The role of serum and glucocorticoid inducible kinase 3 in the regulation of cell growth and malignant transformation

Maressa Anne Bruhn

Bachelor of Biotechnology (Hons)

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy

March 2012

School of Biological Sciences Faculty of Science and Engineering Flinders University

Abstract

The most well established downstream effector of phosphatidylinositol 3-kinase (PI3-K) signalling is the v-akt murine thymoma viral oncogene homolog/protein kinase B (AKT/PKB) kinase family, with many studies highlighting the critical importance of this family in normal cell physiology, including cell growth, proliferation and survival, in addition to disease states such as cancer. However, more recently AKT-independent PI3-K signalling pathways have been reported, including signalling via serum and glucocorticoid inducible kinase (SGK)3, a member of the SGK family of serine/threonine kinases. The three SGK kinases (SGK1, -2, -3) share 54% structural homology with the AKT kinases in the catalytic domain, and have shown to be similarly activated in a PI3-K-dependent manner via 3-phosphoinositide-dependent kinase 1 (PDK1). Moreover, the SGK and AKT families share many of the same downstream targets including glycogen synthase kinase 3 beta (GSK3_β), forkhead transcription factor 3a (FOXO3a), and Bcl-2 associated death promoter (BAD). The level of similarity existing between these two kinase families suggests possible functional redundancy, however studies using single isoform AKT and SGK knockout mice suggests isoform specific signalling. Furthermore distinct differences in cellular localisation between these kinases make it more likely that they each have important and specific roles.

In addition to the recent studies demonstrating that SGK3 is likely to be an important factor involved in AKT-independent malignant cell transformation, earlier studies in our laboratory demonstrated that the SGK3 isoform revealed increased transcript expression in a panel of ovarian tumour cells compared with SGK1 and SGK2, making SGK3 an interesting candidate to further characterise in both normal cell physiology and tumourigenesis.

The AKT family has been widely reported as a key downstream effector of PI3-K signalling to cell growth, thus this thesis firstly aimed to examine a possible role for SGK3 in cell growth and proliferation. Using multiple SGK3 gain-of-function epithelial and fibroblast cell lines, studies presented here revealed a strong role for SGK3 in signalling to components of the cell growth pathway, regulating macromolecular (RNA and protein) content, cell size, and regulating ribosomal-DNA (rDNA) transcription. Furthermore, using the mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, these studies were also able to demonstrate that SGK3 is able to regulate cell growth in a largely mTORC1-dependent manner. Moreover, studies presented herein were also able to explore the importance of SGK3's reported endosomal localisation, demonstrating SGK3 functions optimally to influence cell growth when localised at the endosomal compartment.

Following the identification of SGK3 as an important modulator of cell growth, the second aim was to investigate the influence of SGK3 on malignant cell transformation and tumourigenesis. These studies utilised multiple pre-tumourigenic genetically defined SGK3 gain-of-function cell lines to obtain functional readouts for a variety

of well-established hallmarks of tumourigenesis, including anchorage-independent growth, cell migration and chemoresistance. Moreover, these studies incorporated the use of AKT gain-of-function cell lines in order to make comparisons between the ability of SGK3 and AKT to promote tumourigenic hallmarks. Results from these studies revealed both SGK3 and the AKT isoforms to promote anchorage-independent growth, in addition to a role for AKT in promoting cell migration, suggesting that in addition to the AKT family, SGK3 is also an important effector of malignant transformation.

Finally, the third aim of this project was to extend functional studies to global gene expression analysis, in an attempt to further define mechanisms associated with SGK3 function, and identify possible novel associations existing between SGK3 and other factors. Global gene analysis was conducted using Affymetrix genechip microarrays of all SGK3 and AKT gain-of-function cell lines used for functional studies. Through the use of two different bioinformatic approaches, including the MetaCore[™] platform by GeneGo, along with Gene Set Enrichment Analysis (GSEA) from the Broad Institute, all data was interrogated to determine novel associations with SGK3, in addition to determining possible mechanisms associated with readouts observed in earlier functional analyses. These studies revealed not only known associations with SGK3, but also novel associations including demonstrating a possible role for SGK3 in the immune response, in addition to possible involvement in lysophosphatidic acid (LPA) pathway signalling. Moreover, these gene expression studies enabled comparison of differential gene regulation between both SGK3 and the AKT isoforms.

In summary, studies presented in this thesis demonstrate for the first time an important role for SGK3 in regulating cell growth via regulation of rDNA transcription, which is likely to be largely dependent on mTORC1. Furthermore, SGK3 also appears to play a critical role in the regulation of malignant transformation, which is consistent with recent reports demonstrating a role for SGK3 in AKT-independent PI3-K oncogenic signalling. Additionally, global gene expression studies allowed for the detection of novel connections with SGK3 including a role for SGK3 in the immune response. In summary this thesis furthers our understanding of the role of SGK3 in health and disease and provides an important platform that can be used as a basis for future investigations into SGK3 function.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Maressa A Bruhn

Preface

This thesis acknowledges the attributions from the following people for the experiments listed below:

Figure 3.3 and Figure 3.5 was completed in collaboration with Megan Astle.

