19.93 43.78± 52.15

Distance 16% 757 0.0000 0.0027± 0.0025 0.0083 64.98± 45.52 100.9± 94.10

Case Distance 15% 406 0.0000 0.0014± 0.0014 0.0083 103.4± 78.30 127.3± 110.0

ND Distance 53% 123 0.0000 0.0021± 0.0034 0.0083 47.51± 58.73 74.40± 96.69

Case Pareto 84% 72 0.0000 0.0002± 0.0009 0.0061 96.16± 91.98 118.9± 126.9

Age 0% N/A 0.0083 0.0083± 0.0000 0.0083 2.08± 0.36 1.00± 0.00

Sequence 1% 11663 0.0000 0.0082± 0.0008 0.0083 5.85± 15.36 5.36± 43.60

Table A.2: Results for the 6th-order Polynomial Regression problem.

A.3 Random Bit Sequence

Parameters
√

MCE Min MSE Size

×1000 Min Mean Max Mean Min Error

Default 1% 36390 0.0000 0.1338±0.0569 0.2500 12.97±4.87 13.89±6.93

Discrete Labels

0.9/100/R 2% 17893 0.0000 0.4369±0.1375 0.5000 2.89±4.90 4.11±7.49

0.5/100/R 0% N/A 0.0625 0.4831±0.0710 0.5000 1.93±4.49 2.40±6.45

0.0/100/R 0% N/A 0.5000 0.5000±0.0000 0.5000 1.00±0.00 1.00±0.00

0.9/100 0% N/A 0.0625 0.4400±0.1287 0.5000 4.35±11.97 5.38±13.19

0.5/100 0% N/A 0.1250 0.4813±0.0777 0.5000 1.94±4.36 2.61±7.15

0.0/100 0% N/A 0.5000 0.5000±0.0000 0.5000 1.00±0.00 1.00±0.00

0.9/5/R 0% N/A 0.0625 0.4400±0.1314 0.5000 4.09±9.52 5.24±12.43

0.5/5/R 0% N/A 0.0625 0.4838±0.0730 0.5000 1.51±2.30 1.52±2.36

0.0/5/R 0% N/A 0.5000 0.5000±0.0000 0.5000 1.00±0.00 1.00±0.00

0.9/5 0% N/A 0.0625 0.4406±0.1298 0.5000 4.21±9.62 5.18±11.44
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0.5/5 0% N/A 0.1250 0.4806±0.0783 0.5000 1.66±2.85 2.20±5.22

