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Abstract

An object oriented language, such as Java, needs dynamic binding for method calls since

the type of the target object will only be known at runtime. Desktop PCs have sufficient

processor and memory resources that dynamic binding is not a significant bottleneck to

performance. However, smaller devices such as mobile phones have much more limited

resources, requiring efficient implementations. C++ makes use of dispatch tables (also

called virtual function tables or just vtables) as a way of speeding up this dispatch. A

given method call has an offset (or token value) associated with it, which is used as an

index into the target object’s vtable. The value stored in the vtable will be a pointer to the

C++ function to be executed (similar to a function pointer in C). However, the multiple-

inheritance support in C++ complicates this, often requiring a class to have a separate vtable

for each super-class it extends.

Java Card (a reduced implementation of Java for smart cards) also uses virtual function

tables. While Java does not have full multiple-inheritance as C++ does, it has the notion of

an interface. Method calls are divided into two categories in Java, those where the declared

type of the object is a class, and those where it is an interface. This allows for a form of

multiple-inheritance without having multiple implementations for the same method. There

are two different bytecode instructions for these, invokevirtual and invokeinterface respec-

tively. In Java Card, only the invokevirtual instruction can be directly dispatched via the

vtable. This leads to simpler vtables, but leaves the invokeinterface instruction to use a

slower and more complicated dispatch mechanism.

This thesis presents a way to allocate tokens to methods such that both invokevirtual

and invokeinterface can be dispatched via the same vtable and avoids the need of multiple

tables as in C++. For tokenisation to succeed, all runtime dependencies must be present,
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i.e. the class files for all libraries the application uses. These are needed to determine

when methods do and do not need the same token values. An initial tokenisation scheme

is presented, where the complete system must be tokenised as a single operation, that is,

the application, any libraries it uses and the API. Next, this is extended to allow a new,

previously unknown, set of class files to be added to an existing tokenisation (incremental

tokenisation). For example, the first tokenisation could include the API and base libraries

on a device, followed by a third-party library being added in the second pass and then an

application can be added in the third pass. During each tokenisation the previous tokeni-

sation does not need to be modified. This allows a device to be released with a tokenised

Java system installed and then new applications can be developed, tokenised and released

for that platform. The new application will operate as expected even though the tokeniser

had no knowledge of the application at the time it tokenised the initial libraries.

The KVM (Kilobyte Virtual Machine) from Sun Microsystems is a reference virtual

machine designed for mobile phone and other portable devices. It is shown that the vtable

based dispatch can be between 3 to 45 times faster than the equivalent method dispatch

in the KVM. The presence of vtables also removes the need for the symbolic information

normally used for linking. The tokenisation concept was also carried further to apply to

fields and the getfield/putfield and getstatic/putstatic instructions used to reference them.

This allows for similar speedup and simplification when resolving these references. Fur-

ther, removing the redundant linking information resulted in class files that were between

42 to 72 percent of their original size.

In mobile devices both processing power and memory can be in short supply. These

resources are also limited by the amount of battery power available to run them, as faster

processors and larger memories can require more power. This thesis therefore makes a

significant contribution towards making Java code both faster to execute and smaller, two

vital attributes for a language running on small, portable devices.
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Chapter 1

Background

1.1 Introduction

This first chapter will begin with a general background on object oriented programming,

then relating this to the Java language. This includes the various Java platforms, from

desktop/server machines, down to Java Cards (a form of smart cards). Chapter 2 presents

the current state of class file compression and optimisations for Java.

Chapters 3 & 4 present the tokenisation that has been performed on Java class files.

Chapter 5 then discusses the compression that has been obtained and Chapter 6 brings this

all together and explains how these modified class files are executed by a modified virtual

machine. Finally Chapter 7 presents results to show that the tokenised classes are indeed

faster to execute and smaller.

1.2 Object Oriented Programming

The term “Object Oriented Programming”, or OOP, traces back to the Smalltalk language,

created in the early 70’s. Although Alan Kay has credited his previous work in mathemat-

ics, biology, the Burroughs 220 and 5000 systems, a system known as “Sketchpad” and

finally the Simula language as all having lead up to the design for Smalltalk [52].

Wikipedia currently lists approximately 80 programming languages that have object

oriented features [97]. This list includes common languages such as: Java, C++, C# and

Objective-C, as well as many scripting languages such as: Perl 5, PHP, Python and Ruby.
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More recently, Deborah Armstrong [10] made a review of the current literature to determine

what should constitute the fundamental characteristics of OOP, coming up with 8 concepts:

inheritance, object, class, encapsulation, method, message passing, polymorphism and ab-

straction.

1.2.1 Classes, Objects and Methods

A class defines what data will be stored (fields) and what operations (methods) an object

will have. For example, an object to represent a Window within a GUI might have: a title

for the window, a width and a height; all of which constitutes its data. Operations might

include: “getTitle” to determine the current title of the window and “setTitle”, to change

the title of the window; along with corresponding operations for the width and height. The

class will also define how to actually perform these operations (i.e. provide the code to be

executed). In OO programming, method calls can be considered to be “message passing”.

One object will pass a message to another object, and based on the type of that message, a

method will be selected and executed.

Creating an object of a class (known as “instantiation”), will involve allocating memory

to store the object, and initialising the values of any fields in the object. In Java a special

method called a “constructor” is run, to perform any initialisation required.

Another common feature found in OO languages is the ability to define “abstract”

classes. An abstract class can specify the fields and methods of the class, but may omit

some or all of the implementation for the methods. As such, objects cannot be made of an

abstract class. The usefulness of this feature is not apparent without knowledge of inheri-

tance, which is discussed in the next section.

1.2.2 Inheritance

Inheritance is one of the powerful features of OOP, allowing a sub-class (also called a child-

class) to inherit its behaviour from a super-class (or parent-class). Common functionality

is provided in the super-class, with sub-classes adding more specific functionality. An

example of this would be GUI components, where the top of the hierarchy would consist of
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Figure 1.1: Example of Inheritance in a GUI library

a GUIComponent class. Methods needed by all types of GUI components, such as draw()

to draw the component on the screen or setLocation() to position the element on the screen,

would be declared in this class. Sub-classes of GUIComponent could then be made, such

as GUIButton for a clickable button, or GUITextBox to allow text entry. Methods already

present in the super-class are automatically available to objects of a sub-class (the methods

are said to be “inherited” by the sub-class). Figure 1.1 shows the GUIComponent class with

its two sub-classes, GUIButton and GUITextBox. All GUIComponents contain a method

to draw them to the screen. The sub-classes “over-ride” the draw method, providing their

own versions (the usefulness of this is presented in Section 1.2.3), while also providing

behaviour specific to the type of class (in the case of GUIButton, a method to indicate the

button was clicked on, for GUITextBox, a method to enter some text in the box).

Based on a languages support for inheritance, it can be described as supporting either

single-inheritance or multiple-inheritance. In single inheritance, a class can have only one

super-class, which limits flexibility. For example, if a library provided a class called Tex-

tHandler that could manage text (providing searching, find/replace and other features), this

would be useful for implementing the GUITextBox from the previous example in Figure

1.1. In single inheritance it is not possible to extend both the GUIComponent and the

TextHandler classes. Two possible solutions would be to either, make the GUIComponent

class a sub-class of TextHandler or vice versa. These two scenarios are shown in Figure

1.2, however both of these have flaws. Firstly if GUIComponent extends TextHandler, then

every GUIComponent would have the ability to handle text, which would not make sense

for something like an image. In the other case, TextHandler could extend GUIComponent,

but this means that all TextHandler objects are GUIComponents, however the class might
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Figure 1.2: Attempting to use the TextHandler class

Figure 1.3: Example of multiple-inheritance

be used for in memory processing of text only, without the need for a GUI display. These

solutions also assume that the GUIComponent and TextHandler classes can be modified.

If these classes are both supplied by a library (either from the same library or two different

ones), then it is quite possible the programmer will not be able to modify them.

Multiple-inheritance allows for a class to have more then one super-class, allowing the

above scenario to be easily described. One common language to use multiple-inheritance

is C++, but it comes with some drawbacks. For example, Figure 1.3 shows an example

where the class GUITextBox has two super-classes, describing the desired situation, with-

out all GUIComponents needing to be TextHandlers or vice versa. If GUIComponent and

TextHandler were to have a method with the same name however, method calls can appear

ambiguous. It depends on the language how these situations are resolved (in the case of

C++, the declared type of an object is used to decide which of the methods to call).

Inheritance (whether single or multiple) can also be combined with abstract classes

to form very powerful ways of representing data. An abstract class is one that can not

be instantiated, but can contain common code and functionality for sub-classes to use.
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For example, the GUIComponent class used above represents the generic component and

probably should not be instantiated directly, rather sub-classes are used to provide specific

functions (such as the GUIButton or GUITextBox classes). To prevent a programmer from

creating GUIComponent objects, the class can be declared abstract, preventing it from

being instantiated. In this way the programmer can have generalised classes, that can hold

methods applicable to many different concrete classes, but protect against instantiating

classes that do not have complete functionality.

An extension to the concept of abstract classes is that of abstract methods, which can

only be found within an abstract class. An abstract method is one which specifies the name

and parameters of the method and what it will return, but does not provide the implemen-

tation of the method. It is then up to any concrete class that extends the abstract class to

provide an implementation for the abstract method. This allows the abstract class to guar-

antee that all sub-classes of it will have a given operation, but leave implementing it to the

concrete classes.

Java makes use of a modified form of multiple-inheritance, one that involves the use of

interfaces. An interface is like an abstract class, however it cannot define fields, and can

only define abstract methods (the declarations in Java use the keyword interface, which

implies all methods are abstract, therefore they do not include the abstract keyword). A

class can therefore extend only one class (providing single-inheritance), but can extend

(“implement” in Java terms) many interfaces. In Figure 1.3 there were two methods, both

with implementations. However the lack of any implementation in an interface means this

situation cannot arise in Java.

1.2.3 Polymorphism

Inheritance allows a variable declared as one type (e.g. GUIComponent) to contain any of

that type’s sub-types (e.g. GUIButton or GUITextBox). Since sub-classes can over-ride

methods and change their behaviour, the same code can behave differently, depending on

the type of object used. Applying this to the previous example in Figure 1.1, consider a

class that needs to manage a GUI and draw the relevant parts to the screen. There are
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Algorithm 1 Code using Polymorphism
GUIComponent[] components;

components[0] = new GUIButton();

components[1] = new GUITextBox();

...

foreach (GUIComponent gc in components) {

gc.draw();

}

classes for managing specific types of content on the screen (so far, buttons for users to

click on and text boxes for them to enter text into). This could be extended to displaying

images, text, tabs, dialog boxes and many others. To ensure the GUI manager does not

need to keep track of each of these different types separately, it can treat every object as

its super-type, GUIComponent. From the perspective of the GUI manager, it will have a

collection of GUIComponent objects and it will call the draw(...) method of each object to

get the screen drawn.

Algorithm 1 shows some code using polymorphism. When the draw() method is called

on each object, the appropriate method in each class will be called. The first call would

result in the draw() method in the GUIButton class being called, and the second, the draw()

method in the GUITextBox class would be executed. The important thing here is that in

the loop the code does not need to differentiate, the draw() method is called the same way

every time, with the runtime type of the object being used to determine which method to

actually call.

When polymorphism is used, the target of a given method call cannot always be de-

termined at compile-time. In the example in Algorithm 1, the same method call (i.e.

“gc.draw();”), will result in different methods being executed, depending on the type of

object stored in gc at the time. This means the target method can only be selected at run-

time, once the type of gc is known.
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Figure 1.4: Example Class hierarchy

1.3 Polymorphic Call Dispatch

From the discussion in the previous section, polymorphic calls can only be dispatched at

runtime, once the type of the receiving object is known. Since this dispatch mechanism is

going to be used for every method call, it must be fast. Driesen [31] presents two extremes

for dispatching methods, the first is Dispatch Table Search (DTS) and the second is Selector

Table Indexing (STI). Four classes are used as a running example throughout this section:

A, B, C and D, that form the class hierarchy shown in Figure 1.4. The lowercase letters

denote the methods that are defined in that class.

In DTS, every class stores a list of the methods in that class, as well as a reference to

the super-class. Object’s contain a reference to the class which defines the object’s type.

To resolve a method call, the class reference in the object is used to get to the class and

its list of methods. A search of that table is performed to find a match for the method

being called. If no match is found, the search continues in the super-class. This continues

recursively until either a match is found or there are no more super-classes. While this

implements the semantics of an OO language, the runtime speed is unfeasibly slow, due to

the large amount of searching required. The space requirements, however, are minimal.

On the other extreme is STI. Methods in the system are all assigned a token based on

their selector (or method signature in Java), i.e. methods with the same signature will get

the same token. A two dimensional lookup table is then created, with each class in the

system as one dimension and every method selector as the second dimension. Each entry

in the lookup table is a pointer to the target method (or null if the class does not implement

that method). Figure 1.5 shows the resultant table for the example classes, where class A

has the method a, class B inherits method a and also defines method b and so on. The

coloured squares represent a pointer to a method implementation, while empty squares
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Figure 1.5: Selector Table Index

are for when that class does not implement that method. Each class has been assigned a

different colour purely for clarity in later diagrams. Resolving a method dispatch is then

just a matter of using the object type and method selector to lookup the table. While STI is

fast, the size of the table and the memory requirements for it will be large.

While neither DTS nor STI are very practical, they highlight the extreme cases. The

ideal solution would be one that combines the best aspects of the two approaches, i.e. the

small memory overhead of DTS and the efficient dispatch of STI.

1.3.1 Selector Colouring

Dixon et al. [28] discusses STI and proposes a method to reduce the size of the tables

through the use of a technique called Selector Colouring (in object oriented languages a

“selector” is the thing used to select a method, i.e. in Java, the method name and types of

arguments). This was later applied to the dynamically typed Smalltalk language by Andre

et al. [6]. Selector Colouring is similar to STI, however tokens are allowed to be aliased

such that the same token value could represent multiple selectors, analogous to combining

columns in Figure 1.5. By reducing the number of columns, the overall size, and therefore

memory requirements, for the table are reduced. Two selectors can be aliased if they are

never both used within any one class. For example, the selector b and the selector c are

never used together in the same class, which can be seen visually in Figure 1.5 by the fact

that the b column and c column could be overlaid without any overlapping entries, since

the entries in the b column match up with “null” entries in the c column and vice versa. A

“conflict graph” can be used to model this relationship, where every selector in the system

becomes a node of the graph, while edges represent selectors that can not be aliased (i.e.

two selectors that both appear within the one class, somewhere in the system). Figure

1.6 shows the resultant graph for the example classes. The task is then one of colouring
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Figure 1.6: Conflict Graph for Example Classes

Figure 1.7: Selector Colouring

the graph such that no two neighbouring nodes have the same colour (where a colour is

analogous to a token value). Selector colouring leads on from previous work on register

allocation using a similar graph colouring approach [18]. While graph colouring is an NP-

Complete problem, it has been shown that approximations of the optimal solution can be

found in a reasonable time [59].

Figure 1.7 shows the result of selector colouring for the example classes. The aliasing

allows the size of the table to be reduced to only 4 columns, this being the largest number

of methods a single class will accept. The heading across the top has been removed, since a

particular column can be aliased to now represent several different methods. For example,

the second column represents the “b” method in class B and D, but the “c” method in class

C.

Table 1.1 reproduces the results presented by Dixon et al. [28]. Selector Colouring

allows for a given token to be aliased to represent multiple different selectors. A selector,

however, will always have the one token value representing it. The work presented in this

thesis allows a selector to have more than one token value, thus giving greater freedom

and token reuse than Selector Colouring alone. This work and results are presented in later

chapters.

Selector Name Space 200 100 200 100
Number of Classes 50 50 100 100

Colours Used 27 23 33 26
Size of Table 1350 1150 3300 2600

Table 1.1: Results from Dixon et al.[28]
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Figure 1.8: Single Inheritance and Virtual Method Tables in C++

1.3.2 Virtual Function Tables

In the STI scheme above, a single two-dimensional table is produced. A virtual function

table (also referred to as virtual method tables or vtables) is similar to STI, except that

instead of a global table, each class contains a one-dimensional table for the methods that

can be called on objects of that class. The virtual function tables will be built at compile

time by the compiler. The compiler will assign an offset in the virtual method table to each

selector, which is the equivalent of assigning a token. The process of allocating tokens is

different to STI however, by being performed first at super-classes, then moving down to

sub-classes.

Figure 1.8 shows an example of single inheritance and the virtual method tables that

would be built. The class Base has just the one method, which would be assigned token 0.

The virtual method table shows the function that would be called for (using C++ syntax)

“Base::m1()”, is the function m1() that was defined in the class Base. Class A then overrides

the m1() method, as well as defining a second method. In the case of virtual method tables,

overriding is as simple as changing the entry in the table to point to the new version of the

function (as can be seen in Figure 1.8, with token 0 now referring to “A::m1()”). Class B

shows a different case, where a new virtual function is added to the table by copying the

Base class’s table then adding a new entry. The other important feature to observe here is

that the two sub-classes (A & B) can use the same token, but for different functions. So

far this scheme provides a constant speed lookup, similar to the STI approach above, but

without a need for null entries and therefore less space overhead. This is true only when

dealing with single inheritance.

C++ allows for a class to have more than one super-class, known as multiple-inheritance,
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Figure 1.9: Multiple Inheritance in C++

as shown in Figure 1.9. This can create ambiguities at runtime as to which implementation

of the m1() function should be called on an object of class A. To resolve this, two virtual

method tables will be created, one for treating the A object like a Base1 object, and the

other for treating it like a Base2 object. The decision on which table to use is then depen-

dent on the declared type of the pointer that is used in the call. The first named super-class

in the code is considered the “default” super-class, so a pointer of type A, would result in

the m1() method in Base1 being called, the same as if the pointer is a Base1 type. However

if the pointer is declared as pointing to a Base2 type, then the method in that class would

be called [38].

1.3.3 Row Displacement

Approaches such as Selector Colouring look to use STI for dispatch, but reduce the size of

the selector table. In the case of Selector Colouring, this is through the aliasing of selectors

such that they can use the same column in the selector table. Instead, Driesen [29, 30, 31]

takes the approach of retaining the sparse STI tables, but storing them differently. Each

row is taken and placed into a one-dimensional array, so that the used entries from one row

fit into the unused ones in other rows.

Figure 1.10a shows the STI table produced for the example classes. Each row must be

aligned so that none of its entries will overlap an entry from another class. Figure 1.10b

shows such an alignment, where class D is the first class and the third entry in class D’s

row was a null, therefore class A’s row has been fitted so that its one entry matches with the

hole in class D’s row. Next is class C, placed so that its first entry overlaps the final entry

from class D’s row. Finally, class B’s two entries have been placed into the gap within class
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(a) Original STI
Table

(b) Aligning rows to allow overlap-
ping

(c) Result of Row Dis-
placement

Figure 1.10: Row Displacement

C’s row. These entries are then placed within a single “master array”, as shown in Figure

1.10c.

The offset of a given class’s row in the “master array” (i.e. the index of where the class’s

letter appears in Figure 1.10c) would need to be stored as part of the class information.

Here the colours show which entries belong to which class, since the various rows have

been overlaid. An additional check must be added to the dispatch process however, since

a given class and selector reference which should result in a null entry could now point to

an entry used by another class. For example, a call for method “b” on an object of class A

should produce an error, however after row displacement, this would result in a reference

to the method “d”. Driesen presents several approaches to determine if a resolved method

is actually valid or not.

1.4 Java

The Java language is found in many places, from the back-end of large, distributed appli-

cations (Java 2 Enterprise Edition), to tiny smart card devices (Java Card), although the

term “Java” normally refers to the Java 2 Standard Edition (J2SE) designed for desktop

computers. This is the direct descendant of a project that started at Sun back in 1991 [17],

focused on the next generation of set-top boxes. Ultimately, the technology was never used

for set-top boxes but the Sun engineers found a use for the programming language (then

called Oak) on the Internet. Oak was a platform independent language, allowing small ap-
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plications, named Applets, to be embedded into web pages. This language became what is

known today as Java.

1.4.1 General Background

The original project at Sun Microsystems had been focused on the “next wave” of devices,

and they had expected set-top boxes would be the place where new media and delivery

systems would develop. However the Internet was gaining popularity for delivering text,

graphics and video and Java would fit into this trend to provide “intelligence” to web pages.

Java applets could be sent along with the page’s content and be executed by the client,

providing animation, sound and interactivity not previously possible. By 1994 a prototype

browser had been created that could execute these Java applets and this proved a huge

success. In 1995 Java was officially announced to the world. Netscape Navigator was the

primary browser at the time [12] and an agreement was made to include Java support.

Java applets were the beginning for what would become the Java 2 Standard Edition of

Java, also known as J2SE. Aimed at desktop machines, with libraries providing support for

GUIs, networking, file access and threading. Building on top of J2SE was the Java 2 Enter-

prise Edition, or J2EE, which added a framework and libraries for distributed applications,

including: remote procedure calls, databases, managing data and its persistence and gener-

ating web pages. In this regard J2EE is a super-set of J2SE, by the addition of libraries and

frameworks for developing distributed and web-based applications, but without removing

or changing the J2SE virtual machine or API.

Heading in the other direction, Java 2 Micro Edition, or J2ME, is aimed at devices

incapable of running the full J2SE. J2ME is further divided into two “configurations”; the

Connected Device Configuration (CDC) and the Connected Limited Device Configuration

(CLDC). The first is aimed at devices that typically run on mains power and have a stable

network connection with potentially ample bandwidth, such as a set-top box or other fixed

appliances. CLDC is aimed at smaller devices that may spend a large amount of their

time operating on batteries and have only an intermittent network connection with possibly

limited bandwidth, for example, mobile phones or PDAs. Both of these configurations have
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their own API, however both can be seen as primarily a sub-set of the J2SE API. Due to

the more limited nature of J2ME devices when compared to J2SE, the virtual machine is

also slightly modified. The changes consist of: a simpler method of class file verification,

a restriction on custom class loaders and simpler garbage collection.

Moving from J2ME to even smaller devices, Sun has developed the Java Card speci-

fication which deals with applications destined to run on smart card hardware. Java Card

defines the contexts that applications can run in, how applications are linked, and the file

formats used. Java Card differs from the other Java versions in that it heavily modifies

all levels of the Java system. The virtual machine has a reduced instruction set, modified

linking and verification mechanisms. Only an extremely limited version of the Java API

remains, with a few additions to handle the unique context of Java Card applications.

The rest of this section will focus on the details of the J2SE version of Java. J2SE is

defined in two documents, the Java Language Specification and the Java Virtual Machine

Specification. This gives the background for the later detailed discussion of J2ME and Java

Card.

1.4.1.1 Write Once, Run Everywhere

One of the main features of Java is its “write once, run everywhere” nature. Java programs

are written and compiled to an intermediate form called “bytecode”; an instruction set

defined by Sun. A Java virtual machine is an interpreter for these bytecodes, and also

provides services for garbage collection and threads. Most of the tools and libraries for

Java are all implemented in Java, with the exception of a small amount of native code.

Sun provides standard libraries, known as the API, that will be present for all Java ap-

plications, irrespective of the underlying platform. The API provides a standard interface

for accessing services such as I/O or graphical displays. However, for these libraries to

be implemented, they have to, at some point, utilise libraries available on the host oper-

ating system, which is performed via a mechanism that allows a Java application to call

a method/function written in non-Java, or “native”, code. The consistent Java interface is

exposed for application programmers to use, while internally these native calls are used

to implement the correct behaviour. This means that a Java application, once written and
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compiled, can be shipped to any platform that has a compliant VM, and will execute and

behave in the same manner1.

The ability to call native code, as well as being used to implement the Java API, is

available for the application programmer to utilise. An application programmer would

write and compile this native code in another language, typically C. The Java code for

the application will include the method header, along with the special identifier NATIVE,

to indicate that the implementation for the method is provided via native code. Finally

the virtual machine is instructed (typically via command-line arguments) how to find the

required native libraries, which are then dynamically loaded and linked during program

execution.

1.4.1.2 Java Language Specification

The Java Language Specification (JLS) [61] is the primary document that describes the

Java language, including the grammar and related productions that define the syntax for

Java source files. The syntax includes, how to define classes, interfaces, fields, constructors

and methods as well as the various modifiers that can be applied to them (like PUBLIC or

PRIVATE). Situations that must be caught by the compiler, generating a compile-time error,

are also identified.

Also covered in the language specification is how inheritance and over-riding work.

Simply put, it describes the precise syntax a Java source file must have, and the meaning of

everything in that file.

1.4.1.3 Java Virtual Machine Specification

The Java Virtual Machine Specification (JVMS) [57] provides the details of the file formats

used, and how a VM must function to correctly implement Java. While the JLS defines the

meaning of statements, the JVMS describes how a virtual machine must behave to ensure

that the correct semantics are maintained at runtime.
1There are some cases where platform dependent behaviour is exposed to the application programmer.

One common example of this is in file paths, where a program must take note of what system it is running on,
for example, generating “C:\path\to\a\file.txt” on Windows or “/path/to/a/file.txt” on unix/linux machines.
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Some of the important details defined in the JVMS include the format for a binary class

file, the compiled form of Java (Chapter 4 of the JVMS), and the meaning of and how

to interpret each possible instruction (Chapter 6 of the JVMS). Other details include the

general nature of the virtual machine, how to load and link class files, how to compile class

files and how to handle multithreading and locking.

When combined, the the JVMS and JLS define the basis of how the Java language

is written, compiled and executed. While this includes the general nature and semantics

of how a VM must behave, no specific implementation details are discussed, leaving the

virtual machine implementer free to include various optimisations, provided the virtual

machine will load standard class files, and the observable result is the same. Such optimi-

sations can include Just-In-Time compilation, “fast bytecodes” or hardware implementa-

tion/support. Section 2.3 covers Java optimisations in detail.

1.4.2 Class File Format

The format for binary class files is given in Chapter 4 of the Java Virtual Machine Specifi-

cation [57] and provides the format and meaning of the structures that will be found inside

a binary class file, as well as details on how to verify a class file as being correct.

One of the primary goals of a class file is that it be as self-contained as possible. To this

end, all references to items outside of the current class are done via symbolic information

stored in the class’s constant pool. This symbolic information is given in the form of strings,

either for the name of the item, or in some cases, a specially formatted string to define the

number and type of arguments.

To avoid issues of endianness, a class file is considered to be a stream of 8-bit bytes. All

larger quantities are built from reading two or four consecutive 8-bit bytes. In these cases

the bytes are always stored in big-endian order2, no matter what the underlying architecture

supports. These values are always considered to be unsigned. The terms u1, u2 and u4 are

used to refer to these unsigned one, two and four byte values respectively.

A class file can be broken up into several main sections: Header, Constant Pool, Flags

2Big-endian means the first byte in a multi-byte value is the most significant byte.
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& inheritance/interface information, Fields, Methods and Additional Attributes. Each of

these sections are explained in more detail below, using an example class to highlight the

contents of each section. The class is a simple “Hello World” program, consisting of:

public class HelloWorld {

private String line = "Hello World";

public static void main (String args[]) {

new HelloWorld().print();

}

public HelloWorld() {}

public void print() { System.out.println(line); }

}

This class has been compiled with the Sun compiler “javac”, version 1.6.0_13, to a class

file that is 563 bytes long. Then the class file has been turned into hexadecimal output using

the Linux command, “od -t x1”, to produce output such as:

0000000 ca fe ba be 00 00 00 32 00 25 07 00 15 0a 00 01

0000020 00 16 0a 00 01 00 17 0a 00 09 00 16 08 00 18 09

0000040 ...

The first value is the address in the file (presented in octal), then remaining columns are

each a byte of data, displayed in hexadecimal.

1.4.2.1 Header

The class file specification requires that every class file start with the same 4-byte value,

when written in hexadecimal, this value is 0xCAFEBABE and is referred to as the “magic”

value. It provides a simple sanity check that a given file or piece of data does appear to be a

class file, before attempting to parse it further. Following the magic value is a 2-byte minor

and a 2-byte major version number. These two numbers denote which version of the class

file specification that this file conforms to. For a given Java version 1.k, where k ≥ 2, the
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class file version number is (44+ k).03. These virtual machines will all support loading of

classes with a version number between 45.0 and (44+ k).0 inclusive. For example, a Java

1.4 virtual machine will be able to load classes with a version number between 45.0 and

48.0 inclusive [91]. The header is found in the first line of the hexadecimal output:

0000000 ca fe ba be 00 00 00 32 00 25 07 00 15 0a 00 01

0000020 ...

This corresponds to:

u4 magic = 0xCAFEBABE

u2 minor_version = 0

u2 major_version = 50

1.4.2.2 Constant Pool

The Constant Pool is stored as an array of variable length entries. Each entry has a 1-byte

“tag” value to indicate the type of the entry. The possible tag values are given in Table

1.2. These entries fall into two general types: constant values from the source code and

symbolic linking information. The Type column shows which category each type of entry

falls into. The exception is the CONSTANT_Utf8 entry which stores string data encoded

using UTF8. These can be referenced from a CONSTANT_String entry to provide a string

that had been declared in the source code. However they are also referenced from the

CONSTANT_Class and CONSTANT_NameAndType entries to provide symbolic links to

classes/fields/methods.

All references to constant pool entries are done using an index. The next two bytes in

the class file correspond to the size of the constant pool:

0000000 ca fe ba be 00 00 00 32 00 25 07 00 15 0a 00 01

The hexadecimal value of 25 is equivalent to 37 in decimal. Constant pool indexes always

start at 1, and proceed up to the size - 1, giving 36 possible indexes in this case. All entries

3Recent Java version have been advertised as Java 5 and Java 6. These correspond to Java 1.5 and Java
1.6 respectively.
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Table 1.2: Constant Pool Entry Types

Tag Description Type
1 CONSTANT_Utf8 Both
3 CONSTANT_Integer Constant Value
4 CONSTANT_Float Constant Value
5 CONSTANT_Long Constant Value
6 CONSTANT_Double Constant Value
7 CONSTANT_Class Linking
8 CONSTANT_String Constant Value
9 CONSTANT_Fieldref Linking

10 CONSTANT_Methodref Linking
11 CONSTANT_InterfaceMethodref Linking
12 CONSTANT_NameAndType Linking

take up one index, except for the CONSTANT_Double and CONSTANT_Long entries,

which use 2 indexes. For example, a CONSTANT_Double entry at index 5, would mean

that index 6 is unused with the next entry being referenced with index 7. In the example

class, there are 36 valid indexes and in this case there are 36 entries in the constant pool

since this class does not contain any CONSTANT_Double or CONSTANT_Long entries.

Following the two bytes for the size of the constant pool, are the entries in the constant

pool, consisting of the next 360 bytes (which is about 63.9% of the file size). Each entry

begins with a 1-byte “tag”, indicating the type of the entry and therefore how to read the

rest of the entry. For example, the first entry consists of the bytes:

0000000 ca fe ba be 00 00 00 32 00 25 07 00 15 0a 00 01

The first byte, “07”, indicates this is a CONSTANT_Class entry, which means the next 2-

bytes, “00 15”, are an index into the constant pool to a CONSTANT_Utf8 entry giving the

class’s name. All constant pool entries, with the exception of CONSTANT_Utf8 entries,

have a fixed size. Since a CONSTANT_Utf8 entry holds the contents of a string, the second

and third bytes in the entry give the length of the entry, as in this case form the example

class:

0000060 1e 01 00 04 6c 69 6e 65 01 00 12 4c 6a 61 76 61

The tag value “01” indicates a CONSTANT_Utf8 entry and “00 04” indicates there are

four bytes in this string. The final 4-bytes in the entry, “6c 69 6e 65” corresponds to the
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character codes for the string “line”, the name of the field used in the source code above.

Section 1.4.3 gives more details on the types of entries and the places they are used, while

Section 1.4.4 gives more detail on how symbolic links are resolved.

All up, the constant pool for this example class contains: 4 CONSTANT_Class,

4 CONSTANT_Method, 2 CONSTANT_Field, 5 CONSTANT_NameAndType,

1 CONSTANT_String and 20 CONSTANT_Utf8 entries. CONSTANT_Utf8 entries are

both the most prolific and have the longest length, which is why the constant pool accounts

for over half the class’s size.

1.4.2.3 Flags & Inheritance/Interface Information

Each class file contains a 2-byte value, after the constant pool, which is interpreted as a

set of 16 single bit flags. These flags are used to denote certain attributes of the class, for

example, if it is declared PUBLIC, FINAL or ABSTRACT or if it is an interface instead of a

class4. In the example file, this can be found at:

0000560 29 56 00 21 00 01 00 09 00 00 00 01 00 02 00 0a

In this case, the hexadecimal value 21 corresponds to the ACC_SUPER and ACC_PUBLIC

flags. ACC_PUBLIC indicates this is a public class, while ACC_SUPER is a historical flag

that will always be set in new class files5.

Following this are references to CONSTANT_Class entries in the constant pool which

denote the name of both this class and the super-class. Next is a variable length list of

references to CONSTANT_Class entries, denoting the interfaces this class implements. This

information is used to determine the inheritance information and can be seen here:.

0000560 29 56 00 21 00 01 00 09 00 00 00 01 00 02 00 0a

The “00 01” means index 1 in the constant pool represents this class, while “00 09” mean

index 9 contains a reference to the super-class. The final two values, “00 00”, indicates the

number of interfaces this class implements (none in this case).

4The compiled form of Java is called a “class file”, which can represent either a class or interface.
5The invokespecial instruction used to have a different name and behaviour. This flag was used to select

if the instruction should use the new or old behaviour. More detail is provided in Section 1.4.5.4.
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Table 1.3: Flag Values used in Fields

Flag Name Value
ACC_PUBLIC 0x0001
ACC_PRIVATE 0x0002

ACC_PROTECTED 0x0004
ACC_STATIC 0x0008
ACC_FINAL 0x0010

ACC_VOLATILE 0x0040
ACC_TRANSIENT 0x0080

1.4.2.4 Fields

This section details all the fields that exist within this class. For each field, this information

consists of: 16 1-bit flags, Field Name, Field Type and Additional attributes. In the example

class, this information can be found at:

0000560 29 56 00 21 00 01 00 09 00 00 00 01 00 02 00 0a

0000600 00 0b 00 00 00 03 00 09 00 0c 00 0d 00 01 00 0e

The initial “00 01” indicates there is only 1 field declared in this class (which corresponds

to the “line” field declared in the source code above).

The flags consist of two 8-bit bytes. Seven of these flags are currently used, with the

rest reserved for future use. Of these seven, 3 are used to represent the visibility of the field

(PUBLIC, PROTECTED, or PRIVATE) and only one of these may be set. The remaining four

indicate if the field is declared STATIC, FINAL, VOLATILE or TRANSIENT. Table 1.3 shows

the list of these flags and the corresponding value that represents them (each value consists

of only a single bit turned on). For the example class, this can be found in the bytes “00

02”, which corresponds to just the ACC_PRIVATE flag, meaning the field was declared

private.

The field name and type entries consist of unsigned 16-bit values, which form an index

into the constant pool to a CONSTANT_Utf8 entry. The name will be the string by which

the field is known and therefore the value that a class must use in a symbolic reference to

this field. Typically this will be the same name as was used for the field in the source code,

although the specification does not require this. The type string is a specially formatted
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string which denotes the data type that this field is declared to store, which could either

be one of the primitive types, or in the case of an object type, the name of the class. The

name and type strings, along with the name of the class, form the symbolic information

required to reference a given field. In the example, this consists of the values “00 0a” and

“00 0b”, which corresponds to the indexes of the utf8 values “line” (which is the same entry

examined earlier in Section 1.4.2.2) and “Ljava/lang/String;” in the constant pool.

The final data is the “00 00” values, indicating the number of attributes associated

with this field (in this case, none). Attributes are an extensible mechanism for adding

new information to class files, although any attributes not in Sun’s Java Virtual Machine

Specification can not modify the semantics of the class file. The only attribute specified

for fields is the ConstantValue attribute, used to provide an initialisation value for the field.

Section 1.4.2.6 gives more detail on the attributes feature of class files.

1.4.2.5 Methods

Next in the class file is the methods section, which stores details for every method declared

in the class file. As with previous entries, the first two bytes denote how many methods

there are (three in this case). The example file contains (the two byte counter and the first

entry are highlighted):

0000600 00 0b 00 00 00 03 00 09 00 0c 00 0d 00 01 00 0e

0000620 00 00 00 27 00 02 00 01 00 00 00 0b bb 00 01 59

0000640 b7 00 02 b6 00 03 b1 00 00 00 01 00 0f 00 00 00

0000660 0a 00 02 00 00 00 06 00 0a 00 07 00 01 00 10 00

The entry for each method has a similar structure to the fields above, containing 16 1-bit

flags, a name, descriptor and list of attributes. The bit flags are used to denote the same sort

of information as for fields, as well as flags for the keywords NATIVE and SYNCHRONIZED.

The flags represent methods with a native implementation or those requiring synchronisa-

tion for multithreading.

The name and descriptor fields both point to CONSTANT_Utf8 entries in the constant

pool. As for fields, the name is typically the name of the method used in the source code
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(although the specification does not require this). The descriptor is a specially formatted

string that represents the number and type of arguments and the return type of the method.

These two values provide the “signature” for the method, and when combined with the

class name, can be used by a class to symbolically reference this method. This information

is contained in the first six bytes of the method’s entry (“00 09 00 0c 00 0d” in the example

above, consisting of two bytes for each of: the flags, the method name and the method

descriptor). Therefore the name consists of the value “00 0c”, which is the index for the

string “main” in the constant pool, while the descriptor has the value “00 0d”, which is the

index for the string “([Ljava/lang/String;)V”.

The next two bytes (“00 01”) denote the number of attributes associated with the

method. The attributes section allows for arbitrary data to be associated with the method.

There are two attributes defined in the JVMS that a virtual machine must understand, the

Code and Exceptions attributes. In the example the Code attribute is present, which supplies

the bytecode and information needed to execute the method (such as maximum number of

local variables, maximum size of the stack and exception handlers). The Exceptions at-

tribute (which is not present in the example) indicates the list of checked exceptions that

this method is declared to throw. Attributes are covered in more detail in Section 1.4.2.6.

1.4.2.6 Additional Attributes

The last part of a class file consists of variable length attributes, which provide an extensi-

ble mechanism for extra (and previously unknown) data to be added to the class file. The

general format of these attribute entries is the same as the attributes associated with field

and method entries earlier in the class file. The specification requires that this extra infor-

mation cannot modify the semantics of a class file, however the information could be used,

for example, to include additional debugging information or symbols. To differentiate the

attributes, each attribute can be given a name, which can be any string and will be stored in

the constant pool in a CONSTANT_Utf8 entry. Each attribute also has a length associated

with it, allowing a class loader (or other program that must read binary class files) to skip

past unknown attributes and continue reading the file.

The specification defines nine attributes, whose names are considered to be reserved
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Table 1.4: Required attributes defined in the Java Virtual Machine Specification

Attribute Name Usage
ConstantValue Denotes a value that a field must have when it is initialised.

Code Provides the bytecode for a method and the relevant details
needed to execute the method.

Exceptions Lists the checked exceptions a method is declared as
being able to throw.

InnerClasses Used for the implementation of nested classes and interfaces.

Table 1.5: Additional attributes defined in the Java Virtual Machine Specification

Attribute Name Usage
Synthetic Denotes a class, field or method that does not actually

appear in the source code.
LineNumberTable Debugging information to map bytecode instructions

back to the line in the source code they represent.
LocalVariableTable Provides the names for the local variables inside

methods to assist in debugging.
SourceFile The source file this file was compiled from.

Used for debugging.
Deprecated Indicates a class, field or method that has been marked

as deprecated. Used to issue warnings at compile
time for code that is using deprecated items.

and can only be used as specified. Any other attributes found in a class file must be silently

ignored by a virtual machine that does not know about the attribute. Of the nine specified,

the four shown in Table 1.4 are required for the correct operation of a virtual machine.

The ConstantValue attribute will only be present in the fields section of a class file, while

the Code and Exceptions attributes will only be found in the methods section, finally the

InnerClasses attribute will only be found in the additional attributes section at the end of

a class file. The remaining five attribute types shown in Table 1.5 provide debugging and

additional information which may be used by compilers or debuggers, but are not needed

by the virtual machine for correct execution of the code.

1.4.3 Usage of Constant Pool Entries

The constant pool stores a large amount of information relevant to a class file, ranging

from constant values that are used by the class, to the linking symbols needed for runtime
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Table 1.6: Places where CONSTANT_Utf8 entries are referenced

Location Description
all attributes The name for the attribute,

which determines its type.
InnerClasses attribute The name of the inner class.
SourceFile attribute The name of the source file.

LocalVariableTable attribute The name and field type for
each local variable.

method_info The name and descriptor for
a method in this class.

field_info The name and type for a field in this class.
CONSTANT_String To provide the literal string data

for use in the program.
CONSTANT_NameAndType The name and type for a symbolic reference,

to either a field or method.
CONSTANT_Class A symbolic reference to a class.

linking. These entries can be referenced from many different places in a class file, or even

from other constant pool entries. This section will go through each type of entry, detailing

what data it stores, and from where it can be referenced. Every constant pool entry will

begin with a single unsigned byte which denotes the type of the entry. The size of the entry

and meaning of the bytes is dependent on this type value.

1.4.3.1 CONSTANT_Utf8

Each of these entries stores a string, encoded using a slightly modified UTF-8 format.

These strings are used for labelling parts of the class file, linking symbols and string

literal data used in the program. Table 1.6 shows the places that can reference a CON-

STANT_Utf8 entry.

Section 1.4.2.6 explained the use of “attributes” by the class file format to store arbitrary

data. The type of a given attribute is defined by a string in a CONSTANT_Utf8 entry in the

constant pool. Each attribute has an index to the relevant string, allowing custom attributes

to use any name, so long as it is not one of the names used for the attributes defined in the

JVMS. A virtual machine unfamiliar with these custom attributes will just ignore them.

The InnerClasses attribute is used to implement inner and nested classes. In this case



26

Table 1.7: Places where CONSTANT_{Integer|Float|String} entries are referenced

Location Description
ConstantValue attribute The initial value of a field.

Code attribute To push a constant value onto the stack.

the string defines the original name of an inner or nested class.

SourceFile and LocalVariableTable attributes are used for debugging. The SourceFile

attribute stores the file name of the source code that produced this file. This allows a

debugger to relate the file being executed back to the source code that produced it. The

LocalVariableTable is needed since local variables, unlike fields, do not have their names

or types stored in a class file. Instead the compiler turns local variable references into a

VM instruction involving a numbered slot in the frame’s local variable table. Therefore

the LocalVariableTable can be used by a debugger to relate these statements back to the

relevant local variable in the source code.

The method_info and field_info sections are where the definitions of methods or fields

in a class are stored. Each definition requires two references to Utf8 entries to provide the

name and descriptor for a method and the name and type for a field.

The CONSTANT_String entries in the constant pool represent a string literal value that

was used in the source code of the program. When the code needs to reference this value,

it does so via a CONSTANT_String entry, which in turn points to a Utf8 entry to provide

the actual string data.

The final place that can reference a Utf8 entry is the CONSTANT_NameAndType or

CONSTANT_Class entry, which are used to specify symbolic references to other fields or

methods. In particular the NameAndType entry specifies the name and type of a field, or

name and descriptor of a method, by providing indexes to the two Utf8 entries for these

strings. The Class entry provides an index to a single string, which is the name of a class.

There are more details on how linking in Java works in Section 1.4.4.
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1.4.3.2 CONSTANT_Integer, CONSTANT_Float, CONSTANT_String

CONSTANT_Integer, CONSTANT_Float and CONSTANT_String entries all hold a con-

stant value that was used in the source code and can be referenced from the two locations

shown in Table 1.7. The first is in a ConstantValue attribute, attached to a field. For exam-

ple, if a field has been declared as:

private int i = 20;

Then the field entry will contain a ConstantValue attribute, which in turn contains a refer-

ence to a CONSTANT_Integer entry holding the value “20”. If no such attribute exists for

a field, the default value for the field’s type will be used.

The other place these entries can be used is inside a Code attribute. In particular, the

ldc and ldc_w instructions give an index to a CONSTANT_Integer, CONSTANT_Float or

CONSTANT_String entry, the value of which is then pushed onto the stack. The only dif-

ference between the instructions is that the ldc instruction uses a single byte as the constant

pool index, while ldc_w uses a two byte index.

1.4.3.3 CONSTANT_Long, CONSTANT_Double

CONSTANT_Long and CONSTANT_Double entries, like the CONSTANT_Integer and

CONSTANT_Float, can be referenced from a ConstantValue attribute in a field or from a

Code attribute. However the ldc and ldc_w instructions are only for 32-bit constant values.

The 64-bit long and double values use the ldc2_w instruction instead.

1.4.3.4 CONSTANT_Class

A CONSTANT_Class entry contains the index of a Utf8 entry, which is the internal name

for a class (Section 1.4.4.1 gives details on the internal format of class names). Table 1.8

contains a list of places that need to reference classes. In each case, a reference to a CON-

STANT_Class entry is given, to indicate the required class. . The

CONSTANT_{Fieldref|Methodref|InterfaceMethodref} entries all need to indicate the class

that the referenced item will be found in, hence they will link to a CONSTANT_Class entry.
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Table 1.8: Places where CONSTANT_Class entries are referenced

Location Description
CONSTANT_Fieldref The class the referenced field is in.