Figure 3.9 was completed in collaboration with Karen Sheppard

Figure 3.14 was completed in collaboration with Karen Sheppard

Figure 4.7 was completed in collaboration with Rob Southgate

Acknowledgements

First and foremost I would like to express my sincere gratitude to my primary supervisors, Karen Sheppard and Ross Hannan for providing inspiration, enthusiasm and encouragement during the course of my PhD project, and helping me to maintain perspective, even during the more difficult days. Your patience, guidance and wisdom have been invaluable to me during both my time in the lab and the preparation of my thesis. I am eternally thankful for all the opportunities, motivation, support and understanding that you have given me during this time. Thank you.

I am also very grateful to my external supervisor Catherine Abbott for all of her important insight during my project, and all the guidance and support offered during the preparation of my thesis. I would also like to express my sincere appreciation to Rick Pearson for all of his useful advice and suggestions during the course of my PhD project.

In addition to my supervisors, a number of other important colleagues at the Peter MacCallum Cancer Centre have provided invaluable knowledge, assistance and moral support throughout the duration of my project. I am deeply indebted to Elly Tchoubrieva, Kate Hannan, Elaine Sanij, Kathy Jastrzebski, Amee George, Rob Southgate, Megan Astle, Rachel Lee, Jane Lin and Lynette Chee for all of your kindness, constructive ideas, motivation and friendship during my project.

I would also like to thank all the staff at the Peter MacCallum Cancer Centre who have assisted me during the course of my PhD studies. I would like to give a special thanks to Ralph Rossi in the FACS core facility for all his assistance sorting my many cell lines, and Jason Ellul in the Bioinformatics core for all his assistance with the raw statistical analysis of the gene expression data.

Finally I would like to thank my family and friends for helping me to stay focused and maintain the drive and perspective to finish my work in the lab and write my thesis. More specifically to my Dad, Mum and Justin, the course of my PhD has been quite a challenging time, and I would not have been able to make it through to the end had it not been for your enduring belief in my abilities, and continuous love and support driving me forward. Words cannot express how much I appreciate you. Thank you.

I dedicate this thesis to my Dad, Mum and Justin

Publications arising from this thesis

Invited review:

Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. *Second AKT: the rise of SGK in cancer signalling*. Growth Factors 2010 Dec;28(6):394-408

Conference abstracts:

Bruhn MA, Southgate RJ, Abbott C, Pearson RB, Hannan RD, Sheppard KE. *Characterisation of the ability of SGK3 and AKT to drive markers of cell transformation in vitro.* 22nd Lorne Cancer Conference 2010.

Bruhn MA, Riddell K, Abbott C, Pearson RB, Hannan RD, Sheppard KE. *A potential role for SGK3, an AKT related kinase, in promoting cell transformation.* 20th Meeting of the European Association for Cancer Research 2008.

Bruhn MA, Riddell K, Abbott C, Pearson RB, Hannan RD, Sheppard KE. *A potential role for SGK3, an AKT related kinase, in promoting cell transformation.* 20th Lorne Cancer Conference 2008.

Bruhn MA, Riddell K, Abbott C, Pearson RB, Hannan RD, Sheppard KE. *A potential role for SGK3, an AKT related kinase, in promoting cell transformation.* 3rd Barossa Meeting Science Amongst the Vines 2007.

Table of Contents

Abstract	
Declaration	IV
Preface	V
Acknowledgements	VI
Publications arising from this thesis	VII
Table of Contents	VIII
List of Figures	XI
List of Tables	XIII
Abbreviations	XV
1. Introduction	1
1.1 Background	1
1.2 Identification and characterisation of the three <i>sgk</i> genes	1
1.2.1 Discovery and cioning of the sgk genes	ا۱ د
1.2.2 SGK Isolom protein domain structure	ے2 2
1.2.2.2 Catalytic and regulatory domains	
1.3 Regulation of SGK isoforms	6
1.3.1 Transcriptional Regulation	6
1.3.2 SGK isoform activation	8
1.3.2.1 Class IA and class III PI3K	9
1.3.2.2 Cellular localisation and activation	
1.3.2.3 Phosphorylation at Serine and Threonine sites for kinase activation	11
1.3.3 Negative regulation of SGK Isolorith activity	13 13
1.4 Biological processes regulated by SGK isoforms	13 14
1.4.1 SGK substrate specificity	
1.4.2 SGK knockout mice	14
1.4.3 Cell proliferation	17
1.4.3.1 Regulation of cell proliferation	18
1.4.4 Cell growth	19
1.4.4.1 mTORC1 regulation of cell growth	22
1.4.4.2 Ribosome biogenesis	22
1.4.5 Cell survival	24 25
1.4.6 Cell migration	23 28
1.4.7 Regulation of ion channels and transporters.	
1.5 SGK associated pathophysiology	30
1.5.1 Hypertension and diabetes	30
1.5.2 Neurodegenerative disease	31
1.6 SGK and cancer	32
1.6.1 Class I PI3-K and cancer	32
1.6.2 AKT Isoforms and cancer	33
1.0.5 SGK ISOIOITIS and Cancel	34 36
2. Materials and Methods	37
2.1 Cell line maintenance	37
2.2 Generation of plasmid constructs	37
2.2.1 Generation of myc-tagged wildtype SGK3 expression construct	37
2.2.2 Site directed mutagenesis to generate SGK3 mutant constructs	38
2.2.2.1 Primer Design and PCR Reaction	38
2.2.3 Constructs	
2.3 Generation of Stable Cell Illes	40 ⊿∩
2.3.2 Retroviral transduction	40
2.3.3 Stable cell line selection	40