0.0/5 0% N/A 0.5000 0.5000±0.0000 0.5000 1.00±0.00 1.00±0.00

Node Offset

No Offset 1% 9951 0.0000 0.1688±0.0593 0.3125 13.15±5.92 13.73±6.11

Point Offset 11% 2782 0.0000 0.0831±0.0471 0.1875 11.91±4.72 12.72±5.29

Tunnel Offset 7% 4926 0.0000 0.0994±0.0487 0.1875 11.90±4.28 12.23±4.61

Modularity

Selective 3% 9503 0.0000 0.1313±0.0579 0.2500 13.14±6.00 14.36±7.20

Global IO (0.1) 4% 6646 0.0000 0.1350±0.0594 0.2500 12.42±4.60 12.84±4.74

Global IO (0.5) 1% 27944 0.0000 0.1594±0.0618 0.2500 11.10±5.69 11.68±6.19

Gluing Models

Explicit (Cyclic) 0% N/A 0.0625 0.2213±0.0605 0.3125 21.07±6.99 22.06±7.91

Exp. (C./Simple) 2% 18076 0.0000 0.1369±0.0675 0.3125 25.86±8.58 28.35±13.12

Implicit Nonterm. 1% 12154 0.0000 0.1381±0.0578 0.2500 12.73±5.12 13.45±6.73

Simple Graphs

Terminal Only 1% 18764 0.0000 0.1350±0.0560 0.2500 12.44±5.39 13.57±8.29

Term. + Nont. 6% 4866 0.0000 0.1275±0.0621 0.2500 13.62±8.48 14.13±8.79

Diversity

Entropy 4% 7874 0.0000 0.1088±0.0566 0.2500 12.91±4.49 13.78±5.76

Case Entropy 21% 1442 0.0000 0.0650±0.0443 0.1875 15.64±6.43 17.40±12.83

ND Entropy 16% 1796 0.0000 0.0763±0.0483 0.1875 15.08±6.90 15.83±7.48

Distance 2% 12522 0.0000 0.1188±0.0506 0.2500 374.58±229.64 31.79±35.68

Case Distance 24% 1321 0.0000 0.0625±0.0453 0.1875 341.66±240.34 26.78±16.60

ND Distance 27% 1153 0.0000 0.0588±0.0443 0.1875 299.00±110.55 49.57±38.63

Case Pareto 29% 1064 0.0000 0.0444±0.0285 0.0625 30.79±7.87 36.47±24.60

Age 8% 2450 0.0000 0.0963±0.0536 0.2500 11.55±5.00 16.34±9.81

Sequence 11% 2915 0.0000 0.0819±0.0423 0.1875 14.50±3.80 17.03±7.24

Island Model

2 Islands 4% 6970 0.0000 0.1238±0.0582 0.2500 15.36±9.05 16.65±10.90

5 Islands 6% 4687 0.0000 0.1163±0.0576 0.2500 15.61±9.19 16.95±11.48

20 Islands 10% 2944 0.0000 0.1019±0.0600 0.2500 19.80±7.93 20.54±12.50

80 Islands 13% 2532 0.0000 0.0938±0.0537 0.2500 22.41±7.84 20.53±10.08

5 Isl. (Local) 6% 5046 0.0000 0.1088±0.0593 0.2500 15.52±7.41 16.07±7.90

5 Isl. (Isolated) 8% 4395 0.0000 0.1194±0.0653 0.2500 13.96±8.41 16.45±20.00

Mutation Rate

1 Mutation 1% 26475 0.0000 0.2106±0.0680 0.3125 9.35±3.61 9.50±3.75

2 Mutations 6% 4255 0.0000 0.1156±0.0637 0.2500 13.70±6.12 14.09±6.37

4 Mutations 2% 18258 0.0000 0.1206±0.0472 0.2500 10.45±3.89 16.94±27.73

8 Mutations 0% N/A 0.0625 0.1663±0.0512 0.2500 5.99±1.07 14.16±6.20

1(+0.5) Targets 4% 6970 0.0000 0.1106±0.0568 0.2500 12.95±4.31 14.43±6.00

2 Targets 1% 36390 0.0000 0.1481±0.0580 0.2500 8.15±2.53 13.65±6.39

4 Targets 0% N/A 0.0625 0.1675±0.0509 0.3125 6.78±0.87 12.50±3.71

8 Targets 0% N/A 0.0625 0.1663±0.0496 0.3125 6.93±0.83 12.55±4.02

Population Size

5 (1000 Gen.) 0% N/A 0.0625 0.3238±0.1386 0.5000 8.44±4.92 11.69±14.39

5 (16000 Gen.) 7% 2940 0.0000 0.1038±0.0556 0.2500 11.08±4.60 16.99±12.08

20 (1000 Gen.) 3% 2405 0.0000 0.1688±0.0882 0.5 13.93±12.23 15.42±14.80

20 (4000 Gen.) 13% 2405 0.0000 0.0956±0.0586 0.2500 16.36±9.46 18.19±11.26

50k Generations

Default 50% 5076 0.0000 0.0333±0.0357 0.1250 18.14±8.75 25.53±19.24

Enhanced 77% 1649 0.0000 0.0146 ±0.0269 0.0625 14.48±7.72 23.73±16.04

Enhanced @ 1K 17% 1649 0.0000 0.0625 ±0.0367 0.1250 14.33±5.33 17.67±7.59

Adaptive Search

Target 3% 8044 0.0000 0.1225±0.0525 0.2500 13.70±7.32 14.40±7.67

Lineage 4% 8416 0.0000 0.1131±0.0545 0.2500 13.74±6.69 14.66±7.61

Target+Lineage 3% 9685 0.0000 0.1338±0.0628 0.2500 12.06±4.55 12.57±4.61
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Size Objective

Size Shared 0% N/A 0.0625 0.1556±0.0606 0.3125 18.36±8.55 26.68±37.82

No Size 18% 1376 0.0000 0.0838±0.0604 0.2500 23.32±19.46 23.25±19.28

C.Entr.+No Size 96% 79 0.0000 0.0025±0.0123 0.0625 89.05±73.09 78.58±42.91

Table A.3: Results for the Random Bit Sequence circuit design problem.