CONSTANT_Methodref The class the referenced method is in.
CONSTANT_InterfaceMethodref The class the referenced method is in.

Code attribute Various instructions that need to
reference classes.

Exceptions attribute To list the exceptions a method can throw.
InnerClasses attribute To list the inner and outer classes.

Figure 1.11: Use of CONSTANT_Class entries in methods

public void method() {

someOperation();

try {

otherOperation();

} catch (Exception e) {

handleException(e);

}

}

Figure 1.12: Example of a try/catch block
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Table 1.9: Places where CONSTANT_Fieldref entries are referenced

Location Description
Code attribute For instructions that load/store data from/to fields.

Figure 1.11 shows the Code and Exceptions attributes which are both found as attributes

of a method, and can both reference CONSTANT_Class entries. The Exceptions attribute

will contain a list of indexes to CONSTANT_Class entries, indicating which checked ex-

ceptions the method could throw (as indicated by the throws keyword in the method dec-

laration. The code attribute contains the bytecode that implements the method and an

exceptions table, for implementing try/catch blocks. Figure 1.12 shows a method with a

try/catch block in it. During execution of the method call “otherOperation()”, if an ex-

ception is thrown, execution will proceed to the catch block, resulting in execution of the

“handleException(e)” line. Each exception handler in the Code Attribute indicates a range

of bytecodes (corresponding to the source code that was covered by a try block), an ex-

ception type (via a reference to a CONSTANT_Class entry) and a target instruction. If that

exception (or a sub-class of it) is thrown while executing any of the instructions in the given

range, the virtual machine will jump to the target instruction (which is the code from the

catch block).

References can also be found from within the bytecode in a Code attribute. The in-

structions anewarray and multianewarray for creating new arrays of objects, or multi-

dimensional arrays of objects both reference a Class entry defining the type of objects

the array will hold. The new instruction will create a new object, and references a Class

entry to indicate the type of the object. Finally the instanceof instruction tests if an object

on the top of the stack is an instance of the referenced class or checkcast to test if an object

can be cast to the referenced type.

1.4.3.5 CONSTANT_Fieldref

This is a symbolic reference to a field, either in this class or in another class. Table 1.9

shows that these entries can be referenced from within the bytecode of a method, as found

in a Code attribute. The getfield, putfield, getstatic and putstatic instructions are used to
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load or store a value for a field in an object, or for a static field in a class. In either case,

this entry is the symbolic reference to which field the data will be loaded from or stored

into. More details on how this type of entry is used to perform linking in Java is given in

Section 1.4.4.

1.4.3.6 CONSTANT_Methodref

CONSTANT_Methodref entries provide a symbolic reference to a method, either in this

or another class. There are three instructions that can reference a Methodref entry: in-

vokestatic, invokevirtual and invokespecial The invokestatic, invokevirtual instructions are

for calling a static or non-static method respectively, while invokespecial provides special

handling of super-classes, for implementing the “super” keyword. More details on how this

type of entry is used to perform linking in Java is given in Section 1.4.4.

1.4.3.7 CONSTANT_InterfaceMethodref

All non-static method calls must be performed on an object, which will have a declared

type (i.e. the type given for the variable in the source code that is holding the object). If

the declared type of an object is an interface type, then the invokeinterface instruction is

used, which contains a reference to a CONSTANT_InterfaceMethodref entry. When the

declared type is a class, then the invokevirtual instruction (with a reference to a CON-

STANT_Methodref entry) is used as described above, even if the method implements a

method in an interface. More details on how this type of entry is used to perform linking in

Java is given in Section 1.4.4.

1.4.3.8 CONSTANT_NameAndType

The Fieldref, Methodref and InterfaceMethodref entries all need to provide the name of the

field or method, and the type or descriptor. Hence these entries are referenced from CON-

STANT_Fieldref, CONSTANT_Methodref and CONSTANT_InterfaceMethodref entries,

as shown in Table 1.10. More details on how this type of entry is used to perform linking

in Java is given in Section 1.4.4.
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Table 1.10: Places where CONSTANT_NameAndType entries are referenced

Location Description
CONSTANT_Fieldref Provides the name and type of the

symbolic field reference.
CONSTANT_Methodref Provides the name and descriptor of the

symbolic method reference.
CONSTANT_InterfaceMethodref Provides the name and descriptor of the

symbolic method reference.

1.4.4 Linking in Java Class Files

Each class of a Java application is compiled into a separate file. To resolve the targets of

method calls or field references Java uses three strings. The first of these is the name of

the class that the target is in. Next is the name used for the field or method in the source

file. Finally a descriptor, which for a method defines the types of arguments and return

type, or for a field just the type of the field. By using strings, a library can be recompiled,

providing no fields or methods are removed, change types or change behaviour, and all

other applications will continue to function without needing to be recompiled themselves.

Therefore a given class must also contain the strings to describe all the fields and methods

that are declared in that class.

References to fields or methods are made via the constant pool, for example, an instruc-

tion to call a method will provide an index into the constant pool to a

CONSTANT_Methodref entry, which in turn has references to other constant pool entries,

ultimately providing the three strings mentioned above (class name, method/field name and

descriptor). Figure 1.13 shows an example of a CONSTANT_Fieldref entry and the other

constant pool entries involved. The CONSTANT_Fieldref entry provides the index of a

CONSTANT_Class and a CONSTANT_NameAndType entry, which in turn provide the in-

dexes of the three strings. A CONSTANT_Methodref or CONSTANT_InterfaceMethodref

have the same form as the CONSTANT_Fieldref in the example. The types of constant

pool entries was introduced in Section 1.4.3.

The following sections describe method and field references in more detail, along with

the role that different constant pool entries play.
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Figure 1.13: Structure of a symbolic field reference

1.4.4.1 Class References

Symbolic references to methods and fields both require a way to indicate the relevant

class, so that a class loader may locate and load that class. The fully qualified name of

the class, that is, not only the class name, but the package name that it belongs to, is

used to provide this reference. For example, the Thread class has the fully qualified name

“java.lang.Thread”. However for historical reasons, the elements in a fully qualified class

name are separated by ’/’ instead of the usual ’.’ when used internally in class files, mean-

ing that while users would refer to the class as “java.lang.Thread”, internally a class file

would refer to it as “java/lang/Thread”.

A CONSTANT_Class entry contains the 1-byte tag entry (to indicate the type of entry),

followed by an unsigned 2-byte value to provide an index to a CONSTANT_Utf8 entry.

The value of that entry is a string that contains the class’s fully qualified name. Mapping

from this string to the actual class file is then the job of a class loader and is implementation

dependent.

1.4.4.2 Field References

There are three strings that are required for a symbolic reference to a field: class name,

field name and field type. The format of these strings is defined in the Java Virtual Machine

Specification [57]. The class name is described in the section above. The field name will

be the string that was used to identify the field in the source code. Finally, the type string

is a specially formatted string that is generated by the compiler to denote the type of value

the field stores. Section 4.3.2 of [57] describes the syntax used to generate the field type

string.
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Table 1.11: Grammar for Encoding Field Types

Non-terminal Production
FieldType BaseType, ObjectType, ArrayType
BaseType B, C, D, F, I, J, S, Z

ObjectType L<classname>;
ArrayType [FieldType

Table 1.12: Interpretation of BaseType

BaseType Character Type Interpretation
B byte signed byte
C char Unicode character
D double double-precision floating-point value
F float single-precision floating-point value
I int integer
J long long integer
S short signed short
Z boolean true or false

Table 1.11 summarises the syntax for field type strings, which can consist of one of

three main types: BaseType, ObjectType or an ArrayType. A BaseType represents one of

the Java primitive types using a single letter. Table 1.12 shows the meaning of each of

these letters. An ObjectType represents an object reference, where the “<classname>” part

of the production is replaced with an internal class name, for example, a field declared as

“Thread t;”, would have the type “Ljava/lang/Thread;” (see Section 1.4.4.1 for a description

of internal class names). An ArrayType represents an array reference and consists of a ’[’,

followed by a FieldType, allowing arrays to contain primitive types, object references or

even other arrays (as in the case of multi-dimensional arrays).

1.4.4.3 Method References

A method reference consists of three strings (class name, method name and descriptor),

which are all stored in the constant pool. Each method defined in the class, as well as for

all methods that are called from that class, will have their respective strings in the constant

pool.

For each reference, the class name indicates the class that contains the method (the
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format of class references was covered in Section 1.4.4.1). The method name will be the

exact name used for that method in the source file. The method descriptor is a specially

formatted string to show the number and type of arguments and the return type of the

method. The syntax for these strings is given in Section 4.3.3 of [57] using the follow

grammar:

MethodDescriptor:

( ParameterDescriptor* ) ReturnDescriptor

Therefore a method descriptor will consist of a left parenthesis, zero or more ParameterDe-

scriptor values, a right parenthesis then a ReturnDescriptor. A ParameterDescriptor will

consist of:

ParameterDescriptor:

FieldType

While a ReturnDescriptor will be:

ReturnDescriptor:

FieldType

V

The ’V’ represents the void type, while the FieldType production is detailed in Section

1.4.4.2, where it was used to encode the type of a field, and can represent either a primitive,

object or array. For example, part of the contents of the java.lang.Object class consists of

(the unimportant parts for this example have been replaced with “<...>”):



35

package java.lang;

class Object {

<...>

String toString() { <...> }

}

To provide a symbolic reference to the toString method above would require the strings:

“java/lang/Object”, “toString” and “()Ljava/lang/String;”; which consist of the class name,

method name and method descriptor respectively. In this example the descriptor consists of

empty parentheses, indicating the method takes no parameters, followed by

“Ljava/lang/String;”, indicating it returns a String object.

1.4.4.4 Resolving Method References

When a symbolic method reference is given, as described in Section 1.4.4.3, the reference

must be resolved at runtime. Java differentiates between a method call that has a declared

type which is an interface and one which is a class. This gives two types of method ref-

erences, an interface method reference when the target method is in an interface type and

a method reference when the method is not. If the declared type is a class, then an inter-

face method reference is never used, even if the method happens to implement an interface

method. The process for resolving the two types of references is very similar.

Chapter 5 of the Java Virtual Machine Specification [57] covers the broad topic of Load-

ing, Linking and Initialising in the context of the virtual machine. The specific sections of

interest to resolving method references are: Section 5.3 covers creation and loading of class

files, Section 5.4.3.1 gives specific steps for resolving an unresolved class reference, Sec-

tions 5.4.3.3 and 5.4.3.4 give the specific steps for resolving a method reference and an

interface method reference respectively.

For both interface method references and method references, the class name given in

the reference is used to locate the class or interface with that name. If a matching class or

interface cannot be found, then an error is thrown. The matching class is loaded, linked

and initialised (if it has not already been). In the case of an interface method reference,
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the resolved class must be an interface, else an error is raised. A recursive search is then

made from this interface, up through any super-interfaces, until a matching method is found

(i.e. one with the same name and descriptor). If no matching method can be found, then a

NoSuchMethodError is thrown.

In the case of a method reference, the resolved class must be a class and not an interface.

Then a similar recursive lookup is performed, this time searching from the class and up

through any super-classes. If this fails, a recursive search is performed from the class up

through any interfaces it implements and in turn their super-interfaces. If this search also

fails to find a matching method, then a NoSuchMethodError will be thrown.

Resolution of method references are done during class linking to ensure that, for ev-

ery method reference, a target method can be found, although due to polymorphism, this

method will not always be the correct method to execute. When an instruction refers to a

method via a method reference, a new lookup is performed then, to find the correct target

method for that call. Which lookup algorithm is used depends on the type of instruction.

Section 1.4.5 details the different instructions for performing method calls and their be-

haviour.

1.4.4.5 Symbolic References

Every Java class file uses symbolic references when referring to another class/method/field.

In the case of virtual method calls, where polymorphism can be involved, the compiler

cannot resolve the final target of a method call. Unlike virtual method calls however, static

method calls can be resolved to a target method at compile time. Consider the classes

shown in Figure 1.14. An application that uses this library might contain a reference such

a method as:

Child.staticMethod();

During compilation the compiler can resolve that this will cause the Parent.staticMethod()

to be called and could produce a class file with a reference directly to the Parent class.

This would function as expected when executed. If the library was modified and a stat-

icMethod() method added to the Child class without recompiling the application, the be-
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public class Parent {

public static int intField = 0;
public static void staticMethod() {}

}
public class Child extends Parent {
}

Figure 1.14: Example of Classes in a Library

haviour will now be inconsistent. The application will still call the compiler resolved

method Parent.staticMethod(), even though the source code would suggest that the

Child.staticMethod() method should be called. This leads to hard to find bugs and binary

inconsistencies.

This same situation also applies for static field references. Static field/method refer-

ences are therefore always compiled with a symbolic reference to the type used in the

source code. A similar situation can also appear for references to a super-class, i.e. when

using the super keyword to call the super-class’s version of an overridden method. Again

the final target could be several classes up in the inheritance, but the symbolic reference

must always be to the direct super-class.

Hence at runtime, any and all symbolic references can require searching through one

or more classes to resolve. Any attempt to resolve them earlier will introduce differing

behaviours when parts of a program are modified. Once the virtual machine has performed

the expensive resolution the first time however, it can cache the resolved target. This avoids

the expensive resolution if the same symbolic reference is used again.

1.4.5 invoke* Instructions

Java bytecode (the compiled form of Java) has 4 different instructions for representing

method calls, depending on the situation. These instructions are named: invokevirtual,

invokestatic, invokeinterface and invokespecial, collectively referred to as the invoke* in-

structions. All these instructions have one operand which provides (via the constant pool)

a method reference for the instruction. A method reference consists of a class name, a

method name and a method descriptor and is detailed in Section 1.4.4.3. The difference
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Figure 1.15: Classes with over-riding

between the 4 instructions is the type of method they are allowed to reference, and how the

call is resolved.

The simplest instruction is the invokestatic instruction that is used for calling static

methods. Since the target method is a static method, there is no object reference needed.

The method found through the method resolution process will be the method to call and

must be a static method, else an error is raised.

The invokevirtual instruction is used to perform virtual method calls. Being non-static,

there must be an object reference on the operand stack and that object’s class type is deter-

mined, which must be the same as, or a sub-class of, the declared type for this method call

(i.e. the declared type of the variable in the source code, which was then stored in the sym-

bolic method reference in the constant pool, as discussed in Section 1.4.4.3). Considering

the classes in Figure 1.15, it could be possible to have the following code:

Animal a = new Mammal();

a.eat();

The symbolic reference for the a.eat() method call will consist of the class name: “Animal”,

method name: “eat” and descriptor: “()V”. During linking, this will resolve to the eat()

method in Animal, however at runtime, the object will be of type Mammal. This is valid,

since Mammal is a sub-class of Animal. However the method resolved during linking is

incorrect since Mammal has over-ridden it. Therefore, the invokevirtual instruction will

cause a search, starting at the object’s type, up through the inheritance structure, looking

for a matching method. The invokevirtual instruction will be used for methods with public,

protected and default levels of visibility. In particular, private methods are invoked using

the invokespecial instruction.
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For method calls where the declared type in the source code is an interface type, the in-

vokeinterface instruction is used. Here the resolved method will be a method in an interface.

The object reference on the stack is checked to find its class type (which must implement

the resolved interface, or an error is raised). Then a recursive search is made from the class

type, up through any super-classes, until a matching method is found. This process is very

similar to invokevirtual, except that the resolved method will be in an interface instead of a

class.

The final instruction, invokespecial, is used to call constructors, private methods and

methods in a super-class. The instruction has the same symbolic method reference (via

constant pool entries) as the other invoke* instructions, which is resolved to method. If

the method is an instance initialisation method (i.e. a constructor) or the class of the re-

solved method is not a super-class of the current class (the class this instruction is in),

then the resolved method is executed, thus dealing with the constructor and private method

cases. When implementing the SUPER keyword for calling non-constructor methods in the

super-class, the resolved method will be in a super-class, and a modified version of the in-

vokevirtual lookup procedure is used. All three of these cases are detailed, in the following

sections.

1.4.5.1 Constructors and invokespecial

During compilation of a constructor, the compiler will add a call to the super-class’s con-

structor at the start if one is not present. For example, a class might look like:

public class Parent extends Object {

public Parent() {

}

}

However the constructor in this class will be compiled as if the code had looked like:

public Parent() {
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super();

}

This means the first instructions in a constructor always involves calling the super-class’s

constructor (except for java.lang.Object, which has no super-class).

During compilation constructors are also given special names. While in the source code

a constructor must always have the classes name, when compiled the method will gain the

name <init>. Since the ’<’ and ’>’ characters are not valid in Java method names, it is

impossible for a non-constructor method to have this name. This allows the virtual machine

at runtime to identify constructors and prevent them from being called with anything other

than an invokespecial instruction.

A typical section of Java bytecode to create an object of the Parent class might look

like:

NEW PARENT; //new object

DUP; //duplicate the object reference

ASTORE_1; //store the object reference

INVOKESPECIAL PARENT.<INIT>(); //call the constructor

While the call here would behave in the same fashion as an invokevirtual instruction, the

same is not so in the Parent’s constructor, which would look like:

ALOAD_0;

INVOKESPECIAL JAVA.LANG.OBJECT.<INIT>();

RETURN;

An invokevirtual instruction in this situation would just resolve the <init>() method in the

Parent class again. When the resolved method is a constructor however, the invokespe-

cial instruction will simply call the resolved constructor, instead of performing any further

lookup. This ensures that the above reference to the Object class will cause that class’s

constructor to be executed.
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1.4.5.2 Private methods and invokespecial

When the symbolic method reference resolves to a method that is not in a super-class of

the current class (i.e. the class that contains the invokespecial instruction being executed),

then the resolved method is the one that will be executed. This causes the call to behave in

a non-virtual manner, which is essential when calling a private method. If a virtual method

call were used, then a sub-class could over-ride a private method and hence intercept calls

to it.

1.4.5.3 The SUPER keyword and invokespecial

The final case for an invokespecial instruction is when the resolved method is in a super-

class of the current class and is not a constructor. This will trigger a lookup procedure

similar to invokevirtual, however the search will start from the super-class of the current

class, instead of the class of the object the method was called on. Consider the classes

shown in Figure 1.16, where the m() method in the Child class will call the version in

the super-class that it overrides (along with performing other tasks). This call would be

compiled into Java bytecode similar to:

ALOAD_0; //load the this reference.

INVOKESPECIAL PARENT.M();

The symbolic reference for the invokespecial instruction will consist of the super-class

(in this case, the class Parent). This will resolve to the m() method in the Parent class

(however it could have been to a method high up the inheritance tree). This will meet

the criteria (resolved method in a super-class and resolved method not a constructor) for a

modified invokevirtual search process. A typical invokevirtual would start from the type of

the object and search from that class up through the super-classes to find the first matching

method. The same is done here, however the search will begin at the super-class of the

current class (i.e. the one that contains this method, the class Child in this case). This

ensures that the method will be in one of the super-classes, as the semantics of the super

keyword require.
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Figure 1.16: Method using the SUPER keyword

1.4.5.4 Historic use of invokespecial

In Java versions prior to 1.0.2, the invokespecial instruction was named invokenonvirtual

and its behaviour was different. Instead of performing a search, it would always execute

the resolved method (i.e. execute it in a non-virtual manner). Using this mechanism to call

methods in a super-class is not reliable if the super-class is modified at a later date. This

is the same as the example above for the invokestatic instruction and the classes shown in

Figure 1.14. If non-static methods were used, and an application extends the Child class

with a call using the super keyword, then an invokenonvirtual instruction would have to

indicate the method in the Parent class. When a new version of the library is released with

a new matching method in Child, the method would not be called as expected.

To provide for backwards compatibility, an extra bit-flag in a class file is provided to

select the behaviour of the invokespecial instruction. The flag appears in the access_flags

component of the class file, just after the constant pool, which contains 16 single bit flags.

Only 5 of these flags are used, the rest are reserved for future use. One of these flags,

named “ACC_SUPER”, controls the behaviour of the invokespecial instruction. Early Java

compilers would always set this flag to 0, and as such cause the invokespecial instruction to

behave the same as the historic invokenonvirtual instruction. Newer compilers will always

set the flag to 1, causing the newer behaviour to be used6. The work presented herein is

targeted at versions of Java newer than 1.0.2 and therefore the old behaviour will not be

6It was observed that the Sun Compiler would not set the ACC_SUPER flag in the case of an interface
(even though Sun’s specification says all compilers should set the flag). Since an interface never contains any
code however, the setting of the ACC_SUPER flag is irrelevant.
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considered and is mentioned here only for completeness.

1.4.6 Usage of Java Instruction Set

The goal of this thesis is to tokenise the invoke* instructions so that their implementation

will be possible in hardware. During the creation of the tokenisation scheme, field instruc-

tions for loading and storing values in fields will also be considered. Kent measures the

instruction usage of several applications in his thesis [53]. A histogram for each test in

Kent is presented to visually show the number of times each instruction was used. These

tests included:

Compress “Modified Lempel-Ziv method (LZW) finds common substrings and replaces

them with a variable size code. This is deterministic, and can be done on the fly”

[53]. Instruction usage shown in Figure 1.17.

DB “Performs multiple database functions on a memory resident database. It reads in a

1 MB file which contains records with names, addresses and 24 phone numbers of

entities and a batch file which contains a stream of operations to perform on the

records in the database” [53]. Instruction usage shown in Figure 1.18.

Mandelbrot “Generates a 320x240 picture of the mandelbrot set with a maximum iter-

ation of 2000 for each pixel in the graph” [53]. Instruction usage shown in Figure

1.19.

Queen “A programming solution for the n-queens problem. It uses a tree-parsing approach

of recursively placing pieces, but trimming away incorrect solutions at the first sign

of failure” [53]. Instruction usage shown in Figure 1.20.

Raytrace “A raytracer that works on a scene depicting a dinosaur” [53]. Instruction usage

shown in Figure 1.21.

Each figure has been divided into several sections, to denote the types of Java instructions,

these consist of:
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Data Manipulation Instructions for loading, storing or converting data, either primitive

types or object references, including loading and storing values between local vari-

able slots and the operand stack and loading and storing values in arrays.

Arithmetic Instructions for arithmetic operations.

Branching / Return Instructions for branching (i.e. if statements, logical comparisons,

goto) and for returning from function calls.

Field / Invoke Instructions for loading/storing values in fields and for invoking methods.

Misc. Remaining instructions, includes creation of objects and arrays, throwing excep-

tions, checking the type of an object and thread synchronisation.

The loading and storing of values and arithmetic operations map very closely to instructions

commonly present in hardware processors and is therefore already efficient to implement.

However, the field and invoke instructions do not map so cleanly onto a hardware imple-

mentation, yet as shown here, those instructions see common use. Implementation of these

instructions via microcode or trapping to software will represent a very large overhead.

This strengthens the justification for focusing on the optimisation of the invoke* instruc-

tions in this thesis, to achieve an efficient and direct execution of these instructions.
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Figure 1.17: Compress Instruction usage in [53]
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Figure 1.18: DB Instruction usage in [53]
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Figure 1.19: Mandelbrot Instruction usage in [53]
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Figure 1.20: Queen Instruction usage in [53]
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Figure 1.21: Raytrace Instruction usage in [53]
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Chapter 2

Previous Work

2.1 Introduction

This chapter presents background and related work that is relevant to the new work that

will be presented in later chapters. Firstly there is some general background on various ap-

proaches to implementing Java virtual machines and general types of optimisations applied

to Java.

Following on from the general discussion, some specific Java implementations are ex-

amined, namely, Java 2 Micro Edition (J2ME), Java Card and Squawk. J2ME is designed

to run on low-power or embedded devices and is used as the target for the tokenisation

work presented later in this thesis. Following J2ME is a description of Java Card and how

method calls are handled in the Java Card environment, in particular, the handling of in-

terface method calls. The approach used in Java Card to performing method linking is

used as a starting point for the tokenisation scheme presented in this thesis. Another vir-

tual machine, Squawk, is also examined and how that virtual machine performs method

calls. These sections provide background and discuss the issues with dispatching interface

method calls in these systems, which is the core problem this thesis addresses.

In addition to the tokenising of class files to improve method calls, this thesis also

presents the resultant compression that is achieved in class files. Therefore, this chapter

also covers previous work on compression of class files for comparison and also to cover

additional techniques that could be used to further improve compression.
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2.2 Java Virtual Machine Implementations

There has been a lot of research on how to optimise Java and therefore how to best imple-

ment a virtual machine. These efforts can be categorised into four broad types [67]:

• Software interpreter - The virtual machine is implemented entirely in software. This

is easy and quick in terms of implementation and debugging, however the software

interpreter adds a large runtime overhead.

• Just-in-Time (JIT) compilation - In addition to, or instead of, a software interpreter,

the Java bytecodes are compiled into native instructions. This removes some of the

interpreter overhead, such as instruction decoding, allowing for faster execution than

a software-only approach. However, the compiler execution time is part of the appli-

cation’s execution time, meaning only minimal compiler optimisations can be used.

As well, the need to load the Java bytecode representation of a method, as well as

a compiled version, leads to larger memory requirements than a software-only ap-

proach.

• Offline compilation/Ahead-of-Time (AOT) compilation - Similar to JIT, but done

offline before the application is executed, meaning the cost of compilation is a one

off cost, instead of being incurred at each application run. However, this can only be

used in limited scenarios and care must be taken if some of the class files change, for

example, if an application is updated. Can also incur a larger storage cost, if both the

bytecode and compiled versions of method must be stored.

• Hardware VM - By implementing most or all of the virtual machine in hardware,

the memory and power requirements can be minimised. This also avoids the over-

heads of the other approaches, providing the fastest solution, but with the highest

development costs.
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2.2.1 Interpreter

An interpreter is the simplest and cheapest way to implement a virtual machine, being

written entirely in software. There are many examples of Java interpreters, such as the

KVM and the J2SE runtime from Sun Microsystems (although in the case of the later, it

also supports JIT, detailed in the next section). Typically, such an interpreter is run on

top of some form of underlying operating system and consists of a loop that will fetch,

decode and execute Java bytecodes. Also implemented in software will be features such as

threading, garbage collection and a call stack, possibly with the use of libraries provided

by the operating system (such as native threading support).

Due to the software nature of the virtual machine, performance is typically low. To

execute a single Java instruction will by definition require at least several native instructions

to fetch, decode and execute a bytecode. Complex bytecodes, such as invoking a new

method, can take hundreds of native instructions to execute.

2.2.2 Just-in-Time Compilation

One of the overheads of an interpreter based virtual machine is the need to fetch and decode

instructions in software, meaning by definition it will take at least several native instructions

to execute a single Java instruction, even for something simple like an add instruction. By

compiling the Java instructions into the processor’s native instruction set, this overhead can

be removed. If the compilation takes place before the application is executed, it is said to

be ahead-of-time (covered in the next section), if instead, it happens at runtime just before

the code is needed, it is said to be Just-in-Time (JIT).

Some compilers can also offer optimisation of the code during the compilation pro-

cess, typically at the expense of longer compilation. However, it is important that the JIT

compilation be as quick as possible since time spent compiling becomes part of the total

execution time of the application. A JIT compiled method will typically be quicker to exe-

cute than interpreting the same method, and this time gain is realised each time the method

is called, while the JIT compilation cost is only realised once, when the method is com-

piled. With enough repeated calls, the gains will eventually out-weigh the costs. However,
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a short-lived application could incur the high cost of compiling a method, but very few

calls to that method, resulting in an overall greater execution time than a pure interpreted

approach. How many times a method needs to be called to reach this “break-even point”

will depend on several factors, the speed of the JIT compiler, the speed-up of the com-

piler vs interpreted method and number of times the method will be used. The efficient

implementation of JIT has therefore been the focus of a large amount of research effort

[3, 16, 23, 50, 49, 51, 56, 54, 69, 88, 89, 95].

There are several different approaches to a JIT capable virtual machine, with [68] de-

scribing three broad categories:

Native-Only The virtual machine will only ever execute native code, therefore all Java

code must be loaded and compiled before it can be executed. A call to a new method

will result in a “pause” as the method is loaded and compiled, although future calls

will happen quickly. For long-lived applications this allows the “investment” of com-

piling the code to give a large benefit over the application’s life. However, a short-

lived application is unlikely to see much benefit before it completes.

Interleaved The virtual machine will attempt to predict which methods will be used and

interleave the compilation with the applications’ execution. This avoids the lengthy

pauses of the first solution, since the method should be compiled by the time the

application calls it, which will make the application seem more responsive to users.

Compared to the first type of JIT, interleaved compilation will disperse the compila-

tion operations to prevent less noticeable pauses in the application, but overall it will

spend as much time compiling as the first solution. A robust method is also needed

to predict which methods will be used and when. One solution is to use a virtual

machine that can execute native code or via an interpreter, allowing methods that are

not compiled to be interpreted, which leads onto the final type of virtual machine.

Selective-JIT The virtual machine will interpret all methods initially, until some critical

threshold is reached. The most commonly used methods will then be compiled,

with future calls using the native versions, allowing the virtual machine to target

its compilation efforts at the methods that should give the biggest improvement.
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The difficulty is in selecting an appropriate algorithm that is both quick to run and

can select the methods that will give the biggest improvement. If implemented cor-

rectly, short-lived applications can avoid compilation overheads by simply being in-

terpreted, while longer running applications will get compiled and therefore benefit

from the improvement of compiled code.

The above deals with choosing when a method should be compiled to native code, however,

the next challenge is to provide a compilation process that is both quick and provides highly

optimised code. While analysis and optimisation of code are common place in regular

compilers, it comes at the price of slower compilation. In the case of JIT, compilation time

is part of the applications’ overall running time, so any optimisations done to the code need

to “pay for themselves” (i.e. the reduction in runtime because of the optimisation has to be

greater than the time spent performing the optimisation).

Java bytecodes are designed for a stack based processor, while most hardware is register

based. Presented in [98] is an approach to translate stack operations to a register form using

“pseudo-registers”, that is, an infinite number of arbitrary registers. Then the use of these

pseudo-registers is analysed and they are assigned to real hardware registers. If not enough

registers are available, code is added to store the contents of some registers to memory and

load them back in again later. This is referred to as “spill code”.

In all cases, JIT is providing a memory/speed trade-off, that is, by using more memory

to store native versions of methods, greater execution speed can be obtained. How appro-

priate this trade-off is depends on the type of system. A desktop PC, with large amount of

memory, can afford to store native code. A mobile device, with limited memory, may not

have sufficient memory to store both the Java and native code.

2.2.3 Ahead-of-Time Compilation

Ahead-Of-Time (also called offline compilation) is similar to JIT, however compilation is

done before execution of the program, with the native code stored to disk (or some form of

permanent memory, such as flash). Since compilation is only done once, it does not affect

the application’s runtime. Instead there is a need for increased storage, since all methods
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must be stored in their native form, even ones that are rarely or never used. Care must also

be taken so that any changes to an application’s classes is reflected in the compiled code.

The advantage, however, is that a given method only needs to be compiled once and

can then be used many times. As well, since compilation is a once-off task, more time can

be spent to highly-optimise the produced code.

2.2.4 Hardware Approaches

Previous implementations have focused on the use of software, however another common

way to improve Java performance, especially in embedded devices, is with hardware sup-

port. Schoeberl [76] classifies Java hardware into either co-processors, which assist a gen-

eral purpose processor, or a dedicated Java processor, which replaces the general purpose

processor entirely. The following section covers co-processor designs, followed by a sec-

tion on dedicated Java processor designs.

2.2.4.1 Co-processor

In a co-processor design, a device will contain a general purpose processor and alongside

that, some form of Java co-processor. The operating system and “native” applications will

run on the general purpose processor, with the Java co-processor bypassed (either pow-

ered off completely or powered on but inactive). When a Java application is executed,

the co-processor will fetch Java bytecodes from memory and produce a stream of instruc-

tions which are fed to the general purpose processor. By maintaining the general purpose

processor, existing operating systems and libraries can be utilised to implement the Java

environment, reducing development overheads while providing a boost in speed.

Some examples of co-processor designs include:

Hard-Int Standing for “Hardware-Interpreter”, since it will fetch bytecodes and translate

them into instructions for a RISC processor, much the way a software interpreter or

JIT compiler does [73, 74]. Short-lived client applications are identified as the target

for this work, since long-lived applications will recoup the initial overhead of JIT

compilation (and any optimisations performed to the code in this step). However, a
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short-lived application will expend a large effort to compile code, only to have the

code used very few times. By performing the JIT step in hardware, there is a smaller

overhead to the translation.

DELFT-Java A processor running a custom instruction set which consists of a super-set of

Java features (with features such as IO added) [42]. While it is intended for the pro-

cessor to support many high-level languages (such as C or C++), the instruction set

has also been tailored to suit the execution of Java bytecodes, making the translation

from Java bytecodes to native instructions simple. The translation itself is performed

in hardware.

Jiffy Consists of an FPGA alongside a general purpose processor [1]. The FPGA is used

to implement a JIT compiler, translating Java bytecodes to the processors native in-

structions. By reducing the time taken to compile the Java bytecodes, the overall

benefit for JIT is increased.

Hardware-Compiled Hariprakash et al. [44] describe a similar device to above, where

a front-end pipeline will compile the bytecode instructions to a register-based in-

struction set, then cache those instructions for a backend processor to execute. They

anticipate that such a design could greatly reduce the overhead of JIT compilation,

from hundreds of cycles to only a few. However the authors also note that such a

hardware compiler would require reasonable amount of hardware resources to make

it feasible. For high-performance scenarios, such as servers, this could be acceptable,

however extra hardware on mobile devices would lead to greater power requirements

and therefore shorter battery life.

JA108 The JA108 is a commercial product from Nazomi Communications [65]. It sits

between the main processor and memory, translating Java instructions into the pro-

cessors native instructions. The JA108 has a bypass mode to allow other instructions

(i.e. those the processor executes natively) to be read from memory without interfer-

ence.
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2.2.4.2 Java Processor

Unlike a co-processor, a Java processor is designed specifically to be the main processor

in a system, and hence executes Java instructions directly as there is no general purpose

processor. A Java system, be it an interpreter or a co-processors, would normally rely on

an underlying operating system to provide some features, such as access to IO or threading

support. Since Java instructions are the only instructions that can be executed, the operating

system and support libraries must all be written in Java themselves.

Examples of Java processors include:

aJ-100 Made by aJile Systems, the aJ-100 is a direct execution processor for Java [4].

Supports direct execution of Java bytecodes, multithreading and support for having

multiple instances of the virtual machine running at once.

IM1101 A Java based processor made by Imsys Technologies [46]. Provides support for

native execution of Java as well as C, C++ or assembler code. Internally uses mi-

crocode to implement the various instruction sets.

JOP Presented in Schoeberl’s thesis [76]. Provides a hardware Java processor aimed at

real-time systems. Instructions are implemented via either direct execution or mi-

crocode, with a few special instructions added to support activities normally pro-

vided by the operating system. All IO control and hardware drivers are implemented

in Java.

Jazelle ARM processors can include a feature known as Jazelle [9]. Previously ARM pro-

cessors had supported two instruction sets, the regular ARM instruction set with 32-

bit instructions and the Thumb instruction set with 16-bit instructions. The Thumb

instruction set was a subset of the ARM instruction set, only including the commonly

used instructions. The reduced instruction width of Thumb instructions results in

smaller code size, ideal for embedded or otherwise constrained devices. The Jazelle

extension allows the processor to enter a new mode where it will fetch and execute

Java bytecodes directly. The implementation consists of a combination of direct ex-

ecution, microcode and finally traps into software for the most complex instructions.
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picoJava Developed by Sun Microsystems, there were two versions, the picoJava-I and

picoJava-II cores. These can execute some bytecodes directly, while the more com-

plex ones are implemented in either microcode or via traps to software to emulate

the instruction.

2.3 Optimisations for Java

There has been a large body of work in both academic and commercial fields aimed at

optimising various aspects of Java, some of which have been discussed in the previous

section on virtual machine implementations. The techniques presented in this section focus

on optimising the execution of Java bytecodes (thorough instruction level parallelism and

instruction folding) and improving garbage collection.

2.3.1 Instruction Level Parallelism

In modern microprocessors, optimisations at the instruction level are important for perfor-

mance. A modern processor needs to begin executing (issue) as many instructions as it can

every clock cycle. For example, the latest Core architecture from Intel allows up to 5 in-

structions to be issued per clock cycle, and up to 4 to be retired [47]. Multiple instructions

can therefore be “in-flight”, that is, part way through execution. Since modern processors

include multiple arithmetic logic units (ALUs) and floating point units (FPUs), multiple in-

structions can be run on each of these units in a given clock cycle. If one instruction stalls,

such as while waiting for a memory read, then the other in-flight instructions can make use

of FPU and ALU resources. Even if some instructions take multiple clock cycles to finish,

as long as the CPU continues to issue more than 1 instruction per cycle, then its average

throughput will be greater than 1 instruction per cycle, even if some instructions take many

cycles to complete.

Java interpreters typically execute one bytecode at a time, so if one bytecode stalls,

the whole interpreter stalls waiting for that bytecode to complete. Scott and Skadron [78]

examine ways to parallelise Java bytecodes, in much the same way as modern processors
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parallelise instructions. For the SPECjvm98 [93] suite they find a large amount of potential

parallelism, up to an average 19.8 bytecodes that can be executed in parallel. This is only

a measure of the potential for parallelism however, an implementation might not be able to

actually take full advantage of it.

Radhakrishnan et al. [72] examine the picoJava-II core from Sun Microsystems [90]

and attempt to optimise it. The picoJava-II core already includes instruction folding (cov-

ered in the next section), however Radhakrishnan et al. improve its performance, allowing

the processor to decode Java bytecodes into the processor’s microcode instructions at a

faster rate. Since the processor is being supplied with instructions at a faster rate, these

instructions are then parallelised to increase the overall throughput. The result is a 10%

to 14% improvement in execution cycles. With some additional work, false dependencies

between instructions can also be removed, allowing even more parallelism, with a reported

additional 10% increase in performance.

Achutharaman et al. [2] take a higher level approach. Instead of looking to parallelise

small sections of instructions, they analyse bytecodes for sequences that leave the operand

stack in the same state at completion as it was in the beginning (i.e. a set of instructions that

will load some values, operate on them, then store the results). This sequence of bytecodes,

termed a “bytecode trace”, can then be executed in parallel with other such traces. The

authors propose a novel processor architecture to support execution of multiple traces on

independent stacks. The result was a speedup of between 9% and 28%.

Ebcioglu et al. [32] also make use of parallelism. However, their proposal is closer to a

JIT solution, where the JIT code can make use of parallelism rather than parallelism at the

Java instruction level.

2.3.2 Instruction Folding

Since Java is designed as a stack machine, all arithmetic instructions operate on values on,

and store their results to, the operand stack. This leads to many common code sequences.

For example, the line: “a = b + c;”, would become: iload_0, iload_1, iadd, istore_2, in

bytecode. These instructions correspond to:
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1. Push local variable 0 onto the operand stack.

2. Push local variable 1 onto the operand stack.

3. Pop two values from the operand stack, add them and push the result back onto the

operand stack.

4. Pop a value from the operand stack and store it into local variable 2.

Sun Microsystems introduced instruction folding in their picoJava-I [66] and picoJava-II

[90] processors. For example, the picoJava-I core could detect the combination of “iload_1,

iadd” above and combine the two instructions into the one cycle, avoiding the extra push

and pop operations shown above. For common operations, such as addition, the number

of cycles needed can be greatly reduced. With good instruction folding, contention for the

stack can also be reduced, allowing greater parallelism of instructions [72].

Another approach is to combine instruction folding with a Java bytecode to native code

converter [36, 33, 37]. During the translation, bytecodes are classified into one of several

types, based on how they use the operand stack. These instructions can then be folded

together before producing instructions for the processor to execute. Yiyu et al. [99] also

present a similar instruction classification system where, after classifying instructions, they

are folded together to produce instructions in their own language called jHISC. These jHISC

instructions are then fed to a processor for execution.

The common theme among all these implementations is the use of a hardware compo-

nent in the processor pipeline to implement the instruction folding. Bytecodes are fetched

into an instruction cache, from where the folding unit will read them and attempt to perform

folding.

2.3.3 Garbage Collection

Objects are created by a program during execution and Java allocates memory for these

on the heap. It is then up to the garbage collector to determine when a program can no

longer reach a given object, and to reclaim that memory. Therefore, the application pro-

grammer can allocate memory as needed (through the creation of objects) and does not
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need to manage the release of that memory, leaving such work to the garbage collector.

Since the garbage collector is a core part of the Java environment, it must operate without

impairing the overall performance and responsiveness of the virtual machine and therefore,

the application. There are many different approaches to garbage collection.

Chen et al. [22] show how the garbage collector can affect the power consumption of

a device. Therefore the correct choice of garbage collector is important for devices that

primarily run on batteries, such as mobile devices.

Stichnoth et al. [86] present an approach that allows garbage collection to occur at any

instruction during execution and built on similar work that had been done by Diwan et al.

[27]. Typically garbage collection will only occur when an object is created and needs to

be allocated from the free space in the heap. If enough space can not be found, the garbage

collector will attempt to free some, meaning the current thread will always be executing

the new instruction. However, in a multi-threaded application, while the triggering thread

will be at a new instruction, other threads could be at any type of instruction. By adding

GC maps, to tell the garbage collector where to find object references, garbage collection

could happen efficiently, regardless of the current state of the threads.

Garbage Collection in general (as it applies to much more than just the Java language)

is a very large area of research in computer science. Ideally garbage collection should be

invisible to the application/user. That is, execution should never have to be stalled for a long

period of time to allow garbage collection to take place. However, this is often very hard to

guarantee. Fuhrmann et al. [41] presents an incremental garbage collector aimed at real-

time embedded Java applications, where strict timing constraints are required. Commonly

a garbage collector will cause the entire system to pause for an unknown length of time

as it frees unused memory. Instead, an incremental garbage collector will run in small

increments of a known maximum length, therefore avoiding the need to stop applications

for an unknown length of time.
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2.4 J2ME

The Java 2 Micro Edition (J2ME) is designed for use on devices where it is not feasible

to run the full Java 2 Standard Edition (J2SE). This includes devices from set-top boxes

or other embedded appliances, down to hand held battery powered devices such as mobile

phones or pagers. To accommodate such a wide variety of devices, J2ME is further divided

into two main “configurations”. These are the Connected Device Configuration (CDC), for

larger more powerful devices, and the Connected Limited Device Configuration (CLDC),

for smaller devices. These configurations provide basic services and interfaces, but not a

working system. Instead there are a series of “profiles” that can be added on top of these

configurations. Each profile is aimed at a given type of device or situation, but there may

be more than one profile implemented on a given device. Therefore the configuration only

provides the common services that that system will require, leaving the specific function-

ality up to the profile.

One example of a profile is the Mobile Information Device Profile (MIDP). This profile

resides on top of CLDC and is intended for use on mobile devices such as mobile phones or

PDAs. The increasingly common Java games that can be found on modern mobile phones

are in fact written using the MIDP and CLDC libraries. In this case, CLDC provides the

basic library, while it is MIDP that provides the higher level graphics and interface abilities

to interact with the user. The focus of this work is on these libraries and the associated

virtual machine. The next section covers CLDC in more detail.

2.4.1 CLDC Specification

The standard J2SE specification is in two parts:

• The Java Language Specification [61] describes the language itself. This includes the

grammar of Java source files, and the semantics of that grammar as well as threads

and binary compatibility.

• The Java Virtual Machine Specification [57] describes the virtual machine itself, the

format that binary class files must take and how to load and execute them. It also
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describes the bytecode instruction set that is used in class files and how the virtual

machine must behave.

CLDC[63] is a subset of the functionality provided by J2SE and is written as a list of

differences to the J2SE specification.

2.4.1.1 Differences to the Java Language Specification

There are only two differences between the Java Language [61] and the CLDC specifica-

tions: the CLDC garbage collector does not call the finalize() method on objects and CLDC

has less Error classes.

Firstly J2ME does not support finalisation of classes. In J2SE the class Object has

a finalize() method that will be called by the garbage collector when the object can no

longer be reached and is about to be removed. By overriding this method a programmer

can create objects that will perform some action just prior to being removed by the garbage

collector, such as releasing resources or locks held by the object. However, the finalize()

method is allowed to pass a reference for the object back to other parts of the program,

making it reachable again and this causes the garbage collector to be more complex. Once

an object has been marked for garbage collection, the finalize() method will be called, then

another check has to be made to ensure the object is still not reachable. J2ME removes this

complexity and no application can expect that finalisation will be available.