2.4 Cell treatments	. 41
2.5 Harvesting for protein and preparation of extracts	. 41
2.6 Harvesting for RNA	. 41
2.7 Measuring protein and RNA content per cell	12
2.9 Mossuring protein and transcription	. 72 12
2.0 Measuring TDNA transcription	. 42
2.9 Synthesis of 5" externally transcribed spacer (5" E15) "-P-labelled antisense	
riboprobe	. 42
2.10 RNA Isolation	. 43
2.11 Ribonuclease protection assay	. 43
2.12 Cell signalling experiments	. 44
2.13 Immunoblotting	. 44
2.14 Cell proliferation assay	. 46
2 15 Scratch migration assay	46
2 16 Colony formation assay	16
2.17 SCK2 localization	. 40
2.17 SGRS IOCAIISAUOII	. 41
2.18 Cell cycle analysis	. 47
2.19 Cell death assay	. 47
2.20 Microarray Experiments	. 48
2.20.1 Microarray sample preparation	. 48
2.20.2 Microarray data analysis	. 48
2.21 Statistical Analysis	. 49
	-
3 SGK3 regulation of cell growth and proliferation	50
3. Just a duration of cell growth and promeration	. 50
3.1 Introduction	. 50
	. 51
3.2.1 Characterisation of HOSE SGK3 stable cell lines	. 51
3.2.2 Characterisation of BJ-hTERT SGK3 stable cell lines	. 61
3.2.3 Activated SGK3 increases signalling to cell growth	. 62
3.2.3.1 SGK3 signalling in HOSE cells	. 62
3.2.3.2 SGK3 signalling in BJ-hTERT cells	. 75
3.2.4 Activated SGK3 increases cell proliferation in non-tumourigenic ovarian	
epithelial cells	76
3 2 5 Activated SGK3 does not increase cell proliferation in non-tumourigenic foreskir	อ า
fibroblast calls	'70
2.2.6 Activisted CCK2 increases call size and key perspectate of call growth	. 73
3.2.0 Activated SGK3 increases cell size and key parameters of cell growth	. 79
3.2.7 Activated SGK3 increases rDNA transcription in epitnelial and fibroblast cell	~~
lines	. 80
3.3 Discussion	. 92
3.3.1 Overview of results	. 92
3.3.2 SGK3 influence on cell growth signalling	. 97
3.3.3 Activated SGK3 increases proliferation and key parameters of cell growth	. 98
3.3.4 Activated SGK3 increases rDNA transcription	101
3.3.5 The influence of SGK3 localisation on cell growth and proliferation	102
3 3 6 Possible model of SGK3 signalling to cell growth	102
	100
4. The influence of SGK3 compared with AKT on crucial hallmarks of cel	i I
transformation and tumourigenesis	106
4.1 Introduction	106
4.2 Results	107
4.2.1 Characterisation of SGK3 and AKT genetically defined pre-tumourigenic stable	
cell lines	108
4.2.2 Regulation of anchorage independent growth by SCK3 and AKT	11/
4.2.2 Negulation of anchorage interpendent growth by SGN3 and ANT	114 107
4.2.3 ART DULTIOL SURS Call Increase cell migration	121
4.2.4 SGK3 does not increase cell viability following treatment with chemotherapeutic	;
agents	137
4.3 Discussion	144
4.3.1 Activated SGK3 and AKT promote anchorage independent growth	144
4.3.2 The regulation of cell migration and chemoresistance by SGK3 and AKT	152

5. Gene expression studies using microarrays of epithelial and fibrobla	ast
cell lines over-expressing SGK3 and AKT	. 155
5.1 Introduction	. 155
5.2 Methods	. 155
5.3 Results	. 157
5.3.1 Gene expression profiles in SGK3 transduced HOSE cells	. 157
5.3.1.1 Gene expression changes and pathway analysis in SGK3 WT	
over-expression	. 157
5.3.1.2 Gene Expression changes with SGK3 CA over-expression	. 159
5.3.1.3 Comparative analysis of changes identified between SGK WT and CA	100
Caldsels	. 103
5.3.2 Gene expression promes in AKT transduced IOSE523 cens	100
5.3.2. I Gene expression changes with myr-AKT over-expression	. 108
5.3.3 Comparative analysis of gene expression differences between	170
IUSE523-IIIVIANT and HUSE-SGN3UA cells	1/ð T
5.3.4 Differential gene expression in over-expression of SGK3 mutants in BJ-ITER	1 102
5 3 5 Gane expression changes with myr AKT over expression in B I hTEPT cells	182
5.3.6 Comparative analysis of gene expression differences between	. 102
B LhTERT myrAKT and B LhTERT SGK3CA cells	103
5 A Discussion	100
5.4.1 SGK3 gene expression in ovarian enithelial cells	100
5.4.2 Comparison between SGK3 and AKT gene regulation in ovarian cell lines	201
5.4.3 SGK and AKT gene expression in fibrohlast cells	201
5.4.4 Limitations on data interpretation	202
5.4.5 Summary	205
0.4.0 Outlind y	. 200
6. Summary and future directions	. 206
6.1 Overview	206
6.2 SGK3 regulates cell growth	207
6.3 SGK3 can promote some hallmarks of malignant cell transformation	. 210
6.4 SGK3 impact on global gene expression	. 212
6.5 Conclusion	. 214
Appendix I: Chapter 5 supplementary data	. 215
Bibliography	226

