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Summary

Sequential mammograms contain important information, such as changes of the

breast or developments of the masses, for diagnosis of disease. Comparison of se-

quential mammograms plays an important part for radiologists in identifying ma-

lignant masses. However, currently computer-aided detection (CAD) programs

can not use such information efficiently. The difficulties lie in the registration of

sequential mammograms.

Most of current methods register sequential mammograms based on control

points and image transformations. For these methods to work, extraction and cor-

respondence of the control points is essential. This thesis presents a new approach

in registering mammograms. The proposed method registers mammograms by

associating mass-like objects in sequential mammograms directly. The mass-like

objects appear in the images of normal breasts as well as images of breast with

cancer. When the mass-like objects in sequential mammograms are accurately

associated, measurements of changes in mass-like objects over time become pos-

sible. This is an important way to distinguish mass-like objects associated with

cancer from cysts or other benign objects.

The proposed method is based on graph matching. It uses the internal struc-

ture of the breast represented by the spatial relation between the mass-like ob-

jects to establish a correspondence between the sequential mammograms. In this

method, the mammogram is firstly segmented into separate components using an

adaptive pyramid (AP) segmentation algorithm. A series of filters, based on the

features of components, is then applied to the components to remove the unde-

sired ones. The remaining components, the mass-like objects, are represented by

a complete graph. The spatial relations between the remaining mass-like objects

are expressed by fuzzy spatial relation representation and are associated to the

edges of the graph as weights. Association of the mass-like objects of two sequen-

tial mammograms is realized by finding a common subgraph of the corresponding

two graphs using the backtrack algorithm.

The segmentation methods developed in the course of this work were tested

on a separate problem in computer-aided detection of breast cancer, namely the

automatic extraction of the pectoral muscle.

The graph matching method was tested independently of the segmentation

method on artificially distorted mammograms and the full process, including the

x



segmentation and the graph matching, was evaluated on 95 temporal mammo-

gram pairs. The present implementation indicates only a small improvement in

cancer detection rates but also presents opportunities for a substantial develop-

ment of the basic method in the future.
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