The second difference between CLDC and the Java Language Specification is in terms

of the EXCEPTION and ERROR classes that are included in the CLDC API. The difference

between an exception and an error is that an application might be able to recover from

an exception, but not from an error. An exception could be, for example, attempting to

convert the string “abcd” into an integer. If the string was a user input, then the application

can recover by printing a message to ask for new input. An example of an error would be

when the application attempts to use a class, but the virtual machine can not find the class to

load, and the application has no way of recovering. CLDC supports all the exceptions from

J2SE, except asynchronous exceptions, however since the application can not recover from

errors, only a small subset of the error classes are required in the CLDC specification. The
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errors included are: java.lang.NoClassDefFoundError to indicate that a class file could

not be found, java.lang.OutOfMemoryError to indicate the virtual machine has run out

of memory and java.lang.VirtualMachineError to indicate a general error in the virtual

machine. If a J2ME device implements more of the Error checks from J2SE, then it must

either throw the super-class of the J2SE Error class that is in the CLDC, or it must halt in

an implementation specific way.

2.4.1.2 Differences to the Java Virtual Machine Specification

The main difference between the CLDC and the J2SE virtual machine specifications is that

CLDC does not allow for custom class loaders. In J2SE the application programmer may

provide their own implementations of classloaders that are queried by the virtual machine

when a class is needed. While J2SE has a very extensive security mechanism, CLDC does

not. In particular, the class file verifier has been simplified, because of the need for CLDC

to run on smaller, less powerful devices than J2SE, and therefore custom classloaders have

been disallowed so that the system can remain secure. Instead, CLDC allows only one

classloader, the bootstrap loader, which is built into the virtual machine and cannot be

altered or overridden by an application. As well, the implementer of the virtual machine

must ensure that this classloader’s lookup order for classes cannot be altered, so that it will

always load the real versions of the API and systems classes, not malicious copies.

CLDC does not support daemon threads (the virtual machine will terminate if daemon

threads are the only threads running in the system) and thread groups. Since J2ME devices

do not offer a large amount of processing power, an application is not expected to use a large

number of threads and therefore not require thread groups to manage them. Management

of threads is left entirely to the application programmer.

There is also considerable difference in how verification of class files is carried out.

All class files that will execute on a CLDC device are required to contain a StackMap

attribute associated with every method that also has a Code attribute. These attributes are

defined in Appendix 1 of the CLDC Specification [63] and indicate what types should be

on the stack at certain points during the method’s execution. The stack map is generated

off-device, and allows the on-device verifier to be much simpler in terms of space and time
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complexity. The specification requires that class files contain StackMap attributes, however

it is implementation specific as to whether the reduced verification algorithm using the

StackMaps, or the full J2SE verification is performed.

2.4.2 The KVM

Sun provides a reference implementation of a virtual machine for CLDC, the Kilobyte Vir-

tual Machine, or KVM. Its name is derived from the fact that it is designed to run with only

a few tens or hundreds of kilobytes of memory, but to still be a complete implementation

of a CLDC virtual machine [62]. The KVM has been implemented in C, with a view to

porting to many different devices and systems.

One of the features of the KVM is a “ROMizer” tool. Normally devices such as a mobile

phone will require that the CLDC and MIDP libraries always be present, so downloaded

applets can be run. These libraries can therefore be placed in ROM, since they are not

likely to change and it gives added security as an attacker cannot make modifications. The

ROMizer tool that comes with the KVM is used to simulate this storing of libraries in

ROM, which is usually referred to as romizing the library. In the case of the KVM the

ROMizer functions by converting a given set of class files into a C source file that can

then be compiled and linked into the rest of the KVM. However, it does not convert the

bytecodes into native code, rather just stores the class information into the KVM binary,

removing the need to dynamically load the romized classes. Burgaard et al. [15] performed

an analysis of the KVM where the system classes were romized and again where they were

not and compared the memory usage. Just loading the system classes used 90,228 cells

of heap space, vs 5,468 cells when the classes were romized, however no analysis of why

this is the case was given. It could be assumed the additional heap usage was simply the

space needed to store the loaded classes. The romized version would have that memory as

part of the KVM binary itself and therefore would not show up as heap usage, however no

comparison was given for binary sizes. Even so, a class file contains linking information in

the form of strings, which must be compared to other strings during runtime. Hash tables

or similar data structures can improve the speed of these string matching operations, but at
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the cost of additional memory, possibly accounting for some of the extra memory usage in

the dynamically allocated case.

2.5 Java Card

Java Card is more restricted than J2ME, primarily due to the limited hardware on which

Java Card is designed to operate. The class file format used by J2SE and J2ME is not

practical for Java Cards, instead a new format was introduced called a CAP (Converted

APplet) file. A CAP file uses fixed length tokens to identify each method, instead of the

variable length strings used in class files (and described in Section 1.4.4).

2.5.1 The CAP File Format

The most obvious difference between class files and CAP files is that a CAP file contains

an entire package. A package in Java can consist of any number of individual class files.

The constant pool for a single class can make up more than 50% of that class’s size, while

many of the entries in a class will also be present in other classes in the same package.

By combining all the class files into a single CAP file, hence having a single constant

pool for the package, the redundancy present in class files can be greatly reduced. Similar

techniques are used by compression schemes, such as JAZZ [14], to reduce redundancy.

The other significant difference is the allocation of tokens to methods instead of the

UTF8 strings that are used in class files to identify methods and fields. More detail on this

can be found in the next section.

2.5.2 Java Card’s Virtual Method Tables

J2SE uses UTF8 strings to identify methods, necessitating a search for a matching string,

starting in the target class and moving up through super-classes until a match is found.

Instead, Java Card makes use of tokens to identify methods, which simplifies the method

lookup process. The class hierarchy will form a tree structure with Object at the top. Figure

2.1 shows a simple inheritance hierarchy (in Java Card, Object only contains the equals
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Figure 2.1: Inheritance Tree Including Tokens

method). Included in this figure are the token values each method would have. As can be

seen, the tokens start at 0 in the class Object and increase independently down each branch

of the tree.

An “inheritance list” is defined as a sequence of classes from a leaf class in the inher-

itance tree, up through its respective super-classes until Object (or vice-versa, starting at

Object and traversing to each leaf class). Therefore, Figure 2.1 contains two inheritance

lists, the first: Object –> A –> B, and the second: Object –> M –> N. It is safe to re-use the

same token values, so long as the re-use is in a different inheritance list to any previous use,

i.e. tokens 1, 2 and 3 are used for different methods in each of the inheritance lists above.

Since tokens are assigned starting at Object and continuing down each branch, the re-use

condition will always be met. Replacing the UTF8 strings with tokens trades an expensive

string comparison for a cheap integer comparison, but still requires searching up through

super-classes until the target method is found. To avoid this search, Java Card uses a virtual

method table approach similar to C++ [40]. However, unlike C++, Java does not have a

’virtual’ keyword, rather all methods in Java are virtual.

Each class’s virtual method table will contain, at each offset in the table (i.e. method

token), an index into the method component of the CAP file to where that method is de-

fined. Figure 2.2 shows the previous example with virtual method tables (VMTs) added.

The VMT for class Object consists of one entry, whose value is a pointer to the equals()

method1. For a sub-class, the parent’s table can be copied and any new entries added. For

1C++ style notation has been used for method pointers, consisting of: “<class>::<method>”, to clearly
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Figure 2.2: Virtual Method Tables

class A the two entries for the methods a() and b() have been added to the table, leaving the

existing pointer to Object::equals(). The same process is applied again for class B. Copy-

ing the super-class’s table each time leads to a large amount of duplicated data (as can be

seen in the VMTs for classes A and B)”. Class M shows a different style of VMT, where the

duplicated data from class Object has been left off. The “base” value of the table (shown

at the top of each table in the figure) indicates the starting value for that table, i.e. entry 0

in class M’s table should have occurred at index 1 in the VMT, therefore is has a base of 1.

When a VMT has a base value of zero, it will contain an entry for every method that

the class accepts, allowing method dispatch to occur in constant time, for example, calling

token 0 on an object of type B would require reading index 0 of class B’s VMT, giving the

pointer to the method. When a VMT has a base value that is greater than zero, the required

entry might not be found in the current class’s table, i.e. calling token 1 on an object of type

N, instead requiring searching in a super-class. At run time, the operation: method_token

- base, can be performed to give the real index to use in that class’s VMT, with a negative

value indicating a search is required in the super-class’s VMT. Therefore, calling token 1

on an object of type N (with a base value of 2), would evaluate ’1 - 2’, giving an answer

of -1, indicating the super-class’s VMT needs to be used. Class M has a base value of 1,

method_token - base gives a value of 0 in this class, so the 0th entry in Class M’s VMT

denote which version of a method is being referred to. This is needed, for example, when a method is
over-ridden, to denote which class’s version of the method is being referred to.
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Figure 2.3: Inheritance With Over-Riding

contains a pointer to the target method.

This means that instead of searching each class’s list of methods, the VM can perform a

single subtraction to decide if the given method is in this class or not, reducing redundancy

at the cost of a slightly slower (but still much better than linear search) method dispatch

time. However, special consideration has to be taken when overriding methods. Consider

Figure 2.3, where class B overrides the a() method. Class B cannot have a base of 3, since

this would cause the VM to miss the over-ridden version of a(), instead it must now have a

base of 1. Java Card requires that in this case the class B should copy the entry from class

A for method b() into its own virtual method table. This will result in a small amount of

redundancy being introduced back into the virtual method tables, but is better than each

class having a complete copy.

2.5.3 Handling of Interfaces

In Section 2.5.2, VMTs were built only taking into account the class inheritance tree (i.e.

ignoring interfaces). Since a given interface can be implemented by multiple classes, and a

given class can also implement multiple interfaces, the tree in Figure 2.1 becomes a more

general graph, as shown in Figure 2.4.

As discussed in Section 2.5.2, an inheritance list consists of a sequence of classes from

Object to a leaf node of the inheritance tree (i.e. in Figure 2.4 there are two inheritance lists:

Object->A->B and Object->M->N). When considering only inheritance, the method A::a()
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Figure 2.4: Inheritance With Interfaces

and N::a() are unrelated, leading to the methods receiving different tokens. However, these

two methods are related when considering interfaces (due to the interface I). Extending

the tokeniser to be aware of both interface and inheritance relationships, instead of just

inheritance, is a non-trivial task. Instead, methods in an interface are assigned tokens which

are unique only within that interface. A class which implements an interface must then

provide a mapping from the tokens used within the interface to those used within that class,

i.e. class A has a mapping from 0 to 1, while class N has a mapping from 0 to 4.

The addition of interfaces and the corresponding mapping from interface method tokens

to the tokens used in a class require different semantics during execution depending on the

declared type of the object involved (i.e. the type used in the source code). If the declared

type of an object is a class, then the invokevirtual instruction will be used, if the declared

type is an interface, then the invokeinterface instruction will be used (the different types

of invoke instructions was introduced in Section 1.4.5). Each instruction will include: an

object reference (via the operand stack), a token (via the constant pool), and a reference

to the class or interface the method was declared in. An invokevirtual will involve the

following steps:

1. Use the object reference to find its class type and hence the virtual method table for

that class.

2. Use the token value in the method call as an index into the virtual method table,

giving a pointer to the target method.
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3. Execute the method.

However, for an invokeinterface, a mapping must also be done from the interface method

token to the correct method token for this class, therefore requiring the following steps:

1. Use object reference to find its class type, then search from that class up to find the

class that implements the target interface.

2. Use the mapping table in that class to map from the token in the method call to the

correct token value for this inheritance branch.

3. Perform an invokevirtual for the new token value.

The need to first map from the interface method token to the correct method token means

that invokeinterface is inherently slower than an invokevirtual in Java Card.

2.6 Squawk

Squawk is another virtual machine from Sun Microsystems and it is described in [79, 81,

82, 83]. While Squawk is designed to run J2ME programs, it differs from the KVM in

that it is written in Java. The team credit the inspiration for implementing a Java virtual

machine in Java to two other projects. Firstly, Squeak [85], a virtual machine for Smalltalk

and Klien [84, 94], a now defunct project at Sun Microsystems, both of which were written

in the language they implemented.

Implementing a virtual machine in the language it interprets presents an obvious recur-

sive problem. In Squawk this is solved by having the very low levels of Squawk complied

into native code. In particular, the interpreter, garbage collector and native code are written

using a common subset of Java and C. In this way the interpreter can be run and debugged

as a Java application first, then converted and run as a native program for speed. Due to a

few syntactical differences, a small converter is needed to turn the code into valid C code,

which can then be compiled as normal.
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2.6.1 Memory Restrictions

The Squawk virtual machine is tailored to small devices, therefore it uses a split-vm ap-

proach similar to Java Card (which is covered in Section 2.5). Here the class files are

pre-processed off the device, so that only light-weight verification/linking needs to be

done by the device when installing them, hence moving some of the burden of load-

ing/verifying/linking class files to the pre-processor machine. A converter application is

used to read a set of class files and produce a “suite” file, containing everything needed to

install those classes on a device. Design of the suite file is tailored to devices with limited

memory, for example, linking of a given suite can be done in a single pass over the suite,

as opposed to a standard virtual machine that would have to load each class independently,

with several passes over each class.

Typical target systems will have a tripartite memory structure, consisting of ROM, non-

volatile memory (NVM) and RAM. The virtual machine is aware of the different regions

and will prevent memory references from a more permanent memory to a less permanent,

for example, something stored in ROM or NVM cannot have a reference to something

in RAM. However the inverse is allowed, i.e. RAM can have a reference to something

NVM or ROM. Also to limit memory usage, the immutable class information (e.g. method

bytecodes) will be stored in NVM or ROM, with only the mutable information (for example

static variables) being stored in RAM.

2.6.2 Bytecode Modifications

Optimisations have been made to bytecodes including minimising the size of some operands,

resolving references and simplifying verification. The reduction in operand sizes adds some

extra restrictions (such as limiting the number of static fields in a class to 256), however

it allows for a greater density of code. The same approach has been used in other archi-

tectures such as the ARM Thumb [8]. Squawk also defines that local variables have an

implicit type, meaning that typed load and store instructions are not needed. The typed

load/store instructions have been replaced with load/store instructions with implicit local

variable numbers which do not need operands, further reducing code size.
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An extra restriction is placed on bytecodes that could trigger garbage collection, re-

quiring that only the operands for that bytecode may be on the operand stack when the

instruction is executed. Along with typed local variables, this means that object references

within a given method’s frame will always be in the same place, making the job of finding

object references that need updating very easy for the garbage collector.

2.6.3 Method/field references

The symbolic method and field references have to be resolved by the virtual machine before

they can be used. J2SE virtual machines would perform these tasks during class loading, or

would delay them till a given reference was used, then cache the result to avoid having to

resolve the reference again. Suite files in Squawk are designed so that symbolic reference

can, once resolved, be overwritten with the resolved address. However, since applications

are stored in slow-to-write NVM, this will limit performance during initial execution or

whenever previous unused code branches are encountered. These references are instead

resolved as part of the conversion/installation process. In the case of a field reference, it

will become an offset to where the field is within an object, and in the case of a method, it

becomes an index into a virtual method table (covered in more detail in Section 1.3.2). The

ordering of data in a suite file is such that symbolic linking information is presented first,

then references can be resolved as they are received and written to NVM, saving the need

to make a second pass to resolve references after installation.

Virtual method references are resolved as described above, however interface method

references require special handling, as symbolic references to interface methods are not

provided via the same virtual method table (similar to in Java Card, presented in Section

2.5.3). For each interface that a class implements, the class must have a table to map from

the offset (or token value) used within the interface to the value (or rather, VMT offset)

used in that class [79]. The performance of the invokeinterface instruction is therefore lim-

ited to always be slower than an invokevirtual, since invokeinterface must first consult the

lookup table to map to the correct virtual method token for the given class, then perform the

equivalent of an invokevirtual for that token value. Limiting the performance of interfaces
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to be slower than the equivalent code without interfaces does not encourage their use by

programmers.

This thesis presents a solution to this, such that the dispatch of an invokeinterface in-

struction would be equivalent to an invokevirtual instruction, allowing them to share a

common implementation for both instructions.

2.7 Compression of Java Class Files

Each class or interface in Java will be compiled to an individual file. All but the most basic

applications will require more than one class, requiring a way to distribute applications

without needing to transmit many small files. The standard approach is through the use

of a Jar (Java ARchive) file, which uses the Zip file format to store and compress many

files into one file, while still maintaining the individual file names and directory structure

within the Zip file. Research has been done on other packaging schemes for Java (and

applications in general), with Ernst et al. [39] defining two main types of compression

that can be applied to application binaries, “wire-formats” and “interpretable-formats”. A

wire-format is one which aims to reduce size at all cost to ease distribution across networks

but cannot be directly executed. An interpretable-format typically has less compression,

but can be executed directly instead of needing to be unpacked or decompressed first. As

well as the above two formats defined by Ernst et al., a third technique is also considered,

that of runtime compression, with the aim of compressing application data (i.e. objects on

the heap) during runtime. The following sections look at the work that has been done in

each of these three areas.

2.7.1 Wire-Formats

Wire-formats are designed to be as small as possible for transmission of data, while not

requiring that it be directly executable by the Virtual Machine, which is useful when the

data must be transmitted across slow and/or intermittent network connections. The side-

effect is that the code must be extracted or converted in some fashion before it can be
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efficiently executed. Below are examples of wire-formats.

2.7.1.1 Jar

Jar derives its name from Java ARchive, in that a Jar file is a collection or archive of several

Java class files and is the standard format for Java [60]. Jar files can be created with or

without compression and use standard zip compression. A Jar file is literally just a Zip

file that contains all the class files and some optional additional information. Jar does not

exploit any knowledge about the class file structure, instead just compressing the class files

as if they were any other binary file. Jar will compress each file individually, this reduces

compression efficiency, but allows a file to be decompressed independent of the rest. While

technically a Jar file could be considered an interpretable format, since it contains just

standard class files that can be executed, it has been included here since it can include

compression and hence decompression before execution.

2.7.1.2 Clazz

Horspool et al. [45] presented the Clazz file format which uses knowledge of the class

file format to reorder the contents and to encode different parts of the file with different

techniques. Unlike Jar, which when uncompressed will give identical files to the original

class files, Clazz does not, but they will be semantically equivalent. The primary space

saving in Clazz is in the constant pool, as this is very often the largest part of a class file.

Here Horspool et al. apply an ordering to the entries in the constant pool, as typically they

are in a random order. This ordering allows them to firstly save space by not needing to use

as many bits to encode the structure of the constant pool, since this can be partially implied

by the ordering. Also the compression techniques used rely on finding repeating patterns in

the data. By ordering the entries similar entries will be closer together and the compressor

will more efficiently identify patterns, resulting in better compression.

The result of this approach was a class file that was significantly smaller than one that

was simply ZIPed, such as those in a Jar file. A Clazz file cannot easily be interpreted by

the Virtual Machine due to many offsets and other values in the file being coded as delta



74

values or as differences from previous values. Instead the Virtual Machine would need a

customised class loaded that knew how to decompress the Clazz format into an in memory

executable version.

2.7.1.3 JAZZ

The Jazz file format is presented by Bradley et al. [14] as a replacement to the Jar format.

Jazz archives achieve better compression for a group of class files than the same files com-

pressed using Clazz or stored in a Jar archive. Jazz uses similar approaches to Clazz, but

operates on a collection of class files rather than on individual files, allowing it to remove a

lot of the redundancy that is common between class files. For example, a class that defines a

method will have that method’s name and descriptor, as strings, stored in its constant pool.

Any classes that wishes to call that method will also need the name and descriptor strings in

their respective constant pools, leading to many files having the same strings in them. A Jar

file will compress each file within the archive individually, meaning the compressor can not

take advantage of these often repeated strings. A Jazz file introduces a single constant pool

shared by all classes in the archive, and hence these common strings will only be stored

once.

The Jar format has the advantage that individual class files can be loaded very easily,

which is important as most Virtual Machines will only load a class file when it is needed.

In Jazz, some of the information in each class file has been combined, for example with

the global constant pool, making it harder to extract individual classes from the archive.

Bradley et al. do not provide details in their paper, but suggest that it is possible to perform

individual file loading from Jazz, provided the class loader has cached some of the decoded

information. They also indicate that they would need to add some extra structures to Jazz to

make this efficient, but give no indication of how this will affect compression. At present

they suggest that the Jazz format must be decompressed upon receipt to individual class

files or into a Jar format.



75

2.7.1.4 Pack

Pugh [71] proposes another format for storing a collection of class files, referred to as

the “packed” or “pack” format in his paper, consisting of an encoding to represent a set

of class files, which is then compressed with gzip to give the final pack archive. The

design principles are similar to those of the Jazz format above, and it is also designed

as a replacement for Jar files. However, Pack differs in its implementation to Jazz, with

Pugh reporting significantly better compression. In a Pack file, classes will share common

information (i.e. with only one constant pool for all classes in the archive), and information

is arranged to allow gzip to perform well when compressing the file.

The Pack format requires that the class files be decompressed from the archive in the

same order in which they were compressed, with output written to a Jar file or into individ-

ual class files, which can then be loaded by a VM as needed. A typical VM will use lazy

class loading, that is, it will only load a class file once it reaches a point that it requires the

class to be loaded (such as making an object of the class). However, Pugh also suggests

the idea of eager class loading, where the VM will load all of the classes from the archive,

allowing the archive to be read, and all classes loaded, with a single pass. In the case of an

application where it is likely that the Virtual Machine will need all the classes in the archive

this could improve class loading. However, cases such as a library, where only some of the

classes are used, will result in loading of unnecessary classes. Pugh has acknowledged

these constraints, as his intent was to create a wire-format where bandwidth was the most

precious resource, not compression/decompression time or memory constraints.

An implementation of the pack algorithm has been incorporated into Java distribu-

tions in for form of the ’pack200’ and ’unpack200’ binaries (or ’pack200.exe’ and ’un-

pack200.exe’ on Windows) and the ’javax.pack.*’ package, which is specified in Java Spec-

ification Request (JSR) 200 [92].

2.7.1.5 CAR

Antonioli presents the CAR (Class ARchive) format [7] as another replacement for Jar

files. While CAR does not perform better than the packed format from Pugh, based on
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size, Antonioli suggests that space saving is not the only metric, but also the speed and

binary size of the decompressor.

Antonioli suggests the binary size of the decompressor is important as it would need to

be transmitted with the compressed application. Therefore, the space saving that the com-

pressor achieves must be better than the size of the decompressor itself, otherwise there

is no reduction in transmission size. If the decompressor is already present, however, (or

provided as an additional application and only downloaded once), then the size of the de-

compressor, and hence its transmission size, is amortised over all applications downloaded

to the device.

While compression is a once-off operation, decompression will need to be run before

every execution if the device only stores the CAR version of a package. This could be true

for a device that needs to limit the memory used to store applications, therefore storing

them in the compressed form. However, the intention of a wire-format is to reduce the

transmission size of the application, not the storage size.

2.7.1.6 Generic Adaptive Syntax-Directed Compression

Stork et al. [87] present a more generic approach to compression. Specifically they look

at parsing the source code for an application to develop an abstract syntax tree (AST). This

represents all the required information from the source code (minus comments, format-

ting and some variable names), and is commonly the first step of compilation. They then

compress the AST form of the program. At the delivery end, the code must be decom-

pressed, then compiled. This approach could apply to any language, and has the benefit of

being more platform neutral than compiled binaries (to such an extent that the underlying

language is portable).

2.7.2 Interpretable formats

Interpretable formats are designed so that they can be executed directly without needing to

be extracted first. These formats will be larger than a wire-format as they can not make use

of the more dramatic transformations of a wire-format.
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(a) Standard Java
Class Files

(b) Compact Java Binaries Class Files

Figure 2.5: Representation of Class Names in Class Files

2.7.2.1 Compact Java Binaries for Embedded Systems

Rayside et al. [75] propose reducing the redundancy in the constant pool through reuse of

strings, specifically in class names. All class names in the constant pool are fully quali-

fied (they consist of the full package name followed by the class name), for example, the

Object and System classes both exist within the java.lang package, resulting in the strings

’java/lang/Object’ and ’java/lang/System’ to represent them2. The package structure forms

an implicit tree structure, for example, in the J2SE API, the top level packages are ’java’

and ’javax’, each with numerous sub-packages (such as ’swing’, ’lang’, ’util’, ’math’, etc.)

which, in turn, can have further sub-packages. By using this property of class names, each

string is broken up into individual package/class name strings, with each string having a

link to the next component in the full name. For example, Figure 2.5a shows the standard

Java class names for three classes, while Figure 2.5b shows the format proposed in [75].

Each class name gives just the name for the class, with a pointer to the package the class is

in, each package in turn has a pointer to its super-package. The top-level package (’java’

in this example) only needs to be stored once, instead of the three duplicate copies in Fig-

ure 2.5a. The more classes within the same package, the greater the opportunity for space

saving.

The type of each constant pool entry is implied by ordering the contents by type and

recording the number of each type, saving the one byte tag value for every entry. Further,

this ordering allows some of the references between entries in the constant pool to become

implicit. Rayside, et al. conclude that these modifications to the constant pool would only

affect the linking stage of the class file when it was loaded by a virtual machine and there

2For historical reasons Java source code uses a full stop character to separate the package names,
i.e. ’java.lang.System’, while internally (within binary class files) the slash character is used, i.e.
’java/lang/System’.
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should be little or no impact on the runtime performance.

The final change presented in [75] is to the Code attribute of methods, which stores the

bytecodes that implement the method. Each bytecode will consist of 1 byte to identify the

opcode (i.e. which instruction to run), followed by zero or more bytes of operands for the

instruction. Importantly, most operands fall into one of two types, indexes into the constant

pool (e.g. for method references or constant values) and offsets within the bytecode array

(e.g. for branching). Instead of encoding the bytecodes as a single array containing opcodes

and operands, two arrays are used, one for the opcodes and the other for the operands. The

opcodes array is compressed using a Huffman algorithm. However, some pairs of opcodes

can often appear together, so pairs of opcodes are encoded, rather than individual opcodes.

For the operands’ array, most constant pool indexes can be reduced from 2 bytes to 1 byte,

since most classes do not have more than 256 entries in their constant pool. Offsets within

the bytecode array, such as branching instructions, must encode how many bytes forward or

backward to jump within the array, which previously included both the opcode and operand

values. Due to the split nature of these new arrays, offsets only need to encode the number

of instructions to jump (i.e. the number of bytes in the opcode array, since each instruction

is one byte), allowing many of the offsets to be reduced from 2 bytes to 1 byte. However,

there is no analysis presented in [75] of how these bytecode transformations would effect

the runtime performance of the application.

2.7.2.2 Java Bytecode Compression for Low-End Embedded Systems

Clausen, et al. [24] examine an interpretable compression format tailored specifically to

Java Card. Java Card makes use of CAP files (described in Section 2.5.1), instead of class

files. In a standard class file it is the constant pool which accounts for the largest amount of

space, however in a CAP file it is the bytecodes which are the biggest component. Clausen,

et al. estimated that bytecodes could account for approximately 75% of the memory foot-

print of an application [24].

Clausen, et al. has exploited the fact that opcodes can appear in common sets of 2 or

3, which are replaced with a single ’macro opcode’. Each bytecode is encoded as a single

byte, therefore giving 256 possible values, but not all of these are used by the standard Java
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Card Virtual Machine (JCVM), with the remaining values assigned to be macros. A special

table is used to record the real instructions that comprise a macro and a modified JCVM can

then consult this table whenever it encounters one of these macros. The result was that on

average a package was reduced to 85% of its original size, with a speed penalty of between

2% and 30% for looking up the macros [24].

2.7.2.3 Practical Java Card bytecode compression

Extending the idea of macro opcodes, Bizzotto & Grimaud [13] look at the practicalities of

using them. The compression algorithm is too large and resource intensive to run on a Java

Card. Therefore it needs to run off-card, but the resulting CAP file must be verifiable once

it is sent to a card or else Java Card’s security model will be broken. The solution proposed

by Bizzotto & Grimaud [13] adds a compress component to an otherwise standard CAP

file. Since the CAP file is still in the standard format, with just the addition of an extra

component, the normal Java Card verifier can test the standard parts of the CAP file for

safety, then an addition verifier determines the safety of the compress component. Finally,

the card can use the information in the compress component to efficiently generate the

macro/compressed version of the CAP file.

Bizzotto & Grimaud also examine different strategies for allocating macros. There are

69 opcode values not used by the Java Card specification. Of the many available opcode

pairs the best ones to use will depend on the applications being compressed. These allo-

cations may be either local to a specific package or global across all devices. The local

approach would allow an application to carry its own custom macro table, which would al-

low for the allocation of macros optimised for that application. The global approach would

mean that the macros may not be the optimal set for a given application, however the macro

table can be directly coded into the JCVM, making macro lookups quicker. To compensate,

several different global tables could be used, with the application selecting the best.
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2.7.2.4 Split-Stream Dictionary Program Compression

While not specifically targeting Java, Lucco also examines the compression of program

instructions [58]. Program code is compressed with a granularity of basic blocks, allowing

a basic block of the code to be decompressed on its own. Lucco suggests this can be

coupled with a JIT compiler (see Section 2.2.2 for more details about JIT), with each block

being decompressed, then JIT compiled before decompressing the next, and so on, hence

reducing memory requirements.

Using x86 code on a desktop PC, Split-Stream Dictionary compression resulted in a

47% compression ratio and a 6.6% overhead on runtime. Since code is decompressed and

JIT compiled before execution, a cache of already compiled code is maintained in memory.

As pressure grows for RAM, less of the JIT compiled code can be kept and if code is

needed again, it will be decompressed/compiled again. With a buffer to hold JIT code only

0.4 times the size of the original x86 code, Lucco reports a 99.3% hit rate for function calls

already being present in the buffer. As the memory was constrained further, the hit rate

showed a gradual decline and a corresponding increase in runtime overhead, allowing a

graceful degradation in performance as the demand for RAM increases.

2.7.3 Runtime compression

While interpretable formats deal with compressing the application code, data such as ob-

jects on the heap remain unaffected. Runtime compression deals with compressing this

runtime data, to allow an application to run in a smaller memory footprint.

2.7.3.1 Heap Compression

When trying to run larger applications on smaller devices, memory limitations can become

a primary concern. While compression of code and other class data can help limit the

amount of memory needed to store the application, there still remains the issue of runtime

data size. This can also become an issue on devices that use non-volatile memory, such as

EEPROM, for storing class data, and separate RAM for heap data. Chen, et al. [20] pro-

posed a garbage collector that allows objects on the heap to be compressed when memory
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demand is high. This would allow an application to run with less RAM than its nominal

memory footprint or alternatively to have more applications running concurrently.

The price is a slight performance penalty during runtime to allow for compression and

decompression. Although in some rare applications, the additional memory that is freed re-

sults in less garbage collection during the applications life and therefore an overall increase

in performance.

2.7.3.2 Energy savings through compression

For battery operated systems, energy consumption can become a critical aspect of the sys-

tem. Memory devices will leak a small amount of current whenever they are powered on,

even if they are not performing operations. This led Chen at al. [21] to investigate the use of

compression for read-only memory. Data such as the VM code, and API class data can be

compressed offline, then stored in read-only memory on device. Since energy leakage is a

function of memory size, being able to use smaller memories for the read-only data results

in less power consumption. A “scratch-pad memory” (SPM) resides between the processor

and main memory, in much the same way as a cache. When an address is requested, if the

relevant block is in the SPM, it is read from there, else the block is brought in from main

memory. In the case of the read-only memory, a hardware decompressor will decompress

the data on the fly as the block is placed into the SPM.

Additional energy is required to run the hardware decompressor and SPM, however

energy use is reduced due to the smaller read-only memory. Overall this resulted in an

energy saving in a simulated environment.

2.7.4 Summary

The work presented later in this thesis covers tokenisation of class files, which will also

results in compression, and can be best categorised as an interpretable format. While the

tokenised format presented in this thesis does not compete directly with existing wire-

formats or runtime compression, they are presented as possible directions that could be

used to improve the compression gained from tokenisation. Table 2.1 provides a summary
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Table 2.1: Comparison of Compression Schemes

Scheme % vs Class % vs Jar (comp)
Jar [60] 53-73 100

Clazz [45] 35-38 –
Jazz [14] 22-29 44-60
Pack [71] 10-18 20-34
Car [7] 15-40 32-73

Generic Adaptive Syntax-Directed [87] – 13-39
Compact Java Binaries [75] 75 50-55

Java Bytecode Compression [24] 80a –
Practical Java Card bytecode [13] 68a –

Split-steam dictionary [58] 37-58b –
a This number only takes into account the bytecodes, not the additional

parts of a class file.
b These results were for compressing x86 instructions only.

of results from the wire-format and interpretable format schemes that were presented in the

previous sections. Numbers indicate the percentage of the original size, for either uncom-

pressed class files or compressed JAR files, and have all been taken from the respective

author’s original work.

2.8 Summary

This chapter has presented background information covering the general approaches to

implementing virtual machines, some specifics about the J2ME, Java Card and Squawk

implementations, then finally some discussion of the various approaches for compressing

Java class files.

The work presented in this thesis focuses on J2ME and the production of method lookup

tables. The approach is based on that used in Java Card, but without the need for additional

lookup tables in the presence of interfaces. In addition to improving method dispatch, the

lookup tables allow a large volume of string information (previously used for linking) to be

removed from the class files, resulting in much smaller files.
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Chapter 3

Global Tokenisation of Class Files

3.1 Introduction

As stated earlier, one of the goals of this thesis is to produce tokenised (essentially pre-

linked) class files using lookup tables (or virtual method/function tables) for each class.

References to a method then become an index (or token) into this table. Previous ap-

proaches have over-heads in the presence of multiple-inheritance, either requiring dupli-

cate tables (C++) or additional lookup tables (Java Card). Instead, this work’s aim is to

tokenise the methods in such a way that a single dispatch table can be used, irrespective of

the declared type of the object (be it a class or an interface). Stating this goal another way,

invokevirtual and invokeinterface will share the same implementation, with dispatch done

through a single virtual method table per class. Starting with the dispatch tables used by

Java Card for the invokevirtual instruction, some extra constraints must be added to allow

the invokeinterface instruction to use the same dispatch process as invokevirtual:

1. Interface methods will be tokenised the same as any other method in the system

(instead of interface-only tokens).

2. All methods that implement an interface method, irrespective of class, must use the

same token as the interface method.

A direct result of tokenising the class files is that much of the symbolic information present

(in the form of strings) will not be needed at runtime, resulting in less memory requirements
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for execution, less overheads from not having to link class files and additionally less storage

space by removing the strings.

3.2 Comparison to Java Card

Java Card can be considered to have two “name spaces” when it comes to token values, the

first for methods declared in classes, the second for methods declared in interfaces. Classes

will always (as the result of always having only one super-class) form a tree structure, with

the java.lang.Object class as the root, and tokenisation of these methods starts from the

root and proceeds down the tree. Each class in the tree will be allocated increasing token

values, starting from the largest token used in the super-class. For a given class, C, which

contains n methods, if the largest token used in the super-class of C is m, then tokens would

be allocated to a class by:

1. For a class with n methods in it, the token values m+1 to m+n would be allocated

to each of the methods in turn (for n = 0, no tokens are allocated).

2. For each sub-class of this class, repeat this process.

The tokenisation process is started from the java.lang.Object class with m = 0. The tree

nature of class inheritance means that the used tokens are always in a contiguous block,

with every slot in the table corresponding to a method that can be called on an object

of that class1. Having full dispatch tables is not a requirement for Java Card, but results

from the tokenisation algorithm. Ideally, the tokenisation algorithm presented in this thesis

should have full dispatch tables, as this will reduce the space needed to store the tables.

Additionally, the incremental assignment of tokens via the inheritance tree in Java Card

means that methods within a given class will have token values greater than those used in

any super-classes (with the exception of over-ridden methods, which use the same token as

the previous version of the method). A class can then store only this last, changed, part of

1This is with an O(1) dispatch time, where every class has an entry in its virtual method table for every
method that could be called on it. Although as mentioned in Section 2.5.2, the tables can be smaller at the cost
of an O(n) dispatch time, based on the number of super-classes that need to be searched to find the correct
table.
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the dispatch table (this is optional in Java Card and is described in detail in Section 2.5.2).

If the tokenisation algorithm in this thesis can maintain increasing token values the same as

Java Card, then it will be possible to use the same style of dispatch table, further reducing

the space needed to store these tables.

The methods in an interface are allocated tokens independent of the tokens allocated to

methods in a class. When a class implements an interface I, it must contain a table which

maps from the method token for each method in I to the token value used for the imple-

menting method (for more details on how Java Card handles interfaces, see Section 2.5.3).

The tokenisation scheme presented in this thesis will assign the same tokens to interface

methods as to methods in classes. By requiring methods in interfaces and classes to have

the same token “name-space”, the need for these extra interface tables will be removed.

Instead an invokeinterface instruction would be dispatched using the same dispatch table

and process as would an invokevirtual instruction for the same token.

3.3 Simple Tokenisation

This chapter assumes that a complete system is being tokenised, i.e. all the class files for

the API, optional or third party libraries and applications. If new classes are to be added to

the system, then the existing tokenisation is discarded and a new tokenisation performed on

this new set of class files. The following chapter will discuss the extension of this technique

to allow tokenisation to be incremental, i.e. to allow a new application to be added to an

existing system, without changing any of the existing tokenised classes.

The simplest approach to tokenisation would be for each unique method selector to be

allocated a unique token, leading to the number of tokens in the system being dependent

on the number of unique method selectors. While interface methods will have the same

token as the methods that implement them, (since they will have the same selector), the

allocation of token values will have little relation to the where the methods are declared.

In Java Card, tokens are allocated while moving down the branches of class inheritance,

meaning that any given class will always use tokens within a contiguous range from 0 to

the number of methods in that class and all super classes. In the proposed scheme, however,
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tokens are allocated to method selectors, so for any given class, it will be unlikely that the

methods in that class have token values in a contiguous range, leading to large dispatch

tables with very few of the entries being used.

Previous approaches to tokenisation, such as Dixon et al. [28], have reduced the size of

the dispatch tables through the use of selector colouring. While two selectors that appear

in the same class cannot share the same token, if two selectors will never need to be in

the same dispatch table, then they can be assigned the same token. Selector colouring uses

graph theory and the well understood problem of graph colouring to produce a near optimal

allocation of tokens such that the smallest number of tokens are allocated. However, the

range of tokens likely to appear in any given class is still not restricted in this approach,

rather the total number of tokens is reduced. While this will reduce the size of the dispatch

tables, they are still likely to contain a large percentage of unused entries.

Another approach is to maintain the sparse lookup tables, but encode them differently

to reduce their size [31]. Each row (or column) of the lookup table is taken as a one

dimensional array, then overlapped so that unused entries in one row match up with used

entries in another, resulting in a master array with only one dimension. Each row of the

original two-dimensional array is therefore stored at a different offset in the master array.

While reducing the number of unused entries, there is an added overhead of determining

if a value actually belongs to the class in question, or if the entry was empty and another

class’s entry has been stored over the top. Previous work on dispatch tables was discussed

in detail in Section 1.3.

In previous approaches, there has been a one-to-one mapping of method selectors to

tokens. Dixon et al. presented a many-to-one approach, with multiple method selectors

mapping to one token, allowing for more flexibility in token allocation and hence better

space saving. The next step is to allow a many-to-many relationship, i.e. allowing different

methods with the same selector to be assigned different tokens.
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Figure 3.1: The same selector with a different token

3.3.1 Assigning Different Tokens to the Same Selector

There are situations where a given selector (a method’s name and descriptor in Java) may be

assigned different token values in different classes, without compromising the correctness

of the tokenisation. Figure 3.1 shows a case where class A and B both inherit from Object.

Both classes contain a method, m1() in this example, that is not contained in the Object

class. Therefore, even though both methods have the same name and descriptor, it is not

possible for the m1() method from class B to be called on an object of type A or vice versa.

By allowing more flexibility in which token values can be assigned to methods, a given

class can use token values within a smaller range (ideally with a contiguous sequence of

tokens, as in Java Card), allowing dispatch tables to be as small as possible. Tokenisation

therefore becomes a problem of determining when two methods with the same selector

must have the same token and when they can be different. After determining which meth-

ods need the same token, they should be allocated with the aim of minimising the average

size of the dispatch tables (i.e. by keeping the token values as contiguous as possible).

3.3.2 Non-continuity of Token values

The ideal solution for tokenisation would be for any given class, if it needs n entries in its

dispatch table, to use the next n token values, starting from the largest token used in the

super-class. Because Java Card ignores interfaces for assigning tokens, it can guarantee

this criteria is always met. However, with the added complexity of interfaces, it becomes

impossible to guarantee this condition.

Figure 3.2 shows a case where a hole in one of the dispatch tables will be required. In

this case the method m1() will be allocated some token, X , while the method m2() will
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Figure 3.2: Non-continuity of tokens

be allocated the token Y . Since X and Y must appear in the same dispatch tables (i.e. in

classes B and D), then X must not equal Y , and therefore, either X < Y or X > Y . If X < Y

then class C will be using token Y , but not the smaller value X , although class D’s dispatch

table will fill in this gap. If X > Y , then class A will use token X , even though the smaller

value Y is not in use. Therefore, it can never be guaranteed that all dispatch tables will be

completely full for every possible set of class files.

These holes, when they exist, will not affect the runtime of the system. Assuming the

classes have all been through the Java verification process, then method calls can only be

to methods that exist. Thus after tokenisation, all method calls will be to tokens that were

allocated within the target class and will therefore be to entries in the dispatch table that

are non-null. Runtime protections can still be added so that if a token does reference one

of these holes, or null entries, then a runtime error will be produced.

The ideal solution will not always be reachable (except for cases with fairly simple use

of the Java interface mechanism), however, the goal is still to minimise the extent to which

null entries are present in the dispatch tables.

3.3.3 Binary Compatibility

There are certain situations where changing a given Java class and recompiling it without

recompiling other classes can lead to an incompatibility. For example, if a method that

was once public is changed to private and only the single class is recompiled, then other

classes could still contain references to the once public method. These (and other) problems

will be detected at runtime when the target method is found to be private and therefore not
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visible. The fact that the tokenisation is recreated whenever any classes are changed implies

that the tokenised files will remain compatible, assuming there are no changes that would

normally break binary-compatibility. So if the standard class files are compatible, then the

re-tokenisation will update the references to be correct.

3.3.4 Overview of Tokenisation Process

A tokenisation process has been described where a many-to-many mapping will be allowed

between method selectors and tokens. The process to implement this tokenisation will

consists of several steps:

1. Open and parse each class file to build details of each class, such as: a complete

inheritance tree, interface relationships (super/sub-interfaces and which classes im-

plement which interfaces) and the methods in each class.

2. Produce “method groups”.

3. Assign tokens.

4. Each class is now re-read, one at a time, and using the information in memory, all

method/class references are updated to use the token information. Unneeded infor-

mation (such as symbolic string data) is removed and the tokenised file written out.

5. The meta-data used during the tokenisation is written out to a “descriptor file”.

While the initial pass reads every class file, not all the contents of the class file are loaded, to

reduce memory requirements. Later after tokenisation is complete, each class is completely

loaded into memory, updated, then saved to disk. In this way only one class file needs to be

in memory at any given time. Step 2 and 3 are where the main part of the tokenisation work

occurs. “Method groups” are used to denote a group of methods, which require the same

token, allowing the tokeniser to distinguish between methods that have the same selector,

but do not require the same token.

To illustrate the process, consider the simplified source code presented in Algorithm 2

to be the entirety of a Java system requiring tokenisation. First the source files would be
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Figure 3.3: Example system classes

compiled using the standard Java compiler to produce binary class files. Next, these files

would be read by the tokeniser to produce an in-memory representation of the interface

and inheritance relationships as shown in Figure 3.3. The following sections will use this

example to give more detail on the creation of method groups and how tokens are allocated.

3.4 Method Groups

To implement a many-to-many tokenisation scheme, it is necessary to determine which

methods will require the same token and which will not. A “method definition” for this

purpose is defined to be a method in a class or interface. It will consist of the class or

interface in which it is defined and the method’s name and descriptor. There may or may

not be an implementation associated with the method (i.e. abstract methods in classes and

methods declared in interfaces will not have an implementation). Through loading and

examining the complete set of class files for a given system, the complete set of method

definitions can be determined.

Next, a “method group” is defined as a group of method definitions that require the

same token. Two methods will require the same token when either:

1. One of the methods over-rides the other, or

2. One of the methods is defined in an interface, and the other implements it.

In the simplest case, a method group would consist of exactly one method. Method groups
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Algorithm 2 Source for example system
interface I1 {

i1(){}

}

interface I2 {

a1()

i2()

}

interface I3 {

i3()

}

interface I4 extends I2, I1 {

}

interface I5 extends I2 {

}

class A implements I4 {

a1()

a2()

i1()

i2()

}

class B {

a2()

b1()

b2()

i2()

}

class C extends B implements I4 {

a1()

b1()

c1()

i1()

}
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containing more than one method would occur when there is over-riding and/or interfaces

present. However, in all cases, the methods within a method group must always share the

same method signature (i.e. method name and types of arguments), since a method can

never over-ride or implement a method with a different signature.

The first step in creating a method group is to examine all the classes and interfaces and

load the method definitions from each. During this process, the super/sub-class, super/sub-

interface and interface implementation information must be maintained to allow for easy

traversal of both the inheritance tree, as well as the graph of interfaces and implementing

classes.