List of Figures

1. Introduction	1
Figure 1.1: Sqk3 gene expression in a panel of ovarian non-tumourigenic control cells	and
tumourigenic epithelial cells	3
Figure 1.2: SGK isoform protein structure	4
Figure 1.3: Levels of SGK1 and SGK3 regulation	7
Figure 1.4: Activators and substrates of SGK1 and SGK3	15
Figure 1.5: The PI3-K/mTORC1 signalling network in cell growth and proliferation	21
Figure 1.6: Schematic representation of ribosome biogenesis	23
3. SGK3 regulation of cell growth and proliferation	50
Figure 3.1: SGK3 mutant constructs	53
Figure 3.2: Protein expression in stable SGK3 mutant HOSE cells	55
Figure 3.3: SGK3 mutant localisation in HOSE cells	57
Figure 3.4: Protein expression in SGK3 mutant stable BJ-hTERT cells	63
Figure 3.5: SGK3 mutant localisation in BJ-hTERT cells	65
Figure 3.6: PI3-K/AKT/mTORC1 growth signalling pathway	71
Figure 3.7: SGK3 increases signalling to cell growth in HOSE cells	73
Figure 3.8: Activated SGK3 increases signalling to cell growth in BJ-hTERT cells	77
Figure 3.9: SGK3 increases cell proliferation in HOSE cells	81
Figure 3.10: SGK3 does not increase cell proliferation in BJ-hTERT cells	83
Figure 3.11: Exponentially growing cell size is increased by activated SGK3 in both	
HOSE and BJ-hTERT cells	85
Figure 3.12: Activated SGK3 increases macromolecular content and cell size in	
HOSE cells	87
Figure 3.13: Activated SGK3 increases macromolecular content and cell size in	
BJ-hTERT cells	89
Figure 3.14: Activated SGK3 increases rDNA transcription in HOSE cells	93
Figure 3.15: Activated SGK3 increases rDNA transcription in BJ-hTERT cells	95
Figure 3.16: Proposed model of SGK3 signalling to cell growth and proliferation	99
4. The influence of SGK3 compared with AKT on crucial hallmarks of cell	
transformation and tumourigenesis	106
Figure 4.1: Genetically defined cell models of malignant cell transformation	109
Figure 4.2: SGK3 and AKT mutant stable protein expression in BJ-LST cells	111
Figure 4.3: SGK3 and AKT mutant stable protein expression in IOSE523 cells	115
Figure 4.4: SGK3 increases anchorage independent growth in BJ-LST cells	119
Figure 4.5: AKT increases anchorage independent growth in BJ-LST cells	121
Figure 4.6: SGK3 does not increase anchorage independent growth in IOSE523 cells.	123
Figure 4.7: AKT increases anchorage independent growth in IOSE523 cells	125
Figure 4.8: SGK3 does not increase anchorage independent growth in HOSE cells	129
Figure 4.9: SGK3 does not increase cell migration in BJ-LST cells	131
Figure 4.10: AKT increases cell migration in BJ-LST cells	133
Figure 4.11: SGK3 does not increase cell migration in HOSE cells	135
Figure 4.12: AKT does not increase cell migration in IOSE523 cells	139
Figure 4.13: The effect of SGK3 and AKT on cell viability following cisplatintreatment	141
Figure 4.14: The effect of SGK3 and AKT on cell viability following taxol treatment	145
Figure 4.15: The effect of SGK3 and AKT on cell viability following vincristine treatment	t. 147
5. Gene expression studies using microarrays of epithelial and fibroblast	cell
lines over-expressing SGK3 and AKT	155
Figure 5.1: HOSE SGK3 WT compared with HOSE pMIG gene expression data	158
Figure 5.2: HOSE SGK3 CA compared with HOSE pMIG gene expression data	162