A.4 6-bit Multiplexer

Parameters
√

MCE Min MSE Size

×1000 Min Mean Max Mean Min Error

Default 81% 413 0.0000 0.0203± 0.0438 0.1250 30.46± 2.21 32.87± 7.31

Diversity

Entropy 74% 432 0.0000 0.0228± 0.0419 0.1250 30.91± 2.00 34.46± 11.31

Case Entropy 90% 226 0.0000 0.0083± 0.0265 0.1250 33.55± 5.13 35.65± 12.76

ND Entropy 91% 236 0.0000 0.0081± 0.0276 0.1250 33.14± 4.13 36.46± 15.63

Distance 63% 660 0.0000 0.0392± 0.0542 0.1250 31.67± 2.60 34.17± 11.55

Case Distance 86% 368 0.0000 0.0114± 0.0301 0.1250 37.12± 7.20 36.46± 18.45

ND Distance 85% 341 0.0000 0.0152± 0.0379 0.1250 37.35± 7.12 36.58± 17.20

Case Pareto 54% 726 0.0000 0.0563± 0.0619 0.1250 42.42± 24.40 39.25± 16.08

Age 72% 583 0.0000 0.0333± 0.0544 0.1250 35.48± 5.57 37.93± 15.82

Sequence 61% 745 0.0000 0.0488± 0.0613 0.1250 31.28± 6.72 27.52± 13.01

Table A.4: Results for the 6-bit Multiplexer problem.

A.5 Backpropagation MLP

Parameters Min MSE Size

Min Mean Max

Default 0.0165 0.0549±0.0534 0.3333 67.65±34.05

Discrete Labels

0.9/100/R 0.0242 0.114127±0.0478 0.2223 52.03±43.51

0.5/100/R 0.0229 0.126753±0.0504 0.2224 53.26±37.43

0.0/100/R 0.1273 0.2727±0.0643 0.3333 17.73±24.22

0.9/100 0.0649 0.167219±0.0452 0.2336 51.59±38.33

0.5/100 0.0353 0.152215±0.0464 0.2226 44.92±34.52

0.0/100 0.1273 0.273557±0.0633 0.3333 18.34±24.12

0.9/5/R 0.0270 0.115099±0.0463 0.2223 45.04±28.75

0.5/5/R 0.0254 0.124085±0.0479 0.2227 46.43±37.26

0.0/5/R 0.0241 0.137174±0.0582 0.2229 44.12±36.38

0.9/5 0.0619 0.166669±0.0465 0.2230 50.56±37.71

0.5/5 0.0349 0.157057±0.0520 0.2294 52.34±34.34

0.0/5 0.0264 0.156989±0.0535 0.2227 63.35±37.88

Node Offset

No Offset 0.0340 0.1647±0.0668 0.3333 49.08±31.88

Point Offset 0.0172 0.0544±0.0432 0.1642 72.79±30.58

Tunnel Offset 0.0151 0.0548±0.0535 0.3333 75.38±37.02

Modularity

Selective 0.0259 0.0614±0.0068 0.0749 23.48±25.72
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Global IO (0.1) 0.0184 0.0545±0.0489 0.3333 78.56±35.69

Global IO (0.5) 0.0151 0.0560±0.0446 0.3333 73.26±39.50

Gluing Models

Implicit (Cyclic) 0.0216 0.1371±0.0731 0.3333 51.88±33.44

Explicit (Cyclic) 0.0284 0.1348±0.0525 0.2513 32.99±18.09

Exp. (C./Simple) 0.0353 0.1145±0.0392 0.1965 46.01±17.69

Implicit Nonterm. 0.0202 0.0634±0.0572 0.3333 59.51±22.83

Simple Graphs

Terminal Only 0.0164 0.0541±0.0392 0.1781 58.16±32.39

Term. + Nont. 0.0217 0.0491±0.0476 0.3333 60.13±29.60

Table A.5: Results for the Backpropagation MLP (Iris dataset) problem.