3.4.1 Creating Method Groups

Each method will need to be assigned a method group, therefore, the approach used is

to traverse the inheritance tree, starting at java.lang.Object. For each class, each method

in the class will be assigned a method group and a search made for other methods that

need to be in the same group. After all methods in the current class are considered, the

algorithm will recurse into all sub-classes of the current class. Considering the example

system in Figure 3.3, the algorithm would start in java.lang.Object (which is not shown),

which in this example has no methods. Both class A and B are implicitly sub-classes of

java.lang.Object and therefore would be searched next (the exact order is not important,

but for this example they will be considered alphabetically).

As each class is visited, any methods not already in a method group will be assigned a

new one, and a search made from that point in the graph to find other methods to include

in the group. When talking of searching, either in classes or interfaces, the terms “up”

and “down” will be used for simplicity. In the case of a class, searching up refers to

visiting the super-class, while searching down refers to visiting all sub-classes. Likewise

for interfaces, with the exception that interfaces may have multiple super-interfaces. This

describes searching either within the interface graph or within the inheritance tree. At

places where, when searching interfaces, an interface is implemented by a class, or when

searching classes, the class implements an interface, then the search must also transition



93

from classes to interfaces or vice-versa. After any such transition, there could be instances

of the target method above the current position. Therefore, the algorithm needs to, after

any such transition, search up to find any instances of the target method, then travel down

from each place where an instance is found, to find any lower places that over-ride that

same method. This, “search up, assign down” approach means the algorithm will find the

highest place where a given method is used, then travel down finding all instances of the

method being over-ridden or places where classes implement an interface method.

The above results in an algorithm with four basic actions, two for classes and two

for interfaces. In the case of either classes or interfaces, the first action is to search up-

wards for instances of the target method, then secondly, to search back down from each

found instance and assign all matching methods to the current method group. It is only

during the assignment process that connections between interfaces and classes (i.e. inter-

face implemented by a class, or a class that implements an interface) would be considered,

triggering a search to start in the other. This algorithm described here is presented as pseu-

docode in Algorithm 3. The searchClass(...) and searchInterface(...) methods are called

with the name and descriptor of the target method and the method group that instances of

the target method should be assigned to. The assignClassmethodGroup(...) and assignIn-

terfaceMethodGroup(...) methods are both used once an instance of the target method is

found, to actually perform the assignment of each instance tot he method group, and to also

perform the transitions between searching classes and searching interfaces. It is quite com-

mon for this algorithm to fold back on itself, and therefore the lastSearchedFor(...) method

will return true if the previous call to that method was for the same name and descriptor,

preventing infinite recursion. The containsMethod(...) method will return true if the class

or interface contains a method with the given name and descriptor, while assignMethod(...)

will add the instance of the method in that class or interface to the given method group.

To better understand this algorithm, consider the classes found in the example Java sys-

tem in Figure 3.3. Starting from java.lang.Object (not shown in the figure), there are no

methods, so the process continues with class A. The first method encountered is a1() and as

this method does not currently have a method group, a new one is created. The searchClass

method will find no super-classes that contain the a1() method, however the present class,
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Algorithm 3 Search functions for creating method groups
searchClass(name, descriptor, methodGroup) {

if (superClass != null)

superClass.searchClass(name, descriptor, methodGroup);

if (containsMethod(name, descriptor))

assignClassMethodGroup(name, descriptor, methodGroup);

}

assignClassMethodGroup(name, descriptor, methodGroup) {

if (lastSearchedFor(name, descriptor)) return;

if (containsMethod(name, descriptor))

assignMethod(name, descriptor, methodGroup);

for (each subclass C)

C.assignClassMethodGroup(name, descriptor, methodGroup);

for (each implemented interface I)

I.searchInterface(name, descriptor, methodGroup);

}

searchInterface (name, descriptor, methodGroup) {

for (each superinterface I)

I.searchInterface (name, descriptor, methodGroup);

if (containsMethod(name, decriptor))

assignInterfaceMethodGroup(name, descriptor, methodGroup);

}

assignInterfaceMethodGroup (name, descriptor, methodGroup) {

if (lastSearchedFor(name, descriptor)) return;

if (containsMethod(name, decriptor))

assignMethod(name, descriptor, methodGroup);

for (each subinterface I)

I.assignInterfaceMethodGroup(name, descriptor, methodGroup);

for (each implementing class C)

C.searchClass (name, descriptor, methodGroup);

}
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A, does contain the method, causing the algorithm to proceed to assignClassMethodGroup.

At this point the a1() method in class A is assigned to the method group. There are no

sub-classes to search in this case, however there is an interface, I4. Therefore, the search-

Interface method is used to recursively search up through the two super-interfaces. In this

case the a1() method is found in the I2 interface, causing the assignInterfaceMethodGroup

method to be called. This then proceeds to search through all sub-interfaces, and at inter-

face I4, to attempt to call searchClass on class A again, an example of where the algorithm

will fold back on itself. Since class A has already been searched, it will be ignored, and

the search would continue down through interface I5 to class C. Searching up from class

C, no higher up instances of a1() are found, leaving the instance in class C to be added to

the method group. At this point the search is exhausted and completes, having added three

methods to the method group.

The second method encountered in class A is the a2() method. In this case a search is

made through the interface, but since the method is never found in any interfaces the search

terminates with the a2() method in a method group by itself. In particular, the a2() method

in class B will not be discovered.

Next the method encountered in class A is is i1(). Again, the same search process is

used, however in this case the i1() method is discovered in the interface I1. The assignIn-

terfaceMethodGroup is therefore called, resulting in the interface method being added to

the same method group and a search made from that point down. In this case the search

will result in the algorithm folding back on itself when it attempts to call searchClass on

class A again. Importantly however, it will not reach class C and therefore not find the i1()

method declared there. This is correct as the classes A and C do not share an inheritance

relationship, and class C does not implement the interface I1.

The final method in class A is the i2() method and again a similar search process is

performed that will first find the method in class A itself, then search up through the in-

terfaces to find the instance in interface I2. Since the method is found in I2, the algorithm

moves back down from there searching for other instances of the method to be added to the

method group. While no new instances are found during the downward search through the

interfaces, the algorithm does encounter class C, causing searchClass to begin there. This
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Figure 3.4: Example System with Method Groups Assigned

is an example of the need to always begin by searching up when moving from interfaces to

classes or vice versa, since in this case class C does not contain the target method, but its

super-class, class B does.

Similarly, the process continues for each method in class B, assigning method groups

to each method (except for method i2() since it was added to a method group earlier),

then moving on to find the last remaining methods in class C. Finally, after all classes

have been searched, a final pass must be done over all interfaces to ensure every interface

method was assigned a token, e.g. interface I3 and the i3() method in the example would

have been missed, since it is not implemented anywhere. For global tokenisation, this is

not as important, since the interface is not implemented anywhere, it will never be used

and if classes are added later that do implement it, the tokenisation will be re-performed.

However, this becomes more important for the next chapter, when incremental tokenisation

is introduced, and classes may be added later that implement the interface without these

current classes being re-tokenised.

The final result of running this algorithm is shown in Figure 3.4, where letters are used

to indicate the method group each method belongs too. Letters are used so as not to confuse

the method groups with tokens, which have not been assigned yet, and is discussed in the

next section.
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3.5 Assigning tokens to Method Groups

With method groups in place, tokens will be assigned to a method group, rather then in-

dividual methods, since every method in a group, by definition, requires the same token.

Even though tokens are assigned to method groups, it is useful to refer to a method as being

“tokenised” if the method group that contains that method has had a token assigned, even

if the assignment happened via another method in the method group. Likewise, a class can

be referred to as “tokenised” if all the methods within the class are tokenised.

As discussed in Section 3.3.2, the ideal solution would be for the token values in each

class to be contiguous (i.e. a given table will, as much as possible, have all its entries used),

which would result in the smallest possible dispatch tables. The other constraint was that

tokens in a sub-class should, as much as possible, be greater than the tokens used in the

super-class, which allows the possibility of only storing the last, changed, section of the

dispatch table.

Since sub-classes should have higher token values than super-classes, the tokenisation

process should start at the root of the inheritance tree with the java.lang.Object class. The

algorithm contains a list of classes currently having tokens assigned (which initially only

contains java.lang.Object) and the current token value (initially 0). While the list contains

classes, an attempt is made to assign the current token value to each class, then any class

with is now fully tokenised is removed and all its sub-classes are added to the list, then

finally the token value is incremented and the process repeats until the list is empty. The

complexity arises when attempting to assign a token to a given class, in which case each

un-tokenised method is consulted to determine if it can have the token assigned to it.

To attempt to assign a token to a class, an attempt is made to assign the token to each

un-tokenised method in the class until one succeeds (or more correct, to each un-tokenised

method group). For a method group to be able to use a given token, a search must be made

for any possible conflicts, that is, cases where assigning the given token to this method

group would result in a class whose virtual method table contained two different methods

with the same token. Since virtual method tables are constructed only in classes, interfaces

do not need to be considered in this process. For the method group being considered, iterate
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through each method contained in the method group and therefore to the class the method is

contained in. For each of these classes, search recursively both up and down the inheritance

tree to find any places where the target token is already used. If any case where the token

is already in use is found, the token can not be used and assignment fails, otherwise, there

are not conflicts and the assignment is successful.

Applying this to running example, Figure 3.4 shows the example system with method

groups in place. Starting from java.lang.Object, there are no methods, so all the sub-classes

are added to the list of current classes. An attempt is then made to assign token 0 to one of

the methods in class A. The first method in class A without a token is a1(), so each method

in the group is checked to see if it can use the token. Since this is the first assignment, there

are not any conflicts anywhere and the assignment succeeds. The same attempt is made to

assign token 0 to class B, and again the first method in this case is a2(), which is the only

method in method group e. As such, class B is searched to see if it can use token 0, and no

conflicts are found. However, when search class B’s sub-classes, it is discovered that class

C contains a method already using token 0, causing this assignment to fail. This highlights

the need to search both up and down the inheritance tree before assigning a token. All

classes currently being processed (A and B) have now been considered, so token 0 has

now been assigned everywhere it can be, additionally, both classes still have untokenised

methods, so they both remain on the list.

Next an attempt is made to assign token 1 to class A, and the assignment succeeds on

method a2() and likewise in class B, where the other a2() method is also assigned token

1. The fact that both a2() methods have been assigned the same token in this case is

coincidental.

The process repeats again, this time attempting to assign token 2 to both classes, again

succeeding in both cases resulting in method group c and f both getting assigned token 2

and both classes remaining to be processed. Next an attempt is made to assign token 3 to

class A, which succeeds in assigning it to the method i2() and therefore method group c.

When attempting to assign token 2 to class B next, the only un-tokenised methods left are

b1() and b2(), however assignment to both of these fail because token 2 is already in use in

class B due to the i2() method. At this point, all methods in class A now have tokens, so
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Figure 3.5: Example System After Assigning Tokens

the class is removed from the list of classes current be processed and all its sub-classes (of

which there are none) are added.

The process continues, assigning token 4 to the last method in class B, then tokens 5

and 6 to class C. Figure 3.5 shows the example system with the token values displayed next

to each method. Any remaining methods in interface that do not already have tokens, must

be methods that are never implemented any, e.g. method i3() in the example. While the

above does not mention it, a final pass is made over interfaces to assign token to any of

these methods. As mentioned earlier, this is not important for global tokenisation, since

these methods are never implemented, and therefore will not be used. However, it becomes

relevant for the next chapter when introducing incremental tokenisation.

There will be cases where a class will not be able to use a given token value, resulting

in a ‘hole’ in the class’s virtual method table, e.g. class B in the example does not use

token value 0. This ‘hole’ will be an entry for the unused token that would map it to a null

value. Provided the original class files were well formed, calls to these null tokens should

never occur. Such events could be guarded against by the virtual machine when performing

method invocations, causing an Error to be thrown if they arise.

3.6 Dealing With Static Methods

Static method calls do not carry the same complexity as virtual method calls and have their

own instruction, invokestatic. The simplicity is due to there being no object reference,
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Figure 3.6: Static method in a super-class

rather the invokestatic instruction will include a method reference (class name, method

name and method descriptor), which will always resolve to the same method (assuming the

classes are not changed and recompiled).

While the call will always resolve to the same method, the reference might not be to

the exact class that contains the method, but could be to a sub-class. The reason for this is

to maintain binary compatibility between class files in situations where otherwise incorrect

behaviour would result. The next section covers binary compatibility in detail, followed by

how static methods are represented in tokenised classes.

3.6.1 Binary Compatibility and Static Methods

Method references supplied to the invokestatic instructions are the same as for all other

invoke instructions (a class name, method name and method descriptor). Depending on

how the code is written, this can lead to cases where the target method is not in the class

specified in the method reference. Consider the classes in Figure 3.6. A perfectly legal call

would be:

Child.m1();

This in turn would be compiled to an invokestatic instruction, with a class reference of Child

and the m1() method. At runtime the invokestatic instruction must search the Child class,

upon finding no matching method, search the Parent class and find the method. Adding

extra complexity to the lookup process seems redundant, when the compiler could have

resolved the method call to point to the class Parent. However, having the compiler resolve

references introduces issues with binary compatibility.

Assume the above method call exists within an application that will not be recompiled.

If the Child class were modified, so that is now contains a static method also called m1(),
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and then recompiled, the above reference in the application should call this new method in

the Child class. However, if the compiler had modified the reference in the application to

point to the Parent class (where the target method was), then the application will continue

to call the static method in Parent, even though a method clearly exists in Child and the

method call clearly states it wants to call that method. While a recompile of the application

would fix this situation, the designers of Java have chosen to retain the method reference

as it appeared in the original source code, so that later changes to other classes (such as the

addition of a method to the Child class) will still produce the expected results.

3.6.2 Static Methods in Tokenised Classes

In the above discussion, a single class could be modified without changing any others,

therefore care had to be taken to maintain the expected behaviour of an application. Since

tokenisation is essentially a pre-linking of a given set of classes, and will be entirely re-

computed if any class changes, it is reasonable to resolve the static method references to

their final target method, removing the need to perform searches of classes to find match-

ing methods at runtime. Additionally, since runtime binding is not needed, static methods

will not need to be allocated tokens as part of the tokenisation process for virtual methods.

Therefore, static method references will be resolved to the class that contains the target

method, meaning that static method tokens only need to be unique within a single class.

As a result, static methods are stored separately from non-static methods within a to-

kenised class file. For each class, static methods are allocated tokens from 0 to n−1, where

n is the number of static methods in that class. For each invokestatic instruction, the method

reference is used to resolve the final target method (which might not be in the referenced

class, as discussed above), then the instruction is updated to include the class token and

static method token for the resolved method. Once installed onto a device, these refer-

ences could then be resolved completely to the static method’s memory location, further

improving the performance of static method calls.

By tokenising static methods separately, they do not need tokens in the virtual method

tables, meaning the tables can be smaller.
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Figure 3.7: Adding new classes to an already tokenised system

3.7 Descriptor File

The tokenisation scheme presented in this section shows how it is possible to use virtual

table dispatch, even in the presence of interfaces, thus allowing the invokevirtual and in-

vokeinterface instructions to share an identical implementation. While the analysis to de-

termine method groups is complex, the actual allocation of tokens becomes simple. If some

additional applications or libraries are to be installed after tokenisation has occurred, all the

classes on the device need to be re-tokenised. Therefore, the tokeniser is required on the

device.

When considering the set of class files on the device, there will be an internally consis-

tent linking between all these files using only the token data. Therefore, the symbolic string

data originally used for linking purposes is not required at runtime. However, if new class

files are added to the system, then these new files will contain references to the existing

classes in string form. Figure 3.7 shows a case where classes A, B and C are already on the

device and tokenised, with references between (and within) these classes all using tokens.

While the new classes D and E will reference each other using the standard string form, as

well as any references to existing classes (i.e. to the API classes). For a new tokenisation

to be performed, these string references must be resolved, meaning the string names for

classes and methods within the already tokenised files, must be kept on the device.

Therefore, the output of the tokeniser will consist of the tokenised class files, as well

as a “descriptor file”, which stores the symbolic string data from the tokenised class files.



103

Using the information in the descriptor file, it is possible to reverse the tokenisation on

a class file and recover the original string names for classes and methods, which will be

required when adding new classes to the system.

3.8 Tokenisation of Fields

Fields in Java are referenced in much the same way as methods, with a symbolic refer-

ence via strings in the constant pool that consist of a class name, field name and field type.

Therefore, tokenising of these field references was investigated during class tokenisation

and the process was found to be trivial. This section presents the issues relevant to tokenis-

ing fields.

There are four instructions used to load and store values in fields, these are: getstatic &

putstatic for loading and storing values in static fields, and getfield & putfield for non-static

fields. Examining the standard version of these instructions, as defined in the Java Virtual

Machine Specification [57], they are found to be very similar. All the instructions are

followed by an index into the constant pool to define which field they are referencing. The

get instructions both result in the loaded value being pushed onto the stack, while the put

instructions both remove a value from the stack. The main difference is that the non-static

instructions will also consume an object reference from the stack.

The constant pool reference, provided as an operand to the instruction, is an index to

a CONSTANT_Fieldref structure as defined in Section 4.4.2 of the Java Virtual Machine

Specification [57]. Figure 3.8 shows how a fieldref entry provides the required symbolic

information. The fieldref entry points to two intermediate entries, the CONSTANT_Class

and CONSTANT_NameAndType. These in turn point to the final three CONSTANT_Utf8

entries, which provide the class name, field name and field type, in much the same way a

method reference contains a class name, method name and method descriptor.

The two types of fields, static and non-static, are handled separately. A static field is

contained within a class, while a non-static field will be within an object. The following

section will look at how often field references are used, to justify the importance of also

optimising field instructions. Following that, first static, then non-static fields are examined
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Figure 3.8: Structure of a symbolic field reference

and how tokens can be allocated to them. While these sections cover allocation of tokens,

Chapter 5 covers implementing a tokenised virtual machine. In particular, Section 5.3.2

covers the get/put-static instructions and Section 5.3.3 covers the get/put-field instructions.

3.8.1 Static Fields

A static field is a global variable, in that there is only ever one instance of the field in

the virtual machine. This means there is no need to allocate space for a static field in each

object of the class. The space to store a static field only needs to be allocated once, when the

class is loaded. Static field references will always contain a class, however this may not be

the class that actually holds the static field. As discussed in Section 1.4.4.5, standard class

files must be able to be recompiled individually and still maintain the expected behaviour.

As such, references to static methods and static fields can sometimes be to a class that does

not actually contain the method or field. During tokenisation, the converter will perform

the same search the virtual machine would normally have to perform to find the class that

contains the target field. The field reference will then be updated to contain the class token

for the final target class.

Now a static field’s token need only be unique for the class that contains the static

field. When the class is loaded and the static fields are initialised, the tokens can be used to

create a table of fields for that class. Any get/put-static instructions can use the token value

to efficiently lookup the table of static fields. This has been combined with a modification

to the get/put-static instructions to include the class and field tokens into the bytecode

operands. More details on the instructions are given in Section 5.3.2.
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3.8.2 Fields in Interfaces

Java allows fields to be declared in an interface. At first it seems the compiler will allow

the declaration of non-static (although they must be final) fields in an interface. Section

9.3 of the Java Language Specification [61], however, states that “Every field declaration

in the body of an interface is implicitly public, static, and final”, even if the field does not

explicitly list these qualifiers (although it can).

While at first glance it appears that fields in interfaces can be non-static, and therefore

will need to be handled with the other non-static fields, this is not the case. Instead the

fields can be tokenised and referenced as defined above. This is an important point, as it

greatly simplifies the following section handling non-static fields. Not only this, but the

fields must be final. While in standard Java, this must still result in a getfield instruction,

so that if the interface is recompiled and the values changed, other class will read the new

values. However during tokenisation there is no reason why these final values cannot be

included into classes as constant values.

3.8.3 Non-static Fields

The non-static fields for a class are the fields that will exist in every object of that class.

When a class extends a super-class, all the super-classes non-static fields will continue to

exist, while any new ones will need to be added. This means that for an object of a class

C. Entries need to exist in order to hold the value of every non-static field in C, as well as

every non-static field from the super-class of C and so on all the way up to java.lang.Object.

This means that field tokenisation must now take into account the field tokens that have

been allocated in the super-class. However as stated in the section above, interfaces will

never have non-static fields, meaning only the inheritance tree of class files needs to be

considered, rather than the graph of interface relationships.

Allocating tokens in this tree structure can be accomplished with a simple algorithm,

starting at java.lang.Object and allocating increasing tokens down each branch of the tree.

This is the same sort of token assignment as used for methods in Java Card (discussed in

Section 2.5). This also guarantees that if the total number of non-static fields for a class and
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all its super-classes is n, then the field tokens will always be in the range of 0 to n−1. These

tokens can then be used to find the offset to the field with an object. Detailed information

about the implementation of getfield and putfield is in Section 5.3.3.

3.9 Libraries Used For Testing

Several libraries and applications were used throughout testing and will therefore be used

through this thesis. Tests included:

• conversion tests, checking the efficiency of token allocation and virtual method table

size,

• compression tests, to check the level of compression obtained,

• execution tests, to ensure that tokenised files were still executable, and

• testing the minimum size required for certain data types (such as instruction op-

codes).

This chapter will only be examining the conversion tests in relation to the global tokenisa-

tion that has been presented, the other tests will be presented in later chapters.

Table 3.1 lists each test case used and where the files were sourced from. The CLDC,

MIDP and J2SE tests all used packages available from Sun Microsystems. The Javolution

[25] tests consisted of a third-party open-source library designed to support real-time ap-

plications, which also contained a benchmark suite. The test case names in Table 3.1 are

used throughout the rest of this thesis when referring to different test cases.

The following sections discuss each of the libraries in more detail. Details for each test

case include:

1. Test Case - The name used in this thesis to refer to the test case.

2. Classes - The number of classes found in the test case (includes concrete and abstract

classes, but not interfaces).

3. Interfaces - The number of interfaces found in the test case.
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Table 3.1: Libraries used for each test case

Test Case Source Description
CLDC1.0 CLDC 1.0.4 The CLDC 1.0 API.

Reference Implementation
CLDC1.1 CLDC 1.1 The CLDC 1.1 API.

Reference Implementation
CLDC1.1M CLDC 1.1 The CLDC 1.1 API with

Reference Implementation reduced native methods.
MIDP MIDP 2.0 The MIDP 2.0 API.

Reference Implementation
MIDPExamples MIDP 2.0 Example applications using

Reference Implementation the MIDP 2.0 API.
Javolution3 Javolution 3.7.10 Real-time library and

benchmark suite.
Javolution5 Javolution 5.2.5 Real-time library and

benchmark suite.
J2SE J2SE 1.4.2_17 JDK J2SE API classes.

4. Methods - The number of method entries found, these may or may not have code

associated with them. In particular, abstract methods, methods declared in interfaces

or methods declared NATIVE are included in this number.

5. Methods with code - The number of method entries that also have bytecode associ-

ated with them.

6. Unique Selectors - The number of unique method selectors found in the test case.

A method’s selector consists of the method’s name and the method’s descriptor.

There will typically be less unique selectors than methods, since some methods will

reuse selectors, i.e. over-ridden methods or common method names, such as a size()

method.

3.9.1 CLDC API

The CLDC 1.0.4 and 1.1 reference implementations from Sun were used. From each pack-

age the corresponding source files that implement the CLDC API were extracted. Each of

these were independently compiled to form the CLDC1.0 and CLDC1.1 test cases.
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Table 3.2: Size of CLDC tests

Test Methods Unique
Case Classes Interfaces Methods with code Selectors

CLDC1.0 99 14 793 656 354
CLDC1.1 85 13 625 524 316

CLDC1.1M 85 13 626 532 316

An additional version was also created, referred to as CLDC1.1M, used for execution

tests in Chapter 5. The CLDC1.1 library includes several native methods, either for inte-

gration with the virtual machine or for performance reasons. To simplify implementation

of a custom virtual machine, these native methods were, where possible, implemented in

Java.

Table 3.2 shows the size of each test case, with CLDC1.0 slightly larger than CLDC1.1.

The counts are nearly identical for the CLDC1.1 and CLDC1.1M packages, except for one

additional method and more methods with implementations in the CLDC1.1M package as

a result of replacing the native method prototypes with Java code.

3.9.2 MIDP API and Example Applications

The Mobile Information Device Profile provides services and libraries in addition to CLDC

for applications on devices such as mobile phones or PDAs. Services in MIDP include

application support (referred to as MIDlets), application life-cycle, GUI access and inter-

action. Significantly, this library is underpinned by many native methods.

The MIDP distribution from Sun Microsystems also includes several example applica-

tions. The classes for these example apps were separated from the MIDP API classes and

formed their own test case. There are 13 example applications of varying complexity (from

the equivalent of “Hello World”, to a simple Towers of Hanoi game).

The MIDP library was significantly larger then the CLDC library, as shown in Table

3.3. Since the CLDC library is the “lowest common denominator” for the varied profiles

it supports, it consists mostly of just framework, while the MIDP library provides imple-

mentation for many features (such as providing a complete networking stack). As well, the

MIDP library adds extra functionality in the form of GUI support and user input. Finally,
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Table 3.3: Size of MIDP tests

Test Methods Unique
Case Classes Interfaces Methods with code Selectors

MIDP 196 43 2305 1893 1264
MIDPExamples 74 0 547 547 317

Table 3.4: Size of Javolution tests

Test Methods Unique
Case Classes Interfaces Methods with code Selectors

Javolution3 262 52 1971 1629 781
Javolution5 367 62 2522 2072 966

the example applications are fairly large, with nearly as many classes as the CLDC library

itself. However, none of the applications are complex enough to include interfaces, instead

consisting entirely of classes and with all methods having implementations associated with

them.

3.9.3 Javolution

The Javolution library [25] is an open-source library to provide support for real time appli-

cations and includes time-deterministic versions of many of the API base classes (such as

the util / lang / text / io / xml packages). Two versions of this library were used for testing,

version 3.7.10 and the newer 5.2.5. The Javolution library was chosen for three reasons:

1. Provides a runnable application (in the form of a benchmarking suite).

2. Can run on many platforms, including CLDC 1.0 & 1.1 without requiring any other

libraries (most importantly, MIDP support is not required).

3. Is implemented purely in Java.

This allowed the Javolution library to serve as a complex library/application that could

easily be executed to check for correct operation. As shown in Table 3.4, the 5.2.5 ver-

sion contained 367 classes, which is more then the CLDC1.1, MIDP and MIDPExamples

combined.
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Table 3.5: Size of J2SE test

Test Methods Unique
Case Classes Interfaces Methods with code Selectors
J2SE 9075 1035 74313 65345 26717

3.9.4 J2SE API

While the main focus of the work is on J2ME, the API from J2SE was also as a very large

scale test, with 9,075 classes and 1,035 interfaces, as shown in Table 3.5. Such a large

number of classes proved a useful stress test, especially for checking the required sizes of

some data structures. The 1.4 version of the J2SE API was used as J2ME and in turn the

converter, does not support the extra features added in Java 52, such as generics.

In order to have a complete set of class files (since for every class, the converter must

be able to load every other class that it references), several Jar files from the distribution

had to be combined. The Java 1.4.2_17 version of the Java runtime environment for Linux

was downloaded from Sun Microsystems and the JAR files containing the relevant class

files were extracted from the distribution. In particular, the JAR files used were: rt.jar,

charsets.jar, jce.jar and jsse.jar. All class files were extracted and placed into a single

directory and form the classes used for the J2SE test case.

3.10 Global Tokenisation Efficiency

To metrics used to examine the efficiency of global tokenisation is the number of tokens

used to tokenise all methods and the size of the dispatch tables. Results against these met-

rics are compared to previous techniques that have been used to generate dispatch tables,

which were presented in Section 1.3. Testing was done using the packages described above,

with some tests consisting of 2 or 3 of the packages being combined before tokenisation.

The combinations tested consisted of the following cases (’+’ indicates the packages were

combined, then tokenised):
2Java version numbering changed between Java 1.4 and Java 5. Java 5 is equivalent to Java 1.5 in the old

versioning scheme.
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• CLDC1.0

• CLDC1.0 + MIDP

• CLDC1.0 + MIDP + MIDPExamples

• CLDC1.1

• CLDC1.1M

• CLDC1.1M + Javolution5

• CLDC1.1M + Javolution3

• J2SE

3.10.1 Token allocation efficiency

To avoid having large dispatch tables with many blank entries (i.e. for token values the

class does not accept), the token allocation needs to ensure each class has a contiguous (or

as close to as possible) range of tokens. As discussed in Section 3.3.2, there will be cases

when null entries must be used within some dispatch tables.

While Java Card can produce dispatch tables which are always full (i.e. no null entries),

they require secondary tables to dispatch interface methods. Section 1.3 discussed previous

approaches to building dispatch tables.

In analysing the performance of the global tokenisation scheme, the number of tokens

required to tokenise each test cases is first examined. Table 3.6 shows for each test case,

the total number of methods (with or without code associated with them), the number of

unique selectors (i.e. unique pairs of method name and descriptor) and the number of

tokens required to tokenise that test case. The final column shows the number of tokens

used by the selector colouring algorithm described by Dixon et al. [28] (and previously

discussed in Section 1.3.1).

Selector colouring uses the same or slightly less token values than the tokenisation

algorithm presented in this thesis. However, the overall size of the dispatch tables is more
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Table 3.6: Number of tokens used during tokenisation

Test Total Unique Used Selector
Case Methods Selectors Tokens Colouring

CLDC1.0 793 354 83 83
CLDC1.0+MIDP 3098 1492 101 101

CLDC1.0+MIDP+MIDPExamples 3645 1754 116 115
CLDC1.0 + Javolution3 2764 1060 84 83

CLDC1.1 625 316 44 44
CLDC1.1M 626 316 44 44

CLDC1.1M + Javolution5 3148 1204 74 74
J2SE 74313 26717 599 587

important than the number of tokens used, as it is the size of the tables that defines amount

of memory required. Therefore, the next section examines the compactness of the dispatch

tables.

3.10.2 Virtual Method Table Size

For any given class, the number of used (i.e. non-null) entries in the class’s dispatch table

is a fixed number, defined by the number of methods that can be called on the class. There-

fore, the overall size of the dispatch tables, and therefore their memory requirements, for a

system will depend on how many null entries are needed in the dispatch tables.

Table 3.7 shows the number of used entries in the Virtual Method Tables (VMTs) for

each test case. The Total VMT Entries and % Used columns show the number of entries

produced by the tokenisation algorithm presented in this chapter and therefore what percent

of the virtual method tables were actually used (i.e. not null). The final column shows the

percentage of the tables that were used when the selector colouring algorithm from Dixon

et al. was used.

While Table 3.6 above showed that selector colouring could sometimes use less tokens

than the approach in this thesis, Table 3.7 shows that the virtual method tables become

very sparse, with just over 50% used in the best case. The final column shows the relative

increase in the size of the dispatch tables in the case of Selector Colouring.

Examining the virtual method tables that resulted from both approaches, the reason
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Table 3.7: Usage of Virtual Method Tables

Test Used VMT Total VMT Selector Colouring Increase
Case Entries Entries % Used % Used In Size (%)

CLDC1.0 2159 2179 99.08 32.36 306.19
CLDC1.0 + MIDP 7694 8271 93.02 35.55 262.04
CLDC1.0 + MIDP
+ MIDPExamples 10570 11998 88.10 38.39 229.48

LDC1.0 +
Javolution3 7691 7976 96.43 30.86 312.47
CLDC1.1 1481 1487 99.60 50.62 196.75

CLDC1.1M 1482 1488 99.60 50.65 196.64
CLDC1.1M +
Javolution5 8495 8800 96.53 33.97 284.17

J2SE 381163 586989 64.94 12.50 519.48

for such a large difference is due to the order of token allocation. While the tokenisation

approach in this thesis attempts to allocate tokens in increasing order down through sub-

classes, selector colouring attempts to minimise tokens used. While, selector colouring can

use less tokens, the average range of token values used in a given class is often much wider,

therefore requiring many more null entries.

3.11 Conclusions

The tokenisation presented in this chapter will result in class files that are smaller in size

(due to the removed symbolic linking strings) and faster to execute (due to the use of

virtual method tables). The next chapter will detail an extension to the tokeniser, allowing

incremental tokenisation. Chapter 6 then discusses the compression of class files and the

tokenised class file format in detail. Chapter 5 details the modifications required to a virtual

machine to allow it to execute tokenised class files natively. All the work presented in this

thesis is then brought together in Chapter 7, which presents results to show the reduction

in class size, the increase in execution speed and that tokenised applications can still be

correctly executed.
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Chapter 4

Incremental Tokenisation of Class Files

4.1 Introduction

The tokenisation presented in the previous chapter allowed for virtual method dispatch, via

virtual method tables, even in the presence of interfaces. However, the tokenisation must

be applied to all class files on a given device, in a single pass. A more practical approach

would be able to apply the tokenisation incrementally, allowing new applications to be

added to an already tokenised device, without needing to retokenise existing class files.

This chapter will cover the complexities and changes required to allow such incremental

tokenisation to take place.

4.2 Overview of Incremental Tokenisation Process

When performing incremental tokenisation, knowledge is needed of the existing classes,

methods and the relationships between them. However, these classes are not going to

be modified and as all the required information can be found in the descriptor file the

converter does not need access to the class files themselves. In particular, the descriptor file

will include details of each class (the class name, token and flags to indicate if it is abstract

and/or an interface), details of each method (which class its in, name and descriptor strings,

method token) and the contents of each method group.

Section 3.3.4 gave the overall process followed for global tokenisation. For incremental

tokenisation the process is very similar, however an addition step is added at the beginning
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to load the existing descriptor file. The incremental tokenisation process now consists of:

1. Load the existing descriptor file, and recreate the data structures to represent

classes/methods/method groups. This represents the completely tokenised system

as it currently exists (i.e. without the new classes added).

2. Now load the new classes and add them to the existing meta-data. This gives a full

set of classes and associated meta-data, some of which has been tokenised, and some

which is new.

3. Perform method-group creation again. During this process, existing method groups

must be taken into account, and conflicts handled when they arise.

4. Assign tokens to those methods which still do not have tokens.

5. For the new classes, one at a time, read them into memory, update them with token

information and save the resulting tokenised file back to disk.

6. Output the new descriptor file, which will contain the meta-data for the entire system

(that is, the classes that were described in the original descriptor file as well as the

new classes just added).

While steps 2 to 6 of the incremental process correspond to the 5 steps presented in Section

3.3.4, each step is slightly different, since some classes are already tokenised (i.e. when cre-

ating method groups and assigning tokens, the previously tokenised methods will already

be in method groups and have tokens).

4.3 Difference to Simple Tokenisation

The simple tokenisation scheme presented in the previous chapter does a good job of min-

imising the token values used, but at the cost of needing be performed as a global operation.

The next goal was to allow the above process to be applied in an incremental fashion, al-

lowing the API to be tokenised, then applications tokenised without needing to modify

the API. Figure 4.1 shows an example of the process to install an application on a phone.
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Figure 4.1: Work Flow for Incremental Tokenisation

Initially a manufacturer will produce a tokenised version of the API which is installed on

devices. Next, developers download an SDK from the manufacturer that includes a de-

scriptor file and the converter. The descriptor file describes the relationships between the

name/descriptors used to identify methods and the tokens that are now used on the de-

vice. The third-party can use the converter, along with the descriptor file, to tokenise their

application such that it will be executable on the device.

During global tokenisation, all relationships between classes/interfaces/methods could

be discovered and taken into account. However, during incremental tokenisation, the con-

verter has no knowledge of what classes or interfaces might be added later, leading to the

converter making sub-optimal decisions. In particular, there are two types of problems

that can arise as the result of new relationships being created between previously unrelated

classes. Following are descriptions of these two specific problems. Section 4.4 then deals

with how these problems can be overcome.

4.3.1 Same Methods, Different Tokens

The “same methods, different tokens” problem arises when two previously unrelated meth-

ods (which have the same name and descriptor) were assigned different token values, but

through the addition of new classes, have now become related. Figure 4.2 shows an exam-
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Figure 4.2: Methods with different tokens

ple of the “same methods, different tokens” problem. Here the method m2() in Class1 has

the token value 2, while the method m2() in the interface Interface1 has token 3. Since the

App class was not present during the previous tokenisation, these methods were not in the

same method group and therefore have different tokens, which was perfectly valid. With

the addition of the App class however, the two methods now require the same token.

The goal of the incremental scheme is to allow App class to be tokenised without need-

ing to modify the existing Class1 or Interface. To resolve this problem, both token values,

2 & 3 can be used to reference the same method. The virtual method table in the App class

will therefore have tokens 2 & 3 both point to the appropriate version of m2() (in this case,

the one in Class1).

4.3.2 Different Methods, Same Tokens

The second problem arises when two different methods never appear in the same class, and

therefore have been assigned the same token. However, the dispatch table of a new class

must use the same token to call two different methods. Figure 4.3 shows a case where a new

application class has extended an existing class and also implemented an existing interface.

In this case the two existing entities were not previously related, therefore the same token

(2) has been used to represent both m2() and m3(), depending on the context. At runtime,

a request to dispatch token 2 for the App class is ambiguous, since it could refer to m2()

from Class1 or the implementation of m3() defined in Interface1. Since both Class1 and

Interface1 can not be modified to avoid this conflict, extra steps must be taken at runtime

to resolve the ambiguity.

The different methods, same token problem always involves exactly one class in the
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Figure 4.3: Methods with the same tokens

Figure 4.4: VMT with a conflict entry

existing system (since any class will only ever extend one other class in Java), and 1 or

more interfaces (since zero would not result in a conflict). This property is important for

resolving the situation.

There are two cases that can occur at runtime; firstly, an object of type App is stored in

a variable that is of type App or one of its super-classes. In this case, a method call on that

object would use the invokevirtual instruction. The second case is where the object of type

App is stored in a variable that is an interface type (i.e. Interface1). This would result in a

method call using the invokeinterface instruction.

Solving this problem involves adding a special “conflict entry” to the virtual method

table (VMT) at the entry for token 2, which will consist of a “default” entry, and 1 or more

“interface” entries. Figure 4.4 shows the virtual method table for the above example. For

token values 1, 3 and 4, they map directly to the appropriate method. Due to the conflict

with token 2 it now references a special conflict entry. When an invokevirtual instruction

uses token 2, the default value in the conflict entry is always used (calling the method m2()

in Class1 in this case). The conflict entry also includes a table of interface entries, which

will consist of an entry for each interface that introduced a conflict and which method

should be called instead of the default. In this example there is only the one interface entry,

for Interface1. For example, consider the following code snippet:
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Interface1 i = new AppClass();

i.m3();

The above code will be compiled to an invokeinterface instruction for token value 2 (the

token of the m3() in Interface1), and will include the class token for Interface1, to indicate

the declared type. During execution, token 2 results in the conflict entry being found, a

search is then made of the interface entries looking for Interface1. Upon finding a match,

the virtual machine will use the pointer from that interface entry (resulting in the m3()

method in the App class being called). If no matching entries were found for the given

interface, the virtual machine will assume that interface did not introduce any conflicts and

use the default entry.

Both the “same methods, different tokens” and “different methods, same tokens” prob-

lems can occur in the same class, and affect the same methods. However, the solution to

each problem is not mutually exclusive. Therefore, both solutions can be applied, even to

the same method, without introducing any further constraints.

4.4 Extending Method Groups

Figure 4.5 shows an already tokenised system consisting of a class and two previously

unrelated interfaces, and a new class that is being added. The “same methods, different

tokens” problem can be seen where the i2() method uses token 3 in class A and token 4

in interface I2. Also, the “different methods, same token” problem can be seen where

interface I1 uses token 1 for the method i1(), but class A uses token 1 for method a1(). This

example will be used throughout this section and the following ones to show the process for

extending the method groups, assigning tokens and finally building virtual method tables.

Global tokenisation had the concept of a “method group”, which consists of a list of one

or more methods that require the same token and the token assigned to them. However, the

difference in the incremental case is that for a given method group, some of the methods

may already have a token assigned (or even multiple different tokens), while others are still

in need of a token. Since a method group as used in global tokenisation can only have
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Figure 4.5: Example of adding incremental class

a single token assigned to it, they are considered a “single-method group”. A new type,

called a “multi-method group”, is defined for incremental tokenisation. A multi-method

group does not contain a token or list of methods itself, rather it contains a list of two or

more single-method groups. A multi-method group with only one single-method group

would be redundant, and can be represent by the single-method group on its own. This

allows the representation of cases where a group of methods would ideally have the same

token, but due to conflicts, end up with several different tokens. For example, to represent

the i2() method from class A and interface I2 in Figure 4.5, there would be two single-

method groups with the token values 3 and 4 respectively. Both of these would then be

contained within a multi-method group (due to the addition of class B which now requires

the two methods to be related).

Section 3.4.1 described the process of creating method groups during global tokenisa-

tion and consisted of a single pass over all the classes and interfaces to create the method

groups. Incremental tokenisation requires a two-pass process. The first pass is identical to

global tokenisation, however each time a group of methods that require the same token is

identified, some methods will already have method groups (and therefore a token assigned),

while other methods may be new and require a token. Multi-method groups are created in

these cases, with already tokenised methods in single-method groups with their token, and

newly added methods in another single-method group yet to be assigned a token. This first

pass builds the information needed by the tokeniser to be able to determine which tokens

are used where. The second pass then performs a simplification, attempting to move any

untokenised methods into an already tokenised one in the same multi-method group (if one
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Figure 4.6: Method Groups for the example system

exists).

With the concept of single and multi-method groups defined, consider the process of

creating method groups in the incremental case. The tokeniser uses the same search tech-

nique as described in Section 3.4, which produces single-method groups, however some or

all of the methods may already have a method group assigned. For example, the tokeniser

could start by examining class A and method a1(), where it will find the instance in class A

and the one in class B. During the first stage of method group creation the tokeniser doesn’t

attempt to determine if an untokenised method (i.e. a1() in class B) can use a given token

(i.e. token 1 used by the a1() method in class A). This is because the tokeniser does not

yet have complete knowledge of which methods require the same tokens and which do not,

and therefore can’t know if a given token can be freely used in a given class or note. There-

fore, a new multi-method group is created containing two single-method groups, one with

a token already, one without. The process continues and will result in four multi-method

groups, one for each of the methods: a1(), a2(), i1() and i2() as shown in Figure 4.6. For

the a1(), a2() and i1() multi-method groups, there will be two single-method groups, one

with a token and one for the newly added method in class B. In the case of the i2() method,

there will be three single-method groups, one for each of the existing tokens and a final one

for the untokenised method in class B.

Once the first pass is complete, the tokeniser can then attempt to simplify the method

groups, now that it has complete knowledge of which methods need the same tokens. The

same process that was presented in Section 3.5 for checking if a given method can use a

given token without conflict is used here. For example, in the case of the a2() method, the
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Figure 4.7: Method Groups after simplification

instance in class B does not have a token, so the same process as in global tokenised is

used to find that token 2 is not used anywhere else. At this point the B::a2() method can

be moved into the already tokenised method group along with the A::a2() method. The

now empty single-method group is removed. Since the multi-method group now contains

only one single-method group, it is also removed, leaving just the single-method group

containing both methods. In the case of the B::a1() method, it would appear that it couldn’t

use token 1 since that is in use by I1::i1(). However, since B::a1() is overriding A::a1(), that

takes precedence and multi-method group can be simplified. This means that the B::i1()

method can’t be simplified, since token 1 is already in use, so must remain. For the final

multi-method group, the B::i2() method can be combined with either of the existing tokens,

since both 3 and 4 are not used anywhere else. This results in the simplified method groups

shown in Figure 4.7.

4.5 Assigning tokens

After method groups have been updated and simplified, tokens must be allocated to any

remaining single-method groups that do not yet have tokens. The process is the same as

for the non-incremental tokenisation, detailed in Section 3.5, except for the case of multi-

method groups and those method groups which already have tokens. Any method groups

that already have tokens are those that were tokenised during a previous run of the tokeniser.

Since incremental tokenisation can not change any tokens that were previously allocated,

the method group is considered tokenised.

A multi-method group is considered tokenised only when all of its sub-groups have

tokens. A multi-method group will always have at least one set of methods with an existing
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token and up to one set of methods without a token. During the simplification of method

groups, the multi-method group will have been tested to see if untokenised methods could

use any existing tokens, therefore any remaining untokenised methods will require a new

token. Section 3.5 described assigning tokens to method groups for global tokenisation. If

a method is a part of a multi-method group, then the token allocation is attempted for the

group of untokenised methods within the multi-method group. If there are no untokenised

methods, then the method group is considered tokenised.

In the case of the example, there was only the one method group left untokenised after

simplification, as shown in Figure 4.7. Since tokens 1 to 4 are already in use, the next

available token, 5, will be assigned.

4.6 Building Virtual Method Tables

After all methods have been assigned tokens, Virtual Method Tables (VMTs) can be built

for each class file. When installed to a device, the VMT will contain pointers to target

methods. However, since the tokeniser outputs individual class files, absolute offsets can

not be given to methods outside the current class. The tokeniser will instead output a

VMT which contains symbolic references to the target methods. During installation, these

symbolic references can be converted into absolute offsets for a given device. The symbolic

reference will include a class token to indicate the relevant class, and a method token.