Figure 5.3: Venn Diagram showing common differentially regulated genes in

Figure 5.4: Venn Diagram showing common differentially regulated genes in

Figure 5.6: IOSE523-myrAKT2 gene expression data compared with IOSE523-pMIC	
gene expression data	173
Figure 5.7: IOSE523-myrAKT3 gene expression data compared with	
IOSE523-pMIC gene expression data.	176
Figure 5.8: Venn diagram showing common differentially regulated genes between all	
three IOSE523-myrAKT cell lines	180
Figure 5.9: Venn diagram showing common differentially regulated genes between	
IOSE523-myrAKT1 and HOSE SGK3CA cell lines.	180
Figure 5.10: Venn diagram showing common differentially regulated genes between	
IOSE523-myrAKT2 and HOSE SGK3CA cell lines	181
Figure 5.11: Venn diagram showing common differentially regulated genes between	
IOSE523-myrAKT3 and HOSE SGK3CA cell lines	181
Figure 5.12: BJ-hTERT SGK3 CA gene expression data compared with	
BJ-hTERT pMIG gene expression data	183
Figure 5.13: BJ-hTERT myrAKT1 gene expression data compared with	
BJ-hTERT pMIC gene expression data	186
Figure 5.14: BJ-hTERT myrAKT2 gene expression data compared with	
BJ-hTERT pMIC gene expression data	189
Figure 5.15: BJ-hTERT myrAKT3 gene expression data compared with	
BJ-hTERT pMIC gene expression data	192
Figure 5.16: Venn diagram showing common differentially regulated genes between	
all three BJ-hTERT-myrAKT cell lines	196
Figure 5.17: Venn diagram showing common differentially regulated genes between	
BJ-hTERT SGK3CA and BJ-hTERT myrAKT1 cell lines	196
Figure 5.18: Venn diagram showing common differentially regulated genes between	
BJ-hTERT SGK3CA and BJ-hTERT myrAKT2 cell lines.	197
Figure 5.19: Venn diagram showing common differentially regulated genes between	
BJ-hTERT SGK3CA and BJ-hTERT myrAKT3 cell lines	197
Figure 5.20: Venn diagram showing common differentially regulated genes be-	
tween all genes commonly regulated by all three BJ-hTERT myrAKT isoforms	
(BJ-hTERT-myrAKT) and BJ-hTERT SGK3CA.	198

List of Tables

1. Introduction	1
Table 1.1: SGK isoform regulation and activation summary	16
······	
2 Matariala and Mathada	27
Z. Materials allu Metrious	
Table 2.1: Mutations and primer sequences used for site directed mutagenesis	39
Table 2.2: Inhibitor concentrations	41
Table 2.3: Antibodies used for immunoblotting	45
Table 2.4: Antibodies used for SGK3 localisation	47
Table 2.5: Cytotoxic agents used for cell death assays	48
5. Gene expression studies using microarrays of epithelial and fibroblast of	cell
lines over-expressing SGK3 and AKT	155
Table 5.1: HOSE SGK3 WT compared with HOSE pMIG gene expression data	. 158
Table 5.2: HOSE SGK3 WT Top 10 GeneGO pathways identified using a	
FC.0 p-val <0.05	160
Table 5.3: HOSE SGK3 WT Top 10 GeneGO pathways identified using a	
FC > 2 n-val < 0.05	160
Table 5.4: Top 20 ranked GSEA gene sets enriched in HOSE-SGK3 W/T	161
Table 5.5: HOSE SCK2 CA compared with HOSE nMIC gone expression data	162
Table 5.5. All HOSE SOKS CA Compared with HOSE pixilo gene expression data	. 102
Table 5.6. All HOSE SORS CA Genego palliways identified using a	164
Toble 5.7. All LICE COK2 CA ConeCO nothugue identified using a	. 104
Table 5.7: All HOSE SGK3 CA Genego pathways identified using a	404
FC >2, p-val <0.05	. 164
Table 5.8: Top 20 ranked GSEA gene sets enriched in HOSE-SGK3 CA	. 165
Table 5.9: Differential expression between HOSE SGK3W1 and	407
HOSE SGK3CA cell lines.	. 167
Table 5.10: IOSE523-myrAK I1 compared with IOSE523-pMIC gene expression data	. 169
Table 5.11: IOSE523-myrAKT1 GeneGO pathways identified using FC 0, p-val <0.05	.1/1
Table 5.12: IOSE523-myrAK11 GeneGO pathways identified using FC >2, p-val <0.05	.171
Table 5.13: Top 20 ranked GSEA gene sets enriched in IOSE523-myrAKT1	. 172
Table 5.14: IOSE523-myrAKT2 compared with IOSE523-pMIC gene expression data	. 173
Table 5.15: IOSE523-myrAKT2 GeneGO pathways identified using FC 0, p-val 0.05	. 174
Table 5.16: IOSE523-myrAKT2 GeneGO pathways identified using FC >2, p-val 0.05	. 174
Table 5.17: Top 20 ranked GSEA gene sets enriched in IOSE523-myrAKT2	. 175
Table 5.18: All IOSE523-myrAKT3 compared with IOSE523-pMIC gene expression	
data	. 176
Table 5.19: All IOSE523-myrAKT3 GeneGO pathways identified using	
FC >2, P-val 0.05.	. 177
Table 5.20: Top 20 ranked gene sets enriched in IOSE523-myrAKT3	. 179
Table 5.21: All BJ-hTERT SGK3 CA compared with BJ-hTERT-pMIG gene expression	
data	. 183
Table 5.22: BJ-hTERT SGK3 CA GeneGO pathways identified using FC 0, P-val < 0.05.	184
Table 5.23: All BJ-hTERT SGK3 CA GeneGO pathways identified using	
FC >2, P-val <0.05.	. 184
Table 5.24: BJ-hTERT myrAKT1 compared with BJ-hTERT-pMIC gene expression data	. 186
Table 5.25: BJ-hTERT myrAKT1 GeneGO pathways identified using FC 0, p-val <0.05	. 187
Table 5.26: BJ-hTERT myrAKT1 GeneGO pathways identified using FC >2, p-val <0.05	. 187
Table 5.27: Top 20 ranked GSEA gene sets enriched in BJhTERT-mvrAKT1	. 188
Table 5.28: BJ-hTERT myrAKT2 compared with BJ-hTERT-pMIC gene expression data	189
Table 5.29: BJ-hTERT myrAKT2 GeneGO pathways identified using FC 0. p-val <0.05.	. 190
Table 5.30: BJ-hTERT myrAKT2 GeneGO pathways identified using FC >2. p-val <0.05	.190
Table 5.31: Top 20 ranked GSEA gene sets enriched in BJhTERT-mvrAKT2	. 191
Table 5.32: BJ-hTERT myrAKT3 compared with B.I-hTERT-nMIC gene expression data	. 192
Table 5.33: BJ-hTERT myrAKT3 GeneGO nathways identified using FC.0. n-yal <0.05	194
Table 5.34: BJ-hTERT myrAKT3 GeneGO pathways identified using FC >2 n-val <0.05	194
Table 5.35: Top 20 ranked GSEA gene sets enriched in R.IhTERT-myrAKT3	195
Table 5.36: Differential expression between RI-hTERT SGK3 and RI-hTERT mvrAKT	
cell lines	198