A.6 Pole Balancing

Parameters
√

MCE Min MSE Size

×1000 Min Mean Max Mean Min Error

Default 82% 40 0.0010 0.0016±0.0015 0.0071 7.65±1.42 8.99±3.41

Diversity

Entropy 90% 32 0.0010 0.0013±0.0011 0.0101 7.45±0.72 7.82±1.58

Distance 71% 71 0.0010 0.0019±0.0017 0.0084 6.16±0.72 9.15±2.21

Age 100% 14 0.0010 0.0010±0.0000 0.0010 7.11±1.03 9.71±2.14

Sequence 98% 23 0.0010 0.0010±0.0003 0.0042 9.14±4.38 14.02±13.23

Island Model

2 Islands 96% 26 0.0010 0.0012±0.0009 0.0064 6.97±0.73 8.68±1.82

5 Islands 98% 20 0.0010 0.0011±0.0006 0.0067 8.29±2.21 10.41±3.74

20 Islands 95% 23 0.0010 0.0012±0.0009 0.0068 12.09±9.20 12.56±9.93

5 Isl. (Local) 100% 20 0.0010 0.0010±0.0000 0.0010 8.13±1.44 9.86±2.83

5 Isl. (Isolated) 96% 32 0.0010 0.0011±0.0004 0.0046 7.72±1.87 9.25±1.96

Mutation Rate

1 Mutation 76% 42 0.0010 0.0116±0.0435 0.2000 7.15±1.56 8.20±2.14

2 Mutations 76% 52 0.0010 0.0019±0.0019 0.0079 7.58±1.03 8.92±2.65

4 Mutations 78% 55 0.0010 0.0017±0.0016 0.0078 6.61±1.77 9.64±3.43

8 Mutations 64% 96 0.0010 0.0019±0.0015 0.0067 8.32±6.47 17.99±19.41

1(+0.5) Targets 82% 40 0.0010 0.0016±0.0016 0.0088 7.51±0.90 8.69±2.12

2 Targets 76% 46 0.0010 0.0018±0.0019 0.0105 7.46±0.72 8.77±1.86

4 Targets 79% 47 0.0010 0.0017±0.0016 0.0085 7.45±0.64 8.76±1.74

8 Targets 80% 45 0.0010 0.0017±0.0016 0.0085 7.49±0.60 8.73±1.59

Population Size

5 (1000 Gen.) 58% 27 0.0010 0.0028±0.0029 0.0109 8.43±3.54 10.56±4.95

5 (4000 Gen.) 89% 36 0.0010 0.0014±0.0012 0.0064 7.41±4.49 10.23±7.90

80 (250 Gen.) 49% 141 0.0010 0.0026±0.0021 0.0087 6.61±1.75 9.02±2.34

80 (1000 Gen.) 89% 140 0.0010 0.0013±0.0011 0.0058 8.52±1.21 8.41±1.27

50k Generations

100k Cycles

Default 100% 51 1.0e-5 1.0e-5±0.0000 1.0e-5 7.13±1.22 11.00±2.52

Enhanced 100% 22 1.0e-5 1.0e-5±0.0000 1.0e-5 8.56±2.97 16.50±12.02

Default @ 1k 73% 51 1.0e-5 0.0012±0.0026 0.0086 7.19±1.20 10.40±2.66

Enhanced @ 1k 97% 28 1.0e-5 4.4e-5±1.9e-4 0.0010 8.41±2.61 15.3±9.59
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Adaptive Search

Target 77% 48 0.0010 0.0019±0.0018 0.0086 7.54±0.95 8.22±2.27

Lineage 86% 34 0.0010 0.0016±0.0016 0.0076 7.27±0.43 7.74±1.76

Target+Lineage 84% 37 0.0010 0.0016±0.0015 0.0070 7.56±0.83 8.08±1.97

Size Objective

Size Shared 87% 46 0.0010 0.0016±0.0017 0.0086 7.50±0.74 8.22±2.25

No Size 42% 76 0.0010 0.0032±0.0025 0.0112 34.91±41.94 35.79±42.71

Entropy+No Size 51% 47 0.0010 0.0028±0.0026 0.0116 91.13±119.06 31.28±35.75

Table A.6: Results for the double Pole Balancing problem.

A.7 Computer Network Topology

Parameters
√

MCE Min MSE Cost (×1000000)