Unlike method references via a class’s constant pool, the class token will always indicate

the class that contains the target method. Since a class can only ever have one method with

a given token, a class token/method token pair will always identify a single unique method.

The final VMT can be considered an array with three possible types of entries: null,

single and multi entries. The null entries indicate a token value that can never be used,

while single and multi entries denote the single- and multi-method groups respectively.

The multi-method groups resulted from the “same methods, different tokens” problem dis-

cussed in Section 4.3.1. This situation is resolved by having multiple entries in the one

virtual method table point to the same method. The “different methods, same tokens”

problem discussed in Section 4.3.2 occurred when two or methods with different selectors
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were required to have the same token. To resolve this situation, the virtual method table

entries in this case must differentiate between the selector gained via inheritance (the so

called “default” entry used for the invokevirtual instruction), and the ones gained via in-

terfaces (and used by the invokeinterface instruction). This requires building the virtual

method tables in several steps. The follow sections discuss the process in more detail, but

as an overview, the process consists of:

1. Local tables are built. For a class, this consists of the super-class’s table plus any

methods in the current class. For an interface, the table just contains the methods

in that interface. An entry consists of just a name/descriptor pair and the index at

which it is placed, indicating that that token value should call a method with that

name/descriptor. At this point there will be no conflicts in the tables. This identifies

the “default” entries that should be used, should conflicts occur later.

2. Combine the local tables for each class with those from any implemented interfaces

to produce a tokenised table. Any conflicts will become apparent at this point when,

for the same token, the class’s local table has a different name/descriptor than an

interface’s table does. These will be converted into a conflict entry. Additionally the

name/descriptor pairs are resolved during this process to the final target method.

3. Using the tokenised table, generate an encoded VMT attribute where each entry is a

class token/method token pair, which denotes the exact class and method that would

need to be executed (since many of these target methods could be in other classes).

This encoded form is then stored in the binary class file as an attribute.

4. When the class is loaded by the VM, use the class token/method token pairs to resolve

the target method and produce a table with direct links to the target methods (which

could be performed during installation on a device, during VM startup or in a lazy

manner as entries are used).
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Figure 4.8: Local tables for example classes

4.6.1 Building Local Tables

A class or interface’s local virtual method table will only contain entries for methods in

that class or interface, where each entry will consist of the method’s name and descriptor

strings. The local table provides the first stage of building virtual method tables, indicating

for a given token (index into the VMT), the name and descriptor of the method to call, but

not which class that target method is in. In the case of multi-method groups, there will be

more than one token. In this case, the token for the single-method group that contains the

method from this class will be used when building local virtual method tables.

To build a given class’s local table, the super-class’s table is needed, therefore con-

struction of tables must begin at java.lang.Object and proceed down via the inheritance

pathways to each sub-class in turn, once its parent is complete. In the case of interfaces,

an empty table is always used as the starting point. For each class, the following process is

used:

1. Copy the parent’s table (or for java.lang.Object or an interface, start with an empty

table).

2. For each method in the current class, find its token (for methods with more than

one token, i.e. in a multi-method group, take the token for the individual group that

contains that particular method).

3. Insert the method’s name/descriptor pair into the local table at the given token offset.

If an entry already exists at that offset, it will always have the same name/descriptor

(since it would be over-riding a method in a super-class).

Figure 4.8 shows the result of applying this process to the example classes. Each inter-

face only has a single entry for their respective methods. Similarly, for class A, only the
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two methods defined in that class are included. For class B, the two entries from class A

are inherited, then the two new methods defined in class B are included. Since the table in

class B does not take into account interfaces yet, the conflict in token 1 is not yet apparent.

4.6.2 Building Tokenised Tables

Tokenised virtual method tables will combine the class’s local table with those from any

interfaces the class implements, while also resolving the name/descriptor strings from the

local table to the final target method and hence a class token and method token pair. The

class/method token pair is used a symbolic reference to the exact method to call. When

installed to a device, these entries can be updated to more direct references, such as a

memory offset of where the target method resides in memory.

To begin, the methods in the class’s local table are resolved to their targets. To resolve

each entry in the local table, a search is made starting in the current class (the one that the

virtual method table is being built for) and searching for a method with a matching name

and descriptor. If not found, the search is performed recursively in the super-class, until a

match is found (and one will always be found, or the entry would not have been in the local

method table). For the local tables generated in the previous section, shown in Figure 4.8,

resolving the methods is trivial. For both the A and B classes, all the methods in their local

table are present in the class itself. If class B had inherited methods that it didn’t override,

then those entries would be resolved to the appropriate method in the super-class. If the

“different methods, same tokens” problem presented in Section 4.3.2 is encountered for

any tokens in the class’s virtual method table, then these current entries will become the

default value in the conflict entry.

The next step is for any classes that implement interfaces to merge the interface’s local

table into its own. For each entry in an interface’s table, the entry for the corresponding

token in the class’s table will be check. There are three possible outcomes:

1. The entry in the class’s VMT is null. The “same methods, different tokens” problem

has occurred and the target method currently has a different token value pointing to

it. The existing entry is left, and the name/descriptor from the interface’s table is
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used to resolve the target method, which is added to the class’s VMT at this index.

2. There is already an entry present, but it has the same name/descriptor as the inter-

face’s entry. Then a call for that token value will execute the correct method and

nothing else is needed (this is the ideal case when neither of the “same methods,

different tokens” or “different methods, same tokens” problems have occurred).

3. There is already an entry present, but it has a different name/descriptor. The different

methods, same token problem has occurred, which means this entry must behave

differently when an object is declared to be of this interface type and a conflict entry

is needed in the VMT. The default entry will be the current entry, while an extra

conflict line will be added for this interface type, pointing to the method found after

resolving the name/descriptor from the interface’s table.

For the running example, only class B implements any interfaces. Taking the local tables as

shown in Figure 4.8, class B will need to be merged with both I1 and I2. When merging I1,

a conflict is discovered, since class B uses token 1 for the a1() method, however interface

I1 uses it for the i1() method. This causes the entry in class B’s virtual method table to be

converted to a conflict entry. The default entry will be the current method (i.e. the a1()

method), while a conflict line will be added to indicate that if an object is being treated

as an I1 type, token 1 should call the i1() method. Finally, the table from interface I2 is

also merged. In this case the additional entry for the i2() method fits into the unused slot

at token 4. The final virtual method tables are shown in Figure 4.9. The effects of the

“different methods, same tokens” problem can be seen in the conflict entry for token 1 in

class B. While the effect of the “same methods, different tokens” problem can be seen in

the case of tokens 3 and 4 both referring to the same method. Virtual method tables are

only used by objects of a given class. Since interfaces can not be used to create objects

(rather an object of a class is created, which implements the interface), they do not require

virtual method tables. At this point the virtual method tables for the example system of

have been generated and all that remains is to encode them into the binary class files.
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Figure 4.9: Virtual method tables for example classes

4.6.3 Generating an Encoded VMT

With the virtual method tables generated, each class will now have a VMT that consists of a

class/method token pair to identify the target method (or in the case of conflicts, the default

method and alternate methods for the interfaces that introduced conflicts). The final stage

for the tokeniser is to encode this information into the tokenised binary class files, which

requires encoding references to target methods. While direct method references could be

stored for methods within the current class, methods within another class require symbolic

references. A class token and a method token can uniquely identify any method within the

system (since a class can not have two methods with the same token), therefore each method

reference is encoded as a class token/method token pair. The installer or virtual machine for

a device can resolve these references at install time, class load time or at runtime as entries

are used, potentially updating them to direct references to the target method, depending on

the design of the system.

Since objects can only be made of class types, it is only classes that require virtual

method tables (in particular, interfaces do not require a VMT). To avoid overhead in inter-

faces, the VMT is added as an attribute at the end of a binary class file. The encoded VMT

will contain a count for the number of entries, followed by that many entries. These entries

will correspond to the entries in the VMT from index 0 and up, with three types of entries:

null, single and conflict. Each entry in the table (null, single or conflict entry) will have the

general form:

VMTEntry {

u1 type;

}
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VMTEntryNull {

u1 type = 0;

}

VMTEntrySingle {

u1 type = 1;

u2 class_token;

u2 method_token;

}

VMTEntryConflict {

u1 type = 2;

u2 default_class_token;

u2 default_method_token;

u2 conflict_count;

{

u2 interface_token;

u2 class_token;

u2 method_token;

} conflicts[conflict_count];

}

Figure 4.10: Types of VMT entries for tokenised binary class files.
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Where the type value will denote which of the three types the entry is. Figure 4.10 shows

the three specific entries that can be present: Null, Single or Conflict. An 8 bit value for

type is very inefficient for representing only 3 possible values, however all class files are

encoded as a sequence of 8 bit words, making this the smallest possible choice. The high-

order 6 bits could be used for future use to encode new information if required. A Null

entry is used to denote a gap in the VMT, therefore it only requires a type. The Single entry

is for a regular VMT entry and contains the class and method tokens. The Conflict entry

is used to represent conflicts and will contain the default class/method tokens, as well as a

variable length list for each conflict line.

The encoded VMT entries are stored within a VMT attribute, details of which are given

in Section 6.5.8, while full details of the binary file format used for tokenised files is in

Appendix A. Section 5.2 discusses how the virtual machine will make use of these encoded

VMTs at runtime.

4.7 Issues with incremental tokenisation

Section 4.3 described both the “same methods, different tokens” and “different methods,

same tokens problems” and their solution. Special “conflict” entries were added to the

virtual method table to solve the different methods, same token problem. However, the

addition of conflict entries introduces a new ambiguity which is discussed in the next sec-

tion. Following that, is an examination of trying to extend multiple tokenisations, binary

compatibility issues and finally the tokenisation of static methods.

4.7.1 Restriction of tokens in interfaces

The format used for conflict entries in a virtual method table can result in ambiguities.

Consider Figure 4.11, where class A has extended interface I3, which in turn extends two

other interfaces: I1 and I2, and the methods have been allocated the tokens X , Y and Z as

shown. The virtual method table for class A is shown in Figure 4.12. An invokevirtual for

token value X will resolve correctly, as will an invokeinterface call for type I1 or I2 and
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Figure 4.11: Possible ambiguities with interfaces

Figure 4.12: VMT with ambiguous conflict entry

the token value X . However, an invokeinterface call, with a declared type of I3, makes it

impossible to know if m1() or m2() should be called.

The first solution would be to disallow the addition of an interface such as I3 during

an incremental tokenisation. However, this would be very restrictive for programmers,

removing the ability to extend interfaces. The ambiguity only arises because two methods

with different selectors (name/descriptor) have been allocated the same token. If this can

be avoided, then there would be no problem.

Another solution is to restrict the use of tokens within interfaces. Once a given token

value has been used for a given selector in an interface, then no other interface may use

that token for a different selector. In other words, once the token X had been assigned

to the method m1(), then it could only ever be used in an interface for a method called

m1(). A different, and unrelated, m1() method in another interface may use a different

token, maintaining some flexibility in the allocation of tokens. However, this constraint

will require at least enough tokens for each unique selector used in an interface, which

is a relatively large number. For example, with out this restriction the CLDC 1.1 API

and Javolution 5.2.5 library can be tokenised with 74 unique tokens (from Table 3.6). By

constraining the use of tokens in interfaces however, the same classes then require 328

unique tokens, primarily because of the 322 unique selectors used in interfaces. Such a
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large increase in token values will result in very large, and therefore very sparse, virtual

method tables, making this solution less than ideal.

The final solution is to ensure an invokeinterface instruction will never point to the

sub-class (or sub-interface) of the target method (i.e. the interface I3 in this case). During

tokenisation, a method reference to either m1() or m2() and the type I3, will be resolved

to the type of I1 or I2 respectively (i.e. the interface that actually declares the method).

After modifying the method reference, the ambiguity described above can not occur, since

a method call will match one of the present conflict lines in the virtual method table’s

conflict entry.

Section 3.6.2 discussed how static method references will be updated to always point to

the class which contains the target method (instead of possibly referencing a sub-class). The

changes here are similar, updating a interface method call to reference the exact interface

that declares the method, rather than one of the sub-interfaces. These updates can break the

semantics of the class file, but only if the interfaces are updated without updating the classes

that use them. However, tokenisation requires that if any classes/interfaces change, then

the tokenisation must be re-performed, meaning the interface method references would be

resolved again, hence finding any changes. Therefore, the modification of interface method

references does not add any extra constraints on top of what the process of tokenisation has

already added.

4.7.2 Extending multiple existing tokenisations

The tokenisation takes as input a set of standard class files and an optional descriptor file,

and will produce a set of tokenised class files and a descriptor file. If a descriptor file

is given as input into the tokeniser then all information from that descriptor file will also

be in the output to the new descriptor file, along with information about the newly added

classes, meaning descriptor files can only ever gain information. This approach was a

design decision to simplify the implementation of the tokeniser. An alternate approach

would involve each descriptor file containing a reference to a parent descriptor file. An

incremental tokenisation will then produce a new descriptor file which describes the newly
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added classes and a reference to the previous descriptor file the tokenisation was based

upon (obviously a tokenisation that does not build upon an existing one will not need such

a reference).

Figure 4.13 shows a situation where a device manufacturer has tokenised the API for

a device and released the descriptor file that describes that API. Two other vendors have

then created additional libraries (Library1 and Library2) for the device, each one tokenis-

ing their library on top of the existing API. Each tokenisation process has produced a set

of tokenised class files, as well as a descriptor file containing the metadata for the API

classes and the respective library’s classes. If yet another vendor now wishes to create an

application (or another library) that will require both Library1 and Library2, they require a

single descriptor file that can describe all of the API, Library1 and Library2, but such a file

does not exist. If the tokeniser were to read more than one descriptor file, several problems

would arise:

1. The API classes (and any other classes both tokenisations are based on) will be de-

scribed in each file. Provided the API classes were identical for both tokenisations,

this will not be an issue, however any change (such as a new version of the API

was used for one tokenisation) would lead to conflicts with classes added/removed

or methods within a class added/removed.

2. Since each tokenisation has been done independently, reuse of tokens is likely, espe-

cially class tokens.

3. If the the same files have been tokenised in each descriptor but at different levels (i.e.

descriptor 1 results from tokenising: API -> Library1, and descriptor 2 results from

tokenising: API -> Library2 -> Library1), then the tokens used for the same classes

are likely to be radically different in each descriptor file.

These problems make it impossible to combine two or more descriptor files in their

current form. So while a given descriptor file can have many incremental tokenisations

performed against it, each tokenisation will create a new and unique descriptor file. Each

new descriptor file can in turn have many new tokenisations performed using it as the base,
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Figure 4.13: API with two custom libraries

and so on, however at no point can these various descriptor files be merged back together.

In this fashion the descriptor files would form a tree-like structure, similar to class files,

with each descriptor file able to extend only one other descriptor file.

The only way to overcome the problem presented above, where an application needs

both Library1 and Library2 would be to acquire both libraries as standard class files (i.e.

as a Jar file which most Java applications or libraries are distributed as), then tokenise both

libraries in the one operation, extending the existing API tokenisation. Another approach

is to tokenise Library2 on top of the API+Library1 tokenisation, or vice versa. Therefore,

this limitation only affects cases where libraries are only distributed in tokenised form, if

the compiled class files are available, then developers are free to tokenise the library as a

part of their application, or as their own library package shared by several applications. The

standard distribution mechanism for Java applications and libraries is a Jar file containing

class files, and this is all that is needed for someone to tokenise that library and make use

of it.

4.7.3 Binary Compatibility

In the previous chapter on global tokenisation, the tokenised files were all regenerated if

any class files were changed (including addition or deletion of classes), meaning there were

no additional binary compatibility constraints added by global tokenisation. Therefore,
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binary compatibility was only broken in cases where the modifications also broke binary

compatibility for the standard class files.

In incremental tokenisation however, the system consists of various collections of classes,

each collection having been tokenised independently and most of them being built on top of

a previous tokenisation. If a given package is retokenised, then any one of several changes

could cause breakages:

1. Adding methods will result in the new methods using tokens which have probably

also been used in the packages tokenised on top of this one, introducing conflicts that

did not previously exist.

2. Removing methods is not possible as this breaks binary compatibility in standard

class files, since other classes may try to call the now missing method. The same is

true for classes.

3. Adding classes will result in the use of a class token that would have been used to

identify classes in the packages tokenised on top of this one (since class tokens are

allocated in increasing order), presenting an ambiguity about which class the token

refers to.

4. Adding or removing non-static fields would result in all non-static fields after that

one changing position within the object, making load/store references for those fields

wrong.

While standard class files can have methods or classes added without breaking binary com-

patibility, the use of tokens prevents even that. It is still possible that the implementation

of existing methods could be changed (i.e. to fix bugs), so long as no methods/classes/non-

static fields are added or removed. However, the tokeniser would also need to know that

such an update had occurred, and attempt to create a compatible package, but such func-

tionality has not yet been implemented. Therefore, the present tokenisation approach has

the limitation that a given package can only be used with the exact version of the package

that it was tokenised against. If a library is retokenised, then all other packages that use

that library must also be retokenised.
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4.7.4 Static Methods

Section 3.6 covered static methods in the case of global tokenisation. In standard class files,

a static method reference might actually be to the sub-class of where the target method is,

to maintain the correct semantics if individual classes are changed and recompiled without

recompiling the whole system. The classes that are not recompiled could otherwise be left

referencing the incorrect method.

Global tokenisation changed these references to always point to the class that contained

the target method. Since any changes to any of the classes required all classes to be reto-

kenised, such references would be recomputed during the new tokenisation. Incremental to-

kenisation allows some packages to be tokenised without changing others. However, as the

previous section discussed, if a given package is retokenised, then all packages that make

use of it must also be retokenised, which will cause the tokeniser to resolve the new target

method. Therefore, static methods can still be resolved to the target class, even with incre-

mental tokenisation, without introducing any additional binary compatibility constraints.

4.8 Incremental Tokenisation Efficiency

A range of test cases were used to test incremental tokenisation. These used the same li-

braries as the global tokenisation tests, however combining them in different combinations

of global and incremental tokenisation. The notation used for the test cases consists of

package names (from those given in Section 3.9) and either a plus (+) or minus (-) sign

when there is more than one package. A plus sign indicates the two packages were con-

verted in a single step, while a minus sign indicates that the left side was tokenised first,

then an incremental tokenisation performed to add the right side. In this notation the plus

sign has higher precedence. For example, “CLDC1.0 - MIDP + MIDPExamples” would

indicate that first the CLDC1.0 API was tokenised and saved. Then the the MIDP API

and the MIDP example applications were combined and tokenised using the descriptor file

produced from the first tokenisation.

The test cases consisted of1:
1Entries marked with a * are the same as the global tokenisation versions. These packages are included
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• CLDC1.0*

• CLDC1.0 + MIDP*

• CLDC1.0 + MIDP - MIDPExamples

• CLDC1.0 - MIDP

• CLDC1.0 - MIDP + MIDPExamples

• CLDC1.0 - MIDP - MIDPExamples

• CLDC1.0 - Javolution3

• CLDC1.1*

• CLDC1.1 - Javolution3

• CLDC1.1M*

• CLDC1.1M - Javolution3

• CLDC1.1M - Javolution5

These where chosen to give a good blend of different test cases. The CLDC1.0 + MIDP

case is the likely way a device would be shipped. Then the MIDPExamples are tokenised

on top of this library, much like third party applications being added to a device. Also, the

CLDC1.0 - MIDP - MIDPExamples tests multiple levels of incremental tokenisation.

4.8.1 Token allocation efficiency

The first thing to consider is if the number of tokens used has been significantly changed

by incremental tokenisation. Table 4.1 shows the number of tokens that were used for

the corresponding global case and the number used for the incremental case. It can be

seen that in almost all cases, the number of tokens used was almost identical. In the case

CLDC1.0 - Javolution3 test case, tokenisation of CLDC1.0 had allocated tokens up to 83,

here since they form the basis for the incremental tokenisations.
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Table 4.1: Number of tokens used in incremental tokenisation

Test Tokens Used Largest
Case For Global Method Token

CLDC1.0 + MIDP - MIDPExamples 116 115
CLDC1.0 - MIDP 101 101

CLDC1.0 - MIDP + MIDPExamples 116 116
CLDC1.0 - MIDP - MIDPExamples 116 115

CLDC1.0 - Javolution3 84 83
CLDC1.1 - Javolution3 68 68

CLDC1.1M - Javolution3 68 68
CLDC1.1M - Javolution5 74 74

while the incremental tokenisation of Javolution3 only required token values up to 68.

The tokens for the new methods all used values that were within the range already used

during the tokenisation of CLDC1.0. Also of note is that for several tests, incremental

tokenisation used one less token than for global tokenisation. Examination revealed that

during incremental tokenisation a conflict was found, hence requiring the use of a conflict

entry. Since all class files are available during global tokenisation however, the conflict is

detected and an additional token value used, avoiding the need for the conflict entry.

Apart from these minor differences, a similar number of tokens were used for incre-

mental tokenisation as were for global tokenisation, showing that incremental tokenisation

has not greatly affected the allocation of tokens.

4.8.2 Virtual Method Table Size

While the number of tokens used for incremental tokenisation was very similar to the num-

ber used in global tokenisation, the size of the resulting VMTs must also be considered.

Figure 4.2 shows the number of VMT entries in each of the test cases. The VMT Entries

column gives the number of entries for that tokenisation only (i.e. in a incremental tokeni-

sation, only the VMT entries for the classes that were tokenised), while the Total VMT

Entries column is for the sequence of conversions. For example, the CLDC1.0 - MIDP

value of 8176 is the number of entries in MIDP (5997), plus the number in the CLDC1.0

library (in this case 2179). The final column shows the number of entries used for the cor-
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Table 4.2: Comparison to Global Tokenisation

Test VMT Total VMT Total Entries
Case Entries Entries in Global

CLDC1.0 + MIDP - MIDPExamples 3652 11923 11998
CLDC1.0 - MIDP 5997 8176 8271

CLDC1.0 - MIDP + MIDPExamples 9724 11903 11998
CLDC1.0 - MIDP - MIDPExamples 3652 11828 11998

CLDC1.0 - Javolution3 6010 8189 7976
CLDC1.1 - Javolution3 5770 7257 7334

CLDC1.1M - Javolution3 5798 7286 7363
CLDC1.1M - Javolution5 7393 8881 8800

responding global tokenisation case. In all but two cases incremental tokenisation resulted

in less VMT entries, representing more compact tables and therefore smaller files. In prin-

ciple, the smaller tables represent a good result, however, only if a large number of conflict

entries have not been added, and so the types of entries used is examined next.

Table 4.3 shows for each test case, the number of VMT entries actually used (i.e. ig-

noring null entries) and the number of conflict entries. While the slightly lower number of

entries in total compared to global tokenisation is the result of conflict entries, the number

of conflict entries is quite low, especially when compared to the number of classes and

methods in each test case. Therefore the need for conflict entries in incremental tokenisa-

tion is small, adding a very small overhead when compared to global tokenisation. Finally,

Table 4.4 shows a comparison for the percent of VMT entries that were non-null after in-

cremental tokenisation compared to global tokenisation. While there is a small amount of

variance, as a result of the addition of conflict entries, and the slight changes in token usage,

there is no significant change in the efficiency of token allocation.

Not only is incremental tokenisation possible, but the efficiency of token allocation and

size of virtual method tables are hardly affected. There is a slight overhead in having to

deal with conflict entries, however, there were very few of these, for the codebase that was

tokenised. In return packages no longer need to be tokenised on a device, reducing the

memory and processing requirements needed in the device.



140

Table 4.3: Usage of Virtual Method Tables with Incremental Tokenisation

Test VMT Used VMT Conflict VMT
Case Entries Entries Entries

CLDC1.0 + MIDP - MIDPExamples 3652 2876 12
CLDC1.0 - MIDP 5997 5535 2

CLDC1.0 - MIDP + MIDPExamples 9724 8411 2
CLDC1.0 - MIDP - MIDPExamples 3652 2876 12

CLDC1.0 - Javolution3 6010 5540 1
CLDC1.1 - Javolution3 5770 5552 4

CLDC1.1M - Javolution3 5798 5555 4

Table 4.4: VMT Usage Compared to Global Tokenisation

Test Used % Used %
Case (Inc.) (Global)

CLDC1.0 + MIDP - MIDPExamples 88.65 88.10
CLDC1.0 - MIDP 94.1 93.02

CLDC1.0 - MIDP + MIDPExamples 88.8 88.10
CLDC1.0 - MIDP - MIDPExamples 89.36 88.10

CLDC1.0 - Javolution3 94.02 96.43
CLDC1.1 - Javolution3 96.91 95.87

CLDC1.1M - Javolution3 96.58 95.55
CLDC1.1M - Javolution5 95.65 96.53
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4.9 Conclusions

The previous chapter showed that it was possible to tokenise methods even in the presence

of interfaces, thus simplifying the implementation of the invokeinterface and invokevirtual

instructions. However, the global tokenisation required complete knowledge of all classes

and interfaces in the system to be able to correctly allocate tokens. This chapter has pre-

sented a modified tokenisation scheme so that it can be performed in incremental steps,

with each tokenisation adding more classes/interfaces to an existing set, without needing to

change any of the already tokenised classes. Since the tokeniser can not know what future

additions might be made, some ambiguities can arise, but these situations can be resolved

with minimal overhead.

Furthermore, the incremental tokenisation does not reduce the efficiency of produced

virtual method tables, with incrementally built tables being of similar size and composition

to those generated with global tokenisation. The need for conflict entries in the virtual

method tables was also minimal, with a worst case of only 0.42% of the used entries being

conflict entries.

With the addition of incremental tokenisation, the tokeniser is no longer required on the

device, instead the API or libraries are installed on the device and a descriptor file, which

describes those classes already on the device, is provided to developers. Developers can

then tokenise their application in such a way that they can use the existing classes on the

device, without needing to modify the existing classes. After a developer has tokenised the

application, it is then distributed to the device in tokenised form. Since the tokeniser will

be run on standard PC level hardware (i.e. on a developers workstation), rather than on the

mobile device, the tokeniser does not need to deal with the processor/memory restrictions

of a mobile device. So the requirements for the mobile device are reduced, while still

providing the performance of virtual method table based dispatch for the mobile device.

The following chapter will cover the generation and format of tokenised class files and

the compression that is gained through tokenisation. After that, the implementation of a

virtual machine capable of executing tokenised classed files is presented, followed by an

analysis of results and final conclusions.
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Chapter 5

Implementation of a VM

5.1 Introduction

To test the tokenisation, a Virtual Machine was implemented that could understand the

tokenised class file format. This allowed tokenised code to be executed directly and prove

that the tokenised programs were still correct. The goal for this virtual machine was that it:

• Implement a functional sub-set of Java instructions

• Load and use the Virtual Method Tables and other features of tokenised class files

• Support at least the CLDC library and applications written to use CLDC

The KVM [62] was considered for this purpose as it already provides an implementation

of a CLDC virtual machine. However, it is a production level VM and incorporates many

optimisations which are not required for testing, and thus complicate the process of modi-

fying it to use tokenised class files. Therefore, it was easier to start from scratch and code

a simplified VM in Java to use for testing.

Performance or absolute completeness of the instruction set was not considered impor-

tant. To this end, the virtual machine lacks some features, such as multithreading or the

synchronisation mechanisms for threads. Support for MIDP is not provided, as this would

require implementation of the native methods to implement a GUI. The lack of MIDP sup-

port limits the applications that can be executed, but allowed for a quicker development of

the virtual machine. Since the test VM was being implemented in Java, many features of the
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underlying host VM (such as garbage collection) were already present, again simplifying

the implementation.

Initially, a virtual machine was developed to load, link and execute standard Java class

files and was used to debug the interpreter loop, instruction set and to ensure a usable

VM design before proceeding. A branch was then made from the existing codebase to

develop a tokenised VM, capable of loading, linking and executing tokenised class files.

To support tokenised files, changes had to be made to the class loader, objects and some of

the instruction set.

The class loader had to be modified to identify classes via their class token, instead of

the usual string name (which also allowed a simplified lookup table for classes, via their

class token). Objects were also modified so that each object contained a class token, to

indicate which class it was an object of. When combined with the class table, this allowed

efficient access from an object to the class structure, which is needed when performing

some operations on objects (such as checking if an object can be cast to another type).

The following sections detail the implementation of the virtual method table, changes

that were made to Java instruction set, the handling of native methods, constant values

required by the VM and finally the correctness and efficiency of the tokenised virtual ma-

chine.

5.2 Virtual Method Table Format

The Virtual Method Table is used at runtime to find the method structure that represents

the target method of a method call. A method call consists of a method token, which is an

index into the Virtual Method Table, where the entry is a reference to the method to call.

Since only concrete classes can be used to create objects, and virtual methods are methods

within an object, only concrete classes require virtual method tables. While methods in

abstract classes might be the target of a virtual method call, the object for the call will have

been created from a concrete class, and therefore, the concrete class’s virtual method table

will point to the target method.

At present an additional step is needed during class loading, since the binary class for-
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mat still uses a form of symbolic reference in the virtual method table, which is a side-effect

of having classes stored in individual class files. Even if all the classes from a given to-

kenisation run were placed into a single output file, there can still be references to methods

from previous tokenisations, preventing absolute addresses from being used. The test VM

performs this linking at class load time, however, a device should perform this linking dur-

ing installation. Once the installer has placed the classes into memory, the location of all

methods will be knowable and the a final VMT can be constructed with absolute memory

addresses.

5.2.1 In Memory Representation

There are two types of entries that can be in a virtual method table, as discussed in Section

4.6, a simple entry which points to a single target method and a multi-entry which can have

several target methods, depending on the type of call. A simple entry just requires an offset

to the appropriate method structure for the target method. A multi entry is more complex,

containing a default method reference and a list of class token/method reference pairs,

giving a multi entry a variable length. The test VM represents VMT entries via objects and

therefore the VMT itself is an array of objects. While an object array allows a token value

to be used as an index, it adds a level of indirection, as the entry in the array is actually a

reference to the object, stored elsewhere in memory.

On a device, it is more likely to store the contents of each entry in an array structure, re-

moving the need for the object references. However, the variable size of conflict entries will

remove the ability to quickly calculate the location of a given index, therefore fixed size en-

tries would be preferred. Making the entries large enough to hold the largest conflict entry

will result in extremely large and mostly empty tables. Therefore, the virtual method table

would include fixed sized entries, with each entry consisting of either a method reference

(for single entries) or a reference to a conflict entry, adding one extra layer of redirection

for the rare case of a conflict entry.
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5.2.2 Alternate VMT Encodings

One way to reduce the sizes of virtual method tables is to not include the full table in every

class. For example, Java Card reduces the size of dispatch tables by not including the first

part of the table that has not changed (this is discussed in depth in Section 2.5.2). Four

possible table encodings were considered:

Complete Tables Every class contains the complete virtual method table for all methods

it can call. These produce the largest tables, but only the one table will need to be

consulted during method dispatch.

Java Card Tables Using the same approach as Java Card, any entries at the start of the

table that have not changed from the parent class will not be included. One extra

field is needed to indicate the index the current table corresponds to (i.e. the table’s

base value). If a target token is too small for a given table, then the parent class’s

table needs to be consulted, adding to the dispatch time.

Java Card Tables (ignoring default constructor) A default constructor is found in most

classes, meaning it is often over-ridden and also has a very small token value (it is

the first method in the java.lang.Object class, where token assignment starts from,

resulting in the default constructor being assigned token value 0). If index 0 has

changed in the VMT, then the Java Card approach requires the complete table to be

included in the class. If the default constructor was handled in some different fashion,

then it can be ignored when determining the smallest changed token value.

Aggressive Java Card Tables The previous two approaches reduce the size of the VMT

by leaving off the start of the table that has not changed from the parent class’s table,

because in Java Card, the start is the only part that can be unchanged. However, with

the addition of interfaces, it is possible for a super-class to have had some larger token

values that do not change in the sub-class. Aggressive Java Card Tables therefore

considers the end of the table, leaving any entries off the end that have not changed

from the super-class’s table.



146

An example is presented in Figure 5.1 showing three classes and the token values used in

each class. Class A contains two methods with token values 0 and 1, giving a table size

of 2. Class B extends Class A and contains four methods which have, due to conflicts not

shown, been assigned the token values 0, 5, 6 and 7, leaving values 2, 3 and 4 unused and

giving a table size of 8. Finally class C adds methods 2, 3 and 4, while also over-riding 5

and 6, also giving a table size of 8. The white squares denote a VMT entry that was used

in the super-class but not overridden, for example, entry 1 in the C class would still point

back to the method in class A.

Figure 5.1 is shown again four times, for each of the four encoding schemes presented

above, in Figure 5.2. Part (a) shows the complete tables, with a total of 18 entries (and is

unchanged from the initial figure). Part (b) shows the Java Card style tables, where Class

C has 2 less entries at the start of the its table, since they have not changed from Class

B’s table. While this saves 2 entries, three more would need to be added to store the base

value for each of the three tables (although in practise, with more classes, the overall effect

is a reduction in size). Part (c) shows a larger improvement, since token 0 (the default

constructor) is being handled specially, Class B can ignore it and only needs to start its

table at token 5. The overall size is therefore reduced to 11 entries, plus 3 for the base

values, giving a total of 14 entries. The final variation in Part (d) shows the Aggressive

Java Card Tables, where the unchanged entry at the end of Class C’s table can also be left

off, reducing the size by a further one entry.

While none of these alternate encodings were implemented in the virtual machine, they

were examined to see how they would affect the size of the virtual method tables and what

extra steps would be needed to implement them. Results on the effect of these alternate

tables are presented in the next section.

5.2.3 Size of Alternate Virtual Method Tables

In the previous section, several different approaches to encoding the virtual method tables

was given, which allowed for a given table to have less entries, at the expense of having

to search in a super-class’s table if the appropriate entry was not found. These encodings
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Figure 5.1: Example of VMT usage

Figure 5.2: Size of Different Types of VMTs
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present a time vs space trade-off, between the complexity of the lookup process and the

size of the tables.

To know if these trade-offs would be worthwhile, analysis of the test packages orig-

inally presented in Section 3.9 was done to determine how much space could be saved.

For the virtual method table in a given class, there are four values that are important for

determining the size of the virtual method table, these are:

• a is the smallest token used by a method in the current class.

• b is the smallest token used by a method other than the default constructor, in the

current class.

• c is the largest token used by a method in the current class.

• d is the largest token used in this or any of the super-classes.

For the four possible encodings presented in Section 5.2.2, the starting and ending values

of the virtual method table would be:

Name Starting Ending Uses super-class’s

Value Value Tables

Complete Tables 0 d no

Java Card Tables a d yes

Java Card Tables b d yes

(default constructor)

Aggressive Java Card b c yes

Tables

The final column in the table denotes how many of the tables need to be searched at runtime.

For Complete Tables, only the one table ever needs to be searched, if no result is found,

then an error is produced. For all the others, if no result is found in the first table, the search

must be performed in the super-classes table, continuing recursively until either the result

is found, or there are no more super-classes, in which case an error is produced.

Table 5.1 was produced by analysing the test packages to determine the above values

for each class. The use of Java Card Tables provides only a small saving in the number of
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Table 5.1: Number of Virtual Method Table Entries

Test Complete Java Card JC Tables (ignoring Aggressive
Case Tables Tables def. constructor) JC Tables

CLDC1.0 2159 1983 1172 995
CLDC1.0+MIDP 8271 6861 4753 4376

CLDC1.0+MIDP+ 11998 9567 6955 6501
MIDPExamples

CLDC1.0+ 7976 6578 4071 3408
Javolution3
CLDC1.1 1487 1370 808 643

CLDC1.1M 1488 1371 809 644
CLDC1.1M+ 8800 7060 4255 3426
Javolution5

J2SE 586989 469359 369646 333810

entries because overriding of the default constructor is common, and any class that does

this will require the complete virtual method table. If the default constructor is ignored

however, then a significant drop is noticed in the number of entries used, but with the

added complexity of needing to handle the default constructor separately. Moving to the

Aggressive Java Card tables only has a small increase over the Java Card Tables ignoring

the default constructor.

Moving from left to right in Table 5.1 shows a decreasing number of entries being

used, therefore saving space, at the cost of increasing complexity to implement. While the

available space savings have been examined, the most appropriate encoding will depend on

the target device and the relative cost/performance trade-offs for that device.

5.3 Instruction Set Modifications

This section covers modifications that have been made to the Java bytecode instruction set

(or simply just, “bytecodes”). All Java code is compiled to bytecode, which is the instruc-

tion set for a virtual processor, typically implemented in software as a virtual machine.

These modifications have happened for one of two reasons, firstly, as a direct result of

tokenisation and secondly, to provide shorter versions of some instructions.

The changes are only to the ldc* instructions for loading constant values from the con-
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stant pool, get and put instructions for loading/storing values in fields and the invoke*

instructions for performing method calls. The following sections detail the changes to each

of these instructions.

5.3.1 ldc, ldc_w and ldc2_w

These three instructions load a constant value from the constant pool. For the ldc and

ldc_w instructions, the value will be one of: integer (CONSTANT_Integer), float (CON-

STANT_Float) or string (CONSTANT_String), while the ldc2_w instruction will load a

double width constant value, i.e. a long (CONSTANT_Long) or double

(CONSTANT_Double). The “_w” at the end of the instruction indicates it is a wide in-

struction, i.e. it has a two byte operand, which serves as an unsigned index into the constant

pool, while the ldc instruction only has a one byte operand. The ldc2_w instruction does

not have a “narrow” version of the instruction, unlike the ldc_w instruction. The standard

formats for these instructions are:

ldc: 18 index

ldc_w: 19 indexbyte1 indexbyte2

ldc2_w: 20 indexbyte1 indexbyte2

The only change to these instructions is in the case of a reference to a CONSTANT_String

entry. Since a CONSTANT_String entry contains an index to a CONSTANT_Utf8 entry

for the string data, the instruction will be updated to point directly to the CONSTANT_Utf8

entry, removing the need for the CONSTANT_String entry and saving 3 bytes for each such

entry. While the instructions will still have the same form, tokenisation greatly reduces the

number of constant pool entries, causing the indexes for the remaining entries to be smaller.

In some cases where an ldc_w instruction was used, it will now be possible to use an ldc

instruction, thereby shrinking the code. Section 6.5.2.3 details the steps needed to update

the bytecodes, as shortening or lengthening instructions is not a trivial matter.

The tokeniser leaves ldc* instructions with references to the constant pool, which there-

fore must be resolved by a tokenised virtual machine, representing a layer of indirection

during execution. The indirection is not helped by the fact that constant pool entries are
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of a variable size, preventing a simple calculation to find a given index, as can be done

with fixed sized entries. Possible alternatives to the current indirection and having to find a

variable sized item in the constant pool include:

Lookup table The constant pool reference could be used as an index to a table of fixed-

size memory references, giving the location of each constant pool entry and avoiding

the need to find an entry in a list of variable sized entries.

Separate constant tables Placing the 32-bit and 64-bit constant values into their own ta-

bles with fixed sized entries, allowing the index to be used to directly calculate the

location of a required entry.

Inlining The constant value itself could be placed within the instruction as an operand, at

the cost of making the instruction larger. Depending on how many places use the

same constant value, this could make the overall size smaller or larger for a class.

The pros and cons of each of these approaches would be highly dependent on the charac-

teristics of the hardware being used.

5.3.2 getstatic/putstatic

The getstatic and putstatic instructions are used to read values from, or store values into,

static fields. In standard class files these instructions have the form:

178/179 indexbyte1 indexbyte2

The first byte value is 178 for getstatic and 179 for putstatic. The two indexbyte values

are combined to form an unsigned 16-bit value, which is an index into the constant pool to

a CONSTANT_Fieldref structure which provides the symbolic field reference. Symbolic

field references were described in Section 1.4.4.2.

A CONSTANT_Fieldref entry normally contains two indexes to a

CONSTANT_NameAndType and a CONSTANT_Class entry, which in turn contain ref-

erences to three CONSTANT_Utf8 entries for the class name, field name and field type.

Given the tokenisation of fields (described in Section 3.8), the utf8 string entries are no
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longer needed to reference a field, instead being replaced with two tokens, a class token

and a field token, each consisting of a 16-bit value. Given the relatively small and fixed

sized nature of the tokens, it would be wasteful to store them in the constant pool. Even

if the instructions were updated to point to a constant pool entry which contained both to-

kens, that would require a 16-bit entry for the constant pool reference and an 8-bit entry

for the tag indicating the type of constant pool entry, to reference 32-bits worth of data,

which is a 75% overhead. Given that, the instructions were updated to hold the two tokens

as operands, which removed the need for indirect constant pool references and simplified

the implementation of the instruction in the virtual machine.

Instructions such as the ldc instruction described in the previous section have a standard

form with an 8-bit constant pool reference and a wide form with a 16-bit constant pool

reference. The same approach is applied to the class and field tokens, providing shorter

instructions when only 8-bit tokens are required, but also supplying wider forms so the full

16-bit token values can still be used. To examine the impact of this, the same libraries that

were used for testing earlier (introduced in Section 3.9) were examined to see what sized

instructions would be required. There are two token values (class token and field token)

and two possible sizes for each token (8-bit or 16-bit), giving four possible combinations.

A given combination is denoted by two numbers, first giving the class token size, then the

field token size, i.e. 16,16 is a 16-bit class token and 16-bit field token, 16,8 is a 16-bit

class token and an 8-bit field token and so on. Table 5.2 shows how many times each of the

four lengths was needed for both the putstatic and getstatic instructions.

The results show that in all but a few cases an 8-bit field token is sufficient, only needing

a 16-bit field token for the relatively large J2SE API, while 16-bit class tokens are needed

much more often. For static fields, the field token is only unique within a single class,

meaning the maximum size token will depend on the maximum number of static fields

within a single class. Further examination showed that for the J2SE test case, the largest

static field token was 426 in one class, with the next largest was only 54. With so few uses of

16-bit tokens, it would seem that many of these fields were not used, however examination

of the class with 426 static fields showed that most of them were declared final. When code

references a final static field, the compiler adds that value into the class’s constant pool and
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Table 5.2: Usage of putstatic and getstatic instructions

putstatic getstatic
Package 16,16 8,16 16,8 8,8 16,16 8,16 16,8 8,8

CLDC 1.0 0 0 0 60 0 0 0 112
CLDC 1.1M 0 0 0 56 0 0 0 150

MIDP 0 0 81 149 0 0 248 737
MIDP examples 0 0 95 0 0 0 247 29

Javolution 3 0 0 44 121 0 0 88 322
Javolution 5 0 0 91 134 0 0 149 293

J2SE 2 0 9466 334 8 0 25404 4118

uses an ldc* instruction to load it, rather than loading it from the field1.

The results in Table 5.2 indicate that an 8,8 sized instruction would see common use

(and is the same size as the standard instruction), while 16,8 sized instructions would also

be required. The 8,16 sized instruction is redundant and would only complicate the in-

struction decoder with an additional instruction. For maximum compatibility, the 16,16

instruction should also be available so as not to impose any additional constraints on devel-

opers.

With the above results in mind, the following tokenised instructions were defined for

the getstatic instruction:

178 ctok ftok

213 ctokH ctokL ftok

215 ctokH ctokL ftokH ftokL

For putstatic the forms are:

179 ctok ftok

214 ctokH ctokL ftok

216 ctokH ctokL ftokH ftokL

Each box represents a single byte, where ctok is a class token and ftok a field token. In

the case of a 16-bit token, there is a high and low value (i.e. ctokH and ctokL for a class
1There is the case of small values, where the iconst_* or similar instructions can be used to push the value

directly, without the need for a constant pool reference.
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Figure 5.3: get/put-static instruction implementation

token), which if read together form the 16-bit token. In terms of space, the first instruction

is the same size as the standard version, while the second instruction is one byte longer

and the third two bytes longer. However, the need to load entries from the constant pool

has been removed, allowing those entries to be removed from the constant pool and also

significantly simplifying the implementation of the instructions.

Figure 5.3 shows how the tokens are used at runtime by the virtual machine. The initial

byte is either 178 for getstatic or 179 for putstatic. The next byte provides the unsigned

class token and the final byte the unsigned field token. The class token is an index into the

class table which provides the structure to describe that class, including the table of static

field values. The field token value is an offset into the static fields table to find the field

in question. The only difference between the two operations is that getstatic will load the

value from the field and push it onto the stack, while putstatic will pop a value off the stack

and store it into the field. The wider forms of the instruction (with opcode 213-216) behave

exactly the same way, just with a 16-bit class and/or field token value.

5.3.3 getfield/putfield

The getfield and putfield instructions are similar to the getstatic and putstatic instructions,

in that they load and store values in a field that is part of an object, instead of a static field.