Appendix I: Chapter 5 supplementary data	215
Table S.1: HOSE SGK3 WT remaining GeneGO pathways. Identified using a	
FC 0, p-val <0.05.	215
Table S.2: HOSE SGK3 WT remaining GeneGO pathways. Identified using a	
FC >2, p-val <0.05	216
Table S.3: IOSE523-myrAKT1 remaining GeneGO pathways. Identified using	
FC 0, p-val <0.05.	217
Table S.4: IOSE523-myrAKT1 remaining GeneGO pathways. Identified using	
FC >2, p-val <0.05	218
Table S.5: IOSE523-myrAKT2 remaining GeneGO pathways. Identified using	
FC 0, p-val 0.05.	219
Table S.6: IOSE523-myrAKT2 remaining GeneGO pathways. Identified using	
FC >2, p-val 0.05.	219
Table S.7: BJ-hTERT SGK3 CA remaining GeneGO pathways. Identified using	
FC 0, p-val <0.05.	220
Table S.8: BJ-hTERT myrAKT1 remaining GeneGO pathways. Identified using	
FC 0, p-val <0.05.	222
Table S.9: BJ-hTERT myrAKT1 remaining GeneGO pathways. Identified using	
FC >2, p-val <0.05	223
Table S.10: BJ-hTERT myrAKT2 GeneGO pathways. Identified using	
FC 0, p-val <0.05	225
Table S.11: BJ-hTERT myrAKT2 remaining GeneGO pathways. Identified using	
FC >2, p-val <0.05	225

Abbreviations

Amino acid abbreviations

Ala	A	Alanine
Arg	R	Arginine
Asn	Ν	Asparagine
Asp	D	Aspartic acid (Aspartate)
Cys	С	Cysteine
Gln	Q	Glutamine
Glu	Е	Glutamic acid (Glutamate)
Gly	G	Glycine
His	Н	Histidine
lle	I	Isoleucine
Leu	L	Leucine
Lys	K	Lysine
Met	Μ	Methionine
Phe	F	Phenylalanine
Pro	Р	Proline
Ser	S	Serine
Thr	Т	Threonine
Trp	W	Tryptophan
Tyr	Y	Tyrosine
Val	V	Valine
Asx	В	Aspartic acid or Asparagine
Glx	Z	Glutamine or Glutamic acid
Xaa	Х	Any amino acid

Other abbreviations

knockout
heterozygous
affinity
ohms
microfarad
micrograms
microlitres
micromolar
eukaryotic initiating factor 4E (eiF4E)-binding protein 1
5' externally transcribed spacer region
5' oligopyrimidine tract
Cyclic AMP-dependent protein kinase, cyclic GMP-dependent
protein kinase and protein kinase C family
atrophin-1 interacting protein 4
v-akt murine thymoma viral oncogene homolog
AKT inhibitor
lpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
adenomatous polyposis coli
apolipoprotein D
androgen receptor
sodium-dependent neutral amino acid transporter type 2
activating transcription factor 6
ataxia telangiectasia mutated

ATP	adenosine triphosphate
ATR	ataxia telangiectasia and Rad3 related
BAD	Bcl-2 associated death promoter
BBC3	bcl-2-binding component 3
Bcl-2	B-cell leukemia/lymphoma 2
BH3	Bcl-2 homology domain 3
BIM	bcl-2-like protein 11
BMK_1	hig MAP kingso
BMP7	bone mornhogenetic protein
B-Raf	v-raf murine sarcoma viral oncogene homolog B1
BSA	hovine serum albumin
C3	complement component 3
CA	constitutively active
CaCl	calcium chloride
	calmodulin-dependent protein kinase kinase
cAMP	cycline adenosine mononhosphate
CCND1	cyclin D1
CD36	cluster of differentiation 36
CDC42	cell division cycle 42 (GTP binding protein 25kDa)
CDK	cyclin dependent kinases
	complementary DNA
CETR	the cystic fibrosis transmembrane conductance regulator Cl
or m	channel
Chk1	checknoint kinase 1
CHIP	C-terminus of Hsc (heat shock cognate protein) 70-interacting
	protein
CIP	cvclin dependent kinase (CDK)-inhibitor
CISK	cytokine independent survival kinase
CIC-Ka	renal and inner ear CI ⁻ channel
	ubiquitous Cl ⁻ channel
CLDN1	caludin-1
CO	carbon dioxide
COL14A1	collagen type XIV alpha 1
CPM	counts per minute
CRAC	Orai1 the pore-forming unit of Ca ²⁺ -release-activated- Ca ² channel
CREB	camp response element binding protein
c-Rel	reticuloendotheliosis viral oncogene homolog
CST	cell signaling technology
C-terminal	carboxyl-terminal
CXCL12	chemokine (C-X-C motif) 12
CXCR4	chemokine (C-X-C motif) receptor 4
dATP	deoxvadenosine triphosphate
DAPI	4'.6-diamidino-2-phenylindole
DDIT4	DNA-damage-inducible transcript 4
DEPC	diethyl pyrocarbonate
DISC	death-inducing signalling complex
DMEM	Dulbecco's modified eagle medium
DMSO	dimethyl sulphoxide
DN	dominant negative
DNA	deoxy ribonucleic acid
dNTPs	deoxyribonucleotide triphosphates
DSP	desmoplakin
DTT	dithiothreitol
EAAT1/2/3/4/5	excitatory amino-acid transporters
ECM	extracellular matrix