×1000 Min Mean Max Mean Min Error

Default 23% 1366 0.0000 0.1801±0.1668 0.5714 5.14±2.40 6.91±6.76

Node Offset

No Offset 5% 6127 0.0000 0.3028± 0.2108 0.7143 7.34±2.33 7.72±2.76

Point Offset 28% 1117 0.0000 0.1556±0.1647 0.5400 5.81±3.25 7.08±5.98

Tunnel Offset 31% 947 0.0000 0.1606±0.1621 0.5714 5.30±2.25 6.42±2.92

Modularity

Selective 25% 227 0.0000 0.0999± 0.1161 0.4118 5.38±2.38 5.93±2.79

Global IO (0.1) 27% 1177 0.0000 0.1194± 0.1259 0.5000 5.67±2.58 7.24±4.90

Global IO (0.5) 35% 695 0.0000 0.0674± 0.0703 0.2917 5.21±1.72 6.54±2.42

Gluing Models

Explicit (Cyclic) 24% 1142 0.0000 0.1405±0.1479 0.5714 5.31±1.76 6.28±2.25

Exp. (C./Simple) 46% 601 0.0000 0.0848± 0.1161 0.5000 6.37±3.20 7.88±4.79

Implicit Nonterm. 36% 817 0.0000 0.0918± 0.1261 0.6667 6.44±4.12 8.75±8.09

Simple Graphs

Terminal Only 21% 1472 0.0000 0.1853±0.1706 0.5714 5.08±2.59 6.55±5.26

Term. + Nont. 42% 654 0.0000 0.0798± 0.0989 0.5000 6.04±2.32 7.85±5.90

Diversity

Entropy 32% 932 0.0000 0.1270± 0.1332 0.5000 6.11±3.62 8.04±8.05

Case Entropy 29% 1051 0.0000 0.1117± 0.1273 0.5000 6.28±2.45 8.09±4.42

ND Entropy 31% 1031 0.0000 0.1120± 0.1209 0.5000 6.39±4.33 8.71±11.26

Distance 20% 1463 0.0000 0.1413±0.1202 0.5714 6.04±3.57 8.82±12.65

Case Distance 25% 1293 0.0000 0.1342± 0.1330 0.5000 6.16±2.80 7.57±5.60

ND Distance 29% 1051 0.0000 0.1261± 0.1333 0.5000 5.97±2.53 7.29±3.94

Case Pareto 40% 683 0.0000 0.0627± 0.0675 0.2857 9.86±10.46 13.04±12.91

Age 36% 692 0.0000 0.0881± 0.0977 0.5000 4.69±3.09 7.92±7.52

Sequence 42% 422 0.0000 0.0781± 0.0894 0.3571 5.01±2.79 7.91±5.52

Island Model

2 Islands 21% 1570 0.0000 0.1690±0.1494 0.5000 5.91±3.35 7.52±7.53

5 Islands 35% 722 0.0000 0.1256± 0.1427 0.5400 5.93±3.89 8.89±14.35

20 Islands 28% 935 0.0000 0.1015± 0.1084 0.5000 6.12±5.32 9.89±14.33

80 Islands 30% 987 0.0000 0.1012± 0.1000 0.3571 7.28±5.98 9.58±13.41

5 Isl. (Local) 30% 1041 0.0000 0.1441±0.1607 0.7143 6.06±4.55 8.23±8.51

5 Isl. (Isolated) 27% 1081 0.0000 0.1305±0.1278 0.5000 5.56±2.57 8.10±7.46

Mutation Rate

1 Mutation 0% N/A 0.2063 0.8270± 0.2528 1.0000 1.38±2.03 1.41±2.06

2 Mutations 8% 4440 0.0000 0.2663± 0.1757 0.6667 4.75±3.77 7.77±11.81

4 Mutations 9% 771 0.0000 0.1775±0.1165 0.5000 3.37±2.71 7.06±7.10
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8 Mutations 15% 499 0.0000 0.1415±0.1145 0.5714 2.13±2.04 7.75±6.71

1(+0.5) Targets 22% 1430 0.0000 0.1768±0.1592 0.5714 5.16±3.24 6.53±5.29

2 Targets 16% 2114 0.0000 0.1867±0.1634 0.5714 5.09±2.23 7.09±3.69

4 Targets 19% 1462 0.0000 0.1763±0.1516 0.5714 5.14±2.28 7.28±5.45

8 Targets 16% 1988 0.0000 0.1758±0.1487 0.5476 5.26±2.21 7.39±5.63

Population Size

5 (1000 Gen.) 0% N/A 0.0556 0.4099± 0.1609 0.7619 3.00±1.73 4.31±2.66

5 (16000 Gen.) 22% 212 0.0000 0.1651±0.1522 0.5714 4.83±5.14 7.81±8.52

20 (1000 Gen.) 4% 743 0.0000 0.3163± 0.1714 0.7143 4.36±2.86 5.54±4.86

20 (4000 Gen.) 29% 743 0.0000 0.1395±0.1407 0.5714 5.68±3.70 6.91±6.76

50k Generations

Default 77% 1366 0.0000 0.0242± 0.0531 0.2143 7.65±4.21 11.45±8.10

Enhanced 100% 600 0.0000 0.0000± 0.0000 0.0000 6.74±2.88 11.78±3.82

Enhanced @ 1k 47% 626 0.0000 0.0978± 0.1265 0.5000 5.27±1.77 8.49±3.00

Adaptive Search

Target Choice 26% 1281 0.0000 0.1445±0.1371 0.5714 5.47±2.86 6.96±4.57

Lineage Choice 21% 1506 0.0000 0.1716±0.1523 0.5000 5.47±3.27 7.21±6.34

Target+Lineage 24% 1378 0.0000 0.1609±0.1539 0.5000 5.62±2.18 6.88±3.06

Size Objective

Size Shared 1% 30882 0.0000 0.4003± 0.1759 0.7619 0.22±0.68 5.50±2.82

No Size 37% 450 0.0000 0.0889± 0.1078 0.5000 13.17±24.21 11.57±17.31

C.Entr.+No Size 54% 202 0.0000 0.0473± 0.0683 0.2857 120.1±133.3 41.88±62.62

Table A.7: Results for the Computer Network Topology design problem.
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Bäck, T., Graaf, J. M., Kok, J. N., and Kosters, W. A. (1997). Theory of genetic
algorithms. Bulletin of the EATCS, 63:161–192.