The standard instructions have the format:
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180/181 indexbyte1 indexbyte2

The getfield instruction for loading values has the byte value 180, while the putfield in-

struction for storing values has the value 181. The next two bytes form an index into the

constant pool to a CONSTANT_FieldRef entry, the same as for the static field instructions,

described in Section 5.3.2, except resolving the field reference in this case will give a non-

static field. The operand stack will contain an object reference, whose type must be the

same as, or a sub type of, the class in the field reference. For getfield, the object reference

is popped from the stack, the value from the named field is read and pushed back onto the

stack. For putfield, a value and an object reference is popped from the stack, with the value

stored into the named field in the object.

These non-static fields were tokenised such that for all the fields in a given object, each

field has a unique token (originally discussed in Section 3.8), allowing the field token to be

used as an offset within an object. The static field instructions required a class reference to

identify which class contained the field, however, since an object reference will always be

on the stack, a class reference is not needed by these non-static instructions.

As with the static field instructions above, some consideration was given to the required

size of the field token, either 16-bits or 8-bits. For static field tokens, the maximum required

size was dependant on the number of static fields within the one class. For non-static fields,

the token size will depend on the number of fields in an object, which consists of the non-

static fields in the class, plus those in all super-classes.

The test libraries introduced in Section 3.9 were analysed to see how often a 8 or 16-bit

field tokens were needed. Table 5.3 shows the results, with even the relatively large J2SE

API never having an object with more than 256 fields. In particular, the largest field token

that was required was 149. Therefore, an instruction with a 16-bit operand would result in

unnecessary complexity, as an instruction with only an 8-bit operand is sufficient for all the

test cases. For the rest of this discussion, an 8-bit operand version is considered, however,

a 16-bit instruction could be added easily if support was needed for larger objects.

Since an 8-bit operand is sufficient, the tokenised instruction has the form:

180/181 ftok
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Table 5.3: Usage of putfield and getfield instructions

putfield getfield
Package 16 8 16 8

CLDC 1.0 0 454 0 941
CLDC 1.1M 0 271 0 877

MIDP 0 2128 0 6845
MIDP examples 0 864 0 3086

Javolution 3 0 1099 0 2883
Javolution 5 0 1127 0 3194

J2SE 0 48875 0 128007

Figure 5.4: get/put-field instruction implementation

The single operand gives the field token. Figure 5.4 shows the implementation for these in-

structions. The object reference is popped from the operand stack (for a putfield instruction

the value is popped first), which gives access to the object structure in memory, including

the table of fields. The field token from the instruction can then be used to find the appro-

priate entry in the field table, which is the location where the value of that field is stored

and is therefore read or written depending on the instruction.

The tokenised field instructions greatly reduce the complexity required to implement

the instruction, while also removing the need for the symbolic linking data in the constant

pool and made the instruction one byte shorter. Even if a wider instruction was added, to

allow for objects with a large number of fields, a significant space saving is realised through

the removal of the constant pool entries and in the shorter instruction.
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5.3.4 invokevirtual

An invoke virtual instruction in a standard class file consists of three bytes:

182 b1 b2

The first byte has the value 182 to indicate this is an invokevirtual instruction, while

the b1 and b2 bytes are used as an unsigned 2-byte index to the constant pool to find the

method to be invoked. Since method references are now made using a token, the data in

the constant pool, and therefore also the reference, are no longer needed. The constant pool

reference is replaced by the method token for the target method and a nargs values, giving

the number of arguments for the method.

When a method call is performed, the object for the call is pushed onto the stack,

followed by any arguments. To dispatch the method call, the VM needs to access the object

reference and therefore needs to know how many arguments there are. In a standard class

file, the number of arguments is encoded in the descriptor string for the method. Since the

strings have been removed during tokenisation, the nargs value allows the VM to know

how many of the values on the stack are needed for the method call.

A method token is a 16-bit value, however, the full 16-bit value will not always be

needed, as small token values could be represented with an 8-bit operand, leading to two

invokevirtual instructions, one for an 8-bit token and one for a 16-bit token. Having ad-

ditional instructions requires a more complicated instruction decoder, but offers shorter

instructions and therefore more compact code. Using the test libraries introduced in Sec-

tion 3.9, each instance of an invokevirtual instruction was examined to see if it needed a

16- or 8-bit token. Table 5.6 shows the results for each package. In all but the relatively

large J2SE test case an 8-bit operand was sufficient to hold every method token used in an

invokevirtual instruction. The presence of an 8-bit invokevirtual instruction is very impor-

tant, as it reduces the size of compiled code. Depending on the target device, the need for

two instructions can be avoided if the invokevirtual instruction is limited to only an 8-bit

version, at the cost of limiting the possible size of the codebase.

For the purposes of testing, both the 16-bit and 8-bit versions of the instruction were

defined with the following forms:
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Table 5.4: Usage of the invokevirtual instruction

Package 16-bit 8-bit
CLDC 1.0 0 997

CLDC 1.1M 0 681
MIDP 0 4631

MIDP examples 0 2928
Javolution 3 0 2594
Javolution 5 0 3299

J2SE 13196 160957

Figure 5.5: Performing an invokevirtual

182 nargs mtok

206 nargs mtokH mtokL

Regardless of the size of the method token operand, the process needed to execute an

invokevirtual instruction is the same and is shown in Figure 5.5. The numbered lines in the

diagram correspond to the following steps:

1. The nargs value is used to find the object reference on the stack that this method is

being called on.

2. The object reference contains an index to the class information for that type of object,

which, in turn, contains the Virtual Method Table for that class.

3. The mtok value is used as an offset into the VMT. If this entry is a simple entry, then

the value in the entry will be the method reference. If it is a multi entry, then the

default value will be the method reference, since this is an invokevirtual.
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4. The method reference provides the location of the information required for execution

of this method, including: the bytecode, maximum size of the stack, maximum num-

ber of local variables and information on exception handlers. Using this information

and the nargs value from step 1, the VM can create a new frame for the method and

transfer execution.

5.3.5 invokeinterface

The invokeinterface instruction is used when the declared type in the source code is an

interface type. In a standard class file, this instruction has the form:

185 b1 b2 count 0

Where 185 is the byte value to indicate an invokevirtual instruction, the b1 and b2 bytes

form an unsigned 2-byte value index into the constant-pool, the count is the number of

arguments to the method (which can also be derived from the descriptor string) and the

final byte is always 02. The constant pool reference gives (via references to other constant

pool entries) the name of the interface, the method name and method descriptor.

A tokenised invokeinterface instruction needs at least as much information as an in-

vokevirtual, that is, a nargs value and a method token. While this information is enough

to dispatch most invokeinterface instructions, if a conflict entry is found, then the virtual

machine also requires the class token of the interface (conflict entries were introduced in

Section 4.3.2). Therefore, the tokenised invokeinterface will require three values: nargs,

ctok and mtok for the number of arguments, class token and method token respectively.

Just as with invokevirtual, the test packages were examined to see the required size for

each token. The size of the instruction is given by two numbers, the size of the class to-

ken (either 8 or 16 bits), and the size of the method token (either 8 or 16 bits). Table 5.5

shows the results of tokenising the test classes. Interestingly, the 8,16 and 16,8 instructions

were never needed, implying that these can be left out to simplify the instruction decoder.

The 8,8 instruction gives a compact instruction (being one byte shorter than the standard

instruction) and is sufficient for nearly all instances. The 16,16 instruction was needed for

2The Java Virtual Machine Specification [57] notes that the redundant count byte and final 0 byte remain
for historical and compatibility reasons.
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Table 5.5: Usage of invokeinterface instruction

Package 16,16 8,16 16,8 8,8
CLDC 1.0 0 0 0 29

CLDC 1.1M 0 0 0 14
MIDP 0 0 0 297

MIDP examples 0 0 0 205
Javolution 3 0 0 0 347
Javolution 5 0 0 0 300

J2SE 338 0 0 6301

the J2SE test case, so was maintained for compatibility, giving the following two forms for

the tokenised version of invokeinterface:

185 nargs ctok mtok

212 nargs ctokH ctokL mtokH mtokL

To dispatch the invokeinterface instruction, the initial lookup process is the same as

steps 1-3 for an invokevirtual instruction, as shown in Figure 5.5. However step 4 becomes

slightly more complicated with one of 3 possible outcomes:

1. The VMT entry is a simple one, in which case the method reference is used, same as

an invokevirtual.

2. The VMT entry is a multi entry, however there is no associated value for the ctok

from the instruction. In which case the default method reference is used.

3. The VMT entry is a multi entry and there is an associated value for the ctok from the

instruction. In this case the associated method reference is used, and the method call

continues.

For case 1, the process will be the same as shown in Figure 5.5 and the ctok value in the

instruction will not be used. Figure 5.6 shows the result for cases 2 or 3 above, where the

VMT entry is not just a simple entry. Here the list of class token values in the VMT entry

are searched and if an entry has the same value as the ctok value, then the method reference

from that entry is used. If no matching entries can be found, then the default entry is used.
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Figure 5.6: Performing an invokeinterface

5.3.6 invokestatic

An invokestatic instruction is used for calling methods that have been declared as STATIC

in the source code. A standard class file uses an instruction with the form:

184 b1 b2

An invokestatic instruction, like the other invoke* instructions, uses two bytes to form an

unsigned 2-byte value that gives an index in the constant pool, which provides the usual

three strings for class name, method name and method descriptor.

Section 3.6 discussed static methods in tokenised class files. Because the converter will

resolve a static method call to the class that contains the target method, the tokens for static

methods only need to be unique within the class that contains the method. Therefore, a

class token and method token are sufficient to uniquely identify any target method in the

system. The same test libraries (introduced in Section 3.9) were used to again see how

large the class and method token values should be.
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Table 5.6: Usage of the invokestatic instruction

Package 16,16 8,16 16,8 8,8
CLDC 1.0 0 0 0 247

CLDC 1.1M 0 0 0 286
MIDP 0 0 413 1015

MIDP examples 0 0 247 151
Javolution 3 0 0 215 1139
Javolution 5 0 0 392 792

J2SE 0 0 25940 9420

Figure 5.6 shows how often each sized token was needed. While 16 bit class tokens

were common, 16 bit method tokens were never required, with the largest used token being

115, used in the J2SE API. A limit of 255 static methods in any one class seems to be a

suitable limit, although to maintain flexibility a 16,16 version of the instruction has also

been defined.

An invokestatic instruction requires the same information as an invokeinterface instruc-

tion, namely, nargs, ctok and mtok. Allowing for different lengths of the mtok and ctok

values, gave three forms for a tokenised invokestatic instruction:

184 nargs ctok mtok

204 nargs ctokH ctokL mtok

211 nargs ctokH ctokL mtokH mtokL

Unlike virtual or interface methods, STATIC method do not require runtime binding of the

target method, therefore the information contained in an invokestatic instruction is suffi-

cient to resolve the call. The nargs value is required to know how many of the values

currently on the stack are arguments to the method. In standard class files, the number of

arguments was available by parsing the descriptor string for the method. The ctok value

(or in the case of the second version, the ctokH and ctokL, which are combined to form a

single 16-bit value), is used to find the class that will contain the method. While the mtok

value is then used to find the relevant method within that class. Figure 5.7 shows the steps

involved, which consist of:

1. Use the nargs value to collect the arguments for the method call.
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Figure 5.7: Performing an invokestatic

2. Use the ctok value as an index into the class information, giving the structure for that

class, which includes the table of static methods.

3. Use the mtok value as an index in the table of static methods.

4. The entry from the static method table will give the reference to the method content,

which contains the information and instructions needed for the method.

The test virtual machine has been implemented this way, resolving the target method each

time an instruction is executed. Depending on the device that class files are stored on,

it is possible to simplify the dispatch process by storing a direct reference to the method

information in the instruction, similar to “fast” bytecodes used in other virtual machines.

Either at install time or at runtime, the target method for a given invokestatic instruction

is resolved and the instruction updated with a reference to the target method. If installed

applications are not moved within memory, this reference could be as direct as the memory

address of the target method information found in step 4 above. The feasibility of such

updates will also depend on the size required for the memory reference, since changing

the length of instructions can be non-trivial, requiring branching instructions to have their

branch offsets updated. If such a system were implemented, it would be desirable to limit

the tokeniser to always produce invokestatic instructions of the same length, allowing the

virtual machine or installer on the device to replace those instructions easily.
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Table 5.7: Usage of the invokespecial instruction

Package 16,16 8,16 16,8 8,8
CLDC 1.0 0 0 0 656

CLDC 1.1M 0 0 0 531
MIDP 0 0 488 1921

MIDP examples 0 0 290 535
Javolution 3 0 0 266 1285
Javolution 5 0 0 747 1177

J2SE 1978 0 61763 23568

5.3.7 invokespecial

The invokespecial instruction has three roles to perform: calling class initialisation methods

(constructors), calling private methods and calling methods in the super-class (i.e. imple-

menting the super keyword). The format in a standard class file for this instruction (just as

with the other invoke instructions) is:

183 b1 b2

With the two operands, b1 and b2 forming a 16-bit unsigned offset into the constant pool

which results in a symbolic method reference.

To differentiate between the uses of the invokespecial instruction, the resolved method

reference is examined. If the resolved method is in the current class, or is to a constructor,

then that is the method to be called. This covers the case of a private method (which would

be in the current class) and constructors. If the resolved method is instead in a super-class

of the current class, then the third behaviour is assumed, and a new search is made from

the current class’s super-class, to find a matching method.

Table 5.7 shows how often each sized token was used by the test classes. While 16-bit

method tokens were relatively rare, only being used by the J2SE library, 16-bit class tokens

are reasonably common. Given that the 8,16 version of the instruction was not needed at

all, it can be left out, with the 16,16 version being available if such a situation arises, giving

three tokenised versions as follows:

183 nargs ctok mtok

203 nargs ctokH ctokL mtok
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210 nargs ctokH ctokL mtokH mtokL

The process for the tokenised invokespecial is identical to the tokenised invokevirtual, up

until step 4. After resolving the method reference in step 3, a test must be made to de-

termine which of the 3 possible behaviours is being used. The method reference will be

to a structure that contains details about the method, including a flag to indicate if it is a

constructor or not and if this flag is set, then the constructor calling behaviour is used and

the resolved method is the one to execute. If the flag is not set, but the resolved method is

in the same class as the currently executing method (i.e. the one that contains the invoke-

special instruction), then the private method call behaviour is being used, and again, the

resolved method is the one to execute. Finally, if neither of these are true, then the third

behaviour is being used, meaning a call to a method in the super-class. Using the currently

executing method, the VM finds the class it belongs to and from there, the class structure

that represents the super-class. The virtual method table from the super-class is then used

to dispatch the mtok value as if it were an invokevirtual.

5.4 Native Methods

The CLDC library requires native methods to implement some features, therefore, a virtual

machine must implement these native methods. Only the CLDC 1.1 library was used for

executing programs. Since some methods appeared to have been declared native purely for

performance reasons (with the Java version of the method present but commented out in

the source code), the library was modified to use the Java version of these methods, hence

reducing the number of native methods to be implemented. The full list of native methods

in the CLDC 1.1 API can be found in Appendix C. A minimal set of these methods was

implemented to allow for the execution of the Javolution benchmarks (more details on the

libraries used for testing in Section 3.9). There were both static and virtual native methods

that needed to be implemented.

In all cases, the virtual machine would check the target of each method call to see if

it had the native flag set. If so, there were two general dispatch methods, one for static
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methods and one for virtual methods. The arguments for the native call would be gathered

from the stack and passed to the dispatch method. Using the class and method tokens, the

appropriate implementation is selected and executed. The following details which methods

needed implementation and how these were implemented. Each section lists the relevant

classes and below that, the prototype for each native method.

5.4.1 Static Methods

There were 5 static methods that needed implementing for execution to succeed. These

were:

• java.lang.Class

– Class forName(String)

• java.lang.System

– void arraycopy(Object, int, Object, int, int)

– long currentTimeMillis()

– String getProperty0(String)

• java.lang.Thread

– void sleep(long)

5.4.1.1 java.lang.Class

The forName(String) method allows a program to call the method with any arbitrary string

and have the system attempt to load the class with that name (if it has not already) and

return a Class object that represents the class. An application can then query that object

to find out various information about the class or call the default constructor to create an

object of the class, allowing for a very limited form of reflection.

The forName method causes a problem for a tokenised virtual machine, as the string

class names have been removed during tokenisation. Either applications must be prevented
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from using this method, or the string data for class names must remain in the tokenised

files. Even if applications are prevented from using this method, the API classes make use

of it in some situations for internal operations. To allow this method to function correctly,

the converter was modified to output a VMConstants.java file, which is a valid Java source

file that contains, as fields, the tokens assigned to certain classes and methods. The VM

Constants file is detailed in Section 5.5.

5.4.1.2 java.lang.System

The system class had three static methods that needed implementation. The first, array-

Copy, is a performance method, provided to allow efficient copying of large amounts of

data from one array to another. While it is provided purely for performance reasons, im-

plementing this method in Java code was not possible, as its array arguments are declared

to be of type Object, allowing any array types to be passed into the method. It is difficult

to implement in Java, having to cast the objects to the appropriate type of array. Therefore

a VM level method was used to move the data between the two array objects, which is

efficient in the VM since it can take advantage of the internal format of array objects.

The currentTimeMillis() method will return the number of milliseconds that have elapsed

since midnight at the start of 1st January 1970, and is used by any application that wishes

to know the date or for timing. Since the VM is implemented in Java, this method is im-

plemented by querying the underlying VM’s version of this method for the current value.

The final method, getProperty0, is a private method used to implement the getProp-

erty(String) method in System. This is used to query system properties that will have been

initialised by the VM, including the version of the VM, class paths, the working directory,

the users home directory and other platform specific information. It was found that the

Javolution library, while it called this method, could function if this method did not return

anything. The method contract allows for the method to return null if there is no property

with the given name and therefore this method always returned null.
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5.4.1.3 java.lang.Thread

The sleep method causes the current thread (i.e. the one that calls the method) to sleep for

the given number of milliseconds, after which it becomes runnable again and must wait for

the scheduler to select it. The Javolution library calls this method between tests, just after

calling System.gc(), to allow time for the garbage collector to run. The sleep method was

implemented by just calling through to the host VM’s version of Thread.sleep(long).

5.4.2 Virtual Methods

There were 10 native virtual methods that were used. These consisted of:

• com.sun.cldc.io.ConsoleOutputStream

– void write(int)

• java.lang.Class

– String getName()

– boolean isInstance(Object)

– boolean isInterface()

– Object newInstance()

• java.lang.Object

– Class getClass()

– int hashCode()

• java.lang.Runtime

– void gc()

• java.lang.StringBuffer

– String toString()
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• java.lang.Thread

– void setPriority0(int)

5.4.2.1 com.sun.cldc.io.ConsoleOutputStream

This class is used to implement the standard output from the application. While on some

devices, standard out might not make sense (such as a mobile phone with a GUI interface,

since there is not normally a console for standard out to go to). However, the API will take

anything written to standard output (or standard error, which is just an alias for standard

out in CLDC) and for each character, call write(int) to output one character at a time. In

the test VM, each call to this method results in the parameter being written to a file called

std.out in the VM’s working directory. When running the Javolution benchmarks, standard

out is used to report the test results, and therefore used to verify correct operation.

5.4.2.2 java.lang.Class

This class represents a class file that has been loaded by the virtual machine, allowing a

limited form of reflection, such as an application querying classes at runtime that were

unknown at compile time. The static forName(String) method is used to request the virtual

machine return a Class object to represent the class with the given name. These virtual

methods can then be used on such a Class object:

• String getName()

• boolean isInterface()

• boolean isInstance(Object)

• Object newInstance()

The getName() method will return the name of the class this object represents. Given the

removal of the string data, the getName method was implemented to return the class’s

token as a string instead, which was sufficient for running the tests. If the functionality
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of getName was required, then the names of each class would need to be included on the

device.

The isInterface() method allows an application to query if the class object represents a

class or an interface.

The last two methods are for interacting with objects of the class. Firstly,

isInstance(Object) can determine if the given object is actually an instance of this class.

The instanceof keyword can be used in source code, rather than an explicit call to this

method, however, the instanceof keyword is compiled to the instanceof instruction, which

requires the class type to be known at compile time. The isInstance(Object) method allows

the test to be performed for any class type. The final method is newInstance(), which will

create a new object of this class using the default constructor (CLDC does not support call-

ing a constructor that takes parameters via reflection). This is the reflection implementation

of the new keyword.

All these operations involve interaction with either the class loader or with objects at a

low level, therefore requiring knowledge of the VM’s implementation, which can only be

done in native methods.

5.4.2.3 java.lang.Object

The root of the inheritance tree, as such this class contains methods that every Java object

will contain. Two of these methods have native implementations:

• Class getClass()

• int hashCode()

The getClass() method is used to return the Class object that represents the type of this

object, which requires knowledge of the structure of objects and interaction with the class

loader. The hashCode() method is used to return a hash value for the object. There is a very

specific contract on how this method must behave, the returned hash code must be unique

within the system and must not change for a given object during that objects life. To since

objects within the test VM were represented using objects in the underlying host VM, the

native implementation just returned the hash code of the underlying object.
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5.4.2.4 java.lang.Runtime

The Runtime class provides access to information and controls for the runtime of the VM,

and underlies some of the System classes features. In this case, the System.gc() method will

call the native gc() method in this class. Since the Runtime.gc() method should cause the

virtual machine to perform garbage collection, it must be native, so it can interact with the

garbage collector. Since the test VM was implemented in Java, there is an underlying Java

virtual machine which runs the test virtual machine. The test VM implements this method

by simply calling the gc() method of the underlying VM.

5.4.2.5 java.lang.Thread

The Thread class allows an application to interact with and create threads of execution

within the VM. The only method used was setPriority(int), which is used to change the

priority of a thread. A private native method, setPriority0(int), is used to interact with the

VM and do the actual change of priority. Since the test VM was not multi-threaded, this

method was just ignored.

5.5 VM Constants

The virtual machine needs to interact with some classes, such as creating an exception

object or accessing the internals of string objects, and therefore needs to know what tokens

were assigned. In particular, class tokens are needed for the following classes:

• java.lang.Class

• java.lang.ClassCastException

• java.lang.ClassNotFoundException

• java.lang.Error

• java.lang.InstantiationException

• java.lang.Object
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• java.lang.String

• java.lang.Throwable

As well as the class tokens, the field tokens are also needed for the following three fields in

the java.lang.String class:

• value

• offset

• count

The class tokens are needed by the virtual machine as it must interact with these classes

and be able to generate instances of them at runtime. For example, the VM is required to

throw various exception/error classes in certain situations, such as an ArithmeticException

from the divide bytecode if the divisor is 0, and therefore must be able to instantiate objects

of these classes. While the Class, Object and String classes must be instantiated by the

VM in certain situations and as such the VM must know what token each of these classes

received.

The three fields in the String class are needed because the VM must interact with String

objects on a very low level. For example, when creating an exception object, the VM must

first create a string object with the error message, then pass that object to the exception’s

constructor. The VM achieves this by creating a string object and setting the internal fields

of the object to the appropriate values. The inverse operation is also required where a String

object in the application needs to have the string it represents extracted. Internally a String

object consists of a character array holding the characters, as well as an offset of where the

string starts in that array and a count of how many characters are actually in the string.

As well as the above, the class and method tokens are needed for all the native methods.

When a method call that is marked as native is encountered, the only thing known about

the method is the class token for the class it is in and the method token. Therefore, these

values are used by the VM to dispatch to the correct implementation for the method.
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5.5.1 Implementing VM Constants

To leave flexibility in the converter, the tokens that the VM needs to know are not restricted

at conversion time, allowing the converter maximum flexibility to allocate tokens as it sees

fit. However, so the VM can execute the resulting tokenised classes, an addition file is

output from the converter, called “VMConstants.java”, which is a correctly formatted Java

source file that defines one class: VMConstants. The VMConstants class contains a number

of fields, each one representing the token for the various classes, fields and methods. The

VMConstants file is compiled into the VM, which then references the appropriate field

when needed.

Compiling constant values into the VM is not extensible, but was sufficient for testing

purposes. The constant values were only required for classes in the CLDC library and

updating of this library on a real device would be quite rare. If such an update took place,

it would be done by the device manufacturer, allowing them to update the virtual machine

and libraries together. Further libraries/applications will not need to extend or modify these

constant values.

5.6 Correctness of Execution

Two working virtual machines were created, capable of executing either standard or to-

kenised class files respectively. The standard virtual machine provided verification of the

implementation, the code for which was then modified to allow execution of tokenised

files. For testing, the CLDC1.1M and Javolution5 libraries were used. Specifically the

Javaloution5 library had been incrementally tokenised on top of the CLDC1.1M library.

The Javolution package was executed using Sun’s J2SE virtual machine, to observe

correct execution. While the Javolution library is intended as a real-time library for Java

applications, it includes a benchmark feature, which exercises various parts of the library,

therefore output was in the form of timing information for each test. The Javolution pack-

age was then executed using the implemented virtual machine to execute the standard class

files and the tokenised class files respectively. All runs completed normally, with the only
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output variation consisting of the timing information in the benchmarks, indicating that the

virtual machine was functioning correctly.

Further analysis was done to ensure that the execution was non-trivial and that a suitably

large volume of code had actually been executed. Firstly, it is ensured that a reasonable

amount of the instruction set had been used and secondly, that these instructions had been

from a large set of methods, not just a few methods called many times. The following

sections present the analysis of the instruction set usage and method coverage.

5.6.1 Instruction set usage

Each Java instruction consists of a single byte, allowing for 256 different possible opcodes.

Of these, Sun specify 201 instructions (using the values 0-201 inclusive, except for 1863).

There are three reserved values for special use, 202, 254 and 255 and the remaining values

are reserved for future use. The three reserved values cannot appear in a valid class file,

however they may be used by the interpreter or inserted at runtime. The opcode 202 indi-

cates a breakpoint, i.e. for use by a debugger to insert breakpoints into code, while 254 and

255 are left to the VM implementer to define their action.

When the Javolution 5.2.5 library was executed on the virtual machine, it used 121 of

the 201 valid instructions, leaving 80 instructions unused. The primary concern for testing

was that the 4 invoke instructions be shown to operate correctly. For the 4 instructions,

invokevirtual was executed approximately 2.9 million, invokestatic 1.2 million, invokein-

terface 0.5 million and invokespecial 0.4 million times. At 2.9 million uses, invokevirtual

was the forth most used instruction during execution. The program ran as expected and

produced its expected output, showing that the tokenised class files were executed success-

fully.

5.6.2 Method coverage

The CLDC1.1M and Javolution5 packages have a total of 452 classes, which contain 3148

methods (including methods without implementations). Since the virtual machine uses lazy

3The opcode 186 was used historically, but is considered invalid in modern class files.
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class loading, only 199 of these classes actually got loaded during execution. These loaded

classes contain a total of 1450 method definitions, 1387 of which have code attached to

them.

Running the Javolution benchmarks resulted in the execution of 700 unique methods,

which constitutes about 22.2% of all the methods in the CLDC1.1M and Javolution5 pack-

ages combined (or nearly 50% of the methods actually loaded). Complete method coverage

was not expected, since the Javolution benchmark code is not designed as a thorough testing

suite. Even if the benchmarks exercised all code in the Javolution library, there are many

classes and methods in the CLDC API that would not get used, such as the framework for

handling IO and network connections. As well, there are exception and error classes, that

will not get used in the course of normal execution.

A significant variety of methods were executed, indicating that tokenisation produced

class files that were executed successfully.

5.7 Efficiency of Execution

As well as testing the correctness of execution, the efficiency of execution is also examined.

Since the target of this work is J2ME, the logical virtual machine for comparison is the

Kilobyte Virtual Machine (KVM) from Sun Microsystems [62]. In particular, a Java Card

virtual machine is not considered because open-source implementations are not available

that could be easily instrumented and because the Java Card VM is significantly different to

J2ME. Java Card is targeted at embedded chips with extremely limited processors (even the

’int’ data type is optional), and uses a fundamentally different file structure to larger Java

relations (e.g. J2ME). The goal is to examine the application of Java Card like tokenisation

on J2ME systems, hence the focus on testing against a J2ME virtual machine.

Since the test virtual machine discussed above was not optimised for speed, it could not

be used for comparison. Instead, a small implementation of just the method lookup process

was implemented to test the complexity of the procedure. Since only the performance of the

invokevirtual instruction was being examined, a Java application was used that consisted

mainly of invokevirtual instructions. The following sections describe the testing process in
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Table 5.8: Instruction Usage in Test Class

Instruction Name Setup Test Case Total Executions
aload_0 1 111,111,110 111,111,111
aload_1 1 0 1
astore_1 1 0 1

dup 1 0 1
return 3 111,111,111 111,111,114

invokevirtual 1 111,111,110 111,111,111
invokespecial 2 0 2

new 1 0 1

detail.

In particular, a Java Card virtual machine is not considered for

5.7.1 Test Application

An application that makes heavy use of the invokevirtual instruction is needed to test

each virtual machine. An ideal test would be an application that consists entirely of in-

vokevirtual instructions. However, parameters must be pushed onto the stack and the re-

turn instruction must accompany any method calls, making this impossible. Loops were

avoided to minimise any extra instructions, resulting in a class that consisted of 8 methods,

named run100000000, run10000000, run1000000, and so on, down to run10. Each method

called its smaller version ten times, i.e. run100000000 contained ten calls to run10000000,

run10000000 contained ten calls to run1000000 and so on. Finally the run10 method would

call a ninth method, noop, ten times. The noop method did nothing other than return. Since

the aim was to test the invokevirtual instruction, the above methods were all non-static.

Finally a main method was added to the class, that would create an object and call the

run100000000 method once.

The result was an application that, when executed, would perform a total of

111,111,110 method calls. To verify the instructions used, the class was compiled and

executed with the test virtual machine, which contained instrumentation to count the use of

each instruction. The results of this are shown in Table 5.8.

A few additional instructions get used by the application. If the first line in the main
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method is examined, which consists of: “Main m = new Main();”, it is compiled to the

bytecode sequence: new, dup, invokespecial, astore_1. These instructions first create an

uninitialised object, duplicates the reference on the stack, calls the default constructor on

it (consuming the first object reference), then finally stores the remaining object reference

into local variable 1. The default constructor for a class, when not specified, will call the

default constructor of the super-class (in this case, java.lang.Object), which will use the

instructions: aload_0, invokespecial and return, which loads the this reference, calls the

super constructor and returns. The default constructor in Object just performs a return.

The next line in the main method is: “m.run100000000();”, which produces an aload_1

instruction to load the stored object reference from earlier, then an invokevirtual to call

the method. A final return from the main method is also needed when execution finishes.

These instructions account for the “setup” for the test and are shown in the Setup column

of Table 5.8.

The Test Case column shows the instructions used during the execution of the run*

methods. The number of aload_0 and invokevirtual instructions are the same, since before

each invoke, the object reference for “this”, stored in local variable 0, must be pushed onto

the stack. The apparent imbalance between invokes and returns occurs because there is

no invoke instruction used to start the call to the main() method, however there is a return

instruction. It appears in this section since the initial call into the run100000000() method

is counted as setup, and the return from it as part of the test case.

The virtual machine used to verify these numbers shortcuts some of the start-up proce-

dure of a normal virtual machine, such as the KVM. The KVM performs more initialisation

of some of the API classes before it even calls the main method in the application, which

lead to slightly more uses of the invokevirtual instruction, up to 111,111,172. The exact

number of calls was not important for the test however, just the amount of time each call

takes, and the testing took into account the few extra instructions in the KVM.
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5.7.2 VM Implementations Tested

The KVM was used as an example of a current J2ME virtual machine for comparison

against the tokenised dispatch presented in this thesis. Since the KVM is designed for a

variety of hardware, some features can be enabled or disabled at compile time. Of rele-

vance to testing are the “fast” bytecodes, which are used to improve performance of the

invoke* instructions. The KVM was therefore tested with fast bytecodes both turned on

and turned off, giving three implementations for testing: KVM, KVM-Fast and Tokenised.

The following sections describe each in detail.

5.7.2.1 KVM and KVM-Fast

To perform an invokevirtual, the following steps must be performed by the KVM:

1. Resolve the symbolic reference from the constant pool, which involves:

(a) Use the operand as a constant pool index, to load a method reference.

(b) Use the entries in the method reference to load other constant pool entries,

resulting in all the data needed for a symbolic method reference.

(c) Use the symbolic data to find the target class (loading and linking the class if it

has not happened yet).

(d) Use the symbolic data to find the target method within that class (or possibly

within a super-class).

2. Use the number of arguments from the method details found from the constant pool

to get the object reference from the parameters on the stack.

3. Find the dynamic target for the method call, which is a repeat of step 1 part (d), except

using the class type of the object, rather than the class from the symbolic reference.

4. Push a new stack frame and populate it.

5. Begin execution of the new frame.
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Since tokenisation only speeds up the method lookup procedure, testing was focused on

determine how long it took from when the instruction started to be processed until the

target method had been found (steps 1 to 3 above). The time to push a new stack frame and

transfer control will be similar no matter what method lookup procedure is used.

The KVM includes two important caching mechanisms to speed up invokevirtual in-

structions. The first caching occurs during step 1 above, when using the symbolic data in

the constant pool to find a matching method. After first resolving the target method for that

constant pool entry, the method is cached. Future references to the same constant pool en-

try will result in the cached method, therefore only needing to perform part (a) of the above

sequence before moving onto step 2. The second caching mechanism involves replacing

the invokevirtual bytecode with a special invokevirtual_fast bytecode, which caches the fi-

nal method that was called, for a given object type. In future if the same object type is on

the stack, then the steps 1 to 3 can all be skipped, and the cached method reference used. If

the object type is different, then steps 1 and 2 can still be skipped, however step 3 still has

to be performed, as the object may have a different implementation for the target method.

The constant pool caching feature is always present in the KVM, however, fast byte-

codes require that the bytecodes can be modified during execution, which is not possible on

some platforms, for example, when the bytecodes are stored in read-only memory. There-

fore, support for them can be turned on or off via compile time flags. The combination

of constant pool caching and fast bytecodes means there are three possible cases for an

invokevirtual instruction:

1. invokevirtual performing the full constant pool lookup.

2. invokevirtual where the constant pool lookup has been cached.

3. invokevirtual_fast.

When timing the KVM, the type of invokevirtual performed is also taken into account.

Therefore, the KVM (with fast bytecodes disabled) will have a measurement for case 1 and

2, while the KVM-Fast will measure all 3.
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5.7.2.2 Tokenised VM

While the test virtual machine does make use of tokens and the virtual method table, it was

not written to have an optimised method dispatch system and is therefore not suitable to

use for performance testing. Therefore, an implementation of the method dispatch proce-

dure for tokenised code was written in C, using memory structures to represent the various

structures a virtual machine needs to maintain, such as class files, method pointers and the

virtual method table. An image was created that represented the test application, includ-

ing an entry for the class, with pointers to the classes virtual method table and method

structures to represent each of the run*() methods in the class.

To correspond to the method resolution steps being timed in the KVM, a C function

was written that accepted a method token and object as parameters and would return the

target method as a pointer. The function was used to resolve the same method calls in the

same order as they are present in the test Java application.

During compilation the optimiser was turned off (“-O0” option to GCC) to ensure none

of the lookup process was optimised out. Also, the resolved method was used to run a loop

to simulate execution of the resolved method, which adds additional code between each

method dispatch, to remove the effect of processor caching and more closely emulate the

workload that would be expected in a production virtual machine.

5.7.3 Methodology

Three different approaches were used to time each of the virtual machine implementation.

First, an approximation of the runtime was found by counting the number of instructions

used. Performance was then tested using “gprof”, the GNU Profiler, and finally, the code

was instrumented using the RDTSC (ReaD TimeStamp Counter) x86 instruction to read

the processors time stamp.

Testing was done on an AMD Opteron 2444 based, dual processor system with each

processor running at 1800 MHz. To minimise noise, only one benchmark was ever run

at a time, leaving the second processor free to handle other system events and while no

4Specifically the C0 stepping of the “Sledgehammer” model.
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other users were on the system. The operating system was Red Hat Enterprise Linux AS

release 3 (Taroon Update 2), which is a 64-bit operating system, allowing testing of 64-bit

and 32-bit versions of applications. The KVM however, was not written to support 64-bit

and as such will not compile in 64-bit mode. Therefore, testing of the KVM was limited

to 32-bit only, however the tokenised test was run in 32 and 64-bit modes for comparison.

The only difference between 64-bit and 32-bit was during compilation, with the use of the

“-m32” or “-m64” flag to gcc, to request a 32-bit or 64-bit binary respectively.

The following sections detail how each timing mechanism was used.

5.7.3.1 Instruction Count

To gain an initial approximation, the code was executed in the GNU Debugger (gdb), us-

ing the step-instruction feature. The code was compiled with debugging symbols and an

appropriate breakpoint set, then the step command was used to step through individual x86

instructions until the target code had completed execution.

Counting instructions in this manner is very slow and labour intensive, therefore limit-

ing the number of samples that can be gathered. However, this provided an initial estimate

of execution time, which was compared to later results to check for consistency.

5.7.3.2 Profiling Using gprof

The GNU Profiler (gprof) allows an application to be executed and profiling information

generated. The instrumentation done by gprof will ensure exact values for the number of

calls to a given function. As well, function runtime is given by sampling the currently

executing function at given intervals, and then using a statistical approach giving an ap-

proximation of the functions runtime [43].

The KVM has its interpreter loop separated into two functions, FastInterpret and Slow-

Interpret. The FastInterpret function contains the main loop and the implementation for

the “common” bytecodes, while the SlowInterpret function contains the implementation

for the “uncommon” bytecodes. This approach is taken by the KVM to reduce the amount

of code in the switch statement used to decode instructions, so compilers can optimise it
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easier. The invokevirtual instruction was the only instruction used that was implemented

via SlowInterpret. Since gprof only provides information about the execution of functions,

not arbitrary sections of code, the timing information for the SlowInterpret function is the

most accurate data that can be obtained using gprof. Ideally the measurement should cover

just the time needed to resolve a method call, however, the SlowInterpret function includes

other overheads, such as pushing the new frame for the method, reporting the method call

for debugging and finally transferring control to the new frame.

5.7.3.3 Profiling Using RDTSC

The most precise method for timing is the RDTSC (read timestamp counter) instruction,

which was added to the Pentium processor and allows a program to read the number of

clock cycles that have occurred since the processor was last reset. The behaviour of the

counter varies depending on brand (Intel or AMD) and on processor version. On all AMD

processors and earlier Intel processors, the counter would increment on each processor

clock cycle, giving an accurate count of processor clocks, but an inaccurate measurement

of real time if the processor has changed clocked speeds (i.e. for power saving or thermal

management). Newer Intel processors have the counter update at a rate equivalent to the

maximum clock speed of the processor in all except for a few situations [48], hence giving

a better measurement of real time, but not of the number of processor cycles. Since testing

was performed on an AMD based server system, RDTSC will give an accurate count of

processor cycles.

Benchmarking was done by adding an RDTSC instruction before and after the code to

be timed, with the difference between the two values giving the duration of the code in

question. Modern processors do not guarantee the order in which a set of instructions will

be executed, rather instructions can be executed out-of-order (provided the final result is as

if they were executed in order). Out-of-order execution is a problem when trying to mea-

sure a short sequence of instructions, as the initial RDTSC instruction may not get executed

until some of the instructions to be timed have already been completed. The processor must

be forced to finish all previous instructions, including the RDTSC instruction, before exe-

cution on the code needing timing. Typically, instructions known as a “serialising instruc-
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Algorithm 4 Timing Harness
RDTSC(); // Get the current time stamp value

CPUID(); // Ensure that the rdtsc instruction is finished

<code to be timed>

CPUID(); // Ensure the timed code has completely finished.

RDTSC(); // Get the finish time for the code.

tion” can be used, that is, an instruction that cannot execute until all previous instructions

are complete. In particular, the CPUID instruction, which provides details about the CPU

is one such instruction. Some additional instructions are also required, such as getting the

values returned from the RDTSC instruction (which will be in the EDX and EAX registers)

and storing them for later. To implement the timing and the serialising, two functions were

written, both using inline assembly. The first, RDTSC(), would use the RDTSC instruc-

tion and return the 64-bit timestamp value, while the second, CPUID(), would execute the

CPUID instruction. Using these functions leads to the pseudocode shown in Algorithm

4. The timing harness will add a small amount of overhead, since after the initial RDTSC

instruction, the value must be stored and the CPUID instruction then stalls the pipeline to

ensure that the timestamp value is stored before continuing with the code requiring timing.

5.7.4 Results

The first two results cover the instruction counting and gprof timing of the KVM. These

were used as initial approximations to verify that later results were within the range ex-

pected. Following these are the more accurate timings of the KVM and tokenised VM,

performed using the RDTSC instruction.

5.7.4.1 KVM Instruction Count

To get an initial approximation of the number of instructions it should take to perform a

single invokevirtual instruction, gdb was used, with a break point set at the beginning of

the method resolution process. Once the program had stopped, the step instruction feature

of gdb was used to step through individual x86 instructions until the target method had

been identified and the KVM was ready to perform the call. The fast bytecodes feature was
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disabled for this test. Several executions were observed, to cover cache hits and misses for

the constant pool lookup.

In the case of a cache miss, somewhere between 700 and 1100 instructions were used.

Continuing execution until a cache hit, the number of instructions was much lower, being

approximately 200. Both method lookups were observed to use linear search when search-

ing for a method within a class, which makes the number of instructions dependent on the

size of the method tables and relative position of the target method. Due to the labour inten-

sive nature of this approach, only 2 executions of each case (cache hit and cache miss) were

observed and therefore do not represent reasonable sample size. However, these counts

provide a rough estimation to verify that later results seem reasonable.

5.7.4.2 KVM gprof Timing

The SlowInterpret function was reported as being called 111,111,360 times. The extra

instructions are the result of extra initialisation performed by the KVM, before it begins

execution of the application’s main method. These few extra calls will have a statistically

insignificant impact on the total execution time of the SlowInterpret function. The test Java

application was run on the KVM a total of 3 times, giving a total execution time of 20.69

seconds for the SlowInterpret function,or an average of approximately 62 nanoseconds for

each call to SlowInterpret and hence to execute a single invokevirtual. However, this time

includes the entire method call process, including pushing stack frames.

When taking into account the clock speed of the test machine (1800MHz), 111 nanosec-

onds would be equivalent to 112 clock cycles. By stepping through with the debugger ear-

lier, it was found that the complete function required approximately 200 instructions (in

the case of a cache hit, which is by far the most common). Given the super-scalar nature of

modern processors, throughput of 2 instructions per clock cycle does not seem unreason-

able. However, gprof measures run-time of function by sampling the currently executing

function at a fixed interval of 0.01 seconds. The cumulative time used by all functions

(as reported by gprof), was only approximately 72% of the runtime reported by the Linux

’time’ command, indicating that gprof likely ’missed’ some of the program’s execution

time, due to the very short runtime of the functions involved. If this were the case, then the
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real number of cycles per invoke would be greater than the 112 cycles found using gprof.

5.7.4.3 RDTSC Overhead

Since the RDTSC timing harness will add some overhead to the code being timed, the test

harness was executed with no code inside, to measure the size of this overhead. The test

was run on the dual processor AMD system as a 32-bit application and then again as a

64-bit application. Testing was also repeated on another machine in the same cluster, with

no significant variation. The results presented below are for the first machine.

The results of these tests are presented in Table 5.9. Parts (a) and (b) show the number

of runs and the percent of runs that took the given number of cycles to complete for 32-

bit and 64-bit modes respectively. Parts (c) and (d) then present the summary, with the

minimum, median, average, maximum and standard deviation for the number of cycles it

took to execute the timing harness.

Both tests resulted in a fairly tight clustering of results, however the 64-bit executables

gave far more consistent results. For the 64-bit test, 99% of executions of the timing harness

were complete in 132 cycles. Executions that took only a few cycles more than 132 can

be accounted for as effects of the pipeline and/or cache, while larger values are likely the

result of an interrupt or other operating system interference. While the standard deviation

is quite high for the 64-bit test, this can be accounted for by the few, but extremely large,

outliers. Therefore, it can be concluded that, in the case of a 64-bit executable, the overhead

is 132 cycles, with the other measured values being the result of noise in the system.

The results for the 32-bit test are not as clear as those for 64-bit. The immediate ob-

servation is that for 32-bit, 132 cycles seems to be an unobtainable number. With only a

handful of results between 132 and 135, it would seem 136 cycles is the best time for a

32-bit binary, 4 cycles slower than for 64-bit. The distribution of results is also different,

with the majority of results distributed between four values: 136, 138, 140 and 142 cy-

cles. This distribution was explored further by executing the same test case again on the

same test machine and on a second identical machine. While the distributions between

the four key values of 136, 138, 140 and 142 cycles changed, those values still accounted

for the majority of the executions. Therefore, by excluding the larger times as aberrations
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Table 5.9: Timing Overheads Using RDTSC

(a) 32-bit

Cycles # of runs % of runs
132 0 0.00
133 0 0.00
134 1 0.00
135 1 0.00
136 34,429,237 34.43
137 28,495 0.03
138 16,116,784 16.12
139 17,900 0.02
140 34,929,562 34.93
141 37,497 0.04
142 14,040,439 14.04
143 33,917 0.03

>143 366,167 0.37

(b) 64-bit

Cycles # of runs % of runs
132 98,971,031 98.97
133 143,681 0.14
134 42,592 0.04
135 32,585 0.03
136 95,570 0.10
137 55,098 0.06
138 14,294 0.01
139 48,847 0.05
140 43,687 0.04
141 86,605 0.09
142 16,660 0.02
143 293,207 0.29

>143 156,143 0.16

(c) 32-bit Summary

Min Value: 134
Median Value: 138
Average Value: 139.5215

Max Value: 174,434
StDev 112.8356

(d) 64-bit Summary

Min Value: 132
Median Value: 132
Average Value: 133.8219

Max Value: 172,483
StDev 159.4441



187

caused by timer interrupts or other operating system interference, it can be concluded that

the timing overhead for 32-bit will consist of between 136 and 142 cycles. Averaging all

the data collected after multiple runs on on both of the testing machines resulted in a value

of 141.218 cycles, still within the 136 to 142 bracket.