EDTA	ethylenediaminetetraacetic acid
EEA1	early endosomal antigen 1
EGF	epidermal growth factor
EGFR	epidermal growth factor receptor
elF4E	eukaryotic initiating factor 4E
eiF4G	eukaryotic initiation factor 4G
EMT	epithelial-mesenchymal transition
ENac	epithelial sodium channel
ENPP2	ectonucleotide pyrophosphatase/phosphodiesterase family member
	2/Autotaxin
ER	endoplasmic reticulum
ERK	extracellular signal-related kinase
ES	embryonic stem cells
ETS	externally transcribed spacer
FACS	fluorescence-activated cell sorting
FAK	focal adhesion kinase
Fasl	Fas Ligand
FAST	forkhead activin signal transducer
FBS	foetal bovine serum
Fbw7	of F-box/WD repeat containing protein 7
FC	fold change
FDR	false discovery rate
FGF	fibroblast growth factor
fl	femtolitres
FUL	flightless_l
FOXO3a	Forkbead transcription factor
FSH	follicle stimulating hormone
FYR	famesoids
	$E_{ab1}/VOTB/2K632.12/Vac1/EEA1$
	C protein B subunit like protein
CED	green fluorescent protein
	glucocorticoid_induced leucine zinner protein_1
G IA5	connevin 40
	ducose transporter
GLUT	granulocyte/macronhage colony stimulating factor
	G protein coupled recentors
GPUK	d protein coupled receptors
GR	glucoconticola receptor
GRE	giucoconicolu response element
GSEA	gene set ennomment analysis
СТС	giycogen synthase kindse p
GIC	
	Hustington's disease
	Hummigton's disease
	hisione deaceiyiase
	1 (2 bydrowyothyl) 1 piperazipaethoneoulfonia acid
	4-(2-hydroxyethyr)- i-piperazineethanesunonic acid
	human epidermai growth factor receptor 2
	hanetic growth factor
	hepatic growth lactor
	hypoxia inuucible factor bydronhohio motif
	hydrophobic molin hyman mammany anithalial calla
	numan manmary epimenal cells
	v-na-ras narvey rai sarcoma virar oncogene nomolog
пги	numan papilioma virus

Hr	hour
HRP	horseradish peroxidase
HSF	heat shock factor
Hsp90	heat shock protein 90
hVps34	human vacuolar sorting protein 34
IFI6	interferon alpha-inducible protein 6
IFN	interferon
IGF	insulin-like growth factor
IGFR	insulin growth factor receptor
ΙΚΚβ	I kappa B kinase beta
IL-1	interleukin 1
IL-2	interleukin 2
IL-3	interleukin 3
IL-6	interleukin 6
ILK	integrin-linked kinase
IOSE523	immortalised ovarian surface epithelial 523
IRES	internal ribosome entry site
ISGF3	interferon-stimulated gamma factor 3
ITS	internally transcribed spacer
JNK	c-Jun N-terminal kinase
JUP	plakoglobin
K⁺	potassium
KCNQ1/KCNE	cardiac and epithelial K ⁺ channels
KCNQ4	inner ear K⁺ channels
KD	kinase dead
KO	knockout
kV	kilovolts
KV1.3, KV1.5	voltage-gated K ⁺ channels
	and Kv4.3
kDa	kilodalton
KIP	kinase inhibitor proteins
LAMC1	laminin 1
LB	
LIPC	nepatic triacyigiycerol lipase
	endotnellal lipase
	liver kinase B1
	lysophosphalidic acid
	Leupaxin simian virus 40 largo T antigon
	long terminal repeat
M	Molar (with respect to solution concentrations)
MAPK	mitogen activated protein kinase
MAPK3	mitogen-activated protein kinase 3
MBD2	methy-CnG binding domain protein 2
Mdm2	murine double minute 2
MEEs	mouse embryonic fibroblasts
MEK1/2	mitogen-activated protein kinase kinase 1/2
MEKK3	mitogen-activated protein kinase kinase kinase 3
Min	minute
MKK3	mitogen-activated protein kinase kinase 3
ml	millilitres
MLLT11	myeloid/lymphoid or mixed-lineage leukemia (trithorax homoloa
	Drosophila) translocated to 11
mLST8	mammalian lethal with sec thirteen