Baldwin, J. (1896). A new factor in evolution. American Naturalist, 30:441–451.

Ballesteros, F. J. and Luque, B. (2005). Order-disorder phase transition in
random-walk networks. Physical Review E, 71:031104.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard
genetic algorithm. In Prieditis, A. and Russel, S., editors, Proceedings of the
Twelfth International Conference on Machine Learning, pages 38–46. Morgan
Kaufmann.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.
Science, 286(5439):509–512.

Bear, M., Connors, B., and Paradiso, M. (2006). Neuroscience: Exploring the
Brain. Lippincott Williams & Wilkins, Philadelphia, USA.

Bentley, P. J. and Kumar, S. (1999). Three ways to grow designs: A comparison of
embryogenies for an evolutionary design problem. In Angeline, P., Michalewicz,
Z., Schoenauer, M., Yao, X., and Zalzala, A., editors, Proceedings of the 1999
Congress on Evolutionary Computation, pages 35–43. IEEE Press.



Bibliography 187

Berryman, M. J., Allison, A., and Abbott, D. (2004). Optimizing genetic al-
gorithm strategies for evolving networks. In White, L. B., editor, Noise in
Communication, volume 5473 of Proceedings of the SPIE, pages 122–130. SPIE.

Bersano-Begey, T. (1997). Controlling exploration, diversity and escaping local
optima in GP. In Koza, J. R., editor, Late Breaking Papers at the Genetic
Programming 1997 Conference, pages 7–10. Stanford University.

Bianchini, M. and Gori, M. (1996). Optimal learning in artificial neural networks:
a theoretical view. Neurocomputing, 13:313–346.

Bleuer, S., Braek, M., Thiele, L., and Zitzler, E. (2001). Multiobjective genetic
programming: reducing bloat using SPEA2. In Kim, J.-H., Zhang, B.-T., Fogel,
G., and Kuscu, I., editors, Proceedings of the 2001 Congress on Evolutionary
Computation, volume 1, pages 536–543. IEEE Press.

Blickle, T. and Thiele, L. (1994). Genetic programming and redundancy. In
Hopf, J., editor, Genetic Algorithms within the Framework of Evolutionary
Computation (Workshop at KI-94, Saarbrücken), pages 33–38. Max-Planck-
Institut für Informatik.

Boers, E. J. W. and Kuiper, H. (1992). Biological metaphors and the design of
modular artificial neural networks. Master’s thesis, Departments of Computer
Sciences and Experimental and Theoretical Psychology, Leiden University, Lei-
den, The Netherlands.

Boers, E. J. W. and Sprinkhuizen-Kuyper, I. G. (1995). Using L-systems as graph
grammars: G2L-systems. Technical report 95-30, Department of Computer
Science, Leiden University, The Netherlands.

Boers, E. J. W. and Sprinkhuizen-Kuyper, I. G. (2001). Combined biological
metaphors. In Patel, M. J., Honavar, V., and Balakrishnan, K., editors, Ad-
vances in the evolutionary synthesis of intelligent agents, book chapter 6, pages
153–183. The MIT Press.

Bohland, J. W. and Minai, A. A. (2000). Efficient associative memory using
small-world architecture. Neurocomputing, 38-40:489–496.

Bolouri, H., Adams, R., George, S., and Rust, A. G. (1998). Molecular self-
organisation in a developmental model for the evolution of large-scale artificial
neural networks. In Usui, S. and Omori, T., editors, Proceedings of the Inter-
national Conference on Neural Information Processing and Intelligent Infor-
mation Systems, pages 797–800. Springer Verlag.

Bongard, J. C. and Pfeifer, R. (2001). Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny. In Spector, L. and
Goodman, E. D., editors, Proceedings of the 2001 Genetic and Evolutionary
Computation Conference, pages 829–836. Morgan Kaufmann.



188 Bibliography

Bowers, C. P. (2005). Formation of modules in a computational model of embryo-
geny. In Corne, D., Michalewicz, Z., McKay, B., Eiben, G., Fogel, D., Fonseca,
C., Greenwood, G., Raidl, G., Tan, K. C., and Zalzala, A., editors, Proceed-
ings of the 2005 Congress on Evolutionary Computation, pages 537–542. IEEE
Press.