The evidence suggests a 64-bit binary would provide the most accurate timing, how-

ever the KVM cannot be compiled in 64-bit mode, requiring the KVM to be executed in

the slightly slower and noisier 32-bit mode. During later testing, similar noise within the

system can be expected, as was present during this testing, resulting in the occasional large

value. Therefore, the average values found will be used as the expected overhead in later

testing. These values are: 141.218 cycles for 32-bit binaries and 133.8219 cycles for 64-bit

binaries.

5.7.4.4 KVM RDTSC Timing

For the first test, fast bytecodes were disabled, leaving only the constant pool caching

mechanism. References to items in the constant pool could either result in a cache miss,

requiring an expensive lookup for that item, or a cache hit. Therefore, the results consisted

of two timing values, one for a cache hit (cached) and one for a cache miss (uncached).

To gather a large sample size, the KVM was executed a total of 500 times, with the results

being recorded for each run. Table 5.10 summarises the results in each of these two cases.

Since the test application calls a small number of methods a large number of times, there

are only 27 uncached method calls. The remaining 111,111,145 calls all occur with the

constant pool entries having been cached. In both tables, the Total Cycles column shows

the total accumulated cycles for all the calls, while the next column shows the average

number of cycles needed per call. The final column, Adjusted Cycles/Call, shows the

average number of cycles that was really taken once the overhead of the timing code is

removed, in this case 141.218 as found in Section 5.7.4.3. Figure 5.8 shows the histogram

graph for the 500 runs.

These results show that the complete constant pool lookup and creation of the cache

entry adds approximately 500-700 cycles to the execution time, for a total time of 720-

960 cycles for an uncached call. Although, the small number of uncached calls limits
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Table 5.10: invokevirtual Results Using RDTSC

(a) Times for a cached invokevirtual

Cached - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 42,691,182,381 384.221 243.003

Average 43,744,893,928 393.704 254.182
Median 43,419,992,203 390.780 251.258

Max 45,276,032,029 407.484 266.266
StDev 619,721,794 5.557

(b) Times for an uncached invokevirtual

Uncached - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 23324 863.85 722.63

Average 24089 892.18 752.66
Median 24042 890.44 750.92

Max 29701 1100.04 958.82
StDev 416 15.39
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Figure 5.8: Histogram of Average Cycles/Call for Uncached invokevirtual Calls



189

the confidence that can be placed in these values. For a cached invokevirtual, the time

taken was 243 to 266 cycles per call. The initial instruction counts from Section 5.7.4.1

had estimated 200 instructions for a cached invoke and 700-1100 for an uncached, which

corresponds to the findings here. The grpof testing gave an estimate of 112 cycles for a

cached invoke, however that number is likely to be too small, since gprof did not account

for all of the applications runtime.

5.7.4.5 KVM-Fast RDTSC Timing

The second test involved compiling the KVM with support for fast bytecodes. The ad-

ditional invokevirtual_fast method was also instrumented with the same RDTSC timing

harness and the same test application was then executed a total of 500 times. The results

are summarised in Table 5.11.

As can be seen, the invokevirtual_fast bytecode is significantly faster, taking on average

only 73 cycles to execute. The fast bytecode works by caching the type of the object and

final target method inline in the instruction. On later executions, if the object for the method

call has the same type as the cached entry, then the target method from the cache can be

used without any lookups. However, an application with a polymorphic call site will find

the cached entry does not always match, resulting in a call similar to a cached invokevirtual.

For the test application there was only ever the one object, therefore the invokevirtual_fast

bytecode always had the correct target, never needing to do these extra lookups. Compared

to the previous test, the cached invokevirtual time is slower by about 100 cycles, which is

consistent with the extra work needed to replace the instruction with the invokevirtual_fast

instruction.

5.7.4.6 Tokenised RDTSC Timing

Two versions of the Tokenised test were run, one in 32-bit mode the other in 64-bit. As

with the RDTSC Overhead testing, the only difference between the two tests was the use of

either the “-m32” or “-m64” flag to GCC. The summary of the times can be seen in Table

5.12. When comparing the 32-bit and 64-bit times, again the 32-bit seems to be slightly
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Table 5.11: KVM-Fast Results Using RDTSC

(a) Times for a cached invokevirtual

Cached - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 38,374 491.974 350.756

Average 40,898 524.336 383.118
Median 40,707 521.878 380.660

Max 46,796 599.949 458.731
StDev 1,207 15.475

(b) Times for an uncached invokevirtual

Uncached - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 25,632 949.333 808.109

Average 26,792 992.300 851.081
Median 26,740 990.389 849.170

Max 28,697 1,062.852 921.630
StDev 549 20.332

(c) Times for invokevirtual_fast

Fast Invoke - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 23,794,664,921 214.152 72.934

Average 23,851,908,225 214.667 73.449
Median 23,838,514,508 214.547 73.328

Max 23,925,270,503 215.328 74.109
StDev 39,078,227 0.352
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Table 5.12: invokevirtual on the Tokenised Virtual Machine

(a) Times for invokevirtual (32-bit)

32-bit - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 17,768,138,285 159.913 18.694

Average 17,788,735,390 160.098 18.880
Median 17,789,276,036 160.103 18.885

Max 17,815,377,609 160.338 19.119
StDev 10,992,164 0.099

(b) Times for invokevirtual (64-bit)

64-bit - System 1 Total Cycles Cycles/Call Adj. Cycles/Call
Min 17,005,485,975 153.049 11.830

Average 17,119,602,484 154.076 12.857
Median 17,116,518,483 154.048 12.830

Max 17,224,280,656 155.018 13.800
StDev 54,784,798 0.493

slower, taking on average 6 more cycles, which is consistent with the discrepancy noticed

when testing the RDTSC overhead. The distribution of the results can be seen in Figure 5.9

for the 32-bit and Figure 5.10 for the 64-bit.

5.7.5 Summary

Taking the results from the previous tests results in the summary shown in Table 5.13. It

can be seen that for the KVM cached and uncached implementations, the version with fast

bytecodes was significantly slower. This can be explained be the extra overhead of having

to replace the bytecode with the invokevirtual_fast instruction.

The slowest three times (KVM-Fast Cached, KVM Uncached and KVM-Fast Un-

cached) all only had a very small number of samples compared to the others. In the case

of the KVM, most invokes were of the cached type, while for the KVM-Fast, the most

common was the invoke_fast. Although the small number of samples reduces the confi-

dence in these values, it is obvious that they are significantly slower than the tokenised

implementation.

These results have shown that the tokenised invoke calls are significantly quicker to
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Figure 5.9: Histogram of Average Cycles/Call (Adjusted) for 32-bit Tokenised invokevir-
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Table 5.13: Overall Summary of Adjusted Cycles/Call for all Tests

VM Min Average Median Max
Tokenised 18.69 18.88 18.89 19.12

KVM-Fast invoke_fast 72.93 73.45 73.33 74.11
KVM Cached 243.00 254.18 251.26 266.27

KVM-Fast Cached 350.76 383.12 380.66 458.73
KVM Uncached 722.63 752.66 750.92 958.82

KVM-Fast Uncached 808.11 851.08 849.17 921.63

JOP leJOS TINI Komodo JStamp SaJe Xint
invokevirtual 128 4,759 6,495 384 349 112 182

invokeinterface 146 5,094 6,797 1617 531 148 193

Table 5.14: Execution times in clock cycles, taken from [76]

execute than even the fastest KVM instructions. Also, the fast bytecodes in the KVM

require the ability to modify the bytecodes during execution, so they must be stored in a

writable medium, i.e. not in ROM. Being able to store the API classes into ROM can make

a device both cheaper and potentially more secure, since an attacker cannot modify the

classes. Tokenisation still allows for quick dispatch times, without needing to modify the

code at runtime, therefore still allowing it to be stored in ROM.

In a thesis produced by Martin Schöberl [76] he examines the execution times for vari-

ous Java virtual machine implementation. Table 5.14 shows the times reported for invoke-

virtual and invokeinterface from [76]. No details are reported on how much of the invoke

process this represents or how these values were obtained and it is assumed these involve

the entire invoke process (i.e. from the start of interpreting the invoke instruction, until the

next bytecode is ready to start), making comparisons with the results found here difficult.

Since the measurement of the KVM has given results that appear to be in line with other vir-

tual machine implementations as reported in [76]), it would suggest that the measurements

presented here are reasonable.
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5.8 Conclusions

The implementation of a basic virtual machine has allowed for the execution of tokenised

class files, which produced the same results as executing the standard class files on the

standard virtual machine, showing that the tokenised classes can still be executed correctly.

Analysis of the test application also showed it was non-trivial, using a significant por-

tion the classes and the Java instruction set. Not only can tokenised classes be executed

correctly, but testing has shown them to be between 4-45 times faster than the KVM for

resolving the target method.

Other improvements that result from a tokenised virtual machine include:

• The invokevirtual and invokeinterface instructions can share nearly all of their im-

plementation (with invokeinterface only being different in the rare case of a conflict

entry in the virtual method table).

• Removes the need to update bytecodes on-the-fly with “fast” versions, which testing

showed adds 100 or more cycles to the execution of the instruction each time these

entries are made and also requires the bytecodes be stored in a writable medium.

• Removes the dependence on the constant pool from the invoke* implementation,

removing the need for mechanisms such as caching of constant pool entries used by

the KVM to speed up these operations (although currently loading constant values

could still benefit from cached constant pool values).
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Chapter 6

Tokenised Class File Generation and
Compression

6.1 Introduction

The previous chapters have presented the tokenisation scheme used to allocate tokens to

methods and fields in class files. These are then stored in tokenised class files, a modifica-

tion of the existing class file format. During the creation of this new tokenised file format,

compression opportunities have also been identified. The original goal when creating the

class file format was to create files which are self-contained and easily extensible, but this

resulted in larger files. Since tokenisation tightly couples a set of class files, each file no

longer needs to be self-contained, allowing better use of space within the files.

The following sections detail the changes that have been made to the class file format

and is presented in the same order as entries are found in a class file, as defined in the Java

Virtual Machine Specification [57]. Most of the changes result from using numeric tokens

for linking and therefore the removal of the old linking symbols. The remainder of the

changes have been done to either simplify the class files, or to reduce their size.

6.2 Constant Pool Entries

The constant pool is not just used to store constant values needed by the program, but also

all the linking symbols. There are several different types of entries that can occur in the
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Table 6.1: Standard constant pool entry type

Tag Description Standard Tokenised
1 CONSTANT_Utf8 X X
3 CONSTANT_Integer X X
4 CONSTANT_Float X X
5 CONSTANT_Long X X
6 CONSTANT_Double X X
7 CONSTANT_Class X X
8 CONSTANT_String X
9 CONSTANT_Fieldref X

10 CONSTANT_Methodref X
11 CONSTANT_InterfaceMethodref X
12 CONSTANT_NameAndType X
13 CONSTANT_ArrayClass X

constant pool, with the type of each entry denoted by a 1 byte “tag” value at the start of the

entry. Table 6.1 shows the various types of entries and if they are found in standard class

files, tokenised class files or both. Some of the standard entries are no longer needed, due

to tokenisation, while others are modified or shortened.

The CONSTANT_Utf8 entries are used to store string data, including strings used

within the program and those used for linking. While constant values used by the pro-

gram must remain, those used for linking are no longer needed, providing a large space

saving.

The CONSTANT_Integer, CONSTANT_Float, CONSTANT_Long and

CONSTANT_Double entries are all used to store a constant value of the given primitive

type. For the BYTE, CHAR, and SHORT types, they will be stored in a CONSTANT_Integer

entry. Again, since these are constant values used by the program at runtime, they cannot

be removed, and are maintained in the same format as for standard class files.

The following sections cover the remaining types of entries and the changes that have

been made to them.
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CONSTANT_Class_info {

u1 tag = 7;
u2 name_index;

}

Figure 6.1: Standard CONSTANT_Class_info structure

CONSTANT_Class_info {

u1 tag = 7;
u2 token_value;

}

Figure 6.2: Tokenised CONSTANT_Class_info structure

6.2.1 CONSTANT_Class

In Java, a reference to a class and to an array class both use a CONSTANT_Class entry,

which in turn will reference a CONSTANT_Utf8 entry with the symbolic string to represent

the class or array. For a class, the string is the class’s fully qualified name, while an array’s

name will start with the character ’[’ (which can not be part of a class’s name) and consists

of a special syntax to indicate the type of values the array stores. A CONSTANT_Class

entry in a standard class file has the structure given in Figure 6.1. The tag value is used to

differentiate the types of the entries, with the value 7 indicating a CONSTANT_Class entry,

and the name_index is the index of the UTF8 entry in the constant pool. The tokenised

CONSTANT_Class_info entry is the same as before, however the name_index value has

changed meaning and now represents the token value, giving the structure in Figure 6.2.

A tokenised class will not contain strings as classes are referenced via a token value.

To represent arrays, a new type of entry was created, since a single token could not contain

enough information to define the array, and there are too many possible types of arrays to

allocate tokens to them all.

To represent an array, a new CONSTANT_Array_Class_info entry has been created, as

shown in Figure 6.3. The tag value of 13 is used, as this is not in use in standard class files.
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CONSTANT_Array_Class_info {

u1 tag = 13;
u1 type;
u2 dimensions;
u2 class_token;

}

Figure 6.3: Tokenised CONSTANT_Array_Class_info structure

Table 6.2: Possible values for the type entry in a CONSTANT_Array_Class_info entry.

Value Description
1 Primitive boolean type.
2 Primitive char type.
3 Primitive byte type.
4 Primitive short type.
5 Primitive int type.
6 Primitive long type.
7 Primitive float type.
8 Primitive double type.
9 Object reference type.

The type entry is used to describe the type of values stored in the array, which can consist of

one of the Java primitive types, or an object reference. Table 6.2 shows the possible values

for the type entry. The dimensions value indicates the number of dimensions in the array,

i.e. 1 is a standard array, while 2 would be an array with 2 dimensions and so on. This

value must be >0. Finally, the class_token value gives the types of objects that are stored

in this array if the type entry is 9 (i.e. the array stores objects of some type), otherwise the

array will store primitive values and the class_token value must be 65,535.

6.2.2 CONSTANT_String

A CONSTANT_String entry can be referenced from either a ConstantValue attribute or the

ldc and ldc_w instructions. In the first case, the ConstantValue attribute will be associated

with a field, and indicates that the field needs to be initialised with a string value (see Sec-

tion 6.3 for a discussion about fields, and Section 6.5.1 for information about the Constant-
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CONSTANT_String_info {

u1 tag = 8;
u2 string_index;

}

Figure 6.4: Standard CONSTANT_String_info structure

Value attribute). The ldc and ldc_w instructions are used to push a reference to the string

onto the evaluation stack (Section 5.3.1 provides more information on the modifications to

the instruction set). The Java Virtual Machine Specification defines a CONSTANT_String

entry with the structure given in Figure 6.4. The tag value of 8 indicates this is a CON-

STANT_String entry, while the string_index will be the index in the constant pool of a

CONSTANT_Utf8 entry that contains the actual string data.

Since a CONSTANT_String entry exists only to provide an index to a

CONSTANT_Utf8 entry, it has been removed and instead the 3 locations (ConstantValue

attribute, ldc instruction and ldc_w instruction) that can reference a CONSTANT_String

entry, have been updated to reference the appropriate CONSTANT_Utf8 entry. This has

three benefits, firstly it saves 3 bytes for each CONSTANT_String entry, secondly it reduces

the number of entries in the constant pool and finally it reduces the amount of indirection.

The side-effect of using less values in the constant pool is a space saving in other lo-

cations. Some instructions that reference constant pool entries, such as the ldc instruction,

use a single byte value when the referenced index is <256. If there are more entries in

the constant pool, then the longer ldc_w instruction with a two byte index will be needed.

Therefore, minimising the number of entries in the constant pool leads to space savings in

the bytecode for that class’s methods, due to having smaller index values.

6.2.3 CONSTANT_NameAndType

A symbolic method or field reference requires three strings in a standard class file, the class

name, the method or field name and the type (in the case of a method, the type is the number

and type of parameters). Such a reference is represented by a CONSTANT_*ref entry in
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CONSTANT_NameAndType_info {

u1 tag = 12;
u2 name_index;
u2 descriptor_index;

}

Figure 6.5: Standard CONSTANT_NameAndType_info structure

CONSTANT_*ref_info {

u1 tag;
u2 class_index;
u2 name_and_type_index;

}

Figure 6.6: Standard CONSTANT_*ref_info structure

the constant pool (covered in the next section), however the method/field name and type are

provided by a CONSTANT_NameAndType entry, which has the form given in Figure 6.5.

The name_index value is the the index of a CONSTANT_Utf8 entry, giving the name of

the method or field. The descriptor_index value is the index of another CONSTANT_Utf8

entry, giving the descriptor of the method or field.

6.2.4 CONSTANT_*ref

There are different types of entries used for symbolic references to fields, methods or in-

terface methods, namely, the CONSTANT_Fieldref, CONSTANT_Methodref and CON-

STANT_InterfaceMethodref. These entries are referenced from certain bytecode instruc-

tions, and in the case of a CONSTANT_Fieldref, from getfield and putfield for reading

or writing to a field in an object and getstatic and putstatic for reading or writing a static

field. A CONSTANT_Methodref is referenced from the invokevirtual, invokespecial and

invokestatic instructions, and a CONSTANT_InterfaceMethodref from an invokeinterface

instruction. In all cases, the bytecodes for these instructions will include an operand which

is an index to the relevant entry in the constant pool. All three entries have the form given
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in Figure 6.6.

There are three symbols involved in resolving a symbolic reference: Class name, Field

or method name and Field or method descriptor. For example, an invoke instruction must

reference the target method, and the three symbols are obtained through several layers of

indirection from the instruction. The invoke instruction (or any other structure referencing

a field, method or interface method) contains an index to the constant pool to a CON-

STANT_*ref entry (where the exact type of entry depends on if it is a field, method or

interface method being referenced). The class_index value in the CONSTANT_*ref en-

try provides the index of a CONSTANT_Class entry, which in turn contains the index of a

CONSTANT_Utf8 entry that contains the class name, thus providing the first symbol. Next,

the name_and_type_index value provides the index of a CONSTANT_NameAndType en-

try, which in turn contains the index of two CONSTANT_Utf8 entries, thus providing sym-

bols two and three. However, after tokenisation, none of these string values are needed, as

they are replaced by tokens.

In the case of a static field, only the class token and field token are needed, and for a

non-static field, just the field token. CONSTANT_Fieldref entries are only referenced from

getfield, putfield, getstatic and putstatic instructions. Since the tokens are the same size as

a constant pool reference, it makes sense that they are included directly in the bytecode as

operands to the above instructions (details on instruction modifications are in Section 5.3).

With the required tokens stored as operands to bytecodes, CONSTANT_Fieldref entries

are no longer needed in tokenised class files and are therefore removed.

Similarly, the four invoke instructions (invokevirtual, invokespecial, invokestatic and

invokeinterface) also now include the relevant tokens as operands, again removing the need

for constant pool entries and reducing indirection. Therefore none of the CONSTANT_*ref

entries are now needed in tokenised class files. In turn, since CONSTANT_NameAndType

entries were only referenced from CONSTANT_*ref entries, they also have been removed,

along with any strings they used.
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field_info {

u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.7: Standard field_info structure

field_info {

u2 access_flags;
u2 token;
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.8: Tokenised field_info structure

6.3 field_info Section

Following the constant pool is the field_info section, which lists information for each field

declared in the class file. The standard field section is shown in Figure 6.7. The ac-

cess_flags entry provides 16 bit-flags, of which only seven are used in the specification,

with the remaining nine reserved for future use. The seven used flags consist of: public,

private, protected, static, final, volatile and transient. Of these seven only some combina-

tions are legal (i.e. a field can not be both public and private at the same time).

The next two entries, name_index and descriptor_index, both provide an index to a

CONSTANT_Utf8 entry in the constant pool, giving the symbolic name used to reference

the field and the type of values stored in the field. Finally, additional attributes can be

associated with the field, with the Java specification allowing three such attributes: Con-

stantValue, Synthetic and Deprecated (more details on attributes are in Section 6.5).

Since tokenisation removes the name and descriptor strings, these two entries are re-
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Table 6.3: Meaning of Bits in the access_flags component of field_info entries

(a) Bit Map For ac-
cess_flags Entry

Bit Usage
0 Public
1 Private
2 Protected
3 Static
4 Final
5 Reserved
6 Volatile
7 Transient

8-11 Type
12-15 Reserved

(b) Meaning of Type
Value For Fields

Value Type
0 Boolean
1 Char
2 Byte
3 Short
4 Int
5 Long
6 Float
7 Double
8 Object

placed with a single token value, resulting in the structure given in Figure 6.8 for tokenised

class files. With the removal of the descriptor, the virtual machine would be unable to de-

termine the type of values stored in a field and therefore some form of type information

must be added. Instead of adding an extra value, and using extra space, the unused bits in

the access_flags are used. There are nine possible types that must be represented requiring

the use of a 4-bit field.

The bit-map for the access_flags field is given in Table 6.3a. Bits 0 to 7 are unchanged

from standard class files, with the type information added into bits 8-11. The 4-bit type

value is read as an unsigned value. Table 6.3b shows the mapping from values to types. For

fields that store objects, the type of class is not stored, just that the field will be holding an

object reference of some type.

6.4 method_info Section

Following the fields section there is a method section, containing a method_info structure

for every method defined in the class. The standard method_info structure in a class file is

very similar to a field_info entry and is given in Figure 6.9. The access_flags field consists

of a sequence of bit-flags, which is discussed in detail in Section 6.4.1. The name and
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method_info {

u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.9: Standard method_info structure

method_info {

u2 access_flags;
u2 token;
u2 arg_count;
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.10: Tokenised method_info structure

descriptor entries retain the same purpose, providing indexes to UTF8 entries in the con-

stant pool to provide the method’s name and descriptor. Finally, the specification allows

the Code, Exceptions, Synthetic and Deprecated attributes to be associated with a method

(more details on Attributes are given in Section 6.5).

With tokenisation, the name and descriptor strings, and therefore the indexes that refer

to them, are no longer required and are replaced with the method’s token value and argu-

ment count respectively, giving the structure in Figure 6.10. The tokenised method info

section has the same size as the standard method info section, but without the need for the

method name and descriptor strings in the constant pool. The token value is simply the

token that represents the method, while the arg_count value is required during method dis-

patch. A method call is performed by pushing the arguments onto the operand stack of the

caller method, then executing an invoke* bytecode. Previously the VM could use the de-

scriptor string to know how many arguments a method had and therefore how many of the
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class A {

public byte m(int b, float c, Object d) {

return 5;

}
public static void main (String args[]) {

A var = new A();
var.m(1, 2.0, new Object());

}

}

Figure 6.11: Example of code that performs an invokevirtual.

values on the operand stack were arguments for the method call. Since the descriptor string

has been removed, the arg_count value provides the VM with the missing information.

Figure 6.11 shows an example program that declares a variable “var”, creates an object,

and then performs a method call on that object. Figure 6.12 shows the state of the top

frame on the call stack before, during and after the method call. The main method will

first push the reference to the object to call the method on (the “var” variable), followed

by the three parameters. The invokevirtual instruction ensures that the parameters, as well

as the reference to the “var” object, are copied into the local variables for the new method

frame for the m method. In this case the “var” becomes local variable 0, which is used to

implement the “this” keyword in Java. The bytecode of the method m will assume that the

parameters have already been assigned to local variables 1-3, and will reference them as

such. When the method returns, its return value will be pushed onto the stack of the caller,

as shown in the last box where the main method no longer has the parameters, but now has

the return value of 5 on top of its operand stack.

6.4.1 access_flags

The access_flags value in the method_info structure is used to represent a series of bit flags

that give the access information of the method. The allowable values are defined in Section

4.6 of the Java Virtual Machine Specification [57] and are shown in Table 6.4. This section
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Figure 6.12: Call to method var.m(int a, float b, Object c)

describes additional flags needed for execution of the tokenised class files.

As with fields, the method name and descriptor strings provided more information than

just a unique name, namely they also identified constructors and main methods. The unused

bit flags in the access_flags field have been used to represent the information needed by the

virtual machine, and are shown in Table 6.5. When starting an application, the VM is

typically given only the class that should be used to start execution. The VM will search

in that class for a method with the name “main”, that takes an array of String objects

as a parameter. Since method names have been removed during tokenisation, the virtual

machine can find a static method that takes one String array parameter, but can not know

if the original method had the name “main” or not. Therefore, the ACC_MAIN flag is set

at conversion time to indicate any method that is a main method. Since there can only ever

be at most one such method per class, and the virtual machine is provided with the class

during startup, the VM will search that class for the first method with the ACC_MAIN flag

set.

Classes can optionally contain a class loader initialisation method, that will be executed

by the class loader after loading the class, but before it is used. The class loader initialisa-

tion method is generated by the compiler and has the method name “<clinit>”, which is not

a valid name in a Java source file, but is valid within a binary class file. Any default values

assigned to static fields in the class, or any code within a static block in the source code,

will be placed inside the <clinit> method by the compiler. The ACC_CLINIT flag allows

the class loader to find any such method (there can be at most one such method per class

file and it never takes any parameters) and if found, execute it.
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Table 6.4: access_flag values from the Java Virtual Machine Specification.

Flag Name Value Interpretation
ACC_PUBLIC 0x0001 Declared public; may be accessed

from outside its package.
ACC_PRIVATE 0x0002 Declared private; accessible only

within the defining class.
ACC_PROTECTED 0x0004 Declared protected; may be

accessed within sub-classes.
ACC_STATIC 0x0008 Declared static.
ACC_FINAL 0x0010 Declared final; may not be overridden.
ACC_SYNCHRONIZED 0x0020 Declared synchronized; invocation

is wrapped in a monitor lock.
ACC_NATIVE 0x0100 Declared native; implemented in a

language other than Java.
ACC_ABSTRACT 0x0400 Declared abstract; no implementation

is provided.
ACC_STRICT 0x0800 Declared strictfp; floating point

mode is FP-strict.

In a Java source file, constructors must have the same name as the class, however they

are compiled to a method with the name <init> in the binary class file (again because

“<init>” is not a valid method name in the source code, hence identifying the method

as a compiler generated constructor). There can be multiple init methods, one for each

constructor that was declared in the source code, with each taking different parameters.

The ACC_INITV flag indicates a default constructor, this is one which takes no parameters,

while the ACC_INIT flag indicates a constructor that will take one or more parameters.

The final flag, ACC_INITS, indicates a constructor that takes a single String object as

a parameter. The Java Virtual Machine Specification requires that certain operations cause

the virtual machine to throw an exception (e.g. performing a method call on a null object

requires a NullPointerException to be thrown). Exception classes contain a constructor

which takes a single String argument with a descriptive message. The ACC_INITS flag

identifies the constructor which takes this single String parameter. Without this flag, the

VM can not identify the appropriate constructor and must resort to the default constructor,

producing exceptions with no clarifying messages.
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Table 6.5: Additional access_flag values added to the tokenised VM.

Flag Name Value Interpretation
ACC_INITV 0x0200 This is an <init> method that takes no

parameters (i.e. a default constructor).
ACC_MAIN 0x1000 This is a main method.
ACC_CLINIT 0x2000 This is a <clinit> method.
ACC_INIT 0x4000 This is an <init> method that takes parameters.
ACC_INITS 0x8000 This is an <init>(Ljava/lang/String;)V method

(i.e. constructor that only takes a single String
parameter). Used by the VM to build Exception
objects with message strings.

6.4.2 Static Methods

Standard Java class files store static and non-static methods within a single method table.

Since non-static and static methods are called by different bytecode instructions, they are

stored separately within a tokenised class file.

Section 3.6.2 discusses how a method token for a static method only needs to be unique

within the class that contains that static method. Thus the static method tokens do not need

to be referenced from the virtual method tables, leading to two types of tokens: method

tokens for virtual methods and static method tokens for static methods. The method tokens

must be allocated using the algorithms described earlier in this thesis, to ensure virtual

method tables can be built appropriately. However, static method tokens only need to be

unique within a given class. Differentiating between static and non-static methods simpli-

fies the virtual method tables, since tokens do not need to be allocated to static methods,

reducing the size of the table. Also, since static method tokens only need to be unique

within the class, they can indicate the method’s position within the static methods section

of the tokenised class file, reducing the need for the virtual machine to search for the target

method. The entries in this table have the exact same form as those in the non-static method

table, which was described above.
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attribute_info {

u2 attribute_name;
u4 attribute_length;
u1 info[attribute_length];

}

Figure 6.13: Standard attribute_info structure

6.5 Attributes

Attributes are used to add extra data to a class, method, field or even another attribute.

Each attribute has a standard form, consisting of an identifier for the type of attribute, its

length and the attribute’s data. The Java Virtual Machine Specification [57] defines a set

of attributes which all virtual machines must recognise. Implementers are free to create

custom attributes and a virtual machine must ignore any attributes it does not understand.

However, any custom attributes cannot modify the classes semantics, but can provide things

like extra debugging or optimisation information. The format for attributes in a standard

class file is given in Figure 6.13. The attribute_name value is a 2 byte index to a string

in the constant pool which defines the type of the attribute and hence how to interpret any

data in it. The length entry defines how many bytes of data are present in the info entry,

allowing a class file reader to skip over any data in an unknown attribute. Finally, the info

array contains the data of the attribute, how that data is interpreted is determined by the

type of the attribute.

Since an attribute not defined in the Java Virtual Machine Specification is not allowed

to affect the semantics of a class file, it is safe to remove it during tokenisation, leaving

the known set of attributes defined in the Java Virtual Machine Specification. String names

for attributes can take many bytes, however a simple 1-byte tag is sufficient to represent

the required attributes, saving the 2 bytes for a constant pool reference and the many bytes

needed for a UTF8 entry in the constant pool. Since only those attributes required by the

specification are allowed, the format of all the attributes is known, also removing the need

for the 4-byte length field.
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Table 6.6: Class File Attributes

Tag Attribute Type Original Attribute Name
1 ConstantValue (1 byte) ConstantValue
2 ConstantValue (2 bytes) ConstantValue
3 Code Code
4 Exceptions (1 byte) Exceptions
5 Exceptions (2 bytes) Exceptions
6 InnerClass InnerClass
7 Synthetic Synthetic
8 Deprecated Deprecated
9 StackMap StackMap

10 VMT –
– – SourceFile
– – LineNumberTable
– – LocalVariableTable

ConstantValue_attribute {

u2 attribute_name_index;
u4 attribute_length;
u2 constantValue_index;

}

Figure 6.14: Standard ConstantValue_attribute structure

Table 6.6 shows the names of the attributes in standard class files, and the tag value

used by these in tokenised class files. In the case of the ConstantValue and Exceptions

attributes, two different versions with different sized fields were added in tokenised class

files. The VMT attribute is a new addition to store a class’s virtual method table, while the

SourceFile, LineNumberTable and LocalVariableTable attributes have all been removed.

The following sections cover the use and format of each attribute in more detail.

6.5.1 ConstantValue Attribute

The ConstantValue attribute can be attached to a field_info section of a static field and de-

notes the value that field must have after class loading/initialising. For non-static fields,

the compiler will add code to the constructor to ensure any initial values are assigned. A
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ConstantValue1_attribute {

u1 tag = 1;
u1 constantvalue_index;

}

Figure 6.15: Tokenised ConstantValue1_attribute structure

ConstantValue2_attribute {

u1 tag = 2;
u2 constantvalue_index;

}

Figure 6.16: Tokenised ConstantValue2_attribute structure

standard ConstantValue attribute has the form given in Figure 6.14. The data part consists

of a 2-byte constant pool reference, which can point to any of the value types in the con-

stant pool (i.e. integer, long, float, double, string). In the case of a CONSTANT_String

entry, it merely contains an index to a CONSTANT_Utf8 entry. Therefore, if a Constant-

Value attribute points to a CONSTANT_String, it will be updated to point directly to the

CONSTANT_Utf8 entry, removing the need for the CONSTANT_String entry.

For tokenised class files, two versions of this attribute were defined, the first with a

1-byte constant pool index, the second with a 2-byte index. Since tokenisation reduces the

number of entries in the constant pool, often only 1-byte indexes are required, saving space.

The 1-byte version has the form shown in Figure 6.15, while the 2-byte version is shown

in Figure 6.16.

During testing it was found that all except the J2SE API could be tokenised using only

the 1-byte version of this attribute, meaning the 2-byte version is only needed for compati-

bility with large applications or libraries. The use of two different length indexes does add

to the complexity of the device however, since it must deal with the two different sizes, but

the trade-off seems appropriate to give support to larger applications while reducing the

size of all other applications.
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Code_attribute {

u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{

u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.17: Standard Code_attribute structure

6.5.2 Code Attribute

The Code attribute is used to store the bytecodes and associated information needed to

execute a method, which is only required by non-abstract methods. It is provided as an

attribute so it will not take up space in an abstract or interface methods. The format for a

standard Code attribute is given in Figure 6.17. The max_stack and max_locals provide the

maximum depth of the operand stack and the maximum number of local variables used by

the method, respectively. The code entry provides the bytecodes for the method, while the

exceptions table provides the details needed to implement try/catch blocks. The catch_type

value is a constant pool index to a CONSTANT_Class entry, denoting the type of exception

this block catches. If that exception is thrown from one of the instructions between start_pc

and end_pc, then execution should jump to handler_pc. A Code attribute can contain addi-

tional attributes, however the specification only defines two that can appear, both consisting

of debugging information (the LineNumberTable and LocalVariableTable attributes). The
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Code_attribute {

u1 tag = 3;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{

u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attribute_count;
attribute_info attributes[attribute_count];

}

Figure 6.18: Tokenised Code_attribute structure

CLDC Specification [63], which extends the Java Virtual Machine Specification, defines

the StackMap attribute, which must be present in any Code attribute. The StackMap at-

tribute provides details on the state of the stack at certain points during the method and can

optionally be used by the virtual machine to simplify verification of the class file.

The tokenised version of the Code attribute has the form given in Figure 6.18. The

attribute name is replaced by the appropriate tag value (as discussed in Section 6.5), while

the catch_type entry, which previously indexed the constant pool to define the type of ex-

ception, is replaced with the class token, removing the need to dereference the constant

pool. Finally, some of the instructions have had their formats modified and some will

change length as a result of tokenisation (Section 5.3 covered the changes to individual

instructions in detail).

Branch instructions store the branch target as a signed offset of the number of bytes to

jump forwards or backwards in the byte array. Since tokenisation can change the length

of instructions, this can change the relative offset of a branch target, requiring the branch
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offset to be updated. The following sections go into detail on updating the bytecodes.

6.5.2.1 General Format of Java Instructions

Each Java instruction contains an unsigned byte value as the opcode of the instruction,

followed by zero or more operands (with the number or operands determined by the op-

code). There are 256 possible instructions, 201 of which are used (the values from 0 to

201, with 186 not used for historical reasons), with the others being reserved for special

use (i.e. debuggers and VM implementers) or reserved for future use. Most instructions

have a fixed number of operands, however some, like tableswitch or lookupswitch, have a

variable length. Therefore, to determine which bytes in the bytecode array are instructions

and which are operands, the bytecode must be read in a serial manner, starting from byte 0,

which is always, by definition, an instruction. Using the opcode of the first instruction, the

number of operands can be determined and therefore the location of the second instruction,

and so on, until the bytecode array has been processed.

The branching instructions, such as goto for unconditional branching, the various if*

instructions for conditional branching, jsr and even the aforementioned tableswitch and

lookupswitch all provide, as an operand, an offset in bytes from the start of that instruction

to the jump point. The byte at that position must be an instruction and therefore cannot be

an operand to another instruction.

6.5.2.2 When Instructions Need to Change

The field and invoke instructions have new formats in tokenised class files, and a direct

result of tokenisation can cause instructions to change size. There are three main causes for

this:

Tokenisation Certain instructions get longer or shorter after tokenisation, with constant

pool references being replaced with tokens. In particular, the field and invoke in-

structions (full details are in Section 5.3).

Constant pool changes With the removal of the string linking data from the constant pool,

there are less entries and therefore many constant pool references will be to smaller
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indexes. Some instructions that reference the constant pool have two forms, a “wide”

form that uses two-byte index (allowing it to reference any constant pool entry), and

a “narrow” form with a one-byte index. Since constant pool indexes are smaller,

some instructions can be changed to the narrow version, reducing the code size.

Instruction changes Many branching instructions also have narrow or wide versions, with

the branch target given as a number of bytes to jump forward or back in the instruc-

tions. With the other changes in the instructions above, these branch targets can get

either closer or further away, in some cases requiring a change from a narrow to a

wide, or wide to a narrow version of the instruction.

As mentioned above, whenever any instruction changes size, any branch instruction on one

side of of the change that targets an instruction on the other side, must have its offset up-

dated. Updating the branch targets is further complicated since updating one of the branch

instructions may in turn cause its size to change, requiring further updates. Therefore up-

dating the bytecodes was achieved with a multi-pass process, detailed in the following

section.

6.5.2.3 Process to Update Bytecode

The bytecode is represented in memory as a single byte array (the same as it is stored

in a standard binary class file) and consists of a mix of instructions and operands. Some

operands constitute an offset to another bytecode instruction. If instructions change length,

then these offsets can require adjustment. To perform the update, each instruction in the

method is numbered, starting with instruction 1 at byte 0. Since instructions are not added

or removed, this instruction number will not change (i.e. if a jump instruction will jump

to the 10th instruction, it will always be the 10th instruction, even if its byte position has

changed). Therefore, the instruction number can be used to reference instructions indepen-

dent on the number of bytes between a pair of instructions. The first pass for updating the

bytecode consists of overwriting the byte offset (which can be positive or negative) with

the instruction number that is the target of the jump.

Next, a new byte array is created, copying instructions over one by one, converting each
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Exceptions_attribute {

u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];

}

Figure 6.19: Standard Exceptions_attribute structure

instruction as necessary. The new byte array will then have wider or narrower instructions

as needed, and as such could be longer or shorter than the original. During the construction

of this new code array, the offset of where each instruction is now located will also be

generated, resulting in a modified bytecode array (where branch targets are given by the

instruction number) and an array indicating the index of each instruction in the new array.

Using the new location for each instruction, a final pass is made to replace each of the

instruction numbers with the new offset. Using the array of instruction locations and the

instruction which is being jumped from and that of the one being jumped to, the new offset

can be calculated.

Each of these passes is performed in a serial fashion, starting at the first instruction

at byte 0, and progressing through the byte array. The first and last pass can happen in-

situ, just overwriting existing values. The middle pass, when the instructions are updated

requires a second array, since some instructions can become longer.

6.5.3 Exceptions Attribute

Each method_info structure can have, at most, one Exceptions attribute to indicate the

checked exceptions that the method can throw. If the method does not throw any checked

exceptions, then this attribute can be left out. In a standard class file, this attribute has the

form given in Figure 6.19. Where the exception_index_table stores a list of constant pool

references, each to a CONSTANT_Class entry. Each of these classes will be a checked

exception that the method may throw during execution.

In standard class files, the use of string names for classes necessitates the use of the
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Exceptions1_attribute {

u1 tag = 4;
u2 number_of_exceptions;
u1 exception_table[number_of_exceptions];

}

Figure 6.20: Tokenised Exceptions1_attribute structure

Exceptions2_attribute {

u1 tag = 5;
u2 number_of_exceptions;
u2 exception_table[number_of_exceptions];

}

Figure 6.21: Tokenised Exceptions2_attribute structure

constant pool. Tokenised class files however make use of fixed width class tokens, making

references to the constant pool unnecessary, with the class tokens instead being stored

directly in the Exceptions attribute. A Class token consists of a 16-bit unsigned integer,

however, for smaller packages it is rare to get tokens larger than an 8-bit unsigned integer.

Therefore, it is possible to reduce the size of this attribute by having two versions, one with

a list of 16-bit values, the other with a list of 8-bit values. If all class tokens are small

enough, the 8-bit version can be used to save space. Figure 6.20 shows the form when

all tokens can be represented with 1 byte. If one or more of the class tokens is greater

then 255, then all of them are stored as unsigned two-byte values in the structure shown in

Figure 6.21. Although this will slightly increase the complexity in the device when it must

handle the two lengths for class tokens, it allows for additional space saving.

6.5.4 InnerClass/Synthetic Attribute

The InnerClass and Synthetic attributes were added in Java 1.1 to support nested classes

and interfaces [57]. The InnerClass attribute indicates which classes are an inner class or

interface, while the Synthetic attribute marks classes, fields or methods that did not exist
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in the source code and were generated by the compiler. The constant pool references in

the InnerClass attribute are updated to tokens, as with other attributes, while the Synthetic

attribute is reduced to a single byte for its tag value, since it is a marker and contains no

data.

6.5.5 Debugging Attributes

There are three attributes that are used purely for debugging of class files, the Source-

File, LineNumberTable and the LocalVariableTable attributes. The SourceFile attribute is

attached to a class and stores the name of the original source file that the class was com-

piled from, to allow a debugger to match up the compiled class with its source file. The

LineNumberTable and LocalVariableTable are attached to a CodeAttribute. The LineNum-

berTable indicates the line number in the source code and which instruction that maps to,

so that a debugger can break at the instruction for a given source line, or show the current

source line being executed. When a class is compiled, fields will retain their name from

the source code, however, local variables are compiled into indexes into the local variable

table. The LocalVariableTable attribute maps these indexes back to the variable name in

the source code, so a debugger can show the values of these local variables along with their

names during debugging.

Since all three of these attributes are only used by the debugger, they are not going to

be of use on a production device. To save space, the converter will remove them entirely

during conversion.

6.5.6 Deprecated Attribute

The Deprecated attribute is used to mark a class, field or method that has been declared

deprecated. Compilers or other tools that read class files use this attribute to warn the

programmer that they have used a class, field or method that is deprecated. It is then up to

the programmer to find appropriate documentation on what new classes, fields or methods

have been added to replaced the deprecated ones.

Since the deprecated attribute is purely a marker, with no additional information, the
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tokenised version consists of the 1-byte tag value and no data, making the attribute only

one byte long.

6.5.7 StackMap Attribute

The StackMap attribute is not a part of the standard J2SE Specification, rather it was added

by the CLDC Specification [63]. Because of the complexity and memory requirements of

the class file verifier from J2SE, it is often not feasible for a CLDC device to implement the

entire verifier. Therefore, Sun define a simplified class file verifier that can provide the same

service with less complexity through the use of the StackMap attribute. The specification

requires that classes that will be used on a CLDC device must contain StackMap attributes,

while virtual machine implementers can choose to implement either the reduced verifier or

the full J2SE verifier (but they must implement at least one).

The StackMap attributes provides the types stored in a method’s local variables and on

the method’s operand stack at the start of each basic block within a method. The format

of the StackMap attribute is relatively complex, however the only important part from a

tokenisation perspective are references to CONSTANT_Class entries in the constant pool to

define the type of objects found on the stack or in local variables. Since CONSTANT_Class

entries will remain after tokenisation, the tokeniser only needs to update the references as

appropriate if they have moved within the constant pool.

6.5.8 VMT Attribute

The VMT attribute stores an encoded virtual method table. These do not exist in standard

Java class files and are added by the tokeniser as part of the tokenisation process. Section

4.6.3 showed the format for an encoded VMTEntry, which can be one of a null, single or

conflict entry. A VMT attribute will be present in any non-interface class file, with exactly

one VMT attribute per file.

The format for a VMT attribute will consist of:

VMT_Attribute {
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u1 tag;

u2 length;

VMTEntry entries[length];

}

The length field denotes how many entries are in the virtual method table, followed by that

many VMTEntry’s. The use of the VMT attribute was discussed in Section 5.2.

6.6 Code Compression

During tokenisation, the strings used for symbolic references to classes, fields and meth-

ods are all removed and replaced with tokens. Also, some previously used constant pool

references now store the token value, thereby further reducing the number of constant pool

entries per class. These changes result in significantly smaller files, with the following sec-

tions detailing the compression results. For testing, the same packages that were used to

test tokenisation (originally presented in Section 3.9) were also used for measuring com-

pression.

Jar files can include more than just class files, they can also include properties files,

pictures, sound or other data files used by the application or library. A Jar file will store

these additional files with zip compression, the same as class files, however tokenisation of

the class files will have no effect on these extra data files. Therefore, these extra files were

removed and the Jar files recreated, containing just the class files.

