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Abstract 

Abstract 
 
Interest in the effect of fish farming practices on the marine environment 

has arisen because there is concern that the wastes that fish farms 

produce may be contributing to eutrophication in coastal areas and the 

problem of harmful algal blooms. The focus of this thesis is an 

examination of phytoplankton distribution and abundance in relation to 

tuna fish farms in Boston Bay and near-shore Spencer Gulf. This is the 

first study in South Australia to define the short-term biomass fluctuations 

of chlorophyll and in vivo fluorescence, identify phytoplankton species 

distribution and abundance, including two potentially toxic dinoflagellates, 

and describe patch distribution relative to tuna fish farms in Boston Bay 

and the near-shore waters of Spencer Gulf. An ecological interpretation of 

phytoplankton distribution and abundance is determined and shows that 

community composition was different in lower Spencer Gulf compared to 

Boston Bay and upper Spencer Gulf sites. Pico- and nanophytoplankton 

were often the most abundant organisms. Diatoms and gymnoids were 

most common. Season and currents predominantly influenced the 

distribution of phytoplankton in Boston Bay and Spencer Gulf. Individual 

species may be influenced by inputs from the fish farms. 

 

Chlorophyll levels were different between the Spencer Gulf and Boston 

Bay sites and no differences were recorded, using mean levels of 

chlorophyll, between tuna cages and controls. Chlorophyll levels were 

higher east of Boston Island in autumn of 1999. Chlorophyll levels 

appeared to show a slight increase between years. This may have been 
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an anomalous natural variation and future research may investigate this in 

the long term. In addition, Principal Components Analysis (PCA) was used 

to investigate differences between treatments and the functional grouping 

model supported an ecological interpretation of the factors from the PCA. 

A total of 131 taxa of phytoplankton were identified in this study. The 14 

dominant taxa were used in the PCA and of these, 9 were diatoms. 

Phytoplankton abundance was not different between tuna cages and 

controls. However, when examining individual species, Karenia mikimotoi 

was more prevalent at tuna cages, close to shore, east and west of Boston 

Island than at other sites. PCA showed how different species bloomed 

together and were seasonal. Karenia brevis and K. mikimotoi featured 

predominantly in the PCA with K. brevis the dominant organism during 

summer and autumn along with Gyrodinium spp. and smaller gymnoids. K. 

brevis blooms were most likely influenced by water temperatures and 

fixation of nitrogen from a Trichodesmium erythaeum bloom. K. mikimotoi 

bloomed bimodally and may be influenced by ammonia excreted from fish 

from the tuna farms but , on the other hand, may be limited by the high 

salinities of South Australian waters. Currents in the region distribute both 

organisms. 

 

The final aspect of this study assessed finer temporal and spatial 

sampling using directional transects around tuna cages and controls using 

in-vivo fluorescence and size fractionated chlorophyll. The chlorophyll a 

sampling showed little spatial variability within a site in the 1000 m2 that 

the sampling area covers but far greater temporal variability (days). In 

contrast, fluorescence `mapping' expands the window of variability both 
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spatially (within a site) and temporally (along transects and between days). 

This has given a spatial definition, which is unavailable from a single point 

sample, and thereby leaves room for much greater interpretation. Small 

patches are evident from the fluorescence mapping where this is 

impossible to detect from the single point samples. Therefore, the 

fluorescence `mapping' and patch definition show that the trend is 

widespread (spatially) and quite persistent (temporally) around the fish 

farm area.  

 

Size fractionated chlorophyll samples provided further insight into 

phytoplankton dynamics in this study where diatoms were favored over 

dinoflagellates and were responsible for the larger fraction of chlorophyll 

found at the tuna cage one (TC1) site. We suggest that seasonal 

fluctuations, high nutrient input from the farm activities and turbulence may 

be responsible for the different chlorophyll/fluorescent structures found at 

TC1. Future research may look at the long-term regional impact on 

phytoplankton size structure, biomass and communities from fish farm 

activities.  

 

As a good part of this journey involved counting phytoplankton using the 

Utërmohl technique, a short paper, published in the Journal of Plankton 

Research, on reducing the settling time of this method, is presented in 

Appendix 2. 
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