Bui, L. T., Branke, J., and Abbass, H. A. (2005). Multiobjective optimization for
dynamic environments. In Corne, D., Michalewicz, Z., McKay, B., Eiben, G.,
Fogel, D., Fonseca, C., Greenwood, G., Raidl, G., Tan, K. C., and Zalzala, A.,
editors, Proceedings of the 2005 Congress on Evolutionary Computation, pages
2349–2356. IEEE Press.

Cangelosi, A., Parisi, D., and Nolfi, S. (1994). Cell division and migration in a
‘genotype’ for neural networks (cell division and migration in neural networks).
Network: Computation in Neural Systems, 5:497–515.

Caudell, T. P. and Dolan, C. P. (1989). Parametric connectivity: training of con-
strained networks using genetic algorithms. In Schaffer, J. D., editor, Proceed-
ings of the Third International Conference on Genetic Algorithms and Their
Applications, pages 370–374. Morgan Kaufmann.

Cecchi, G. A., Petreanu, L. T., Alvarez-Buylla, A., and Magnasco, M. O. (2001).
Unsupervised learning and adaptation in a model of adult neurogenesis. Journal
of Computational Neuroscience, 11(2):175–182.

Chowdhury, D., Nishinari, K., and Schadschneider, A. (2004). Self-organized
patterns and traffic flow in colonies of organisms: from bacteria and social
insects to vertebrates. Phase Transitions, 77:601–624.

Chu, P. and Jones, R. (1999). Design techniques of FPGA based random number
generator. In Katz, R., editor, Proceedings of the 2nd Annual Military and
Aerospace Applications of Programmable Devices and Technologies (MAPLD)
Conference. The Johns Hopkins University – Applied Physics Laboratory.

Chua, L. O. and Yang, L. (1988a). Cellular neural networks: applications. IEEE
Transactions of Circuits and Systems, 35(10):1273–1290.

Chua, L. O. and Yang, L. (1988b). Cellular neural networks: theory. IEEE
Transactions of Circuits and Systems, 35(10):1257–1272.

Cohen, R. and Havlin, S. (2003). Scale-free networks are ultrasmall. Physical
Review Letters, 90(5):058701.

Collins, J. J. and Eaton, M. (1997). A global representation scheme for genetic
algorithms. In Reusch, B., editor, Proceedings of the 1997 International Confer-
ence on Computational Intelligence, volume 1226 of Lecture Notes in Computer
Science, pages 1–16. Springer Verlag.

Cun, Y., Denker, J., and Solla, S. (1990). Optimal brain damage. In Touretzky,
D. S., editor, Advances in neural information processing systems, volume 2,
pages 598–605. Morgan Kaufmann.



Bibliography 189

Daida, J. M., Bertram, R. R., Stanhope, S. A., Khoo, J. C., Chaudhary, S. A.,
Chaudhri, O. A., and II, J. A. P. (2001). What makes a problem GP-hard?
Analysis of a tunably difficult problem in genetic programming. Genetic Pro-
gramming and Evolvable Machines, 2(2):165–191.

Darwin, C. (1859). On the Origin of Species By Means of Natural Selection.
Murray, London.

Dawkins, R. (1983). Universal darwinism. In Bendall, D. S., editor, Evolution
from molecules to man, pages 403–425. Cambridge University Press.

De Bonet, J. S., Isbell, Jr., C. L., and Viola, P. (1997). MIMIC: Finding optima by
estimating probability densities. In Mozer, M. C., Jordan, M. I., and Petsche,
T., editors, Advances in Neural Information Processing Systems, volume 9,
pages 424–430. The MIT Press.

De Jong, E. D. and Pollack, J. B. (2001). Utilizing bias to evolve recurrent
neural networks. In Marko, K. and Werbos, P., editors, Proceedings of the
2001 International Joint Conference on Neural Networks, pages 2667–2672.
IEEE Press.

De Jong, E. D. and Pollack, J. B. (2003). Multi-objective methods for tree size
control. Genetic Programming and Evolvable Machines, 4(3):211–233.

De Jong, E. D., Watson, R. A., and Pollack, J. B. (2001). Reducing bloat and pro-
moting diversity using multiobjective methods. In Spector, L. and Goodman,
E. D., editors, Proceedings of the 2001 Genetic and Evolutionary Computation
Conference, pages 11–18. Morgan Kaufmann.

De Jong, K. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. thesis, The University of Michigan, Ann Arbor, MI, USA.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK.