6.6.1 Overall Code Compression for Global Tokenisation

The first set of results focus on global tokenisation and the size of resulting class files,

presented in Table 6.7, with all sizes given in bytes. The first column is the size of the

uncompressed class files stored in the appropriate folders for their package, within a normal

filesystem. The sum of the length of each class file was used to arrive at this figure, which

therefore ignores any filesystem overheads.
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Table 6.7: Overall Size of class files (bytes)

Test Original Jar File Tokenised % of % of
Case Size Size Size Original Size Jar Size

CLDC1.0 158804 102248 89110 56.11% 87.15%
CLDC1.0+MIDP 901875 486127 489725 54.30% 100.74%

CLDC1.0+MIDP+ 1166447 852625 620793 53.22% 72.81%
MIDPExamples

CLDC1.0+ 627758 369924 311637 49.64% 84.24%
Javolution3
CLDC1.1 134109 85154 81393 60.69% 95.58%

CLDC1.1M 134960 85467 82069 60.81% 96.02%
CLDC1.1M+ 676619 418644 305602 45.17% 73.00%
Javolution5

J2SE 29071272 15411892 17903020 61.58% 116.16%

The second value is the size of a Jar file containing just the class files and with com-

pression enabled. The Jar file size is considered since this is the standard packaging format

for Java and is defined in the Jar File Specification [60]. Therefore, this column represents

the size of each package as it would normally be distributed (although with any additional

data files removed from the Jar file, as noted in Section 6.6).

The tokenised size is the sum of the size of each tokenised class file, calculated as for

the Original Size column, except using the tokenised files. The final two columns compare

the size of the tokenised files against the original class files and the Jar file respectively.

The results show a significant size reduction compared to the original class files and

in most cases the tokenised files are smaller than the compressed Jar file of the standard

files. Tokenised class files are also directly executable, however, since Jar files are com-

pressed,each file must first be uncompressed to memory before being accessed, adding a

processing delay and memory overhead. By storing uncompressed standard class files (ei-

ther directly or in a Jar file with no compression), the need to decompress each class is

removed, however, with an increased amount of storage needed. Therefore, tokenisation

can offer similar or better space savings than a Jar file, but without the need to decompress

each class before accessing it.

The tokeniser produces descriptor files along with the tokenised class files. The de-

scriptor file for a package contains the string information required to link new classes into
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Table 6.8: Size of Descriptor Files (bytes)

Test Descriptor
Case Size

CLDC1.0 43944
CLDC1.0+MIDP 205135

CLDC1.0+MIDP+MIDPExamples 244093
CLDC1.0+Javolution3 158366

CLDC1.1 36315
CLDC1.1M 36368

CLDC1.1M +Javolution5 179746
J2SE 4540374

Table 6.9: Comparison to Pack format (using pack200 binary from Sun) (bytes)

Test Original Jar File Pack % of % of
Case Size Size Size Original Size Jar Size

CLDC1.0 158804 102248 54597 34.38% 53.40%
CLDC1.0+MIDP 901875 486127 322657 35.78% 66.37%

CLDC1.0+MIDP+ 1166447 852625 603758 51.76% 70.81%
MIDPExamples

CLDC1.0+ 627758 369924 184739 29.43% 49.94%
Javolution3
CLDC1.1 134109 85154 48425 36.11% 56.87%

CLDC1.1M 134960 85467 48735 36.11% 57.02%
CLDC1.1M+ 676619 418644 109098 16.12% 26.06%
Javolution5

J2SE 29071272 15411892 4913366 16.90% 31.88%

an existing tokenised set of classes (i.e. incremental tokenisation). Table 6.8 presents the

size of the descriptor file produced for each of the test cases. However, the descriptor file

is not needed by the virtual machine, only by the tokeniser for incremental tokenisation,

meaning the descriptor file is not needed on the device. Since descriptor files are only

needed by developers when producing new libraries or applications, their size is relatively

unimportant.

While the Jar file format is the standard for storing, and in many cases distributing, col-

lections of class files, a more efficient wire format known as Pack is also defined (originally

discussed in Section 2.7.1.4). The Pack format is highly optimised to reduce the size of an

application for transmission across a network, at the cost of requiring the entire archive to
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Table 6.10: Overall Size of class files and Descriptor file after Incremental Tokenisation
(bytes)

Test Global Incremental
Case Size Size

CLDC1.0-MIDP 489725 489646
CLDC1.0-MIDP-MIDPExamples 620793 620735

CLDC1.0-Javolution3 311637 311890
CLDC1.1M-Javolution5 305602 305770

be unpacked before execution can take place. Table 6.9 compares the same test packages,

but this time compressed using the ’pack200’ binary that comes with the Sun JDK [64],

instead of tokenisation. While pack does focus on the constant pool (in particular the string

entries), since they make up a large percentage of the size of class files, it also compresses

many other parts of the class file. Tokenisation has removed many of the strings that pack

focuses on, however, as can be seen when comparing the results, pack achieves better com-

pression than tokenisation alone. Since pack is not an executable format, it is unfair to

compare it directly with tokenisation. However, the results suggest that the application

of the various approaches used by pack could result in a tokenised wire-format that could

achieve significant reductions in size, since it would not have to deal with as much string

data.

6.6.2 Overall Code Compression for Incremental Tokenisation

While global tokenisation produced good compression, it remains to be shown that in-

cremental tokenisation does not seriously alter the results. The test cases in the previous

section where more than one package was tokenised together are considered again, how-

ever, this time the packages are tokenised incrementally. Table 6.10 shows the results from

both the global and incremental tokenisation of the set of packages. As can be seen, the

incremental tokenisation is slightly different than global tokenisation, although the differ-

ence is negligible. The slight change in size can be attributed to the different allocation of

tokens, and inclusion of some conflict entries in the virtual method tables. Therefore, there

is no significant difference in compression between global or incremental tokenisation.
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6.6.3 Further Compression

The current work has focused on making the implementation of the invoke* and get/set field

instructions simple, so that a virtual machine implementation can be realised in hardware.

The compression result is a side-effect of the tokenisation. While significant space savings

have been realised, the format has not been optimised nor tailored specifically for size.

Considering previous work in the area of compression (presented in Section 2.7), some of

these approaches could be applied to the current work. Clausen et al. [24] shows how

bytecodes can be compressed, while Bizzotto & Grimaud [13] extend the idea further.

While the current work does modify some instructions, the majority of the instruction set

is unchanged. Therefore, further compression of the bytecodes such as is presented in [24]

and [13] is likely possible, and would still preserve the directly executable nature of the

files.

6.6.4 Constant Pool Usage

Another effect of tokenisation is the removal of many of the constant pool entries. The

CONSTANT_*ref entries for field, method and interface method references have all been

removed. Similarly, the entries that held class, field and method names and descriptors are

also gone. The result is that the number of entries in a given constant pool is much smaller.

Table 6.11 shows for the test packages, how many of each type of constant pool entry

remain after tokenisation. The Class and ArrayClass entries remain to represent symbolic

references to other classes (although using tokens now instead of strings). The UTF8, Inte-

ger, Long, Float and Double entries represent constant values that are used by the program

and therefore must remain.

6.7 Conclusions

As a result of tokenisation, the class file format needed updating to store the appropriate

token information, and to represent a class in the absence of the strings used to describe

fields and methods in standard class files. These changes have resulted in class files that are
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Table 6.11: Number of Constant Pool Entries by Type

CP Entry Type UTF8 Class ArrayClass Integer Long Float Double
CLDC1.0 336 184 37 118 0 33 0
CLDC1.1 157 148 30 90 20 64 50

CLDC1.1M 158 148 30 90 20 64 50
MIDP 1239 936 126 705 0 36 0

MIDPExamples 879 421 29 87 0 13 0
Javolution3 717 1065 49 103 0 25 0
Javolution5 870 1115 29 114 0 44 1

J2SE 101704 21777 1409 8692 460 1327 325

significantly smaller than standard class files, and of a similar size to a Jar file containing the

standard class files. Unlike a Jar file however, the tokenised files can be executed directly

in their current form, without needing to be decompressed first.

These compression results have been achieved primarily because of the removal of

string data that was previously used for linking. Since compression was not the primary

focus of this thesis, further steps to reduce the file size have not been taken. Depending

on the target device, further compression could be applied to reduce the file size further,

following the ideas that presented in Section 6.6.3.
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Chapter 7

Conclusions & Future Work

7.1 Tokenisation

Chapter 1 and Chapter 2 present the background for this thesis, including the Java Card

system, which makes use of virtual method tables to allow for efficient dispatch of the in-

vokevirtual instruction. However, in Java Card, the invokeinterface instruction must make

use of additional lookup tables, making it slower. Previous work in object oriented lan-

guages has presented various approaches to dispatch tables that would allow invokevirtual

and invokeinterface instructions to both use the same dispatch table, but at the price of very

large tables.

Chapter 3 presented a new tokenisation scheme, based on that used in Java Card, but

where the invokeinterface instruction does not require additional lookup tables, allowing

it to be dispatched in the same way as the invokevirtual instruction. Previous research in

object oriented languages required either single inheritance (Java Card), multiple dispatch

tables (C++) or very large and sparse tables. The new tokenisation scheme allows for Java’s

limited form of multiple inheritance (in the form of interfaces) to be taken into account,

while still producing compact virtual method tables. The new tables can not always be

fully used in the presence of interfaces (i.e. occasionally “null” values must be left in the

virtual method table), but these spaces are kept to a minimum.

Initially, the tokenisation process presented in this thesis required complete knowledge

of the system, i.e. it required access to all classes that were going to be tokenised, so that

the tokeniser could determine what interfaces existed and the relationships between those
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classes and interfaces. The next stage of this work, presented in Chapter 4, extended the

tokenisation scheme to operate incrementally. This allows a group of class files to be to-

kenised, then later, a new set of class files to be tokenised, without needing to alter the

initial tokenisation. Incremental tokenisation permits the manufacturer to distribute a de-

vice with an already tokenised API, then third-parties can produce, tokenise and distribute

applications which make use of the existing tokenised classes. Since the initial tokenisation

can not know what future classes will be added to the system, some token allocations in

the first tokenisation can cause ambiguities in the newly tokenised classes. The addition of

conflict entries allow these ambiguities to be resolved, at the cost of a slightly more com-

plex lookup mechanism. In practise however, the number of conflicts has been found to be

very small.

During the tokenisation process, fields were also updated to use tokens instead of string

references. Tokens are allocated such that each field in an object will have a unique token,

which allows for efficient implementation where the token represents location of the field

as an offset within the object. Static fields are similarly tokenised, where the field’s token

is unique within that class. The relevant get and set instructions for fields were updated to

reference token values, instead of strings.

To prove that the tokeniser produced files that could still be executed, a simplified vir-

tual machine was implemented, as described in Chapter 5. The Javolution library’s bench-

mark suite was used as an example of an executable program, which was tokenised and

executed on the simplified virtual machine. Execution was observed to be normal, indi-

cating that the tokeniser had produced correct class files. Testing of the virtual method

table based method dispatch also showed a four to forty times speed improvement over

previous virtual machine implementations, specifically the Kilobyte Virtual Machine from

Sun. From the point the KVM decodes an invoke instruction, it must follow references to

the constant pool to locate the string name for the method, then perform string matching

to find the appropriate class and method to call. To improve performance, the KVM can

then replace the instruction with a faster version, making later executions of the same in-

struction quicker. By contrast, tokenised class files can use the virtual method table to very

quickly locate the target method and do not need to update the instructions as the KVM
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does. Therefore, tokenised classes provide consistent and fast execution of invoke instruc-

tions, and also, does not require the bytecode to be stored in a writable location, since the

bytecode is not modified during execution.

7.2 Compression

Chapter 2 presented previous work on compressing Java class files, with some of that work

focused on formats that remained executable (interpretable formats) and others on reducing

the size of files for transmission (wire formats). The interpretable formats reduce the space

needed to store application code, with only minimal overheads to execution. Wire formats

give smaller files than interpretable formats, but require decompression before they can be

executed and are aimed at reducing bandwidth for distributing applications.

During tokenisation, the strings used for linking are removed, resulting in class files

that are much smaller. Chapter 6 presented a new format for tokenised class files, and

included a discussion on the compression results in Section 6.6. The size of tokenised class

files is 45-60% that of standard class files and on par with the size of compressed Jar files.

However, unlike Jar files, the tokenised files can be executed directly. For mobile devices,

where memory can be limited, having a format which offers the same size as a Jar file,

without needing to be decompressed before execution, is ideal.

The gains made in compression have come mostly because of the removal of redundant

string data, as well as a few optimisations in other parts of the class files (detailed in Chapter

6). However, some of the previous work on compression detailed in Section 2.7 could also

be applied to the tokenised class files, allowing for further compression, in particular, work

by Clausen et al. [24] and Bizzotto & Grimaud [13] focused on compression of the Java

bytecodes, while remaining directly executable. The goal of this thesis has been to apply

tokenisation to class files, therefore the application of such additional tokenisation and the

implications for tokenised class files has not been considered here. It is likely that more

could be done to reduce the size of tokenised class files if space savings are a priority.



229

7.3 Key Contributions

The key contributions of this thesis are:

• Successfully applied a Java Card like tokenisation to J2ME class files.

• Extended the tokenisation approach to include interfaces, removing the need for ad-

dition lookup tables.

• Demonstrated that the dispatch tables that are produced are smaller than previous

approaches.

• Further extended the tokenisation approach to allow for incremental generation of

the dispatch tables.

• Demonstrated that the resulting tables still produce correct execution in a virtual

machine and that the execution was more efficient that previous approaches.

• Successfully compressed the size of the class files to 45-60% of their original size.

7.4 Future Work

While a successful tokenisation scheme has been produced, the ultimate aim is to also pro-

vide an efficient hardware based solution for executing the tokenised class files. While

hardware processors capable of executing Java bytecodes exist, operations such is the in-

voke* instructions remain too complex for a pure hardware solution. With the introduction

of tokenisation and virtual method tables, the complexity of implementing an invoke* in-

struction has been greatly reduced, making a hardware based solution feasible. Future work

would involve development and prototyping such a processor, to measure what speed gains

would be possible.

The work in this thesis has not aimed to produce the smallest possible class files, rather

it has been aimed at producing tokenised class files. There remain elements of the class

file that could be compressed further, without preventing the direct execution of the class

files. While some previous work focused on the compression of string data in class files,
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the need for which is reduced due to the removal of many strings, other work has focused

on compression of other parts of class files, such as the bytecodes. Further work could be

done on minimising the size of class files, with analysis of the performance impacts given

the different nature of tokenised class files.

Section 2.3 presented previous work that has been done to optimise the Java virtual

machine. While this thesis has focused on the invoke* instructions, the current work could

be merged with optimisations which target other areas of the virtual machines operation,

potentially leading to greater improvements.

Finally, while the tokenisation approach here has focused on J2ME specifically, it would

be interesting to examine its extension to other object oriented languages, such as C++.

Going even further, it would also be possible to examine the implications of applying this

tokenisation to object oriented languages in general.
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Appendix A

Tokenised Class File Binary Format

The following appendix details the final format of a tokenised class file. The general struc-

ture is similar to that of a standard class file, however, the two are not compatible. The

format is specified using the same notation as that used in the Java Virtual Machine Spec-

ification to define the standard class file format, which is somewhat similar to a C struct

specification.

The fundamental types are: ’u1’ and ’u2’, which refer to an unsigned 1 or 2 byte value,

respectively. All other types are defined as a structure consisting of one or more elements,

each element can either be one of the fundamental types, or another structure. For elements

that are repeated, an array notation is used consisting of square brackets, such as: ’u1 byte-

codes[bytecode_count]’. Here ’bytecodes’ is the name of this element and it consists of an

array of unsigned 1-byte values, repeated ’bytecode_count’ times, where bytecode_count

would be another element, typically stored just before the array.

Below is the overall structure of a tokenised file. The following sections describe vari-

ous parts of the file format in more detail.

TokenisedClassFile {

u1 minor_version;

u1 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count];

u2 access_flags;
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u2 this_class_token;

u2 super_class_token;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 static_methods_count;

method_info static_methods[static_methods_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

• minor_version - The minor version number of the file format. This document de-

scribes the minor version 0.

• major_version - The major version of this class file. These two numbers are com-

bined as major_version.minor_version. Standard class files use major versions 45 to

50. Tokenised files use major version 100.

• constant_pool_count - This is the number of entries in the constant pool plus one.

This is since the constant pool is indexed starting at 1 instead of 0, to allow 0 to

remain a special value.

• constant_pool - An array of constant pool entries. These are indexed from 1 to con-

stant_pool_count - 1 inclusive.

• access_flags - A set of bit-flags to denote access permissions and properties of the

class. This has not been changed from the original specification.

• this_class_token - The token that represents this class.
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• super_class_token - The token that represents the super-class of this class. In the

case of java/lang/Object, which has no super-class, this value must be 65535. This

also imposes the limit on the total number of classes in a system to 65535 (0-65534),

since the 65535 value is reserved.

• interface_count - The number of interfaces this class directly implements.

• interfaces - This is an array, giving the class token for each of the interfaces this class

implements.

• fields_count - The number of fields that are defined in this class.

• fields - An array giving the details of each field in this class.

• static_methods_count - The number of static methods defined in this class.

• static_methods - An array of entries, one for each static method in this class.

• methods_count - The number of non-static methods defined in this class.

• methods - An array of entries, one for each non-static method in this class. The

format of entries in this and the static_methods array are identical, with the type of

the method (static or non-static) determined by which list the entry is in.

• attributes_count - The number of attributes associate with this class.

• attributes - Any additional attributes associated with the class.

A.1 Constant Pool

The constant pool is used to store not just constant values needed by the program, but also

all the linking symbols and information to allow a class file to link with other files. There

are several different types of entries that can occur in the constant pool, with the type or

each entry denoted by a 1 byte “tag” value at the start of each entry. The types of entries in

a tokenised class file are given in Table A.1.
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Table A.1: Tokenised constant pool entry types

Tag Description
1 CONSTANT_Utf8
3 CONSTANT_Integer
4 CONSTANT_Float
5 CONSTANT_Long
6 CONSTANT_Double
7 CONSTANT_Class

13 CONSTANT_ArrayClass

Of the entries that can appear in tokenised class files, the CONSTANT_Utf8, CON-

STANT_Integer, CONSTANT_Float, CONSTANT_Long and CONSTANT_Double en-

tries all store constant values used by the program and remain unchanged from standard

class files. The CONSTANT_Class entry has been modified and a new

CONSTANT_ArrayClass entry type has been created.

In Java a class reference can be to a compiled class file or to an array class, which the

virtual machine must create on the fly. The standard CONSTANT_Class entry points to

a string in the constant pool which defines the class name, with array classes beginning

with the ’[’ character (since this is not a valid character in a class name). During tokeni-

sation, other classes will be referred to by their class token, however it is not practical

to allocate tokens for specific array classes. Therefore two types of entries were created

for tokenised class files, the CONSTANT_Class and CONSTANT_ArrayClass. The CON-

STANT_Class_info entry is modified from standard class files to contain the classes token

instead of an index to a string:

CONSTANT_Class_info {

u1 tag = 7;

u2 token_value;

}

While the CONSTANT_Array_Class_info entry has been created to represent an array

class:
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Table A.2: Possible values for the type entry in a CONSTANT_Array_Class_info entry.

Value Description
1 Primitive boolean type.
2 Primitive char type.
3 Primitive byte type.
4 Primitive short type.
5 Primitive int type.
6 Primitive long type.
7 Primitive float type.
8 Primitive double type.
9 Object reference type.

CONSTANT_Array_Class_info {

u1 tag = 13;

u1 type;

u2 dimensions;

u2 class_token;

}

The tag value of 13 is used, as this is not in use in standard class files. Next the type entry

describes what type of values are stored in this array. Table A.2 shows the possible values.

The dimensions value indicates the number of dimensions in the array, i.e. 1 is a standard

array, while 2 would be an array with 2 dimensions and so on. This value must be >0.

Finally the class_token value gives the types of objects that can be stored in this array. This

is only true if the type entry is 9 (i.e. the array stores objects of some type), otherwise the

array will be storing primitive values, and the class_token value must be 65,535.

A.1.1 field_info Section

A field_info entry describes a single field within a class. A tokenised field_info entry is

very similar to the standard entry, but with the name and descriptor index entries replaced

with a single token entry, giving the following structure:

field_info {
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Table A.3: Meaning of Bits in the access_flags component of field_info entries

(a) Bit Map For ac-
cess_flags Entry

Bit Usage
0 Public
1 Private
2 Protected
3 Static
4 Final
5 Reserved
6 Volatile
7 Transient

8-11 Type
12-15 Reserved

(b) Meaning of Type
Value For Fields

Value Type
0 Boolean
1 Char
2 Byte
3 Short
4 Int
5 Long
6 Float
7 Double
8 Object

u2 access_flags;

u2 token;

u2 attribute_count;

attribute_info attributes[attribute_count];

}

In a standard class file the access_flags entry contains a set of flags to define certain prop-

erties of the field (i.e. public, private, protected), and some bits are reserved for future use.

The bits already defined for standard files retain their meaning in tokenised files, however

some of the reserved bits have been made use of. Figure A.3a shows the meaning of each

bit in tokenised files, with bits 8-11 now used to define the type of value stored in the

field. The type value is stored as an unsigned 4-bit integer, with Figure A.3b showing the

meaning of each value.

A.2 method_info Section

The method_info structure details a single method defined within the class. The same

structure is used for the static_methods and the methods lists. The list the entry appears
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Table A.4: Additional access_flag values added to the tokenised VM.

Flag Name Value Interpretation
ACC_INITV 0x0200 This is an <init> method that takes no

parameters (i.e. a default constructor).
ACC_MAIN 0x1000 This is a main method.
ACC_CLINIT 0x2000 This is a <clinit> method.
ACC_INIT 0x4000 This is an <init> method that takes parameters.
ACC_INITS 0x8000 This is an <init>(Ljava/lang/String;)V method

(i.e. constructor that only takes a single String
parameter). Used by the VM to build Exception
objects with message strings.

in defines if the method is a static or non-static method respectively. Each method_info

structure has the form:

method_info {

u2 access_flags;

u2 token;

u2 arg_count;

u2 attribute_count;

attribute_info attributes[attribute_count];

}

The access_flags entry provides a set of flags which describe certain properties of the

method. The flags already declared for standard class files all remain in tokenised files,

however some additional flags have been added, as shown in Figure A.4.

The token entry provides the method’s token, while arg_count indicates the number of

arguments the method accepts (this was originally available from the descriptor string, but

that was removed during tokenisation).
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A.3 Attributes

Attributes are used to store additional information, with the Java Virtual Machine Spec-

ification allowing the addition of custom attributes. However, custom attributes are not

allowed to modify the semantics of a class file and must be ignored by virtual machines

that do not understand them. Tokenised class files limit attributes to the set of attributes

defined in the Java Virtual Machine Specification that are required for the virtual machine

to operate correctly (plus an addition VirtualMethodTable attribute defined in this thesis).

Standard class files identify the types of attributes by a string name, allowing more flexi-

bility for extension. Since tokenised files do not allow custom attributes, a single byte tag

value is sufficient to identify all possible attributes, resulting in a general form for tokenised

attributes of:

attribute_info {

u1 tag;

u1 info[...];

}

The tag determines the type of the entry and since the virtual machine will know the format

for each of these types, no size value needs to be included. The possible types are:

Tag Attribute Type

1 ConstantValue (1 byte)

2 ConstantValue (2 bytes)

3 Code

4 Exceptions (1 byte)

5 Exceptions (2 bytes)

6 InnerClass

7 Synthetic

8 Deprecated

9 StackMap

10 VMT
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Each type is explained in the following sections.

A.3.1 ConstantValue Attribute

This attribute can be attached to a field_info section of a static field and denotes the value

the field must have when it is initialised. The attribute can point to any of the value types

in the constant pool, specifically, one of: CONSTANT_Integer, CONSTANT_Long, CON-

STANT_Float, CONSTANT_Double or CONSTANT_Utf8.

There are two versions of this attribute defined for tokenised class files, one with an

unsigned 1-byte index to the constant pool, the other with an unsigned 2-byte index, which

allows for a small space saving when the wider index is not required. The 1-byte version

has the form:

ConstantValue1_attribute {

u1 tag = 1;

u1 constantvalue_index;

}

While the 2-byte version has the form:

ConstantValue2_attribute {

u1 tag = 2;

u2 constantvalue_index;

}

A.3.2 Code

The Code attribute is used to store the bytecodes and associated information for a method.

It is provided as an attribute so it will not take up space in a method with no implementation

(i.e. abstract methods).

The format of the Code attribute is mostly the same as found in The Java Virtual Ma-

chine Specification[57] and consists of:
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Code_attribute {

u1 tag = 3;

u2 max_stack;

u2 max_locals;

u4 code_length;

u1 code[code_length];

u2 exception_table_length;

{

u2 start_pc;

u2 end_pc;

u2 handler_pc;

u2 catch_type;

} exception_table[exception_table_length];

u2 attribute_count;

attribute_info attributes[attribute_count];

}

The code entry has several changes to the ldc, ldc_w, getstatic, putstatic, getfield, putfield,

invokevirtual, invokespecial, invokestatic and invokeinterface instructions. Details of these

changes are in Section 5.3.

As well, the catch_type entry in the exception_table used to be an index into the con-

stant pool to a CONSTANT_Class entry, to provide the type of the exception that handler

would catch. This has been replaced with the two-byte class token for the class, removing

the reference to the constant pool.

A.3.3 Exceptions Attribute

This attribute is found in a method_info structure, where it indicates which checked excep-

tions a method may throw. In a standard class file, this attribute consists of a list of constant

pool references, each one to a CONSTANT_Class entry, to denote the exception types.
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For tokenised class files, the attribute simply stores the class tokens instead of needing

references to the constant pool. To save space, there are two versions of this attribute, one

with single-byte class tokens, and one with two-byte class tokens. If every class token is

less than 256, then they are stored as unsigned single byte values in the following structure:

Exceptions1_attribute {

u1 tag = 4;

u2 number_of_exceptions;

u1 exception_table[number_of_exceptions];

}

If one or more of the class tokens is greater than 255, then all of them are stored as unsigned

two-byte values in the following structure:

Exceptions2_attribute {

u1 tag = 5;

u2 number_of_exceptions;

u2 exception_table[number_of_exceptions];

}

A.3.4 InnerClass Attribute

The InnerClass attribute indicates a class that is an inner class of another class. The standard

class file version of this attribute contains indexes to the constant pool to define the inner

and outer classes. These entries retain the same format (except for the attribute name being

replaced with a tag value).

A.3.5 Synthetic/Deprecated

These attributes are used to mark class/methods/fields that were generated by the compiler

(synthetic) or that the programmer believes should not be used anymore (deprecated). Since
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both these attributes are simply markers, they require no data, resulting in an attribute entry

that consists only of the one byte tag value.

A.3.6 StackMap

The StackMap attribute is not a part of the standard J2SE Specification, rather it was added

by the CLDC Specification [63] and is part of a simplified class file verification process

for CLDC devices. The format of StackMap entries remains unchanged from their original

specification.

A.3.7 VirtualMethodTable Attribute

The VMT_Attribute is used to store the virtual method table for a class and as such, there

must be exactly one of these attributes associated with every class (even abstract classes,

since they can contain concrete methods, however not in interfaces). A VirtualMethodTable

attribute consists of:

VMT_attribute {

u1 tag = 10;

u2 entries;

VMTEntry vmtEntries[entries];

}

Each VMTEntry has the general format:

VMTEntry {

u1 tag;

}

The tag value here denotes the type of VMT entry, between three possibilities: Null, Single

or Multi. The Null entry is for an entry that was left blank by the tokeniser (because of a
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conflict elsewhere, this class could not use that token value), and therefore consists of just

the tag value:

VMTEntry_Null {

u1 tag = 0;

}

A Single entry is the most common type of VMT entry and indicates a single method that

should be called. To define the specific method, the entry contains a class token and method

token, as follows:

VMTEntry_Single {

u1 tag = 1;

u2 classToken;

u2 methodToken;

}

The final type of entry is the Multi, used when a VMT entry could result in one of sev-

eral different methods being executed, because of a conflict that arose during incremental

tokenisation. A Multi entry has the format:

VMTEntry_Multi {

u1 tag = 2;

u2 classToken;

u2 methodToken;

u2 count;

{

u2 interfaceToken;

u2 classToken;

u2 methodToken;
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} conflict_entries [count];

}

The classToken and methodToken values provide the default method to call, while the con-

flict entries lists the alternative methods that must be called if an invokeinterface instruction

is being used for the given interface type.
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Appendix B

Descriptor File Binary Format

A descriptor file describes an already tokenised set of classes, along with the string name

and token for each class and for all the fields/methods within each class. The tokeniser

will output a descriptor file at the end of every tokenisation operation, and in the case of

incremental tokenisation, it must be provided with the descriptor file for the previously

tokenised classes. Since the new classes will reference existing classes via their string

names (i.e. ’java/lang/Object’), the descriptor file can be used by the tokeniser to map from

the string names to the appropriate token.

A descriptor file consists of three main sections. The first is a string repository, similar

to a class files constant pool, which stores the string data used by the rest of the file. These

strings are referenced via their index within the string repository. Next is the method group

repository, which lists all the currently existing method groups and the methods contained

in that group. These are stored centrally, since when loading a descriptor file, all methods

in a method group must reference the same method group object. Therefore, the method

group repository allows the tokeniser to create all method group objects first, then link them

to the method objects as they are created. The final section is the data for all the classes,

defining the class’s name and token, as well as the name, descriptor and token for all of the

classes methods and fields. The general format for a descriptor file is:

DescriptorFile {

u4 stringCount;

UTF8 strings[stringCount];



246

u2 methodGroupCount;

MGEntry methodGroups[methodGroupCount];

u2 classCount;

Class classEntries[classCount];

}

• stringCount - The number of strings stored in this file.

• strings - This stores all the strings used in the file, with other structures providing

an index into the strings array. This also allows the same index to be used when the

same string is used in multiple places, hence saving space. Each string is stored in

UTF format, which corresponds to the java.io.DataInputStream readUTF() method

and java.io.DataOutputStream writeUTF(String) method.

• methodGroupCount - The number of method group entries.

• methodGroups - The method groups that exist in this file. Each entry can be either a

MethodGroupSingle or a MethodGroupMulti, as described later.

• classCount - The number of classes in this file.

• classEntries - Each entry describes all the details of a single class in the system.

B.1 Method Group Entries

Each entry in the methodGroups array has the general form:

MGEntry {

u1 type;

....

}
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Where the type value will be non-zero to indicate a MethodGroupMulti entry and zero

to indicate a MethodGroupSingle entry. Following this will be the data for the entry, the

length of which will depend on the type.

B.1.1 MethodGroupSingle

A MethodGroupSingle entry is the basic type of method group that is allocated a single

token. The entry will have a token value, and a list of the methods that it contains. The

form will be:

MethodGroupSingle {

u2 token;

u2 count;

u4 classNames[count];

u4 methodNames[count];

u4 methodDescriptors[count];

}

• token - The token value that all methods in this group require.

• count - The number of methods in this group. This value denotes the length of the

following three arrays, where an entry at index X will give the class name, method

name and method descriptor for a single entry in this method group.

• classNames - The class names for each entry in this method group. Each entry is an

unsigned 2-byte value, which gives an index into the string repository. The string at

that index will be the class name for the entry.

• methodNames - The method names for each entry in this method group. Each entry is

an unsigned 2-byte value, which gives an index into the string repository. The string

at that index will be the method name for the entry.
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• methodDescriptors - The method descriptor for each entry in this method group.

Each entry is an unsigned 2-byte value, which gives an index into the string reposi-

tory. The string at that index will be the method descriptor for the entry.

At runtime, and object representing a MethodGroupSingle will contain a list of object

references to the objects that represent the methods contained in that group. Also, each

method object will contain a reference to the method group that it is in. Since both types

of objects require a reference to the other, one of them must be saved/loaded first and

therefore can not give a simple index within the file to the later object (in this case, when

the method group is written to the file, the methods have not be saved yet, and vice versa

during loading). Therefore, the method group stores the class name, method name and

descriptor for the method and after the tokeniser finishes loading the descriptor file, it will

use these to resole the appropriate runtime object that represents that method.

B.1.2 MethodGroupMulti

This represents a MethodGroupMulti, which are needed to implement incremental tokeni-

sation. Each MethodGroupMulti consists of a list of MethodGroupSingles. This takes the

form of:

MethodGroupMulti {

u2 count;

u2 MGSIndex[count];

}

• count - The number of MethodGroupSingle entries this group contains.

• MGSIndex - Each entry is an index into the methodGroups array in the current de-

scriptor file, where the entry at that index will be a MethodGroupSingle.

The current tokeniser does not ensure that all of the referenced MethodGroupSingle en-

tries have been saved before saving a MethodGroupMulti. Therefore, at load time, the
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MethodGroupMulti entry may contain indexes to MethodGroupSingle entries that have not

yet been loaded. A two-stage loading process is required, where the first stage is to create

each MethodGroupMulti entry with just the index values while loading the method groups.

Then after the methodGroups array has been read completely, each MethodGroupMulti can

resolve the indexes.

B.2 Class Entries

Each Class entry will provide all the information about a single class that was either al-

ready present, or added to the system, during the conversion that produced this descriptor

file. Each entry contains the name of this class, its super-class, implemented interfaces,

fields and methods. With this information from every class, the tokeniser can produce an

inheritance tree of every class in the system, as well as the more general interface graph.

The inheritance tree and interface graph are both traversed when allocating tokens, to check

for conflicts. The structure for each class consists of:

Class {

u4 className;

u4 superClassName;

u4 thisClassToken;

u1 flags;

u2 interfaceCount;

u4 interfaces[interfaceCount];

u2 fieldCount;

Field fields[fieldCount];

u2 staticFieldCount;

Field staticFields[staticFieldCount];

u2 staticMethodCount;

Method staticMethods[staticMethodCount];
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u2 methodCount;

Method methods[methodCount];

}

• className - An index into the string repository. The entry at that index will be the

name of this class.

• superClassName - If the name of this class is “java/lang/Object”, then this class must

have no super-class, and this entry will have the max value for an unsigned 4 byte

value. Otherwise this will be an index into the string repository and the entry at that

index will be the name of the super-class for this class.

• thisClassToken - The token value that has been allocated to this class.

• flags - This field consists of 8, 1-bit, flags. At present only two of these are used, they

are the values 0x01 and 0x02. If 0x01 is set, then this class is an interface. If 0x02 is

set, then this class is abstract. The remaining bits are reserved for future use.

• interfaceCount - The number of interfaces that this class or interface implements.

• interfaces - Each value in this array will be an index into the string repository. The

entry at that index will be the name of an interface this class or interface implements.

• fieldCount - The number of non-static fields in this class.

• fields - Each entry will describe the details for a single, non-static, field in this class.

• staticFieldCount - The number of static fields in this class.

• staticFields - Each entry will describe the details for a single, static, field in this class.

• staticMethodCount - The number of static methods in this class.

• staticMethods - Each entry will describe a single static method that is in this class.

• methodCount - The number of methods in this class.

• methods - Each entry will describe a single method that is in this class.
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B.2.1 Field entries

Each field entry represents either a static or non-static field (depending which list the entry

is in) that is present inside a class. Each field entry will have the following format:

Field {

u4 name;

u4 descriptor;

u2 token;

}

• name - An index into the string repository. The entry at that index will be the name

of this field.

• descriptor - An index into the string repository. The entry at that index will be the

descriptor for this method.

• token - The token value that has been assigned to this field.

B.2.2 Method entries

Each Method entry denotes a single method (either static or non-static, depending on which

list the entry is in) that exists in a class. The entry contains the name and descriptor for the

method, as well as the method group that contains it, thus providing the token. The format

for a Method entry is:

Method {

u4 name;

u4 descriptor;

u2 methodGroup;

}
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• name - An index into the string repository. The entry at that index will be the name

of this method.

• descriptor - An index into the string repository. The entry at that index will be the

descriptor for this method.

• methodGroup - An index into the method group repository. The entry at that index

will be the method group that contains this method. One of the entries within the

method group must consists of this class’s name, as well as the method’s name and

descriptor.
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Appendix C

Types of Native Methods in CLDC 1.1
API

The CLDC API contains many native methods that are not implemented in Java for one

reason or another. In some cases this is to improve performance, by making use of lower

level specialised hardware support, or other times because the Java environment simply

cannot supply the behaviour.

There are three main categories of native methods: performance, JVM interaction and

IO. The following sections are broken down by the reason for the method to be native, and

then by the class each method belongs to.

C.1 Performance

These are methods that could be implemented in Java, but have not been. They are im-

plemented in native code so as to allow them to execute faster, either by using specialised

hardware, or making more efficient use of the underlying hardware or JVM internals.

C.1.1 java.lang.Double

• public static long doubleToLongBits(double value) - Converts a double primitive

type to a long primitive type with the IEEE 754 floating point “double-precision”

bit layout.

• public static double longBitsToDouble(long bits) - Converts a long primitive type
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with the IEEE 754 floating point “double-precision” bit layout to a double primitive

type.

C.1.2 java.lang.Float

• public static int floatToIntBits(float value) - Converts a float primitive type to an int

primitive type with the IEEE 754 floating-point “single-precision” bit layout.

• public static float intBitsToFloat(int bits) - Converts an int primitive type with the

IEEE 754 floating-point “single-precision” bit layout to a float primitive type.

C.1.3 java.lang.Math

There are several methods in this class used to implement mathematical functions. These

are native to make use of platform libraries, specialised instructions or hardware to imple-

ment them.

• public static double sin(double a)

• public static double cos(double a)

• public static double tan(double a)

• public static double sqrt(double a)

• public static double ceil(double a)

• public static double floor(double a)

C.1.4 java.lang.String

The native string methods appear to have been provided solely for performance reasons,

since they underpin a large number of operations in the virtual machine. Most methods

have a commented out Java version in the source code.

• public char charAt(int index) - Returns the character at the given index in the string.



255

• public boolean equals(Object anObject) - Over-rides the equals() method in Object

to compare the contents of strings.

• public int indexOf(int ch) - Search for the character in the String.

• public int indexOf(int ch, int fromIndex) - Search for the character in the string.

• public String intern() - Will internalise a string. Once interned, that string object will

remain for the life of the virtual machine. All future attempts at interning a String

object which is equal (contains the same characters in the same order) to an already

interned string, will result in the already interned object being returned. Thus if two

strings, which may not be the same object, represent the same sequence of characters,

using intern will guarantee they are the same object afterwards.

C.1.5 java.lang.StringBuffer

The StringBuffer class is used to hold a mutable string (the String class is non-mutable). In

particular, additional sections can be appended to the end of the contents of a StringBuffer.

Any place where string concatenation occurs in the source code, will actually be compiled

to use a StringBuffer, and append each section to build up the string. As such, this class is

used in a large majority of the string operations at runtime.

• public native synchronized StringBuffer append(String str) - Adds the contents of the

given string onto the end of the contents of this string buffer. There are overloaded

versions of this method that will accept any of the primitive types. All these (except

for the int one below) use String.valueOf(x) to return the primitive value as a string,

then calls this method.

• public native StringBuffer append(int i) - Adds the given integer (turned into a string)

onto the end of this string.

• public native String toString() - Will turn a StringBuffer’s contents back into a non-

mutable String.
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C.1.6 java.lang.System

• public static void arraycopy(Object src, int srcOffset, Object dst, int dstOffset, int

length) - Copies the contents from a given range in one array into another. Provided

so the VM can do a type check, then a direct memory copy. If implemented in Java

it would require a type check for every individual value stored into the destination

array.

C.2 JVM Interaction

These methods need to interact with the virtual machine in some way and are therefore

performed as a native method call, to allow the JVM to intercept them and perform the

necessary operations. These operations could not be performed in Java code.

C.2.1 java.lang.Class

Represents a class in the virtual machine, providing reflection abilities to query classes.

Most of the methods in this class are native as it requires querying the virtual machine’s

data structures. Instances of this class will represent a given class or interface type, that

must have been loaded into the virtual machine.

• public static Class forName(String className) - Will attempt to load the class with

the given name.

• public Object newInstance() - Will make a new instance of this class. Allows objects

to be made for classes that were unknown at compile time.

• public boolean isInstance(Object obj) - Test if the object is an instance of this class

type. This will give the same result as the ’instanceof’ operator, but allows it to be

used on Classes that were not known at compile time.

• public boolean isAssignableFrom(Class cls) - Used to test if a cast will be successful.

• public boolean isInterface() - Test if this represents a class or an interface.
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• public boolean isArray() - Test if this is an array class that is created on-the-fly by

the virtual machine.

• public String getName() - Get the name of this class.

C.2.2 java.lang.Object

This is the base type for all objects in Java.

• public final native Class getClass() - Returns the java.lang.Class object that represents

the class this is an object of.

• public native int hashCode() - Returns a unique hashcode for this object.

• public final native void notify() - Used for thread synchronisation.

• public final native void notifyAll()- Used for thread synchronisation.

• public final native void wait(long timeout) throws InterruptedException- Used for

thread synchronisation.

C.2.3 java.lang.Runtime

This class is used to represent the current runtime state of the virtual machine as it appears

to the program to allow it to query/manipulate it.

• private void exitInternal(int status) - Causes the virtual machine to exit, used to im-

plement System.exit(int).

• public long freeMemory() - Query the VM on how much memory there is free.

• public long totalMemory() - Query the VM on how much memory there is in total.

• public void gc() - Request the VM perform garbage collection.
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C.2.4 java.lang.System

• public static long currentTimeMillis() - Returns the current time as the number of

milliseconds since midnight at the start of the 1st January, 1970. This method is

native since a call to the underlying operating system is required to get the current

time.

• private static String getProperty0(String key) - Internal method to query system prop-

erties. These are set by the virtual machine before the application starts executing

and can include system dependent information, such as operating system, working

directory, virtual machine version, current user, etc..

• public static int identityHashCode(Object x) - Provides a way to get the same value

the java.lang.Object.hashcode() method would return, even if it has been over-ridden.

C.2.5 java.lang.Thread

An object of this class represents a thread of execution in the virtual machine, that may or

may not be currently executing.

• public static Thread currentThread() - Returns the Thread object for the thread that

called this method.

• public static void yield() - Causes the thread scheduler to be run again. The current

thread will still be runnable, however it gives a chance for other threads to execute.

This is different from sleep in that it is possible for this thread to be selected for

execution again immediately.

• public static void sleep(long millis) - Will cause this thread to sleep for a given time

before becoming runnable again (although it must then wait for the scheduler to

actually schedule it, before it will start executing again).

• public void start() - Starts a new thread.
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• public boolean isAlive() - Test if the thread is still alive. That is, it has been started

and has not terminated (either via natural termination or due to an exception/error).

• public static int activeCount() - The current number of active threads in the virtual

machine.

• private void setPriority0(int newPriority) - Used as an internal helper method to cause

a change in the threads priority.

• private void interrupt0() - Used as an internal helper method to interrupt a thread.

C.2.6 java.lang.Throwable

• private void printStackTrace0(Object s) - Internal method to cause the VM to print

the stack trace to the given output stream. This is needed since only the VM knows

what state the stack is in.

C.2.7 java.lang.ref.WeakReference

This is used to implement weak references, allowing an application to hold references to

objects that will not stop the object from being garbage collected if needed. As such, this

requires very special and tight integration with the garbage collector to operate correctly.

• private native void initializeWeakReference() - Used to initialise a weak reference

after the object has been created. This method is called from the constructor.

C.3 IO

The final category is for performing IO operations. Java does not have the necessary low

level features to perform IO, as typically this will require calling system/kernel functions

or interacting directly with hardware, depending on the context. While the Java libraries

provide pure Java code for dealing with and using various types of IO, all those classes are

underpinned by the native methods found here.
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C.3.1 com.sun.cldc.io.ConsoleOutputStream

This particular class is used specifically to implement System.out (i.e. the standard output

stream).

• public native synchronized void write(int c) throws IOException - Any calls to Sys-

tem.out that write output, will ultimately become a sequence of calls to this method,

to write one character at a time to output.

C.3.2 com.sun.cldc.io.ResourceInputStream

This class is used for reading arbitrary resources from an applications JAR file. The class

file will expect some form of object to be returned when it opens the stream, and that object

is used for every read operation. It is up to the native code to determine what that object

actually is. All these methods are private methods used internally by the class.

• private static native Object open(String name) throws IOException - Open the named

resource file to be read. This returns a handle object that the Java code does not

interact with, but is used to denote the stream in the native code (i.e. identifier or

structure used by the native code to perform IO).

• private static native void close(Object handle) throws IOException - Will close the

given stream.

• private static native int size(Object handle) throws IOException - Returns the size of

the open file.

• private static native int read(Object handle) throws IOException - Reads a single byte

from the file.

• private static native int readBytes(Object handle, byte[] b, int offset, int pos, int len)

throws IOException - Used to read 1 or more bytes into the given byte array in a

single operation.
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C.3.3 com.sun.cldc.io.Waiter

This class is used to wait for an IO event.

• public native static void waitForIO()
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