mm	millimetre
MMP	matrix metalloproteinase
MQ	millique
mRNA	messenger RNA
mSin1	mammalian stress activated protein kinase-interacting protein
MSCV	murine stem cell virus
MSiaDB	Molecular signatures database
MTM1	myotubularin 1
mTOR	mammalian target of rapamycin
mTORC1	mammalian target of rapamycin complex 1
mTORC2	mammalian target of rapamycin complex 7
MTT	thiazolyl blue tetrazolium bromide
Myr	myristolated
Nat	sodium
NaAa	sodium acotato
Naci	sodium oblorido
	Not disarbouide
	Na -uicaiboxylale collaiispoilei
	alsoalum nyarogen phosphale
	Na' dependent PI cotransporter
ΝΕκΒ	nuclear factor KB
NHE3	sodium-nydrogen antiporter 3
NHERF2	Na'/H' exchanger regulating factor 2
NLS	nuclear localisation signal
	nanomolar
NP-40	
NI Ni tamainal	
N-terminal	amino-terminal
P	phosphorylated
PAS	phospho-AKT substrate
PBS	phosphate buffered saline
	polymerase chain reaction
PDGF	platelet derived growth factor
PDGFR	platelet derived growth factor receptor
PDK1	
pg	picograms
PH	Pieckstrin nomology
PI	propialum ioalae
PI3-K	phosphatidylinositol 3-kinase
PIF	PDK1 interacting tragment
PIKK	phosphoinositide 3-kinase-related kinase
PIP2	phosphatidylinositol-3,4-biphosphate
PIP3	phosphatidylinositol-3,4,5-triphosphate
PIPES	piperazinethanesulfonic acid
PKA	protein kinase A
PKB	protein kinase B
PKC	protein kinase C
PKG	protein kinase G
PLA2	phospholipase A2
PLAU	plasminogen activator urokinase
PMAIP1	phorbol-12-myristate-13-acetate-induced protein 1
PMCC	peter maccallum cancer centre
pMIG	MSCV-IRES-GFP
pMIC	MSCV-IRES-Cherry
PMSF	phenylmethylsulfonyl fluoride
Pol I	RNA polymerase I

Pol II	RNA polymerase II
Pol III	RNA polymerase III
PP2A	protein phosphatase 2A
ΡΡΑ R γ	peroxysome proliferator activator receptor gamma
PRAS40	proline rich AKT substrate of 40 kDa
PRICKLE2	prickle homolog 2 (Drosophila)
PTEN	phosphatase and tensin homolog deleted on chromosome 10
PtdIns	inositol-containing linids
Ptding(3)P	nhoshor containing lipids
Dtdlpa(4)D	Dtdlna 4 nhoonhota
F(u) = (4 F)	Ptolins-4-phosphale
$P(u) = (2, 4, 5)P_2$	Pluins-4,5-bisphosphale
Productions $(3,4,5)P_3$	phosphatidylinositol 3,4,5-trisphosphate
p-vai	P-value
PVDF	polyvinylidene fluoride
PX	phox homology
Rac1	Ras-related C3 botulinum toxin substrate 1
Rb	retinoblastoma protein
rDNA	ribosomal DNA
RFP	cherry fluorescent protein
Rheb	Ras homolog enriched in brain
RLB	rac lysis buffer
RNA	ribonucleic acid
RNAi	interfering RNA
r-proteins	ribosomal proteins
ROMK1	renal outer medullary K ⁺ channel
RPA	ribonuclease protection assay
rnS6	ribosomal protein S6
rRNΔ	ribosomal RNA
DTK	recentor tyrosine kinases
	retinoido
	So killase i
SAPK	stress-activated protein kinase
SCN5A	cardiac voltage gated Na" channel
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate – polyacrylamide gel
SEM	standard error of the mean
SERPINE2	serpin peptidase inhibitor clade E (nexin plasminogen activator
inhibitor type 1)	member 2
SGK	serum and glucocorticoid inducible kinase
SGLT1	Na ⁺ -glucose cotransporter
SH2	src homology domain
SILAC	stable isotope labelling by amino acids in cell culture
siRNA	small interfering RNA
SLC14A1	solute carrier family 14 (urea transporter) member 1 (Kidd blood
	group)
SLC6A8	sodium- and chloride-dependent creatine transporter 1
SLC6A15	solute carrier family 6 (neutral amino acid transporter) member 15
SMAD	mothers against decapentaplegic homolog
SMIT1	hypertonicity-activated myo-inositol transporter
SN1	system N1
SOC	super optimal broth with catabolite repression
SOX4	SRY (sex determining region Y)-box 4
SPARC	osteonectin
SRERP	sterol regulatory element hinding protein
OT OT	simian virus 40 small T antigen
01	Simian virus 40 Smail I alluyen

STAT SV40	signal transducers and activators of transcription simian virus 40
TBS	tris buffered saline
TE	tris-EDTA
TGF-β	transforming growth factor beta
TRPV5	renal epithelial Ca ²⁺ channel
TSC1	tuberous sclerosis complex 1
TSC2	tuberous sclerosis complex 2
UBF	upstream binding factor/upstream binding transcription factor RNA
	polymerase I
UTR	untranslated region
UVB	ultraviolet B
VDR	vitamin D receptor
VEGF	vacular endothelial growth factor
WNK	with no lysine K
WSB	western solubilisation buffer