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000). A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-
II. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J.,
and Schwefel, H.-P., editors, Proceedings of the Parallel Problem Solving from
Nature VI Conference, volume 1917 of Lecture Notes in Computer Science,
pages 849–858. Springer Verlag.

Deb, K., Mohan, M., and Mishra, S. (2003). Towards a quick computation of well-
spread Pareto-optimal solutions. In Fonseca, C., Fleming, P., Zitzler, E., Deb,
K., and Thiele, L., editors, Proceedings of the Second International Conference
on Evolutionary Multi-Criterion Optimization, pages 222–236. Springer Verlag.

Dellaert, F. and Beer, R. (1996). A developmental model for the evolution of
complete autonomous agents. In Maes, P., Mataric, M., Meyer, J.-A., Pollack,
J. B., and Wilson, S., editors, From Animals to Animats: Proceedings of the



190 Bibliography

Fourth International Conference on Simulation of Adaptive Behavior, pages
393–402. The MIT Press.

Dengiz, B., Altiparmak, F., and Smith, A. E. (1995). A genetic algorithm ap-
proach to optimal topological design of all terminal networks. In Dagli, C.,
Akay, M., Chen, C., Fernandez, B., and Ghosh, J., editors, Proceedings of
the Artificial Neural Networks in Engineering Conference (ANNIE’95), pages
405–411. ASME Press.

Di Ferdinando, A. D., Calabretta, R., and Parisi, D. (2001). Evolving modular
architectures for neural networks. In French, R. M. and Sougné, J. P., editors,
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Li, M. and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and
Its Applications. Springer Verlag, New York, USA, 2nd edition.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in devel-
opment, parts I and II. Journal of Theoretical Biology, 18:280–315.

Lindenmayer, A. (1974). Adding continuous components to L-systems. In Rozen-
berg, G. and Salomaa, A., editors, L Systems, volume 15 of Lecture Notes in
Computer Science, pages 53–68. Springer Verlag.

Lipson, H. and Pollack, J. B. (2000). Automatic design and manufacture of
robotic lifeforms. Nature, 406:974–978.

Lones, M. A. and Tyrrell, A. M. (2004). Modelling biological evolvability: implicit
context and variation filtering in enzyme genetic programming. BioSystems,
76(1–3):229–238.

Lucas, S. M. (1995). Towards the open ended evolution of neural networks.
In Zalzala, A. M. S., editor, Proceedings of the 1st International Conference
on Genetic Algorithms in Engineering Systems: Innovations and Applications,
pages 388–393. Institution of Electrical Engineers.

Lucas, S. M. (2002). Evolving spring-mass models: a test-bed for graph encoding
schemes. In Fogel, D., editor, Proceedings of the 2002 Congress on Evolutionary
Computation, pages 1952–1957. IEEE Press.

Luerssen, M. H. (2005a). Graph grammar encoding and evolution of automata
networks. In Estivill-Castro, V., editor, Proceedings of the 28th Australasian
Computer Science Conference, pages 229–238. Australian Computer Society.

Luerssen, M. H. (2005b). Phenotype diversity objectives for graph grammar
evolution. In Abbass, H. A., Bossamaier, T., and Wiles, J., editors, Recent
Advances in Artificial Life, volume 3 of Advances in Natural Computation,
book chapter 12, pages 159–170. World Scientific.

Luerssen, M. H. and Powers, D. M. W. (2003). On the artificial evolution of
neural graph grammars. In Slezak, P., editor, Proceedings of the 4th Inter-
national Conference on Cognitive Science, pages 369–377. University of New
South Wales.

Luerssen, M. H. and Powers, D. M. W. (2005). Graph composition in a
graph grammar-based method for automata network evolution. In Corne, D.,
Michalewicz, Z., McKay, B., Eiben, G., Fogel, D., Fonseca, C., Greenwood,
G., Raidl, G., Tan, K. C., and Zalzala, A., editors, Proceedings of the 2005
Congress on Evolutionary Computation, pages 1653–1660. IEEE Press.



Bibliography 197

Luke, S. and Panait, L. (2001). A survey and comparison of tree generation algo-
rithms. In Spector, L. and Goodman, E. D., editors, Proceedings of the Genetic
and Evolutionary Computation Conference, pages 81–88. Morgan Kaufmann.

Luke, S. and Spector, L. (1996). Evolving graphs and networks with edge encod-
ing: preliminary report. In Koza, J. R., editor, Late Breaking Papers at the
Genetic Programming 1996 Conference, pages 117–124. Stanford Bookstore.

Martin, W. N., Lienig, J., and Cohoon, J. P. (1997). Island (migration) models:
evolutionary algorithms based on punctuated equilibria. In Bäck, T., Fogel,
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